Science.gov

Sample records for adaptive energy metabolism

  1. Metabolic Energy of Action Potentials Modulated by Spike Frequency Adaptation

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-01-01

    Spike frequency adaptation (SFA) exists in many types of neurons, which has been demonstrated to improve their abilities to process incoming information by synapses. The major carrier used by a neuron to convey synaptic signals is the sequences of action potentials (APs), which have to consume substantial metabolic energies to initiate and propagate. Here we use conductance-based models to investigate how SFA modulates the AP-related energy of neurons. The SFA is attributed to either calcium-activated K+ (IAHP) or voltage-activated K+ (IM) current. We observe that the activation of IAHP or IM increases the Na+ load used for depolarizing membrane, while produces few effects on the falling phase of AP. Then, the metabolic energy involved in Na+ current significantly increases from one AP to the next, while for K+ current it is less affected. As a consequence, the total energy cost by each AP gets larger as firing rate decays down. It is also shown that the minimum Na+ charge needed for the depolarization of each AP is unaffected during the course of SFA. This indicates that the activation of either adaptation current makes APs become less efficient to use Na+ influx for their depolarization. Further, our simulations demonstrate that the different biophysical properties of IM and IAHP result in distinct modulations of metabolic energy usage for APs. These investigations provide a fundamental link between adaptation currents and neuronal energetics, which could facilitate to interpret how SFA participates in neuronal information processing. PMID:27909394

  2. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    PubMed

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  3. [Energy metabolism of maternal and fetal tissues during adaptation to intermittent experimental normobaric hypoxia].

    PubMed

    Chizhov, A Ia; Osipenko, A V; Egorova, E B

    1990-01-01

    Energy metabolism of maternal and fetal tissues in adaptation to intermittent normobaric hypoxia was studied in experiments on 72 female Wistar rats. During pregnancy the intensity of tissue respiration in myometry was more than twice that in a nonpregnant uterus. The rate of tissue respiration in vital organs (brain) remained at a high level irrespective of exposure to the effect of a gas hypoxic mixture containing 10% oxygen, i.e. the organism of the mother and fetus provides the developing brain with an optimum amount of oxygen even in its possible deficiency. Thus, adaptation of the maternal and fetal organism to GHM-10 is attended by some shifts in energy metabolism which maintain the aerobic oxidation metabolism in the studied tissues for a long duration through more effective consumption of oxygen in its lack.

  4. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    PubMed

    Őri, Zsolt P

    2016-08-03

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  5. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.

    PubMed

    Mauro, Claudio; Leow, Shi Chi; Anso, Elena; Rocha, Sonia; Thotakura, Anil K; Tornatore, Laura; Moretti, Marta; De Smaele, Enrico; Beg, Amer A; Tergaonkar, Vinay; Chandel, Navdeep S; Franzoso, Guido

    2011-08-28

    Cell proliferation is a metabolically demanding process. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. ). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer.

  6. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    PubMed

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.

  7. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines

    PubMed Central

    Han, Yuchen; Perner, Mirjam

    2015-01-01

    Sulfurimonas species are commonly isolated from sulfidic habitats and numerous 16S rRNA sequences related to Sulfurimonas species have been identified in chemically distinct environments, such as hydrothermal deep-sea vents, marine sediments, the ocean’s water column, and terrestrial habitats. In some of these habitats, Sulfurimonas have been demonstrated to play an important role in chemoautotrophic processes. Sulfurimonas species can grow with a variety of electron donors and acceptors, which may contribute to their widespread distribution. Multiple copies of one type of enzyme (e.g., sulfide:quinone reductases and hydrogenases) may play a pivotal role in Sulfurimonas’ flexibility to colonize disparate environments. Many of these genes appear to have been acquired through horizontal gene transfer which has promoted adaptations to the distinct habitats. Here we summarize Sulfurimonas’ versatile energy metabolisms and link their physiological properties to their global distribution. PMID:26441918

  8. Metabolic Adaptation to Muscle Ischemia

    NASA Technical Reports Server (NTRS)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  9. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma.

    PubMed

    Tech, Katherine; Deshmukh, Mohanish; Gershon, Timothy R

    2015-01-28

    Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including Hexokinase 2 (Hk2) and Pyruvate kinase M2 (PkM2) configure energy metabolism to support growth. In these non-malignant cells, expression of Hk2 and PkM2 is driven by transcriptional regulators that are typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive Hk2 and PkM2 in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the "metabolic transformation" that is a hallmark of cancer is not specifically limited to cancer. Rather, metabolic transformation represents a co-opting of developmental programs integral to physiologic growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic transformation may nevertheless present ideal targets for novel anti-tumor therapy.

  10. Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia.

    PubMed

    Nehlig, A

    1997-02-01

    Brain maturation is characterized by a peak of cerebral energy metabolism and blood flow occurring between 3 and 8 years of age in humans and around 14-17 days of postnatal life in rats. This high activity coincides with the period of active brain growth. The human brain is dependent on glucose alone during that period, whereas rat brain uses both glucose and ketone bodies to cover its energetic and biosynthetic needs. The maturation of the density of glucose transporter sites-GLUT1 located at the blood-brain barrier and GLUT3 at the neuronal membrane-parallels the development of cerebral glucose utilization. During moderate acute hypoglycaemia, there are no changes in cerebral functional activity; cerebral glucose utilization decreases and blood flow increases only when hypoglycaemia is severe (lower than 2 mumol/ml). During chronic hypoglycaemia, the brain adapts to the low circulating levels of glucose: the number of glucose transporter sites is increased, and cerebral glucose utilization and function are maintained at normal levels while cerebral blood flow is more moderately increased than during acute hypoglycaemia. Neuronal damage consecutive to severe and prolonged hypoglycaemia occurs mainly in the cerebral cortex, hippocampus and caudate-putamen as a result of active release of excitatory amino acids.

  11. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin

    PubMed Central

    Knuth, Nicolas D.; Johannsen, Darcy L.; Tamboli, Robyn A.; Marks-Shulman, Pamela A.; Huizenga, Robert; Chen, Kong Y.; Abumrad, Naji N.; Ravussin, Eric; Hall, Kevin D.

    2014-01-01

    Objective To measure resting metabolic rate (RMR) and body composition changes in obese subjects following massive weight loss achieved via bariatric surgery or calorie restriction plus vigorous exercise. Design and Methods We compared changes in body composition and RMR in 13 pairs of obese subjects retrospectively matched for sex, body mass index, weight and age that underwent either Roux-en-Y gastric bypass surgery (RYGB) or participated in “The Biggest Loser” weight loss competition (BLC). Results Both groups had similar final weight loss (RYGB: 40.2 ± 12.7 kg, BLC: 48.8 ± 14.9 kg; p=0.14); however, RYGB lost a larger proportion of their weight as fat-free mass (FFM) (RYGB: 30 ± 12%, BLC: 16 ± 8% [p<0.01]). In both groups, RMR decreased significantly more than expected based on measured body composition changes. The magnitude of this metabolic adaptation was correlated with the degree of energy imbalance (r = 0.64, p =0.003) and the decrease in circulating leptin (r = 0.61, p=0.006). Conclusions Calorie restriction along with vigorous exercise in BLC participants resulted in preservation of FFM and greater metabolic adaption compared to RYGB subjects despite comparable weight loss. Metabolic adaptation was related to the degree of energy imbalance and the changes in circulating leptin. PMID:25236175

  12. Regulation of skeletal muscle energy/nutrient-sensing pathways during metabolic adaptation to fasting in healthy humans.

    PubMed

    Wijngaarden, Marjolein A; Bakker, Leontine E H; van der Zon, Gerard C; 't Hoen, Peter A C; van Dijk, Ko Willems; Jazet, Ingrid M; Pijl, Hanno; Guigas, Bruno

    2014-11-15

    During fasting, rapid metabolic adaptations are required to maintain energy homeostasis. This occurs by a coordinated regulation of energy/nutrient-sensing pathways leading to transcriptional activation and repression of specific sets of genes. The aim of the study was to investigate how short-term fasting affects whole body energy homeostasis and skeletal muscle energy/nutrient-sensing pathways and transcriptome in humans. For this purpose, 12 young healthy men were studied during a 24-h fast. Whole body glucose/lipid oxidation rates were determined by indirect calorimetry, and blood and skeletal muscle biopsies were collected and analyzed at baseline and after 10 and 24 h of fasting. As expected, fasting induced a time-dependent decrease in plasma insulin and leptin levels, whereas levels of ketone bodies and free fatty acids increased. This was associated with a metabolic shift from glucose toward lipid oxidation. At the molecular level, activation of the protein kinase B (PKB/Akt) and mammalian target of rapamycin pathways was time-dependently reduced in skeletal muscle during fasting, whereas the AMP-activated protein kinase activity remained unaffected. Furthermore, we report some changes in the phosphorylation and/or content of forkhead protein 1, sirtuin 1, and class IIa histone deacetylase 4, suggesting that these pathways might be involved in the transcriptional adaptation to fasting. Finally, transcriptome profiling identified genes that were significantly regulated by fasting in skeletal muscle at both early and late time points. Collectively, our study provides a comprehensive map of the main energy/nutrient-sensing pathways and transcriptomic changes during short-term adaptation to fasting in human skeletal muscle.

  13. TGFβ-induced actin cytoskeleton rearrangement in podocytes is associated with compensatory adaptation of mitochondrial energy metabolism

    PubMed Central

    Casalena, Gabriella; Böttinger, Erwin; Daehn, Ilse

    2015-01-01

    Background/Aims In podocytes, the overexpression of TGFβ ligands and receptors during glomerulosclerosis could be causal for injury induction and perpetuation in glomerular tufts. Mitochondrial dysfunction and oxidative stress are emerging as potential therapeutic targets in glomerular injury and TGFβ has been shown to modulate mitochondrial metabolism in different cell types. This study aims to investigate the role of TGFβ in podocyte energy metabolism and cytoskeleton dynamics. Methods Mitochondrial function and cytoskeleton dynamics were analyzed in TGFβ-treated WT and Smad2/3 double KO podocytes (DKO). Results TGFβ treatment in podocytes induced a significant Smad-dependent increase of mitochondrial oxygen consumption rate (OCR). ATP content was unchanged and increased respiration was not associated with increased mitochondrial mass. Increased cellular reactive oxygen species (ROS) induced by Smad-mediated TGFβ signaling were reverted by NADPH oxidase inhibitor apocynin. TGFβ treatment did not induce mitochondrial oxidative stress, and Smad2/3 dependent-TGFβ signaling and increased mitochondrial OCR were found to be associated with actin cytoskeleton dynamics. The role of motor proteins myosin II and dynamin in TGFβ-induced actin polymerization was demonstrated by specific inhibition resulting in actin stabilization and normalization of mitochondrial OCR. Conclusion TGFβ-induced rearrangements of actin cytoskeleton are controlled by Smad2/3 signaling pathways and coupled with activation of mitochondrial ATP synthesis as bioenergetic adaptation to ATP consumption by ATP- and GTP-dependent motor proteins myosin II and dynamin. PMID:26613578

  14. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism

    PubMed Central

    Soriano, G P; Besse, L; Li, N; Kraus, M; Besse, A; Meeuwenoord, N; Bader, J; Everts, B; den Dulk, H; Overkleeft, H S; Florea, B I; Driessen, C

    2016-01-01

    Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in >600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis. Proteasome inhibitor resistance may thus be targeted by manipulating the energy and redox metabolism. PMID:27118406

  15. The correlation of sodium and potassium metabolism with the level of energy consumption in man during adaptation to heat

    NASA Technical Reports Server (NTRS)

    Afanasyev, B. G.; Zhestovskiy, V. A.

    1978-01-01

    The sodium and potassium metabolism was studied in a thermal chamber at 35 deg and 80 percent relative humidity in 8 men for a period of 6 days. The control group (3 subjects) were outside of the chamber at a comfortable ambient temperature. The intracellular sodium and potassium metabolism were assessed based on their content in the erythrocytes. The finding was that during adaptation to heat, a considerable amount of sodium was excreted by the body in the sweat and urine (about 1/3 of the sodium content of the human body) as compared with its intake and the amount of potassium retained in the body. Changes in the concentration of sodium and potassium may serve as indexes of the state of adaptation processes during constant exposure to heat.

  16. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.

    PubMed

    Liu, Dong; Chan, Sic L; de Souza-Pinto, Nadja C; Slevin, John R; Wersto, Robert P; Zhan, Ming; Mustafa, Khadija; de Cabo, Rafael; Mattson, Mark P

    2006-01-01

    The high-metabolic demand of neurons and their reliance on glucose as an energy source places them at risk for dysfunction and death under conditions of metabolic and oxidative stress. Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins implicated in the regulation of mitochondrial membrane potential (Deltapsim) and cellular energy metabolism. The authors cloned UCP4 cDNA from mouse and rat brain, and demonstrate that UCP4 mRNA is expressed abundantly in brain and at particularly high levels in populations of neurons believed to have high-energy requirements. Neural cells with increased levels of UCP4 exhibit decreased Deltapsim, reduced reactive oxygen species (ROS) production and decreased mitochondrial calcium accumulation. UCP4 expressing cells also exhibited changes of oxygen-consumption rate, GDP sensitivity, and response of Deltapsim to oligomycin that were consistent with mitochondrial uncoupling. UCP4 modulates neuronal energy metabolism by increasing glucose uptake and shifting the mode of ATP production from mitochondrial respiration to glycolysis, thereby maintaining cellular ATP levels. The UCP4-mediated shift in energy metabolism reduces ROS production and increases the resistance of neurons to oxidative and mitochondrial stress. Knockdown of UCP4 expression by RNA interference in primary hippocampal neurons results in mitochondrial calcium overload and cell death. UCP4-mRNA expression is increased in neurons exposed to cold temperatures and in brain cells of rats maintained on caloric restriction, suggesting a role for UCP4 in the previously reported antiageing and neuroprotective effects of caloric restriction. By shifting energy metabolism to reduce ROS production and cellular reliance on mitochondrial respiration, UCP4 can protect neurons against oxidative stress and calcium overload.

  17. Cerebral metabolic adaptation and ketone metabolism after brain injury.

    PubMed

    Prins, Mayumi L

    2008-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the 'post-weaned/adult' brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain's capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation.

  18. ERRα mediates metabolic adaptations driving lapatinib resistance in breast cancer

    PubMed Central

    Deblois, Geneviève; Smith, Harvey W.; Tam, Ingrid S.; Gravel, Simon-Pierre; Caron, Maxime; Savage, Paul; Labbé, David P.; Bégin, Louis R.; Tremblay, Michel L.; Park, Morag; Bourque, Guillaume; St-Pierre, Julie; Muller, William J.; Giguère, Vincent

    2016-01-01

    Despite the initial benefits of treating HER2-amplified breast cancer patients with the tyrosine kinase inhibitor lapatinib, resistance inevitably develops. Here we report that lapatinib induces the degradation of the nuclear receptor ERRα, a master regulator of cellular metabolism, and that the expression of ERRα is restored in lapatinib-resistant breast cancer cells through reactivation of mTOR signalling. Re-expression of ERRα in resistant cells triggers metabolic adaptations favouring mitochondrial energy metabolism through increased glutamine metabolism, as well as ROS detoxification required for cell survival under therapeutic stress conditions. An ERRα inverse agonist counteracts these metabolic adaptations and overcomes lapatinib resistance in a HER2-induced mammary tumour mouse model. This work reveals a molecular mechanism by which ERRα-induced metabolic reprogramming promotes survival of lapatinib-resistant cancer cells and demonstrates the potential of ERRα inhibition as an effective adjuvant therapy in poor outcome HER2-positive breast cancer. PMID:27402251

  19. Brain Regulation of Energy Metabolism

    PubMed Central

    2016-01-01

    In healthy individuals, energy intake is in balance with energy expenditure, which helps to maintain a normal body weight. The brain's inability to control energy homeostasis underlies the pathology of hyperphagia and obesity. The brain detects body energy excess and deficit by sensing the levels of circulating metabolic hormones and nutrients and by receiving metabolic information from the periphery via the autonomic nervous system. A specialized neuronal network coordinates energy intake behavior and the metabolic processes affecting energy expenditure. Here, we briefly review neuronal mechanisms by which our body maintains energy balance. PMID:28029023

  20. Brain Regulation of Energy Metabolism.

    PubMed

    Roh, Eun; Kim, Min Seon

    2016-12-01

    In healthy individuals, energy intake is in balance with energy expenditure, which helps to maintain a normal body weight. The brain's inability to control energy homeostasis underlies the pathology of hyperphagia and obesity. The brain detects body energy excess and deficit by sensing the levels of circulating metabolic hormones and nutrients and by receiving metabolic information from the periphery via the autonomic nervous system. A specialized neuronal network coordinates energy intake behavior and the metabolic processes affecting energy expenditure. Here, we briefly review neuronal mechanisms by which our body maintains energy balance.

  1. Long–Term Effects of Energy-Restricted Diets Differing in Glycemic Load on Metabolic Adaptation and Body Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A randomized controlled trial of high glycemic load (HG) and low glycemic load (LG) diets with food provided for 6 months and self-administered for 6 additional months at 30% caloric restriction (CR) was performed in 29 overweight adults (mean+/-SD, age 35+/-5y; BMI 27.5+/-1.5 kg/m2). Total energy e...

  2. Metabolic energy required for flight

    NASA Astrophysics Data System (ADS)

    Lane, H. W.; Gretebeck, R. J.

    1994-11-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.

  3. Metabolic energy required for flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Gretebeck, R. J.

    1994-01-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.

  4. Energy metabolism during human pregnancy.

    PubMed

    Forsum, Elisabet; Löf, Marie

    2007-01-01

    This review summarizes information regarding how human energy metabolism is affected by pregnancy, and current estimates of energy requirements during pregnancy are presented. Such estimates can be calculated using either increases in basal metabolic rate (BMR) or increases in total energy expenditure (TEE). The two modes of calculation give similar results for a complete pregnancy but different distributions of energy requirements in the three trimesters. Recent information is presented regarding the effect of pregnancy on BMR, TEE, diet-induced thermogenesis, and physical activity. The validity of energy intake (EI) data recently assessed in well-nourished pregnant women was evaluated using information regarding energy metabolism during pregnancy. The results show that underreporting of EI is common during pregnancy and indicate that additional longitudinal studies, taking the total energy budget during pregnancy into account, are needed to satisfactorily define energy requirements during the three trimesters of gestation.

  5. Energy metabolism in heart failure

    PubMed Central

    Ventura-Clapier, Renée; Garnier, Anne; Veksler, Vladimir

    2004-01-01

    Heart failure (HF) is a syndrome resulting from the inability of the cardiac pump to meet the energy requirements of the body. Despite intensive work, the pathogenesis of the cardiac intracellular abnormalities that result from HF remains incompletely understood. Factors that lead to abnormal contraction and relaxation in the failing heart include metabolic pathway abnormalities that result in decreased energy production, energy transfer and energy utilization. Heart failure also affects the periphery. Patients suffering from heart failure always complain of early muscular fatigue and exercise intolerance. This is linked in part to intrinsic alterations of skeletal muscle, among which decreases in the mitochondrial ATP production and in the transfer of energy through the phosphotransfer kinases play an important role. Alterations in energy metabolism that affect both cardiac and skeletal muscles argue for a generalized metabolic myopathy in heart failure. Recent evidence shows that decreased expression of mitochondrial transcription factors and mitochondrial proteins are involved in mechanisms causing the energy starvation in heart failure. This review will focus on energy metabolism alterations in long-term chronic heart failure with only a few references to compensated hypertrophy when necessary. It will briefly describe the energy metabolism of normal heart and skeletal muscles and their alterations in chronic heart failure. It is beyond the scope of this review to address the metabolic switches occurring in compensated hypertrophy; readers could refer to well-documented reviews on this subject. PMID:14660709

  6. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure

    PubMed Central

    Piao, Lin; Marsboom, Glenn

    2011-01-01

    Right ventricular failure (RVF) is the leading cause of death in pulmonary arterial hypertension (PAH). Some patients with pulmonary hypertension are adaptive remodelers and develop RV hypertrophy (RVH) but retain RV function; others are maladaptive remodelers and rapidly develop RVF. The cause of RVF is unclear and understudied and most PAH therapies focus on regressing pulmonary vascular disease. Studies in animal models and human RVH suggest that there is reduced glucose oxidation and increased glycolysis in both adaptive and maladaptive RVH. The metabolic shift from oxidative mitochondrial metabolism to the less energy efficient glycolytic metabolism may reflect myocardial ischemia. We hypothesize that in maladaptive RVH a vicious cycle of RV ischemia and transcription factor activation causes a shift from oxidative to glycolytic metabolism thereby ultimately promoting RVF. Interrupting this cycle, by reducing ischemia or enhancing glucose oxidation, might be therapeutic. Dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, has beneficial effects on RV function and metabolism in experimental RVH, notably improving glucose oxidation and enhancing RV function. This suggests the mitochondrial dysfunction in RVH may be amenable to therapy. In this mini review, we describe the role of impaired mitochondrial metabolism in RVH, using rats with adaptive (pulmonary artery banding) or maladaptive (monocrotaline-induced pulmonary hypertension) RVH as models of human disease. We will discuss the possible mechanisms, relevant transcriptional factors, and the potential of mitochondrial metabolic therapeutics in RVH and RVF. PMID:20820751

  7. Energy Metabolism of Monocytic Ehrlichia

    DTIC Science & Technology

    1989-03-01

    Security Classification) Energy metabolism of monocytic Ehrlichia 12. PERSONAL AU1TOR(S) Weiss E, Williams JC, Dasch GA, Kang Y 13a. TYPE OF REPORT 13b...monocytic Ehrlichia (intracellular bacteria/animal pathogens/human pathogens) EMILIO WEISS*t, JIM C. WILLIAMSO§, GREGORY A. DASCH*, AND YUAN-HSU KANG...by Carl R. Woese, December 1, 1988 ABSTRACT We investigated if the monocytic Ehrlichia some ATP from the metabolism of glutamine. as is the case are

  8. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  9. Perturbed Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment

    PubMed Central

    Kapogiannis, Dimitrios; Mattson, Mark P.

    2010-01-01

    Summary Epidemiological, neuropathological and functional neuroimaging evidence implicates global and regional derangements in brain metabolism and energetics in the pathogenesis of cognitive impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how derangements related to chronic positive energy balance, such as diabetes, set the stage for accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have shown efficacy in animal models and preliminary studies in humans. PMID:21147038

  10. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    PubMed Central

    Mardinoglu, Adil; Nielsen, Jens; Karl, David M.

    2016-01-01

    ABSTRACT Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794 reactions involving 680 metabolites distributed in 6 subcellular locations. iJC568 was used to quantify metabolic fluxes under PLG conditions, and we observed a close correspondence between experimental and computed fluxes. We found that MED4 has minimized its dependence on intracellular phosphate, not only through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies and an extremely high proportion of essential metabolic genes (47%; defined as the percentage of lethal in silico gene knockouts). These strategies are examples of nutrient-controlled adaptive evolution and confer a dramatic growth rate advantage to MED4 in phosphorus-limited regions. IMPORTANCE Microbes are known to employ three basic strategies to compete for limiting elemental resources: (i) cell quotas may be adjusted by alterations to cell physiology or by substitution of a more plentiful resource, (ii) stressed cells may synthesize high-affinity transporters, and (iii) cells may access more costly sources from internal stores, by degradation, or by petitioning other microbes. In the case of phosphorus, a limiting resource in vast oceanic regions, the cosmopolitan

  11. Importance of Metabolic Adaptations in Francisella Pathogenesis

    PubMed Central

    Ziveri, Jason; Barel, Monique; Charbit, Alain

    2017-01-01

    Francisella tularensis is a highly infectious Gram-negative bacterium and the causative agent of the zoonotic disease tularemia. This bacterial pathogen can infect a broad variety of animal species and can be transmitted to humans in numerous ways with various clinical outcomes. Although, Francisella possesses the capacity to infect numerous mammalian cell types, the macrophage constitutes the main intracellular niche, used for in vivo bacterial dissemination. To survive and multiply within infected macrophages, Francisella must imperatively escape from the phagosomal compartment. In the cytosol, the bacterium needs to control the host innate immune response and adapt its metabolism to this nutrient-restricted niche. Our laboratory has shown that intracellular Francisella mainly relied on host amino acid as major gluconeogenic substrates and provided evidence that the host metabolism was also modified upon Francisella infection. We will review here our current understanding of how Francisella copes with the available nutrient sources provided by the host cell during the course of infection.

  12. The aging influence on cardiorespiratory, metabolic, and energy expenditure adaptations in head-out aquatic exercises: Differences between young and elderly women.

    PubMed

    Bartolomeu, Raul F; Barbosa, Tiago M; Morais, Jorge E; Lopes, Vítor P; Bragada, José A; Costa, Mário J

    2017-03-01

    The purpose of this study was to: (1) establish the relationship between acute physiological responses and musical cadence; and (2) compare physiologic responses between young and older women. Eighteen older (mean = 65.06 ± 5.77 years) and 19 young (mean = 22.16 ± 2.63 years) women underwent an intermittent and progressive protocol performing the head-out aquatic exercise the "rocking horse." Results showed that older women demonstrated lower mean heart rate, blood lactate concentration (bLa), and oxygen uptake (VO2) at rest. Hierarchical linear modeling showed that variations in the rating of perceived effort and individual metabolic equivalent of task did not differ significantly by age group. However, during exercise, physiological responses of younger women were significantly different than for older women: in mean values, for each increased musical beat per minute, mean bLa was 0.003 mmol/l, VO2 was 0.024 ml/kg/min, and energy expenditure was 0.0001 kcal/kg/min higher for younger women. This study shows that increases in musical cadence increased the cardiorespiratory, metabolic, and energy expenditure responses. However, these responses during increasing intensity seemed to differ between young and older women, with lower values for the elderly group, when performing head-out aquatic exercises.

  13. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption

    PubMed Central

    2014-01-01

    One line summary Metabolic syndrome and obesity-related co-morbidities are largely explained by co-adaptations to the energy use of the large human brain in the cortico-limbic-striatal and NRF2 systems. The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A ‘dual system’ is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing ‘common or garden’ food, appears to have occurred

  14. Energy flows, metabolism and translation

    PubMed Central

    Pascal, Robert; Boiteau, Laurent

    2011-01-01

    Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the abovementioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation. PMID:21930587

  15. Energy flows, metabolism and translation.

    PubMed

    Pascal, Robert; Boiteau, Laurent

    2011-10-27

    Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the above mentioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation.

  16. Computational Approaches for Understanding Energy Metabolism

    PubMed Central

    Shestov, Alexander A; Barker, Brandon; Gu, Zhenglong; Locasale, Jason W

    2013-01-01

    There has been a surge of interest in understanding the regulation of metabolic networks involved in disease in recent years. Quantitative models are increasingly being used to i nterrogate the metabolic pathways that are contained within this complex disease biology. At the core of this effort is the mathematical modeling of central carbon metabolism involving glycolysis and the citric acid cycle (referred to as energy metabolism). Here we discuss several approaches used to quantitatively model metabolic pathways relating to energy metabolism and discuss their formalisms, successes, and limitations. PMID:23897661

  17. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    PubMed

    McGill, Anne-Thea

    2014-01-01

    Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome's underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to 'test' this composite unifying theory it is important to show that the hypothesis and sub-theories pertain throughout the whole of human evolution and history up till the current era. Corollaries of the composite unifying theory of MetS are examined with respect to past under-nutrition and malnutrition since agriculture began 10,000 years ago. The effects of man-made pollutants on degenerative change are examined. Projections are then made from current to future patterns on the state of 'insufficient micronutrient and/or unbalanced high energy malnutrition with central obesity and metabolic dysregulation' or 'malnubesity'. Forecasts

  18. Energy metabolism in sepsis and injury.

    PubMed

    Chioléro, R; Revelly, J P; Tappy, L

    1997-09-01

    The development of malnutrition is often rapid in critically ill patients with sepsis and severe trauma. In such patients, a wide array of hormonal and nonhormonal mediators are released, inducing complex metabolic changes. Hypermetabolism, associated with protein and fat catabolism, negative nitrogen balance, hyperglycemia, and resistance to insulin, constitute the hallmark of this response. Critically ill patients demonstrate a marked alteration in the adaptation to prolonged starvation: resting metabolic rate and tissue catabolism stay elevated, while ketogenesis remains suppressed. The response to nutrition support is impaired. Substrate use is modified in septic and traumatized patients. Glucose administration during severe aggression does not suppress the enhanced hepatic glucose production and the lipolysis. This phenomenon, related to tissue insulin resistance, ensures a high flow of glucose to the predominantly glucose-consuming cells, such as the wound, the inflammatory, and immune cells, all insulin-independent cells. In addition, the elevated protein catabolism is difficult to abolish, even during aggressive nutrition support. Thus, in patients with prolonged aggression, these alterations produce a progressive loss of body cell mass and foster the development of malnutrition and it dire complications. In this review, the relevant physiologic data and the nutritional implications related to energy metabolism in septic and injured patients are discussed, while potential therapeutic strategies are proposed.

  19. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology.

    PubMed

    Marshall, David J; McQuaid, Christopher D

    2011-01-22

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30-40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and -0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis.

  20. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology

    PubMed Central

    Marshall, David J.; McQuaid, Christopher D.

    2011-01-01

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30–40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and −0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis. PMID:20685714

  1. Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol.

    PubMed

    Cheng, Kian-Kai; Lee, Baek-Seok; Masuda, Takeshi; Ito, Takuro; Ikeda, Kazutaka; Hirayama, Akiyoshi; Deng, Lingli; Dong, Jiyang; Shimizu, Kazuyuki; Soga, Tomoyoshi; Tomita, Masaru; Palsson, Bernhard O; Robert, Martin

    2014-01-01

    Comparative whole-genome sequencing enables the identification of specific mutations during adaptation of bacteria to new environments and allelic replacement can establish their causality. However, the mechanisms of action are hard to decipher and little has been achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene promotes growth by improving glycerol utilization but results in increased carbon wasting as overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy saving and wasting mechanisms work together to give an 89% increase in growth rate. This study provides insight into metabolic reprogramming during adaptive laboratory evolution for fast cellular growth.

  2. Peroxisome Proliferator-Activated Receptor γ 2 Modulates Late-Pregnancy Homeostatic Metabolic Adaptations

    PubMed Central

    Vivas, Yurena; Díez-Hochleitner, Monica; Izquierdo-Lahuerta, Adriana; Corrales, Patricia; Horrillo, Daniel; Velasco, Ismael; Martínez-García, Cristina; Campbell, Mark; Sevillano, Julio; Ricote, Mercedes; Ros, Manuel; Ramos, Maria Pilar; Medina-Gomez, Gema

    2016-01-01

    Pregnancy requires adaptation of maternal energy metabolism, including expansion and functional modifications of adipose tissue. Insulin resistance (IR), predominantly during late gestation, is a physiological metabolic adaptation that serves to support the metabolic demands of fetal growth. The molecular mechanisms underlying these adaptations are not fully understood and may contribute to gestational diabetes mellitus. Peroxisome proliferator-activated receptor γ (PPARγ) controls adipogenesis, glucose and lipid metabolism and insulin sensitivity. The PPARγ2 isoform is mainly expressed in adipocytes and is thus likely to contribute to adipose tissue adaptation during late pregnancy. In the present study, we investigated the contribution of PPARγ2 to the metabolic adaptations occurring during the late phase of pregnancy in the context of IR. Using a model of late pregnancy in PPARγ2 knockout (KO) mice, we found that deletion of PPARγ2 exacerbated IR in association with lower serum adiponectin levels, increased body weight and enhanced lipid accumulation in the liver. Lack of PPARγ2 provoked changes in the distribution of fat mass and preferentially prevented expansion of the perigonadal depot while at the same time exacerbating inflammation. Pregnant PPARγ2KO mice presented adipose tissue depot-dependent decreased expression of genes involved in lipid metabolism. Collectively, these data indicate that PPARγ2 is essential in promoting healthy adipose tissue expansion and immune and metabolic functionality during pregnancy, contributing to the physiological adaptations that lead gestation to term. PMID:27782293

  3. Interplay between oxidant species and energy metabolism

    PubMed Central

    Quijano, Celia; Trujillo, Madia; Castro, Laura; Trostchansky, Andrés

    2015-01-01

    It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. PMID:26741399

  4. Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: Metabolic regulation and thermal compensation.

    PubMed

    Zhu, Wei; Zhang, Huan; Li, Xuan; Meng, Qian; Shu, Ruihao; Wang, Menglong; Zhou, Guiling; Wang, Hongtuo; Miao, Lin; Zhang, Jihong; Qin, Qilian

    2016-02-01

    Ghost moths (Lepidoptera: Hepialidae) are cold-adapted stenothermal species inhabiting alpine meadows on the Tibetan Plateau. They have an optimal developmental temperature of 12-16 °C but can maintain feeding and growth at 0 °C. Their survival strategies have received little attention, but these insects are a promising model for environmental adaptation. Here, biochemical adaptations and energy metabolism in response to cold were investigated in larvae of the ghost moth Hepialus xiaojinensis. Metabolic rate and respiratory quotient decreased dramatically with decreasing temperature (15-4 °C), suggesting that the energy metabolism of ghost moths, especially glycometabolism, was sensitive to cold. However, the metabolic rate at 4 °C increased with the duration of cold exposure, indicating thermal compensation to sustain energy budgets under cold conditions. Underlying regulation strategies were studied by analyzing metabolic differences between cold-acclimated (4 °C for 48 h) and control larvae (15 °C). In cold-acclimated larvae, the energy generating pathways of carbohydrates, instead of the overall consumption of carbohydrates, was compensated in the fat body by improving the transcription of related enzymes. The mobilization of lipids was also promoted, with higher diacylglycerol, monoacylglycerol and free fatty acid content in hemolymph. These results indicated that cold acclimation induced a reorganization on metabolic structure to prioritise energy metabolism. Within the aerobic process, flux throughout the tricarboxylic acid (TCA) cycle was encouraged in the fat body, and the activity of α-ketoglutarate dehydrogenase was the likely compensation target. Increased mitochondrial cristae density was observed in the midgut of cold-acclimated larvae. The thermal compensation strategies in this ghost moth span the entire process of energy metabolism, including degration of metabolic substrate, TCA cycle and oxidative phosphorylation, and from an energy budget

  5. Long–Term Effects of High-and Low-Glycemic Load Energy-Restricted Diets on Metabolic Adaptation and the Composition of Weight Loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of high glycemic load (HG) and low glycemic load (LG) diets on resting metabolic rate (RMR) and body composition changes in response to caloric restriction (CR) remains controversial. Objective To examine the effects of two CR diets differing primarily in glycemic load on RMR and the % o...

  6. Hypoxia and metabolic adaptation of cancer cells

    PubMed Central

    Eales, K L; Hollinshead, K E R; Tennant, D A

    2016-01-01

    Low oxygen tension (hypoxia) is a pervasive physiological and pathophysiological stimulus that metazoan organisms have contended with since they evolved from their single-celled ancestors. The effect of hypoxia on a tissue can be either positive or negative, depending on the severity, duration and context. Over the long-term, hypoxia is not usually consistent with normal function and so multicellular organisms have had to evolve both systemic and cellular responses to hypoxia. Our reliance on oxygen for efficient adenosine triphosphate (ATP) generation has meant that the cellular metabolic network is particularly sensitive to alterations in oxygen tension. Metabolic changes in response to hypoxia are elicited through both direct mechanisms, such as the reduction in ATP generation by oxidative phosphorylation or inhibition of fatty-acid desaturation, and indirect mechanisms including changes in isozyme expression through hypoxia-responsive transcription factor activity. Significant regions of cancers often grow in hypoxic conditions owing to the lack of a functional vasculature. As hypoxic tumour areas contain some of the most malignant cells, it is important that we understand the role metabolism has in keeping these cells alive. This review will outline our current understanding of many of the hypoxia-induced changes in cancer cell metabolism, how they are affected by other genetic defects often present in cancers, and how these metabolic alterations support the malignant hypoxic phenotype. PMID:26807645

  7. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption

    PubMed Central

    2014-01-01

    Forward A composite unifying theory on causes of obesity related-MetS has been formulated and published in an accompanying article (1). In the current article, the historical and recent past, present and future corollaries of this theory are discussed. By presenting this composite theory and corollaries, it is hoped that human evolution and physiology will be viewed and studied from a new vantage point. The politics of management of ecological farming and nutrition will change, a profound reconfiguration of scientific theory generation and advancement in a ‘high-tech’ world can be made, and pathways for solutions recognised. Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome’s underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A ‘dual system’ is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to

  8. Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation.

    PubMed

    de Atauri, Pedro; Benito, Adrian; Vizán, Pedro; Zanuy, Miriam; Mangues, Ramón; Marín, Silvia; Cascante, Marta

    2011-06-01

    Metabolic adaptations are associated with changes in enzyme activities. These adaptations are characterized by patterns of positive and negative changes in metabolic fluxes and concentrations of intermediate metabolites. Knowledge of the mechanism and parameters governing enzyme kinetics is rarely available. However, the signs-increases or decreases-of many of these changes can be predicted using the signs of metabolic control coefficients. These signs require the only knowledge of the structure of the metabolic network and a limited qualitative knowledge of the regulatory dependences, which is widely available for carbon metabolism. Here, as a case study, we identified control coefficients with fixed signs in order to predict the pattern of changes in key enzyme activities which can explain the observed changes in fluxes and concentrations underlying the metabolic adaptations in oncogenic K-ras transformation in NIH-3T3 cells. The fixed signs of control coefficients indicate that metabolic changes following the oncogenic transformation-increased glycolysis and oxidative branch of the pentose-phosphate pathway, and decreased concentration in sugar-phosphates-could be associated with increases in activity for glucose-6-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase, and decrease for transketolase. These predictions were validated experimentally by measuring specific activities. We conclude that predictions based on fixed signs of control coefficients are a very robust tool for the identification of changes in enzyme activities that can explain observed metabolic adaptations in carbon metabolism.

  9. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    PubMed

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.

  10. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in heat production, or energy expenditure (EE). Multivariate adaptive regression splines (MARS), is a nonparametric method that estimates complex nonlinear relationships by a seri...

  11. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    PubMed Central

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted. PMID:28223985

  12. Energy metabolism in neurodevelopment and medulloblastoma.

    PubMed

    Tech, Katherine; Gershon, Timothy R

    2015-01-01

    New, less toxic therapies are needed for medulloblastoma, the most common malignant brain tumor in children. Like many cancers, medulloblastomas demonstrate metabolic patterns that are markedly different from the surrounding non-neoplastic tissue and are highly organized to support tumor growth. Key aspects of medulloblastoma metabolism, including increased lipogenesis and aerobic glycolysis are derived from the metabolic programs of neural progenitors. During neural development, Sonic Hedgehog (Shh) signaling induces lipogenesis and aerobic glycolysis in proliferating progenitors to support rapid growth. Shh-regulated transcription induces specific genes, including hexokinase 2 (Hk2) and fatty acid synthase (FASN) that mediate these metabolic patterns. Medulloblastomas co-opt these developmentally-regulated patterns of metabolic gene expression for sustained tumor growth. Additionally, medulloblastomas limit protein translation through activation of eukaryotic elongation factor 2 kinase (eEF2K), to restrict energy expenditure. The activation of eEF2K reduces the need to generate ATP, enabling reduced dependence on oxidative phosphorylation and increased metabolism of glucose through aerobic glycolysis. Lipogenesis, aerobic glycolysis and restriction of protein translation operate in a network of metabolic processes that is integrated by adenosine monophosphate-activated protein kinase (AMPK) to maintain homeostasis. The homeostatic effect of AMPK has the potential to limit the impact of metabolically targeted interventions. Through combinatorial targeting of lipogenesis, glycolysis and eEF2K, however, this homeostatic effect may be overcome. We propose that combinatorial targeting of medulloblastoma metabolism may produce the synergies needed for effective anti-cancer therapy.

  13. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise

    PubMed Central

    Jørgensen, Sebastian B; Richter, Erik A; Wojtaszewski, Jørgen F P

    2006-01-01

    The 5′-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We furthermore discuss the possible role of AMPK as a master switch in skeletal muscle metabolism with the main focus on AMPK in metabolic regulation during muscle work. Finally, AMPK has a well established role in regulating expression of genes encoding various enzymes in muscle, and this issue is discussed in relation to adaptation of skeletal muscle to exercise training. PMID:16690705

  14. Thyroid hormone signaling in energy homeostasis and energy metabolism.

    PubMed

    McAninch, Elizabeth A; Bianco, Antonio C

    2014-04-01

    The thyroid hormone (TH) plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. TH signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the TH exerts its effects after concerted mechanisms facilitate binding to the TH receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma TH at the appropriate level to preserve energy homeostasis. At the tissue level, TH actions on metabolism are controlled by transmembrane transporters, deiodinases, and TH receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and, thus, understanding the contribution of the TH to cellular and organism metabolism is increasingly relevant.

  15. Thyroid hormone signaling in energy homeostasis and energy metabolism

    PubMed Central

    McAninch, Elizabeth A.; Bianco, Antonio C.

    2014-01-01

    The thyroid hormone plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. Thyroid hormone signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the thyroid hormone exerts its effects after concerted mechanisms facilitate binding to the thyroid hormone receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma thyroid hormone at the appropriate level to preserve energy homeostasis. At the tissue level, thyroid hormone actions on metabolism are controlled by transmembrane transporters, deiodinases, and thyroid hormone receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and thus understanding the contribution of the thyroid hormone to cellular and organism metabolism is increasingly relevant. PMID:24697152

  16. Energetic Metabolism and Biochemical Adaptation: A Bird Flight Muscle Model

    ERIC Educational Resources Information Center

    Rioux, Pierre; Blier, Pierre U.

    2006-01-01

    The main objective of this class experiment is to measure the activity of two metabolic enzymes in crude extract from bird pectoral muscle and to relate the differences to their mode of locomotion and ecology. The laboratory is adapted to stimulate the interest of wildlife management students to biochemistry. The enzymatic activities of cytochrome…

  17. Extremely thermophilic energy metabolisms: biotechnological prospects.

    PubMed

    Straub, Christopher T; Zeldes, Benjamin M; Schut, Gerrit J; Adams, Michael Ww; Kelly, Robert M

    2017-03-16

    New strategies for metabolic engineering of extremely thermophilic microorganisms to produce bio-based fuels and chemicals could leverage pathways and physiological features resident in extreme thermophiles for improved outcomes. Furthermore, very recent advances in genetic tools for these microorganisms make it possible for them to serve as metabolic engineering hosts. Beyond providing a higher temperature alternative to mesophilic platforms, exploitation of strategic metabolic characteristics of high temperature microorganisms grants new opportunities for biotechnological products. This review considers recent developments in extreme thermophile biology as they relate to new horizons for energy biotechnology.

  18. Bone Remodeling and Energy Metabolism: New Perspectives

    PubMed Central

    de Paula, Francisco J. A.; Rosen, Clifford J.

    2013-01-01

    Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications. PMID:26273493

  19. Metabolic Adaptation to Nutritional Stress in Human Colorectal Cancer

    PubMed Central

    Miyo, Masaaki; Konno, Masamitsu; Nishida, Naohiro; Sueda, Toshinori; Noguchi, Kozo; Matsui, Hidetoshi; Colvin, Hugh; Kawamoto, Koichi; Koseki, Jun; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Gotoh, Noriko; Matsuda, Fumio; Satoh, Taroh; Mizushima, Tsunekazu; Shimizu, Hiroshi; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2016-01-01

    Tumor cells respond to their microenvironment, which can include hypoxia and malnutrition, and adapt their metabolism to survive and grow. Some oncogenes are associated with cancer metabolism via regulation of the related enzymes or transporters. However, the importance of metabolism and precise metabolic effects of oncogenes in colorectal cancer remain unclear. We found that colorectal cancer cells survived under the condition of glucose depletion, and their resistance to such conditions depended on genomic alterations rather than on KRAS mutation alone. Metabolomic analysis demonstrated that those cells maintained tricarboxylic acid cycle activity and ATP production under such conditions. Furthermore, we identified pivotal roles of GLUD1 and SLC25A13 in nutritional stress. GLUD1 and SLC25A13 were associated with tumor aggressiveness and poorer prognosis of colorectal cancer. In conclusion, GLUD1 and SLC25A13 may serve as new targets in treating refractory colorectal cancer which survive in malnutritional microenvironments. PMID:27924922

  20. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster

    PubMed Central

    Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA

    2015-01-01

    When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124

  1. Sodium signaling and astrocyte energy metabolism.

    PubMed

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676.

  2. Energy metabolism plasticity enables stemness programs.

    PubMed

    Folmes, Clifford D L; Nelson, Timothy J; Dzeja, Petras P; Terzic, Andre

    2012-04-01

    Engineering pluripotency through nuclear reprogramming and directing stem cells into defined lineages underscores cell fate plasticity. Acquisition of and departure from stemness are governed by genetic and epigenetic controllers, with modulation of energy metabolism and associated signaling increasingly implicated in cell identity determination. Transition from oxidative metabolism, typical of somatic tissues, into glycolysis is a prerequisite to fuel-proficient reprogramming, directing a differentiated cytotype back to the pluripotent state. The glycolytic metabotype supports the anabolic and catabolic requirements of pluripotent cell homeostasis. Conversely, redirection of pluripotency into defined lineages requires mitochondrial biogenesis and maturation of efficient oxidative energy generation and distribution networks to match demands. The vital function of bioenergetics in regulating stemness and lineage specification implicates a broader role for metabolic reprogramming in cell fate decisions and determinations of tissue regenerative potential.

  3. Metabolic Adaption of Ethanol-Tolerant Clostridium thermocellum

    PubMed Central

    Zhu, Xinshu; Cui, Jiatao; Feng, Yingang; Fa, Yun; Zhang, Jingtao; Cui, Qiu

    2013-01-01

    Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT) strain and an ethanol-tolerant strain cultivated without (ET0) or with (ET3) 3% (v/v) exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production. PMID:23936233

  4. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria.

    PubMed

    Lee, Joo-Yong; Kapur, Meghan; Li, Ming; Choi, Moon-Chang; Choi, Sujin; Kim, Hak-June; Kim, Inhye; Lee, Eunji; Taylor, J Paul; Yao, Tso-Pang

    2014-11-15

    Fasting and glucose shortage activate a metabolic switch that shifts more energy production to mitochondria. This metabolic adaptation ensures energy supply, but also elevates the risk of mitochondrial oxidative damage. Here, we present evidence that metabolically challenged mitochondria undergo active fusion to suppress oxidative stress. In response to glucose starvation, mitofusin 1 (MFN1) becomes associated with the protein deacetylase HDAC6. This interaction leads to MFN1 deacetylation and activation, promoting mitochondrial fusion. Deficiency in HDAC6 or MFN1 prevents mitochondrial fusion induced by glucose deprivation. Unexpectedly, failure to undergo fusion does not acutely affect mitochondrial adaptive energy production; instead, it causes excessive production of mitochondrial reactive oxygen species and oxidative damage, a defect suppressed by an acetylation-resistant MFN1 mutant. In mice subjected to fasting, skeletal muscle mitochondria undergo dramatic fusion. Remarkably, fasting-induced mitochondrial fusion is abrogated in HDAC6-knockout mice, resulting in extensive mitochondrial degeneration. These findings show that adaptive mitochondrial fusion protects metabolically challenged mitochondria.

  5. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    PubMed

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.

  6. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  7. Teaching Energy Metabolism Using Scientific Articles: Implementation of a Virtual Learning Environment for Medical Students

    ERIC Educational Resources Information Center

    de Espindola, Marina Bazzo; El-Bacha, Tatiana; Giannella, Tais Rabetti; Struchiner, Miriam; da Silva, Wagner S.; Da Poian, Andrea T.

    2010-01-01

    This work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as…

  8. Pluripotent stem cell energy metabolism: an update

    PubMed Central

    Teslaa, Tara; Teitell, Michael A

    2015-01-01

    Recent studies link changes in energy metabolism with the fate of pluripotent stem cells (PSCs). Safe use of PSC derivatives in regenerative medicine requires an enhanced understanding and control of factors that optimize in vitro reprogramming and differentiation protocols. Relative shifts in metabolism from naïve through “primed” pluripotent states to lineage-directed differentiation place variable demands on mitochondrial biogenesis and function for cell types with distinct energetic and biosynthetic requirements. In this context, mitochondrial respiration, network dynamics, TCA cycle function, and turnover all have the potential to influence reprogramming and differentiation outcomes. Shifts in cellular metabolism affect enzymes that control epigenetic configuration, which impacts chromatin reorganization and gene expression changes during reprogramming and differentiation. Induced PSCs (iPSCs) may have utility for modeling metabolic diseases caused by mutations in mitochondrial DNA, for which few disease models exist. Here, we explore key features of PSC energy metabolism research in mice and man and the impact this work is starting to have on our understanding of early development, disease modeling, and potential therapeutic applications. PMID:25476451

  9. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    PubMed

    Crane, Justin D; Abadi, Arkan; Hettinga, Bart P; Ogborn, Daniel I; MacNeil, Lauren G; Steinberg, Gregory R; Tarnopolsky, Mark A

    2013-01-01

    Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/-) mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/-) mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/-) mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  10. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation.

    PubMed

    Asgari, Yazdan; Zabihinpour, Zahra; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2015-05-01

    The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various events underlying "how" and "why" a cancer cell employs aerobic glycolysis. Significant progress has been shaped to revise the Warburg effect. In this study, we have integrated the gene expression of 13 different cancer cells with the genome-scale metabolic network of human (Recon1) based on the E-Flux method, and analyzed them based on constraint-based modeling. Results show that regardless of significant up- and down-regulated metabolic genes, the distribution of metabolic changes is similar in different cancer types. These findings support the theory that the Warburg effect is a consequence of metabolic adaptation in cancer cells.

  11. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells.

    PubMed

    Mehlitz, Adrian; Eylert, Eva; Huber, Claudia; Lindner, Buko; Vollmuth, Nadine; Karunakaran, Karthika; Goebel, Werner; Eisenreich, Wolfgang; Rudel, Thomas

    2017-03-01

    Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis, we labeled infected HeLa or Caco-2 cells with (13) C-marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC-MS-based isotopologue analysis of protein-derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT-ICR-MS analyses also demonstrated that label from exogenous (13) C-glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6-phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous (13) C-malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co-substrate usage of intracellular C. trachomatis in a stream-lined bipartite metabolism with host cell-supplied amino acids for protein biosynthesis, host cell-provided glucose 6-phosphate for cell wall biosynthesis, and, to some extent, one or more host cell-derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso-2,6-diaminopimelate required for the formation of chlamydial peptidoglycan.

  12. METABOLIC INTERMEDIATES IN ADAPTIVE FERMENTATION OF GALACTOSE BY YEAST

    PubMed Central

    Reiner, John M.

    1947-01-01

    ôle of ATP as a phosphate donor for galactose. Creatine was found to inhibit adaptation to some degree, in agreement with its known ability to act as a competitive phosphate acceptor. It was demonstrated that yeast produces, during and after adaptation, substances which shorten the apparent adaptation time of fresh samples of yeast. In agreement with our other findings, it appeared that such substances were not formed before about 45 minutes. They are probably not metabolic intermediates, and may be identical with the adaptive principle which can be extracted from adapted cells. PMID:19873500

  13. Metabolic adaptations to methionine restriction that benefit health and lifespan in rodents.

    PubMed

    Perrone, Carmen E; Malloy, Virginia L; Orentreich, David S; Orentreich, Norman

    2013-07-01

    Restriction of dietary methionine by 80% slows the progression of aged-related diseases and prolongs lifespan in rodents. A salient feature of the methionine restriction phenotype is the significant reduction of adipose tissue mass, which is associated with improvement of insulin sensitivity. These beneficial effects of MR involve a host of metabolic adaptations leading to increased mitochondrial biogenesis and function, elevated energy expenditure, changes of lipid and carbohydrate homeostasis, and decreased oxidative damage and inflammation. This review summarizes observations from MR studies and provides insight about potential mediators of tissue-specific responses associated with MR's favorable metabolic effects that contribute to health and lifespan extension.

  14. NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

    PubMed Central

    Cantó, Carles; Menzies, Keir; Auwerx, Johan

    2015-01-01

    NAD+ has emerged as a vital cofactor that can rewire metabolism, activate sirtuins and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD+ metabolism revived interest in NAD+ boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD+ metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited. PMID:26118927

  15. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus.

    PubMed

    Cantó, Carles; Menzies, Keir J; Auwerx, Johan

    2015-07-07

    NAD(+) has emerged as a vital cofactor that can rewire metabolism, activate sirtuins, and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD(+) metabolism revived interest in NAD(+)-boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD(+) metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited.

  16. Role of oxytocin in energy metabolism.

    PubMed

    Chaves, Valéria Ernestânia; Tilelli, Cristiane Queixa; Brito, Nilton Almeida; Brito, Márcia Nascimento

    2013-07-01

    The basic mechanisms that lead obesity are not fully understood; however, several peptides undoubtedly play a role in regulating body weight. Obesity, a highly complex metabolic disorder, involves central mechanisms that control food intake and energy expenditure. Previous studies have shown that central or peripheral oxytocin administration induces anorexia. Recently, in an apparent discrepancy, rodents that were deficient in oxytocin or the oxytocin receptor were shown to develop late-onset obesity without changing their total food intake, which indicates the physiological importance of oxytocin to body metabolism. Oxytocin is synthesized not only within magnocellular and parvocellular neurons but also in several organs, including the ovary, uterus, placenta, testis, thymus, kidney, heart, blood vessels, and skin. The presence of oxytocin receptors in neurons, the myometrium and myoepithelial cells is well recognized; however, this receptor has also been identified in other tissues, including the pancreas and adipose tissue. The oxytocin receptor is a typical class I G protein-coupled receptor that is primarily linked to phospholipase C-β via Gq proteins but can also be coupled to other G proteins, leading to different functional effects. In this review, we summarize the present knowledge of the effects of oxytocin on controlling energy metabolism, focusing primarily on the role of oxytocin on appetite regulation, thermoregulation, and metabolic homeostasis.

  17. Seasonal adaptations in energy budgeting in the primate Lepilemur leucopus.

    PubMed

    Bethge, Janina; Wist, Bianca; Stalenberg, Eleanor; Dausmann, Kathrin

    2017-03-17

    The spiny forest of South Madagascar is one of the driest and most unpredictable habitats in Africa. The small-bodied, nocturnal primate Lepilemur leucopus lives in this harsh habitat with high diurnal and seasonal changes in ambient temperature. In this study, we investigated seasonal adaptions in energy budgeting of L. leucopus, which allow it to live under these conditions by measuring resting metabolic rate using open-flow respirometry. No signs of heterothermy were detected, and resting metabolic rate was significantly lower in the warmer wet season than in the colder dry season. In fact, L. leucopus possesses one of the lowest mass-specific metabolic rates measured so far for an endotherm, probably the result of adaptations to its habitat and folivorous and potentially toxic diet. Surprisingly, we identified a shift of the thermoneutral zone from between 25 and 30 °C in the wet season to between 29 and 32 °C in the cool dry season. L. leucopus seems to be more affected by the hot daytime temperatures during the dry season and thermoregulation seems to be more costly during this time, which makes this shift of the thermoneutral zone advantageous. Our findings suggest that L. leucopus has a very small scope to unfavorable conditions, making it highly vulnerable, e.g., to changing conditions due to climate change.

  18. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows' Ability to Adapt is Overstressed.

    PubMed

    Sundrum, Albert

    2015-10-09

    Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes Animals 2015, 5 979 and their large variations on various scales contradict any attempts to predict the outcome of animals' adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease.

  19. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows’ Ability to Adapt is Overstressed

    PubMed Central

    Sundrum, Albert

    2015-01-01

    Simple Summary Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. Problems derive from difficulties animals have to adapt to large variations and disturbances occurring both outside and inside the organism. A lack of success in solving these issues may be due to predominant approaches in farm management and agricultural science, dealing with such disorders as merely negative side effects. Instead, a successful adaptation of animals to their living conditions should be seen as an important end in itself. Both farm management and agricultural sciences should support animals in their ability to cope with nutritional and metabolic challenges by employing a functional and result-driven approach. Abstract Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes and their large variations on various scales

  20. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  1. Radiogenic metabolism: an alternative cellular energy source.

    PubMed

    Benford, M S

    2001-01-01

    The concept of 'healing energy' is commonly used in complementary and alternative medicine; however, efforts to define this concept using contemporary scientific theory, and measure it using modern scientific methods, have been limited to date. Recent experimental testing by Benford et al. observed a uniform, substantial, and consistent decrease in gamma radiation during alternative healing sessions, thus supporting a new energy-balance paradigm hypothesizing ionizing radiation as an alternative cellular energy source. This hypothesis extends the known elements of radiogenic metabolism to potentially explain a number of presumably biopositive energy-related phenomena, including fasting and radiation hormesis, as well as to demystify unexplained anomalies such as idiopathic thermogenesis, halos and auras, and incorruptibility of human corpses.

  2. [Circadian clocks and energy metabolism in rodents].

    PubMed

    Challet, Etienne

    2014-01-01

    Circadian rhythmicity is an important component of physiological processes which provides them with a 24-hour temporal organization and adjustment to cyclical changes in the environment. Circadian rhythms are controlled by a network of endogenous clocks, comprising the main clock in the suprachiasmatic nuclei of the hypothalamus and many secondary clocks in the brain and peripheral tissues. All aspects of energy metabolism, from food intake to intracellular signaling pathways, are strongly influenced by circadian rhythmicity. In turn, meal timing is an efficient synchronizer (time-giver) to set the phase of the peripheral clocks, while the suprachiasmatic clock is synchronized by ambient light. In certain nutritional conditions (i.e., low- or high-calory diets), metabolic factors remaining to be identified modulate the functioning of the suprachiasmatic clock. Animal models of obesity and diabetes show circadian alterations. Conversely, when circadian rhythmicity is disturbed, either due to genetically defective circadian clocks, or to circadian desynchronization (chronic light exposure or repeated meals at odd times of the cycle), lipid and glucose metabolism is deregulated. The metabolic impact of circadian desynchronization justifies the development of preventive or therapeutic strategies that could rely, among others, on dietary interventions combining timed meals and specific composition.

  3. Energy dissipation in an adaptive molecular circuit

    NASA Astrophysics Data System (ADS)

    Wang, Shou-Wen; Lan, Yueheng; Tang, Lei-Han

    2015-07-01

    The ability to monitor nutrient and other environmental conditions with high sensitivity is crucial for cell growth and survival. Sensory adaptation allows a cell to recover its sensitivity after a transient response to a shift in the strength of extracellular stimulus. The working principles of adaptation have been established previously based on rate equations which do not consider fluctuations in a thermal environment. Recently, Lan et al (2012 Nat. Phys. 8 422-8) performed a detailed analysis of a stochastic model for the Escherichia coli sensory network. They showed that accurate adaptation is possible only when the system operates in a nonequilibrium steady-state (NESS). They further proposed an energy-speed-accuracy (ESA) trade-off relation. We present here analytic results on the NESS of the model through a mapping to a one-dimensional birth-death process. An exact expression for the entropy production rate is also derived. Based on these results, we are able to discuss the ESA relation in a more general setting. Our study suggests that the adaptation error can be reduced exponentially as the methylation range increases. Finally, we show that a nonequilibrium phase transition exists in the infinite methylation range limit, despite the fact that the model contains only two discrete variables.

  4. Forecasting societies' adaptive capacities through a demographic metabolism model

    NASA Astrophysics Data System (ADS)

    Lutz, Wolfgang; Muttarak, Raya

    2017-03-01

    In seeking to understand how future societies will be affected by climate change we cannot simply assume they will be identical to those of today, because climate and societies are both dynamic. Here we propose that the concept of demographic metabolism and the associated methods of multi-dimensional population projections provide an effective analytical toolbox to forecast important aspects of societal change that affect adaptive capacity. We present an example of how the changing educational composition of future populations can influence societies' adaptive capacity. Multi-dimensional population projections form the human core of the Shared Socioeconomic Pathways scenarios, and knowledge and analytical tools from demography have great value in assessing the likely implications of climate change on future human well-being.

  5. Glycolysis in energy metabolism during seizures☆

    PubMed Central

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-01-01

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  6. Hepatic Control of Energy Metabolism via the Autonomic Nervous System

    PubMed Central

    2017-01-01

    Although the human liver comprises approximately 2.8% of the body weight, it plays a central role in the control of energy metabolism. While the biochemistry of energy substrates such as glucose, fatty acids, and ketone bodies in the liver is well understood, many aspects of the overall control system for hepatic metabolism remain largely unknown. These include mechanisms underlying the ascertainment of its energy metabolism status by the liver, and the way in which this information is used to communicate and function together with adipose tissues and other organs involved in energy metabolism. This review article summarizes hepatic control of energy metabolism via the autonomic nervous system. PMID:27592630

  7. Melatonin, energy metabolism, and obesity: a review.

    PubMed

    Cipolla-Neto, J; Amaral, F G; Afeche, S C; Tan, D X; Reiter, R J

    2014-05-01

    Melatonin is an old and ubiquitous molecule in nature showing multiple mechanisms of action and functions in practically every living organism. In mammals, pineal melatonin functions as a hormone and a chronobiotic, playing a major role in the regulation of the circadian temporal internal order. The anti-obesogen and the weight-reducing effects of melatonin depend on several mechanisms and actions. Experimental evidence demonstrates that melatonin is necessary for the proper synthesis, secretion, and action of insulin. Melatonin acts by regulating GLUT4 expression and/or triggering, via its G-protein-coupled membrane receptors, the phosphorylation of the insulin receptor and its intracellular substrates mobilizing the insulin-signaling pathway. Melatonin is a powerful chronobiotic being responsible, in part, by the daily distribution of metabolic processes so that the activity/feeding phase of the day is associated with high insulin sensitivity, and the rest/fasting is synchronized to the insulin-resistant metabolic phase of the day. Furthermore, melatonin is responsible for the establishment of an adequate energy balance mainly by regulating energy flow to and from the stores and directly regulating the energy expenditure through the activation of brown adipose tissue and participating in the browning process of white adipose tissue. The reduction in melatonin production, as during aging, shift-work or illuminated environments during the night, induces insulin resistance, glucose intolerance, sleep disturbance, and metabolic circadian disorganization characterizing a state of chronodisruption leading to obesity. The available evidence supports the suggestion that melatonin replacement therapy might contribute to restore a more healthy state of the organism.

  8. Thermal adaptation in the intertidal snail Echinolittorina malaccana contradicts current theory by revealing the crucial roles of resting metabolism.

    PubMed

    Marshall, David J; Dong, Yun-Wei; McQuaid, Christopher D; Williams, Gray A

    2011-11-01

    Contemporary theory for thermal adaptation of ectothermic metazoans focuses on the maximization of energy gain and performance (locomotion and foraging). Little consideration is given to the selection for mechanisms that minimize resting energy loss in organisms whose energy gain is severely constrained. We tested a hypothetical framework for thermal performance of locomotor activity (a proxy for energy gain) and resting metabolism (a proxy for energy loss) in energetically compromised snails in the littoral fringe zone, comparing this with existing theory. In contrast to theory, the thermal ranges and optima for locomotor performance and metabolic performance of Echinolittorina malaccana are mismatched, and energy gain is only possible at relatively cool temperatures. To overcome thermal and temporal constraints on energy gain while experiencing high body temperatures (23-50°C), these snails depress resting metabolism between 35 and 46°C (thermally insensitive zone). The resulting bimodal relationship for metabolism against temperature contrasts with the unimodal or exponential relationships of most ectotherms. Elevation of metabolism above the breakpoint temperature for thermal insensitivity (46°C) coincides with the induction of a heat shock response, and has implications for energy expenditure and natural selection. Time-dependent mortality is initiated at this breakpoint temperature, suggesting a threshold above which the rate of energy demand exceeds the capacity for cellular energy generation (rate of ATP turnover). Mortality in a thermal range that elevates rather than limits aerobic metabolism contrasts with the hypothesis that cellular oxygen deficiency underlies temperature-related mortality. The findings of this study point to the need to incorporate aspects of resting metabolism and energy conservation into theories of thermal adaptation.

  9. A Non-Traditional Model of the Metabolic Syndrome: The Adaptive Significance of Insulin Resistance in Fasting-Adapted Seals

    PubMed Central

    Houser, Dorian S.; Champagne, Cory D.; Crocker, Daniel E.

    2013-01-01

    Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7–3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies

  10. Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli.

    PubMed

    Händel, Nadine; Schuurmans, J Merijn; Brul, Stanley; ter Kuile, Benno H

    2013-08-01

    Antibiotic resistance is often associated with metabolic costs. To investigate the metabolic consequences of antibiotic resistance, the genomic and transcriptomic profiles of an amoxicillin-resistant Escherichia coli strain and the wild type it was derived from were compared. A total of 125 amino acid substitutions and 7 mutations that were located <1,000 bp upstream of differentially expressed genes were found in resistant cells. However, broad induction and suppression of genes were observed when comparing the expression profiles of resistant and wild-type cells. Expression of genes involved in cell wall maintenance, DNA metabolic processes, cellular stress response, and respiration was most affected in resistant cells regardless of the absence or presence of amoxicillin. The SOS response was downregulated in resistant cells. The physiological effect of the acquisition of amoxicillin resistance in cells grown in chemostat cultures consisted of an initial increase in glucose consumption that was followed by an adaptation process. Furthermore, no difference in maintenance energy was observed between resistant and sensitive cells. In accordance with the transcriptomic profile, exposure of resistant cells to amoxicillin resulted in reduced salt and pH tolerance. Taken together, the results demonstrate that the acquisition of antibiotic resistance in E. coli is accompanied by specifically reorganized metabolic networks in order to circumvent metabolic costs. The overall effect of the acquisition of resistance consists not so much of an extra energy requirement, but more a reduced ecological range.

  11. Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism

    PubMed Central

    Wicks, Shawna E.; Vandanmagsar, Bolormaa; Haynie, Kimberly R.; Fuller, Scott E.; Warfel, Jaycob D.; Stephens, Jacqueline M.; Wang, Miao; Han, Xianlin; Zhang, Jingying; Noland, Robert C.; Mynatt, Randall L.

    2015-01-01

    The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity. PMID:26056297

  12. Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism.

    PubMed

    Wicks, Shawna E; Vandanmagsar, Bolormaa; Haynie, Kimberly R; Fuller, Scott E; Warfel, Jaycob D; Stephens, Jacqueline M; Wang, Miao; Han, Xianlin; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2015-06-23

    The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity.

  13. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation

    PubMed Central

    Acin-Perez, Rebeca; Gatti, Domenico L.; Bai, Yidong; Manfredi, Giovanni

    2011-01-01

    Summary Rapid regulation of oxidative phosphorylation is crucial for mitochondrial adaptation to swift changes in fuels availability and energy demands. An intra-mitochondrial signaling pathway regulates cytochrome oxidase (COX), the terminal enzyme of the respiratory chain, through reversible phosphorylation. We find that PKA-mediated phosphorylation of a COX subunit dictates mammalian mitochondrial energy fluxes, and identify the specific residue (S58) of COX subunit IV-1 (COXIV-1) that is involved in this mechanism of metabolic regulation. Using protein mutagenesis, molecular dynamics simulations, and induced fit docking, we show that mitochondrial energy metabolism regulation by phosphorylation of COXIV-1 is coupled with prevention of COX allosteric inhibition by ATP. This regulatory mechanism is essential for efficient oxidative metabolism and cell survival. We propose that S58 COXIV-1 phosphorylation has evolved as a metabolic switch that allows mammalian mitochondria to rapidly toggle between energy utilization and energy storage. PMID:21641552

  14. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    PubMed

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  15. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations

    PubMed Central

    Stanford, Kristin I.; Middelbeek, Roeland J.W.

    2015-01-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the “beiging” of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health. PMID:26050668

  16. Energy metabolism and the high-altitude environment.

    PubMed

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude.

  17. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding

  18. Aspartoacylase supports oxidative energy metabolism during myelination

    PubMed Central

    Francis, Jeremy S; Strande, Louise; Markov, Vladamir; Leone, Paola

    2012-01-01

    The inherited leukodystrophy Canavan disease arises due to a loss of the ability to catabolize N-acetylaspartic acid (NAA) in the brain and constitutes a major point of focus for efforts to define NAA function. Accumulation of noncatabolized NAA is diagnostic for Canavan disease, but contrasts with the abnormally low NAA associated with compromised neuronal integrity in a broad spectrum of other clinical conditions. Experimental evidence for NAA function supports a role in white matter lipid synthesis, but does not explain how both elevated and lowered NAA can be associated with pathology in the brain. We have undertaken a systematic analysis of postnatal development in a mouse model of Canavan disease that delineates development and pathology by identifying markers of oxidative stress preceding oligodendrocyte loss and dysmyelination. These data suggest a role for NAA in the maintenance of metabolic integrity in oligodendrocytes that may be of relevance to the strong association between NAA and neuronal viability. N-acetylaspartic acid is proposed here to support lipid synthesis and energy metabolism via the provision of substrate for both cellular processes during early postnatal development. PMID:22617649

  19. Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment.

    PubMed

    Wentz, Anna E; d'Avignon, D André; Weber, Mary L; Cotter, David G; Doherty, Jason M; Kerns, Robnet; Nagarajan, Rakesh; Reddy, Naveen; Sambandam, Nandakumar; Crawford, Peter A

    2010-08-06

    Heart muscle is metabolically versatile, converting energy stored in fatty acids, glucose, lactate, amino acids, and ketone bodies. Here, we use mouse models in ketotic nutritional states (24 h of fasting and a very low carbohydrate ketogenic diet) to demonstrate that heart muscle engages a metabolic response that limits ketone body utilization. Pathway reconstruction from microarray data sets, gene expression analysis, protein immunoblotting, and immunohistochemical analysis of myocardial tissue from nutritionally modified mouse models reveal that ketotic states promote transcriptional suppression of the key ketolytic enzyme, succinyl-CoA:3-oxoacid CoA transferase (SCOT; encoded by Oxct1), as well as peroxisome proliferator-activated receptor alpha-dependent induction of the key ketogenic enzyme HMGCS2. Consistent with reduction of SCOT, NMR profiling demonstrates that maintenance on a ketogenic diet causes a 25% reduction of myocardial (13)C enrichment of glutamate when (13)C-labeled ketone bodies are delivered in vivo or ex vivo, indicating reduced procession of ketones through oxidative metabolism. Accordingly, unmetabolized substrate concentrations are higher within the hearts of ketogenic diet-fed mice challenged with ketones compared with those of chow-fed controls. Furthermore, reduced ketone body oxidation correlates with failure of ketone bodies to inhibit fatty acid oxidation. These results indicate that ketotic nutrient environments engage mechanisms that curtail ketolytic capacity, controlling the utilization of ketone bodies in ketotic states.

  20. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma.

    PubMed

    Dixit, Deobrat; Ahmad, Fahim; Ghildiyal, Ruchi; Joshi, Shanker Datt; Sen, Ellora

    2016-05-15

    Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival.

  1. Adapting brain metabolism to myelination and long-range signal transduction.

    PubMed

    Hirrlinger, Johannes; Nave, Klaus-Armin

    2014-11-01

    In the mammalian brain, the subcortical white matter comprises long-range axonal projections and their associated glial cells. Here, astrocytes and oligodendrocytes serve specific functions during development and throughout adult life, when they meet the metabolic needs of long fiber tracts. Within a short period of time, oligodendrocytes generate large amount of lipids, such as cholesterol, and membrane proteins for building the myelin sheaths. After myelination has been completed, a remaining function of glial metabolism is the energetic support of axonal transport and impulse propagation. Astrocytes can support axonal energy metabolism under low glucose conditions by the degradation of stored glycogen. Recently it has been recognized that the ability of glycolytic oligodendrocytes to deliver pyruvate and lactate is critical for axonal functions in vivo. In this review, we discuss the specific demands of oligodendrocytes during myelination and potential routes of metabolites between glial cells and myelinated axons. As examples, four specific metabolites are highlighted (cholesterol, glycogen, lactate, and N-acetyl-aspartate) that contribute to the specific functions of white matter glia. Regulatory processes are discussed that could be involved in coordinating metabolic adaptations and in providing feedback information about metabolic states.

  2. Current understanding of the formation and adaptation of metabolic systems based on network theory.

    PubMed

    Takemoto, Kazuhiro

    2012-07-12

    Formation and adaptation of metabolic networks has been a long-standing question in biology. With recent developments in biotechnology and bioinformatics, the understanding of metabolism is progressively becoming clearer from a network perspective. This review introduces the comprehensive metabolic world that has been revealed by a wide range of data analyses and theoretical studies; in particular, it illustrates the role of evolutionary events, such as gene duplication and horizontal gene transfer, and environmental factors, such as nutrient availability and growth conditions, in evolution of the metabolic network. Furthermore, the mathematical models for the formation and adaptation of metabolic networks have also been described, according to the current understanding from a perspective of metabolic networks. These recent findings are helpful in not only understanding the formation of metabolic networks and their adaptation, but also metabolic engineering.

  3. Cardiomyocyte health: adapting to metabolic changes through autophagy.

    PubMed

    Kubli, Dieter A; Gustafsson, Asa B

    2014-03-01

    Autophagy is important in the heart for maintaining homeostasis when changes in nutrient levels occur. Autophagy is involved in the turnover of cellular components, and is rapidly upregulated during stress. Studies have found that autophagy is reduced in metabolic disorders including obesity and diabetes. This leads to accumulation of protein aggregates and dysfunctional organelles, which contributes to the pathogenesis of cardiovascular disease. Autophagy is primarily regulated by two components: the mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK). Although mTOR integrates information about growth factors and nutrients and is a negative regulator of autophagy, AMPK is an energy sensor and activates autophagy when energy levels are low. These pathways therefore present targets for the development of autophagy-modulating therapies.

  4. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  5. Stimulus specific changes of energy metabolism in hypertrophied heart.

    PubMed

    Rimbaud, S; Sanchez, H; Garnier, A; Fortin, D; Bigard, X; Veksler, V; Ventura-Clapier, R

    2009-06-01

    Cardiac energy metabolism is a determinant of the response to hypertrophic stimuli. To investigate how it responds to physiological or pathological stimuli, we compared the energetic status in models of hypertrophy induced by physiological stimuli (pregnancy or treadmill running) and by pathological stimulus (spontaneously hypertensive rats, SHR) in 15 week-old female rats, leading to a 10% cardiac hypertrophy. Late stage of compensated hypertrophy was also studied in 25 week-old SHR (35% of hypertrophy). Markers of cardiac remodelling did not follow a unique pattern of expression: in trained rats, only ANF was increased; in gravid rats, calcineurin activation and BNP expression were reduced while beta-MHC expression was enhanced; all markers were clearly up-regulated in 25 week-old SHR. Respiration of permeabilized fibers revealed a 17% increase in oxidative capacity in trained rats only. Mitochondrial enzyme activities, expression of the master regulator PGC-1alpha and mitochondrial transcription factor A, and content of mitochondrial DNA were not consistently changed, suggesting that compensated hypertrophy does not involve alterations of mitochondrial biogenesis. Mitochondrial fatty acid utilization tended to increase in trained rats and decreased by 14% in 15 week-old SHR. Expression of markers of lipid oxidation, PPARalpha and its down-stream targets MCAD and CPTI, was up-regulated after training and tended to decrease in gravid and 15 week-old SHR rats. Taken together these results show that there is no univocal pattern of cardiac adaptation in response to physiological or pathological hypertrophic stimuli, suggesting that other factors could play a role in determining adaptation of energy metabolism to increased workload.

  6. Adaptation of oxidative phosphorylation to photoperiod-induced seasonal metabolic states in migratory songbirds.

    PubMed

    Trivedi, Amit Kumar; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2015-06-01

    Eukaryotic cells produce chemical energy in the form of ATP by oxidative phosphorylation of metabolic fuels via a series of enzyme mediated biochemical reactions. We propose that the rates of these reactions are altered, as per energy needs of the seasonal metabolic states in avian migrants. To investigate this, blackheaded buntings were photoperiodically induced with non-migratory, premigratory, migratory and post-migratory phenotypes. High plasma levels of free fatty acids, citrate (an intermediate that begins the TCA cycle) and malate dehydrogenase (mdh, an enzyme involved at the end of the TCA cycle) confirmed increased availability of metabolic reserves and substrates to the TCA cycle during the premigratory and migratory states, respectively. Further, daily expression pattern of genes coding for enzymes involved in the oxidative decarboxylation of pyruvate to acetyl-CoA (pdc and pdk) and oxidative phosphorylation in the TCA cycle (cs, odgh, sdhd and mdh) was monitored in the hypothalamus and liver. Reciprocal relationship between pdc and pdk expressions conformed with the altered requirements of acetyl-CoA for the TCA cycle in different metabolic states. Except for pdk, all genes had a daily expression pattern, with high mRNA expression during the day in the premigratory/migratory phenotypes, and at night (cs, odhg, sdhd and mdh) in the nonmigratory phenotype. Differences in mRNA expression patterns of pdc, sdhd and mdh, but not of pdk, cs and odgh, between the hypothalamus and liver indicated a tissue dependent metabolism in buntings. These results suggest the adaptation of oxidative phosphorylation pathway(s) at gene levels to the seasonal alternations in metabolism in migratory songbirds.

  7. Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach

    PubMed Central

    Peppicelli, Silvia; Bianchini, Francesca; Calorini, Lido

    2015-01-01

    Cancer cells need to regulate their metabolic program to fuel several activities, including unlimited proliferation, resistance to cell death, invasion and metastasis. The aim of this work is to revise this complex scenario. Starting from proliferating cancer cells located in well-oxygenated regions, they may express the so-called “Warburg effect” or aerobic glycolysis, meaning that although a plenty of oxygen is available, cancer cells choose glycolysis, the sole pathway that allows a biomass formation and DNA duplication, needed for cell division. Although oxygen does not represent the primary font of energy, diffusion rate reduces oxygen tension and the emerging hypoxia promotes “anaerobic glycolysis” through the hypoxia inducible factor-1α-dependent up-regulation. The acquired hypoxic phenotype is endowed with high resistance to cell death and high migration capacities, although these cells are less proliferating. Cells using aerobic or anaerobic glycolysis survive only in case they extrude acidic metabolites acidifying the extracellular space. Acidosis drives cancer cells from glycolysis to OxPhos, and OxPhos transforms the available alternative substrates into energy used to fuel migration and distant organ colonization. Thus, metabolic adaptations sustain different energy-requiring ability of cancer cells, but render them responsive to perturbations by anti-metabolic agents, such as inhibitors of glycolysis and/or OxPhos. PMID:25897425

  8. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans

    PubMed Central

    Ge, Ri-Li; Simonson, Tatum S.; Cooksey, Robert C.; Tanna, Uran; Qin, Ga; Huff, Chad D.; Witherspoon, David J.; Xing, Jinchuan; Zhengzhong, Bai; Prchal, Josef T.; Jorde, Lynn B.; McClain, Donald A.

    2012-01-01

    Recent studies have identified genes involved in high-altitude adaptation in Tibetans. Genetic variants/haplotypes within regions containing three of these genes (EPAS1, EGLN1, and PPARA) are associated with relatively decreased hemoglobin levels observed in Tibetans at high altitude, providing corroborative evidence for genetic adaptation to this extreme environment. The mechanisms that afford adaptation to high-altitude hypoxia, however, remain unclear. Considering the strong metabolic demands imposed by hypoxia, we hypothesized that a shift in fuel preference to glucose oxidation and glycolysis at the expense of fatty acid oxidation would improve adaptation to decreased oxygen availability. Correlations between serum free fatty acids and lactate concentrations in Tibetan groups living at high altitude and putatively selected haplotypes provide insight into this hypothesis. An EPAS1 haplotype that exhibits a signal of positive selection is significantly associated with increased lactate concentration, the product of anaerobic glycolysis. Furthermore, the putatively advantageous PPARA haplotype is correlated with serum free fatty acid levels, suggesting a possible decrease in the activity of fatty acid oxidation. Although further studies are required to assess the molecular mechanisms underlying these patterns, these associations suggest that genetic adaptation to high altitude involves alteration in energy utilization pathways. PMID:22503288

  9. Energy Metabolism of Human Neutrophils during Phagocytosis

    PubMed Central

    Borregaard, Niels; Herlin, Troels

    1982-01-01

    Detailed quantitative studies were performed on the generation and utilization of energy by resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was constant during rest, and was not influenced by the presence or absence of glucose in the medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell. In the presence of glucose, ATP was generated almost exclusively from lactate produced from glucose taken up from the surrounding medium. The amount of lactate produced could account for 85% of the glucose taken up by the cells, and the intracellular glycosyl store, glycogen, was not drawn upon. The rate of ATP generation as calculated from the rate of lactate production was 1.3 fmol/cell/min. During phagocytosis, there was no measurable increase in glucose consumption or lactate production, and the ATP content fell rapidly to 0.8 fmol/cell. This disappearance of ATP was apparently irreversible since no corresponding increase in ADP or AMP was observed. It therefore appears that this phagocytosis-induced fall in ATP concentration represents all the extra energy utilized in human neutrophils in the presence of glucose. In the absence of glucose, the rate of ATP generation in the resting cell was considerably smaller, 0.75 fmol/cell per min, as calculated from the rate of glycolysis, which is sustained exclusively by glycogenolysis. Under this condition, however, phagocytosis induces significant enhancement of glycogenolysis and the rate of lactate production is increased by 60%, raising the rate of ATP generation to 1.2 fmol/cell per min. Nonetheless, the ATP content drops significantly from 1.9 to 1.0 fmol/cell. Neutrophils from patients with chronic granulomatous disease have the same rate of glycolysis and the same ATP content as normal cells, thus confirming that the defective respiration of these cells does not affect their energy metabolism. PMID:7107894

  10. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  11. Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet.

    PubMed

    Svensson, M B; Ekblom, B; Cotgreave, I A; Norman, B; Sjöberg, B; Ekblom, O; Sjödin, B; Sjödin, A

    2002-09-01

    Ergometer cycling performance as well as acute exercise-induced changes in the metabolism of energy-intermediates and glutathione (GSH) were investigated in skeletal muscle (SM) of 15 healthy young male subjects (VO(2max) approximately 54.7 mL kg(-1) min(-1), age approximately 25 years), before and after 3 days of controlled 'ìoverload-training' in combination with either high (62% of energy intake) or low (26% of energy intake) dietary intake of carbohydrates. The intake of a carbohydrate-rich diet clearly reduced the depletion of SM glycogen following the short-term training period, paralleled with a positive effect on the endurance performance, but not on high-intensity work-performance. An 'delayed over-reaching effect', defined as impaired work-performance, was observed after 2.5 days of recovery from the short-term training period, irrespective of the carbohydrate content of the diet and basal glycogen level in SM. Taken together, the main and novel findings of present investigation are: (1) an acute decrease of reduced GSH content and altered thiol-redox homeostasis in SM induced by strenuous high-intensity exercise; (2) an adaptive elevation of basal GSH level following the short-term training period; (3) an adaptive decrease of basal GSH level following 2.5 days recovery from training; (4) evidence of a relationship between the SM fibre type, physical performance capacity and GSH turnover during acute bouts of exercise; and (5) no evident effect of the level of carbohydrate intake on metabolism of GSH or energy intermediates. Furthermore, the induction of acute oxidative stress in exercising human SM and the adaptive responses to training are suggested to provide a protective antioxidant phenotype to the exercising SM during periods with repeated intense intermittent training.

  12. Energy Metabolism in the Acquisition and Maintenance of Stemness

    PubMed Central

    Folmes, Clifford D. L.; Terzic, Andre

    2016-01-01

    Energy metabolism is traditionally considered a reactive homeostatic system addressing stage-specific cellular energy needs. There is however growing appreciation of metabolic pathways in the active control of vital cell functions. Case in point, the stem cell lifecycle – from maintenance and acquisition of stemness to lineage commitment and specification – is increasingly recognized as a metabolism-dependent process. Indeed, metabolic reprogramming is an early contributor to the orchestrated departure from or reacquisition of stemness. Recent advances in metabolomics have helped decipher the identity and dynamics of metabolic fluxes implicated in fueling cell fate choices by regulating the epigenetic and transcriptional identity of a cell. Metabolic cues, internal and/or external to the stem cell niche, facilitate progenitor pool restitution, long-term tissue renewal or ensure adoption of cytoprotective behavior. Convergence of energy metabolism with stem cell fate regulation opens a new avenue in understanding primordial developmental biology principles with future applications in regenerative medicine practice. PMID:26868758

  13. A cellular perspective on brain energy metabolism and functional imaging.

    PubMed

    Magistretti, Pierre J; Allaman, Igor

    2015-05-20

    The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales.

  14. Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis.

    PubMed

    Nirala, Niraj K; Rahman, Motiur; Walls, Stanley M; Singh, Alka; Zhu, Lihua Julie; Bamba, Takeshi; Fukusaki, Eiichiro; Srideshikan, Sargur M; Harris, Greg L; Ip, Y Tony; Bodmer, Rolf; Acharya, Usha R

    2013-06-01

    The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in response to increased

  15. Physical activity: benefit or weakness in metabolic adaptations in a mouse model of chronic food restriction?

    PubMed

    Méquinion, Mathieu; Caron, Emilie; Zgheib, Sara; Stievenard, Aliçia; Zizzari, Philippe; Tolle, Virginie; Cortet, Bernard; Lucas, Stéphanie; Prévot, Vincent; Chauveau, Christophe; Viltart, Odile

    2015-02-01

    In restrictive-type anorexia nervosa (AN) patients, physical activity is usually associated with food restriction, but its physiological consequences remain poorly characterized. In female mice, we evaluated the impact of voluntary physical activity with/without chronic food restriction on metabolic and endocrine parameters that might contribute to AN. In this protocol, FRW mice (i.e., food restriction with running wheel) reached a crucial point of body weight loss (especially fat mass) faster than FR mice (i.e., food restriction only). However, in contrast to FR mice, their body weight stabilized, demonstrating a protective effect of a moderate, regular physical activity. Exercise delayed meal initiation and duration. FRW mice displayed food anticipatory activity compared with FR mice, which was strongly diminished with the prolongation of the protocol. The long-term nature of the protocol enabled assessment of bone parameters similar to those observed in AN patients. Both restricted groups adapted their energy metabolism differentially in the short and long term, with less fat oxidation in FRW mice and a preferential use of glucose to compensate for the chronic energy imbalance. Finally, like restrictive AN patients, FRW mice exhibited low leptin levels, high plasma concentrations of corticosterone and ghrelin, and a disruption of the estrous cycle. In conclusion, our model suggests that physical activity has beneficial effects on the adaptation to the severe condition of food restriction despite the absence of any protective effect on lean and bone mass.

  16. The endocannabinoid system and energy metabolism.

    PubMed

    Bellocchio, L; Cervino, C; Pasquali, R; Pagotto, U

    2008-06-01

    Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors [cannabinoid receptor type 1 (CB1) and CB2] participate in the physiological modulation of many central and peripheral functions. The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received considerable attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptors and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control several metabolic functions by acting on peripheral tissues such as adipocytes, hepatocytes, the gastrointestinal tract, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, and therefore drugs interfering with this overactivation by blocking CB1 receptors are considered as potentially valuable candidates for the treatment of obesity and related cardiometabolic risk factors.

  17. Metabolic adaptation to tissue iron overload confers tolerance to malaria.

    PubMed

    Gozzelino, Raffaella; Andrade, Bruno Bezerril; Larsen, Rasmus; Luz, Nivea F; Vanoaica, Liviu; Seixas, Elsa; Coutinho, Antonio; Cardoso, Sílvia; Rebelo, Sofia; Poli, Maura; Barral-Netto, Manoel; Darshan, Deepak; Kühn, Lukas C; Soares, Miguel P

    2012-11-15

    Disease tolerance is a defense strategy that limits the fitness costs of infection irrespectively of pathogen burden. While restricting iron (Fe) availability to pathogens is perceived as a host defense strategy, the resulting tissue Fe overload can be cytotoxic and promote tissue damage to exacerbate disease severity. Examining this interplay during malaria, the disease caused by Plasmodium infection, we find that expression of the Fe sequestering protein ferritin H chain (FtH) in mice, and ferritin in humans, is associated with reduced tissue damage irrespectively of pathogen burden. FtH protection relies on its ferroxidase activity, which prevents labile Fe from sustaining proapoptotic c-Jun N-terminal kinase (JNK) activation. FtH expression is inhibited by JNK activation, promoting tissue Fe overload, tissue damage, and malaria severity. Mimicking FtH's antioxidant effect or inhibiting JNK activation pharmacologically confers therapeutic tolerance to malaria in mice. Thus, FtH provides metabolic adaptation to tissue Fe overload, conferring tolerance to malaria.

  18. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms.

    PubMed

    Swanson, David L; McKechnie, Andrew E; Vézina, François

    2017-04-11

    Adaptive explanations for both high and low body mass-independent basal metabolic rate (BMR) in endotherms are pervasive in evolutionary physiology, but arguments implying a direct adaptive benefit of high BMR are troublesome from an energetic standpoint. Here, we argue that conclusions about the adaptive benefit of BMR need to be interpreted, first and foremost, in terms of energetics, with particular attention to physiological traits on which natural selection is directly acting. We further argue from an energetic perspective that selection should always act to reduce BMR (i.e., maintenance costs) to the lowest level possible under prevailing environmental or ecological demands, so that high BMR per se is not directly adaptive. We emphasize the argument that high BMR arises as a correlated response to direct selection on other physiological traits associated with high ecological or environmental costs, such as daily energy expenditure (DEE) or capacities for activity or thermogenesis. High BMR thus represents elevated maintenance costs required to support energetically demanding lifestyles, including living in harsh environments. BMR is generally low under conditions of relaxed selection on energy demands for high metabolic capacities (e.g., thermoregulation, activity) or conditions promoting energy conservation. Under these conditions, we argue that selection can act directly to reduce BMR. We contend that, as a general rule, BMR should always be as low as environmental or ecological conditions permit, allowing energy to be allocated for other functions. Studies addressing relative reaction norms and response times to fluctuating environmental or ecological demands for BMR, DEE, and metabolic capacities and the fitness consequences of variation in BMR and other metabolic traits are needed to better delineate organismal metabolic responses to environmental or ecological selective forces.

  19. The energy-speed-accuracy tradeoff in sensory adaptation

    PubMed Central

    Lan, Ganhui; Sartori, Pablo; Neumann, Silke; Sourjik, Victor; Tu, Yuhai

    2012-01-01

    Adaptation is the essential process by which an organism becomes better suited to its environment. The benefits of adaptation are well documented, but the cost it incurs remains poorly understood. Here, by analysing a stochastic model of a minimum feedback network underlying many sensory adaptation systems, we show that adaptive processes are necessarily dissipative, and continuous energy consumption is required to stabilize the adapted state. Our study reveals a general relation among energy dissipation rate, adaptation speed and the maximum adaptation accuracy. This energy-speed-accuracy relation is tested in the Escherichia coli chemosensory system, which exhibits near-perfect chemoreceptor adaptation. We identify key requirements for the underlying biochemical network to achieve accurate adaptation with a given energy budget. Moreover, direct measurements confirm the prediction that adaptation slows down as cells gradually de-energize in a nutrient-poor medium without compromising adaptation accuracy. Our work provides a general framework to study cost-performance tradeoffs for cellular regulatory functions and information processing. PMID:22737175

  20. Milestones in the history of research on cardiac energy metabolism.

    PubMed

    Beloukas, Apostolos I; Magiorkinis, Emmanouil; Tsoumakas, Theofanis L; Kosma, Alexandra G; Diamantis, Aristidis

    2013-11-01

    The present study summarizes the history of research on cardiac metabolism from antiquity till the 21st century. It describes important landmarks regarding the discovery of oxygen and of the 3 steps of cellular respiration, as well as major research on cardiac energy metabolism. For this purpose, we conducted a thorough search of original manuscripts, books, and contemporary reviews published in PubMed. The first views and concepts about the heart's function appear in Greek philosophic manuscripts of 2500 years ago. According to Aristotle, the heart is responsible for heat production, which is essential for life. The understanding of cardiac metabolism awaited new discoveries. The discovery of oxygen during the 18th century, along with the idea of energy conservation, or what is now known as one of the first versions of the first law of thermodynamics, played an important role in initiating the study of energy metabolism in general and heart metabolism later. The discovery of glycolysis, of the Krebs cycle, and of adenosine triphosphate offered a better understanding of cellular respiration, necessary for later research. Indeed, many researchers dedicated their studies to energy metabolism, but Richard John Bing, the renowned German research cardiologist, is the one who guided the exploration of cardiac metabolism, and he is therefore considered to be the father of cardiac energy metabolism. Since then, encouraging new research has been taking place, offering important clinical applications for heart patients.

  1. The plasma membrane as a capacitor for energy and metabolism

    PubMed Central

    Ray, Supriyo; Kassan, Adam; Busija, Anna R.; Rangamani, Padmini

    2016-01-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as “capacitors for energy and metabolism.” Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  2. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  3. Analysis of metabolic energy utilization in the Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Skylab biomedical data regarding man's metabolic processes for extended periods of weightlessness is presented. The data was used in an integrated metabolic balance analysis which included analysis of Skylab water balance, electrolyte balance, evaporative water loss, and body composition. A theoretical analysis of energy utilization in man is presented. The results of the analysis are presented in tabular and graphic format.

  4. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.

    PubMed

    Berkhout, Jan; Bosdriesz, Evert; Nikerel, Emrah; Molenaar, Douwe; de Ridder, Dick; Teusink, Bas; Bruggeman, Frank J

    2013-06-01

    Evolutionary adaptations in metabolic networks are fundamental to evolution of microbial growth. Studies on unneeded-protein synthesis indicate reductions in fitness upon nonfunctional protein synthesis, showing that cell growth is limited by constraints acting on cellular protein content. Here, we present a theory for optimal metabolic enzyme activity when cells are selected for maximal growth rate given such growth-limiting biochemical constraints. We show how optimal enzyme levels can be understood to result from an enzyme benefit minus cost optimization. The constraints we consider originate from different biochemical aspects of microbial growth, such as competition for limiting amounts of ribosomes or RNA polymerases, or limitations in available energy. Enzyme benefit is related to its kinetics and its importance for fitness, while enzyme cost expresses to what extent resource consumption reduces fitness through constraint-induced reductions of other enzyme levels. A metabolic fitness landscape is introduced to define the fitness potential of an enzyme. This concept is related to the selection coefficient of the enzyme and can be expressed in terms of its fitness benefit and cost.

  5. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation.

    PubMed

    Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2012-04-27

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  6. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    PubMed Central

    Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation. PMID:22435484

  7. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes.

    PubMed

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J; Henze, Katrin; Woehle, Christian; Gould, Sven B; Yu, Re-Young; van der Giezen, Mark; Tielens, Aloysius G M; Martin, William F

    2012-06-01

    Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.

  8. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate

    PubMed Central

    Rafalski, Victoria A.; Mancini, Elena; Brunet, Anne

    2012-01-01

    Summary Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding stem cell niche. Furthermore, we present how energy-sensing signaling molecules and metabolism regulators are implicated in the regulation of stem cell self-renewal and differentiation. Finally, we discuss the emerging literature on the metabolism of induced pluripotent stem cells and how manipulating metabolic pathways might aid cellular reprogramming. Determining how energy metabolism regulates stem cell fate should shed light on the decline in tissue regeneration that occurs during aging and facilitate the development of therapies for degenerative or metabolic diseases. PMID:23420198

  9. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-03-28

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  10. Effects of Wound Bacteria on Postburn Energy Metabolism

    DTIC Science & Technology

    1988-08-01

    bacterial products (enzymes, toxins , etc.) or cytokines produced by host inflammatory cells in response to bacteria /’ products. Endotoxin is a prime...Best Available Copy ~~ ~ADyj ) EFFECTS OF WOUND BACTERIA ON POSTBURN ENERGY METABOLISM ANNUAL REPORT DT!C ,’ ELECTE 7 Louis H. Aulick, Ph.D. % NOV3...62772A874 AD 134 II. TITLE (Include Secuity Classification) Effects of Wound Bacteria on Postburn Energy Metabolism 12. PERSONAL AUTHOR(S) Louis H

  11. Berberine interfered with breast cancer cells metabolism, balancing energy homeostasis.

    PubMed

    Tan, Wen; Li, Ning; Tan, Rui; Zhong, Zhangfeng; Suo, Zhanwei; Yang, Xian; Wang, Yitao; Hu, Xiaodong

    2015-01-01

    Berberine exerted anti-cancer effect in various cancer cell lines, and was also implied in the treatment of metabolic related diseases. Given the metabolic modulation, we hypothesized that berberine possessed anti-cancer effect under the assistance of metabolic interference. Working as a modulator, metabolic enzyme inhibitor or complex network regulator in energy metabolism, berberine was highlighted in current cancer research. A reasonable cross talk between Chinese medicine and energy homeostasis provided a solid foundation for berberine interference on cancer cells reprogramming metabolism. Our result showed that berberine regulated the reprogramming metabolism through three aspects simultaneously, including mitochondrial oxidative phosphorylation, glycolysis and macromolecular synthesis. This interference with reprogramming metabolism was a continuous, simultaneous and sustainable approach in a moderate mode. And it could be regarded as a gentle and virtuous cycle from a multi-level perspective, indicating an integrated approach in cancer therapy. Meanwhile, we thought that Chinese medicine could link cancer and metabolic related diseases from a dynamic perspective through integrated network pharmacology. This cross talk would be a realistic and significant strategy for anti-cancer drug discovery and needs further investigation in future.

  12. Inborn Errors of Energy Metabolism Associated with Myopathies

    PubMed Central

    Das, Anibh M.; Steuerwald, Ulrike; Illsinger, Sabine

    2010-01-01

    Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed. PMID:20589068

  13. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  14. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    DOE PAGES

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; ...

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel

  15. Mitochondrial metabolism and energy sensing in tumor progression.

    PubMed

    Iommarini, Luisa; Ghelli, Anna; Gasparre, Giuseppe; Porcelli, Anna Maria

    2017-02-14

    Energy homeostasis is pivotal for cell fate since metabolic regulation, cell proliferation and death are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic changes have been observed in cancer cells even before the discovery of oncogenes and tumor suppressors, but have been neglected for a long time. Instead, during the past 20years a renaissance of the study of tumor metabolism has led to a revised and more accurate sight of the metabolic landscape of cancer cells. In this scenario, genetic, biochemical and clinical evidences place mitochondria as key actors in cancer metabolic restructuring, not only because there are energy and biosynthetic intermediates manufacturers, but also because occurrence of mutations in metabolic enzymes encoded by both nuclear and mitochondrial DNA has been associated to different types of cancer. Here we provide an overview of the possible mechanisms modulating mitochondrial energy production and homeostasis in the intriguing scenario of neoplastic cells, focusing on the double-edged role of 5'-AMP activated protein kinase in cancer metabolism. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.

  16. MicroRNA-mediated regulation of Dp53 in the Drosophila fat body contributes to metabolic adaptation to nutrient deprivation.

    PubMed

    Barrio, Lara; Dekanty, Andrés; Milán, Marco

    2014-07-24

    Multiple conserved mechanisms sense nutritional conditions and coordinate metabolic changes in the whole organism. We unravel a role for the Drosophila homolog of p53 (Dp53) in the fat body (FB; a functional analog of vertebrate adipose and hepatic tissues) in starvation adaptation. Under nutrient deprivation, FB-specific depletion of Dp53 accelerates consumption of major energy stores and reduces survival rates of adult flies. We show that Dp53 is regulated by the microRNA (miRNA) machinery and miR-305 in a nutrition-dependent manner. In well-fed animals, TOR signaling contributes to miR-305-mediated inhibition of Dp53. Nutrient deprivation reduces the levels of miRNA machinery components and leads to Dp53 derepression. Our results uncover an organism-wide role for Dp53 in nutrient sensing and metabolic adaptation and open up avenues toward understanding the molecular mechanisms underlying p53 activation under nutrient deprivation.

  17. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme.

    PubMed

    White, Craig R; Alton, Lesley A; Frappell, Peter B

    2012-05-07

    Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.

  18. Energy metabolism of Macaca mulatta during spaceflight

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Stein, T. P.; Dotsenko, M. A.; Korolkov, V. I.; Fuller, C. A.

    2000-01-01

    The mean daily energy expenditure rates of two rhesus monkeys (Macaca mulatta) were determined during spaceflight on the joint U.S./Russian Bion 11 mission by the doubly labeled water (DLW, 2H218O) method. Control values were obtained from two studies performed under flight-like conditions (n = 4). The mean inflight energy expenditure for the two Bion 11 monkeys was 81.3 kcal/kg/day, which was higher than that seen previously. The average energy expenditure (77.6 +/- 4.4 kcal/kg/day) for the four ground control monkeys was slightly lower than had been measured previously.

  19. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    NASA Astrophysics Data System (ADS)

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-08-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states.

  20. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    PubMed Central

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  1. Metabolic crosstalk between host and pathogen: sensing, adapting and competing.

    PubMed

    Olive, Andrew J; Sassetti, Christopher M

    2016-04-01

    Our understanding of bacterial pathogenesis is dominated by the cell biology of the host-pathogen interaction. However, the majority of metabolites that are used in prokaryotic and eukaryotic physiology and signalling are chemically similar or identical. Therefore, the metabolic crosstalk between pathogens and host cells may be as important as the interactions between bacterial effector proteins and their host targets. In this Review we focus on host-pathogen interactions at the metabolic level: chemical signalling events that enable pathogens to sense anatomical location and the local physiology of the host; microbial metabolic pathways that are dedicated to circumvent host immune mechanisms; and a few metabolites as central points of competition between the host and bacterial pathogens.

  2. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management

  3. Cerebral energy metabolism and microdialysis in neurocritical care.

    PubMed

    Nordström, Carl-Henrik

    2010-04-01

    It is of obvious clinical importance to monitor cerebral metabolism--in particular, cerebral energy metabolism and indicators of cellular damage-online at the bedside. The technique of cerebral microdialysis provides the opportunity for continuous monitoring of metabolic changes in the tissue before they are reflected in peripheral blood chemistry or in systemic physiological parameters. The basic idea of microdialysis is to mimic the function of a blood capillary by positioning a thin dialysis tube in the tissue and to be used to analyze the chemical composition of the interstitial fluid. The biochemical variables used during routine monitoring were chosen to cover important aspects of cerebral energy metabolism (glucose, pyruvate and lactate), to indicate excessive interstitial levels of excitatory transmitter substance (glutamate) and to give indications of degradation of cellular membranes (glycerol). Furthermore, pharmokinetic studies can be conducted using microdialysis. This article discusses technical and physiological aspects of microdialysis, and its clinical applications in brain injury.

  4. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    PubMed

    Amoedo, N D; Obre, E; Rossignol, R

    2017-02-16

    metabolism and to follow the efficiency of a treatment at a preclinical or clinical stage. Relevant descriptors of tumor metabolism are now required to better stratify patients for the development of personalized metabolic medicine. In this review, we discuss the current limitations in basic research and drug discovery in the field of cancer metabolism to foster the need for more clinically relevant target identification and validation. We discuss the design of adapted drug screening assays and compound efficacy evaluation methods for the discovery of innovative anti-cancer therapeutic approaches at the level of tumor energetics. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.

  5. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    PubMed Central

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  6. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation?

    PubMed

    Gertsch, Jürg

    2016-11-27

    The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed.

  7. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    PubMed Central

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978

  8. A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation

    PubMed Central

    Dufault-Thompson, Keith; Jian, Huahua; Cheng, Ruixue; Li, Jiefu; Wang, Fengping

    2017-01-01

    ABSTRACT Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy

  9. A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation.

    PubMed

    Dufault-Thompson, Keith; Jian, Huahua; Cheng, Ruixue; Li, Jiefu; Wang, Fengping; Zhang, Ying

    2017-01-01

    Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy conservation

  10. Metabolic cold adaptation contributes little to the interspecific variation in metabolic rates of 65 species of Drosophilidae.

    PubMed

    Messamah, Branwen; Kellermann, Vanessa; Malte, Hans; Loeschcke, Volker; Overgaard, Johannes

    2017-02-11

    Metabolic cold adaptation (MCA) is a controversial hypothesis suggesting that cold adapted species display an elevated metabolic rate (MR) compared to their warm climate relatives. Here we test for the presence of MCA in 65 species of drosophilid flies reared under common garden conditions. MR was measured at both 10 and 20°C for both sexes and data were analyzed in relation to the natural thermal environment of these species. We found considerable interspecific variation in MR ranging from 1.34 to 8.99µWmg(-1) at 10°C. As predicted by Bergmann's rule body mass of fly species correlated negatively with annual mean temperature (AMT), such that larger species were found in colder environments. Because larger flies have a higher total MR we found MR to vary with AMT, however, after inclusion of mass as a co-variate we found no significant effect of AMT. Furthermore, we did not find that thermal sensitivity of MR (Q10) varied with AMT. Based on this broad collection of species we therefore conclude that there is no adaptive pattern of metabolic cold adaptation within drosophilid species ranging from sub-arctic to tropical environments.

  11. Older adults learn less, but still reduce metabolic cost, during motor adaptation.

    PubMed

    Huang, Helen J; Ahmed, Alaa A

    2014-01-01

    The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older (n = 11, 73.8 ± 5.6 yr) and young (n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation.

  12. Older adults learn less, but still reduce metabolic cost, during motor adaptation

    PubMed Central

    Huang, Helen J.

    2013-01-01

    The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older (n = 11, 73.8 ± 5.6 yr) and young (n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation. PMID:24133222

  13. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  14. THE RELATION OF ENZYMATIC ADAPTATION TO THE METABOLISM OF ENDOGENOUS AND EXOGENOUS SUBSTRATES

    PubMed Central

    Spiegelman, S.; Reiner, John M.; Cohnberg, Rosellen

    1947-01-01

    The source of energy for enzymatic adaptation has been investigated. Aerobically, it is found that the endogenous carbohydrate reserves may be used as such a source. In cells depleted of their reserves, the adaptive substrate itself can be oxidized even while it cannot be fermented, and so can serve as a source of energy for the adaptation to a fermentative mode of utilization. Anaerobically, adaptation may occur at the expense of stored energy-rich compounds, while the reserves and the adaptive substrate are now useless as fuel. Such compounds appear to be more plentiful in young than in old cells. The addition of any fermentable substrate, such as glucose, leads to rapid anaerobic adaptation. Experiments in which maltose-adapted cells are adapted anaerobically to galactose with the aid of a little added maltose, and conversely, show that fermentability is the criterion of usefulness for an exogenous substrate in aiding the adaptive process. None of the endogenous and exogenous energy sources which have been investigated will facilitate adaptation unless the adaptive substrate is present while they are being consumed. The significance of these findings and the adequacy of "activation" hypotheses to explain enzymatic adaptation has been discussed. PMID:19873518

  15. The role of cardiac energy metabolism in cardiac hypertrophy and failure.

    PubMed

    Tuomainen, Tomi; Tavi, Pasi

    2017-03-24

    In mammalian heart, incessant production of cellular energy is vital for maintaining continuous mechanical pumping function providing the body for oxygen and nutrients. To ensure this essential function, cardiac muscle adapt to increased energy demand or compromised energy supply by reprogramming the network of genes whose products are necessary to match the production of energy to consumption. Failure in this regulation leads to severe cardiac dysfunction and has been associated with cardiac pathogenesis including cardiac hypertrophy, failure and diabetes. Metabolic adaptations are induced by network of transcriptional pathways that are activated by a variety of factors such as hormones, nutrients, second messengers and oxygen. The metabolic phenotype of the heart is maintained by pathways controlling transcriptional regulators, which include peroxisome proliferator-activated receptors, estrogen-related receptors and nuclear respiratory factors, as well as their common coactivator protein peroxisome proliferator-activated receptor γ coactivator 1. These central regulators of gene expression are complemented with factors such as hypoxia inducible factor 1, which is activated in insufficient oxygenation of the tissue. Here, we discuss how these pathways relate to the cardiac metabolism and how they interact with pathways controlling the contractile phenotype of the heart.

  16. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards.

    PubMed

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-09-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior.

  17. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards

    PubMed Central

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-01-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689

  18. Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain.

    PubMed

    Obermeyer, Gerhard; Fragner, Lena; Lang, Veronika; Weckwerth, Wolfram

    2013-08-01

    Investigation of the metabolome and the transcriptome of pollen of lily (Lilium longiflorum) gave a comprehensive overview of metabolic pathways active during pollen germination and tube growth. More than 100 different metabolites were determined simultaneously by gas chromatography coupled to mass spectrometry, and expressed genes of selected metabolic pathways were identified by next-generation sequencing of lily pollen transcripts. The time-dependent changes in metabolite abundances, as well as the changes after inhibition of the mitochondrial electron transport chain, revealed a fast and dynamic adaption of the metabolic pathways in the range of minutes. The metabolic state prior to pollen germination differed clearly from the metabolic state during pollen tube growth, as indicated by principal component analysis of all detected metabolites and by detailed observation of individual metabolites. For instance, the amount of sucrose increased during the first 60 minutes of pollen culture but decreased during tube growth, while glucose and fructose showed the opposite behavior. Glycolysis, tricarbonic acid cycle, glyoxylate cycle, starch, and fatty acid degradation were activated, providing energy during pollen germination and tube growth. Inhibition of the mitochondrial electron transport chain by antimycin A resulted in an immediate production of ethanol and a fast rearrangement of metabolic pathways, which correlated with changes in the amounts of the majority of identified metabolites, e.g. a rapid increase in γ-aminobutyric acid indicated the activation of a γ-aminobutyric acid shunt in the tricarbonic acid cycle, while ethanol fermentation compensated the reduced ATP production after inhibition of the oxidative phosphorylation.

  19. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  20. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis.

    PubMed

    Perera, Nirma D; Turner, Bradley J

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is caused by selective loss of upper and lower motor neurons by complex mechanisms that are incompletely understood. Motor neurons are large, highly polarised and excitable cells with unusually high energetic demands to maintain resting membrane potential and propagate action potentials. This leads to higher ATP consumption and mitochondrial metabolism in motor neurons relative to other cells. Here, we review increasing evidence that defective energy metabolism and homeostasis contributes to selective vulnerability and degeneration of motor neurons in ALS. Firstly, we provide a brief overview of major energetic pathways in the CNS, including glycolysis, oxidative phosphorylation and the AMP-activated protein kinase (AMPK) signalling pathway, while highlighting critical metabolic interactions between neurons and astrocytes. Next, we review evidence from ALS patients and transgenic mutant SOD1 mice for weight loss, hypermetabolism, hyperlipidemia and mitochondrial dysfunction in disease onset and progression. Genetic and therapeutic modifiers of energy metabolism in mutant SOD1 mice will also be summarised. We also present evidence that additional ALS-linked proteins, TDP-43 and FUS, lead to energy disruption and mitochondrial defects in motor neurons. Lastly, we review emerging evidence including our own that dysregulation of the AMPK signalling cascade in motor neurons is an early and common event in ALS pathogenesis. We suggest that an imbalance in energy metabolism should be considered an important factor in both progression and potential treatment of ALS.

  1. Energy Sector Adaptation in Response to Water Scarcity

    NASA Astrophysics Data System (ADS)

    Johnson, N. A.; Fricko, O.; Parkinson, S.; Riahi, K.

    2015-12-01

    Global energy systems models have largely ignored the impacts of water scarcity on the energy sector and the related implications for climate change mitigation. However, significant water is required in the production of energy, including for thermoelectric power plant cooling, hydropower generation, irrigation for bioenergy, and the extraction and refining of liquid fuels. With a changing climate and expectations of increasing competition for water from the agricultural and municipal sectors, it is unclear whether sufficient water will be available where needed to support water-intensive energy technologies in the future. Thus, it is important that water use and water constraints are incorporated into energy systems models to better understand energy sector adaptation to water scarcity. The global energy systems model, MESSAGE, has recently been updated to quantify the water consumption and withdrawal requirements of the energy sector and now includes several cooling technologies for addressing water scarcity. This study introduces water constraints into the model to examine whether and how the energy sector can adapt to water scarcity over the next century. In addition, the implications for climate mitigation are evaluated under a scenario in which warming is limited to 2˚C over the pre-industrial level. Given the difficulty of introducing meaningful water constraints into global models, we use a simplistic approach and evaluate a series of scenarios in which the water available to the energy sector is systematically reduced. This approach allows for the evaluation of energy sector adaptations under various levels of water scarcity and can provide insight into how water scarcity, whether from climate change or competing demands, may impact the energy sector in different world regions. This study will provide insight into the following questions: How does the energy sector adapt to water scarcity in different regions? What are the costs associated with adaptation

  2. ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS

    SciTech Connect

    Byard D. Wood

    2004-04-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports solar light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of solar lighting and electric lighting. A benchmark prototype system has been developed to evaluate the HSL system. Sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. A secondary mirror consisting of eight planar-segmented mirrors directs the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic (TPV) array to produce electricity. During this reporting period, the project team made advancements in the design of the second generation (Alpha) system. For the Alpha system, the eight individual 12 mm fibers have been replaced with a centralized bundle of 3 mm fibers. The TRNSYS Full-Spectrum Solar Energy System model has been updated and new components have been added. The TPV array and nonimaging device have been tested and progress has been made in the fiber transmission models. A test plan was developed for both the high-lumen tests and the study to determine the non-energy benefits of daylighting. The photobioreactor team also made major advancements in the testing of model scale and bench top lab-scale systems.

  3. Cold climate specialization: adaptive covariation between metabolic rate and thermoregulation in pregnant vipers.

    PubMed

    Lourdais, Olivier; Guillon, Michaël; Denardo, Dale; Blouin-Demers, Gabriel

    2013-07-02

    We compared thermoregulatory strategies during pregnancy in two congeneric viperid snakes (Vipera berus and Vipera aspis) with parapatric geographic ranges. V. berus is a boreal specialist with the largest known distribution among terrestrial snakes while V. aspis is a south-European species. Despite contrasted climatic affinities, the two species displayed identical thermal preferences (Tset) in a laboratory thermal gradient. Under identical natural conditions, however, V. berus was capable of maintaining Tset for longer periods, especially when the weather was constraining. Consistent with the metabolic cold adaptation hypothesis, V. berus displayed higher standard metabolic rate at all temperatures considered. We used the thermal dependence of metabolic rate to calculate daily metabolic profiles from body temperature under natural conditions. The boreal specialist experienced higher daily metabolic rate and minimized gestation duration chiefly because of differences in the metabolic reaction norms, but also superior thermoregulatory efficiency. Under cold climates, thermal constraints should make precise thermoregulation costly. However, a shift in the metabolic reaction norm may compensate for thermal constraints and modify the cost-benefit balance of thermoregulation. Covariation between metabolic rate and thermoregulation efficiency is likely an important adaptation to cold climates.

  4. Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams.

    PubMed

    Van Leeuwen, Travis E; Rosenfeld, Jordan S; Richards, Jeffrey G

    2011-09-01

    1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species

  5. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease.

    PubMed

    Hyötyläinen, Tuulia; Jerby, Livnat; Petäjä, Elina M; Mattila, Ismo; Jäntti, Sirkku; Auvinen, Petri; Gastaldelli, Amalia; Yki-Järvinen, Hannele; Ruppin, Eytan; Orešič, Matej

    2016-02-03

    Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD.

  6. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease

    PubMed Central

    Hyötyläinen, Tuulia; Jerby, Livnat; Petäjä, Elina M.; Mattila, Ismo; Jäntti, Sirkku; Auvinen, Petri; Gastaldelli, Amalia; Yki-Järvinen, Hannele; Ruppin, Eytan; Orešič, Matej

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD. PMID:26839171

  7. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid

    PubMed Central

    Koczula, Anna; Jarek, Michael; Visscher, Christian; Valentin-Weigand, Peter; Goethe, Ralph; Willenborg, Jörg

    2017-01-01

    Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF) revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq). In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism). In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments. PMID:28212285

  8. Chronic Sympathetic Attenuation and Energy Metabolism in Autonomic Failure

    PubMed Central

    Shibao, Cyndya; Buchowski, Maciej S; Chen, Kong Y; Yu, Chang; Biaggioni, Italo

    2012-01-01

    The sympathetic nervous system regulates thermogenesis and energy homeostasis in humans. When activated it increases energy expenditure, particularly resting energy expenditure. Most human studies used acute infusion of β-blockers as a model to eliminate sympathetic stimulation and examine the contribution of the sympathetic nervous system to energy metabolism and balance. Clinically, however, it is also important to assess the effect of chronic sympathetic attenuation on energy metabolism. In this context, we hypothesized that resting energy expenditure is decreased in patients with autonomic failure who by definition have low sympathetic tone. We measured 24-hour energy expenditure using whole-room indirect calorimeter in 10 adults with chronic autonomic failure, (6 females; age 64.9±9.1 years; body mass index 25.2±4.4 kg/m2) and 15 sedentary healthy controls of similar age and body composition (8 females age 63.1±4.0 years; body mass index 24.4±3.9 kg/m2). In 4 patients, we eliminated residual sympathetic activity with the ganglionic blocker trimethaphan. We found that after adjusting for body composition, resting energy expenditure did not differ between patients with autonomic failure and healthy controls. However, resting energy expenditure significantly decreased when residual sympathetic activity was eliminated. Our findings suggest that sympathetic tonic support of resting energy expenditure is preserved, at least in part, in pathophysiological models of chronic sympathetic attenuation. PMID:22469621

  9. Chronic sympathetic attenuation and energy metabolism in autonomic failure.

    PubMed

    Shibao, Cyndya; Buchowski, Maciej S; Chen, Kong Y; Yu, Chang; Biaggioni, Italo

    2012-05-01

    The sympathetic nervous system regulates thermogenesis and energy homeostasis in humans. When activated it increases energy expenditure, particularly resting energy expenditure. Most human studies used acute infusion of β-blockers as a model to eliminate sympathetic stimulation and to examine the contribution of the sympathetic nervous system to energy metabolism and balance. Clinically, however, it is also important to assess the effect of chronic sympathetic attenuation on energy metabolism. In this context, we hypothesized that resting energy expenditure is decreased in patients with autonomic failure who, by definition, have low sympathetic tone. We measured 24-hour energy expenditure using whole-room indirect calorimeter in 10 adults with chronic autonomic failure (6 women; age, 64.9±9.1 years; body mass index, 25.2±4.4 kg/m(2)) and 15 sedentary healthy controls of similar age and body composition (8 women; age, 63.1±4.0 years; body mass index, 24.4±3.9 kg/m(2)). In 4 patients, we eliminated residual sympathetic activity with the ganglionic blocker trimethaphan. We found that, after adjusting for body composition, resting energy expenditure did not differ between patients with autonomic failure and healthy controls. However, resting energy expenditure significantly decreased when residual sympathetic activity was eliminated. Our findings suggest that sympathetic tonic support of resting energy expenditure is preserved, at least in part, in pathophysiological models of chronic sympathetic attenuation.

  10. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    PubMed Central

    Sakharkar, Meena K.; Shashni, Babita; Sharma, Karun; Dhillon, Sarinder K.; Ranjekar, Prabhakar R.; Sakharkar, Kishore R.

    2013-01-01

    PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer. PMID:23431283

  11. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.

    PubMed

    Nargund, Shilpa; Qiu, Jinshu; Goudar, Chetan T

    2015-01-01

    (13)C-metabolic flux analysis was used to understand copper deficiency-related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein-producing CHO cells. Stationary-phase labeling experiments with U-(13)C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed-batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC-MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%-79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%-23% and 74%, respectively) compared with the Cu-containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper-deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation.

  12. Adaptation to different types of stress converge on mitochondrial metabolism

    PubMed Central

    Lahtvee, Petri-Jaan; Kumar, Rahul; Hallström, Björn M.; Nielsen, Jens

    2016-01-01

    Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate–dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism. PMID:27307591

  13. Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer

    DTIC Science & Technology

    2014-12-01

    observed that the cells with knockdown of eEF-2K expression exhibited a decreased glucose consumption (Fig. 1B), as measured by flow cytometric analysis of......3. DATES COVERED 30 Sep 2011 - 20 Sep 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Energy Metabolic Pathways as Therapeutic

  14. CNS Regulation of Energy Metabolism: Ghrelin versus Leptin

    PubMed Central

    Nogueiras, Ruben; Tschöp, Matthias H.; Zigman, Jeffrey M.

    2010-01-01

    In this brief review, we introduce some major themes in the regulation of energy, lipid and glucose metabolism by the central nervous system (CNS). Rather than comprehensively discussing the field, we instead will discuss some of the key findings made regarding the interaction of the hormones ghrelin and leptin with the CNS. PMID:18448790

  15. Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer

    DTIC Science & Technology

    2012-10-01

    Intervention for Breast Cancer PRINCIPAL INVESTIGATOR: Yan Cheng, Ph.D. CONTRACTING ORGANIZATION: Pennsylvania State University...Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer 5b. GRANT NUMBER W81XWH-11-1-0649 5c. PROGRAM ELEMENT NUMBER...causes of cancer mortality in women. Current therapies for breast cancer mainly target molecular signaling pathways that promote tumor cell

  16. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis.

    PubMed

    Pereira, Patrícia M; He, Qiang; Valente, Filipa M A; Xavier, António V; Zhou, Jizhong; Pereira, Inês A C; Louro, Ricardo O

    2008-05-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe] hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energy metabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  17. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications

    PubMed Central

    Ilc, Tina; Parage, Claire; Boachon, Benoît; Navrot, Nicolas; Werck-Reichhart, Danièle

    2016-01-01

    Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives. PMID:27200002

  18. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  19. Water-energy links in cities: the urban metabolism of London

    NASA Astrophysics Data System (ADS)

    Mijic, A.; Ruiz Cazorla, J.; Keirstead, J.

    2014-12-01

    Rapid urbanisation results in increased water consumption in cities, requiring improved tools for understanding adaptive measures for water resources management under climate change. The energy sector is facing the same challenges and requires equally comprehensive solutions. More frequent water shortages due to climate and land use changes and potential limits on CO2 emissions from fossil fuels that science demands indicate clearly that the next step in the sustainable city development will be to look for the most efficient use of these highly interdependent resources. One of the concepts that could be used for quantifying fundamental flows in an urban environment such as water and energy is the urban metabolism framework. This paper will examine the concept of urban metabolism by quantifying amounts and trends of water and energy consumed in London by four main sectors: residential, industrial, commercial and public. Key data requirements at the sector level will be identified and initial mapping of critical factors for urban sustainability will be provided. Finally, the work will examine the potential of urban metabolism framework to provide data and information for implementing water, energy and greenhouse emissions trade-off 'fit-for-purpose' strategy for water supply security. The paper is a part of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) under the working group of Energy and Food Impacts on Water.

  20. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    SciTech Connect

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie -Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif; Matic, Ivan

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a

  1. Potential therapeutic targets in energy metabolism pathways of breast cancer.

    PubMed

    Islam, Rowshan Ara; Hossain, Sazzad; Chowdhury, Ezharul Hoque

    2017-03-30

    Mutations in proto-oncogenes and tumor suppressor genes make cancer cells proliferate indefinitely. As they possess almost all mechanisms for cell proliferation and survival like healthy cells, it is difficult to specifically target cancer cells in the body. Current treatments in most of the cases are harmful to healthy cells as well. Thus, it would be of great prudence to target specific characters of cancer cells. Since cancer cells avidly use glucose and glutamine to survive and proliferate by upregulating the relevant enzymes and their specific isoforms having important regulatory roles, it has been of great interest recently to target the energy-related metabolic pathways as part of the therapeutic interventions. This paper summarizes the roles of energy metabolism and their cross-talks with other important signaling pathways in regulating proliferation, invasion and metastasis in breast cancer. As breast cancer is a highly heterogeneous disease, a clear understanding of the variations of energy metabolism in different molecular subtypes would help in treating each type with a very customized, safer and efficient treatment regimen, by targeting specific glucose metabolism and related pathways with gene silencing nucleic acid sequences or small molecule drugs, or the combination of both.

  2. Metabolic adaptations to heat stress in growing cattle.

    PubMed

    O'Brien, M D; Rhoads, R P; Sanders, S R; Duff, G C; Baumgard, L H

    2010-02-01

    To differentiate between the effects of heat stress (HS) and decreased dry matter intake (DMI) on physiological and metabolic variables in growing beef cattle, we conducted an experiment in which a thermoneutral (TN) control group (n=6) was pair fed (PF) to match nutrient intake with heat-stressed Holstein bull calves (n=6). Bulls (4 to 5 mo old, 135 kg body weight [BW]) housed in climate-controlled chambers were subjected to 2 experimental periods (P): (1) TN (18 degrees C to 20 degrees C) and ad libitum intake for 9 d, and (2) HS (cyclical daily temperatures ranging from 29.4 degrees C to 40.0 degrees C) and ad libitum intake or PF (in TN conditions) for 9 d. During each period, blood was collected daily and all calves were subjected to an intravenous insulin tolerance test (ITT) on day 7 and a glucose tolerance test (GTT) on day 8. Heat stress reduced (12%) DMI and by design, PF calves had similar nutrient intake reductions. During P1, BW gain was similar between environments and averaged 1.25 kg/d, and both HS and PF reduced (P<0.01) average daily gain (-0.09 kg/d) during P2. Compared to PF, HS decreased (P<0.05) basal circulating glucose concentrations (7%) and tended (P<0.07) to increase (30%) plasma insulin concentrations, but neither HS nor PF altered plasma nonesterified fatty acid concentrations. Although there were no treatment differences in P2, both HS and PF increased (P<0.05) plasma urea nitrogen concentrations (75%) compared with P1. In contrast to P1, both HS and PF had increased (16%) glucose disposal, but compared with PF, HS calves had a greater (67%; P<0.05) insulin response to the GTT. Neither period nor environment acutely affected insulin action, but during P2, calves in both environments tended (P=0.11) to have a blunted overall glucose response to the ITT. Independent of reduced nutrient intake, HS alters post-absorptive carbohydrate (basal and stimulated) metabolism, characterized primarily by increased basal insulin concentrations and

  3. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea.

    PubMed

    McGlynn, Shawn E

    2017-03-17

    Anaerobic methane oxidation in archaea is often presented to operate via a pathway of "reverse methanogenesis". However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens-in addition to unique terminal reductases-biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing "reverse" thermodynamic potentials.

  4. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea

    PubMed Central

    McGlynn, Shawn E.

    2017-01-01

    Anaerobic methane oxidation in archaea is often presented to operate via a pathway of “reverse methanogenesis”. However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens—in addition to unique terminal reductases—biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing “reverse” thermodynamic potentials. PMID:28321009

  5. Adaptive Changes in Basal Metabolic Rate in Humans in Different Eco-Geographical Areas.

    PubMed

    Maximov, Arkady L; Belkin, Victor Sh; Kalichman, Leonid; Kobyliansky, Eugene D

    2015-12-01

    Our aim was to establish whether the human basal metabolic rate (BMR) shifts towards the reduction of vital functions as an adaptation response to extreme environmental conditions. Data was collected in arid and Extreme North zones. The arid zone samples included Bedouins living in the Sinai Peninsula in Egypt, Turkmen students, the Pedagogical University of Chardzhou, Turkmenistan born Russians and Russian soldiers. Soldiers were divided into 3 groups according to the length of their tour of duty in the area: 1st group: up to six months, 2nd group: up to 2 years and the 3rd group: 3-5 years. The Extreme North samples comprised Chukchi natives, 1st generation Russian immigrants born in the area and 3 groups of soldiers comparable to the soldiers from Turkmenistan. BMR values of the new recruits had the highest values of total and relative BMR (1769 ± 16 and 28.3 ± 0.6, correspondingly). The total and relative BMR tended to decrease within a longer adaptation period. The BMR values of officers who served >3 years in Turkmenistan were very similar to the Turkmenistan born Russians (1730 ± 14 vs. 1726 ± 18 and 26.5 ± 0.6 vs. 27.3 ± 0.7, correspondingly). Similarly, in Chukotka, the highest relative BMR was found in the new recruits, serving up to 6 months (28.1 ± 0.7) and was significantly (p < 0.05) lower in the Russians serving in Chukotka over 1.5 years (27.1 ± 0.3). The BMR was virtually similar in Russian officers serving > 3 years, compared to the middle-aged Chukchi or Chukotka-born Russians (25.8 ± 0.5 vs. 25.6 ± 0.5 and 25.5 ± 0.6, correspondingly). The BMR parameters demonstrated a stronger association with body weight than with age. In extreme environmental conditions, migrant populations showed a decrease in BMR, thus reducing its vital functions. The BMR reduction effect with the adequate adaptive transformation is likely to be the key strategy for developing programs to facilitate human and animal adaptation to extreme factors. This process is

  6. Cooperative Energy Harvesting-Adaptive MAC Protocol for WBANs

    PubMed Central

    Esteves, Volker; Antonopoulos, Angelos; Kartsakli, Elli; Puig-Vidal, Manel; Miribel-Català, Pere; Verikoukis, Christos

    2015-01-01

    In this paper, we introduce a cooperative medium access control (MAC) protocol, named cooperative energy harvesting (CEH)-MAC, that adapts its operation to the energy harvesting (EH) conditions in wireless body area networks (WBANs). In particular, the proposed protocol exploits the EH information in order to set an idle time that allows the relay nodes to charge their batteries and complete the cooperation phase successfully. Extensive simulations have shown that CEH-MAC significantly improves the network performance in terms of throughput, delay and energy efficiency compared to the cooperative operation of the baseline IEEE 802.15.6 standard. PMID:26029950

  7. Cooperative energy harvesting-adaptive MAC protocol for WBANs.

    PubMed

    Esteves, Volker; Antonopoulos, Angelos; Kartsakli, Elli; Puig-Vidal, Manel; Miribel-Català, Pere; Verikoukis, Christos

    2015-05-28

    In this paper, we introduce a cooperative medium access control (MAC) protocol, named cooperative energy harvesting (CEH)-MAC, that adapts its operation to the energy harvesting (EH) conditions in wireless body area networks (WBANs). In particular, the proposed protocol exploits the EH information in order to set an idle time that allows the relay nodes to charge their batteries and complete the cooperation phase successfully. Extensive simulations have shown that CEH-MAC significantly improves the network performance in terms of throughput, delay and energy efficiency compared to the cooperative operation of the baseline IEEE 802.15.6 standard.

  8. Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling

    PubMed Central

    Wodke, Judith A H; Puchałka, Jacek; Lluch-Senar, Maria; Marcos, Josep; Yus, Eva; Godinho, Miguel; Gutiérrez-Gallego, Ricardo; dos Santos, Vitor A P Martins; Serrano, Luis; Klipp, Edda; Maier, Tobias

    2013-01-01

    Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint-based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time-dependent changes, albeit using a static model. By performing an in silico knock-out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms. PMID:23549481

  9. Beneficial metabolic adaptations due to endurance exercise training in the fasted state.

    PubMed

    Van Proeyen, Karen; Szlufcik, Karolina; Nielens, Henri; Ramaekers, Monique; Hespel, Peter

    2011-01-01

    Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ∼70% Vo(₂max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (∼160 g) and during (1 g·kg body wt⁻¹·h⁻¹) the training sessions (CHO; n = 10). The training similarly increased Vo(₂max) (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P < 0.01). Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ∼65% pretraining Vo(₂max). In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P < 0.05) and tended to be increased in type IIa fibers (P = 0.07). Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P < 0.05). Furthermore, maximal citrate synthase (+47%) and β-hydroxyacyl coenzyme A dehydrogenase (+34%) activity was significantly upregulated in F (P < 0.05) but not in CHO. Also, only F prevented the development exercise-induced drop in blood glucose concentration (P < 0.05). In conclusion, F is more effective than CHO to increase muscular oxidative capacity and at the same time enhances exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise.

  10. Beneficial metabolic adaptations due to endurance exercise training in the fasted state

    PubMed Central

    Van Proeyen, Karen; Szlufcik, Karolina; Nielens, Henri; Ramaekers, Monique

    2011-01-01

    Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1–1.5 h cycling at ∼70% V̇o2max, 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (∼160 g) and during (1 g·kg body wt−1·h−1) the training sessions (CHO; n = 10). The training similarly increased V̇o2max (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P < 0.01). Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ∼65% pretraining V̇o2max. In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P < 0.05) and tended to be increased in type IIa fibers (P = 0.07). Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P < 0.05). Furthermore, maximal citrate synthase (+47%) and β-hydroxyacyl coenzyme A dehydrogenase (+34%) activity was significantly upregulated in F (P < 0.05) but not in CHO. Also, only F prevented the development exercise-induced drop in blood glucose concentration (P < 0.05). In conclusion, F is more effective than CHO to increase muscular oxidative capacity and at the same time enhances exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise. PMID:21051570

  11. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool.

    PubMed

    van de Pol, Iris; Flik, Gert; Gorissen, Marnix

    2017-01-01

    Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent

  12. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool

    PubMed Central

    van de Pol, Iris; Flik, Gert; Gorissen, Marnix

    2017-01-01

    Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent

  13. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    PubMed Central

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  14. Deciphering Neuron-Glia Compartmentalization in Cortical Energy Metabolism

    PubMed Central

    Jolivet, Renaud; Magistretti, Pierre J.; Weber, Bruno

    2009-01-01

    Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy (∼80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production (∼6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying

  15. Clinical Neurochemistry of Subarachnoid Hemorrhage: Toward Predicting Individual Outcomes via Biomarkers of Brain Energy Metabolism.

    PubMed

    Tholance, Yannick; Barcelos, Gleicy; Dailler, Frederic; Perret-Liaudet, Armand; Renaud, Bernard

    2015-12-16

    The functional outcome of patients with subarachnoid hemorrhage is difficult to predict at the individual level. The monitoring of brain energy metabolism has proven to be useful in improving the pathophysiological understanding of subarachnoid hemorrhage. Nonetheless, brain energy monitoring has not yet clearly been included in official guidelines for the management of subarachnoid hemorrhage patients, likely because previous studies compared only biological data between two groups of patients (unfavorable vs favorable outcomes) and did not determine decision thresholds that could be useful in clinical practice. Therefore, this Viewpoint discusses recent findings suggesting that monitoring biomarkers of brain energy metabolism at the level of individuals can be used to predict the outcomes of subarachnoid hemorrhage patients. Indeed, by taking into account specific neurochemical patterns obtained by local or global monitoring of brain energy metabolism, it may become possible to predict routinely, and with sufficient sensitivity and specificity, the individual outcomes of subarachnoid hemorrhage patients. Moreover, combining both local and global monitoring improves the overall performance of individual outcome prediction. Such a combined neurochemical monitoring approach may become, after prospective clinical validation, an important component in the management of subarachnoid hemorrhage patients to adapt individualized therapeutic interventions.

  16. Energy metabolism of hyperthyroid gilthead sea bream Sparus aurata L.

    PubMed

    Vargas-Chacoff, Luis; Ruiz-Jarabo, Ignacio; Arjona, Francisco J; Laiz-Carrión, Raúl; Flik, Gert; Klaren, Peter H M; Mancera, Juan M

    2016-01-01

    Thyroid hormones, in particular 3,5,3'-triiodothyronine or T3, are involved in multiple physiological processes in mammals such as protein, fat and carbohydrate metabolism. However, the metabolic actions of T3 in fish are still not fully elucidated. We therefore tested the effects of T3 on Sparus aurata energy metabolism and osmoregulatory system, a hyperthyroid-induced model that was chosen. Fish were implanted with coconut oil depots (containing 0, 2.5, 5.0 and 10.0μg T3/g body weight) and sampled at day 3 and 6 post-implantation. Plasma levels of free T3 as well as glucose, lactate and triglyceride values increased with increasing doses of T3 at days 3 and 6 post-implantation. Changes in plasma and organ metabolite levels (glucose, glycogen, triglycerides, lactate and total α amino acid) and enzyme activities related to carbohydrate, lactate, amino acid and lipid pathways were detected in organs involved in metabolism (liver) and osmoregulation (gills and kidney). Our data implicate that the liver uses amino acids as an energy source in response to the T3 treatment, increasing protein catabolism and gluconeogenic pathways. The gills, the most important extruder of ammonia, are fuelled not only by amino acids, but also by lactate. The kidney differs significantly in its substrate preference from the gills, as it obtained metabolic energy from lactate but also from lipid oxidation processes. We conclude that in S. aurata lipid catabolism and protein turnover are increased as a consequence of experimentally induced hyperthyroidism, with secondary osmoregulatory effects.

  17. Temperature effects on energy metabolism: a dynamic system analysis.

    PubMed Central

    Chaui-Berlinck, José Guilherme; Monteiro, Luiz Henrique Alves; Navas, Carlos Arturo; Bicudo, José Eduardo P W

    2002-01-01

    Q(10) factors are widely used as indicators of the magnitude of temperature-induced changes in physico-chemical and physiological rates. However, there is a long-standing debate concerning the extent to which Q(10) values can be used to derive conclusions about energy metabolism regulatory control. The main point of this disagreement is whether or not it is fair to use concepts derived from molecular theory in the integrative physiological responses of living organisms. We address this debate using a dynamic systems theory, and analyse the behaviour of a model at the organismal level. It is shown that typical Q(10) values cannot be used unambiguously to deduce metabolic rate regulatory control. Analytical constraints emerge due to the more formal and precise equation used to compute Q(10), derived from a reference system composed from the metabolic rate and the Q(10). Such an equation has more than one unknown variable and thus is unsolvable. This problem disappears only if the Q(10) is assumed to be a known parameter. Therefore, it is concluded that typical Q(10) calculations are inappropriate for addressing questions about the regulatory control of a metabolism unless the Q(10) values are considered to be true parameters whose values are known beforehand. We offer mathematical tools to analyse the regulatory control of a metabolism for those who are willing to accept such an assumption. PMID:11788031

  18. Mechanistic modeling of aberrant energy metabolism in human disease

    PubMed Central

    Sangar, Vineet; Eddy, James A.; Simeonidis, Evangelos; Price, Nathan D.

    2012-01-01

    Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell. PMID:23112774

  19. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    PubMed Central

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3C/C) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms. PMID:25089666

  20. Modeling central metabolism and energy biosynthesis across microbial life

    DOE PAGES

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; ...

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential

  1. Modeling central metabolism and energy biosynthesis across microbial life

    SciTech Connect

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; Xia, Fangfang; Overbeek, Ross; Stevens, Rick L.; Henry, Christopher S.

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to

  2. Metabolic adaptation to long term changes in gravity environment

    NASA Astrophysics Data System (ADS)

    Slenzka, K.; Appel, R.; Rahmann, H.

    Biochemical analyses of the brain of Cichlid fish larvae, exposed during their very early development for 7 days to an increased acceleration of 3g (hyper-gravity), revealed a decrease in brain nucleoside diphosphate kinase (NDPK) as well as creatine kinase (BB-CK) activity. Using high performance liquid chromatography (HPLC) the concentrations of adenine nucleotides (AMP, ADP, ATP), phosphocreatine (CP), as well as of nicotineamide adenine dinucleotides (NAD, NADP) were analyzed in the brain of hyper-g exposed larvae vs. 1g controls. A slight reduction in the total adenine nucleotides (TAN) as well as the adenylate energy charge (AEC) was found. In parallel a significant increase in the NAD concentration and a corresponding decrease in NADP concentration occurred in larva's hyper-g brains vs. 1g controls. These results give further evidence for an influence of gravity on cellular level and furthermore contribute to a clarification of the cellular signal-response chain for gravity perception.

  3. Energy metabolism during endurance flight and the post-flight recovery phase.

    PubMed

    Jenni-Eiermann, Susanne

    2017-02-21

    Migrating birds are known to fly non-stop for thousands of kilometres without food or water intake and at a high metabolic rate thereby relying on energy stores which were built up preceding a flight bout. Hence, from a physiological point of view the metabolism of a migrant has to switch between an active fasting phase during flight and a fuelling phase during stopover. To meet the energetic and water requirements of endurance flight, migratory birds have to store an optimal fuel composition and they have to be able to quickly mobilize and deliver sufficient energy to the working flight muscles. After flight, birds have to recover from a strenuous exercise and sleeplessness, but, at the same time, they have to be alert to escape from predators and to prepare the next flight bout. In this overview, metabolic adaptations of free-ranging migrants to both phases will be presented and compared with results from windtunnel studies. The questions whether migratory strategy (long distance versus short distance) and diet composition influence the metabolic pathways will be discussed.

  4. Mitofusin 2 Deficiency Affects Energy Metabolism and Mitochondrial Biogenesis in MEF Cells.

    PubMed

    Kawalec, Maria; Boratyńska-Jasińska, Anna; Beręsewicz, Małgorzata; Dymkowska, Dorota; Zabłocki, Krzysztof; Zabłocka, Barbara

    2015-01-01

    Mitofusin 2 (Mfn2), mitochondrial outer membrane protein which is involved in rearrangement of these organelles, was first described in pathology of hypertension and diabetes, and more recently much attention is paid to its functions in Charcot-Marie-Tooth type 2A neuropathy (CMT2A). Here, cellular energy metabolism was investigated in mouse embryonic fibroblasts (MEF) differing in the presence of the Mfn2 gene; control (MEFwt) and with Mfn2 gene depleted MEFMfn2-/-. These two cell lines were compared in terms of various parameters characterizing mitochondrial bioenergetics. Here, we have shown that relative rate of proliferation of MEFMfn2-/- cells versus control fibroblasts depend on serum supplementation of the growth media. Moreover, MEFMfn2-/- cells exhibited significantly increased respiration rate in comparison to MEFwt, regardless of serum supplementation of the medium. This effect was correlated with increased level of mitochondrial markers (TOM20 and NAO) as well as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein levels and unchanged total ATP content. Interestingly, mitochondrial DNA content in MEFMfn2-/- cells was not reduced. Fundamentally, these results are in contrast to a commonly accepted belief that mitofusin 2 deficiency inevitably results in debilitation of mitochondrial energy metabolism. However, we suggest a balance between negative metabolic consequences of mitofusin 2 deficiency and adaptive processes exemplified by increased level of PGC-1α and TFAM transcription factor which prevent an excessive depletion of mtDNA and severe impairment of cell metabolism.

  5. An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat.

    PubMed

    Shin, Andrew C; Zheng, Huiyuan; Berthoud, Hans-Rudolf

    2009-07-14

    The traditional view of neural regulation of body energy homeostasis focuses on internal feedback signals integrated in the hypothalamus and brainstem and in turn leading to balanced activation of behavioral, autonomic, and endocrine effector pathways leading to changes in food intake and energy expenditure. Recent observations have demonstrated that many of these internal signals encoding energy status have much wider effects on the brain, particularly sensory and cortico-limbic systems that process information from the outside world by detecting and interpreting food cues, forming, storing, and recalling representations of experience with food, and assigning hedonic and motivational value to conditioned and unconditioned food stimuli. Thus, part of the metabolic feedback from the internal milieu regulates food intake and energy balance by acting on extrahypothalamic structures, leading to an expanded view of neural control of energy homeostasis taking into account the need to adapt to changing conditions in the environment. The realization that metabolic signals act directly on these non-traditional targets of body energy homeostasis brings opportunities for novel drug targets for the fight against obesity and eating disorders.

  6. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    SciTech Connect

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  7. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals.

    PubMed

    Chowen, Julie A; Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Frago, Laura M; Horvath, Tamas L; Argente, Jesús

    2016-09-01

    The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.

  8. PPAR signaling in the control of cardiac energy metabolism.

    PubMed

    Barger, P M; Kelly, D P

    2000-08-01

    Cardiac energy metabolic shifts occur as a normal response to diverse physiologic and dietary conditions and as a component of the pathophysiologic processes which accompany cardiac hypertrophy, heart failure, and myocardial ischemia. The capacity to produce energy via the utilization of fats by the mammalian postnatal heart is controlled in part at the level of expression of nuclear genes encoding enzymes involved in mitochondrial fatty acid beta-oxidation (FAO). The principal transcriptional regulator of FAO enzyme genes is the peroxisome proliferator-activated receptor alpha (PPARalpha), a member of the ligand-activated nuclear receptor superfamily. Among the ligand activators of PPARalpha are long-chain fatty acids; therefore, increased uptake of fatty acid substrate into the cardiac myocyte induces a transcriptional response leading to increased expression of FAO enzymes. PPARalpha-mediated control of cardiac metabolic gene expression is activated during postnatal development, short-term starvation, and in response to exercise training. In contrast, certain pathophysiologic states, such as pressure overload-induced hypertrophy, result in deactivation of PPARalpha and subsequent dysregulation of FAO enzyme gene expression, which sets the stage for abnormalities in cardiac lipid homeostasis and energy production, some of which are influenced by gender. Thus, PPARalpha not only serves a critical role in normal cardiac metabolic homeostasis, but alterations in PPARalpha signaling likely contribute to the pathogenesis of a variety of disease states. PPARalpha as a ligand-activated transcription factor is a potential target for the development of new therapeutic strategies aimed at the prevention of pathologic cardiac remodeling.

  9. Laribacter hongkongensis anaerobic adaptation mediated by arginine metabolism is controlled by the cooperation of FNR and ArgR.

    PubMed

    Xiong, Lifeng; Yang, Ying; Ye, Yuan-Nong; Teng, Jade L L; Chan, Elaine; Watt, Rory M; Guo, Feng-Biao; Lau, Susanna K P; Woo, Patrick C Y

    2017-03-01

    Laribacter hongkongensis is a fish-borne pathogen associated with invasive infections and gastroenteritis. Its adaptive mechanisms to oxygen-limiting conditions in various environmental niches remain unclear. In this study, we compared the transcriptional profiles of L. hongkongensis under aerobic and anaerobic conditions using RNA-sequencing. Expression of genes involved in arginine metabolism significantly increased under anoxic conditions. Arginine was exploited as the sole energy source in L. hongkongensis for anaerobic respiration via the arginine catabolism pathway: specifically via the arginine deiminase (ADI) pathway. A transcriptional regulator FNR was identified to coordinate anaerobic metabolism by tightly regulating the expression of arginine metabolism genes. FNR executed its regulatory function by binding to FNR boxes in arc operons promoters. Survival of isogenic fnr mutant in macrophages decreased significantly when compared with wild-type; and expression level of fnr increased 8 h post-infection. Remarkably, FNR directly interacted with ArgR, another regulator that influences the biological fitness and intracellular survival of L. hongkongensis by regulating arginine metabolism genes. Our results demonstrated that FNR and ArgR work in coordination to respond to oxygen changes in both extracellular and intracellular environments, by finely regulating the ADI pathway and arginine anabolism pathways, thereby optimizing bacterial fitness in various environmental niches.

  10. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    PubMed

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed.

  11. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    PubMed Central

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  12. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis.

    PubMed

    Méndez-Giménez, Leire; Rodríguez, Amaia; Balaguer, Inmaculada; Frühbeck, Gema

    2014-11-01

    Aquaglyceroporins and caveolins are submicroscopic integral membrane proteins that are particularly abundant in many mammalian cells. Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water, but also of small solutes, such as glycerol, across cell membranes. Glycerol constitutes an important metabolite as a substrate for de novo synthesis of triacylglycerols and glucose as well as an energy substrate to produce ATP via the mitochondrial oxidative phosphorylation. In this sense, the control of glycerol influx/efflux in metabolic organs by aquaglyceroporins plays a crucial role with the dysregulation of these glycerol channels being associated with metabolic diseases, such as obesity, insulin resistance, non-alcoholic fatty liver disease and cardiac hypertrophy. On the other hand, caveolae have emerged as relevant plasma membrane sensors implicated in a wide range of cellular functions, including endocytosis, apoptosis, cholesterol homeostasis, proliferation and signal transduction. Caveolae-coating proteins, namely caveolins and cavins, can act as scaffolding proteins within caveolae by concentrating signaling molecules involved in free fatty acid and cholesterol uptake, proliferation, insulin signaling or vasorelaxation, among others. The importance of caveolae in whole-body homeostasis is highlighted by the link between homozygous mutations in genes encoding caveolins and cavins with metabolic diseases, such as lipodystrophy, dyslipidemia, muscular dystrophy and insulin resistance in rodents and humans. The present review focuses on the role of aquaglyceroporins and caveolins on lipid and glucose metabolism, insulin secretion and signaling, energy production and cardiovascular homeostasis, outlining their potential relevance in the development and treatment of metabolic diseases.

  13. Low-power metabolic equivalents estimation algorithm using adaptive acceleration sampling.

    PubMed

    Tsukahara, Mio; Nakanishi, Motofumi; Izumi, Shintaro; Nakai, Yozaburo; Kawaguchi, Hiroshi; Yoshimoto, Masahiko; Tsukahara, Mio; Nakanishi, Motofumi; Izumi, Shintaro; Nakai, Yozaburo; Kawaguchi, Hiroshi; Yoshimoto, Masahiko; Izumi, Shintaro; Nakai, Yozaburo; Kawaguchi, Hiroshi; Yoshimoto, Masahiko; Tsukahara, Mio; Nakanishi, Motofumi

    2016-08-01

    This paper describes a proposed low-power metabolic equivalent estimation algorithm that can calculate the value of metabolic equivalents (METs) from triaxial acceleration at an adaptively changeable sampling rate. This algorithm uses four rates of 32, 16, 8 and 4 Hz. The mode of switching them is decided from synthetic acceleration. Applying this proposed algorithm to acceleration measured for 1 day, we achieved the low root mean squared error (RMSE) of calculated METs, with current consumption that was 41.5 % of the value at 32 Hz, and 75.4 % of the value at 16 Hz.

  14. Rethinking energy in parkinsonian motor symptoms: a potential role for neural metabolic deficits

    PubMed Central

    Amano, Shinichi; Kegelmeyer, Deborah; Hong, S. Lee

    2015-01-01

    Parkinson’s disease (PD) is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic (DA) cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity) to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of DA neurons in the substantia nigra pars compacta (SNc), in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1) neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD; (2) motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state; and (3) improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD. PMID:25610377

  15. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation

    PubMed Central

    Guzun, R.; Kaambre, T.; Bagur, R.; Grichine, A.; Usson, Y.; Varikmaa, M.; Anmann, T.; Tepp, K.; Timohhina, N.; Shevchuk, I.; Chekulayev, V.; Boucher, F.; Santos, P. Dos; Schlattner, U.; Wallimann, T.; Kuznetsov, A. V.; Dzeja, P.; Aliev, M.; Saks, V.

    2014-01-01

    To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure–function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis. PMID:24666671

  16. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    PubMed Central

    2013-01-01

    Background Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. Results This study integrates control engineering and classical MCA augmented with supply–demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the ‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. Conclusions A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and

  17. A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells

    PubMed Central

    Fan, Yang-Yi; Davidson, Laurie A.; Callaway, Evelyn S.; Wright, Gus A.; Safe, Stephen

    2015-01-01

    Evidence suggests that targeting cancer cell energy metabolism might be an effective therapeutic approach for selective ablation of malignancies. Using a Seahorse Extracellular Flux Analyzer, we have demonstrated that select environmental agents can alter colonic mitochondrial function by increasing respiration-induced proton leak, thereby inducing apoptosis, a marker of colon cancer risk. To further probe bioenergetics in primary intestinal cells, we developed methodology that can be modified and adapted to measure the bioenergetic profiles of colonic crypts, the basic functional unit of the colon, and colonic organoids, an ex vivo 3D culture of colonic crypts. Furthermore, in combination with the MoFlo Astrios High-Speed Cell Sorter, we were able to measure the bioenergetic profiles of colonic adult stem and daughter cells from Lgr5-EGFP-IRES-creERT2 transgenic mice. We examined the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a full arylhydrocarbon receptor agonist, known to affect gastrointestinal function and cancer risk, on the bioenergetic profiles of intestinal epithelial cells. Mouse colonic crypts, organoids, or sorted single cells were seeded onto Matrigel-precoated Seahorse XF24 microplates for extracellular flux analysis. Temporal analyses revealed distinct energy metabolic profiles in crypts and organoids challenged with TCDD. Furthermore, sorted Lgr5+ stem cells exhibited a Warburg-like metabolic profile. This is noteworthy because perturbations in stem cell dynamics are generally believed to represent the earliest step toward colon tumorigenesis. We propose that our innovative methodology may facilitate future in vivo/ex vivo metabolic studies using environmental agents affecting colonocyte energy metabolism. PMID:25977509

  18. A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells.

    PubMed

    Fan, Yang-Yi; Davidson, Laurie A; Callaway, Evelyn S; Wright, Gus A; Safe, Stephen; Chapkin, Robert S

    2015-07-01

    Evidence suggests that targeting cancer cell energy metabolism might be an effective therapeutic approach for selective ablation of malignancies. Using a Seahorse Extracellular Flux Analyzer, we have demonstrated that select environmental agents can alter colonic mitochondrial function by increasing respiration-induced proton leak, thereby inducing apoptosis, a marker of colon cancer risk. To further probe bioenergetics in primary intestinal cells, we developed methodology that can be modified and adapted to measure the bioenergetic profiles of colonic crypts, the basic functional unit of the colon, and colonic organoids, an ex vivo 3D culture of colonic crypts. Furthermore, in combination with the MoFlo Astrios High-Speed Cell Sorter, we were able to measure the bioenergetic profiles of colonic adult stem and daughter cells from Lgr5-EGFP-IRES-creER(T2) transgenic mice. We examined the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a full arylhydrocarbon receptor agonist, known to affect gastrointestinal function and cancer risk, on the bioenergetic profiles of intestinal epithelial cells. Mouse colonic crypts, organoids, or sorted single cells were seeded onto Matrigel-precoated Seahorse XF24 microplates for extracellular flux analysis. Temporal analyses revealed distinct energy metabolic profiles in crypts and organoids challenged with TCDD. Furthermore, sorted Lgr5(+) stem cells exhibited a Warburg-like metabolic profile. This is noteworthy because perturbations in stem cell dynamics are generally believed to represent the earliest step toward colon tumorigenesis. We propose that our innovative methodology may facilitate future in vivo/ex vivo metabolic studies using environmental agents affecting colonocyte energy metabolism.

  19. Endocannabinoid signaling and energy metabolism: a target for dietary intervention.

    PubMed

    Kim, Jeffrey; Li, Yong; Watkins, Bruce A

    2011-06-01

    The endocannabinoid (EC) signaling (ECS) system involves the activation of receptors targeted by endogenously produced ligands called endocannabinoids that trigger specific physiologic events in various organs and tissues throughout the body. ECs are lipid mediators that bind to specific receptors and elicit cell signaling. The focus of this review is to discuss the responses that direct pathways of systemic energy metabolism. Recent findings have indicated that an imbalance of the ECS contributes to visceral fat accumulation and disrupts energy homeostasis, which are characteristics of the metabolic syndrome. Constant activation of ECS has been linked to metabolic processes that are associated with the hypothalamus and peripheral tissues of obese patients. In contrast, inhibition of ECS results in weight loss in animal and human subjects. Despite these findings, the mechanism involved in the dysregulation of ECS is unclear. Interestingly, the level of endogenous ligands, derived from arachidonic acid, can be directly manipulated by nutrient intervention, in that a diet rich in long-chain ω-3 polyunsaturated fatty acids will decrease the production of ligands to modulate the activation of target receptors. In contrast, a diet that is high in ω-6 polyunsaturated fatty acids will cause an increase in ECS activation and stimulate tissue specific activities that decrease insulin sensitivity in muscle and promote fat accumulation in the adipose tissue. The purpose of this review is to explain the components of ECS, its role in adipose and muscle energy metabolism, and how nutritional approaches with dietary ω-3 polyunsaturated fatty acids may reverse the dysregulation of this system to improve insulin sensitivity and control body fat.

  20. Cancer: NF-κB regulates energy metabolism.

    PubMed

    Moretti, Marta; Bennett, Jason; Tornatore, Laura; Thotakura, Anil K; Franzoso, Guido

    2012-12-01

    NF-κB transcription factors are evolutionarily conserved, central coordinators of immune and inflammatory responses. They also play a pivotal role in oncogenesis. NF-κB exerts these functions by regulating the transcription of genes encoding many immunoregulators, inflammatory mediators and inhibitors of apoptosis. Several studies during the past few years have also underscored the key role of the IKK/NF-κB pathway in the induction and maintenance of the state of inflammation that underlies metabolic pathologies such as obesity, insulin resistance and type-2 diabetes, reflecting the co-evolution and integration of nutrient- and pathogen-sensing systems. Recent reports, however, are revealing an even more intimate, direct connection between NF-κB and metabolism. These studies demonstrate that NF-κB regulates energy homeostasis via direct engagement of the cellular networks governing glycolysis and respiration, with profound implications that extend beyond metabolic pathologies, to cellular physiology, cancer, and anti-cancer therapy. In this review article, we discuss these emerging metabolic functions of NF-κB and their significance to oncogenesis and cancer treatment.

  1. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    PubMed Central

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2) were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms. PMID:27248429

  2. Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene.

    PubMed

    Charusanti, Pep; Conrad, Tom M; Knight, Eric M; Venkataraman, Karthik; Fong, Nicole L; Xie, Bin; Gao, Yuan; Palsson, Bernhard Ø

    2010-11-04

    Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi) by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1) the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2) two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3) despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.

  3. Polyphosphate - an ancient energy source and active metabolic regulator

    PubMed Central

    2011-01-01

    There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs) can currently be categorized into three groups (PPK1, PPK2 and PPK3) according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC). This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate. PMID:21816086

  4. [Modifications in myocardial energy metabolism in diabetic patients

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2001-01-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  5. Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity.

    PubMed

    Chouhan, Amit K; Ivannikov, Maxim V; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R; Macleod, Gregory T

    2012-01-25

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations that blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+ and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11 nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13 nM). In summary, we show that when MNs fire at endogenous rates, [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs.

  6. Legal pre-event nutritional supplements to assist energy metabolism.

    PubMed

    Spriet, Lawrence L; Perry, Christopher G R; Talanian, Jason L

    2008-01-01

    Physical training and proper nutrition are paramount for success in sport. A key tissue is skeletal muscle, as the metabolic pathways that produce energy or ATP allow the muscles to complete the many activities critical to success in sport. The energy-producing pathways must rapidly respond to the need for ATP during sport and produce energy at a faster rate or for a longer duration through training and proper nutrition which should translate into improved performance in sport activities. There is also continual interest in the possibility that nutritional supplements could further improve muscle metabolism and the provision of energy during sport. Most legal sports supplements do not improve performance following oral ingestion. However, three legal supplements that have received significant attention over the years include creatine, carnitine and sodium bicarbonate. The ingestion of large amounts of creatine for 4-6 days increases skeletal muscle creatine and phosphocreatine contents. The majority of the experimental evidence suggests that creatine supplementation can improve short-term exercise performance, especially in sports that require repeated short-term sprints. It may also augment the accretion of skeletal muscle when taken in combination with a resistance-exercise training programme. Supplementary carnitine has been touted to increase the uptake and oxidation of fat in the mitochondria. However, muscle carnitine levels are not augmented following oral carnitine supplementation and the majority of well-controlled studies have reported no effect of carnitine on enhancing fat oxidation, Vo(2max) or prolonged endurance exercise performance. The ingestion of sodium bicarbonate before intense exercise decreases the blood [H+] to potentially assist the efflux of H+ from the muscle and temper the metabolic acidosis associated with intense exercise. Many studies have reported performance increases in laboratory-based cycling tests and simulated running races in

  7. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    PubMed Central

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  8. Adaptive Benefits of Storage Strategy and Dual AMPK/TOR Signaling in Metabolic Stress Response

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin

    2016-01-01

    Cellular metabolism must ensure that supply of nutrient meets the biosynthetic and bioenergetic needs. Cells have therefore developed sophisticated signaling and regulatory pathways in order to cope with dynamic fluctuations of both resource and demand and to regulate accordingly diverse anabolic and catabolic processes. Intriguingly, these pathways are organized around a relatively small number of regulatory hubs, such as the highly conserved AMPK and TOR kinase families in eukaryotic cells. Here, the global metabolic adaptations upon dynamic environment are investigated using a prototypical model of regulated metabolism. In this model, the optimal enzyme profiles as well as the underlying regulatory architecture are identified by combining perturbation and evolutionary methods. The results reveal the existence of distinct classes of adaptive strategies, which differ in the management of storage reserve depending on the intensity of the stress and in the regulation of ATP-producing reaction depending on the nature of the stress. The regulatory architecture that optimally implements these adaptive features is characterized by a crosstalk between two specialized signaling pathways, which bears close similarities with the sensing and regulatory properties of AMPK and TOR pathways. PMID:27505075

  9. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.

    PubMed

    Hsu, Chia George; Burkholder, Thomas J

    2016-12-01

    The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

  10. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training.

    PubMed

    Schoenfeld, Brad J

    2013-03-01

    It is well established that regimented resistance training can promote increases in muscle hypertrophy. The prevailing body of research indicates that mechanical stress is the primary impetus for this adaptive response and studies show that mechanical stress alone can initiate anabolic signalling. Given the dominant role of mechanical stress in muscle growth, the question arises as to whether other factors may enhance the post-exercise hypertrophic response. Several researchers have proposed that exercise-induced metabolic stress may in fact confer such an anabolic effect and some have even suggested that metabolite accumulation may be more important than high force development in optimizing muscle growth. Metabolic stress pursuant to traditional resistance training manifests as a result of exercise that relies on anaerobic glycolysis for adenosine triphosphate production. This, in turn, causes the subsequent accumulation of metabolites, particularly lactate and H(+). Acute muscle hypoxia associated with such training methods may further heighten metabolic buildup. Therefore, the purpose of this paper will be to review the emerging body of research suggesting a role for exercise-induced metabolic stress in maximizing muscle development and present insights as to the potential mechanisms by which these hypertrophic adaptations may occur. These mechanisms include increased fibre recruitment, elevated systemic hormonal production, alterations in local myokines, heightened production of reactive oxygen species and cell swelling. Recommendations are provided for potential areas of future research on the subject.

  11. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria

    PubMed Central

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.

    2009-01-01

    Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814

  12. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  13. Primary cilia in energy balance signaling and metabolic disorder

    PubMed Central

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654] PMID:26538252

  14. Experimental ocean acidification alters the allocation of metabolic energy

    PubMed Central

    Pan, T.-C. Francis; Applebaum, Scott L.; Manahan, Donal T.

    2015-01-01

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors. PMID:25825763

  15. Experimental ocean acidification alters the allocation of metabolic energy.

    PubMed

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  16. Metabolic adaptations in skeletal muscle after 84 days of bed rest with and without concurrent flywheel resistance exercise.

    PubMed

    Irimia, José M; Guerrero, Mario; Rodriguez-Miguelez, Paula; Cadefau, Joan A; Tesch, Per A; Cussó, Roser; Fernandez-Gonzalo, Rodrigo

    2017-01-01

    As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n = 9) or without (BR; n = 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α), and myostatin, were analyzed in samples from m. vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1α and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle.

  17. Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea.

    PubMed

    Ortmann, Christian; Grieshaber, Manfred K

    2003-11-01

    Since its invasion of Europe in the early 1980s, the Asian clam Corbicula fluminea has become very abundant in nearly all western river systems. Today this species is one of the most important biomass producers in the River Rhine. Monitoring the valve movements of C. fluminea over a period of 2 years revealed a circadian rhythm in summer, with extended periods (10-12 h) of valve closure, predominantly in the morning hours. Altogether valve movements were very scarce, frequently fewer than four movements per individual per day. Simultaneous measurements of heat dissipation and oxygen consumption (calorespirometry) revealed an intermittent metabolism in the clam. With the onset of valve closure, C. fluminea reduced its metabolic rate to 10% of the standard metabolic rate (SMR) measured when the valves were open. Nevertheless, this depressed metabolism remained aerobic for several hours, enabling the clam to save energy and substrates compared to the requirements of the tenfold higher SMR. Only during long-lasting periods of valve closure (more than 5-10 h) did the clams become anaerobic and accumulate succinate within their tissues (2 micromol g(-1) fresh mass). Succinate is transported into the mantle cavity fluid, where it reaches concentrations of 4-6 mmol l(-1). Because this succinate-enriched fluid must pass the gills when the valves open again, we suggest that this anaerobic end product is at least partly reabsorbed, thus reducing the loss of valuable substrates during anaerobiosis. Propionate was also produced, but only during experimental N2-incubation, under near-anoxic conditions. The intermittent metabolism of C. fluminea is discussed as an adaption to efficiently exploit the rare food supply, saving substrates by the pronounced metabolic depression during valve closure.

  18. Communication of bone cells with hematopoiesis, immunity and energy metabolism

    PubMed Central

    Asada, Noboru; Sato, Mari; Katayama, Yoshio

    2015-01-01

    The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the ‘microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article. PMID:26512322

  19. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    PubMed

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.

  20. Donepezil regulates energy metabolism and favors bone mass accrual.

    PubMed

    Eimar, Hazem; Alebrahim, Sharifa; Manickam, Garthiga; Al-Subaie, Ahmed; Abu-Nada, Lina; Murshed, Monzur; Tamimi, Faleh

    2016-03-01

    The autonomous nervous system regulates bone mass through the sympathetic and parasympathetic arms. The sympathetic nervous system (SNS) favors bone loss whereas the parasympathetic nervous system (PNS) promotes bone mass accrual. Donepezil, a central-acting cholinergic agonist, has been shown to down-regulate SNS and up-regulate PNS signaling tones. Accordingly, we hypothesize that the use of donepezil could have beneficial effects in regulating bone mass. To test our hypothesis, two groups of healthy female mice were treated either with donepezil or saline. Differences in body metabolism and bone mass of the treated groups were compared. Body and visceral fat weights as well as serum leptin level were increased in donepezil-treated mice compared to control, suggesting that donepezil effects on SNS influenced metabolic activity. Donepezil-treated mice had better bone quality than controls due to a decrease in osteoclasts number. These results indicate that donepezil is able to affect whole body energy metabolism and favors bone mass in young female WT mice.

  1. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations.

    PubMed

    Probst, Alexander J; Castelle, Cindy J; Singh, Andrea; Brown, Christopher T; Anantharaman, Karthik; Sharon, Itai; Hug, Laura A; Burstein, David; Emerson, Joanne B; Thomas, Brian C; Banfield, Jillian F

    2017-02-01

    As in many deep underground environments, the microbial communities in subsurface high-CO2 ecosystems remain relatively unexplored. Recent investigations based on single-gene assays revealed a remarkable variety of organisms from little studied phyla in Crystal Geyser (Utah, USA), a site where deeply sourced CO2 -saturated fluids are erupted at the surface. To provide genomic resolution of the metabolisms of these organisms, we used a novel metagenomic approach to recover 227 high-quality genomes from 150 microbial species affiliated with 46 different phylum-level lineages. Bacteria from two novel phylum-level lineages have the capacity for CO2 fixation. Analyses of carbon fixation pathways in all studied organisms revealed that the Wood-Ljungdahl pathway and the Calvin-Benson-Bassham Cycle occurred with the highest frequency, whereas the reverse TCA cycle was little used. We infer that this, and selection for form II RuBisCOs, are adaptions to high CO2 -concentrations. However, many autotrophs can also grow mixotrophically, a strategy that confers metabolic versatility. The assignment of 156 hydrogenases to 90 different organisms suggests that H2 is an important inter-species energy currency even under gaseous CO2 -saturation. Overall, metabolic analyses at the organism level provided insight into the biochemical cycles that support subsurface life under the extreme condition of CO2 saturation.

  2. The SCFA Receptor GPR43 and Energy Metabolism.

    PubMed

    Kimura, Ikuo; Inoue, Daisuke; Hirano, Kanako; Tsujimoto, Gozoh

    2014-01-01

    Free fatty acids (FFAs) are essential nutrients and act as signaling molecules in various cellular processes via binding with FFA receptors. Of these receptors, GPR43 is activated by short-chain fatty acids (SCFAs; e.g., acetate, propionate, and butyrate). During feeding, SCFAs are produced by microbial fermentation of dietary fiber in the gut, and these SCFAs become important energy sources for the host. The gut microbiota affects nutrient acquisition and energy regulation of the host and can influence the development of obesity, insulin resistance, and diabetes. Recently, GPR43 has been reported to regulate host energy homeostasis in the gastrointestinal tract and adipose tissues. Hence, GPR43 is also thought to be a potential drug target for metabolic disorders, such as obesity and diabetes. In this review, we summarize the identification, structure, and activities of GPR43, with a focus on host energy regulation, and present an essential overview of our current understanding of its physiological roles in host energy regulation that is mediated by gut microbiota. We also discuss the potential for GPR43 as a therapeutic target.

  3. Regulation of energy metabolism by the skeleton: osteocalcin and beyond.

    PubMed

    Ferron, Mathieu; Lacombe, Julie

    2014-11-01

    The skeleton has recently emerged as an endocrine organ implicated in the regulation of glucose and energy metabolism. This function of bone is mediated, at least in part, by osteocalcin, an osteoblast-derived protein acting as a hormone stimulating insulin sensitivity, insulin secretion and energy expenditure. Osteocalcin secretion and bioactivity is in turn regulated by several hormonal cues including insulin, leptin, the sympathetic nervous system and glucocorticoids. Recent findings support the notion that osteocalcin functions and regulations are conserved between mice and humans. Moreover, studies in mice suggest that osteocalcin could represent a viable therapeutic approach for the treatment of obesity and insulin resistance. In this review, we summarize the current knowledge on osteocalcin functions, its various modes of action and the mechanisms implicated in the control of this hormone.

  4. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

    DOE PAGES

    Rother, Michael; Krzycki, Joseph A.

    2010-01-01

    Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to putmore » this knowledge into the context of their unique energy metabolism.« less

  5. [Test for bioenergetic progress and specific energy metabolism in isopod crustaceans (Isopoda) of various ecology].

    PubMed

    Kleĭmenov, S Iu; Alekseeva, T A

    2002-01-01

    We studied energy metabolism of terrestrial and cavernicolous isopods and demonstrated much lower standard metabolism in the troglobionts as compared to other Isopoda representatives. The test for bioenergetic progress proved to be applicable for both aromorphosis and katamorphosis. Different patterns of the relationship between energy metabolism and temperature in stenothermal and eurythermal species have been proposed.

  6. Adaptive and energy efficient SMA-based handling systems

    NASA Astrophysics Data System (ADS)

    Motzki, P.; Kunze, J.; Holz, B.; York, A.; Seelecke, S.

    2015-04-01

    Shape Memory Alloys (SMA's) are known as actuators with very high energy density. This fact allows for the construction of very light weight and energy-efficient systems. In the field of material handling and automated assembly process, the avoidance of big moments of inertia in robots and kinematic units is essential. High inertial forces require bigger and stronger robot actuators and thus higher energy consumption and costs. For material handling in assembly processes, many different individual grippers for various work piece geometries are used. If one robot has to handle different work pieces, the gripper has to be exchanged and the assembly process is interrupted, which results in higher costs. In this paper, the advantages of using high energy density Shape Memory Alloy actuators in applications of material-handling and gripping-technology are explored. In particular, light-weight SMA actuated prototypes of an adaptive end-effector and a vacuum-gripper are constructed via rapid-prototyping and evaluated. The adaptive end-effector can change its configuration according to the work piece geometry and allows the handling of multiple different shaped objects without exchanging gripper tooling. SMA wires are used to move four independent arms, each arm adds one degree of freedom to the kinematic unit. At the tips of these end-effector arms, SMA-activated suction cups can be installed. The suction cup prototypes are developed separately. The flexible membranes of these suction cups are pulled up by SMA wires and thus a vacuum is created between the membrane and the work piece surface. The self-sensing ability of the SMA wires are used in both prototypes for monitoring their actuation.

  7. Energy metabolism and hindbrain AMPK: regulation by estradiol.

    PubMed

    Briski, Karen P; Ibrahim, Baher A; Tamrakar, Pratistha

    2014-03-01

    Nerve cell energy status is screened within multiple classically defined hypothalamic and hindbrain components of the energy balance control network, including the hindbrain dorsal vagal complex (DVC). Signals of caudal DVC origin have a physiological role in glucostasis, e.g., maintenance of optimal supply of the critical substrate fuel, glucose, through control of motor functions such as fuel consumption and gluco-counterregulatory hormone secretion. A2 noradrenergic neurons are a likely source of these signals as combinatory laser microdissection/high-sensitivity Western blotting reveals expression of multiple biomarkers for metabolic sensing, including adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypoglycemia elicits estradiol-dependent sex differences in A2 AMPK activation as phospho-AMPK (pAMPK) expression is augmented in male and ovariectomized (OVX) female, but not estrogen-replaced, OVX rats. This dichotomy may reflect, in part, estradiol-mediated up-regulation of glycolytic and tricarboxylic acid cycle enzyme expression during hypoglycemia. Our new model for short-term feeding abstinence has physiological relevance to planned (dieting) or unplanned (meal delay) interruption of consumption in modern life, which is negatively correlated with appetite control and obesity, and is useful for investigating how estrogen may mitigate the effects of disrupted fuel acquisition on energy balance via actions within the DVC. Estradiol reduces DVC AMPK activity after local delivery of the AMP mimic, 5-aminoimidazole-4-carboxamide-riboside, or cessation of feeding for 12 h but elevates pAMPK expression when these treatments are combined. These data suggest that estrogen maintains cellular energy stability over periods of suspended fuel acquisition and yet optimizes, by DVC AMPK-dependent mechanisms, counter-regulatory responses to metabolic challenges that occur during short-span feeding abstinence.

  8. Impaired energy metabolism of the taurine‑deficient heart.

    PubMed

    Schaffer, Stephen W; Shimada-Takaura, Kayoko; Jong, Chian Ju; Ito, Takashi; Takahashi, Kyoko

    2016-02-01

    Taurine is a β-amino acid found in high concentrations in excitable tissues, including the heart. A significant reduction in myocardial taurine content leads to the development of a unique dilated, atrophic cardiomyopathy. One of the major functions of taurine in the heart is the regulation of the respiratory chain. Hence, we tested the hypothesis that taurine deficiency-mediated defects in respiratory chain function lead to impaired energy metabolism and reduced ATP generation. We found that while the rate of glycolysis was significantly enhanced in the taurine-deficient heart, glucose oxidation was diminished. The major site of reduced glucose oxidation was pyruvate dehydrogenase, an enzyme whose activity is reduced by the increase in the NADH/NAD+ ratio and by decreased availability of pyruvate for oxidation to acetyl CoA and changes in [Mg2+]i. Also diminished in the taurine-deficient heart was the oxidation of two other precursors of acetyl CoA, endogenous fatty acids and exogenous acetate. In the taurine-deficient heart, impaired citric acid cycle activity decreased both acetate oxidation and endogenous fatty acid oxidation, but reductions in the activity of the mitochondrial transporter, carnitine palmitoyl transferase, appeared to also contribute to the reduction in fatty acid oxidation. These changes diminished the rate of ATP production, causing a decline in the phosphocreatine/ATP ratio, a sign of reduced energy status. The findings support the hypothesis that the taurine-deficient heart is energy starved primarily because of impaired respiratory chain function, an increase in the NADH/NAD+ ratio and diminished long chain fatty acid uptake by the mitochondria. The results suggest that improved energy metabolism contributes to the beneficial effect of taurine therapy in patients suffering from heart failure.

  9. Glutaric acid moderately compromises energy metabolism in rat brain.

    PubMed

    da C Ferreira, Gustavo; Viegas, Carolina M; Schuck, Patrícia F; Latini, Alexandra; Dutra-Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Vargas, Carmen R; Wajner, Moacir

    2005-12-01

    Glutaric acidemia type I is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly glutaric acid (GA). Affected patients present frontotemporal hypotrophy, as well as caudate and putamen injury following acute encephalopathic crises. Considering that the underlying mechanisms of basal ganglia damage in this disorder are poorly known, in the present study we tested the effects of glutaric acid (0.2-5mM) on critical enzyme activities of energy metabolism, namely the respiratory chain complexes I-IV, succinate dehydrogenase and creatine kinase in midbrain of developing rats. Glutaric acid significantly inhibited creatine kinase activity (up to 26%) even at the lowest dose used in the assays (0.2mM). We also observed that CK inhibition was prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of GA was possibly mediated by oxidation of essential thiol groups of the enzyme. In addition, the activities of the respiratory chain complex I-III and of succinate dehydrogenase were also significantly inhibited by 20 and 30%, respectively, at the highest glutaric acid concentration tested (5mM). In contrast, complexes II-III and IV activities of the electron transport chain were not affected by the acid. The effect of glutaric acid on the rate of oxygen consumption in intact mitochondria from the rat cerebrum was also investigated. Glutaric acid (1mM) significantly lowered the respiratory control ratio (state III/state IV) up to 40% in the presence of the respiratory substrates glutamate/malate or succinate. Moreover, state IV respiration linked to NAD and FAD substrates was significantly increased in GA-treated mitochondria while state III was significantly diminished. The results indicate that the major metabolite accumulating in glutaric acidemia type I moderately compromises brain energy metabolism in vitro.

  10. Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast.

    PubMed

    Choi, Kyung-Mi; Hong, Seok-Jin; van Deursen, Jan M; Kim, Sooah; Kim, Kyoung Heon; Lee, Cheol-Koo

    2017-03-08

    Rapamycin (RM), a drug that inhibits the mechanistic target of rapamycin (mTOR) pathway and responds to nutrient availability, seemingly mimics the effects of caloric restriction (CR) on healthy life span. However, the extent of the mechanistic overlap between RM and CR remains incompletely understood. Here, we compared the impact of CR and RM on cellular metabolic status. Both regimens maintained intracellular ATP through the chronological aging process and showed enhanced mitochondrial capacity. Comparative transcriptome analysis showed that CR had a stronger impact on global gene expression than RM. We observed a like impact on the metabolome and identified distinct metabolites affected by CR and RM. CR severely reduced the level of energy storage molecules including glycogen and lipid droplets, whereas RM did not. RM boosted the production of enzymes responsible for the breakdown of glycogen and lipid droplets. Collectively, these results provide insights into the distinct energy metabolism mechanisms induced by CR and RM, suggesting that these two anti-aging regimens might extend life span through distinctive pathways.

  11. Follistatin promotes adipocyte differentiation, browning, and energy metabolism.

    PubMed

    Braga, Melissa; Reddy, Srinivasa T; Vergnes, Laurent; Pervin, Shehla; Grijalva, Victor; Stout, David; David, John; Li, Xinmin; Tomasian, Venina; Reid, Christopher B; Norris, Keith C; Devaskar, Sherin U; Reue, Karen; Singh, Rajan

    2014-03-01

    Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism.

  12. Non-resonant energy harvesting via an adaptive bistable potential

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-01-01

    Narrow bandwidth and easy detuning, inefficiency in broadband and non-stationary excitations, and difficulties in matching a linear harvester’s resonance frequency to low-frequency excitations at small scales, have convinced researchers to investigate nonlinear, and in particular bistable, energy harvesters in recent years. However, bistable harvesters suffer from co-existing low and high energy orbits, and sensitivity to initial conditions, and have recently been proven inefficient when subjected to many real-world random and non-stationary excitations. Here, we propose a novel non-resonant buy-low-sell-high strategy that can significantly improve the harvester’s effectiveness at low frequencies in a much more robust fashion. This strategy could be realized by a passive adaptive bistable system. Simulation results confirm the high effectiveness of the adaptive bistable system following a buy-low-sell-high logic when subjected to harmonic and random non-stationary walking excitations compared to its conventional bistable and linear counterparts.

  13. Phylogeography, Salinity Adaptations and Metabolic Potential of the Candidate Division KB1 Bacteria Based on a Partial Single Cell Genome

    PubMed Central

    Nigro, Lisa M.; Hyde, Andrew S.; MacGregor, Barbara J.; Teske, Andreas

    2016-01-01

    Deep-sea hypersaline anoxic basins and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that have been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis – previously developed based on 14C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines – that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source. PMID:27597842

  14. Flavonoids: a metabolic network mediating plants adaptation to their real estate

    PubMed Central

    Mouradov, Aidyn; Spangenberg, German

    2014-01-01

    From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth’s terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production. PMID:25426130

  15. Flavonoids: a metabolic network mediating plants adaptation to their real estate.

    PubMed

    Mouradov, Aidyn; Spangenberg, German

    2014-01-01

    From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.

  16. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  17. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  18. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism.

    PubMed

    Rodríguez, Amaia; Ezquerro, Silvia; Méndez-Giménez, Leire; Becerril, Sara; Frühbeck, Gema

    2015-10-15

    Adipose tissue constitutes an extremely active endocrine organ with a network of signaling pathways enabling the organism to adapt to a wide range of different metabolic challenges, such as starvation, stress, infection, and short periods of gross energy excess. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a huge variety of hormones, cytokines, complement and growth factors, extracellular matrix proteins, and vasoactive factors, collectively termed adipokines. Obesity is associated with adipose tissue dysfunction leading to the onset of several pathologies including type 2 diabetes, dyslipidemia, nonalcoholic fatty liver, or hypertension, among others. The mechanisms underlying the development of obesity and its associated comorbidities include the hypertrophy and/or hyperplasia of adipocytes, adipose tissue inflammation, impaired extracellular matrix remodeling, and fibrosis together with an altered secretion of adipokines. Recently, the potential role of brown and beige adipose tissue in the protection against obesity has been also recognized. In contrast to white adipocytes, which store energy in the form of fat, brown and beige fat cells display energy-dissipating capacity through the promotion of triacylglycerol clearance, glucose disposal, and generation of heat for thermogenesis. Identification of the morphological and molecular changes in white, beige, and brown adipose tissue during weight gain is of utmost relevance for the identification of pharmacological targets for the treatment of obesity and its associated metabolic diseases.

  19. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease.

    PubMed

    McHill, A W; Wright, K P

    2017-02-01

    Weight gain, obesity and diabetes have reached alarming levels in the developed world. Traditional risk factors such as over-eating, poor nutritional choices and lack of exercise cannot fully account for the high prevalence of metabolic disease. This review paper examines the scientific evidence on two novel risk factors that contribute to dys-regulated metabolic physiology: sleep disruption and circadian misalignment. Specifically, fundamental relationships between energy metabolism and sleep and circadian rhythms and the impact of sleep and circadian disruption on metabolic physiology are examined. Millions of individuals worldwide do not obtain sufficient sleep for healthy metabolic function, and many participate in shift work and social activities at times when the internal physiological clock is promoting sleep. These behaviours predispose an individual for poor metabolic health by promoting excess caloric intake in response to reduced sleep, food intake at internal biological times when metabolic physiology is not prepared, decreased energy expenditure when wakefulness and sleep are initiated at incorrect internal biological times, and disrupted glucose metabolism during short sleep and circadian misalignment. In addition to the traditional risk factors of poor diet and exercise, disturbed sleep and circadian rhythms represent modifiable risk factors for prevention and treatment of metabolic disease and for promotion of healthy metabolism.

  20. Adaptive Voltage Management Enabling Energy Efficiency in Nanoscale Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander E.

    Battery powered devices emphasize energy efficiency in modern sub-22 nm CMOS microprocessors rendering classic power reduction solutions not sufficient. Classical solutions that reduce power consumption in high performance integrated circuits are superseded with novel and enhanced power reduction techniques to enable the greater energy efficiency desired in modern microprocessors and emerging mobile platforms. Dynamic power consumption is reduced by operating over a wide range of supply voltages. This region of operation is enabled by a high speed and power efficient level shifter which translates low voltage digital signals to higher voltages (and vice versa), a key component that enables communication among circuits operating at different voltage levels. Additionally, optimizing the wide supply voltage range of signals propagating across long interconnect enables greater energy savings. A closed-form delay model supporting wide voltage range is developed to enable this capability. The model supports an ultra-wide voltage range from nominal voltages to subthreshold voltages, and a wide range of repeater sizes. To mitigate the drawback of lower operating speed at reduced supply voltages, the high performance exhibited by MOS current mode logic technology is exploited. High performance and energy efficient circuits are enabled by combining this logic style with power efficient near threshold circuits. Many-core systems that operate at high frequencies and process highly parallel workloads benefit from this combination of MCML with NTC. Due to aggressive scaling, static power consumption can in some cases overshadow dynamic power. Techniques to lower leakage power have therefore become an important objective in modern microprocessors. To address this issue, an adaptive power gating technique is proposed. This technique utilizes high levels of granularity to save additional leakage power when a circuit is active as opposed to standard power gating that saves static

  1. Ghrelin O-acyltransferase (GOAT) and energy metabolism.

    PubMed

    Li, Ziru; Mulholland, Michael; Zhang, Weizhen

    2016-03-01

    Ghrelin O-acyltransferase (GOAT), a member of MBOATs family, is essential for octanoylation of ghrelin, which is required for active ghrelin to bind with and activate its receptor. GOAT is expressed mainly in the stomach, pancreas and hypothalamus. Levels of GOAT are altered by energy status. GOAT contains 11 transmembrane helices and one reentrant loop. Its invariant residue His-338 and conserved Asn-307 are located in the endoplasmic reticulum lumen and cytosol respectively. GOAT contributes to the regulation of food intake and energy expenditure, as well as glucose and lipids homeostasis. Deletion of GOAT blocks the acylation of ghrelin leading to subsequent impairment in energy homeostasis and survival when mice are challenged with high energy diet or severe caloric restriction. GO-CoA-Tat, a peptide GOAT inhibitor, attenuates acyl-ghrelin production and prevents weight gain induced by a medium-chain triglycerides-rich high fat diet. Further, GO-CoA-Tat increases glucose- induced insulin secretion. Overall, inhibition of GOAT is a novel strategy for treatment of obesity and related metabolic disorders.

  2. Microbial Communities Are Well Adapted to Disturbances in Energy Input

    PubMed Central

    Vallino, Joseph J.

    2016-01-01

    ABSTRACT Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic “unstable” communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and

  3. Microbial Communities Are Well Adapted to Disturbances in Energy Input.

    PubMed

    Fernandez-Gonzalez, Nuria; Huber, Julie A; Vallino, Joseph J

    2016-01-01

    Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic "unstable" communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and manipulating

  4. Triheptanoin improves brain energy metabolism in patients with Huntington disease

    PubMed Central

    Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra

    2015-01-01

    Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297

  5. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis.

    PubMed

    Bairlein, Franz; Fritz, Johannes; Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; van Dijk, Gertjan; Meijer, Harro A J; Verhulst, Simon; Dittami, John

    2015-01-01

    Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well.

  6. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis

    PubMed Central

    Bairlein, Franz; Fritz, Johannes; Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; van Dijk, Gertjan; Meijer, Harro A. J.; Verhulst, Simon

    2015-01-01

    Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well. PMID:26376193

  7. Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus.

    PubMed

    Wilson, Jayne Louise; Bouillaud, Frédéric; Almeida, Ana S; Vieira, Helena L; Ouidja, Mohand Ouidir; Dubois-Randé, Jean-Luc; Foresti, Roberta; Motterlini, Roberto

    2017-03-01

    Microglia fulfill important immunological functions in the brain by responding to pathological stresses and modulating their activities according to pro- or anti-inflammatory stimuli. Recent evidence indicates that changes in metabolism accompany the switch in microglia activation state, favoring glycolysis over oxidative phosphorylation when cells exhibit a pro-inflammatory phenotype. Carbon monoxide (CO), a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory action and affects mitochondrial function in cells and tissues. In the present study, we analyzed the metabolic profile of BV2 and primary mouse microglia exposed to the CO-releasing molecules CORM-401 and CORM-A1 and investigated whether CO affects the metabolic adaptation of cells to the inflammatory stimulus lipopolysaccharide (LPS). Microglia respiration and glycolysis were measured using an Extracellular Flux Analyzer to provide a real-time bioenergetic assessment, and biochemical parameters were evaluated to define the metabolic status of the cells under normal or inflammatory conditions. We show that CO prevents LPS-induced depression of microglia respiration and reduction in ATP levels while altering the early expression of inflammatory markers, suggesting the metabolic changes induced by CO are associated with control of inflammation. CO alone affects microglia respiration depending on the concentration, as low levels increase oxygen consumption while higher amounts inhibit respiration. Increased oxygen consumption was attributed to an uncoupling activity observed in cells, at the molecular level (respiratory complex activities) and during challenge with LPS. Thus, application of CO is a potential countermeasure to reverse the metabolic changes that occur during microglia inflammation and in turn modulate their inflammatory profile.

  8. Energy adaptive MAC protocol for IEEE 802.15.7 with energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Hong-qiao; Chi, Xue-fen; Zhao, Lin-lin

    2016-09-01

    The medium access control (MAC) protocol for indoor visible light communication (VLC) with energy harvesting is explored in this paper. The unfairness of throughput exists among devices due to the significant difference of their energy harvesting rates which changes with distance, acceptance angle and the obstruction probability. We propose an energy harvesting model, a new obstruction probability model and an energy adaptive contention algorithm to overcome the unfairness problem. This device can adjust its contention window according to the energy harvesting rate. As a result, the device with lower energy harvesting rate can get shorter contention window to improve its transmission opportunity. Simulation results show that our MAC protocol can achieve a higher degree of fairness.

  9. miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics

    PubMed Central

    Duroux-Richard, Isabelle; Roubert, Christine; Ammari, Meryem; Présumey, Jessy; Grün, Joachim R.; Häupl, Thomas; Grützkau, Andreas; Lecellier, Charles-Henri; Boitez, Valérie; Codogno, Patrice; Escoubet, Johanna; Pers, Yves-Marie; Jorgensen, Christian

    2016-01-01

    Metabolic changes drive monocyte differentiation and fate. Although abnormal mitochondria metabolism and innate immune responses participate in the pathogenesis of many inflammatory disorders, molecular events regulating mitochondrial activity to control life and death in monocytes remain poorly understood. We show here that, in human monocytes, microRNA-125b (miR-125b) attenuates the mitochondrial respiration through the silencing of the BH3-only proapoptotic protein BIK and promotes the elongation of the mitochondrial network through the targeting of the mitochondrial fission process 1 protein MTP18, leading to apoptosis. Proinflammatory activation of monocyte-derived macrophages is associated with a concomitant increase in miR-125b expression and decrease in BIK and MTP18 expression, which lead to reduced oxidative phosphorylation and enhanced mitochondrial fusion. In a chronic inflammatory systemic disorder, CD14+ blood monocytes display reduced miR-125b expression as compared with healthy controls, inversely correlated with BIK and MTP18 messenger RNA expression. Our findings not only identify BIK and MTP18 as novel targets for miR-125b that control mitochondrial metabolism and dynamics, respectively, but also reveal a novel function for miR-125b in regulating metabolic adaptation of monocytes to inflammation. Together, these data unravel new molecular mechanisms for a proapoptotic role of miR-125b in monocytes and identify potential targets for interfering with excessive inflammatory activation of monocytes in inflammatory disorders. PMID:27702798

  10. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation.

    PubMed

    van Wijk, Klaas J; Kessler, Felix

    2017-01-25

    Plastoglobuli (PGs) are plastid lipoprotein particles surrounded by a membrane lipid monolayer. PGs contain small specialized proteomes and metabolomes. They are present in different plastid types (e.g., chloroplasts, chromoplasts, and elaioplasts) and are dynamic in size and shape in response to abiotic stress or developmental transitions. PGs in chromoplasts are highly enriched in carotenoid esters and enzymes involved in carotenoid metabolism. PGs in chloroplasts are associated with thylakoids and contain ∼30 core proteins (including six ABC1 kinases) as well as additional proteins recruited under specific conditions. Systems analysis has suggested that chloroplast PGs function in metabolism of prenyl lipids (e.g., tocopherols, plastoquinone, and phylloquinone); redox and photosynthetic regulation; plastid biogenesis; and senescence, including recycling of phytol, remobilization of thylakoid lipids, and metabolism of jasmonate. These functionalities contribute to chloroplast PGs' role in responses to stresses such as high light and nitrogen starvation. PGs are thus lipid microcompartments with multiple functions integrated into plastid metabolism, developmental transitions, and environmental adaptation. This review provides an in-depth overview of PG experimental observations, summarizes the present understanding of PG features and functions, and provides a conceptual framework for PG research and the realization of opportunities for crop improvement. Expected final online publication date for the Annual Review of Plant Biology Volume 68 is April 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  11. A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism.

    PubMed

    Killiny, Nabil; Hijaz, Faraj; Ebert, Timothy A; Rogers, Michael E

    2017-03-01

    Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. "Candidatus Liberibacter asiaticus" (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides.IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical

  12. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-01-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature (P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  13. The Role of Energy Metabolism in Cutaneous Sulfur Mustard Injury

    DTIC Science & Technology

    2006-11-01

    the initial insult, as several key metabolic enzymes are regulated by the NAD(P)H / NAD(P)+ ratio. 2.6 Effects of HD on Oxidative Metabolism ... Glucose Metabolism: Oxidative metabolism of glucose via the Krebs cycle was determined as the production of 14CO2 from 6-14C-glucose (Martens, 1998

  14. Adaptability of solar energy conversion systems on ships

    NASA Astrophysics Data System (ADS)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  15. Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity.

    PubMed

    Weng, Jing-Ke; Ye, Mingli; Li, Bin; Noel, Joseph P

    2016-08-11

    Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience.

  16. [Adaptation of water-electrolytes metabolism to space flight and in its imitation].

    PubMed

    Noskov, V B

    2013-01-01

    50-years study of water-electrolytes exchange, the condition of water environments of the organism and the hormonal regulation in space flights, and also in postflight period or in its on ground modeling (hypokinesia, bed rest, immersion etc.) has shown the important role of the water-salt homeostasis in adaptation of the human and animal organisms to weightlessness. It has been revealed, that in weightlessness conditions for development of negative balance of a liquid (hypohydration) and the basic electrolytes are created. After the termination of long space flights attributes of development adaptive reactions compensating for extracellular liquid's volume come to light. In order to assess the state of the kidneys and water-electrolyte metabolism in cosmonauts and investigators, functional load tests and especial methods of diagnostic were developed. This is the basis for researches directed on improvement of the scheme of correction hydrogenous the status of an organism of the cosmonauts at the different stages of flight.

  17. Sleep Apnea and Fatty Liver Are Coupled Via Energy Metabolism

    PubMed Central

    Arısoy, Ahmet; Sertoğullarından, Bunyamin; Ekin, Selami; Özgökçe, Mesut; Bulut, Mehmet Deniz; Huyut, Mehmet Tahir; Ölmez, Şehmus; Turan, Mahfuz

    2016-01-01

    Background Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder characterized by intermittent hypoxia. Non-alcoholic fatty liver disease is the most common cause of chronic liver disease worldwide. We aimed to evaluate the relationship between OSA and fatty liver. Material/Methods We enrolled 176 subjects to this study who underwent polysomnography (PSG) for suspected OSA. The control group included 42 simple snoring subjects. PSG, biochemical tests, and ultrasonographic examination were performed all subjects. Results The simple snoring and mild, moderate, and severe OSA groups included 18/42 (42.86%), 33/52 (63.5%), 27/34 (79.4%), and 28/48 (79.2%) subjects with hepatosteatosis, respectively. There were significant differences in hepatosteatosis and hepatosteatosis grade between the simple snoring and the moderate and severe OSA groups. Logistic regression analysis showed that BMI and average desaturation were independently and significantly related to hepatic steatosis. Conclusions Our study shows that BMI and the average desaturation contribute to non-alcoholic fatty liver in subjects with OSA. In this regard, sleep apnea may trigger metabolic mitochondrial energy associated processes thereby altering lipid metabolism and obesity as well. PMID:26993969

  18. [Endocannabinoid system and energy metabolism: physiology and pathophysiology].

    PubMed

    Pagotto, Uberto; Vicennati, Valentina; Pasquali, Renato

    2008-04-01

    The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system has recently been shown to control several metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, therefore drugs interfering with this overactivation by blocking CB1 receptor are considered as valuable candidates for the treatment of obesity and related cardiometabolic risk factors.

  19. Aldehyde dehydrogenase is used by cancer cells for energy metabolism

    PubMed Central

    Kang, Joon Hee; Lee, Seon-Hyeong; Hong, Dongwan; Lee, Jae-Seon; Ahn, Hee-Sung; Ahn, Ju-Hyun; Seong, Tae Wha; Lee, Chang-Hun; Jang, Hyonchol; Hong, Kyeong Man; Lee, Cheolju; Lee, Jae-Ho; Kim, Soo-Youl

    2016-01-01

    We found that non-small-cell lung cancer (NSCLC) cells express high levels of multiple aldehyde dehydrogenase (ALDH) isoforms via an informatics analysis of metabolic enzymes in NSCLC and immunohistochemical staining of NSCLC clinical tumor samples. Using a multiple reaction-monitoring mass spectrometry analysis, we found that multiple ALDH isozymes were generally abundant in NSCLC cells compared with their levels in normal IMR-90 human lung cells. As a result of the catalytic reaction mediated by ALDH, NADH is produced as a by-product from the conversion of aldehyde to carboxylic acid. We hypothesized that the NADH produced by ALDH may be a reliable energy source for ATP production in NSCLC. This study revealed that NADH production by ALDH contributes significantly to ATP production in NSCLC. Furthermore, gossypol, a pan-ALDH inhibitor, markedly reduced the level of ATP. Gossypol combined with phenformin synergistically reduced the ATP levels, which efficiently induced cell death following cell cycle arrest. PMID:27885254

  20. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    PubMed Central

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  1. Actions of juglone on energy metabolism in the rat liver

    SciTech Connect

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Marcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar

    2011-12-15

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 {mu}M, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 {mu}M, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of {alpha}-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: Black-Right-Pointing-Pointer We investigated how juglone acts on liver metabolism. Black-Right-Pointing-Pointer The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. Black-Right-Pointing-Pointer Juglone stimulates glycolysis and ureagenesis and

  2. Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes

    PubMed Central

    2009-01-01

    Background Thiomonas strains are ubiquitous in arsenic-contaminated environments. Differences between Thiomonas strains in the way they have adapted and respond to arsenic have never been studied in detail. For this purpose, five Thiomonas strains, that are interesting in terms of arsenic metabolism were selected: T. arsenivorans, Thiomonas spp. WJ68 and 3As are able to oxidise As(III), while Thiomonas sp. Ynys1 and T. perometabolis are not. Moreover, T. arsenivorans and 3As present interesting physiological traits, in particular that these strains are able to use As(III) as an electron donor. Results The metabolism of carbon and arsenic was compared in the five Thiomonas strains belonging to two distinct phylogenetic groups. Greater physiological differences were found between these strains than might have been suggested by 16S rRNA/rpoA gene phylogeny, especially regarding arsenic metabolism. Physiologically, T. perometabolis and Ynys1 were unable to oxidise As(III) and were less arsenic-resistant than the other strains. Genetically, they appeared to lack the aox arsenic-oxidising genes and carried only a single ars arsenic resistance operon. Thiomonas arsenivorans belonged to a distinct phylogenetic group and increased its autotrophic metabolism when arsenic concentration increased. Differential proteomic analysis revealed that in T. arsenivorans, the rbc/cbb genes involved in the assimilation of inorganic carbon were induced in the presence of arsenic, whereas these genes were repressed in Thiomonas sp. 3As. Conclusion Taken together, these results show that these closely related bacteria differ substantially in their response to arsenic, amongst other factors, and suggest different relationships between carbon assimilation and arsenic metabolism. PMID:19549320

  3. Energy metabolism and fasting in male and female insectivorous bats Molossus molossus (Chiroptera: Molossidae).

    PubMed

    Freitas, M B; Goulart, L S; Barros, M S; Morais, D B; Amaral, T S; Matta, S L P

    2010-08-01

    Metabolic adaptations induced by 24 and 48 hours of fasting were investigated in male and female insectivorous bats (Molossus molossus Pallas, 1766). For this purpose, plasma glucose, non esterified fatty acids (NEFA), glycogen, protein and lipids concentrations in liver and muscles were obtained. Data presented here demonstrate that fed bats showed plasma glucose levels similar to those reported for other mammal species. In response to fasting, glycemia was decreased only in 48 hours fasted females. Plasma NEFA levels were similar in both sexes, and did not exhibit any changes during fasting. Considering the data from energy reserve variations, fed females presented an increased content of liver glycogen as well as higher breast muscle protein and limbs lipids concentrations, compared to fed males. In response to fasting, liver and muscle glycogen levels remained unchanged. Considering protein and lipid reserves, only females showed decreased values following fasting, as seen in breast, limbs and carcass lipids and breast muscle protein reserves, but still fail to keep glucose homeostasis after 48 hours without food. Taken together, our data suggest that the energy metabolism of insectivorous bats may vary according to sexual differences, a pattern that might be associated to different reproduction investments and costs between genders.

  4. Standard Gibbs Energy of Metabolic Reactions: I. Hexokinase Reaction.

    PubMed

    Meurer, Florian; Bobrownik, Maria; Sadowski, Gabriele; Held, Christoph

    2016-10-11

    The standard Gibbs energy of reaction enables calculation of the driving force of a (bio)chemical reaction. Gibbs energies of reaction are required in thermodynamic approaches to determine fluxes as well as single reaction conversions of metabolic bioreactions. The hexokinase reaction (phosphorylation of glucose) is the entrance step of glycolysis, and thus its standard Gibbs energy of reaction (Δ(R)g°) is of great impact. Δ(R)g° is accessible from equilibrium measurements, and the very small concentrations of the reacting agents cause usually high error bars in data reduction steps. Even worse, works from literature do not account for the nonideal behavior of the reacting agents (activity coefficients were assumed to be unity); thus published Δ(R)g° values are not standard data. Consistent treatment of activity coefficients of reacting agents is crucial for the accurate determination of standard Gibbs energy from equilibrium measurements. In this work, equilibrium molalities of hexokinase reaction were measured with an enzyme kit. These results were combined with reacting agents' activity coefficients obtained with the thermodynamic model ePC-SAFT. Pure-component parameters for adenosine triphosphate (ATP) and adenosine diphosphate (ADP) were fitted to experimental osmotic coefficients (water + Na2ATP, water + NaADP). Δ(R)g° of the hexokinase reaction at 298.15 K and pH 7 was found to be -17.83 ± 0.52 kJ·mol(-1). This value was compared with experimental literature data; very good agreement between the different Δ(R)g° values was obtained by accounting for pH, pMg, and the activity coefficients of the reacting agents.

  5. IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3

    PubMed Central

    Reid, Michael A.; Lowman, Xazmin H.; Pan, Min; Tran, Thai Q.; Warmoes, Marc O.; Ishak Gabra, Mari B.; Yang, Ying; Locasale, Jason W.; Kong, Mei

    2016-01-01

    Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability. PMID:27585591

  6. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti

    PubMed Central

    diCenzo, George C.; Checcucci, Alice; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo; Dziewit, Lukasz; Finan, Turlough M.; Galardini, Marco; Fondi, Marco

    2016-01-01

    The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. PMID:27447951

  7. Signals for the lysosome: a control center for cellular clearance and energy metabolism

    PubMed Central

    Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.

    2015-01-01

    Preface For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master gene, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy, has revealed how the lysosome adapts to environmental cues, such as starvation, and suggests novel therapeutic strategies for modulating lysosomal function in human disease. PMID:23609508

  8. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.

    PubMed

    Burgomaster, Kirsten A; Howarth, Krista R; Phillips, Stuart M; Rakobowchuk, Mark; Macdonald, Maureen J; McGee, Sean L; Gibala, Martin J

    2008-01-01

    Low-volume 'sprint' interval training (SIT) stimulates rapid improvements in muscle oxidative capacity that are comparable to levels reached following traditional endurance training (ET) but no study has examined metabolic adaptations during exercise after these different training strategies. We hypothesized that SIT and ET would induce similar adaptations in markers of skeletal muscle carbohydrate (CHO) and lipid metabolism and metabolic control during exercise despite large differences in training volume and time commitment. Active but untrained subjects (23 +/- 1 years) performed a constant-load cycling challenge (1 h at 65% of peak oxygen uptake (.VO(2peak)) before and after 6 weeks of either SIT or ET (n = 5 men and 5 women per group). SIT consisted of four to six repeats of a 30 s 'all out' Wingate Test (mean power output approximately 500 W) with 4.5 min recovery between repeats, 3 days per week. ET consisted of 40-60 min of continuous cycling at a workload that elicited approximately 65% (mean power output approximately 150 W) per day, 5 days per week. Weekly time commitment (approximately 1.5 versus approximately 4.5 h) and total training volume (approximately 225 versus approximately 2250 kJ week(-1)) were substantially lower in SIT versus ET. Despite these differences, both protocols induced similar increases (P < 0.05) in mitochondrial markers for skeletal muscle CHO (pyruvate dehydrogenase E1alpha protein content) and lipid oxidation (3-hydroxyacyl CoA dehydrogenase maximal activity) and protein content of peroxisome proliferator-activated receptor-gamma coactivator-1alpha. Glycogen and phosphocreatine utilization during exercise were reduced after training, and calculated rates of whole-body CHO and lipid oxidation were decreased and increased, respectively, with no differences between groups (all main effects, P < 0.05). Given the markedly lower training volume in the SIT group, these data suggest that high-intensity interval training is a time

  9. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training.

    PubMed

    Thompson, Christopher; Wylie, Lee J; Blackwell, Jamie R; Fulford, Jonathan; Black, Matthew I; Kelly, James; McDonagh, Sinead T J; Carter, James; Bailey, Stephen J; Vanhatalo, Anni; Jones, Andrew M

    2017-03-01

    We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT.NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval

  10. Growth states of catalytic reaction networks exhibiting energy metabolism

    NASA Astrophysics Data System (ADS)

    Kondo, Yohei; Kaneko, Kunihiko

    2011-07-01

    All cells derive nutrition by absorbing some chemical and energy resources from the environment; these resources are used by the cells to reproduce the chemicals within them, which in turn leads to an increase in their volume. In this study we introduce a protocell model exhibiting catalytic reaction dynamics, energy metabolism, and cell growth. Results of extensive simulations of this model show the existence of four phases with regard to the rates of both the influx of resources and cell growth. These phases include an active phase with high influx and high growth rates, an inefficient phase with high influx but low growth rates, a quasistatic phase with low influx and low growth rates, and a death phase with negative growth rate. A mean field model well explains the transition among these phases as bifurcations. The statistical distribution of the active phase is characterized by a power law, and that of the inefficient phase is characterized by a nearly equilibrium distribution. We also discuss the relevance of the results of this study to distinct states in the existing cells.

  11. Metabolic energy from arsenite oxidation in Alcaligenes faecalis

    NASA Astrophysics Data System (ADS)

    Anderson, G. L.; Love, M.; Zeider, B. K.

    2003-05-01

    The aerobic soil bacterium, Alcaligenes faecalis, survives in cultures containing greater than 10 g/L of aqueous arsenic. Toleration of arsenite occurs by the enzymatic oxidation of arsenite (As^III), to the less toxic arsenate (As^V). In defined media, the bacterium grows faster in the presence of arsenite than in its absence. This suggests that the bacterium uses the redox potential of arsenite oxidation as metabolic energy. The oxidation occurs via periplasmic arsenite oxidase, azurin, and cytochrome c [11] which presumably pass electron equivalents through an electron transport chain involving cytochrome c oxidase aud oxygen as the terminal electron acceptor. The associated proton translocation would allow synthesis of ATP and provide a useful means of harnessing the redox potential of arsenite oxidation. Arsenite and arsenate assays of the media during bacterial growth indicate that arsenite is depleted during the exponential growth phase and occurs concomitantly with the expression of arsenite oxidase. These results suggest that arsenite is detoxified to arsenate during bacterial growth and are inconsistent with previous reported interpretations of growth data. Alcaligenes faecalis is dependent on organic carbon sources and is therefore not chemolithoautotrophic. The relationship between succinate and arsenite utilisation provides evidence for the use of arsenite as a supplemental energy source. Because Alcaligenes faecalis not only tolerates, but thrives, in very high concentrations of arsenic has important implications in bioremediation of environments contaminated by aqueous arsenic.

  12. Energy metabolism of the anaerobic protozoon Giardia lamblia.

    PubMed

    Lindmark, D G

    1980-03-01

    Cells of the aerotolerant anaerobe Giardia lamblia respire in the presence of oxygen. Endogenous respiration is stimulated by glucose but not by other carbohydrates and Krebs cycle intermediates. Endogenous and glucose-stimulated respiration are insensitive to cyanide, malonate, and 2,4-dinitrophenol, but are inhibited by atabrin and iodoacetamide. G. lamblia produces ethanol, acetate and CO2 both aerobically and anaerobically either from endogenous reserves or exogenous glucose. Molecular hydrogen is not produced. The following enzyme activities were detected in homogenates: hexokinase, fructose-biphosphate aldolase, pyruvate kinase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, malate dehydrogenase (decarboxylating), pyruvate synthase, acetyl-CoA synthetase, alcohol dehydrogenase (NADP+), NADH dehydrogenase, NADPH dehydrogenase, NADPH oxidoreductase and superoxide dismutase. The enzymes of energy and carbohydrate metabolism are nonsedimentable (109 000 x g for 30 min). Activities of lactate dehydrogenase, hydrogenase, phosphate acetyltransferase, acetate kinase, citrate synthase, succinate dehydrogenase, fumarate hydratase and catalase were below the limits of detection. The results suggest the occurrence of glycolysis, energy production by substrate level phosphorylation and a flavin, iron-sulfur protein mediated electron transport system as well as the absence of cytochrome mediated oxidative phosphorylation and functional Krebs cycle.

  13. Chemotactic signal transduction and phosphate metabolism as adaptive strategies during citrus canker induction by Xanthomonas citri.

    PubMed

    Moreira, Leandro Marcio; Facincani, Agda Paula; Ferreira, Cristiano Barbalho; Ferreira, Rafael Marine; Ferro, Maria Inês Tiraboshi; Gozzo, Fabio Cesar; de Oliveira, Julio Cezar Franco; Ferro, Jesus Aparecido; Soares, Márcia Regina

    2015-03-01

    The genome of Xanthomonas citri subsp. Citri strain 306 pathotype A (Xac) was completely sequenced more than 10 years; to date, few studies involving functional genomics Xac and its host compatible have been developed, specially related to adaptive events that allow the survival of Xac within the plant. Proteomic analysis of Xac showed that the processes of chemotactic signal transduction and phosphate metabolism are key adaptive strategies during the interaction of a pathogenic bacterium with its plant host. The results also indicate the importance of a group of proteins that may not be directly related to the classical virulence factors, but that are likely fundamental to the success of the initial stages of the infection, such as methyl-accepting chemotaxis protein (Mcp) and phosphate specific transport (Pst). Furthermore, the analysis of the mutant of the gene pstB which codifies to an ABC phosphate transporter subunit revealed a complete absence of citrus canker symptoms when inoculated in compatible hosts. We also conducted an in silico analysis which established the possible network of genes regulated by two-component systems PhoPQ and PhoBR (related to phosphate metabolism), and possible transcriptional factor binding site (TFBS) motifs of regulatory proteins PhoB and PhoP, detaching high degree of conservation of PhoB TFBS in 84 genes of Xac genome. This is the first time that chemotaxis signal transduction and phosphate metabolism were therefore indicated to be fundamental to the process of colonization of plant tissue during the induction of disease associated with Xanthomonas genus bacteria.

  14. Recovery of phenotypes obtained by adaptive evolution through inverse metabolic engineering.

    PubMed

    Hong, Kuk-Ki; Nielsen, Jens

    2012-11-01

    In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one of the mutations RAS2(Lys77), RAS2(Tyr112), and ERG5(Pro370) were constructed and evaluated. The mutants were also combined with overexpression of PGM2, earlier proved as a beneficial target for galactose utilization. The constructed strains were analyzed for their gross phenotype, transcriptome and targeted metabolites, and the results were compared to those obtained from reference strains and the evolved strains. The RAS2(Lys77) mutation resulted in the highest specific galactose uptake rate among all of the strains with an increased maximum specific growth rate on galactose. The RAS2(Tyr112) mutation also improved the specific galactose uptake rate and also resulted in many transcriptional changes, including ergosterol metabolism. The ERG5(Pro370) mutation only showed a small improvement, but when it was combined with PGM2 overexpression, the phenotype was almost the same as that of the evolved mutants. Combination of the RAS2 mutations with PGM2 overexpression also led to a complete recovery of the adaptive phenotype in galactose utilization. Recovery of the gross phenotype by the reconstructed mutants was achieved with much fewer changes in the genome and transcriptome than for the evolved mutants. Our study demonstrates how the identification of specific mutations by systems biology can direct new metabolic engineering strategies for improving galactose utilization by yeast.

  15. Proteomic insights into metabolic adaptation to deletion of metE in Saccharopolyspora spinosa.

    PubMed

    Yang, Qi; Li, Yunlong; Yang, Huijun; Rang, Jie; Tang, Sijia; He, Lian; Li, Li; Ding, Xuezhi; Xia, Liqiu

    2015-10-01

    Saccharopolyspora spinosa can produce spinosad as a major secondary metabolite, which is an environmentally friendly agent for insect control. Cobalamin-independent methionine synthase (MetE) is an important enzyme in methionine biosynthesis, and this enzyme is probably closely related to spinosad production. In this study, its corresponding gene metE was inactivated, which resulted in a rapid growth and glucose utilisation rate and almost loss of spinosad production. A label-free quantitative proteomics-based approach was employed to obtain insights into the mechanism by which the metabolic network adapts to the absence of MetE. A total of 1440 proteins were detected from wild-type and ΔmetE mutant strains at three time points: stationary phase of ΔmetE mutant strain (S1ΔmetE , 67 h), first stationary phase of wild-type strain (S1WT, 67 h) and second stationary phase of wild-type strain (S2WT, 100 h). Protein expression patterns were determined using an exponentially modified protein abundance index (emPAI) and analysed by comparing S1ΔmetE /S1WT and S1ΔmetE /S2WT. Results showed that differentially expressed enzymes were mainly involved in primary metabolism and genetic information processing. This study demonstrated that the role of MetE is not restricted to methionine biosynthesis but rather is involved in global metabolic regulation in S. spinosa.

  16. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    PubMed

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  17. Control of metabolic adaptation to fasting by dILP6-induced insulin signaling in Drosophila oenocytes.

    PubMed

    Chatterjee, Debamita; Katewa, Subhash D; Qi, Yanyan; Jackson, Susan A; Kapahi, Pankaj; Jasper, Heinrich

    2014-12-16

    Metabolic adaptation to changing dietary conditions is critical to maintain homeostasis of the internal milieu. In metazoans, this adaptation is achieved by a combination of tissue-autonomous metabolic adjustments and endocrine signals that coordinate the mobilization, turnover, and storage of nutrients across tissues. To understand metabolic adaptation comprehensively, detailed insight into these tissue interactions is necessary. Here we characterize the tissue-specific response to fasting in adult flies and identify an endocrine interaction between the fat body and liver-like oenocytes that regulates the mobilization of lipid stores. Using tissue-specific expression profiling, we confirm that oenocytes in adult flies play a central role in the metabolic adaptation to fasting. Furthermore, we find that fat body-derived Drosophila insulin-like peptide 6 (dILP6) induces lipid uptake in oenocytes, promoting lipid turnover during fasting and increasing starvation tolerance of the animal. Selective activation of insulin/IGF signaling in oenocytes by a fat body-derived peptide represents a previously unidentified regulatory principle in the control of metabolic adaptation and starvation tolerance.

  18. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production.

    PubMed

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2015-11-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO-K1 cells under growth-limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO-producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)(+) , adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT-PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)(+) and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post-translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time-course analysis of high- and low-producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity.

  19. Computational model of in vivo human energy metabolism during semi-starvation and re-feeding

    PubMed Central

    Hall, Kevin D.

    2008-01-01

    Changes of body weight and composition are the result of complex interactions among metabolic fluxes contributing to macronutrient balances. To better understand these interactions, a mathematical model was constructed that used the measured dietary macronutrient intake during semi-starvation and re-feeding as model inputs and computed whole-body energy expenditure, de novo lipogenesis, gluconeogenesis, as well as turnover and oxidation of carbohydrate, fat and protein. Published in vivo human data provided the basis for the model components which were integrated by fitting a few unknown parameters to the classic Minnesota human starvation experiment. The model simulated the measured body weight and fat mass changes during semi-starvation and re-feeding and predicted the unmeasured metabolic fluxes underlying the body composition changes. The resting metabolic rate matched the experimental measurements and required a model of adaptive thermogenesis. Re-feeding caused an elevation of de novo lipogenesis which, along with increased fat intake, resulted in a rapid repletion and overshoot of body fat. By continuing the computer simulation with the pre-starvation diet and physical activity, the original body weight and composition was eventually restored, but body fat mass was predicted to take more than one additional year to return to within 5% of its original value. The model was validated by simulating a recently published short-term caloric restriction experiment without changing the model parameters. The predicted changes of body weight, fat mass, resting metabolic rate, and nitrogen balance matched the experimental measurements thereby providing support for the validity of the model. PMID:16449298

  20. Metabolic and proteomic study of NS0 myeloma cell line following the adaptation to protein-free medium.

    PubMed

    de la Luz-Hernández, K R; Rojas-del Calvo, L; Rabasa-Legón, Y; Lage-Castellanos, A; Castillo-Vitlloch, A; Díaz, J; Gaskell, S

    2008-07-21

    Proteomics and metabolomics technologies are potentially useful tool for the study of the very complex process of cell adaptation to protein-free medium. In this work, we used the iTRAQ technology to analyze different protein levels in adapted and non-adapted NS0 myeloma cell line. Several proteins with differential expression profile were characterized and quantified. Carbohydrate metabolism, protein synthesis and membrane transport were the principal pathways that change after the adaptation. Changes in lactate production rate with respect to glucose consumption rate were observed according to the changes observed by proteomic.

  1. Fetal endocrine and metabolic adaptations to hypoxia: the role of the hypothalamic-pituitary-adrenal axis.

    PubMed

    Newby, Elizabeth A; Myers, Dean A; Ducsay, Charles A

    2015-09-01

    In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus.

  2. Fetal endocrine and metabolic adaptations to hypoxia: the role of the hypothalamic-pituitary-adrenal axis

    PubMed Central

    Newby, Elizabeth A.; Myers, Dean A.

    2015-01-01

    In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus. PMID:26173460

  3. Energy substrate metabolism in pyruvate dehydrogenase complex deficiency.

    PubMed

    Stenlid, Maria Halldin; Ahlsson, Fredrik; Forslund, Anders; von Döbeln, Ulrika; Gustafsson, Jan

    2014-11-01

    Pyruvate dehydrogenase (PDH) deficiency is an inherited disorder of carbohydrate metabolism, resulting in lactic acidosis and neurological dysfunction. In order to provide energy for the brain, a ketogenic diet has been tried. Both the disorder and the ketogenic therapy may influence energy production. The aim of the study was to assess hepatic glucose production, lipolysis and resting energy expenditure (REE) in an infant, given a ketogenic diet due to neonatal onset of the disease. Lipolysis and glucose production were determined for two consecutive time periods by constant-rate infusions of [1,1,2,3,3-²H₅]-glycerol and [6,6-²H²]-glucose. The boy had been fasting for 2.5 h at the start of the sampling periods. REE was estimated by indirect calorimetry. Rates of glucose production and lipolysis were increased compared with those of term neonates. REE corresponded to 60% of normal values. Respiratory quotient (RQ) was increased, indicating a predominance of glucose oxidation. Blood lactate was within the normal range. Several mechanisms may underlie the increased rates of glucose production and lipolysis. A ketogenic diet will result in a low insulin secretion and reduced peripheral and hepatic insulin sensitivity, leading to increased production of glucose and decreased peripheral glucose uptake. Surprisingly, RQ was high, indicating active glucose oxidation, which may reflect a residual enzyme activity, sufficient during rest. Considering this, a strict ketogenic diet might not be the optimal choice for patients with PDH deficiency. We propose an individualised diet for this group of patients aiming at the highest glucose intake that each patient will tolerate without elevated lactate levels.

  4. Recent Advances in Targeting Tumor Energy Metabolism with Tumor Acidosis as a Biomarker of Drug Efficacy

    PubMed Central

    Akhenblit, Paul J; Pagel, Mark D

    2016-01-01

    Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This review will cover glucose and fatty acid metabolism, PI3K/AKT/mTOR, HIF-1 and glutamine pathways in tumor energy metabolism, and how they are being exploited for treatments and therapies by promising pre-clinical or clinical drugs being developed or investigated. Additionally, acidification of the tumor extracellular microenvironment is hypothesized to be the result of active tumor metabolism. This implies that tumor extracellular pH (pHe) can be a biomarker for assessing the efficacy of therapies that target tumor metabolism. Several translational molecular imaging methods (PET, MRI) for interrogating tumor acidification and its suppression are discussed as well. PMID:26962408

  5. Novel metabolic roles of L-arginine in body energy metabolism and possible clinical applications.

    PubMed

    Hristina, K; Langerholc, T; Trapecar, M

    2014-01-01

    Although the body can synthesize L-arginine, exogenous supplementation may be sometimes necessary, especially in particular conditions which results in depleted endogenous source. Among diseases and states when exogenous supplementation may be necessary are: burns, severe wounds, infections, insufficient circulation, intensive physical activity or sterility. In recent time, the attention was paid to the use of L-arginine supplementation by athletes during intensive sport activity, to enhance tissue growth and general performance, to potentiate the ergogenic potential and muscle tolerance to high intensive work and gas exchange threshold, to decrease ammonia liberation and recovery performance period and to improve wound healing. High-intensity exercise produces transient hyperammoniemia, presumably due to AMP catabolism. Catabolic pathways of AMP may involve its deamination or dephosphorylation, mainly in order to compensate fall in adenylate enrgy charge (AEC), due to AMP rise. The enzymes of purine metabolism have been documented to be particularly sensitive to the effect of dietary L-arginine supplementation. L-arginine supplementation leads to redirection of AMP deamination on account of increased AMP dephosphorylation and subsequent adenosine production and may increase ATP regeneration via activation of AMP kinase (AMPK) pathway. The central role of AMPK in regulating cellular ATP regeneration, makes this enzyme as a central control point in energy homeostasis. The effects of L-arginine supplementation on energy expenditure were successful independently of age or previous disease, in young sport active, elderly, older population and patients with angina pectoris.

  6. Metabolic and respiratory adaptations during intense exercise following long-sprint training of short duration.

    PubMed

    Thomas, Claire; Bernard, Olivier; Enea, Carina; Jalab, Chadi; Hanon, Christine

    2012-02-01

    This study aimed to determine metabolic and respiratory adaptations during intense exercise and improvement of long-sprint performance following six sessions of long-sprint training. Nine subjects performed before and after training (1) a 300-m test, (2) an incremental exercise up to exhaustion to determine the velocity associated with maximal oxygen uptake (v-VO(2max)), (3) a 70-s constant exercise at intensity halfway between the v-VO(2max) and the velocity performed during the 300-m test, followed by a 60-min passive recovery to determine an individual blood lactate recovery curve fitted to the bi-exponential time function: [Formula: see text], and blood metabolic and gas exchange responses. The training program consisted of 3-6 repetitions of 150-250 m interspersed with rest periods with a duration ratio superior or equal to 1:10, 3 days a week, for 2 weeks. After sprint training, reduced metabolic disturbances, characterized by a lower peak expired ventilation and carbon dioxide output, in addition to a reduced peak lactate (P < 0.05), was observed. Training also induced significant decrease in the net amount of lactate released at the beginning of recovery (P < 0.05), and significant decrease in the net lactate release rate (NLRR) (P < 0.05). Lastly, a significant improvement of the 300-m performance was observed after training. These results suggest that long-sprint training of short durations was effective to rapidly prevent metabolic disturbances, with alterations in lactate accumulation and gas exchange, and improvement of the NLRR. Furthermore, only six long-sprint training sessions allow long-sprint performance improvement in active subjects.

  7. Quantitative proteomic approach to understand metabolic adaptation in non-small cell lung cancer.

    PubMed

    Martín-Bernabé, Alfonso; Cortés, Roldán; Lehmann, Sylvia G; Seve, Michel; Cascante, Marta; Bourgoin-Voillard, Sandrine

    2014-11-07

    KRAS mutations in non-small cell lung cancer (NSCLC) are a predictor of resistance to EGFR-targeted therapies. Because approaches to target RAS signaling have been unsuccessful, targeting lung cancer metabolism might help to develop a new strategy that could overcome drug resistance in such cancer. In this study, we applied a large screening quantitative proteomic analysis to evidence key enzymes involved in metabolic adaptations in lung cancer. We carried out the proteomic analysis of two KRAS-mutated NSCLC cell lines (A549 and NCI-H460) and a non tumoral bronchial cell line (BEAS-2B) using an iTRAQ (isobaric tags for relative and absolute quantitation) approach combined with two-dimensional fractionation (OFFGEL/RP nanoLC) and MALDI-TOF/TOF mass spectrometry analysis. Protein targets identified by our iTRAQ approach were validated by Western blotting analysis. Among 1038 proteins identified and 834 proteins quantified, 49 and 82 proteins were respectively found differently expressed in A549 and NCI-H460 cells compared to the BEAS-2B non tumoral cell line. Regarding the metabolic pathways, enzymes involved in glycolysis (GAPDH/PKM2/LDH-A/LDH-B) and pentose phosphate pathway (PPP) (G6PD/TKT/6PGD) were up-regulated. The up-regulation of enzyme expression in PPP is correlated to their enzyme activity and will be further investigated to confirm those enzymes as promising metabolic targets for the development of new therapeutic treatments or biomarker assay for NSCLC.

  8. Body size, body composition, and metabolic profile explain higher energy expenditure in overweight children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lower relative rates of energy expenditure (EE), increased energetic efficiency, and altered fuel utilization purportedly associated with obesity have not been demonstrated indisputably in overweight children. We hypothesized that differences in energy metabolism between nonoverweight and overweight...

  9. Predator-induced phenotypic plasticity in metabolism and rate of growth: rapid adaptation to a novel environment.

    PubMed

    Handelsman, Corey A; Broder, E Dale; Dalton, Christopher M; Ruell, Emily W; Myrick, Christopher A; Reznick, David N; Ghalambor, Cameron K

    2013-12-01

    Novel environments often impose directional selection for a new phenotypic optimum. Novel environments, however, can also change the distribution of phenotypes exposed to selection by inducing phenotypic plasticity. Plasticity can produce phenotypes that either align with or oppose the direction of selection. When plasticity and selection are parallel, plasticity is considered adaptive because it provides a better pairing between the phenotype and the environment. If the plastic response is incomplete and falls short of producing the optimum phenotype, synergistic selection can lead to genetic divergence and bring the phenotype closer to the optimum. In contrast, non-adaptive plasticity should increase the strength of selection, because phenotypes will be further from the local optimum, requiring antagonistic selection to overcome the phenotype-environment mismatch and facilitate adaptive divergence. We test these ideas by documenting predator-induced plasticity for resting metabolic rate and growth rate in populations of the Trinidadian guppy (Poecilia reticulata) adapted to high and low predation. We find reduced metabolic rates and growth rates when cues from a predator are present during development, a pattern suggestive of adaptive and non-adaptive plasticity, respectively. When we compared populations recently transplanted from a high-predation environment into four streams lacking predators, we found evidence for rapid adaptive evolution both in metabolism and growth rate. We discuss the implications for predicting how traits will respond to selection, depending on the type of plasticity they exhibit.

  10. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  11. Adaptive control for solar energy based DC microgrid system development

    NASA Astrophysics Data System (ADS)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  12. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    PubMed

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.

  13. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells.

    PubMed

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells.

  14. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    PubMed Central

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  15. Teaching energy metabolism using scientific articles: Implementation of a virtual learning environment for medical students.

    PubMed

    de Espíndola, Marina Bazzo; El-Bacha, Tatiana; Giannella, Taís Rabetti; Struchiner, Miriam; da Silva, Wagner S; Da Poian, Andrea T

    2010-03-01

    This work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as starvation, diabetes, and exercise. The VLE was designed to combine online activities with traditional course content and presented guided inquiry-based activities to assist in the use of original scientific articles as educational resources. Based on the analysis of a semi-open questionnaire, the results provided evidence that the VLE encouraged students' engagement in activities and improved feedback. The results also suggested that guided inquiry-based activities were an effective way to stimulate students to critically read relevant scientific articles and to acquire skills to build and contextualize their knowledge through content association. In addition, most of the students involved in this experience considered the use of these resources important to become familiar with scientific language and to learn how to obtain up-to-date scientific information during their professional life.

  16. Staphylococcus aureus metabolic adaptations during the transition from a daptomycin susceptibility phenotype to a daptomycin nonsusceptibility phenotype.

    PubMed

    Gaupp, Rosmarie; Lei, Shulei; Reed, Joseph M; Peisker, Henrik; Boyle-Vavra, Susan; Bayer, Arnold S; Bischoff, Markus; Herrmann, Mathias; Daum, Robert S; Powers, Robert; Somerville, Greg A

    2015-07-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. The success of S. aureus as a pathogen is due in part to its many virulence determinants and resistance to antimicrobials. In particular, methicillin-resistant S. aureus has emerged as a major cause of infections and led to increased use of the antibiotics vancomycin and daptomycin, which has increased the isolation of vancomycin-intermediate S. aureus and daptomycin-nonsusceptible S. aureus strains. The most common mechanism by which S. aureus acquires intermediate resistance to antibiotics is by adapting its physiology and metabolism to permit growth in the presence of these antibiotics, a process known as adaptive resistance. To better understand the physiological and metabolic changes associated with adaptive resistance, six daptomycin-susceptible and -nonsusceptible isogenic strain pairs were examined for changes in growth, competitive fitness, and metabolic alterations. Interestingly, daptomycin nonsusceptibility coincides with a slightly delayed transition to the postexponential growth phase and alterations in metabolism. Specifically, daptomycin-nonsusceptible strains have decreased tricarboxylic acid cycle activity, which correlates with increased synthesis of pyrimidines and purines and increased carbon flow to pathways associated with wall teichoic acid and peptidoglycan biosynthesis. Importantly, these data provided an opportunity to alter the daptomycin nonsusceptibility phenotype by manipulating bacterial metabolism, a first step in developing compounds that target metabolic pathways that can be used in combination with daptomycin to reduce treatment failures.

  17. Staphylococcus aureus Metabolic Adaptations during the Transition from a Daptomycin Susceptibility Phenotype to a Daptomycin Nonsusceptibility Phenotype

    PubMed Central

    Gaupp, Rosmarie; Lei, Shulei; Reed, Joseph M.; Peisker, Henrik; Boyle-Vavra, Susan; Bayer, Arnold S.; Bischoff, Markus; Herrmann, Mathias; Daum, Robert S.

    2015-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. The success of S. aureus as a pathogen is due in part to its many virulence determinants and resistance to antimicrobials. In particular, methicillin-resistant S. aureus has emerged as a major cause of infections and led to increased use of the antibiotics vancomycin and daptomycin, which has increased the isolation of vancomycin-intermediate S. aureus and daptomycin-nonsusceptible S. aureus strains. The most common mechanism by which S. aureus acquires intermediate resistance to antibiotics is by adapting its physiology and metabolism to permit growth in the presence of these antibiotics, a process known as adaptive resistance. To better understand the physiological and metabolic changes associated with adaptive resistance, six daptomycin-susceptible and -nonsusceptible isogenic strain pairs were examined for changes in growth, competitive fitness, and metabolic alterations. Interestingly, daptomycin nonsusceptibility coincides with a slightly delayed transition to the postexponential growth phase and alterations in metabolism. Specifically, daptomycin-nonsusceptible strains have decreased tricarboxylic acid cycle activity, which correlates with increased synthesis of pyrimidines and purines and increased carbon flow to pathways associated with wall teichoic acid and peptidoglycan biosynthesis. Importantly, these data provided an opportunity to alter the daptomycin nonsusceptibility phenotype by manipulating bacterial metabolism, a first step in developing compounds that target metabolic pathways that can be used in combination with daptomycin to reduce treatment failures. PMID:25963986

  18. How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure.

    PubMed

    Bardot, Corinne; Besse-Hoggan, Pascale; Carles, Louis; Le Gall, Morgane; Clary, Guilhem; Chafey, Philippe; Federici, Christian; Broussard, Cédric; Batisson, Isabelle

    2015-04-01

    Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.

  19. Adaptive Control Model Reveals Systematic Feedback and Key Molecules in Metabolic Pathway Regulation

    PubMed Central

    Moffitt, Richard A.; Merrill, Alfred H.; Wang, May D.

    2011-01-01

    Abstract Robust behavior in metabolic pathways resembles stabilized performance in systems under autonomous control. This suggests we can apply control theory to study existing regulation in these cellular networks. Here, we use model-reference adaptive control (MRAC) to investigate the dynamics of de novo sphingolipid synthesis regulation in a combined theoretical and experimental case study. The effects of serine palmitoyltransferase over-expression on this pathway are studied in vitro using human embryonic kidney cells. We report two key results from comparing numerical simulations with observed data. First, MRAC simulations of pathway dynamics are comparable to simulations from a standard model using mass action kinetics. The root-sum-square (RSS) between data and simulations in both cases differ by less than 5%. Second, MRAC simulations suggest systematic pathway regulation in terms of adaptive feedback from individual molecules. In response to increased metabolite levels available for de novo sphingolipid synthesis, feedback from molecules along the main artery of the pathway is regulated more frequently and with greater amplitude than from other molecules along the branches. These biological insights are consistent with current knowledge while being new that they may guide future research in sphingolipid biology. In summary, we report a novel approach to study regulation in cellular networks by applying control theory in the context of robust metabolic pathways. We do this to uncover potential insight into the dynamics of regulation and the reverse engineering of cellular networks for systems biology. This new modeling approach and the implementation routines designed for this case study may be extended to other systems. Supplementary Material is available at www.liebertonline.com/cmb. PMID:21314456

  20. Exercise-Induced Skeletal Muscle Remodeling and Metabolic Adaptation: Redox Signaling and Role of Autophagy

    PubMed Central

    Giammarioli, Anna Maria; Chiandotto, Sergio; Spoletini, Ilaria

    2014-01-01

    Abstract Significance: Skeletal muscle is a highly plastic tissue. Exercise evokes signaling pathways that strongly modify myofiber metabolism and physiological and contractile properties of skeletal muscle. Regular physical activity is beneficial for health and is highly recommended for the prevention of several chronic conditions. In this review, we have focused our attention on the pathways that are known to mediate physical training-induced plasticity. Recent Advances: An important role for redox signaling has recently been proposed in exercise-mediated muscle remodeling and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) activation. Still more currently, autophagy has also been found to be involved in metabolic adaptation to exercise. Critical Issues: Both redox signaling and autophagy are processes with ambivalent effects; they can be detrimental and beneficial, depending on their delicate balance. As such, understanding their role in the chain of events induced by exercise and leading to skeletal muscle remodeling is a very complicated matter. Moreover, the study of the signaling induced by exercise is made even more difficult by the fact that exercise can be performed with several different modalities, with this having different repercussions on adaptation. Future Directions: Unraveling the complexity of the molecular signaling triggered by exercise on skeletal muscle is crucial in order to define the therapeutic potentiality of physical training and to identify new pharmacological compounds that are able to reproduce some beneficial effects of exercise. In evaluating the effect of new “exercise mimetics,” it will also be necessary to take into account the involvement of reactive oxygen species, reactive nitrogen species, and autophagy and their controversial effects. Antioxid. Redox Signal. 21, 154–176. PMID:24450966

  1. Analysis of Anoxybacillus Genomes from the Aspects of Lifestyle Adaptations, Prophage Diversity, and Carbohydrate Metabolism

    PubMed Central

    Goh, Kian Mau; Gan, Han Ming; Chan, Kok-Gan; Chan, Giek Far; Shahar, Saleha; Chong, Chun Shiong; Kahar, Ummirul Mukminin; Chai, Kian Piaw

    2014-01-01

    Species of Anoxybacillus are widespread in geothermal springs, manure, and milk-processing plants. The genus is composed of 22 species and two subspecies, but the relationship between its lifestyle and genome is little understood. In this study, two high-quality draft genomes were generated from Anoxybacillus spp. SK3-4 and DT3-1, isolated from Malaysian hot springs. De novo assembly and annotation were performed, followed by comparative genome analysis with the complete genome of Anoxybacillus flavithermus WK1 and two additional draft genomes, of A. flavithermus TNO-09.006 and A. kamchatkensis G10. The genomes of Anoxybacillus spp. are among the smaller of the family Bacillaceae. Despite having smaller genomes, their essential genes related to lifestyle adaptations at elevated temperature, extreme pH, and protection against ultraviolet are complete. Due to the presence of various competence proteins, Anoxybacillus spp. SK3-4 and DT3-1 are able to take up foreign DNA fragments, and some of these transferred genes are important for the survival of the cells. The analysis of intact putative prophage genomes shows that they are highly diversified. Based on the genome analysis using SEED, many of the annotated sequences are involved in carbohydrate metabolism. The presence of glycosyl hydrolases among the Anoxybacillus spp. was compared, and the potential applications of these unexplored enzymes are suggested here. This is the first study that compares Anoxybacillus genomes from the aspect of lifestyle adaptations, the capacity for horizontal gene transfer, and carbohydrate metabolism. PMID:24603481

  2. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification.

    PubMed

    van Dartel, Dorien A M; Schulpen, Sjors H; Theunissen, Peter T; Bunschoten, Annelies; Piersma, Aldert H; Keijer, Jaap

    2014-10-03

    Embryonic stem cells (ESC) are widely used to study embryonic development and to identify developmental toxicants. Particularly, the embryonic stem cell test (EST) is well known as in vitro model to identify developmental toxicants. Although it is clear that energy metabolism plays a crucial role in embryonic development, the modulation of energy metabolism in in vitro models, such as the EST, is not yet described. The present study is among the first studies that analyses whole genome expression data to specifically characterize metabolic changes upon ESC early differentiation. Our transcriptomic analyses showed activation of glycolysis, truncated activation of the tricarboxylic acid (TCA) cycle, activation of lipid synthesis, as well as activation of glutaminolysis during the early phase of ESC differentiation. Taken together, this energy metabolism profile points towards energy metabolism reprogramming in the provision of metabolites for biosynthesis of cellular constituents. Next, we defined a gene set that describes this energy metabolism profile. We showed that this gene set could be successfully applied in the EST to identify developmental toxicants known to modulate cellular biosynthesis (5-fluorouracil and methoxyacetic acid), while other developmental toxicants or the negative control did not modulate the expression of this gene set. Our description of dynamic changes in energy metabolism during early ESC differentiation, as well as specific identification of developmental toxicants modulating energy metabolism, is an important step forward in the definition of the applicability domain of the EST.

  3. Human Behavior & Low Energy Architecture: Linking Environmental Adaptation, Personal Comfort, & Energy Use in the Built Environment

    NASA Astrophysics Data System (ADS)

    Langevin, Jared

    Truly sustainable buildings serve to enrich the daily sensory experience of their human inhabitants while consuming the least amount of energy possible; yet, building occupants and their environmentally adaptive behaviors remain a poorly characterized variable in even the most "green" building design and operation approaches. This deficiency has been linked to gaps between predicted and actual energy use, as well as to eventual problems with occupant discomfort, productivity losses, and health issues. Going forward, better tools are needed for considering the human-building interaction as a key part of energy efficiency strategies that promote good Indoor Environmental Quality (IEQ) in buildings. This dissertation presents the development and implementation of a Human and Building Interaction Toolkit (HABIT), a framework for the integrated simulation of office occupants' thermally adaptive behaviors, IEQ, and building energy use as part of sustainable building design and operation. Development of HABIT begins with an effort to devise more reliable methods for predicting individual occupants' thermal comfort, considered the driving force behind the behaviors of focus for this project. A long-term field study of thermal comfort and behavior is then presented, and the data it generates are used to develop and validate an agent-based behavior simulation model. Key aspects of the agent-based behavior model are described, and its predictive abilities are shown to compare favorably to those of multiple other behavior modeling options. Finally, the agent-based behavior model is linked with whole building energy simulation in EnergyPlus, forming the full HABIT program. The program is used to evaluate the energy and IEQ impacts of several occupant behavior scenarios in the simulation of a case study office building for the Philadelphia climate. Results indicate that more efficient local heating/cooling options may be paired with wider set point ranges to yield up to 24

  4. Hominids adapted to metabolize ethanol long before human-directed fermentation.

    PubMed

    Carrigan, Matthew A; Uryasev, Oleg; Frye, Carole B; Eckman, Blair L; Myers, Candace R; Hurley, Thomas D; Benner, Steven A

    2015-01-13

    Paleogenetics is an emerging field that resurrects ancestral proteins from now-extinct organisms to test, in the laboratory, models of protein function based on natural history and Darwinian evolution. Here, we resurrect digestive alcohol dehydrogenases (ADH4) from our primate ancestors to explore the history of primate-ethanol interactions. The evolving catalytic properties of these resurrected enzymes show that our ape ancestors gained a digestive dehydrogenase enzyme capable of metabolizing ethanol near the time that they began using the forest floor, about 10 million y ago. The ADH4 enzyme in our more ancient and arboreal ancestors did not efficiently oxidize ethanol. This change suggests that exposure to dietary sources of ethanol increased in hominids during the early stages of our adaptation to a terrestrial lifestyle. Because fruit collected from the forest floor is expected to contain higher concentrations of fermenting yeast and ethanol than similar fruits hanging on trees, this transition may also be the first time our ancestors were exposed to (and adapted to) substantial amounts of dietary ethanol.

  5. Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats.

    PubMed

    Schultz, R L; Kullman, E L; Waters, R P; Huang, H; Kirwan, J P; Gerdes, A M; Swallow, J G

    2013-01-01

    The Spontaneously Hypertensive Heart Failure (SHHF) rat mimics the human progression of hypertension from hypertrophy to heart failure. However, it is unknown whether SHHF animals can exercise at sufficient levels to observe beneficial biochemical adaptations in skeletal muscle. Thirty-seven female SHHF and Wistar-Furth (WF) rats were randomized to sedentary (SHHFsed and WFsed) and exercise groups (SHHFex and WFex). The exercise groups had access to running wheels from 6-22 months of age. Hindlimb muscles were obtained for metabolic measures that included mitochondrial enzyme function and expression, and glycogen utilization. The SHHFex rats ran a greater distance and duration as compared to the WFex rats (P<0.05), but the WFex rats ran at a faster speed (P<0.05). Skeletal muscle citrate synthase and beta-hydroxyacyl-CoA dehydrogenase enzyme activity was not altered in the SHHFex group, but was increased (P<0.05) in the WFex animals. Citrate synthase protein and gene expression were unchanged in SHHFex animals, but were increased in WFex rats (P<0.05). In the WFex animals muscle glycogen was significantly depleted after exercise (P<0.05), but not in the SHHFex group. We conclude that despite robust amounts of aerobic activity, voluntary wheel running exercise was not sufficiently intense to improve the oxidative capacity of skeletal muscle in adult SHHF animals, indicating an inability to compensate for declining heart function by improving peripheral oxidative adaptations in the skeletal muscle.

  6. Integration of proteomics and metabolomics to elucidate metabolic adaptation in Leishmania.

    PubMed

    Akpunarlieva, Snezhana; Weidt, Stefan; Lamasudin, Dhilia; Naula, Christina; Henderson, David; Barrett, Michael; Burgess, Karl; Burchmore, Richard

    2017-02-23

    Leishmania parasites multiply and develop in the gut of a sand fly vector in order to be transmitted to a vertebrate host. During this process they encounter and exploit various nutrients, including sugars, and amino and fatty acids. We have previously generated a mutant Leishmania line that is deficient in glucose transport and which displays some biologically important phenotypic changes such as reduced growth in axenic culture, reduced biosynthesis of hexose-containing virulence factors, increased sensitivity to oxidative stress, and dramatically reduced parasite burden in both insect vector and macrophage host cells. Here we report the generation and integration of proteomic and metabolomic approaches to identify molecular changes that may explain these phenotypes. Our data suggest changes in pathways of glycoconjugate production and redox homeostasis, which likely represent adaptations to the loss of sugar uptake capacity and explain the reduced virulence of this mutant in sand flies and mammals. Our data contribute to understanding the mechanisms of metabolic adaptation in Leishmania and illustrate the power of integrated proteomic and metabolomic approaches to relate biochemistry to phenotype.

  7. Hominids adapted to metabolize ethanol long before human-directed fermentation

    PubMed Central

    Carrigan, Matthew A.; Uryasev, Oleg; Frye, Carole B.; Eckman, Blair L.; Myers, Candace R.; Hurley, Thomas D.; Benner, Steven A.

    2015-01-01

    Paleogenetics is an emerging field that resurrects ancestral proteins from now-extinct organisms to test, in the laboratory, models of protein function based on natural history and Darwinian evolution. Here, we resurrect digestive alcohol dehydrogenases (ADH4) from our primate ancestors to explore the history of primate–ethanol interactions. The evolving catalytic properties of these resurrected enzymes show that our ape ancestors gained a digestive dehydrogenase enzyme capable of metabolizing ethanol near the time that they began using the forest floor, about 10 million y ago. The ADH4 enzyme in our more ancient and arboreal ancestors did not efficiently oxidize ethanol. This change suggests that exposure to dietary sources of ethanol increased in hominids during the early stages of our adaptation to a terrestrial lifestyle. Because fruit collected from the forest floor is expected to contain higher concentrations of fermenting yeast and ethanol than similar fruits hanging on trees, this transition may also be the first time our ancestors were exposed to (and adapted to) substantial amounts of dietary ethanol. PMID:25453080

  8. Adaptation of rabbit cortical collecting duct HCO3- transport to metabolic acidosis in vitro.

    PubMed Central

    Tsuruoka, S; Schwartz, G J

    1996-01-01

    Net HCO3- transport in the rabbit kidney cortical collecting duct (CCD) is mediated by simultaneous H+ secretion and HCO3- secretion, most likely occurring in a alpha- and beta-intercalated cells (ICs), respectively. The polarity of net HCO3- transport is shifted from secretion to absorption after metabolic acidosis or acid incubation of the CCD. We investigated this adaptation by measuring net HCO3- flux before and after incubating CCDs 1 h at pH 6.8 followed by 2 h at pH 7.4. Acid incubation always reversed HCO3- flux from net secretion to absorption, whereas incubation for 3 h at pH 7.4 did not. Inhibition of alpha-IC function (bath CL- removal or DIDS, luminal bafilomycin) stimulated net HCO3- secretion by approximately 2 pmol/min per mm before acid incubation, whereas after incubation these agents inhibited net HCO3- absorption by approximately 5 pmol/min per mm. Inhibition of beta-IC function (luminal Cl- removal) inhibited HCO3- secretion by approximately 9 pmol/min per mm before incubation, whereas after incubation HCO3- absorption by only 3 pmol/min per mm. After acid incubation, luminal SCH28080 inhibited HCO3- absorption by only 5-15% vs the circa 90% inhibitory effect of bafilomycin. In outer CCDs, which contain fewer alpha-ICs than midcortical segments, the reversal in polarity of HCO3- flux was blunted after acid incubation. We conclude that the CCD adapts to low pH in vitro by downregulation HCO3- secretion in beta-ICs via decreased apical CL-/base exchang activity and upregulating HCO3- absorption in alpha-ICs via increased apical H+ -ATPase and basolateral CL-/base exchange activities. Whether or not there is a reversal of IC polarity or recruitment of gamma-ICs in this adaptation remains to be established. PMID:8613531

  9. Energy Metabolism and Drug Efflux in Mycobacterium tuberculosis

    PubMed Central

    Black, Philippa A.; Warren, Robin M.; Louw, Gail E.; van Helden, Paul D.; Victor, Thomas C.

    2014-01-01

    The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed. PMID:24614376

  10. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health.

    PubMed

    Rothman, Sarah M; Griffioen, Kathleen J; Wan, Ruiqian; Mattson, Mark P

    2012-08-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders.

  11. Food restriction during pregnancy in rabbits: effects on hormones and metabolites involved in energy homeostasis and metabolic programming.

    PubMed

    Menchetti, L; Brecchia, G; Canali, C; Cardinali, R; Polisca, A; Zerani, M; Boiti, C

    2015-02-01

    This study examined the effects of food restriction during rabbit pregnancy on hormones and metabolites involved in energy homeostasis and metabolic programming. Pregnant does were assigned to four groups: the control group was fed a standard ration while the others received a restricted amount of food (30% restriction) during early (0-9 days), mid (9-18 days), and late (19-28 days) pregnancy. The pregnancy induced a coordinated range of adaptations to fulfil energy requirements of both mother and foetus, such as hyperleptinaemia and hyperinsulinaemia, reduced insulin sensitivity, increased cortisol and non-esterified fatty acid. Food restriction altered leptin, insulin, T3, non-esterified fatty acids and glucose concentrations depending on the gestational phase in which it was applied. Collectively, present data confirm that the endocrinology of pregnancy and the adaptive responses to energy deficit make the rabbit an ideal model for studying nutritional-related disorders and foetal programming of metabolic disease.

  12. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health

    PubMed Central

    Rothman, Sarah M; Griffioen, Kathleen J; Wan, Ruiqian; Mattson, Mark P

    2012-01-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders. PMID:22548651

  13. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].

    PubMed

    Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

    2010-03-01

    Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level.

  14. High incubation temperatures enhance mitochondrial energy metabolism in reptile embryos

    PubMed Central

    Sun, Bao-Jun; Li, Teng; Gao, Jing; Ma, Liang; Du, Wei-Guo

    2015-01-01

    Developmental rate increases exponentially with increasing temperature in ectothermic animals, but the biochemical basis underlying this thermal dependence is largely unexplored. We measured mitochondrial respiration and metabolic enzyme activities of turtle embryos (Pelodiscus sinensis) incubated at different temperatures to identify the metabolic basis of the rapid development occurring at high temperatures in reptile embryos. Developmental rate increased with increasing incubation temperatures in the embryos of P. sinensis. Correspondingly, in addition to the thermal dependence of mitochondrial respiration and metabolic enzyme activities, high-temperature incubation further enhanced mitochondrial respiration and COX activities in the embryos. This suggests that embryos may adjust mitochondrial respiration and metabolic enzyme activities in response to developmental temperature to achieve high developmental rates at high temperatures. Our study highlights the importance of biochemical investigations in understanding the proximate mechanisms by which temperature affects embryonic development. PMID:25749301

  15. Energy metabolism and hematology of white-tailed deer fawns

    USGS Publications Warehouse

    Rawson, R.E.; DelGiudice, G.D.; Dziuk, H.E.; Mech, L.D.

    1992-01-01

    Resting metabolic rates, weight gains and hematologic profiles of six newborn, captive white-tailed deer (Odocoileus virginianus) fawns (four females, two males) were determined during the first 3 mo of life. Estimated mean daily weight gain of fawns was 0.2 kg. The regression equation for metabolic rate was: Metabolic rate (kcal/kg0.75/day) = 56.1 +/- 1.3 (age in days), r = 0.65, P less than 0.001). Regression equations were also used to relate age to red blood cell count (RBC), hemoglobin concentration (Hb), packed cell volume, white blood cell count, mean corpuscular volume, mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin. The age relationships of Hb, MCHC, and smaller RBC's were indicative of an increasing and more efficient oxygen-carrying and exchange capacity to fulfill the increasing metabolic demands for oxygen associated with increasing body size.

  16. Metabolic costs of capital energy storage in a small-bodied ectotherm.

    PubMed

    Griffen, Blaine D

    2017-04-01

    Reproduction is energetically financed using strategies that fall along a continuum from animals that rely on stored energy acquired prior to reproduction (i.e., capital breeders) to those that rely on energy acquired during reproduction (i.e., income breeders). Energy storage incurs a metabolic cost. However, previous studies suggest that this cost may be minimal for small-bodied ectotherms. Here I test this assumption. I use a laboratory feeding experiment with the European green crab Carcinus maenas to establish individuals with different amounts of energy storage. I then demonstrate that differences in energy storage account for 26% of the variation in basal metabolic costs. The magnitudes of these costs for any individual crab vary through time depending on the amount of energy it has stored, as well as on temperature-dependent metabolism. I use previously established relationships between temperature- and mass-dependent metabolic rates, combined with a feasible annual pattern of energy storage in the Gulf of Maine and annual sea surface temperature patterns in this region, to estimate potential annual metabolic costs expected for mature female green crabs. Results indicate that energy storage should incur an ~8% increase in metabolic costs for female crabs, relative to a hypothetical crab that did not store any energy. Translated into feeding, for a medium-sized mature female (45 mm carapace width), this requires the consumption of an additional ~156 mussels annually to support the metabolic cost of energy storage. These results indicate, contrary to previous assumptions, that the cost of energy storage for small-bodied ectotherms may represent a considerable portion of their basic operating energy budget. An inability to meet these additional costs of energy storage may help explain the recent decline of green crabs in the Gulf of Maine where reduced prey availability and increased consumer competition have combined to hamper green crab foraging success in

  17. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments

    PubMed Central

    Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R.; Georgiou, Konstantina; MacRae, James I.; Barrett, Michael P.; McConville, Malcolm J.

    2016-01-01

    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design. PMID:28027318

  18. Regulation of hepatic energy metabolism by the nuclear receptor PXR.

    PubMed

    Hakkola, Jukka; Rysä, Jaana; Hukkanen, Janne

    2016-09-01

    The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  19. A Self-Adaptive Energy-Efficient Framework for Large Unattended Wireless Sensor Networks

    DTIC Science & Technology

    2014-11-06

    Report 15-May-2009- 15-Aug-2014 4. 1ITLE AND SUBTITLE 5a CONTRACT NUMBER Final Report: A Self-Adaptive Energy- Efficient Framework for W911NF-09-l-0154...unless so designated by other documentation. 14. ABSTRACT The objective of this research is to study energy efficient self-adaptive schemes for...1. ~~·· -~1....:1~ 15. SUBJECT TERMS wireless sensor networks, energy efficiency , adptive, data gathering, mobility, multiple-input

  20. Effect of sulfonamides as carbonic anhydrase VA and VB inhibitors on mitochondrial metabolic energy conversion.

    PubMed

    Arechederra, Robert L; Waheed, Abdul; Sly, William S; Supuran, Claudiu T; Minteer, Shelley D

    2013-03-15

    Obesity is quickly becoming an increasing problem in the developed world. One of the major fundamental causes of obesity and diabetes is mitochondria dysfunction due to faulty metabolic pathways which alter the metabolic substrate flux resulting in the development of these diseases. This paper examines the role of mitochondrial carbonic anhydrase (CA) isozymes in the metabolism of pyruvate, acetate, and succinate when specific isozyme inhibitors are present. Using a sensitive electrochemical approach of wired mitochondria to analytically measure metabolic energy conversion, we determine the resulting metabolic difference after addition of an inhibitory compound. We found that certain sulfonamide analogues displayed broad spectrum inhibition of metabolism, where others only had significant effect on some metabolic pathways. Pyruvate metabolism always displayed the most dramatically affected metabolism by the sulfonamides followed by fatty acid metabolism, and then finally succinate metabolism. This allows for the possibility of using designed sulfonamide analogues to target specific mitochondrial CA isozymes in order to subtly shift metabolism and glucogenesis flux to treat obesity and diabetes.

  1. A unique in vivo experimental approach reveals metabolic adaptation of the probiotic Propionibacterium freudenreichii to the colon environment

    PubMed Central

    2013-01-01

    Background Propionibacterium freudenreichii is a food grade bacterium consumed both in cheeses and in probiotic preparations. Its promising probiotic potential, relying largely on the active release of beneficial metabolites within the gut as well as the expression of key surface proteins involved in immunomodulation, deserves to be explored more deeply. Adaptation to the colon environment is requisite for the active release of propionibacterial beneficial metabolites and constitutes a bottleneck for metabolic activity in vivo. Mechanisms allowing P. freudenreichii to adapt to digestive stresses have been only studied in vitro so far. Our aim was therefore to study P. freudenreichii metabolic adaptation to intra-colonic conditions in situ. Results We maintained a pure culture of the type strain P. freudenreichii CIRM BIA 1, contained in a dialysis bag, within the colon of vigilant piglets during 24 hours. A transcriptomic analysis compared gene expression to identify the metabolic pathways induced by this environment, versus control cultures maintained in spent culture medium. We observed drastic changes in the catabolism of sugars and amino-acids. Glycolysis, the Wood-Werkman cycle and the oxidative phosphorylation pathways were down-regulated but induction of specific carbohydrate catabolisms and alternative pathways were induced to produce NADH, NADPH, ATP and precursors (utilizing of propanediol, gluconate, lactate, purine and pyrimidine and amino-acids). Genes involved in stress response were down-regulated and genes specifically expressed during cell division were induced, suggesting that P. freudenreichii adapted its metabolism to the conditions encountered in the colon. Conclusions This study constitutes the first molecular demonstration of P. freudenreichii activity and physiological adaptation in vivo within the colon. Our data are likely specific to our pig microbiota composition but opens an avenue towards understanding probiotic action within the gut

  2. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    PubMed

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  3. Metaboloepigenetics: Interrelationships between energy metabolism and epigenetic control of gene expression

    PubMed Central

    Donohoe, Dallas R.; Bultman, Scott J.

    2012-01-01

    Diet and energy metabolism affect gene expression, which influences human health and disease. Here, we discuss the role of epigenetics as a mechanistic link between energy metabolism and control of gene expression. A number of key energy metabolites including SAM, acetyl-CoA, NAD+, and ATP serve as essential co-factors for many, perhaps most, epigenetic enzymes that regulate DNA methylation, posttranslational histone modifications, and nucleosome position. The relative abundance of these energy metabolites allows a cell to sense its energetic state. And as co-factors, energy metabolites act as rheostats to modulate the activity of epigenetic enzymes and upregulate/downregulate transcription as appropriate to maintain homeostasis. PMID:22261928

  4. Fungal Inositol Pyrophosphate IP7 Is Crucial for Metabolic Adaptation to the Host Environment and Pathogenicity

    PubMed Central

    Lev, Sophie; Li, Cecilia; Desmarini, Desmarini; Saiardi, Adolfo; Fewings, Nicole L.; Schibeci, Stephen D.; Sharma, Raghwa; Sorrell, Tania C.

    2015-01-01

    ABSTRACT Inositol pyrophosphates (PP-IPs) comprising inositol, phosphate, and pyrophosphate (PP) are essential for multiple functions in eukaryotes. Their role in fungal pathogens has never been addressed. Cryptococcus neoformans is a model pathogenic fungus causing life-threatening meningoencephalitis. We investigate the cryptococcal kinases responsible for the production of PP-IPs (IP7/IP8) and the hierarchy of PP-IP importance in pathogenicity. Using gene deletion and inositol polyphosphate profiling, we identified Kcs1 as the major IP6 kinase (producing IP7) and Asp1 as an IP7 kinase (producing IP8). We show that Kcs1-derived IP7 is the most crucial PP-IP for cryptococcal drug susceptibility and the production of virulence determinants. In particular, Kcs1 kinase activity is essential for cryptococcal infection of mouse lungs, as reduced fungal burdens were observed in the absence of Kcs1 or when Kcs1 was catalytically inactive. Transcriptome and carbon source utilization analysis suggested that compromised growth of the KCS1 deletion strain (Δkcs1 mutant) in the low-glucose environment of the host lung is due to its inability to utilize alternative carbon sources. Despite this metabolic defect, the Δkcs1 mutant established persistent, low-level asymptomatic pulmonary infection but failed to elicit a strong immune response in vivo and in vitro and was not readily phagocytosed by primary or immortalized monocytes. Reduced recognition of the Δkcs1 cells by monocytes correlated with reduced exposure of mannoproteins on the Δkcs1 mutant cell surface. We conclude that IP7 is essential for fungal metabolic adaptation to the host environment, immune recognition, and pathogenicity. PMID:26037119

  5. Microbial catabolic activities are naturally selected by metabolic energy harvest rate

    PubMed Central

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-01-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate. PMID:26161636

  6. Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet.

    PubMed

    Burcelin, Rémy; Crivelli, Valérie; Dacosta, Anabela; Roy-Tirelli, Alexandra; Thorens, Bernard

    2002-04-01

    C57BL/6J mice were fed a high-fat, carbohydrate-free diet (HFD) for 9 mo. Approximately 50% of the mice became obese and diabetic (ObD), approximately 10% lean and diabetic (LD), approximately 10% lean and nondiabetic (LnD), and approximately 30% displayed intermediate phenotype. All of the HFD mice were insulin resistant. In the fasted state, whole body glucose clearance was reduced in ObD mice, unchanged in the LD mice, and increased in the LnD mice compared with the normal-chow mice. Because fasted ObD mice were hyperinsulinemic and the lean mice slightly insulinopenic, there was no correlation between insulin levels and increased glucose utilization. In vivo, tissue glucose uptake assessed by 2-[(14)C]deoxyglucose accumulation was reduced in most muscles in the ObD mice but increased in the LnD mice compared with the values of the control mice. In the LD mice, the glucose uptake rates were reduced in extensor digitorum longus (EDL) and total hindlimb but increased in soleus, diaphragm, and heart. When assessed in vitro, glucose utilization rates in the absence and presence of insulin were similar in diaphragm, soleus, and EDL muscles isolated from all groups of mice. Thus, in genetically homogenous mice, HFD feeding lead to different metabolic adaptations. Whereas all of the mice became insulin resistant, this was associated, in obese mice, with decreased glucose clearance and hyperinsulinemia and, in lean mice, with increased glucose clearance in the presence of mild insulinopenia. Therefore, increased glucose clearance in lean mice could not be explained by increased insulin level, indicating that other in vivo mechanisms are triggered to control muscle glucose utilization. These adaptive mechanisms could participate in the protection against development of obesity.

  7. A comparison of chronic AICAR treatment-induced metabolic adaptations in red and white muscles of rats.

    PubMed

    Suwa, Masataka; Nakano, Hiroshi; Radak, Zsolt; Kumagai, Shuzo

    2015-01-01

    The signaling molecule 5'-AMP-activated protein kinase plays a pivotal role in metabolic adaptations. Treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofranoside (AICAR) promotes the expression of metabolic regulators and components involved in glucose uptake, mitochondrial biogenesis, and fatty acid oxidation in skeletal muscle cells. Our aim was to determine whether AICAR-induced changes in metabolic regulators and components were more prominent in white or red muscle. Rats were treated with AICAR (1 mg/g body weight/day) for 14 days, resulting in increased expression levels of nicotinamide phosphoribosyltransferase (NAMPT), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), glucose transporter 4 proteins, and enhanced mitochondrial biogenesis. These changes were more prominent in white rather than red gastrocnemius muscle or were only observed in the white gastrocnemius. Our results suggest that AICAR induces the expression of metabolic regulators and components, especially in type II (B) fibers.

  8. The Central Carbon and Energy Metabolism of Marine Diatoms

    PubMed Central

    Obata, Toshihiro; Fernie, Alisdair R.; Nunes-Nesi, Adriano

    2013-01-01

    Diatoms are heterokont algae derived from a secondary symbiotic event in which a eukaryotic host cell acquired an eukaryotic red alga as plastid. The multiple endosymbiosis and horizontal gene transfer processes provide diatoms unusual opportunities for gene mixing to establish distinctive biosynthetic pathways and metabolic control structures. Diatoms are also known to have significant impact on global ecosystems as one of the most dominant phytoplankton species in the contemporary ocean. As such their metabolism and growth regulating factors have been of particular interest for many years. The publication of the genomic sequences of two independent species of diatoms and the advent of an enhanced experimental toolbox for molecular biological investigations have afforded far greater opportunities than were previously apparent for these species and re-invigorated studies regarding the central carbon metabolism of diatoms. In this review we discuss distinctive features of the central carbon metabolism of diatoms and its response to forthcoming environmental changes and recent advances facilitating the possibility of industrial use of diatoms for oil production. Although the operation and importance of several key pathways of diatom metabolism have already been demonstrated and determined, we will also highlight other potentially important pathways wherein this has yet to be achieved. PMID:24957995

  9. Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model.

    PubMed

    Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun

    2016-12-02

    A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting.

  10. Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model

    PubMed Central

    Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun

    2016-01-01

    A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting. PMID:27910887

  11. Metabolic adaptation to prolonged anoxia in leaves of American cranberry (Vaccinium macrocarpon).

    PubMed

    Schlüter, Urte; Crawford, Robert M. M.

    2003-04-01

    The indigenous North American Cranberry (Vaccinium macrocarpon), when cultivated in specially constructed cranberry bogs, is normally flooded in winter to prevent frost injury. This protection under ice can give rise to prolonged periods of anoxia, which depending on the state of the vines and environmental conditions, can cause severe oxygen-deprivation injury. An experimental study of the tolerance of cranberry vines to controlled total anoxia reveals that mature dark-green perennating leaves with high carbohydrate levels are able to survive prolonged periods of total oxygen-deprivation while younger newly formed leaves are readily damaged. During the anoxic treatment the mature leaves exhibit a marked downregulation of metabolism. Carbohydrate consumption and energy metabolism stabilize at low levels soon after the switch from aerobic to anaerobic pathways. Pathways such as TCA cycle or photosynthesis, which are non-operating during the anoxia treatment, are severely affected but still measurable after 28 days anoxia. In the post-anoxic period the perennating leaves rapidly re-establish their capacity for aerobic respiration and photosynthesis.

  12. Wnt/β-catenin signaling in osteoblasts regulates global energy metabolism.

    PubMed

    Yao, Qianqian; Yu, Caixia; Zhang, Xiuzhen; Zhang, Keqin; Guo, Jun; Song, Lige

    2017-04-01

    Obesity, diabetes and osteoporosis have become a major public heath burden, and understanding the underlying mechanisms of these pathophysiological process will benefit their treatment. Osteoblast lineage cells in charge of the bone formation have been showed to participate in the whole-body energy metabolism. In this study, we identify that wnt/β-catenin signaling in osteoblasts could regulate global energy metabolism, including glucose homeostasis, fat accumulation and energy expenditure. Mice lacking β-catenin specifically in osteoblasts postnatally exhibit decreased bone mass, increased glucose level, decreased insulin production, decreased fat accumulation and increased energy expenditure. Osteocalcin supplement can rescue the impaired glucose balance by improving insulin production but cannot influence the abnormal fat accumulation and energy expenditure. Osteoprotegerin (OPG) overexpression exclusively in osteoblasts in β-catenin deletion mice can normalize not only the decreased bone mass but also the decreased fat accumulation and increased energy expenditure. The effect of β-catenin deletion and OPG overexpression in osteoblasts on global energy metabolism had no relation with inguinal fat browning. These results suggest that the regulation of bone on energy metabolism and fat accumulation is not mediated exclusively by osteocalcin. Our findings may provide a new insight into the regulation of bone on fat accumulation and energy metabolism.

  13. The regulative effect of galanin family members on link of energy metabolism and reproduction.

    PubMed

    Fang, Penghua; He, Biao; Shi, Mingyi; Kong, Guimei; Dong, Xiaoyun; Zhu, Yan; Bo, Ping; Zhang, Zhenwen

    2015-09-01

    It is essential for the species survival that an efficient coordination between energy storage and reproduction through endocrine regulation. The neuropeptide galanin, one of the endocrine hormones, can potently coordinate energy metabolism and the activities of hypothalamic-pituitary-gonadal reproductive axis to adjust synthesis and release of metabolic and reproductive hormones in animals and humans. However, few papers have summarized the regulative effect of the galanin family members on the link of energy storage and reproduction as yet. To address this issue, this review attempts to summarize the current information available about the regulative effect of galanin, galanin-like peptide and alarin on the metabolic and reproductive events, with special emphasis on the interactions between galanin and hypothalamic gonadotropin-releasing hormone, pituitary luteinizing hormone and ovarian hormones. This research line will further deepen our understanding of the physiological roles of the galanin family in regulating the link of energy metabolism and reproduction.

  14. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants.

    PubMed

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2016-03-28

    The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (75-100 %) energy restriction (ER) interspersed with normal eating. This study aimed to characterise the early metabolic response to these varying degrees of ER, which occurs acutely and prior to weight loss. Ten (three female) healthy, overweight/obese participants (36 (SEM 5) years; 29·0 (sem 1·1) kg/m2) took part in this acute three-way cross-over study. Participants completed three 1-d dietary interventions in a randomised order with a 1-week washout period: isoenergetic intake, partial 75 % ER and total 100 % ER. Fasting and postprandial (6-h) metabolic responses to a liquid test meal were assessed the following morning via serial blood sampling and indirect calorimetry. Food intake was also recorded for two subsequent days of ad libitum intake. Relative to the isoenergetic control, postprandial glucose responses were increased following total ER (+142 %; P=0·015) and to a lesser extent after partial ER (+76 %; P=0·051). There was also a delay in the glucose time to peak after total ER only (P=0·024). Both total and partial ER interventions produced comparable reductions in postprandial TAG responses (-75 and -59 %, respectively; both P<0·05) and 3-d energy intake deficits of approximately 30 % (both P=0·015). Resting and meal-induced thermogenesis were not significantly affected by either ER intervention. In conclusion, our data demonstrate the ability of substantial ER to acutely alter postprandial glucose-lipid metabolism (with partial ER producing the more favourable overall response), as well as incomplete energy-intake compensation amongst overweight/obese participants. Further investigations are required to establish how metabolism adapts over time to the repeated perturbations experienced during IER, as well as the implications for long-term health.

  15. Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines

    PubMed Central

    Oh, Kyoung-Jin; Lee, Da Som; Kim, Won Kon; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2016-01-01

    Obesity and type II diabetes are characterized by insulin resistance in peripheral tissues. A high caloric intake combined with a sedentary lifestyle is the leading cause of these conditions. Whole-body insulin resistance and its improvement are the result of the combined actions of each insulin-sensitive organ. Among the fundamental molecular mechanisms by which each organ is able to communicate and engage in cross-talk are cytokines or peptides which stem from secretory organs. Recently, it was reported that several cytokines or peptides are secreted from muscle (myokines), adipose tissue (adipokines) and liver (hepatokines) in response to certain nutrition and/or physical activity conditions. Cytokines exert autocrine, paracrine or endocrine effects for the maintenance of energy homeostasis. The present review is focused on the relationship and cross-talk amongst muscle, adipose tissue and the liver as secretory organs in metabolic diseases. PMID:28025491

  16. Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence.

    PubMed

    Kronstad, Jim; Saikia, Sanjay; Nielson, Erik David; Kretschmer, Matthias; Jung, Wonhee; Hu, Guanggan; Geddes, Jennifer M H; Griffiths, Emma J; Choi, Jaehyuk; Cadieux, Brigitte; Caza, Mélissa; Attarian, Rodgoun

    2012-02-01

    The basidiomycete fungus Cryptococcus neoformans infects humans via inhalation of desiccated yeast cells or spores from the environment. In the absence of effective immune containment, the initial pulmonary infection often spreads to the central nervous system to result in meningoencephalitis. The fungus must therefore make the transition from the environment to different mammalian niches that include the intracellular locale of phagocytic cells and extracellular sites in the lung, bloodstream, and central nervous system. Recent studies provide insights into mechanisms of adaptation during this transition that include the expression of antiphagocytic functions, the remodeling of central carbon metabolism, the expression of specific nutrient acquisition systems, and the response to hypoxia. Specific transcription factors regulate these functions as well as the expression of one or more of the major known virulence factors of C. neoformans. Therefore, virulence factor expression is to a large extent embedded in the regulation of a variety of functions needed for growth in mammalian hosts. In this regard, the complex integration of these processes is reminiscent of the master regulators of virulence in bacterial pathogens.

  17. Locomotor, cardiocirculatory and metabolic adaptations to training in Andalusian and Anglo-Arabian horses.

    PubMed

    Muñoz, A; Santisteban, R; Rubio, M D; Agüera, E I; Escribano, B M; Castejón, F M

    1999-02-01

    The effects of two training programmes in 20 Andalusian and 12 Anglo-Arabian horses were evaluated by an increasing intensity work test at velocities of 4, 5, 6, 7 and 8 m sec(-1). Heart rate was monitored and blood samples were drawn at rest and after each velocity to analyse packed cell volume, haemoglobin concentration, plasma lactate and potassium levels. Furthermore, the programmes were video-taped and stride length, duration and frequency, stance (restraint and propulsion), swing phase durations and stride vertical component were measured. The training protocol of the Andalusian horses produced significant decreases in the cardiovascular, haematological and metabolic responses to exercise. Locomotory training adaptation consisted of an increased stride frequency and a reduced stride length and vertical stride component. The last variable was the limiting factor of stride length both before and after training in the Andalusian horses. A different training protocol for show-jumping competition in Anglo-Arabian horses failed to show significant differences in the studied parameters to the work test, although an increase in stride length at velocities of over 6 m sec(-1) was observed. Stride vertical component did not have an effect on the physiological response to exercise, either before or after training.

  18. Adaptation of metabolism and evaporative water loss along an aridity gradient.

    PubMed Central

    Tieleman, B Irene; Williams, Joseph B; Bloomer, Paulette

    2003-01-01

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR and TEWL to a continuously varying measure of environment, aridity. We test the hypotheses that BMR and TEWL are reduced along an aridity gradient within the lark family (Alaudidae), and investigate the role of phylogenetic inertia. For 12 species of lark, BMR and TEWL decreased along a gradient of increasing aridity, a finding consistent with our proposals. We constructed a phylogeny for 22 species of lark based on sequences of two mitochondrial genes, and investigated whether phylogenetic affinity played a part in the correlation of phenotype and environment. A test for serial independence of the data for mass-corrected TEWL and aridity showed no influence of phylogeny on our findings. However, we did discover a significant phylogenetic effect in mass-corrected data for BMR, a result attributable to common phylogenetic history or to common ecological factors. A test of the relationship between BMR and aridity using phylogenetic independent constrasts was consistent with our previous analysis: BMR decreased with increasing aridity. PMID:12590762

  19. Urinary metabolomics in Fxr-null mice reveals activated adaptive metabolic pathways upon bile acid challenge.

    PubMed

    Cho, Joo-Youn; Matsubara, Tsutomu; Kang, Dong Wook; Ahn, Sung-Hoon; Krausz, Kristopher W; Idle, Jeffrey R; Luecke, Hans; Gonzalez, Frank J

    2010-05-01

    Farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in synthesis, metabolism, and transport of bile acids and thus plays a major role in maintaining bile acid homeostasis. In this study, metabolomic responses were investigated in urine of wild-type and Fxr-null mice fed cholic acid, an FXR ligand, using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS). Multivariate data analysis between wild-type and Fxr-null mice on a cholic acid diet revealed that the most increased ions were metabolites of p-cresol (4-methylphenol), corticosterone, and cholic acid in Fxr-null mice. The structural identities of the above metabolites were confirmed by chemical synthesis and by comparing retention time (RT) and/or tandem mass fragmentation patterns of the urinary metabolites with the authentic standards. Tauro-3alpha,6,7alpha,12alpha-tetrol (3alpha,6,7alpha,12alpha-tetrahydroxy-5beta-cholestan-26-oyltaurine), one of the most increased metabolites in Fxr-null mice on a CA diet, is a marker for efficient hydroxylation of toxic bile acids possibly through induction of Cyp3a11. A cholestatic model induced by lithocholic acid revealed that enhanced expression of Cyp3a11 is the major defense mechanism to detoxify cholestatic bile acids in Fxr-null mice. These results will be useful for identification of biomarkers for cholestasis and for determination of adaptive molecular mechanisms in cholestasis.

  20. Energy metabolism and nutritional status in hospitalized patients with lung cancer.

    PubMed

    Takemura, Yumi; Sasaki, Masaya; Goto, Kenichi; Takaoka, Azusa; Ohi, Akiko; Kurihara, Mika; Nakanishi, Naoko; Nakano, Yasutaka; Hanaoka, Jun

    2016-09-01

    This study aimed to investigate the energy metabolism of patients with lung cancer and the relationship between energy metabolism and proinflammatory cytokines. Twenty-eight patients with lung cancer and 18 healthy controls were enrolled in this study. The nutritional status upon admission was analyzed using nutritional screening tools and laboratory tests. The resting energy expenditure and respiratory quotient were measured using indirect calorimetry, and the predicted resting energy expenditure was calculated using the Harris-Benedict equation. Energy expenditure was increased in patients with advanced stage disease, and there were positive correlations between measured resting energy expenditure/body weight and interleukin-6 levels and between measured resting energy expenditure/predicted resting energy expenditure and interleukin-6 levels. There were significant relationships between body mass index and plasma leptin or acylated ghrelin levels. However, the level of appetite controlling hormones did not affect dietary intake. There was a negative correlation between plasma interleukin-6 levels and dietary intake, suggesting that interleukin-6 plays a role in reducing dietary intake. These results indicate that energy expenditure changes significantly with lung cancer stage and that plasma interleukin-6 levels affect energy metabolism and dietary intake. Thus, nutritional management that considers the changes in energy metabolism is important in patients with lung cancer.

  1. Energy metabolism and nutritional status in hospitalized patients with lung cancer

    PubMed Central

    Takemura, Yumi; Sasaki, Masaya; Goto, Kenichi; Takaoka, Azusa; Ohi, Akiko; Kurihara, Mika; Nakanishi, Naoko; Nakano, Yasutaka; Hanaoka, Jun

    2016-01-01

    This study aimed to investigate the energy metabolism of patients with lung cancer and the relationship between energy metabolism and proinflammatory cytokines. Twenty-eight patients with lung cancer and 18 healthy controls were enrolled in this study. The nutritional status upon admission was analyzed using nutritional screening tools and laboratory tests. The resting energy expenditure and respiratory quotient were measured using indirect calorimetry, and the predicted resting energy expenditure was calculated using the Harris–Benedict equation. Energy expenditure was increased in patients with advanced stage disease, and there were positive correlations between measured resting energy expenditure/body weight and interleukin-6 levels and between measured resting energy expenditure/predicted resting energy expenditure and interleukin-6 levels. There were significant relationships between body mass index and plasma leptin or acylated ghrelin levels. However, the level of appetite controlling hormones did not affect dietary intake. There was a negative correlation between plasma interleukin-6 levels and dietary intake, suggesting that interleukin-6 plays a role in reducing dietary intake. These results indicate that energy expenditure changes significantly with lung cancer stage and that plasma interleukin-6 levels affect energy metabolism and dietary intake. Thus, nutritional management that considers the changes in energy metabolism is important in patients with lung cancer. PMID:27698539

  2. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.

    PubMed

    Fukushima, Arata; Milner, Kenneth; Gupta, Abhishek; Lopaschuk, Gary D

    2015-01-01

    Despite recent advances in therapy, heart failure remains a major cause of mortality and morbidity and is a growing healthcare burden worldwide. Alterations in myocardial energy substrate metabolism are a hallmark of heart failure, and are associated with an energy deficit in the failing heart. Previous studies have shown that a metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency and functional impairment in heart failure. Therefore, optimizing energy substrate utilization, particularly by increasing mitochondrial glucose oxidation, can be a potentially promising approach to decrease the severity of heart failure by improving mechanical cardiac efficiency. One approach to stimulating myocardial glucose oxidation is to inhibit fatty acid oxidation. This review will overview the physiological regulation of both myocardial fatty acid and glucose oxidation in the heart, and will discuss what alterations in myocardial energy substrate metabolism occur in the failing heart. Furthermore, lysine acetylation has been recently identified as a novel post-translational pathway by which mitochondrial enzymes involved in all aspects of cardiac energy metabolism can be regulated. Thus, we will also discuss the effect of acetylation of metabolic enzymes on myocardial energy substrate preference in the settings of heart failure. Finally, we will focus on pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, transcriptional regulation of fatty acid oxidation, and glucose oxidation to treat heart failure.

  3. Ethidium bromide efflux by Salmonella: modulation by metabolic energy, pH, ions and phenothiazines.

    PubMed

    Amaral, Leonard; Cerca, Pedro; Spengler, Gabriella; Machado, Lisa; Martins, Ana; Couto, Isabel; Viveiros, Miguel; Fanning, Séamus; Pagès, Jean-Marie

    2011-08-01

    The main efflux pump of Salmonella enterica serotype Enteritidis, which obtains its energy for the extrusion of noxious agents from the proton-motive force, was studied with the aid of an ethidium bromide (EtBr) semi-automated method under conditions that define the role of metabolic energy, ions and pH in the extrusion of the universal substrate EtBr. The results obtained in this study indicate that in minimal medium containing sodium at pH 5 efflux of EtBr is independent of glucose, whereas at pH 8 metabolic energy is an absolute requirement for the maintenance of efflux. In deionised water at pH 5.5, metabolic energy is required for the maintenance of efflux. The inhibitory effect of the ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) on efflux is shown to be minimised by low pH, and at high pH by metabolic energy. Similarly, thioridazine, an inhibitor of metabolic enzymes, inhibits efflux of EtBr only at pH 8 and the degree of inhibition is lessened by the presence of metabolic energy.

  4. Effects of Intracerebroventricular Administration of Neuropeptide Y on Metabolic Gene Expression and Energy Metabolism in Male Rats.

    PubMed

    Su, Yan; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2016-08-01

    Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the central release of NPY has coordinated and integrated effects on energy metabolism in different tissues, resulting in increased energy storage and decreased energy expenditure (EE). We first investigated the acute effects of an intracerebroventricular (ICV) infusion of NPY on gene expression in liver, brown adipose tissue, soleus muscle, and sc and epididymal white adipose tissue (WAT). We found increased expression of genes involved in gluconeogenesis and triglyceride secretion in the liver already 2-hour after the start of the NPY administration. In brown adipose tissue, the expression of thermogenic genes was decreased. In sc WAT, the expression of genes involved in lipogenesis was increased, whereas in soleus muscle, the expression of lipolytic genes was decreased after ICV NPY. These findings indicate that the ICV infusion of NPY acutely and simultaneously increases lipogenesis and decreases lipolysis in different tissues. Subsequently, we investigated the acute effects of ICV NPY on locomotor activity, respiratory exchange ratio, EE, and body temperature. The ICV infusion of NPY increased locomotor activity, body temperature, and EE as well as respiratory exchange ratio. Together, these results show that an acutely increased central availability of NPY results in a shift of metabolism towards lipid storage and an increased use of carbohydrates, while at the same time increasing activity, EE, and body temperature.

  5. Cautious but Committed: Moving Toward Adaptive Planning and Operation Strategies for Renewable Energy's Wildlife Implications

    NASA Astrophysics Data System (ADS)

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned—creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  6. Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy's wildlife implications.

    PubMed

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned-creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  7. Substrate-energy metabolism and metabolic risk factors for cardiovascular disease in relation to fetal growth and adult body composition.

    PubMed

    Kensara, Osama A; Wooton, Steve A; Phillips, David I W; Patel, Mayank; Hoffman, Daniel J; Jackson, Alan A; Elia, Marinos

    2006-08-01

    The effect of fetal programming on intermediary metabolism is uncertain. Therefore, we examined whether fetal programming affects oxidative and nonoxidative macronutrient metabolism and the prevalence of the metabolic syndrome in adult life. Healthy older men, aged 64-72 years, with either a lower birth weight (LBW, or=75th %ile; n = 13) had measurements of 1) net oxidative metabolism using indirect calorimetry before and for 6 h after a mixed meal (3,720 kJ) and 2) postprandial oxidation of exogenous [13C]palmitic acid. Body composition was measured using dual-energy X-ray absorptiometry. After adjustment for current weight and height, the LBW group had a lower resting energy expenditure (REE) in the preprandial (4.01 vs. 4.54 kJ/min, P = 0.015) and postprandial state (4.60 vs. 5.20 kJ/min, P = 0.004), and less fat-free mass than the HBW group. The BW category was a significant, independent, and better predictor of REE than weight plus height. There were no significant differences between groups in net oxidative and nonoxidative macronutrient (protein, fat, carbohydrate) metabolism (or of exogenous [13C]palmitate) or in the prevalence of the metabolic syndrome, which was present almost twice as commonly in the LBW than in the HBW group. The study suggests that fetal programming affects both pre- and postprandial EE in older life by mechanisms that are at least partly related to the mass of the fat-free body. BW was found to be a significant predictor of REE that was independent of adult weight plus height.

  8. Dynamic Adaption of Metabolic Pathways during Germination and Growth of Lily Pollen Tubes after Inhibition of the Electron Transport Chain1[W][OPEN

    PubMed Central

    Obermeyer, Gerhard; Fragner, Lena; Lang, Veronika; Weckwerth, Wolfram

    2013-01-01

    Investigation of the metabolome and the transcriptome of pollen of lily (Lilium longiflorum) gave a comprehensive overview of metabolic pathways active during pollen germination and tube growth. More than 100 different metabolites were determined simultaneously by gas chromatography coupled to mass spectrometry, and expressed genes of selected metabolic pathways were identified by next-generation sequencing of lily pollen transcripts. The time-dependent changes in metabolite abundances, as well as the changes after inhibition of the mitochondrial electron transport chain, revealed a fast and dynamic adaption of the metabolic pathways in the range of minutes. The metabolic state prior to pollen germination differed clearly from the metabolic state during pollen tube growth, as indicated by principal component analysis of all detected metabolites and by detailed observation of individual metabolites. For instance, the amount of sucrose increased during the first 60 minutes of pollen culture but decreased during tube growth, while glucose and fructose showed the opposite behavior. Glycolysis, tricarbonic acid cycle, glyoxylate cycle, starch, and fatty acid degradation were activated, providing energy during pollen germination and tube growth. Inhibition of the mitochondrial electron transport chain by antimycin A resulted in an immediate production of ethanol and a fast rearrangement of metabolic pathways, which correlated with changes in the amounts of the majority of identified metabolites, e.g. a rapid increase in γ-aminobutyric acid indicated the activation of a γ-aminobutyric acid shunt in the tricarbonic acid cycle, while ethanol fermentation compensated the reduced ATP production after inhibition of the oxidative phosphorylation. PMID:23660836

  9. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds.

    PubMed

    Elliott, Kyle H; Welcker, Jorg; Gaston, Anthony J; Hatch, Scott A; Palace, Vince; Hare, James F; Speakman, John R; Anderson, W Gary

    2013-06-15

    Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR) in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR) in a field environment. Given the difficulty of measuring metabolic rate in the field-and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements-we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia). Because BMR and daily energy expenditure (DEE) are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR). RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.

  10. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-08-11

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy

  11. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH

    PubMed Central

    Yaseen, Mohammad A.; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A.; Boas, David A.

    2013-01-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism. PMID:23412419

  12. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

    PubMed

    Yaseen, Mohammad A; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A; Boas, David A

    2013-02-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

  13. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders.

    PubMed

    Silvestri, Cristoforo; Di Marzo, Vincenzo

    2013-04-02

    Endocannabinoids and cannabinoid CB1 receptors are known to play a generalized role in energy homeostasis. However, clinical trials with the first generation of CB1 blockers, now discontinued due to psychiatric side effects, were originally designed to reduce food intake and body weight rather than the metabolic risk factors associated with obesity. In this review, we discuss how, in addition to promoting energy intake, endocannabinoids control lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in skeletal muscle and pancreas are also emerging. This knowledge may help in the design of future therapies for the metabolic syndrome.

  14. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance.

    PubMed

    True, Cadence; Grove, Kevin L; Smith, M Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.

  15. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance

    PubMed Central

    True, Cadence; Grove, Kevin L.; Smith, M. Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance. PMID:22645510

  16. Energy metabolism in hypoxia: reinterpreting some features of muscle physiology on molecular grounds.

    PubMed

    Cerretelli, Paolo; Gelfi, Cecilia

    2011-03-01

    An holistic approach for interpreting classical data on the adaptation of the animal and, particularly, of the human body to hypoxic stress was promoted by the discovery of HIF-1, the "master regulator" of cell hypoxic signaling. Mitochondrial production of ROS stabilizes the O(2)-regulated HIF-1α subunit of the HIF-1 dimer promoting transaction functions in a large number of potential target genes, activating transcription of sequences into RNA and, eventually, protein production. The aim of the present preliminary study is to assess whether adaptive changes in oxygen sensing and metabolic signaling, particularly in the control of energy turnover known to occur in cultured cells exposed to hypoxia, are detectable also in the muscles of animals and man. For the present analysis, data obtained from the proteome of the rat gastrocnemius and of the vastus lateralis muscle of humans together with functional measurements were compared with homologous data from hypoxic cultured cells. In particular, the following variables were assessed: (1) the role of stress response proteins in the maintenance of ROS homeostasis, (2) the activity of the PDK1 gene on the shunting of pyruvate away from the TCA cycle in rodents and in humans, (3) the COX-4/COX-2 ratio in hypoxic rodents, (4) the overall efficiency of oxidative phosphorylation in humans during exercise in hypoxia, (5) some features of muscle mitochondrial autophagy in humans undergoing subchronic and chronic altitude exposure. Despite the limited number of observations and the differences in the experimental approach, some initial interesting results were obtained encouraging to pursue this innovative effort.

  17. URBAN EFFICIENT ENERGY EVALUATION IN HIGH RESOLUTION URBAN AREAS BY USING ADAPTED WRF-UCM AND MICROSYS CFD MODELS

    NASA Astrophysics Data System (ADS)

    San Jose, R.; Perez, J. L.; Gonzalez, R. M.

    2009-12-01

    Urban metabolism modeling has advanced substantially during the last years due to the increased detail in mesoscale urban parameterization in meteorological mesoscale models and CFD numerical tools. Recently the implementation of the “urban canopy model” (UCM) into the WRF mesoscale meteorological model has produced a substantial advance on the understanding of the urban atmospheric heat flux exchanges in the urban canopy. The need to optimize the use of heat energy in urban environment has produced a substantial increase in the detailed investigation of the urban heat flux exchanges. In this contribution we will show the performance of using a tool called MICROSYS (MICRO scale CFD modelling SYStem) which is an adaptation of the classical urban canopy model but on a high resolution environment by using a classical CFD approach. The energy balance in the urban system can be determined in a micrometeorologicl sense by considering the energy flows in and out of a control volume. For such a control volume reaching from ground to a certain height above buildings, the energy balance equation includes the net radiation, the anthropogenic heat flux, the turbulent sensible heat flux, the turbulent latent heat flux, the net storage change within the control volume, the net advected flux and other sources and sinks. We have applied the MICROSYS model to an area of 5 km x 5 km with 200 m spatial resolution by using the WRF-UCM (adapted and the MICROSYS CFD model. The anthropogenic heat flux has been estimated by using the Flanner M.G. (2009) database and detailed GIS information (50 m resolution) of Madrid city. The Storage energy has been estimated by calculating the energy balance according to the UCM procedure and implementing it into the MICROSYS tool. Results show that MICROSYS can be used as an energy efficient tool to estimate the energy balance of different urban areas and buildings.

  18. Adapting classical Systems Engineering to Department of Energy (DOE) needs

    SciTech Connect

    1996-07-01

    Rather than discuss Systems Engineering (SE) as applied by aerospace contractors to military programs, this document provides an adapted model well suited for use by DOE and represents 18 months of applying SE principles to the challenges faced by INEL. The real-life examples are drawn from INEL`s ongoing effort to integrate activities across the entire spectrum of within its Environmental Management program. Since the traditional SE process, with its initial focus on requirements identification and analysis, must be modified to provide tangible results in the short term, the adapted SE model starts with the external driver of ``reducing costs without increasing risks`` and performs an initial integration effort to identify high-potential, cost-saving opportunities. Elements from traditional alternatives development and analysis stages are used; then the adapted model cycles back to include more traditional requirements analysis activities. These cycles continue in an iterative manner, adding rigor and detail at each successive iteration, throughout the life-cycle of a program or project. Detailed lessons learned are included.

  19. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    PubMed

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio.

  20. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans.

    PubMed

    Yasuda, Kayo; Hartman, Philip S; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki

    2011-01-21

    Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  1. Duchenne muscular dystrophy: a model for studying the contribution of muscle to energy and protein metabolism.

    PubMed

    Hankard, R

    1998-01-01

    Duchenne muscular dystrophy (DMD) is associated with a dramatic muscle mass loss. We hypothesized that DMD would be associated with significant changes in both energy and protein metabolism. We studied the resting energy expenditure (REE) in DMD and control children using indirect calorimetry, and their protein metabolism using an intravenous infusion of leucine and glutamine labeled with stable isotopes. In spite of a 75% muscle mass loss in the DMD children, the REE only decreased by 10%. DMD was associated with increased leucine oxidation but neither protein degradation nor protein synthesis were different from that of the controls. In contrast, whole body turnover of glutamine, an amino acid mainly synthesized in the muscle, was significantly decreased. These studies emphasized the quantitatively poor contribution of muscle to energy and protein metabolism in children. The qualitative impact of muscle mass loss on amino acid metabolism (glutamine) offers a fascinating field of research for the next few years and has therapeutic potential.

  2. Methodological and metabolic considerations in the study of caffeine-containing energy drinks.

    PubMed

    Shearer, Jane

    2014-10-01

    Caffeine-containing energy drinks are popular and widely available beverages. Despite large increases in consumption, studies documenting the nutritional, metabolic, and health implications of these beverages are limited. This review provides some important methodological considerations in the examination of these drinks and highlights their potential impact on the gastrointestinal system, liver, and metabolic health. The gastrointestinal system is important as it comes into contact with the highest concentration of energy drink ingredients and initiates a chain of events to communicate with peripheral tissues. Although energy drinks have diverse compositions, including taurine, ginseng, and carnitine, the most metabolically deleterious ingredients appear to be simple sugars (such as glucose and fructose) and caffeine. In combination, these last two ingredients have the greatest metabolic impact and potential influence on overall health.

  3. Environmental Endocrine Disruption of Energy Metabolism and Cardiovascular Risk

    PubMed Central

    Kirkley, Andrew G.; Sargis, Robert M.

    2014-01-01

    Rates of metabolic and cardiovascular diseases have increased at an astounding rate in recent decades. While poor diet and physical inactivity are central drivers, these lifestyle changes alone fail to fully account for the magnitude and rapidity of the epidemic. Thus, attention has turned to identifying novel risk factors, including the contribution of environmental endocrine disrupting chemicals. Epidemiological and preclinical data support a role for various contaminants in the pathogenesis of diabetes. In addition to the vascular risk associated with dysglycemia, emerging evidence implicates multiple pollutants in the pathogenesis of atherosclerosis and cardiovascular disease. Reviewed herein are studies linking endocrine disruptors to these key diseases that drive significant individual and societal morbidity and mortality. Identifying chemicals associated with metabolic and cardiovascular disease as well as their mechanisms of action is critical for developing novel treatment strategies and public policy to mitigate the impact of these diseases on human health. PMID:24756343

  4. Effects of Excess Energy Intake on Glucose and Lipid Metabolism in C57BL/6 Mice

    PubMed Central

    Huang, Xiuqing; Cui, Ju; Gong, Huan; Zhang, Tiemei

    2016-01-01

    Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice. PMID:26745179

  5. Effects of Wound Bacteria on Postburn Energy Metabolism

    DTIC Science & Technology

    1990-01-01

    production was believed to compensate for the increased evaporative heat loss from the wound. Heat balance following thermal injury is further complicated by...similar to those in thermal injury (13), wound bacteria and/or their products may be important metabolic stimuli in the "uninfected" patient. This is...The animals selected for study were 4-7 month old, niale Sprague-Dawley rats (Hilltop, Scottdale, PA) weighing 400-600 grams. They were housed in

  6. Syzygium aromaticum L. (Clove) extract regulates energy metabolism in myocytes.

    PubMed

    Tu, Zheng; Moss-Pierce, Tijuana; Ford, Paul; Jiang, T Alan

    2014-09-01

    The prevalence of metabolic syndrome and type 2 diabetes is increasing worldwide. Herbs and spices have been used for the treatment of diabetes for centuries in folk medicine. Syzygium aromaticum L. (Clove) extracts (SE) have been shown to perform comparably to insulin by significantly reducing blood glucose levels in animal models; however, the mechanisms are not well understood. We investigated the effects of clove on metabolism in C2C12 myocytes and demonstrated that SE significantly increases glucose consumption. The phosphorylation of AMP-activated protein kinase (AMPK), as well as its substrate, acetyl-CoA carboxylase (ACC) was increased by SE treatment. SE also transcriptionally regulates genes involved in metabolism, including sirtuin 1 (SIRT1) and PPARγ coactivator 1α (PGC1α). Nicotinamide, an SIRT1 inhibitor, diminished SE's effects on glucose consumption. Furthermore, treatment with SE dose-dependently increases muscle glycolysis and mitochondrial spare respiratory capacity. Overall, our study suggests that SE has the potential to increase muscle glycolysis and mitochondria function by activating both AMPK and SIRT1 pathways.

  7. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities.

  8. Interplay between Cellular Methyl Metabolism and Adaptive Efflux during Oncogenic Transformation from Chronic Arsenic Exposure in Human Cells*S⃞

    PubMed Central

    Coppin, Jean-François; Qu, Wei; Waalkes, Michael P.

    2008-01-01

    After protracted low level arsenic exposure, the normal human prostate epithelial cell line RWPE-1 acquires a malignant phenotype with DNA hypomethylation, indicative of disrupted methyl metabolism, and shows arsenic adaptation involving glutathione overproduction and enhanced arsenic efflux. Thus, the interplay between methyl and glutathione metabolism during this progressive arsenic adaptation was studied. Arsenic-treated cells showed a time-dependent increase in LC50 and a marked increase in homocysteine (Hcy) levels. A marked suppression of S-adenosylmethionine (SAM) levels occurred with decreased methionine adenosyltransferase 2A (converts methionine to SAM) expression and increased negative regulator methionine adenosyltransferase B, suggesting reduced conversion of Hcy to SAM. Consistent with Hcy overproduction, activity and expression of S-adenosylhomocysteine hydrolase (converts S-adenosylhomocysteine to Hcy) were both increased. Expression of cystathionine β-synthase, a key gene in the transsulfuration pathway, and various glutathione production genes were increased, resulting in a 5-fold increase in glutathione. Arsenic efflux increased along with expression of ATP-binding cassette protein C1, which effluxes arsenic as a glutathione conjugate. Evidence of genomic DNA hypomethylation was observed during early arsenic exposure, indicating that the disruption in methyl metabolism had a potential impact related to oncogenesis. Thus, cellular arsenic adaptation is a dynamic, progressive process that involves decreased SAM recycling and concurrent accumulation of Hcy, which is channeled via transsulfuration to increase glutathione and enhance arsenic efflux but may also impact the carcinogenic process. PMID:18487201

  9. Comparative Genome Analysis Reveals Metabolic Versatility and Environmental Adaptations of Sulfobacillus thermosulfidooxidans Strain ST

    PubMed Central

    Guo, Xue; Yin, Huaqun; Liang, Yili; Hu, Qi; Zhou, Xishu; Xiao, Yunhua; Ma, Liyuan; Zhang, Xian; Qiu, Guanzhou; Liu, Xueduan

    2014-01-01

    The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to

  10. The human metabolic response to chronic ketosis without caloric restriction: physical and biochemical adaptation.

    PubMed

    Phinney, S D; Bistrian, B R; Wolfe, R R; Blackburn, G L

    1983-08-01

    To study the metabolic effects of ketosis without weight loss, nine lean men were fed a eucaloric balanced diet (EBD) for one week providing 35-50 kcal/kg/d, 1.75 g of protein per kilogram per day and the remaining kilocalories as two-thirds carbohydrate (CHO) and one-third fat. This was followed by four weeks of a eucaloric ketogenic diet (EKD)--isocaloric and isonitrogenous with the EBD but providing less than 20 g CHO daily. Both diets were appropriately supplemented with minerals and vitamins. Weight and whole-body potassium estimated by potassium-40 counting (40K) did not vary significantly during the five-week study. Nitrogen balance (N-Bal) was regained after one week of the EKD. The fasting blood glucose remained lower during the EKD than during the control diet (4.4 mmol/L at EBD, 4.1 mmol/L at EKD-4, P less than 0.01). The fasting whole-body glucose oxidation rate determined by a 13C-glucose primed constant infusion technique fell from 0.71 mg/kg/min during the control diet to 0.50 mg/kg/min (P less than 0.01) during the fourth week of the EKD. The mean serum cholesterol level rose (from 159 to 208 mg/dL) during the EKD, while triglycerides fell from 107 to 79 mg/dL. No disturbance of hepatic or renal function was noted at EKD-4. These findings indicate that the ketotic state induced by the EKD was well tolerated in lean subjects; nitrogen balance was regained after brief adaptation, serum lipids were not pathologically elevated, and blood glucose oxidation at rest was measurably reduced while the subjects remained euglycemic.

  11. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability.

    PubMed

    Welker, Alexis F; Moreira, Daniel C; Campos, Élida G; Hermes-Lima, Marcelo

    2013-08-01

    Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by animals with aquatic respiration. Therefore, animals living in marine, estuarine and freshwater environments have developed efficient antioxidant defenses to minimize oxidative stress and to regulate the cellular actions of ROS. Changes in oxygen levels may lead to bursts of ROS generation that can be particularly harmful. This situation is commonly experienced by aquatic animals during abrupt transitions from periods of hypoxia/anoxia back to oxygenated conditions (e.g. intertidal cycles). The strategies developed differ significantly among aquatic species and are (i) improvement of their endogenous antioxidant system under hyperoxia (that leads to increased ROS formation) or other similar ROS-related stresses, (ii) increase in antioxidant levels when displaying higher metabolic rates, (iii) presence of constitutively high levels of antioxidants, that attenuates oxidative stress derived from fluctuations in oxygen availability, or (iv) increase in the activity of antioxidant enzymes (and/or the levels of their mRNAs) during hypometabolic states associated with anoxia/hypoxia. This enhancement of the antioxidant system - coined over a decade ago as "preparation for oxidative stress" - controls the possible harmful effects of increased ROS formation during hypoxia/reoxygenation. The present article proposes a novel explanation for the biochemical and molecular mechanisms involved in this phenomenon that could be triggered by hypoxia-induced ROS formation. We also discuss the connections among oxygen sensing, oxidative damage and regulation of the endogenous antioxidant defense apparatus in animals adapted to many natural or man-made challenges of the aquatic environment.

  12. Metabolic adaptations to a high-fat diet in endurance cyclists.

    PubMed

    Goedecke, J H; Christie, C; Wilson, G; Dennis, S C; Noakes, T D; Hopkins, W G; Lambert, E V

    1999-12-01

    We examined the time course of metabolic adaptations to 15 days of a high-fat diet (HFD). Sixteen endurance-trained cyclists were assigned randomly to a control (CON) group, who consumed their habitual diet (30% +/- 8% mJ fat), or a HFD group, who consumed a high-fat isocaloric diet (69% +/- 1% mJ fat). At 5-day intervals, the subjects underwent an oral glucose tolerance test (OGTT); on the next day, they performed a 2.5-hour constant-load ride at 70% peak oxygen consumption (VO2peak), followed by a simulated 40-km cycling time-trial while ingesting a 10% 14C-glucose + 3.44% medium-chain triglyceride (MCT) emulsion at a rate of 600 mL/h. In the OGTT, plasma glucose concentrations at 30 minutes increased significantly after 5 days of the HFD and remained elevated at days 10 and 15 versus the levels measured prior to the HFD (P < .05). The activity of carnitine acyltransferase (CAT) in biopsies of the vastus lateralis muscle also increased from 0.45 to 0.54 micromol/g/min over days 0 to 10 of the HFD (P < .01) without any change in citrate synthase (CS) or 3-hydroxyacyl-coenzyme A dehydrogenase (3-HAD) activities. Changes in glucose tolerance and CAT activity were associated with a shift from carbohydrate (CHO) to fat oxidation during exercise (P < .001), which occurred within 5 to 10 days of the HFD. During the constant-load ride, the calculated oxidation of muscle glycogen was reduced from 1.5 to 1.0 g/min (P < .001) after 15 days of the HFD. Ingestion of a HFD for as little as 5 to 10 days significantly altered substrate utilization during submaximal exercise but did not attenuate the 40-km time-trial performance.

  13. Differential Molecular Responses of Rapeseed Cotyledons to Light and Dark Reveal Metabolic Adaptations toward Autotrophy Establishment

    PubMed Central

    He, Dongli; Damaris, Rebecca N.; Fu, Jinlei; Tu, Jinxing; Fu, Tingdong; Xi, Chen; Yi, Bin; Yang, Pingfang

    2016-01-01

    Photosynthesis competent autotrophy is established during the postgerminative stage of plant growth. Among the multiple factors, light plays a decisive role in the switch from heterotrophic to autotrophic growth. Under dark conditions, the rapeseed hypocotyl extends quickly with an apical hook, and the cotyledon is yellow and folded, and maintains high levels of the isocitrate lyase (ICL). By contrast, in the light, the hypocotyl extends slowly, the cotyledon unfolds and turns green, the ICL content changes in parallel with cotyledon greening. To reveal metabolic adaptations during the establishment of postgerminative autotrophy in rapeseed, we conducted comparative proteomic and metabolomic analyses of the cotyledons of seedlings grown under light versus dark conditions. Under both conditions, the increase in proteases, fatty acid β-oxidation and glyoxylate-cycle related proteins was accompanied by rapid degradation of the stored proteins and lipids with an accumulation of the amino acids. While light condition partially retarded these conversions. Light significantly induced the expression of chlorophyll-binding and photorespiration related proteins, resulting in an increase in reducing-sugars. However, the levels of some chlorophyllide conversion, Calvin-cycle and photorespiration related proteins also accumulated in dark grown cotyledons, implying that the transition from heterotrophy to autotrophy is programmed in the seed rather than induced by light. Various anti-stress systems, e.g., redox related proteins, salicylic acid, proline and chaperones, were employed to decrease oxidative stress, which was mainly derived from lipid oxidation or photorespiration, under both conditions. This study provides a comprehensive understanding of the differential molecular responses of rapeseed cotyledons to light and dark conditions, which will facilitate further study on the complex mechanism underlying the transition from heterotrophy to autotrophy. PMID:27471506

  14. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST.

    PubMed

    Guo, Xue; Yin, Huaqun; Liang, Yili; Hu, Qi; Zhou, Xishu; Xiao, Yunhua; Ma, Liyuan; Zhang, Xian; Qiu, Guanzhou; Liu, Xueduan

    2014-01-01

    The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to

  15. Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure.

    PubMed

    Mori, Jun; Zhang, Liyan; Oudit, Gavin Y; Lopaschuk, Gary D

    2013-10-01

    The renin-angiotensin system (RAS) plays a key pathogenic role in heart failure. The adverse effects of angiotensin II (Ang II), a major player of the RAS, contributes to the development of heart failure. Heart failure is accompanied by significant perturbations in cardiac energy metabolism that can both decrease cardiac energy supply and decrease cardiac efficiency. Recent evidence suggests that Ang II might be involved in these perturbations in cardiac energy metabolism. Furthermore, new components of the RAS, such as angiotensin converting enzyme 2 and Ang1-7, have been reported to exert beneficial effects on cardiac energy metabolism. As a result, a further understanding of the relationship between the RAS and cardiac energy metabolism has the potential to improve the control of heart failure, and may lead to the development of new therapies to treat heart failure. This review summarizes what effects the RAS has on cardiac energy metabolism, highlighting how Ang II can induce cardiac insulin resistance and mitochondrial damage, and what role reactive oxygen species and sirtuins have on these processes.

  16. Walking with a Backpack using Load Distribution and Dynamic Load Compensation Reduces Metabolic Cost and Adaptations to Loads.

    PubMed

    Park, Joon-Hyuk; Stegall, Paul; Zhang, Haohan; Agrawal, Sunil

    2016-11-09

    In this study, we showed a way of reducing the metabolic cost of walking with a backpack using load distribution and dynamic load compensation, provided by a wearable upper body device. This device distributes the backpack load between the shoulders and the pelvis, senses the vertical motion of the pelvis, and provides gait synchronized compensatory forces to reduce the dynamic loads from a backpack. It was hypothesized that by reducing dynamic loads from a backpack during load carriage, the users gait and postural adaptation, muscular effort and metabolic cost would be reduced. This hypothesis was supported by biomechanical and physiological measurements on a group of young healthy subjects, as they walked on a treadmill under 4 different conditions: unloaded; with a backpack, loaded with 25% of their body weight, supported on the shoulders; with the same load distributed between the shoulders and the pelvis; and with dynamic load compensation in addition to load distribution. The results showed reductions in gait and postural adaptations, muscle activity, vertical and braking ground reaction forces, and metabolic cost while carrying the same backpack load with the device. We conclude that the device can potentially reduce the risk of musculoskeletal injuries and muscle fatigue associated with carrying heavy backpack loads while reducing the metabolic cost of loaded walking.

  17. [24-hour energy metabolism in the human: circadian rhythm, relation to body weight and nutrition].

    PubMed

    Steiniger, J

    1985-04-15

    In 7 men with normal weight and 9 man with overweight and healthy metabolism the resting and fasting energy expenditure was indirectly calorimetrically pursued in the open system over 24 hours. The total energy expenditure over 24 hours revealed an ascertained dependence on body-weight and nutrition. The persons with overweight had a higher absolute energy expenditure, however, the activity of the energy metabolism of the body mass free from fat and the active body mass, respectively, decreased with increasing overweight. The resting and fasting energy expenditure showed in all measured parameters (oxygen consumption, respiratory quotient and nitrogen excretion in the urine) an ascertained daily periodicity (circadian rhythm), which was widely independent of body weight. Only the average daily level C0 (rhythm adjusted level) of the resting and fasting energy expenditure was positively correlated with the body weight and the food energy intake. A negative energy balance (reduction 1.2 MJ/d over 28 days) influenced only the total energy and substrate balance over 24 hours and the daily average level, respectively. The circadian conditions remained unchanged (Chossat's phenomenon). The variability in daily rhythm of the energy expenditure of nearly 25% of the daily average should be taken into consideration in the judgment of exogenically stimulated changes in the energy metabolism.

  18. Hypothalamic energy metabolism is impaired by doxorubicin independently of inflammation in non-tumour-bearing rats.

    PubMed

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2015-08-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothalamus. The DOXO group exhibited a decreased body weight (p < 0.01). Hypothalamic malate dehydrogenase activity was reduced when compared with control (p < 0.05). In addition, pro-inflammatory cytokine levels were unchanged. Therefore, our results demonstrate that doxorubicin leads to an impairment of \\hypothalamic energy metabolism, but do not affect the inflammatory pathway. SIGNIFICANCE PARAGRAPH: The hypothalamus is a central organ that regulates a great number of functions, such as food intake, temperature and energy expenditure, among others. Doxorubicin can lead to deep anorexia and metabolic chaos; thus, we observed the effect of this chemotherapeutic drug on the inflammation and metabolism in rats after the administration of doxorubicin in order to understand the central effect in the hypothalamus. Drug treatment by doxorubicin is used as a cancer therapy; however the use of this drug may cause harmful alterations to the metabolism. Thus, further investigations are needed on the impact of drug therapy over the long term.

  19. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis

    PubMed Central

    Yang, Huansheng; Wang, Xiaocheng; Xiong, Xia; Yin, Yulong

    2016-01-01

    Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets. PMID:27558220

  20. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    SciTech Connect

    Yasuda, Kayo; Hartman, Philip S.; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki

    2011-01-21

    Research highlights: {yields} Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. {yields} Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. {yields} fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. {yields} Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  1. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators.

    PubMed

    Roa, Juan; Tena-Sempere, Manuel

    2014-11-01

    It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease.

  2. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.

    PubMed

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.

  3. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines

    PubMed Central

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  4. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis.

    PubMed

    Sanchez, Diego H; Pieckenstain, Fernando L; Escaray, Francisco; Erban, Alexander; Kraemer, Ute; Udvardi, Michael K; Kopka, Joachim

    2011-04-01

    The legume genus Lotus includes glycophytic forage crops and other species adapted to extreme environments, such as saline soils. Understanding salt tolerance mechanisms will contribute to the discovery of new traits which may enhance the breeding efforts towards improved performance of legumes in marginal agricultural environments. Here, we used a combination of ionomic and gas chromatography-mass spectrometry (GC-MS)-based metabolite profilings of complete shoots (pooling leaves, petioles and stems) to compare the extremophile Lotus creticus, adapted to highly saline coastal regions, and two cultivated glycophytic grassland forage species, Lotus corniculatus and Lotus tenuis. L. creticus exhibited better survival after exposure to long-term lethal salinity and was more efficient at excluding Cl⁻ from the shoots than the glycophytes. In contrast, Na+ levels were higher in the extremophile under both control and salt stress, a trait often observed in halophytes. Ionomics demonstrated a differential rearrangement of shoot nutrient levels in the extremophile upon salt exposure. Metabolite profiling showed that responses to NaCl in L. creticus shoots were globally similar to those of the glycophytes, providing little evidence for metabolic pre-adaptation to salinity. This study is the first comparing salt acclimation responses between extremophile and non-extremophile legumes, and challenges the generalization of the metabolic salt pre-adaptation hypothesis.

  5. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells.

    PubMed

    Panossian, Alexander; Hamm, Rebecca; Kadioglu, Onat; Wikman, Georg; Efferth, Thomas

    2013-01-01

    Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents - extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor signaling pathways, i.e., cAMP, phospholipase C (PLC), and phosphatidylinositol signal transduction pathways. Adaptogens may reduce the cAMP level in brain cells by down-regulation of adenylate cyclase gene ADC2Y and up-regulation of phosphodiesterase gene PDE4D that is essential for energy homeostasis as well as for switching from catabolic to anabolic states and vice versa. Down-regulation of cAMP by adaptogens may decrease cAMP-dependent protein kinase A activity in various cells resulting in inhibition stress-induced catabolic transformations and saving of ATP for many ATP-dependant metabolic transformations. All tested adaptogens up-regulated the PLCB1 gene, which encodes phosphoinositide-specific PLC and phosphatidylinositol 3-kinases (PI3Ks), key players for the regulation of NF-κB-mediated defense responses. Other common targets of adaptogens included genes encoding ERα estrogen receptor (2.9-22.6 fold down-regulation), cholesterol ester transfer protein (5.1-10.6 fold down-regulation), heat shock protein Hsp70 (3.0-45.0 fold up-regulation), serpin peptidase inhibitor (neuroserpin), and 5-HT3 receptor of serotonin (2.2-6.6 fold down-regulation). These findings can be reconciled with the observed beneficial effects of adaptogens in behavioral, mental, and aging-associated disorders. Combining two or more active substances in one mixture significantly changes deregulated genes profiles: synergetic interactions result in activation of genes that none of the individual substances affected, while antagonistic

  6. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells

    PubMed Central

    Panossian, Alexander; Hamm, Rebecca; Kadioglu, Onat; Wikman, Georg; Efferth, Thomas

    2013-01-01

    Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents – extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor signaling pathways, i.e., cAMP, phospholipase C (PLC), and phosphatidylinositol signal transduction pathways. Adaptogens may reduce the cAMP level in brain cells by down-regulation of adenylate cyclase gene ADC2Y and up-regulation of phosphodiesterase gene PDE4D that is essential for energy homeostasis as well as for switching from catabolic to anabolic states and vice versa. Down-regulation of cAMP by adaptogens may decrease cAMP-dependent protein kinase A activity in various cells resulting in inhibition stress-induced catabolic transformations and saving of ATP for many ATP-dependant metabolic transformations. All tested adaptogens up-regulated the PLCB1 gene, which encodes phosphoinositide-specific PLC and phosphatidylinositol 3-kinases (PI3Ks), key players for the regulation of NF-κB-mediated defense responses. Other common targets of adaptogens included genes encoding ERα estrogen receptor (2.9–22.6 fold down-regulation), cholesterol ester transfer protein (5.1–10.6 fold down-regulation), heat shock protein Hsp70 (3.0–45.0 fold up-regulation), serpin peptidase inhibitor (neuroserpin), and 5-HT3 receptor of serotonin (2.2–6.6 fold down-regulation). These findings can be reconciled with the observed beneficial effects of adaptogens in behavioral, mental, and aging-associated disorders. Combining two or more active substances in one mixture significantly changes deregulated genes profiles: synergetic interactions result in activation of genes that none of the individual substances affected, while

  7. Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals.

    PubMed

    Tourmente, Maximiliano; Roldan, Eduardo R S

    2015-01-01

    Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals.

  8. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    PubMed

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  9. Glial β-oxidation regulates Drosophila energy metabolism.

    PubMed

    Schulz, Joachim G; Laranjeira, Antonio; Van Huffel, Leen; Gärtner, Annette; Vilain, Sven; Bastianen, Jarl; Van Veldhoven, Paul P; Dotti, Carlos G

    2015-01-15

    The brain's impotence to utilize long-chain fatty acids as fuel, one of the dogmas in neuroscience, is surprising, since the nervous system is the tissue most energy consuming and most vulnerable to a lack of energy. Challenging this view, we here show in vivo that loss of the Drosophila carnitine palmitoyltransferase 2 (CPT2), an enzyme required for mitochondrial β-oxidation of long-chain fatty acids as substrates for energy production, results in the accumulation of triacylglyceride-filled lipid droplets in adult Drosophila brain but not in obesity. CPT2 rescue in glial cells alone is sufficient to restore triacylglyceride homeostasis, and we suggest that this is mediated by the release of ketone bodies from the rescued glial cells. These results demonstrate that the adult brain is able to catabolize fatty acids for cellular energy production.

  10. Glial β-Oxidation regulates Drosophila Energy Metabolism

    PubMed Central

    Schulz, Joachim G.; Laranjeira, Antonio; Van Huffel, Leen; Gärtner, Annette; Vilain, Sven; Bastianen, Jarl; Van Veldhoven, Paul P.; Dotti, Carlos G.

    2015-01-01

    The brain's impotence to utilize long-chain fatty acids as fuel, one of the dogmas in neuroscience, is surprising, since the nervous system is the tissue most energy consuming and most vulnerable to a lack of energy. Challenging this view, we here show in vivo that loss of the Drosophila carnitine palmitoyltransferase 2 (CPT2), an enzyme required for mitochondrial β-oxidation of long-chain fatty acids as substrates for energy production, results in the accumulation of triacylglyceride-filled lipid droplets in adult Drosophila brain but not in obesity. CPT2 rescue in glial cells alone is sufficient to restore triacylglyceride homeostasis, and we suggest that this is mediated by the release of ketone bodies from the rescued glial cells. These results demonstrate that the adult brain is able to catabolize fatty acids for cellular energy production. PMID:25588812

  11. Ablation of Lgr4 enhances energy adaptation in skeletal muscle via activation of Ampk/Sirt1/Pgc1α pathway.

    PubMed

    Sun, Yingkai; Hong, Jie; Chen, Maopei; Ke, Yingying; Zhao, Shaoqian; Liu, Wen; Ma, Qinyun; Shi, Juan; Zou, Yaoyu; Ning, Tinglu; Zhang, Zhiguo; Liu, Ruixin; Wang, Jiqiu; Ning, Guang

    2015-08-21

    Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is a newfound obese-associated gene. Previous study reveals that heterozygous mutation of Lgr4 correlates with decreased body weight in human. In our recent study, we demonstrate that Lgr4 ablation promotes browning of white adipose tissue and improves whole-body metabolic status. However little is known about its role in other metabolic tissues. Herein, we show that Lgr4 homozygous mutant (Lgr4(m/m)) mice show increased respiratory exchange ratio (RER, closer to 1.0) than wild-type mice at 12:00 AM (food-intake time for mice) while decreased RER (closer to 0.75) at 12:00 PM (fasting for mice), indicating a glucose-prone versus fatty acid-prone metabolic pattern, respectively. Furthermore, Lgr4 ablation increases lipid oxidation-related gene expression while suppresses glucose transporter type 4 (Glut4) levels in skeletal muscle under fasting condition. These data suggest that Lgr4 ablation enhances the flexibility of skeletal muscle to switch energy provider from glucose to fatty acid in response to glucose depletion. We further reveal the activation of Ampk/Sirt1/Pgc1α pathway during this adaptive fuel shift due to Lgr4 ablation. This study suggests that Lgr4 might serve as an adaptive regulator between glucose and lipid metabolism in skeletal muscle and reveals a potentially new regulator for a well-established adaptive network.

  12. Energy metabolism, body composition, and urea generation rate in hemodialysis patients.

    PubMed

    Sridharan, Sivakumar; Vilar, Enric; Berdeprado, Jocelyn; Farrington, Ken

    2013-10-01

    Hemodialysis (HD) adequacy is currently assessed using normalized urea clearance (Kt/V), although scaling based on Watson volume (V) may disadvantage women and men with low body weight. Alternative scaling factors such as resting energy expenditure and high metabolic rate organ mass have been suggested. The relationship between such factors and uremic toxin generation has not been established. We aimed to study the relationship between body size, energy metabolism, and urea generation rate. A cross-sectional cohort of 166 HD patients was studied. Anthropometric measurements were carried on all. Resting energy expenditure was measured by indirect calorimetry, fat-free mass by bio-impedance and total energy expenditure by combining resting energy expenditure with a questionnaire-derived physical activity data. High metabolic rate organ mass was calculated using a published equation and urea generation rate using formal urea kinetic modeling. Metabolic factors including resting energy expenditure, total energy expenditure and fat-free mass correlated better with urea generation rate than did Watson volume. Total energy expenditure and fat-free mass (but not Watson Volume) were independent predictors of urea generation rate, the model explaining 42% of its variation. Small women (energy expenditure correlated significantly with urea generation rate. Energy metabolism, body composition and physical activity play important roles in small solute uremic toxin generation in HD patients and hence may impact on minimum dialysis requirements. Small women generate relatively more small solute toxins than other groups and thus may have a higher relative need for dialysis.

  13. Renewable energy technologies and its adaptation in an urban environment

    SciTech Connect

    Thampi, K. Ravindranathan Byrne, Owen Surolia, Praveen K.

    2014-01-28

    This general article is based on the inaugural talk delivered at the opening of OMTAT 2013 conference. It notes that the integration of renewable energy sources into living and transport sectors presents a daunting task, still. In spite of the fact that the earth and its atmosphere continually receive 1.7 × 10{sup 17} watts of radiation from the sun, in the portfolio of sustainable and environment friendly energy options, which is about 16% of the world’s energy consumption and mostly met by biomass, only a paltry 0.04% is accredited to solar. First and second generation solar cells offer mature technologies for applications. The most important difficulty with regards to integration with structures is not only the additional cost, but also the lack of sufficient knowledge in managing the available energy smartly and efficiently. The incorporation of PV as a part of building fabric greatly reduces the overall costs compared with retrofitting. BIPV (Building Integrated photovoltaic) is a critical technology for establishing aesthetically pleasing solar structures. Infusing PV and building elements is greatly simplified with some of the second generation thin film technologies now manufactured as flexible panels. The same holds true for 3{sup rd} generation technologies under development such as, and dye- and quantum dot- sensitized solar cells. Additionally, these technologies offer transparent or translucent solar cells for incorporation into windows and skylights. This review deals with the present state of solar cell technologies suitable for BIPV and the status of BIPV applications and its future prospects.

  14. Renewable energy technologies and its adaptation in an urban environment

    NASA Astrophysics Data System (ADS)

    Thampi, K. Ravindranathan; Byrne, Owen; Surolia, Praveen K.

    2014-01-01

    This general article is based on the inaugural talk delivered at the opening of OMTAT 2013 conference. It notes that the integration of renewable energy sources into living and transport sectors presents a daunting task, still. In spite of the fact that the earth and its atmosphere continually receive 1.7 × 1017 watts of radiation from the sun, in the portfolio of sustainable and environment friendly energy options, which is about 16% of the world's energy consumption and mostly met by biomass, only a paltry 0.04% is accredited to solar. First and second generation solar cells offer mature technologies for applications. The most important difficulty with regards to integration with structures is not only the additional cost, but also the lack of sufficient knowledge in managing the available energy smartly and efficiently. The incorporation of PV as a part of building fabric greatly reduces the overall costs compared with retrofitting. BIPV (Building Integrated photovoltaic) is a critical technology for establishing aesthetically pleasing solar structures. Infusing PV and building elements is greatly simplified with some of the second generation thin film technologies now manufactured as flexible panels. The same holds true for 3rd generation technologies under development such as, and dye- and quantum dot- sensitized solar cells. Additionally, these technologies offer transparent or translucent solar cells for incorporation into windows and skylights. This review deals with the present state of solar cell technologies suitable for BIPV and the status of BIPV applications and its future prospects.

  15. Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles

    2011-01-01

    Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336

  16. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    PubMed Central

    Dzeja, Petras; Terzic, Andre

    2009-01-01

    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network. PMID:19468337

  17. Rhodanese functions as sulfur supplier for key enzymes in sulfur energy metabolism.

    PubMed

    Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-06-08

    How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus.

  18. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways.

    PubMed

    Yadetie, Fekadu; Karlsen, Odd Andre; Lanzén, Anders; Berg, Karin; Olsvik, Pål; Hogstrand, Christer; Goksøyr, Anders

    2013-01-15

    Methylmercury (MeHg) is a widely distributed contaminant polluting many aquatic environments, with health risks to humans exposed mainly through consumption of seafood. The mechanisms of toxicity of MeHg are not completely understood. In order to map the range of molecular targets and gain better insights into the mechanisms of toxicity, we prepared Atlantic cod (Gadus morhua) 135k oligonucleotide arrays and performed global analysis of transcriptional changes in the liver of fish treated with MeHg (0.5 and 2 mg/kg of body weight) for 14 days. Inferring from the observed transcriptional changes, the main pathways significantly affected by the treatment were energy metabolism, oxidative stress response, immune response and cytoskeleton remodeling. Consistent with known effects of MeHg, many transcripts for genes in oxidative stress pathways such as glutathione metabolism and Nrf2 regulation of oxidative stress response were differentially regulated. Among the differentially regulated genes, there were disproportionate numbers of genes coding for enzymes involved in metabolism of amino acids, fatty acids and glucose. In particular, many genes coding for enzymes of fatty acid beta-oxidation were up-regulated. The coordinated effects observed on many transcripts coding for enzymes of energy pathways may suggest disruption of nutrient metabolism by MeHg. Many transcripts for genes coding for enzymes in the synthetic pathways of sulphur containing amino acids were also up-regulated, suggesting adaptive responses to MeHg toxicity. By this toxicogenomics approach, we were also able to identify many potential biomarker candidate genes for monitoring environmental MeHg pollution. These results based on changes on transcript levels, however, need to be confirmed by other methods such as proteomics.

  19. Constraints on Energy Intake in Fish: The Link between Diet Composition, Energy Metabolism, and Energy Intake in Rainbow Trout

    PubMed Central

    Saravanan, Subramanian; Schrama, Johan W.; Figueiredo-Silva, A. Claudia; Kaushik, Sadasivam J.; Verreth, Johan A. J.; Geurden, Inge

    2012-01-01

    The hypothesis was tested that fish fed to satiation with iso-energetic diets differing in macronutrient composition will have different digestible energy intakes (DEI) but similar total heat production. Four iso-energetic diets (2×2 factorial design) were formulated having a contrast in i) the ratio of protein to energy (P/E): high (HP/E) vs. low (LP/E) and ii) the type of non-protein energy (NPE) source: fat vs. carbohydrate which were iso-energetically exchanged. Triplicate groups (35 fish/tank) of rainbow trout were hand-fed each diet twice daily to satiation for 6 weeks under non-limiting water oxygen conditions. Feed intake (FI), DEI (kJ kg−0.8 d−1) and growth (g kg−0.8 d−1) of trout were affected by the interaction between P/E ratio and NPE source of the diet (P<0.05). Regardless of dietary P/E ratio, the inclusion of carbohydrate compared to fat as main NPE source reduced DEI and growth of trout by ∼20%. The diet-induced differences in FI and DEI show that trout did not compensate for the dietary differences in digestible energy or digestible protein contents. Further, changes in body fat store and plasma glucose did not seem to exert a homeostatic feedback control on DEI. Independent of the diet composition, heat production of trout did not differ (P>0.05). Our data suggest that the control of DEI in trout might be a function of heat production, which in turn might reflect a physiological limit related with oxidative metabolism. PMID:22496852

  20. The hypothalamus and metabolism: integrating signals to control energy and glucose homeostasis.

    PubMed

    Coll, Anthony P; Yeo, Giles S H

    2013-12-01

    Molecules acting in the central nervous system play a critical role in the control of both energy and glucose homeostasis. The hypothalamus consists of a highly diverse collection of interconnected neurons and supporting glial cells that allow this region of the brain to sense and respond to a diverse range of hormonal and metabolic signals. We review recent advances in our understanding of the anatomical architecture and molecular mechanisms within the hypothalamus and how these facilitate the orchestration of systemic metabolic processes.

  1. [Energy metabolism and body mass ratio in bivalves mollusca (Mollusca: Bivalvia)].

    PubMed

    Vladimirova, I G; Kleĭmenov, S Iu; Radzinskaia, L I

    2003-01-01

    On the basis of experimental and published data, the interspecific and intraspecific (ontogenetic) dependence of energy metabolism on body weight in bivalves was calculated. Changes in the parameters of intraspecific allometric dependence under the effect of environmental factors were analyzed. The rate of comparable standard metabolism (coefficient a at k = 0.76) was shown to vary in different taxonomic and zoogeographic groups of bivalves.

  2. Metabolic Analysis of Adaptation to Short-Term Changes in Culture Conditions of the Marine Diatom Thalassiosira pseudonana

    PubMed Central

    Bromke, Mariusz A.; Giavalisco, Patrick; Willmitzer, Lothar; Hesse, Holger

    2013-01-01

    This report describes the metabolic and lipidomic profiling of 97 low-molecular weight compounds from the primary metabolism and 124 lipid compounds of the diatom Thalassiosira pseudonana. The metabolic profiles were created for diatoms perturbed for 24 hours with four different treatments: (I) removal of nitrogen, (II) lower iron concentration, (III) addition of sea salt, (IV) addition of carbonate to their growth media. Our results show that as early as 24 hours after nitrogen depletion significant qualitative and quantitative change in lipid composition as well as in the primary metabolism of Thalassiosira pseudonana occurs. So we can observe the accumulation of several storage lipids, namely triacylglycerides, and TCA cycle intermediates, of which citric acid increases more than 10-fold. These changes are positively correlated with expression of TCA enzymes genes. Next to the TCA cycle intermediates and storage lipid changes, we have observed decrease in N-containing lipids and primary metabolites such as amino acids. As a measure of counteracting nitrogen starvation, we have observed elevated expression levels of nitrogen uptake and amino acid biosynthetic genes. This indicates that diatoms can fast and efficiently adapt to changing environment by altering the metabolic fluxes and metabolite abundances. Especially, the accumulation of proline and the decrease of dimethylsulfoniopropionate suggest that the proline is the main osmoprotectant for the diatom in nitrogen rich conditions. PMID:23799147

  3. Effect of simulated weightlessness on energy metabolism in the rat

    NASA Technical Reports Server (NTRS)

    Jordan, J. P.; Sykes, H. A.; Crownover, J. C.; Schatte, C. L.; Simmons, J. B., II; Jordan, D. P.

    1982-01-01

    Results of measurements of food uptake and body weight changes occurring in rats suspended from a harness so that the antigravity muscles were not used for locomotion are presented. The rats were tested in pairs, with both in a harness but only one suspended off its hind legs; this section lasted 7 days. A second phase of the experiment involved feeding the nonsuspended rat the same amount of food the experimental rat had consumed the previous day. All rats experienced decreased in body weight and food intake in the first stage, while in the second stage the suspended rat lost more weight. The total oxygen uptake, CO2 output, and rate of C-14O2 production were depressed in the suspended rats, then returned to normal levels once the rats were back on the ground. It is concluded that the gross metabolic processes are unaffected by simulated weightlessness.

  4. Disrupting proton dynamics and energy metabolism for cancer therapy.

    PubMed

    Parks, Scott K; Chiche, Johanna; Pouysségur, Jacques

    2013-09-01

    Intense interest in the 'Warburg effect' has been revived by the discovery that hypoxia-inducible factor 1 (HIF1) reprogrammes pyruvate oxidation to lactic acid conversion; lactic acid is the end product of fermentative glycolysis. The most aggressive and invasive cancers, which are often hypoxic, rely on exacerbated glycolysis to meet the increased demand for ATP and biosynthetic precursors and also rely on robust pH-regulating systems to combat the excessive generation of lactic and carbonic acids. In this Review, we present the key pH-regulating systems and synthesize recent advances in strategies that combine the disruption of pH control with bioenergetic mechanisms. We discuss the possibility of exploiting, in rapidly growing tumours, acute cell death by 'metabolic catastrophe'.

  5. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    PubMed

    Santos, Daniel M V; Katzmarzyk, Peter T; Diego, Vincent P; Souza, Michele C; Chaves, Raquel N; Blangero, John; Maia, José A R

    2013-01-01

    Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001) for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  6. Genotype by Energy Expenditure Interaction with Metabolic Syndrome Traits: The Portuguese Healthy Family Study

    PubMed Central

    Santos, Daniel M. V.; Katzmarzyk, Peter T.; Diego, Vincent P.; Souza, Michele C.; Chaves, Raquel N.; Blangero, John; Maia, José A. R.

    2013-01-01

    Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001) for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active. PMID:24260389

  7. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    PubMed

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis.

  8. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    PubMed

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.

  9. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    PubMed Central

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  10. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  11. High-energy phosphate metabolism and energy liberation associated with rapid shortening in frog skeletal muscle

    PubMed Central

    Homsher, E.; Irving, M.; Wallner, A.

    1981-01-01

    1. High-energy phosphate metabolism and energy liberated as heat and work were measured in 3 sec tetani of frog sartorius muscles at 0 °C. 2. Three contraction periods were studied: (a) shortening at near-maximum velocity for 0.3 sec from sarcomere length 2.6 to 1.8 μm, beginning after 2 sec of isometric stimulation, (b) the 0.7 sec isometric period immediately following such rapid shortening, (c) the period from 2 to 3 sec in an isometric tetanus at sarcomere length 1.8 μm. 3. There were no significant changes in levels of ATP, ADP or AMP in any contraction period. The observed changes in inorganic phosphate and creatine levels indicated that the only significant reaction occurring was phosphocreatine splitting. 4. The mean rate of high-energy phosphate splitting during rapid shortening, 0.48 ± 0.24 μmole/g.sec (mean ± s.e. of mean, n = 29; `g' refers to blotted muscle weight), was not significantly different from that in the 1 sec period in the isometric tetanus, 0.32 ± 0.11 μmole/g.sec (n = 17). The mean rate in the post-shortening period, 0.71 ± 0.10 μmole/g.sec (n = 22), was greater than that in the 1 sec period in the isometric tetanus, and this difference is significant (P < 0.02, t test). 5. A large quantity of heat plus work was produced during the rapid shortening period, but less than half of this could be accounted for by simultaneous chemical reactions. The unexplained enthalpy production was 6.5 ± 2.6 mJ/g (mean ± s.e. of mean). No significant unexplained enthalpy was produced in the 1 sec period in the isometric tetanus. 6. In the post-shortening period the observed enthalpy was less, by 6.2 ± 2.6 mJ/g, than that expected from the simultaneous chemical reactions. 7. The results are interpreted in terms of an exothermic shift in the population of cross-bridge states during rapid shortening. It is suggested that a relatively slow subsequent step prevents many of these cross-bridges from completing the cycle and splitting ATP until after

  12. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism.

    PubMed

    Koch, M; Horvath, T L

    2014-07-01

    The brain receives and integrates environmental and metabolic information, transforms these signals into adequate neuronal circuit activities, and generates physiological behaviors to promote energy homeostasis. The responsible neuronal circuitries show lifetime plasticity and guaranty metabolic health and survival. However, this highly evolved organization has become challenged nowadays by chronic overload with nutrients and reduced physical activity, which results in an ever-increasing number of obese individuals worldwide. Research within the last two decades has aimed to decipher the responsible molecular and cellular mechanisms for regulation of the hypothalamic melanocortin neurons, which have a key role in the control of food intake and energy metabolism. This review maps the central connections of the melanocortin system and highlights its global position and divergent character in physiological and pathological metabolic events. Moreover, recently uncovered molecular and cellular processes in hypothalamic neurons and glial cells that drive plastic morphological and physiological changes in these cells, and account for regulation of food intake and energy metabolism, are brought into focus. Finally, potential functional interactions between metabolic disorders and psychiatric diseases are discussed.

  13. Recent advances in telemetry for estimating the energy metabolism of wild fishes.

    PubMed

    Metcalfe, J D; Wright, S; Tudorache, C; Wilson, R P

    2016-01-01

    Metabolic rate is a critical factor in animal biology and ecology, providing an objective measure that can be used in attributing a cost to different activities and to assessing what animals do against some optimal behaviour. Ideally, metabolic rate would be estimated directly by measuring heat output but, until recently, this has not been easily tractable with fishes so instead metabolic rate is usually estimated using indirect methods. In the laboratory, oxygen consumption rate is the indirect method most frequently used for estimating metabolic rate, but technical requirements preclude the measurement of either heat output or oxygen consumption rate in free-ranging fishes. There are other field methods for estimating metabolic rate that can be used with mammals and birds but, again, these cannot be used with fishes. Here, the use of electronic devices that record body acceleration in three dimensions (accelerometry) is considered. Accelerometry is a comparatively new telemetric method for assessing energy metabolism in animals. Correlations between dynamic body acceleration (DBA) and oxygen consumption rate demonstrate that this will be a useful proxy for estimating activity-specific energy expenditure from fishes in mesocosm or field studies over extended periods where other methods (e.g. oxygen consumption rate) are not feasible. DBA therefore has potential as a valuable tool for attributing cost to different activities. This could help in gaining a full picture of how fishes make energy-based trade-offs between different levels of activity when faced with conflicting or competing demands arising from increased and combined environmental stressors.

  14. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    SciTech Connect

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  15. Metabolic adaptations in the adipose tissue that underlie the body fat mass gain in middle-aged rats.

    PubMed

    Sertié, Rogério Antonio Laurato; Caminhotto, Rennan de Oliveira; Andreotti, Sandra; Campaña, Amanda Baron; de Proença, André Ricardo Gomes; de Castro, Natalie Carolina; Lima, Fábio Bessa

    2015-10-01

    Little is known about adipocyte metabolism during aging process and whether this can influence body fat redistribution and systemic metabolism. To better understand this phenomenon, two animal groups were studied: young-14 weeks old-and middle-aged-16 months old. Periepididymal (PE) and subcutaneous (SC) adipocytes were isolated and tested for their capacities to perform lipolysis and to incorporate D-[U-(14)C]-glucose, D-[U-(14)C]-lactate, and [9,10(n)-(3)H]-oleic acid into lipids. Additionally, the morphometric characteristics of the adipose tissues, glucose tolerance tests, and biochemical determinations (fasting glucose, triglycerides, insulin) in blood were performed. The middle-aged rats showed adipocyte (PE and SC) hypertrophy and glucose intolerance, although there were no significant changes in fasting glycemia and insulin. Furthermore, PE tissue revealed elevated rates (+50 %) of lipolysis during beta-adrenergic-stimulation. There was also an increase (+62 %) in the baseline rate of glucose incorporation into lipids in the PE adipocytes, while these PE cells were almost unresponsive to insulin stimulation and less responsive (a 34 % decrease) in the SC tissue. Also, the capacity of oleic acid esterification was elevated in baseline state and with insulin stimulus in the PE tissue (+90 and 82 %, respectively). Likewise, spontaneous incorporation of lactate into lipids in the PE and SC tissues was higher (+100 and 11 %, respectively) in middle-aged rats. We concluded that adipocyte metabolism of middle-aged animals seems to strongly favor cellular hypertrophy and increased adipose mass, particularly the intra-abdominal PE fat pad. In discussion, we have interpreted all these results as a metabolic adaptations to avoid the spreading of fat that can reach tissues beyond adipose protecting them against ectopic fat accumulation. However, these adaptations may have the potential to lead to future metabolic dysfunctions seen in the senescence.

  16. Investigation of Intermediary Metabolism and Energy Exchange Following Human Trauma.

    DTIC Science & Technology

    1979-07-01

    afebrile, hospitalized patients (9), and with values fram normal subjects C13).. In the present study, values for in- sensible water loss were...supplementation of wheat gluten at adequate and restricted energy intakes in young men. Am J Clin Nutr 26:965, 1973 19. Mizro HN, Wikramanayake TW: Absence of

  17. Very-low-density lipoprotein: complex particles in cardiac energy metabolism.

    PubMed

    Niu, You-Guo; Evans, Rhys D

    2011-01-01

    The heart is a major consumer of energy and is able to utilise a wide range of substrates including lipids. Nonesterified fatty acids (NEFA) were thought to be a favoured carbon source, but their quantitative contribution is limited because of their relative histotoxicity. Circulating triacylglycerols (TAGs) in the form of chylomicrons (CMs) and very-low-density lipoprotein (VLDL) are an alternative source of fatty acids and are now believed to be important in cardiac metabolism. However, few studies on cardiac utilisation of VLDL have been performed and the role of VLDL in cardiac energy metabolism remains unclear. Hearts