Sample records for adaptive energy metabolism

  1. Temperature, energy metabolism, and adaptive divergence in two oyster subspecies.

    PubMed

    Li, Ao; Li, Li; Song, Kai; Wang, Wei; Zhang, Guofan

    2017-08-01

    Comparisons of related species that have diverse spatial distributions provide an efficient way to investigate adaptive evolution in face of increasing global warming. The oyster subjected to high environmental selections is a model species as sessile marine invertebrate. This study aimed to detect the adaptive divergence of energy metabolism in two oyster subspecies from the genus Crassostrea - C. gigas gigas and C. gigas angulata -which are broadly distributed along the northern and southern coasts of China, respectively. We examined the effects of acute thermal stress on energy metabolism in two oyster subspecies after being common gardened for one generation in identical conditions. Thermal responses were assessed by incorporating physiological, molecular, and genomic approaches. Southern oysters exhibited higher fluctuations in metabolic rate, activities of key energetic enzymes, and levels of thermally induced gene expression than northern oysters. For genes involved in energy metabolism, the former displayed higher basal levels of gene expression and a more pronounced downregulation of thermally induced expression, while the later exhibited lower basal levels and a less pronounced downregulation of gene expression. Contrary expression pattern was observed in oxidative stress gene. Besides, energy metabolic tradeoffs were detected in both subspecies. Furthermore, the genetic divergence of a nonsynonymous SNP ( SOD-132 ) and five synonymous SNPs in other genes was identified and validated in these two subspecies, which possibly affects downstream functions and explains the aforementioned phenotypic variations. Our study demonstrates that differentiations in energy metabolism underlie the plasticity of adaptive divergence in two oyster subspecies and suggest C. gigas angulata with moderate phenotypic plasticity has higher adaptive potential to cope with exacerbated global warming.

  2. [Energy power in mountains: difference in metabolism pattern results in different adaption traits in Tibetans].

    PubMed

    Bai, Zhen-Zhong; Jin, Guo-En; Wu-Ren, Tana; Ga, Qin; Ge, Ri-Li

    2012-11-01

    Energy metabolism plays an important role in life survival for species living in high altitude hypoxia condition. Air-breathing organisms require oxygen to create energy. Tibetans are the well-adapted highlanders in Qinghai-Tibetan Plateau. It was thought that different metabolic approaches could lead to different adaptation traits to high altitude hypoxia. Recently identified hypoxia inducible factors pathway regulators, endothelial PAS domain protein1 (EPAS1)/HIF-2a and PPARA, were involved in decreasing hemoglobin concentrations in Tibetans. Because EPAS1 and PPARA also modulated the energy metabolism during hypoxia, we hypothesized that positive selected EPAS1 and PPARA genes were also involved in unique energy metabolisms in Tibetans. In this brief review, we take a look into genetic determinations to energy metabolisms for hypoxia adaptations traits in Tibetans and mal-adaptive conditions such as high altitude diseases.

  3. Predicting metabolic adaptation, body weight change, and energy intake in humans

    PubMed Central

    2010-01-01

    Complex interactions between carbohydrate, fat, and protein metabolism underlie the body's remarkable ability to adapt to a variety of diets. But any imbalances between the intake and utilization rates of these macronutrients will result in changes in body weight and composition. Here, I present the first computational model that simulates how diet perturbations result in adaptations of fuel selection and energy expenditure that predict body weight and composition changes in both obese and nonobese men and women. No model parameters were adjusted to fit these data other than the initial conditions for each subject group (e.g., initial body weight and body fat mass). The model provides the first realistic simulations of how diet perturbations result in adaptations of whole body energy expenditure, fuel selection, and various metabolic fluxes that ultimately give rise to body weight change. The validated model was used to estimate free-living energy intake during a long-term weight loss intervention, a variable that has never previously been measured accurately. PMID:19934407

  4. Adaptive Evolution of Mitochondrial Energy Metabolism Genes Associated with Increased Energy Demand in Flying Insects

    PubMed Central

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects. PMID:24918926

  5. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    PubMed

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  6. Metabolic Adaptation to Muscle Ischemia

    NASA Technical Reports Server (NTRS)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  7. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    PubMed

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  8. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease.

    PubMed

    Smith, Reuben L; Soeters, Maarten R; Wüst, Rob C I; Houtkooper, Riekelt H

    2018-04-24

    The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage and utilization, dependent on availability and requirement is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways which is regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors like dietary composition and feeding frequency, exercise training, and use of pharmacological compounds influence metabolic flexibility and will be discussed here. Lastly, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.

  9. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    PubMed

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Energy Metabolic Adaptation and Cardiometabolic Improvements One Year After Gastric Bypass, Sleeve Gastrectomy, and Gastric Band.

    PubMed

    Tam, Charmaine S; Redman, Leanne M; Greenway, Frank; LeBlanc, Karl A; Haussmann, Mark G; Ravussin, Eric

    2016-10-01

    It is not known whether the magnitude of metabolic adaptation, a greater than expected drop in energy expenditure, depends on the type of bariatric surgery and is associated with cardiometabolic improvements. To compare changes in energy expenditure (metabolic chamber) and circulating cardiometabolic markers 8 weeks and 1 year after Roux-en-y bypass (RYGB), sleeve gastrectomy (SG), laparoscopic adjustable gastric band (LAGB), or a low-calorie diet (LCD). Design, Setting, Participants, and Intervention: This was a parallel-arm, prospective observational study of 30 individuals (27 females; mean age, 46 ± 2 years; body mass index, 47.2 ± 1.5 kg/m 2 ) either self-selecting bariatric surgery (five RYGB, nine SG, seven LAGB) or on a LCD (n = 9) intervention (800 kcal/d for 8 weeks, followed by weight maintenance). After 1 year, the RYGB and SG groups had similar degrees of body weight loss (33-36%), whereas the LAGB and LCD groups had 16 and 4% weight loss, respectively. After adjusting for changes in body composition, 24-hour energy expenditure was significantly decreased in all treatment groups at 8 weeks (-254 to -82 kcal/d), a drop that only persisted in RYGB (-124 ± 42 kcal/d; P = .002) and SG (-155 ± 118 kcal/d; P = .02) groups at 1 year. The degree of metabolic adaptation (24-hour and sleeping energy expenditure) was not significantly different between the treatment groups at either time-point. Plasma high-density lipoprotein and total and high molecular weight adiponectin were increased, and triglycerides and high-sensitivity C-reactive protein levels were reduced 1 year after RYGB or SG. Metabolic adaptation of approximately 150 kcal/d occurs after RYGB and SG surgery. Future studies are required to examine whether these effects remain beyond 1 year.

  11. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    PubMed

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Adaptation of Ribonucleic Acid Metabolism to Anoxia in Rice Embryos 1

    PubMed Central

    Aspart, Lorette; Got, Alain; Delseny, Michel; Mocquot, Bernard; Pradet, Alain

    1983-01-01

    Rice (Oryza sativa var. Cigalon) is a plant which can adapt to very stringent anoxic conditions. It has previously been shown that during the adaptation period the energy charge can be used as a marker for metabolic activity. We have studied RNA metabolism during this period and correlated it with changes in the energy charge. Uptake of labeled precursor, UTP-specific activity, and incorporation were measured. Immediately after transfer to anaerobic conditions, the UTP pool size is reduced and the overall rate of incorporation drops. During adaptation, the rate of incorporation increases and stabilizes at about half of its value in aerobic conditions. Analysis of RNA shows that rRNA and mRNA are synthesized and that the processing of ribosomal RNA precursor is altered. Polyribosomes are present throughout the adaptation period although their amount is reduced during the first hour of anoxia. Changes in poly(A) content were noticed, indicating that some mRNA are rapidly degraded. Taken together, the results show that the RNA metabolism can be modulated during adaptation to anoxia in a parallel manner with energy charge changes. PMID:16662943

  13. Epilepsy and astrocyte energy metabolism.

    PubMed

    Boison, Detlev; Steinhäuser, Christian

    2018-06-01

    Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.

  14. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria.

    PubMed

    Lee, Joo-Yong; Kapur, Meghan; Li, Ming; Choi, Moon-Chang; Choi, Sujin; Kim, Hak-June; Kim, Inhye; Lee, Eunji; Taylor, J Paul; Yao, Tso-Pang

    2014-11-15

    Fasting and glucose shortage activate a metabolic switch that shifts more energy production to mitochondria. This metabolic adaptation ensures energy supply, but also elevates the risk of mitochondrial oxidative damage. Here, we present evidence that metabolically challenged mitochondria undergo active fusion to suppress oxidative stress. In response to glucose starvation, mitofusin 1 (MFN1) becomes associated with the protein deacetylase HDAC6. This interaction leads to MFN1 deacetylation and activation, promoting mitochondrial fusion. Deficiency in HDAC6 or MFN1 prevents mitochondrial fusion induced by glucose deprivation. Unexpectedly, failure to undergo fusion does not acutely affect mitochondrial adaptive energy production; instead, it causes excessive production of mitochondrial reactive oxygen species and oxidative damage, a defect suppressed by an acetylation-resistant MFN1 mutant. In mice subjected to fasting, skeletal muscle mitochondria undergo dramatic fusion. Remarkably, fasting-induced mitochondrial fusion is abrogated in HDAC6-knockout mice, resulting in extensive mitochondrial degeneration. These findings show that adaptive mitochondrial fusion protects metabolically challenged mitochondria. © 2014. Published by The Company of Biologists Ltd.

  15. Increased plasma leptin attenuates adaptive metabolism in early lactating dairy cows.

    PubMed

    Ehrhardt, Richard A; Foskolos, Andreas; Giesy, Sarah L; Wesolowski, Stephanie R; Krumm, Christopher S; Butler, W Ronald; Quirk, Susan M; Waldron, Matthew R; Boisclair, Yves R

    2016-05-01

    Mammals meet the increased nutritional demands of lactation through a combination of increased feed intake and a collection of adaptations known as adaptive metabolism (e.g., glucose sparing via insulin resistance, mobilization of endogenous reserves, and increased metabolic efficiency via reduced thyroid hormones). In the modern dairy cow, adaptive metabolism predominates over increased feed intake at the onset of lactation and develops concurrently with a reduction in plasma leptin. To address the role of leptin in the adaptive metabolism of early lactation, we asked which adaptations could be countered by a constant 96-h intravenous infusion of human leptin (hLeptin) starting on day 8 of lactation. Compared to saline infusion (Control), hLeptin did not alter energy intake or milk energy output but caused a modest increase in body weight loss. hLeptin reduced plasma glucose by 9% and hepatic glycogen content by 73%, and these effects were associated with a 17% increase in glucose disposal during an insulin tolerance test. hLeptin attenuated the accumulation of triglyceride in the liver by 28% in the absence of effects on plasma levels of the anti-lipolytic hormone insulin or plasma levels of free fatty acids, a marker of lipid mobilization from adipose tissue. Finally, hLeptin increased the plasma concentrations of T4 and T3 by nearly 50% without affecting other neurally regulated hormones (i.e., cortisol and luteinizing hormone (LH)). Overall these data implicate the periparturient reduction in plasma leptin as one of the signals promoting conservation of glucose and energy at the onset of lactation in the energy-deficient dairy cow. © 2016 Society for Endocrinology.

  16. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  17. Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: Metabolic regulation and thermal compensation.

    PubMed

    Zhu, Wei; Zhang, Huan; Li, Xuan; Meng, Qian; Shu, Ruihao; Wang, Menglong; Zhou, Guiling; Wang, Hongtuo; Miao, Lin; Zhang, Jihong; Qin, Qilian

    2016-02-01

    Ghost moths (Lepidoptera: Hepialidae) are cold-adapted stenothermal species inhabiting alpine meadows on the Tibetan Plateau. They have an optimal developmental temperature of 12-16 °C but can maintain feeding and growth at 0 °C. Their survival strategies have received little attention, but these insects are a promising model for environmental adaptation. Here, biochemical adaptations and energy metabolism in response to cold were investigated in larvae of the ghost moth Hepialus xiaojinensis. Metabolic rate and respiratory quotient decreased dramatically with decreasing temperature (15-4 °C), suggesting that the energy metabolism of ghost moths, especially glycometabolism, was sensitive to cold. However, the metabolic rate at 4 °C increased with the duration of cold exposure, indicating thermal compensation to sustain energy budgets under cold conditions. Underlying regulation strategies were studied by analyzing metabolic differences between cold-acclimated (4 °C for 48 h) and control larvae (15 °C). In cold-acclimated larvae, the energy generating pathways of carbohydrates, instead of the overall consumption of carbohydrates, was compensated in the fat body by improving the transcription of related enzymes. The mobilization of lipids was also promoted, with higher diacylglycerol, monoacylglycerol and free fatty acid content in hemolymph. These results indicated that cold acclimation induced a reorganization on metabolic structure to prioritise energy metabolism. Within the aerobic process, flux throughout the tricarboxylic acid (TCA) cycle was encouraged in the fat body, and the activity of α-ketoglutarate dehydrogenase was the likely compensation target. Increased mitochondrial cristae density was observed in the midgut of cold-acclimated larvae. The thermal compensation strategies in this ghost moth span the entire process of energy metabolism, including degration of metabolic substrate, TCA cycle and oxidative phosphorylation, and from an energy budget

  18. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology.

    PubMed

    Marshall, David J; McQuaid, Christopher D

    2011-01-22

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30-40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and -0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis.

  19. Metabolic adaptations to HFHS overfeeding: how whole body and tissues postprandial metabolic flexibility adapt in Yucatan mini-pigs.

    PubMed

    Polakof, Sergio; Rémond, Didier; Bernalier-Donadille, Annick; Rambeau, Mathieu; Pujos-Guillot, Estelle; Comte, Blandine; Dardevet, Dominique; Savary-Auzeloux, Isabelle

    2018-02-01

    In the present study, we aimed to metabolically characterize the postprandial adaptations of the major tissues involved in energy, lipids and amino acids metabolisms in mini-pigs. Mini-pigs were fed on high-fat-high-sucrose (HFHS) diet for 2 months and several tissues explored for metabolic analyses. Further, the urine metabolome was followed over the time to picture the metabolic adaptations occurring at the whole body level following overfeeding. After 2 months of HFHS consumption, mini-pigs displayed an obese phenotype characterized by high circulating insulin, triglycerides and cholesterol levels. At the tissue level, a general (muscle, adipose tissue, intestine) reduction in the capacity to phosphorylate glucose was observed. This was also supported by the enhanced hepatic gluconeogenesis potential, despite the concomitant normoglycaemia, suggesting that the high circulating insulin levels would be enough to maintain glucose homoeostasis. The HFHS feeding also resulted in a reduced capacity of two other pathways: the de novo lipogenesis, and the branched-chain amino acids transamination. Finally, the follow-up of the urine metabolome over the time allowed determining breaking points in the metabolic trajectory of the animals. Several features confirmed the pertinence of the animal model, including increased body weight, adiposity and porcine obesity index. At the metabolic level, we observed a perturbed glucose and amino acid metabolism, known to be related to the onset of the obesity. The urine metabolome analyses revealed several metabolic pathways potentially involved in the obesity onset, including TCA (citrate, pantothenic acid), amino acids catabolism (cysteine, threonine, leucine).

  20. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  1. Cellular energy metabolism in T-lymphocytes.

    PubMed

    Gaber, Timo; Strehl, Cindy; Sawitzki, Birgit; Hoff, Paula; Buttgereit, Frank

    2015-01-01

    Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.

  2. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster

    PubMed Central

    Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA

    2015-01-01

    When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124

  3. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective

    PubMed Central

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism

  4. Metabolic adaptation to weight loss: implications for the athlete

    PubMed Central

    2014-01-01

    Optimized body composition provides a competitive advantage in a variety of sports. Weight reduction is common among athletes aiming to improve their strength-to-mass ratio, locomotive efficiency, or aesthetic appearance. Energy restriction is accompanied by changes in circulating hormones, mitochondrial efficiency, and energy expenditure that serve to minimize the energy deficit, attenuate weight loss, and promote weight regain. The current article reviews the metabolic adaptations observed with weight reduction and provides recommendations for successful weight reduction and long term reduced-weight maintenance in athletes. PMID:24571926

  5. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    PubMed

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  6. Energetics, adaptation, and adaptability.

    PubMed

    Ulijaszek, Stanley J

    1996-01-01

    Energy capture and conversion are fundamental to human existence, and over the past three decades biological anthropologists have used a number of approaches which incorporate energetics measures in studies of human population biology. Human groups can vary enormously in their energy expenditure. This review considers evidence for genetic adaptation and presents models for physiological adaptability to reduced physiological energy availability and/or negative energy balance. In industrialized populations, different aspects of energy expenditure have been shown to have a genetic component, including basal metabolic rate, habitual physical activity level, mechanical efficiency of work performance, and thermic effect of food. Metabolic adaptation to low energy intakes has been demonstrated in populations in both developing and industrialized nations. Thyroid hormone-related effects on energy metabolic responses to low physiological energy availability are unified in a model, linking energetic adaptability in physical activity and maintenance metabolism. Negative energy balance has been shown to be associated with reduced reproductive function in women experiencing seasonal environments in some developing countries. Existing models relating negative energy balance to menstrual or ovulatory function are largely descriptive, and do not propose any physiological mechanisms for this phenomenon. A model is proposed whereby reduced physiological energy availability could influence ovulatory function via low serum levels of the amino acid aspartate and reduced sympathetic nervous system activity. © 1996 Wiley-Liss, Inc. Copyright © 1996 Wiley-Liss, Inc.

  7. [Adaptation of food ingestion to energy expenditure].

    PubMed

    Louis-Sylvestre, J

    1987-01-01

    Body energy balance is regulated in adults. The accuracy of the phenomenon is particularly evident in laboratory animals under steady conditions. Moreover, it has been repeatedly demonstrated that this balance is maintained in spite of fluctuations in food intake or energy expenditure. When animals such as rats, dogs or rabbits are presented with a diluted or concentrated version of familiar food, they compensate rapidly by increasing or decreasing their ponderal intake. This is achieved first by a change in meal frequency, then meal size adapts to the new caloric content and meal frequency returns to the original pattern. This adaptation is based on the learning of post-ingestive cues. Hypo or hyperphagia leads to reduced or increased energy expenditure, as the case may be; the basal metabolic rate is modulated by thyroid hormones and diet-induced thermogenesis by the sympathetic system. These variations are partly regulatory. In a cold environment, the increase in energy expenditure caused by increased thermogenesis is rapidly compensated by increased caloric intake. Physical activity activates the sympathetic system responsible for numerous hormonal changes, the most important of which is insulin hyposecretion. In animals or humans, moderate aerobic exercise induces a small weight loss; afterwards, weight gain is normalized and increased caloric intake compensates for energy expenditures such as exercise, increased basal metabolic rate and diet-induced thermogenesis. Extreme changes in body weight and fat are produced by gestation and lactation; they are satisfactorily explained by concomitant hormonal changes. Especially during lactation, food intake is regulated so that it allows body weight to return to pregestation level. Studies on the mechanisms implicated in the regulation of body energy balance are still in progress. Friedman and Ramirez (1985) suggest that the way fatty acids are utilized is important. Kasser et al. (1985) show a striking difference in

  8. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.

    PubMed

    Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

    2014-12-01

    Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Role of metabolic stress for enhancing muscle adaptations: Practical applications

    PubMed Central

    de Freitas, Marcelo Conrado; Gerosa-Neto, Jose; Zanchi, Nelo Eidy; Lira, Fabio Santos; Rossi, Fabrício Eduardo

    2017-01-01

    Metabolic stress is a physiological process that occurs during exercise in response to low energy that leads to metabolite accumulation [lactate, phosphate inorganic (Pi) and ions of hydrogen (H+)] in muscle cells. Traditional exercise protocol (i.e., Resistance training) has an important impact on the increase of metabolite accumulation, which influences hormonal release, hypoxia, reactive oxygen species (ROS) production and cell swelling. Changes in acute exercise routines, such as intensity, volume and rest between sets, are determinants for the magnitude of metabolic stress, furthermore, different types of training, such as low-intensity resistance training plus blood flow restriction and high intensity interval training, could be used to maximize metabolic stress during exercise. Thus, the objective of this review is to describe practical applications that induce metabolic stress and the potential effects of metabolic stress to increase systemic hormonal release, hypoxia, ROS production, cell swelling and muscle adaptations. PMID:28706859

  10. Energy metabolism in human obesity.

    PubMed

    Jéquier, E

    1989-01-01

    Obesity results from a chronic imbalance between energy intake and expenditure. Accurate measurements of total energy expenditure of lean and obese individuals with a respiration chamber have clearly shown that obese individuals expand more energy than lean sedentary subjects. Studies on the body composition of obese individuals reveal that not only the fat mass is enlarged, but the fat-free mass is also increased as compared with that of lean subjects. Since basal metabolic rate is proportional to the fat-free mass, obese subjects have a greater basal metabolic rate than lean controls. The energy cost of weight bearing activities such as walking and standing is related to body weight, and is therefore increased in obese individuals. The thermogenic response to food ingestion, the diet-induced thermogenesis, has been found to be reduced in some groups of obese people, but not in all obese individuals. The thermic effect of glucose or to meal ingestion is blunted in obese subjects with insulin resistance. Any alteration in thermogenic responses to a caloric excess can be important to store or to oxidize part of the excessive energy intake. After weight reduction in obese subjects due to a hypocaloric diet, the total 24-hour energy expenditure decreases by 20 to 25 kcal/day for each kilogram of weight loss. Failure to adapt the every day energy intake accordingly will result in body weight gain and relapse of obesity.

  11. Metabolic basis to Sherpa altitude adaptation

    PubMed Central

    Horscroft, James A.; Kotwica, Aleksandra O.; Laner, Verena; West, James A.; Hennis, Philip J.; Levett, Denny Z. H.; Howard, David J.; Fernandez, Bernadette O.; Burgess, Sarah L.; Ament, Zsuzsanna; Gilbert-Kawai, Edward T.; Vercueil, André; Landis, Blaine D.; Mythen, Monty G.; Branco, Cristina; Feelisch, Martin; Montgomery, Hugh E.; Griffin, Julian L.; Grocott, Michael P. W.; Gnaiger, Erich; Martin, Daniel S.; Murray, Andrew J.

    2017-01-01

    The Himalayan Sherpas, a human population of Tibetan descent, are highly adapted to life in the hypobaric hypoxia of high altitude. Mechanisms involving enhanced tissue oxygen delivery in comparison to Lowlander populations have been postulated to play a role in such adaptation. Whether differences in tissue oxygen utilization (i.e., metabolic adaptation) underpin this adaptation is not known, however. We sought to address this issue, applying parallel molecular, biochemical, physiological, and genetic approaches to the study of Sherpas and native Lowlanders, studied before and during exposure to hypobaric hypoxia on a gradual ascent to Mount Everest Base Camp (5,300 m). Compared with Lowlanders, Sherpas demonstrated a lower capacity for fatty acid oxidation in skeletal muscle biopsies, along with enhanced efficiency of oxygen utilization, improved muscle energetics, and protection against oxidative stress. This adaptation appeared to be related, in part, to a putatively advantageous allele for the peroxisome proliferator-activated receptor A (PPARA) gene, which was enriched in the Sherpas compared with the Lowlanders. Our findings suggest that metabolic adaptations underpin human evolution to life at high altitude, and could have an impact upon our understanding of human diseases in which hypoxia is a feature. PMID:28533386

  12. Adaptive evolution of complex innovations through stepwise metabolic niche expansion.

    PubMed

    Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A; Lercher, Martin J; Pál, Csaba; Papp, Balázs

    2016-05-20

    A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes.

  13. Adaptive evolution of complex innovations through stepwise metabolic niche expansion

    PubMed Central

    Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A.; Lercher, Martin J.; Pál, Csaba; Papp, Balázs

    2016-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes. PMID:27197754

  14. Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty acid metabolism in viral cardiomyopathy mouse heart.

    PubMed

    Xu, Jing; Nie, Hong-gang; Zhang, Xiao-dong; Tian, Ye; Yu, Bo

    2011-08-01

    The majority of experimental and clinical studies indicates that the hypertrophied and failing myocardium are characterized by changes in energy and substrate metabolism that attributed to failing heart changes at the genomic level, in fact, heart failure is caused by various diseases, their energy metabolism and substrate are in different genetic variations, then the potential significance of the molecular mechanisms for the aetiology of heart failure is necessary to be evaluated. Persistent viral infection (especially coxsackievirus group B3) of the myocardium in viral myocarditis and viral dilated cardiomyopathy has never been neglected by experts. This study aimed to explore the role and regulatory mechanism of the altered gene expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism in viral dilated cardiomyopathy. cDNA Microarray technology was used to evaluate the expression of >35,852 genes in a mice model of viral dilated cardiomyopathy. In total 1385 highly different genes expression, we analyzed 33 altered genes expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism and further selected real-time-PCR for quantity one of regulatory mechanisms for energy including fatty acid metabolism-the UCP2 and assayed cytochrome C oxidase activity by Spectrophotometer to explore mitochondrial oxidative phosphorylation function. We found obviously different expression of 33 energy metabolism genes associated with mitochondria oxidative phosphorylation, fatty acid metabolism in cardiomyopathy mouse heart, the regulatory gene for energy metabolism: UCP2 was down-regulated and cytochrome C oxidase activity was decreased. Genes involved in both fatty acid metabolism and mitochondrial oxidative phosphorylation were down-regulated, mitochondrial uncoupling proteins (UCP2) expression did not increase but decrease which might be a kind of adaptive protection response to

  15. Possible stimuli for strength and power adaptation : acute metabolic responses.

    PubMed

    Crewther, Blair; Cronin, John; Keogh, Justin

    2006-01-01

    The metabolic response to resistance exercise, in particular lactic acid or lactate, has a marked influence upon the muscular environment, which may enhance the training stimulus (e.g. motor unit activation, hormones or muscle damage) and thereby contribute to strength and power adaptation. Hypertrophy schemes have resulted in greater lactate responses (%) than neuronal and dynamic power schemes, suggesting possible metabolic-mediated changes in muscle growth. Factors such as age, sex, training experience and nutrition may also influence the lactate responses to resistance exercise and thereafter, muscular adaptation. Although the importance of the mechanical and hormonal stimulus to strength and power adaptation is well recognised, the contribution of the metabolic stimulus is largely unknown. Relatively few studies for example, have examined metabolic change across neuronal and dynamic power schemes, and not withstanding the fact that those mechanisms underpinning muscular adaptation, in relation to the metabolic stimulus, remain highly speculative. Inconsistent findings and methodological limitations within research (e.g. programme design, sampling period, number of samples) make interpretation further difficult. We contend that strength and power research needs to investigate those metabolic mechanisms likely to contribute to weight-training adaptation. Further research is also needed to examine the metabolic responses to different loading schemes, as well as interactions across age, sex and training status, so our understanding of how to optimise strength and power development is improved.

  16. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    PubMed

    Blanquer-Rosselló, Mª Del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption

    PubMed Central

    2014-01-01

    One line summary Metabolic syndrome and obesity-related co-morbidities are largely explained by co-adaptations to the energy use of the large human brain in the cortico-limbic-striatal and NRF2 systems. The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A ‘dual system’ is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing ‘common or garden’ food, appears to have occurred

  18. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility.

    PubMed

    Fisette, Alexandre; Tobin, Stephanie; Décarie-Spain, Léa; Bouyakdan, Khalil; Peyot, Marie-Line; Madiraju, S R Murthy; Prentki, Marc; Fulton, Stephanie; Alquier, Thierry

    2016-10-25

    α/β-Hydrolase domain 6 (ABHD6) is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMH KO ) have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMH KO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet). Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Astrocytes and energy metabolism.

    PubMed

    Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko

    2011-05-01

    Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.

  20. Metabolic Adaptations of Uropathogenic E. coli in the Urinary Tract

    PubMed Central

    Mann, Riti; Mediati, Daniel G.; Duggin, Iain G.; Harry, Elizabeth J.; Bottomley, Amy L.

    2017-01-01

    Escherichia coli ordinarily resides in the lower gastrointestinal tract in humans, but some strains, known as Uropathogenic E. coli (UPEC), are also adapted to the relatively harsh environment of the urinary tract. Infections of the urine, bladder and kidneys by UPEC may lead to potentially fatal bloodstream infections. To survive this range of conditions, UPEC strains must have broad and flexible metabolic capabilities and efficiently utilize scarce essential nutrients. Whole-organism (or “omics”) methods have recently provided significant advances in our understanding of the importance of metabolic adaptation in the success of UPECs. Here we describe the nutritional and metabolic requirements for UPEC infection in these environments, and focus on particular metabolic responses and adaptations of UPEC that appear to be essential for survival in the urinary tract. PMID:28642845

  1. Metabolic Adaptations of Uropathogenic E. coli in the Urinary Tract.

    PubMed

    Mann, Riti; Mediati, Daniel G; Duggin, Iain G; Harry, Elizabeth J; Bottomley, Amy L

    2017-01-01

    Escherichia coli ordinarily resides in the lower gastrointestinal tract in humans, but some strains, known as Uropathogenic E. coli (UPEC), are also adapted to the relatively harsh environment of the urinary tract. Infections of the urine, bladder and kidneys by UPEC may lead to potentially fatal bloodstream infections. To survive this range of conditions, UPEC strains must have broad and flexible metabolic capabilities and efficiently utilize scarce essential nutrients. Whole-organism (or "omics") methods have recently provided significant advances in our understanding of the importance of metabolic adaptation in the success of UPECs. Here we describe the nutritional and metabolic requirements for UPEC infection in these environments, and focus on particular metabolic responses and adaptations of UPEC that appear to be essential for survival in the urinary tract.

  2. Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia

    PubMed Central

    Berney, Michael; Cook, Gregory M.

    2010-01-01

    Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I) and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases) to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation) responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their ability to survive

  3. MYC-induced cancer cell energy metabolism and therapeutic opportunities.

    PubMed

    Dang, Chi V; Le, Anne; Gao, Ping

    2009-11-01

    Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which links altered cellular metabolism to tumorigenesis. c-Myc regulates genes involved in the biogenesis of ribosomes and mitochondria, and regulation of glucose and glutamine metabolism. With E2F1, c-Myc induces genes involved in nucleotide metabolism and DNA replication, and microRNAs that homeostatically attenuate E2F1 expression. With the hypoxia inducible transcription factor HIF-1, ectopic c-Myc cooperatively induces a transcriptional program for hypoxic adaptation. Myc regulates gene expression either directly, such as glycolytic genes including lactate dehydrogenase A (LDHA), or indirectly, such as repression of microRNAs miR-23a/b to increase glutaminase (GLS) protein expression and glutamine metabolism. Ectopic MYC expression in cancers, therefore, could concurrently drive aerobic glycolysis and/or oxidative phosphorylation to provide sufficient energy and anabolic substrates for cell growth and proliferation in the context of the tumor microenvironment. Collectively, these studies indicate that Myc-mediated altered cancer cell energy metabolism could be translated for the development of new anticancer therapies.

  4. Metabolic energy required for flight

    NASA Astrophysics Data System (ADS)

    Lane, H. W.; Gretebeck, R. J.

    1994-11-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.

  5. Metabolic energy required for flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Gretebeck, R. J.

    1994-01-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.

  6. Teaching Energy Metabolism Using Scientific Articles: Implementation of a Virtual Learning Environment for Medical Students

    ERIC Educational Resources Information Center

    de Espindola, Marina Bazzo; El-Bacha, Tatiana; Giannella, Tais Rabetti; Struchiner, Miriam; da Silva, Wagner S.; Da Poian, Andrea T.

    2010-01-01

    This work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as…

  7. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death.

    PubMed

    Gorban, Alexander N; Tyukina, Tatiana A; Smirnova, Elena V; Pokidysheva, Lyudmila I

    2016-09-21

    In 1938, Selye proposed the notion of adaptation energy and published 'Experimental evidence supporting the conception of adaptation energy.' Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the 'dominant path' in the model of adaptation. The phenomena of 'oscillating death' and 'oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Energy Metabolism Impairment in Migraine.

    PubMed

    Cevoli, Sabina; Favoni, Valentina; Cortelli, Pietro

    2018-06-22

    Migraine is a common disabling neurological disorder which is characterised by recurring headache associated with a variety of sensory and autonomic symptoms. The pathophysiology of migraine remains not entirely understood, although many mechanisms involving the central and peripheral nervous system are now becoming clear. In particular, it is widely accepted that migraine is associated with energy metabolic impairment of the brain. The purpose of this review is to present an update overview of the energy metabolism involvement in the migraine pathophysiology. Several biochemical, morphological and magnetic resonance spectroscopy studies have confirmed the presence of energy production deficiency together with an increment of energy consumption in migraine patients. An increment of energy demand over a certain threshold create metabolic and biochemical preconditions for the onset of the migraine attack. The defect of oxidative energy metabolism in migraine is generalized. It remains to be determined if the mitochondrial deficit in migraine is primary or secondary. Riboflavin and Co-Enzyme Q10, both physiologically implicated in mitochondrial respiratory chain functioning, are effective in migraine prophylaxis, supporting the hypothesis that improving brain energy metabolism may reduce the susceptibility to migraine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs

    PubMed Central

    2009-01-01

    The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent. Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and

  10. Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs.

    PubMed

    Reser, Jared Edward

    2009-02-28

    The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent.Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and

  11. Energy metabolism during endurance flight and the post-flight recovery phase.

    PubMed

    Jenni-Eiermann, Susanne

    2017-07-01

    Migrating birds are known to fly non-stop for thousands of kilometres without food or water intake and at a high metabolic rate thereby relying on energy stores which were built up preceding a flight bout. Hence, from a physiological point of view the metabolism of a migrant has to switch between an active fasting phase during flight and a fuelling phase during stopover. To meet the energetic and water requirements of endurance flight, migratory birds have to store an optimal fuel composition and they have to be able to quickly mobilize and deliver sufficient energy to the working flight muscles. After flight, birds have to recover from a strenuous exercise and sleeplessness, but, at the same time, they have to be alert to escape from predators and to prepare the next flight bout. In this overview, metabolic adaptations of free-ranging migrants to both phases will be presented and compared with results from windtunnel studies. The questions whether migratory strategy (long distance versus short distance) and diet composition influence the metabolic pathways will be discussed.

  12. Water-energy links in cities: the urban metabolism of London

    NASA Astrophysics Data System (ADS)

    Mijic, A.; Ruiz Cazorla, J.; Keirstead, J.

    2014-12-01

    Rapid urbanisation results in increased water consumption in cities, requiring improved tools for understanding adaptive measures for water resources management under climate change. The energy sector is facing the same challenges and requires equally comprehensive solutions. More frequent water shortages due to climate and land use changes and potential limits on CO2 emissions from fossil fuels that science demands indicate clearly that the next step in the sustainable city development will be to look for the most efficient use of these highly interdependent resources. One of the concepts that could be used for quantifying fundamental flows in an urban environment such as water and energy is the urban metabolism framework. This paper will examine the concept of urban metabolism by quantifying amounts and trends of water and energy consumed in London by four main sectors: residential, industrial, commercial and public. Key data requirements at the sector level will be identified and initial mapping of critical factors for urban sustainability will be provided. Finally, the work will examine the potential of urban metabolism framework to provide data and information for implementing water, energy and greenhouse emissions trade-off 'fit-for-purpose' strategy for water supply security. The paper is a part of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) under the working group of Energy and Food Impacts on Water.

  13. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows’ Ability to Adapt is Overstressed

    PubMed Central

    Sundrum, Albert

    2015-01-01

    Simple Summary Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. Problems derive from difficulties animals have to adapt to large variations and disturbances occurring both outside and inside the organism. A lack of success in solving these issues may be due to predominant approaches in farm management and agricultural science, dealing with such disorders as merely negative side effects. Instead, a successful adaptation of animals to their living conditions should be seen as an important end in itself. Both farm management and agricultural sciences should support animals in their ability to cope with nutritional and metabolic challenges by employing a functional and result-driven approach. Abstract Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes and their large variations on various scales

  14. Evolution of energy metabolism and its compartmentation in Kinetoplastida

    PubMed Central

    Hannaert, Véronique; Bringaud, Frédéric; Opperdoes, Fred R; Michels, Paul AM

    2003-01-01

    Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes of several catabolic and anabolic routes, including major parts of the glycolytic and pentosephosphate pathways. The kinetoplastid mitochondrion is also unusual with regard to both its structural and functional properties. In this review, we describe the unique compartmentation of metabolism in Kinetoplastida and the metabolic properties resulting from this compartmentation. We discuss the evidence for our recently proposed hypothesis that a common ancestor of Kinetoplastida and Euglenida acquired a photosynthetic alga as an endosymbiont, contrary to the earlier notion that this event occurred at a later stage of evolution, in the Euglenida lineage alone. The endosymbiont was subsequently lost from the kinetoplastid lineage but, during that process, some of its pathways of energy and carbohydrate metabolism were sequestered in the kinetoplastid peroxisomes, which consequently became glycosomes. The evolution of the kinetoplastid glycosomes and the possible selective advantages of these organelles for Kinetoplastida are discussed. We propose that the possession of glycosomes provided metabolic flexibility that has been important for the organisms to adapt easily to changing environmental conditions. It is likely that metabolic flexibility has been an important selective advantage for many kinetoplastid species during their evolution into the highly successful parasites today found in many divergent taxonomic groups. Also addressed is the evolution of the kinetoplastid mitochondrion, from a supposedly pluripotent organelle, attributed to a single endosymbiotic event that resulted in all mitochondria and

  15. Older adults learn less, but still reduce metabolic cost, during motor adaptation

    PubMed Central

    Huang, Helen J.

    2013-01-01

    The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older (n = 11, 73.8 ± 5.6 yr) and young (n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation. PMID:24133222

  16. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates

    PubMed Central

    Williams, Caroline M.; Szejner-Sigal, Andre; Morgan, Theodore J.; Edison, Arthur S.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving “Beyond the Mean”. PMID:27103615

  17. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards

    PubMed Central

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-01-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689

  18. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards.

    PubMed

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-09-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior.

  19. Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation

    PubMed Central

    Nabeebaccus, Adam A.; Zoccarato, Anna; Hafstad, Anne D.; Santos, Celio X.C.; Brewer, Alison C.; Zhang, Min; Beretta, Matteo; West, James A.; Eykyn, Thomas R.; Shah, Ajay M.

    2017-01-01

    Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial. PMID:29263294

  20. The correlation of sodium and potassium metabolism with the level of energy consumption in man during adaptation to heat

    NASA Technical Reports Server (NTRS)

    Afanasyev, B. G.; Zhestovskiy, V. A.

    1978-01-01

    The sodium and potassium metabolism was studied in a thermal chamber at 35 deg and 80 percent relative humidity in 8 men for a period of 6 days. The control group (3 subjects) were outside of the chamber at a comfortable ambient temperature. The intracellular sodium and potassium metabolism were assessed based on their content in the erythrocytes. The finding was that during adaptation to heat, a considerable amount of sodium was excreted by the body in the sweat and urine (about 1/3 of the sodium content of the human body) as compared with its intake and the amount of potassium retained in the body. Changes in the concentration of sodium and potassium may serve as indexes of the state of adaptation processes during constant exposure to heat.

  1. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.

    PubMed

    Berkhout, Jan; Bosdriesz, Evert; Nikerel, Emrah; Molenaar, Douwe; de Ridder, Dick; Teusink, Bas; Bruggeman, Frank J

    2013-06-01

    Evolutionary adaptations in metabolic networks are fundamental to evolution of microbial growth. Studies on unneeded-protein synthesis indicate reductions in fitness upon nonfunctional protein synthesis, showing that cell growth is limited by constraints acting on cellular protein content. Here, we present a theory for optimal metabolic enzyme activity when cells are selected for maximal growth rate given such growth-limiting biochemical constraints. We show how optimal enzyme levels can be understood to result from an enzyme benefit minus cost optimization. The constraints we consider originate from different biochemical aspects of microbial growth, such as competition for limiting amounts of ribosomes or RNA polymerases, or limitations in available energy. Enzyme benefit is related to its kinetics and its importance for fitness, while enzyme cost expresses to what extent resource consumption reduces fitness through constraint-induced reductions of other enzyme levels. A metabolic fitness landscape is introduced to define the fitness potential of an enzyme. This concept is related to the selection coefficient of the enzyme and can be expressed in terms of its fitness benefit and cost.

  2. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis

    PubMed Central

    Zeisel, Steven H.

    2013-01-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a >three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  3. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    PubMed

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production. © 2015 Scandinavian Plant Physiology Society.

  4. Adipose energy stores, physical work, and the metabolic syndrome: lessons from hummingbirds

    PubMed Central

    Hargrove, James L

    2005-01-01

    Hummingbirds and other nectar-feeding, migratory birds possess unusual adaptive traits that offer important lessons concerning obesity, diabetes and the metabolic syndrome. Hummingbirds consume a high sugar diet and have fasting glucose levels that would be severely hyperglycemic in humans, yet these nectar-fed birds recover most glucose that is filtered into the urine. Hummingbirds accumulate over 40% body fat shortly before migrations in the spring and autumn. Despite hyperglycemia and seasonally elevated body fat, the birds are not known to become diabetic in the sense of developing polyuria (glucosuria), polydipsia and polyphagia. The tiny (3–4 g) Ruby-throated hummingbird has among the highest mass-specific metabolic rates known, and loses most of its stored fat in 20 h by flying up to 600 miles across the Gulf of Mexico. During the breeding season, it becomes lean and maintains an extremely accurate energy balance. In addition, hummingbirds can quickly enter torpor and reduce resting metabolic rates by 10-fold. Thus, hummingbirds are wonderful examples of the adaptive nature of fat tissue, and may offer lessons concerning prevention of metabolic syndrome in humans. PMID:16351726

  5. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos.

    PubMed

    Sommer, Felix; Ståhlman, Marcus; Ilkayeva, Olga; Arnemo, Jon M; Kindberg, Jonas; Josefsson, Johan; Newgard, Christopher B; Fröbert, Ole; Bäckhed, Fredrik

    2016-02-23

    Hibernation is an adaptation that helps many animals to conserve energy during food shortage in winter. Brown bears double their fat depots during summer and use these stored lipids during hibernation. Although bears seasonally become obese, they remain metabolically healthy. We analyzed the microbiota of free-ranging brown bears during their active phase and hibernation. Compared to the active phase, hibernation microbiota had reduced diversity, reduced levels of Firmicutes and Actinobacteria, and increased levels of Bacteroidetes. Several metabolites involved in lipid metabolism, including triglycerides, cholesterol, and bile acids, were also affected by hibernation. Transplantation of the bear microbiota from summer and winter to germ-free mice transferred some of the seasonal metabolic features and demonstrated that the summer microbiota promoted adiposity without impairing glucose tolerance, suggesting that seasonal variation in the microbiota may contribute to host energy metabolism in the hibernating brown bear. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

    PubMed Central

    Cantó, Carles; Menzies, Keir; Auwerx, Johan

    2015-01-01

    NAD+ has emerged as a vital cofactor that can rewire metabolism, activate sirtuins and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD+ metabolism revived interest in NAD+ boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD+ metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited. PMID:26118927

  7. Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection.

    PubMed

    López-Agudelo, Víctor A; Baena, Andres; Ramirez-Malule, Howard; Ochoa, Silvia; Barrera, Luis F; Ríos-Estepa, Rigoberto

    2017-11-21

    Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival, keeping a balance between catabolism, anabolism and energy supply. Mtb knockouts with the faculty of being essential on a wide range of nutritional conditions are deemed as target candidates for tuberculosis (TB) treatment. Constraint-based genome-scale modeling is considered as a promising tool for evaluating genetic and nutritional perturbations on Mtb metabolic reprogramming. Nonetheless, few in silico assessments of the effect of nutritional conditions on Mtb's vulnerability and metabolic adaptation have been carried out. A genome-scale model (GEM) of Mtb, modified from the H37Rv iOSDD890, was used to explore the metabolic reprogramming of two Mtb knockout mutants (pfkA- and icl-mutants), lacking key enzymes of central carbon metabolism, while exposed to changing nutritional conditions (oxygen, and carbon and nitrogen sources). A combination of shadow pricing, sensitivity analysis, and flux distributions patterns allowed us to identify metabolic behaviors that are in agreement with phenotypes reported in the literature. During hypoxia, at high glucose consumption, the Mtb pfkA-mutant showed a detrimental growth effect derived from the accumulation of toxic sugar phosphate intermediates (glucose-6-phosphate and fructose-6-phosphate) along with an increment of carbon fluxes towards the reductive direction of the tricarboxylic acid cycle (TCA). Furthermore, metabolic reprogramming of the icl-mutant (icl1&icl2) showed the importance of the methylmalonyl pathway for the detoxification of propionyl-CoA, during growth at high fatty acid consumption rates and aerobic conditions. At elevated levels of fatty acid uptake and hypoxia, we found a drop in TCA cycle intermediate accumulation that might create redox imbalance. Finally, findings regarding Mtb

  8. A Small System—High-Resolution Study of Metabolic Adaptation in the Central Metabolic Pathway to Temperate Climates in Drosophila melanogaster

    PubMed Central

    Lavington, Erik; Cogni, Rodrigo; Kuczynski, Caitlin; Koury, Spencer; Behrman, Emily L.; O’Brien, Katherine R.; Schmidt, Paul S.; Eanes, Walter F.

    2014-01-01

    In this article, we couple the geographic variation in 127 single-nucleotide polymorphism (SNP) frequencies in genes of 46 enzymes of central metabolism with their associated cis-expression variation to predict latitudinal or climatic-driven gene expression changes in the metabolic architecture of Drosophila melanogaster. Forty-two percent of the SNPs in 65% of the genes show statistically significant clines in frequency with latitude across the 20 local population samples collected from southern Florida to Ontario. A number of SNPs in the screened genes are also associated with significant expression variation within the Raleigh population from North Carolina. A principal component analysis of the full variance–covariance matrix of latitudinal changes in SNP-associated standardized gene expression allows us to identify those major genes in the pathway and its associated branches that are likely targets of natural selection. When embedded in a central metabolic context, we show that these apparent targets are concentrated in the genes of the upper glycolytic pathway and pentose shunt, those controlling glycerol shuttle activity, and finally those enzymes associated with the utilization of glutamate and pyruvate. These metabolites possess high connectivity and thus may be the points where flux balance can be best shifted. We also propose that these points are conserved points associated with coupling energy homeostasis and energy sensing in mammals. We speculate that the modulation of gene expression at specific points in central metabolism that are associated with shifting flux balance or possibly energy-state sensing plays a role in adaptation to climatic variation. PMID:24770333

  9. Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants.

    PubMed

    Chilliard, Y; Ferlay, A; Faulconnier, Y; Bonnet, M; Rouel, J; Bocquier, F

    2000-02-01

    Changes in the amount and metabolism of adipose tissue (AT) occur in underfed ruminants, and are amplified during lactation, or in fat animals. The fat depot of the tail of some ovine breeds seems to play a particular role in adaptation to undernutrition; this role could be linked to its smaller adipocytes and high sensitivity to the lipolytic effect of catecholamines. Glucocorticoids and growth hormone probably interact to induce teleophoretic changes in the AT responses to adenosine and catecholamines during lactation. Fat mobilization in dry ewes is related both to body fatness and to energy balance. The in vivo beta-adrenergic lipolytic potential is primarily related to energy balance, whereas basal postprandial plasma non-esterified fatty acids (NEFA) are related to body fatness, and preprandial plasma NEFA is the best predictor of the actual body lipid loss. Several mechanisms seem to be aimed at avoiding excessive fat mobilization and/or insuring a return to the body fatness homeostatic set point. As well as providing the underfed animal with fatty acids as oxidative fuels, AT acts as an endocrine gland. The yield of leptin by ruminant AT is positively related to body fatness, decreased by underfeeding, beta-adrenergic stimulation and short day length, and increased by insulin and glucocorticoids. This finding suggests that the leptin chronic (or acute) decrease in lean (or underfed respectively) ruminants is, as in rodents, a signal for endocrine, metabolic and behavioural adaptations aimed at restoring homeostasis.

  10. Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams.

    PubMed

    Van Leeuwen, Travis E; Rosenfeld, Jordan S; Richards, Jeffrey G

    2011-09-01

    1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species

  11. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management

  12. Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin.

    PubMed

    Alfarano, C; Foussal, C; Lairez, O; Calise, D; Attané, C; Anesia, R; Daviaud, D; Wanecq, E; Parini, A; Valet, P; Kunduzova, O

    2015-02-01

    Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from metabolic adaptation to maladaptation of the heart in obese state. Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA) oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses. In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA utilization (P<0.05), accelerated glucose oxidation (P<0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin for 4 weeks prevented pressure overload-induced decline in FA metabolism (P<0.05) and mitochondrial defects. Furthermore, apelin treatment lowered fasting plasma glucose (P<0.01), improved glucose tolerance (P<0.05) and preserved cardiac function (P<0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is associated with reduced FA oxidation (P<0.001) and increased glucose oxidation (P<0.05). In isolated cardiomyocytes, apelin stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown. These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent myocardial

  13. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation.

    PubMed

    Bélanger, Mireille; Allaman, Igor; Magistretti, Pierre J

    2011-12-07

    The energy requirements of the brain are very high, and tight regulatory mechanisms operate to ensure adequate spatial and temporal delivery of energy substrates in register with neuronal activity. Astrocytes-a type of glial cell-have emerged as active players in brain energy delivery, production, utilization, and storage. Our understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving an intense cooperativity between astrocytes and neurons. This review focuses on the cellular aspects of brain energy metabolism, with a particular emphasis on the metabolic interactions between neurons and astrocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    PubMed

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  15. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    DOE PAGES

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; ...

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel

  16. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    PubMed

    McGill, Anne-Thea

    2014-01-01

    The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing 'common or garden' food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and

  17. Adaptation of oxidative phosphorylation to photoperiod-induced seasonal metabolic states in migratory songbirds.

    PubMed

    Trivedi, Amit Kumar; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2015-06-01

    Eukaryotic cells produce chemical energy in the form of ATP by oxidative phosphorylation of metabolic fuels via a series of enzyme mediated biochemical reactions. We propose that the rates of these reactions are altered, as per energy needs of the seasonal metabolic states in avian migrants. To investigate this, blackheaded buntings were photoperiodically induced with non-migratory, premigratory, migratory and post-migratory phenotypes. High plasma levels of free fatty acids, citrate (an intermediate that begins the TCA cycle) and malate dehydrogenase (mdh, an enzyme involved at the end of the TCA cycle) confirmed increased availability of metabolic reserves and substrates to the TCA cycle during the premigratory and migratory states, respectively. Further, daily expression pattern of genes coding for enzymes involved in the oxidative decarboxylation of pyruvate to acetyl-CoA (pdc and pdk) and oxidative phosphorylation in the TCA cycle (cs, odgh, sdhd and mdh) was monitored in the hypothalamus and liver. Reciprocal relationship between pdc and pdk expressions conformed with the altered requirements of acetyl-CoA for the TCA cycle in different metabolic states. Except for pdk, all genes had a daily expression pattern, with high mRNA expression during the day in the premigratory/migratory phenotypes, and at night (cs, odhg, sdhd and mdh) in the nonmigratory phenotype. Differences in mRNA expression patterns of pdc, sdhd and mdh, but not of pdk, cs and odgh, between the hypothalamus and liver indicated a tissue dependent metabolism in buntings. These results suggest the adaptation of oxidative phosphorylation pathway(s) at gene levels to the seasonal alternations in metabolism in migratory songbirds. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Energy metabolism in the liver.

    PubMed

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  19. AltitudeOmics: Red Blood Cell metabolic adaptation to high altitude hypoxia

    PubMed Central

    D’Alessandro, Angelo; Nemkov, Travis; Sun, Kaiqi; Liu, Hong; Song, Anren; Monte, Andrew A.; Subudhi, Andrew W.; Lovering, Andrew T.; Dvorkin, Daniel; Julian, Colleen G.; Kevil, Christopher G.; Kolluru, Gopi K.; Shiva, Sruthi; Gladwin, Mark T.; Xia, Yang; Hansen, Kirk C.; Roach, Robert C.

    2017-01-01

    Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following reascent after 7days at 1525m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory. PMID:27646145

  20. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice.

    PubMed

    Lin, Jiandie; Wu, Pei-Hsuan; Tarr, Paul T; Lindenberg, Katrin S; St-Pierre, Julie; Zhang, Chen-Yu; Mootha, Vamsi K; Jäger, Sibylle; Vianna, Claudia R; Reznick, Richard M; Cui, Libin; Manieri, Monia; Donovan, Mi X; Wu, Zhidan; Cooper, Marcus P; Fan, Melina C; Rohas, Lindsay M; Zavacki, Ann Marie; Cinti, Saverio; Shulman, Gerald I; Lowell, Bradford B; Krainc, Dimitri; Spiegelman, Bruce M

    2004-10-01

    PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.

  1. Resting and exercise energy metabolism in weight-reduced adults with severe obesity.

    PubMed

    Hames, Kazanna C; Coen, Paul M; King, Wendy C; Anthony, Steven J; Stefanovic-Racic, Maja; Toledo, Frederico G S; Lowery, Jolene B; Helbling, Nicole L; Dubé, John J; DeLany, James P; Jakicic, John M; Goodpaster, Bret H

    2016-06-01

    To determine effects of physical activity (PA) with diet-induced weight loss on energy metabolism in adults with severe obesity. Adults with severe obesity (n = 11) were studied across 6 months of intervention, then compared with controls with less severe obesity (n = 7) or normal weight (n = 9). Indirect calorimetry measured energy metabolism during exercise and rest. Markers of muscle oxidation were determined by immunohistochemistry. Data were presented as medians. The intervention induced 7% weight loss (P = 0.001) and increased vigorous PA by 24 min/wk (P = 0.02). During exercise, energy expenditure decreased, efficiency increased (P ≤ 0.03), and fatty acid oxidation (FAO) did not change. Succinate dehydrogenase increased (P = 0.001), but fiber type remained the same. Post-intervention subjects' resting metabolism remained similar to controls. Efficiency was lower in post-intervention subjects compared with normal-weight controls exercising at 25 W (P ≤ 0.002) and compared with all controls exercising at 60% VO2peak (P ≤ 0.019). Resting and exercise FAO of post-intervention subjects remained similar to adults with less severe obesity. Succinate dehydrogenase and fiber type were similar across all body weight statuses. While metabolic adaptations to PA during weight loss occur in adults with severe obesity, FAO does not change. Resulting FAO during rest and exercise remains similar to adults with less severe obesity. © 2016 The Obesity Society.

  2. Metabolic adaptations of overwintering European common lizards (Lacerta vivipara).

    PubMed

    Voituron, Y; Hérold, J P; Grenot, C

    2000-01-01

    The European common lizard Lacerta vivipara, a reptile of cold-temperate climates, provides us an interesting model of low-temperature adaptation. Indeed its unique cold-hardiness strategy, which employs both freeze tolerance and freeze avoidance, may be seen as the primary reason for its large distribution, which extends from Spain to beyond the Arctic circle. To study the metabolism supporting this capacity, we used three techniques: two techniques of calorimetry (oxygen consumption and thermogenesis) and nuclear magnetic resonance spectroscopy. These techniques were used to examine the metabolic balance and the different molecular pathways used between three different periods through the year (September, January, and May). The results show a significant 20% augmentation of winter anaerobic metabolism compared to other periods of the year. This is mainly because of an activation of the lactic fermentation pathway leading to an increase of lactate concentration (>34% in winter). Furthermore, glucose, which increases some 245% in winter, is used as antifreeze and metabolic substrate. Furthermore, this study provides evidence that the physiological adaptations of the common lizard differ from those of other ectotherms such as Rana sylvatica. Concentrations of alanine and glycerol, commonly used as antifreeze by many overwintering ectotherms, do not increase during winter.

  3. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health

    PubMed Central

    Rothman, Sarah M; Griffioen, Kathleen J; Wan, Ruiqian; Mattson, Mark P

    2012-01-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders. PMID:22548651

  4. A mathematical analysis of adaptations to the metabolic fate of fructose in essential fructosuria subjects.

    PubMed

    Allen, R J; Musante, Cynthia J

    2018-04-17

    Fructose is a major component of Western diets and is implicated in the pathogenesis of obesity and type 2 diabetes. In response to an oral challenge, the majority of fructose is cleared during "first-pass" liver metabolism, primarily via phosphorylation by ketohexokinase (KHK). A rare benign genetic deficiency in KHK, called essential fructosuria (EF), leads to altered fructose metabolism. The only reported symptom of EF is the appearance of fructose in the urine following either oral or intravenous fructose administration. Here we develop and use a mathematical model to investigate the adaptations to altered fructose metabolism in people with EF. Firstly, the model is calibrated to fit available data in normal healthy subjects. Then, to mathematically represent EF subjects we systematically implement metabolic adaptations such that model simulations match available data for this phenotype. We hypothesize that these modifications represent the major metabolic adaptations present in these subjects. This modeling approach suggests that several other aspects of fructose metabolism, beyond hepatic KHK deficiency, are altered and contribute to the etiology of this benign condition. Specifically, we predict that fructose absorption into the portal vein is altered, peripheral metabolism is slowed, renal re-absorption of fructose is mostly ablated and that alternate pathways for hepatic metabolism of fructose are up-regulated. Moreover, these findings have implications for drug discovery and development, suggesting that the therapeutic targeting of fructose metabolism could lead to unexpected metabolic adaptations, potentially due to a physiological response to high fructose conditions.

  5. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae

    PubMed Central

    Heroven, Ann Kathrin; Dersch, Petra

    2014-01-01

    Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets. PMID:25368845

  6. A small system--high-resolution study of metabolic adaptation in the central metabolic pathway to temperate climates in Drosophila melanogaster.

    PubMed

    Lavington, Erik; Cogni, Rodrigo; Kuczynski, Caitlin; Koury, Spencer; Behrman, Emily L; O'Brien, Katherine R; Schmidt, Paul S; Eanes, Walter F

    2014-08-01

    In this article, we couple the geographic variation in 127 single-nucleotide polymorphism (SNP) frequencies in genes of 46 enzymes of central metabolism with their associated cis-expression variation to predict latitudinal or climatic-driven gene expression changes in the metabolic architecture of Drosophila melanogaster. Forty-two percent of the SNPs in 65% of the genes show statistically significant clines in frequency with latitude across the 20 local population samples collected from southern Florida to Ontario. A number of SNPs in the screened genes are also associated with significant expression variation within the Raleigh population from North Carolina. A principal component analysis of the full variance-covariance matrix of latitudinal changes in SNP-associated standardized gene expression allows us to identify those major genes in the pathway and its associated branches that are likely targets of natural selection. When embedded in a central metabolic context, we show that these apparent targets are concentrated in the genes of the upper glycolytic pathway and pentose shunt, those controlling glycerol shuttle activity, and finally those enzymes associated with the utilization of glutamate and pyruvate. These metabolites possess high connectivity and thus may be the points where flux balance can be best shifted. We also propose that these points are conserved points associated with coupling energy homeostasis and energy sensing in mammals. We speculate that the modulation of gene expression at specific points in central metabolism that are associated with shifting flux balance or possibly energy-state sensing plays a role in adaptation to climatic variation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Adaptation of skeletal muscle energy metabolism to repeated hypoxic-normoxic exposures and drug treatment.

    PubMed

    Pastoris, O; Dossena, M; Gorini, A; Vercesi, L; Benzi, G

    1985-03-01

    Muscular glycolytic fuels, intermediates and end-products (glycogen, glucose, glucose-6-phosphate, pyruvate, lactate), Krebs cycle intermediates (citrate, alpha-ketoglutarate, succinate, malate), related free amino acids (glutamate, alanine), ammonia, energy store (creatine phosphate), energy mediators (ATP, ADP, AMP) and energy charge potential were evaluated. Furthermore the maximum rate (Vmax) of the following muscular enzyme activities was evaluated in the crude extract and/or mitochondrial fraction: for the anaerobic glycolytic pathway: hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase; for the tricarboxylic acid cycle: citrate synthase, malate dehydrogenase; for the electron transfer chain: total NADH cytochrome c reductase, cytochrome oxidase. The rat gastrocnemius muscles were analyzed in normoxia and after repeated, alternate hypoxic and normoxic exposures (12 hours of hypoxia daily; for 5 days). Naftidrofuryl was administered daily at three different doses: 10, 15 and 22.5 mg/kg i.m., 30 min before the beginning of the experimental hypoxia. The biochemical adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by the decrease of the muscular contents of creatine phosphate, citrate, alpha-ketoglutarate and glutamate. This adaptation occurred in absence of significant changes in the Vmax of the muscle enzymes tested. By naftidrofuryl treatment, in gastrocnemius muscle from hypoxic rats both alpha-ketoglutarate and creatine phosphate contents maintained normal values, while glutamate concentration remained reduced to subnormal values. With the exception of hexokinase, naftidrofuryl treatment did not modify the Vmax of marker enzymes related to energy transduction.

  8. Metabolic Adaptations of CD4+ T Cells in Inflammatory Disease

    PubMed Central

    Dumitru, Cristina; Kabat, Agnieszka M.; Maloy, Kevin J.

    2018-01-01

    A controlled and self-limiting inflammatory reaction generally results in removal of the injurious agent and repair of the damaged tissue. However, in chronic inflammation, immune responses become dysregulated and prolonged, leading to tissue destruction. The role of metabolic reprogramming in orchestrating appropriate immune responses has gained increasing attention in recent years. Proliferation and differentiation of the T cell subsets that are needed to address homeostatic imbalance is accompanied by a series of metabolic adaptations, as T cells traveling from nutrient-rich secondary lymphoid tissues to sites of inflammation experience a dramatic shift in microenvironment conditions. How T cells integrate information about the local environment, such as nutrient availability or oxygen levels, and transfer these signals to functional pathways remains to be fully understood. In this review, we discuss how distinct subsets of CD4+ T cells metabolically adapt to the conditions of inflammation and whether these insights may pave the way to new treatments for human inflammatory diseases. PMID:29599783

  9. Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia.

    PubMed

    Fang, Xin; Wallqvist, Anders; Reifman, Jaques

    2012-01-01

    The ability to adapt to different conditions is key for Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), to successfully infect human hosts. Adaptations allow the organism to evade the host immune responses during acute infections and persist for an extended period of time during the latent infectious stage. In latently infected individuals, estimated to include one-third of the human population, the organism exists in a variety of metabolic states, which impedes the development of a simple strategy for controlling or eradicating this disease. Direct knowledge of the metabolic states of M. tuberculosis in patients would aid in the management of the disease as well as in forming the basis for developing new drugs and designing more efficacious drug cocktails. Here, we propose an in silico approach to create state-specific models based on readily available gene expression data. The coupling of differential gene expression data with a metabolic network model allowed us to characterize the metabolic adaptations of M. tuberculosis H37Rv to hypoxia. Given the microarray data for the alterations in gene expression, our model predicted reduced oxygen uptake, ATP production changes, and a global change from an oxidative to a reductive tricarboxylic acid (TCA) program. Alterations in the biomass composition indicated an increase in the cell wall metabolites required for cell-wall growth, as well as heightened accumulation of triacylglycerol in preparation for a low-nutrient, low metabolic activity life style. In contrast, the gene expression program in the deletion mutant of dosR, which encodes the immediate hypoxic response regulator, failed to adapt to low-oxygen stress. Our predictions were compatible with recent experimental observations of M. tuberculosis activity under hypoxic and anaerobic conditions. Importantly, alterations in the flow and accumulation of a particular metabolite were not necessarily directly linked to differential gene

  10. Environmental effects on nutrient and energy metabolism in ruminants.

    PubMed

    Tamminga, S; Schrama, J W

    1998-01-01

    Domesticated animals all over the world are subjected to a wide variety of environmental conditions and challenges. Any deviation from "normal" may result in adaptive behavior of which changes in feed intake or feed intake pattern is by far the most important. Adaptive behavior may further include influences on passage rate of feed residues through the digestive tract, resulting in changes in digestibility. Adaptive behavior may also result in changes in heat production, either to maintain body temperature constant, or as a result of an elevated body temperature. Important environmental challenges are infectious diseases. Mild (sub-clinical) infections usually result in reduced performance, without affecting feed intake or digestibility. Severe infections may disrupt the barriers between the internal metabolism and the respiratory and/or digestive tract, resulting in severe losses of energy and protein. This situation is notably apparent in severe infections with parasites of the gastrointestinal tract and may be associated with severe protein losses. Feeding high protein diets may partly alleviate the negative effects. Contamination of air, water and feed may occasionally cause problems in farm animals. Such contamination may include pathogenic microbes, toxic secondary fungal metabolites and heavy metals. Negative effects associated with such contamination often show an impaired reproductive efficiency, but their influence on the utilization of energy and nutrients is not well documented.

  11. Exercise-induced menstrual cycle changes. A functional, temporary adaptation to metabolic stress.

    PubMed

    Bonen, A

    1994-06-01

    Chronic exercise is now known to alter the menstrual cycle. Yet, we do not yet know the true incidence of menstrual cycle alterations in athletes, because good normative data do not exist and the metabolic cost of training has not been considered in many studies. Secondary amenorrhoea is not easily induced by exercise training alone but seems to require additional metabolic stressors. Induction of secondary amenorrhoea in prospective exercise studies has not occurred, although the onset of short luteal or inadequate luteal phase cycles may occur in women even when running distances are not extensive. Such menstrual cycles may cause infertility, but this is only a temporary phenomenon since pregnancy, if desired, will usually occur upon cessation of training. Exercise-related changes in the menstrual cycle can be viewed as a functionally adaptive rather than a maladaptive dysfunction. A strong case can be made that the changes in the menstrual cycle as a result of exercise are an energy conserving strategy to protect more important biological processes. This hypothesis is consistent with the theory of metabolic arrest that has been identified in lower organisms and hibernating mammals.

  12. Induction of energy metabolism related enzymes in yeast Saccharomyces cerevisiae exposed to ibogaine is adaptation to acute decrease in ATP energy pool.

    PubMed

    Paskulin, Roman; Jamnik, Polona; Obermajer, Natasa; Slavić, Marija; Strukelj, Borut

    2010-02-10

    Ibogaine has been extensively studied in the last decades in relation to its anti-addictive properties that have been repeatedly reported as being addiction interruptive and craving eliminative. In our previous study we have already demonstrated induction of energy related enzymes in rat brains treated with ibogaine at a dose of 20mg/kg i.p. 24 and 72 h prior to proteomic analysis. In this study a model organism yeast Saccharomyces cerevisiae was cultivated with ibogaine in a concentration of 1mg/l. Energy metabolism cluster enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, enolase and alcohol dehydrogenase were induced after 5h of exposure. This is a compensation of demonstrated ATP pool decrease after ibogaine. Yeast in a stationary growth phase is an accepted model for studies of housekeeping metabolism of eukaryotes, including humans. Study showed that ibogaine's influence on metabolism is neither species nor tissue specific. Effect is not mediated by binding of ibogaine to receptors, as previously described in literature since they are lacking in this model. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Energy Metabolism in the Liver

    PubMed Central

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  14. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    PubMed Central

    2013-01-01

    Background Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. Results This study integrates control engineering and classical MCA augmented with supply–demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the ‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. Conclusions A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and

  15. Defective adaptive thermogenesis contributes to metabolic syndrome and liver steatosis in obese mice.

    PubMed

    Poekes, Laurence; Legry, Vanessa; Schakman, Olivier; Detrembleur, Christine; Bol, Anne; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2017-02-01

    Fatty liver diseases are complications of the metabolic syndrome associated with obesity, insulin resistance and low grade inflammation. Our aim was to uncover mechanisms contributing to hepatic complications in this setting. We used foz/foz mice prone to obesity, insulin resistance and progressive fibrosing non-alcoholic steatohepatitis (NASH). Foz/foz mice are hyperphagic but wild-type (WT)-matched calorie intake failed to protect against obesity, adipose inflammation and glucose intolerance. Obese foz/foz mice had similar physical activity level but reduced energy expenditure. Thermogenic adaptation to high-fat diet (HFD) or to cold exposure was severely impaired in foz/foz mice compared with HFD-fed WT littermates due to lower sympathetic tone in their brown adipose tissue (BAT). Intermittent cold exposure (ICE) restored BAT function and thereby improved glucose tolerance, decreased fat mass and liver steatosis. We conclude that failure of BAT adaptation drives the metabolic complications of obesity in foz/foz mice, including development of liver steatosis. Induction of endogenous BAT function had a significant therapeutic impact on obesity, glucose tolerance and liver complications and is a potential new avenue for therapy of non-alcoholic fatty liver disease (NAFLD). © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Cold climate specialization: adaptive covariation between metabolic rate and thermoregulation in pregnant vipers.

    PubMed

    Lourdais, Olivier; Guillon, Michaël; Denardo, Dale; Blouin-Demers, Gabriel

    2013-07-02

    We compared thermoregulatory strategies during pregnancy in two congeneric viperid snakes (Vipera berus and Vipera aspis) with parapatric geographic ranges. V. berus is a boreal specialist with the largest known distribution among terrestrial snakes while V. aspis is a south-European species. Despite contrasted climatic affinities, the two species displayed identical thermal preferences (Tset) in a laboratory thermal gradient. Under identical natural conditions, however, V. berus was capable of maintaining Tset for longer periods, especially when the weather was constraining. Consistent with the metabolic cold adaptation hypothesis, V. berus displayed higher standard metabolic rate at all temperatures considered. We used the thermal dependence of metabolic rate to calculate daily metabolic profiles from body temperature under natural conditions. The boreal specialist experienced higher daily metabolic rate and minimized gestation duration chiefly because of differences in the metabolic reaction norms, but also superior thermoregulatory efficiency. Under cold climates, thermal constraints should make precise thermoregulation costly. However, a shift in the metabolic reaction norm may compensate for thermal constraints and modify the cost-benefit balance of thermoregulation. Covariation between metabolic rate and thermoregulation efficiency is likely an important adaptation to cold climates. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons.

    PubMed

    Malthankar-Phatak, Gauri H; Patel, Anant B; Xia, Ying; Hong, Soonsun; Chowdhury, Golam M I; Behar, Kevin L; Orina, Isaac A; Lai, James C K

    2008-09-10

    Mechanisms underlying hypoxia-induced neuronal adaptation have not been fully elucidated. In the present study we investigated glucose metabolism and the activities of glycolytic and TCA cycle enzymes in cerebro-cortical neurons exposed to hypoxia (3 days in 1% of O2) or normoxia (room air). Hypoxia led to increased activities of LDH (194%), PK (90%), and HK (24%) and decreased activities of CS (15%) and GDH (34%). Neurons were incubated with [1-(13)C]glucose for 45 and 120 min under normoxic or hypoxic (120 min only) conditions and 13C enrichment determined in the medium and cell extract using 1H-{13C}-NMR. In hypoxia-treated neurons [3-(13)C]lactate release into the medium was 428% greater than in normoxia-treated controls (45-min normoxic incubation) and total flux through lactate was increased by 425%. In contrast glucose oxidation was reduced significantly in hypoxia-treated neurons, even when expressed relative to total cellular protein, which correlated with the reduced activities of the measured mitochondrial enzymes. The results suggest that surviving neurons adapt to prolonged hypoxia by up-regulation of glycolysis and down-regulation of oxidative energy metabolism, similar to certain other cell types. The factors leading to adaptation and survival for some neurons but not others remain to be determined.

  18. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster

    PubMed Central

    McCue, Marshall D.; Sunny, Nishanth E.; Szejner-Sigal, Andre; Morgan, Theodore J.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using 13C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  19. Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes.

    PubMed

    Verrier, Delphine; Groscolas, René; Guinet, Christophe; Arnould, John P Y

    2009-11-01

    Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 +/- 3.3 days) were investigated at 7 mo of age. Within 4-6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate (5.9 +/- 0.1 ml O(2)xkg(-1)xday(-1)) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 +/- 10 kJxkg(-1)xday(-1)) and water influx (7.9 +/- 0.9 mlxkg(-1)xday(-1)) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as beta-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

  20. Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization

    PubMed Central

    Schild, Tanya; Low, Vivien; Blenis, John; Gomes, Ana P.

    2018-01-01

    Summary Metastases arising from tumors have the proclivity to colonize specific organs, suggesting that they must rewire their biology to meet the demands of the organ colonized, thus altering their primary properties. Each metastatic site presents distinct metabolic challenges to a colonizing cancer cell, ranging from fuel and oxygen availability to oxidative stress. Here, we discuss the organ-specific metabolic adaptations cancer cells must undergo, which provide the ability to overcome the unique barriers to colonization in foreign tissues and establish the metastatic tissue tropism phenotype. PMID:29533780

  1. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  2. Spruce Budworm and Energy Metabolism?

    Treesearch

    Thakor R.  Patel

    1983-01-01

    The utilization of stored lipids (fat) for energy metabolism appears to be a fundamental process for many biological systems especially during the early stages of their development. The participation of the glyoxylate cycle (GOG) together with other metabolic sequences like gluconeogenesis and beta oxidation are necessary for the conversion of lipids to carbohydrates....

  3. A Non-Traditional Model of the Metabolic Syndrome: The Adaptive Significance of Insulin Resistance in Fasting-Adapted Seals

    PubMed Central

    Houser, Dorian S.; Champagne, Cory D.; Crocker, Daniel E.

    2013-01-01

    Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7–3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies

  4. A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals.

    PubMed

    Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E

    2013-11-01

    Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies.

  5. Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals

    PubMed Central

    Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.

    2014-01-01

    Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365

  6. Sodium signaling and astrocyte energy metabolism.

    PubMed

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. © 2016 Wiley Periodicals, Inc.

  7. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    PubMed

    McGill, Anne-Thea

    2014-01-01

    Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome's underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to 'test' this composite unifying theory it is important to show that the hypothesis and sub-theories pertain throughout the whole of human evolution and history up till the current era. Corollaries of the composite unifying theory of MetS are examined with respect to past under-nutrition and malnutrition since agriculture began 10,000 years ago. The effects of man-made pollutants on degenerative change are examined. Projections are then made from current to future patterns on the state of 'insufficient micronutrient and/or unbalanced high energy malnutrition with central obesity and metabolic dysregulation' or 'malnubesity'. Forecasts

  8. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    NASA Astrophysics Data System (ADS)

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-08-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states.

  9. An expanded view of energy homeostasis: Neural integration of metabolic, cognitive, and emotional drives to eat

    PubMed Central

    Shin, Andrew C.; Zheng, Huiyuan; Berthoud, Hans-Rudolf

    2009-01-01

    The traditional view of neural regulation of body energy homeostasis focuses on internal feedback signals integrated in the hypothalamus and brainstem and in turn leading to balanced activation of behavioral, autonomic, and endocrine effector pathways leading to changes in food intake and energy expenditure. Recent observations have demonstrated that many of these internal signals encoding energy status have much wider effects on the brain, particularly sensory and cortico-limbic systems that process information from the outside world by detecting and interpreting food cues, forming, storing, and recalling representations of experience with food, and assigning hedonic and motivational value to conditioned and unconditioned food stimuli. Thus, part of the metabolic feedback from the internal milieu regulates food intake and energy balance by acting on extrahypothalamic structures, leading to an expanded view of neural control of energy homeostasis taking into account the need to adapt to changing conditions in the environment. The realization that metabolic signals act directly on these non-traditional targets of body energy homeostasis brings opportunities for novel drug targets for the fight against obesity and eating disorders. PMID:19419661

  10. INSECT FAT BODY: ENERGY, METABOLISM, AND REGULATION

    PubMed Central

    Arrese, Estela L.; Soulages, Jose L.

    2010-01-01

    The fat body plays major roles in the life of insects. It is a dynamic tissue involved in multiple metabolic functions. One of these functions is to store and release energy in response to the energy demands of the insect. Insects store energy reserves in the form of glycogen and triglycerides in the adipocytes, the main fat body cell. Insect adipocytes can store a great amount of lipid reserves as cytoplasmic lipid droplets. Lipid metabolism is essential for growth and reproduction and provides energy needed during extended nonfeeding periods. This review focuses on energy storage and release and summarizes current understanding of the mechanisms underlying these processes in insects. PMID:19725772

  11. Metabolic changes in malnutrition.

    PubMed

    Emery, P W

    2005-10-01

    This paper is concerned with malnutrition caused by inadequate intake of all the major nutrients rather than deficiency diseases relating to a single micronutrient. Three common situations are recognised: young children in third world countries with protein-energy malnutrition; adults in the same countries who are chronically adapted to subsisting on marginally inadequate diets; and patients who become malnourished as a result of chronic diseases. In all these situations infectious diseases are often also present, and this complicates the interpretation of biochemical and physiological observations. The metabolic response to starvation is primarily concerned with maintaining a supply of water-soluble substrates to supply energy to the brain. Thus there is an initial rise in metabolic rate, reflecting gluconeogenic activity. As fasting progresses, gluconeogenesis is suppressed to minimise muscle protein breakdown and ketones become the main fuel for the brain. With chronic underfeeding the basal metabolic rate per cell appears to fall, but the mechanistic basis for this is not clear. The main adaptation to chronic energy deficiency is slow growth and low adult body size, although the reduction in energy requirement achieved by this is partially offset by the preservation of the more metabolically active organs at the expense of muscle, which has a lower metabolic rate. The interaction between malnutrition and the metabolic response to trauma has been studied using an animal model. The rise in energy expenditure and urinary nitrogen excretion following surgery were significantly attenuated in malnourished rats, suggesting that malnutrition impairs the ability of the body to mobilise substrates to support inflammatory and reparative processes. However, the healing process in wounded muscle remained unimpaired in malnutrition, suggesting that this process has a high biological priority.

  12. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways.

    PubMed

    Morvan, Daniel; Demidem, Aicha

    2007-03-01

    Metabolomics of tumors may allow discovery of tumor biomarkers and metabolic therapeutic targets. Metabolomics by two-dimensional proton high-resolution magic angle spinning nuclear magnetic resonance spectroscopy was applied to investigate metabolite disorders following treatment by chloroethylnitrosourea of murine B16 melanoma (n = 33) and 3LL pulmonary carcinoma (n = 31) in vivo. Treated tumors of both types resumed growth after a delay. Nitrosoureas provoke DNA damage but the metabolic consequences of genotoxic stress are little known yet. Although some differences were observed in the metabolite profile of untreated tumor types, the prominent metabolic features of the response to nitrosourea were common to both. During the growth inhibition phase, there was an accumulation of glucose (more than x10; P < 0.05), glutamine (x3 to 4; P < 0.01), and aspartate (x2 to 5; P < 0.01). This response testified to nucleoside de novo synthesis down-regulation and drug efficacy. However, this phase also involved the increase in alanine (P < 0.001 in B16 melanoma), the decrease in succinate (P < 0.001), and the accumulation of serine-derived metabolites (glycine, phosphoethanolamine, and formate; P < 0.01). This response witnessed the activation of pathways implicated in energy production and resumption of nucleotide de novo synthesis, thus metabolic pathways of DNA repair and adaptation to treatment. During the growth recovery phase, it remained polyunsaturated fatty acid accumulation (x1.5 to 2; P < 0.05) and reduced utilization of glucose compared with glutamine (P < 0.05), a metabolic fingerprint of adaptation. Thus, this study provides the proof of principle that metabolomics of tumor response to an anticancer agent may help discover metabolic pathways of drug efficacy and adaptation to treatment.

  13. [Oxygen-dependent energy deficit as related to the problems of ontogenetic development disorders and human sociobiological adaptation (theoretical and applied aspects)].

    PubMed

    Ilyukhina, V A; Kataeva, G V; Korotkov, A D; Chernysheva, E M

    2015-01-01

    The review states and argues theoretical propositions on the pathogenetic role of pre- and perinatal hypoxic-ischemic brain damage in the formation of sustained oxygen-dependent energy deficit underlying in further ontogenesis the following neurobiological abnormalities: a) a decline in the level of health and compensatory-adaptive capacities of the organism, b) disorders of the psycho-speech development and adaptive behavior in children, c) early development of neuropsychic diseases, g) addition of other types of brain energy metabolism (including glucose metabolism) disorders in chronic polyetiologic diseases young and middle-aged individuals. We highlight and theoretically substantiate the integrated physiological parameters of the oxygen-dependent energy deficit types. We address the features of abnormalities in neuroreflectory and neurohumora regulatory mechanisms of the wakefulness level and its vegetative and hemodynamic provision in different types of energy deficit in children with DSMD, ADHD and school maladjustment. The use of the state-of-the-art neuroimaging techniques significantly increased the possibility of the disintegration of regulatory processes and cognitive functions in children with psycho-speech delays and in a wide range of chronic polyetiologic diseases.

  14. Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolism.

    PubMed

    de Carvalho, Ana Elisa Teófilo Saturi; Bassaneze, Vinícius; Forni, Maria Fernanda; Keusseyan, Aline Alfonso; Kowaltowski, Alicia Juliana; Krieger, José Eduardo

    2017-11-13

    Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.

  15. Microglia energy metabolism in metabolic disorder.

    PubMed

    Kalsbeek, Martin J T; Mulder, Laurie; Yi, Chun-Xia

    2016-12-15

    Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. A cellular perspective on brain energy metabolism and functional imaging.

    PubMed

    Magistretti, Pierre J; Allaman, Igor

    2015-05-20

    The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Hypothalamic control of energy and glucose metabolism.

    PubMed

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  18. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid

    PubMed Central

    Koczula, Anna; Jarek, Michael; Visscher, Christian; Valentin-Weigand, Peter; Goethe, Ralph; Willenborg, Jörg

    2017-01-01

    Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF) revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq). In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism). In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments. PMID:28212285

  19. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid.

    PubMed

    Koczula, Anna; Jarek, Michael; Visscher, Christian; Valentin-Weigand, Peter; Goethe, Ralph; Willenborg, Jörg

    2017-02-15

    Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF) revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq). In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism). In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments.

  20. Current technical approaches to brain energy metabolism.

    PubMed

    Barros, L Felipe; Bolaños, Juan P; Bonvento, Gilles; Bouzier-Sore, Anne-Karine; Brown, Angus; Hirrlinger, Johannes; Kasparov, Sergey; Kirchhoff, Frank; Murphy, Anne N; Pellerin, Luc; Robinson, Michael B; Weber, Bruno

    2018-06-01

    Neuroscience is a technology-driven discipline and brain energy metabolism is no exception. Once satisfied with mapping metabolic pathways at organ level, we are now looking to learn what it is exactly that metabolic enzymes and transporters do and when, where do they reside, how are they regulated, and how do they relate to the specific functions of neurons, glial cells, and their subcellular domains and organelles, in different areas of the brain. Moreover, we aim to quantify the fluxes of metabolites within and between cells. Energy metabolism is not just a necessity for proper cell function and viability but plays specific roles in higher brain functions such as memory processing and behavior, whose mechanisms need to be understood at all hierarchical levels, from isolated proteins to whole subjects, in both health and disease. To this aim, the field takes advantage of diverse disciplines including anatomy, histology, physiology, biochemistry, bioenergetics, cellular biology, molecular biology, developmental biology, neurology, and mathematical modeling. This article presents a well-referenced synopsis of the technical side of brain energy metabolism research. Detail and jargon are avoided whenever possible and emphasis is given to comparative strengths, limitations, and weaknesses, information that is often not available in regular articles. © 2017 Wiley Periodicals, Inc.

  1. The Energy Maintenance Theory of Aging: Maintaining Energy Metabolism to Allow Longevity.

    PubMed

    Chaudhari, Snehal N; Kipreos, Edward T

    2018-06-14

    Fused, elongated mitochondria are more efficient in generating ATP than fragmented mitochondria. In diverse C. elegans longevity pathways, increased levels of fused mitochondria are associated with lifespan extension. Blocking mitochondrial fusion in these animals abolishes their extended longevity. The long-lived C. elegans vhl-1 mutant is an exception that does not have increased fused mitochondria, and is not dependent on fusion for longevity. Loss of mammalian VHL upregulates alternate energy generating pathways. This suggests that mitochondrial fusion facilitates longevity in C. elegans by increasing energy metabolism. In diverse animals, ATP levels broadly decreases with age. Substantial evidence supports the theory that increasing or maintaining energy metabolism promotes the survival of older animals. Increased ATP levels in older animals allow energy-intensive repair and homeostatic mechanisms such as proteostasis that act to prevent cellular aging. These observations support the emerging paradigm that maintaining energy metabolism promotes the survival of older animals. © 2018 WILEY Periodicals, Inc.

  2. Hopantenate interference on the adaptation of muscular energy metabolism to intermittent hypoxia.

    PubMed

    Pastoris, O; Vercesi, L; Mazzocchi, A; Dossena, M; Benzi, G

    1986-06-01

    In rat gastrocnemius muscle, the concentrations of glycolytic fuels, intermediates and end-products; Krebs cycle intermediates and related free amino acids; ammonia; energy store and mediators; and the energy charge potential were evaluated in normoxia or after repeated, alternate hypoxic and normoxic exposures (12 hr of hypoxia daily; for 5 days) with or without treatment with hopantenate (HOPA). Furthermore, in the crude extract and/or mitochondrial fraction the maximum rate (Vmax) of some muscular enzymes related to the anaerobic glycolytic pathway; the tricarboxylic acid cycle; and the electron transfer chain were evaluated. Hopantenate was administered daily at the dose of 250 mg.kg-1 i.p., for 5 days, 30 min before the beginning of the experimental normobaric hypoxia. The biochemical adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by the decrease of the muscular concentrations of citrate, alpha-ketoglutarate and glutamate, in absence of changes in the Vmax of the muscle enzymes related to energy transduction. In gastrocnemius muscle from hypoxic rats, by HOPA treatment, both citrate and alpha-ketoglutarate maintained normal values, aspartate decreased, while glutamate remained reduced to subnormal values. In the muscle from hypoxic animals, by hopantenate treatment the Vmax of the mitochondrial enzymes tested (citrate synthase, malate dehydrogenase, total NADH cytochrome c reductase, cytochrome oxidase) decreased in comparison with both hypoxic and normoxic untreated animals. This behaviour could be tentatively related to a mitochondrial sparing action concomitant with an intervention of the glutamate group of amino acids, even if the results do not allow a clear interpretation of the mechanism of HOPA action.

  3. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis.

    PubMed

    Bairlein, Franz; Fritz, Johannes; Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; van Dijk, Gertjan; Meijer, Harro A J; Verhulst, Simon; Dittami, John

    2015-01-01

    Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well.

  4. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis

    PubMed Central

    Bairlein, Franz; Fritz, Johannes; Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; van Dijk, Gertjan; Meijer, Harro A. J.; Verhulst, Simon

    2015-01-01

    Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well. PMID:26376193

  5. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme

    PubMed Central

    White, Craig R.; Alton, Lesley A.; Frappell, Peter B.

    2012-01-01

    Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes. PMID:22158960

  6. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme.

    PubMed

    White, Craig R; Alton, Lesley A; Frappell, Peter B

    2012-05-07

    Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.

  7. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding

  8. RNA metabolism in Xylella fastidiosa during cold adaptation and survival responses

    USDA-ARS?s Scientific Manuscript database

    Fastidious plant pathogen Xylella fastidiosa has a reduced ability to adapt to cold temperatures, limiting persistence in perennial hosts, such as grapevine, growing in colder regions. RNA metabolism is an essential part of bacterial response to low temperature, including inducible expression of RNA...

  9. Leptin and energy restriction induced adaptation in energy expenditure.

    PubMed

    Camps, Stefan G J A; Verhoef, Sanne P M; Westerterp, Klaas R

    2015-10-01

    Diet-induced weight loss is accompanied by adaptive thermogenesis, i.e. a disproportional reduction of resting energy expenditure (REE) a decrease in physical activity and increased movement economy. To determine if energy restriction induced adaptive thermogenesis and adaptations in physical activity are related to changes in leptin concentrations. Eighty-two healthy subjects (23 men, 59 women), mean ± SD age 41 ± 8 years and BMI 31.9 ± 3.0 kg/m(2), followed a very low energy diet for 8 weeks with measurements before and after the diet. Leptin concentrations were determined from fasting blood plasma. Body composition was assessed with a three-compartment model based on body weight, total body water (deuterium dilution) and body volume (BodPod). REE was measured (REEm) with a ventilated hood and predicted (REEp) from measured body composition. Adaptive thermogenesis was calculated as REEm/REEp. Parameters for the amount of physical activity were total energy expenditure expressed as a multiple of REEm (PAL), activity-induced energy expenditure divided by body weight (AEE/kg) and activity counts measured by a tri-axial accelerometer. Movement economy was calculated as AEE/kg (MJ/kg/d) divided by activity counts (Mcounts/d). Subjects lost on average 10.7 ± 4.1% body weight (P<0.001). Leptin decreased from 26.9 ± 14.3 before to 13.9 ± 11.3 μg/l after the diet (P<0.001). REEm/REEp after the diet (0.963 ± 0.08) was related to changes in leptin levels (R(2)=0.06; P<0.05). There was no significant correlation between changes in leptin concentrations and changes in amount of physical activity. Movement economy changed from 0.036 ± 0.011 J/kg/count to 0.028 ± 0.010 J/kg/count and was correlated to the changes in leptin concentrations (R(2)=0.07; P<0.05). During energy restriction, the decrease in leptin explains part of the variation in adaptive thermogenesis. Changes in leptin are not related to the amount of physical activity but could partly explain the

  10. Energetic Metabolism and Biochemical Adaptation: A Bird Flight Muscle Model

    ERIC Educational Resources Information Center

    Rioux, Pierre; Blier, Pierre U.

    2006-01-01

    The main objective of this class experiment is to measure the activity of two metabolic enzymes in crude extract from bird pectoral muscle and to relate the differences to their mode of locomotion and ecology. The laboratory is adapted to stimulate the interest of wildlife management students to biochemistry. The enzymatic activities of cytochrome…

  11. Adaptation in locomotor stability, cognition, and metabolic cost during sensory discordance.

    PubMed

    Peters, Brian T; Brady, Rachel A; Batson, Crystal D; Guined, Jamie R; Ploutz-Snyder, Robert J; Mulavara, Ajitkumar P; Bloomberg, Jacob J

    2013-06-01

    Locomotor instability may affect planetary extravehicular activities during the initial adaptation to the new gravitational environment. The goal of this study was to quantify the locomotor, cognitive, and metabolic effects of exposure to a discordant sensory environment. A treadmill mounted on a 6-degree-of-freedom motion base was used to present 15 healthy subjects with a destabilizing support surface while they walked. Dependent measures of locomotor stability, cognitive load, and metabolic cost were stride frequency (SF), reaction time (RT), and the volume of oxygen consumed (Vo2), respectively. Subjects completed an 8-min baseline walk followed by 20 min of walking with a continuous, sinusoidal, laterally oscillating support-surface perturbation. Data for minutes 1, 7, 13, and 20 of the support-surface perturbation period were compared with the baseline. SF, RT, and Vo2 were significantly greater during support-surface motion than during the baseline walking condition and showed a trend toward recovery to baseline levels during the perturbation period. Results demonstrated that adaptation to walking in a discordant sensory environment has quantifiable and significant costs in SF, RT, and Vo2 as shown by mean increases of 9%, 20%, and 4%, respectively, collected during the first minute of exposure. By the fourth minute of exposure, mean Vo2 consumption had increased to 20% over its baseline. We believe that preflight sensorimotor adaptation training paradigms will impart gains in stability and the ability to multitask, and might increase productive mission time by extending work time in extravehicular activity suits where metabolic expenditure is a limiting factor.

  12. Effects of random food deprivation and refeeding on energy metabolism, behavior and hypothalamic neuropeptide expression in Apodemus chevrieri.

    PubMed

    Wan-Long, Zhu; Zheng-Kun, Wang

    2016-11-01

    Maintaining adaptive control of behavior and physiology is the main strategy used by animals in responding to changes of food resources. To investigate the effects of random food deprivation (FD) and refeeding on energy metabolism and behavior in Apodemus chevrieri, we acclimated adult males to FD for 4weeks, then refed them ad libitum for 4weeks (FD-Re group). During the period of FD, animals were fed ad libitum for 4 randomly assigned days each week, and deprived of food the other 3days. A control group was fed ad libitum for 8weeks. At 4 and 8weeks we measured body mass, thermogenesis, serum leptin levels, body composition, gastrointestinal tract morphology, behavior and hypothalamic neuropeptide expression. At 4weeks, food intake, gastrointestinal mass, neuropeptide Y (NPY) and agouti-related protein (AgRP) mRNA expressions increased and thermogenesis, leptin levels, pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) expressions decreased in FD compared with controls. FD also showed more resting behavior and less activity than the controls on ad libitum day. There were no differences between FD-Re and controls at 8weeks, indicating significant plasticity. These results suggested that animals can compensate for unpredictable reduction in food availability by increasing food intake and reducing energy expended through thermogenesis and activity. Leptin levels, NPY, AgRP, POMC, and CART mRNA levels may also regulate energy metabolism. Significant plasticity in energy metabolism and behavior was shown by A. chevrieri over a short timescale, allowing them to adapt to food shortages in nutritionally unpredictable environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    PubMed Central

    Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation. PMID:22435484

  14. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  15. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    PubMed

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  16. Fasting induces a biphasic adaptive metabolic response in murine small intestine

    PubMed Central

    Sokolović, Milka; Wehkamp, Diederik; Sokolović, Aleksandar; Vermeulen, Jacqueline; Gilhuijs-Pederson, Lisa A; van Haaften, Rachel IM; Nikolsky, Yuri; Evelo, Chris TA; van Kampen, Antoine HC; Hakvoort, Theodorus BM; Lamers, Wouter H

    2007-01-01

    Background The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. Results Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. Conclusion The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnover. PMID:17925015

  17. Fasting induces a biphasic adaptive metabolic response in murine small intestine.

    PubMed

    Sokolović, Milka; Wehkamp, Diederik; Sokolović, Aleksandar; Vermeulen, Jacqueline; Gilhuijs-Pederson, Lisa A; van Haaften, Rachel I M; Nikolsky, Yuri; Evelo, Chris T A; van Kampen, Antoine H C; Hakvoort, Theodorus B M; Lamers, Wouter H

    2007-10-09

    The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnover.

  18. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance

    PubMed Central

    2013-01-01

    Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation. PMID:23822863

  19. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance.

    PubMed

    Schlüter, Urte; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Weber, Andreas P M; Zellerhoff, Nina; Bucher, Marcel; Fahnenstich, Holger; Sonnewald, Uwe

    2013-07-03

    Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation.

  20. Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants.

    PubMed

    Siqueira, João Antonio; Hardoim, Pablo; Ferreira, Paulo C G; Nunes-Nesi, Adriano; Hemerly, Adriana S

    2018-06-19

    Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    PubMed Central

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  2. The role of Klotho in energy metabolism

    PubMed Central

    Razzaque, M. Shawkat

    2013-01-01

    A disproportionate expansion of white adipose tissue and abnormal recruitment of adipogenic precursor cells can not only lead to obesity but also impair glucose metabolism, which are both common causes of insulin resistance and diabetes mellitus. The development of novel and effective therapeutic strategies to slow the progression of obesity, diabetes mellitus and their associated complications will require improved understanding of adipogenesis and glucose metabolism. Klotho might have a role in adipocyte maturation and systemic glucose metabolism. Klotho increases adipocyte differentiation in vitro, and mice that lack Klotho activity are lean owing to reduced white adipose tissue accumulation; moreover, mice that lack the Kl gene (which encodes Klotho) are resistant to obesity induced by a high-fat diet. Knockout of Kl in leptin-deficient Lepob/ob mice reduces obesity and increases insulin sensitivity, which lowers blood glucose levels. Energy metabolism might also be influenced by Klotho. However, further studies are needed to explore the possibility that Klotho could be a novel therapeutic target to reduce obesity and related complications, and to determine whether and how Klotho might influence the regulation and function of a related protein, β-Klotho, which is also involved in energy metabolism. PMID:22641000

  3. Metabolic costs of capital energy storage in a small-bodied ectotherm.

    PubMed

    Griffen, Blaine D

    2017-04-01

    Reproduction is energetically financed using strategies that fall along a continuum from animals that rely on stored energy acquired prior to reproduction (i.e., capital breeders) to those that rely on energy acquired during reproduction (i.e., income breeders). Energy storage incurs a metabolic cost. However, previous studies suggest that this cost may be minimal for small-bodied ectotherms. Here I test this assumption. I use a laboratory feeding experiment with the European green crab Carcinus maenas to establish individuals with different amounts of energy storage. I then demonstrate that differences in energy storage account for 26% of the variation in basal metabolic costs. The magnitudes of these costs for any individual crab vary through time depending on the amount of energy it has stored, as well as on temperature-dependent metabolism. I use previously established relationships between temperature- and mass-dependent metabolic rates, combined with a feasible annual pattern of energy storage in the Gulf of Maine and annual sea surface temperature patterns in this region, to estimate potential annual metabolic costs expected for mature female green crabs. Results indicate that energy storage should incur an ~8% increase in metabolic costs for female crabs, relative to a hypothetical crab that did not store any energy. Translated into feeding, for a medium-sized mature female (45 mm carapace width), this requires the consumption of an additional ~156 mussels annually to support the metabolic cost of energy storage. These results indicate, contrary to previous assumptions, that the cost of energy storage for small-bodied ectotherms may represent a considerable portion of their basic operating energy budget. An inability to meet these additional costs of energy storage may help explain the recent decline of green crabs in the Gulf of Maine where reduced prey availability and increased consumer competition have combined to hamper green crab foraging success in

  4. Adaptive Benefits of Storage Strategy and Dual AMPK/TOR Signaling in Metabolic Stress Response

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin

    2016-01-01

    Cellular metabolism must ensure that supply of nutrient meets the biosynthetic and bioenergetic needs. Cells have therefore developed sophisticated signaling and regulatory pathways in order to cope with dynamic fluctuations of both resource and demand and to regulate accordingly diverse anabolic and catabolic processes. Intriguingly, these pathways are organized around a relatively small number of regulatory hubs, such as the highly conserved AMPK and TOR kinase families in eukaryotic cells. Here, the global metabolic adaptations upon dynamic environment are investigated using a prototypical model of regulated metabolism. In this model, the optimal enzyme profiles as well as the underlying regulatory architecture are identified by combining perturbation and evolutionary methods. The results reveal the existence of distinct classes of adaptive strategies, which differ in the management of storage reserve depending on the intensity of the stress and in the regulation of ATP-producing reaction depending on the nature of the stress. The regulatory architecture that optimally implements these adaptive features is characterized by a crosstalk between two specialized signaling pathways, which bears close similarities with the sensing and regulatory properties of AMPK and TOR pathways. PMID:27505075

  5. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle

    PubMed Central

    Farney, Jaymelynn K.; Mamedova, Laman K.; Coetzee, Johann F.; KuKanich, Butch; Sordillo, Lorraine M.; Stoakes, Sara K.; Minton, J. Ernest; Hollis, Larry C.

    2013-01-01

    Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation. PMID:23678026

  6. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria

    PubMed Central

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.

    2009-01-01

    Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814

  7. Ontogeny of thermoregulation and energy metabolism in pygoscelid penguin chicks.

    PubMed

    Taylor, J R

    1985-01-01

    The ontogeny of thermoregulation and energy metabolism of chinstrap (Pygoscelis antarctica) and gentoo (P. papua) penguins was studied on King George Island, South Shetland Island, Antarctica. The major findings of this study are: Chinstrap and gentoo penguin chicks hatched completely poikilothermic, due to their poor heat-production ability at low ambient temperatures. They were able to maintain high body temperatures and metabolic rates only by being brooded by adults. Newly hatched chinstrap penguin chicks had, at a specified ambient temperature, significantly higher metabolic rates than newly hatched gentoos. Moreover, chinstrap chicks maintained a significantly higher body temperature. It is suggested that this is a non-acclimatory metabolic adaptation of chinstrap penguin chicks to the lower mean temperatures of their breeding areas. On the 15th day after hatching, chinstrap chicks were completely, and gentoo chicks almost completely, homeothermic. In spite of their high thermogenic capacity from about day 10, chicks were not at that time capable of controlling heat dissipation, and were still dependent on their parents. In older downy chicks and fledglings, heat loss at low temperatures, expressed as heat conductance (CA), was similar to that found for the adults of other penguin species. Just before moulting the CA of chicks was lower than after moulting. Moulting alone did not cause a clear increase in CA. Towards the end of their stay on land the CA of pre-fledged gentoos decreased by 31%. This decrease was not connected with the development of feathers or growth in the chicks' weight. The combination of the low CA and high SMR of chicks gave very low lower critical temperatures, near -15 degrees C. The wide thermoneutral zones of the chicks covered the whole range of air temperature variations in the breeding colonies of both species studied on King George Island. The CA values of homeothermic chinstrap chicks were not lower than those of gentoos

  8. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    PubMed

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  9. Rethinking energy in parkinsonian motor symptoms: a potential role for neural metabolic deficits

    PubMed Central

    Amano, Shinichi; Kegelmeyer, Deborah; Hong, S. Lee

    2015-01-01

    Parkinson’s disease (PD) is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic (DA) cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity) to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of DA neurons in the substantia nigra pars compacta (SNc), in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1) neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD; (2) motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state; and (3) improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD. PMID:25610377

  10. Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress.

    PubMed

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara; Timón-Gómez, Alba; Proft, Markus

    2018-02-01

    Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.

  11. Effects of dietary fermentable carbohydrates on energy metabolism in group-housed sows.

    PubMed

    Rijnen, M M; Verstegen, M W; Heetkamp, M J; Haaksma, J; Schrama, J W

    2001-01-01

    The effect of dietary nonstarch polysaccharide (NSP) content on the metabolic rate in group-housed sows was studied. Twelve groups of six nonpregnant sows were each fed one of four experimental diets similar in composition except for the starch and NSP content. Exchanging sugar beet pulp silage (SBPS) for tapioca created the difference in starch and NSP ratio in the diet. On a DM basis, diets contained 0, 10, 20, or 30% SBPS. Sows were group-housed and fed at 1.30 times the assumed maintenance energy requirements. Nitrogen and energy balances were measured per group during a 7-d experimental period, which was preceded by a 33-d adaptation period. Both digestibility and metabolizability of energy decreased with increasing dietary SBPS content (P < 0.05). Heat production and energy retention were unaffected by the exchange of starch for NSP (P > 0.1). Based on energy retention data and apparent fecal digestibilities of crude protein, crude fat, starch, and NSP, the estimated net energy value of fermented NSP was 13.4 kJ/g. The present study shows that group-housed sows are capable of using energy from fermented NSP (i.e., NSP from SBPS) as efficiently as energy from digested starch (i.e., starch from tapioca).

  12. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.

    PubMed

    Hsu, Chia George; Burkholder, Thomas J

    2016-12-01

    The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

  13. The plasma membrane as a capacitor for energy and metabolism

    PubMed Central

    Ray, Supriyo; Kassan, Adam; Busija, Anna R.; Rangamani, Padmini

    2016-01-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as “capacitors for energy and metabolism.” Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  14. The plasma membrane as a capacitor for energy and metabolism.

    PubMed

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.

  15. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.

    PubMed

    Lai, Ling; Leone, Teresa C; Keller, Mark P; Martin, Ola J; Broman, Aimee T; Nigro, Jessica; Kapoor, Kapil; Koves, Timothy R; Stevens, Robert; Ilkayeva, Olga R; Vega, Rick B; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P

    2014-11-01

    An unbiased systems approach was used to define energy metabolic events that occur during the pathological cardiac remodeling en route to heart failure (HF). Combined myocardial transcriptomic and metabolomic profiling were conducted in a well-defined mouse model of HF that allows comparative assessment of compensated and decompensated (HF) forms of cardiac hypertrophy because of pressure overload. The pressure overload data sets were also compared with the myocardial transcriptome and metabolome for an adaptive (physiological) form of cardiac hypertrophy because of endurance exercise training. Comparative analysis of the data sets led to the following conclusions: (1) expression of most genes involved in mitochondrial energy transduction were not significantly changed in the hypertrophied or failing heart, with the notable exception of a progressive downregulation of transcripts encoding proteins and enzymes involved in myocyte fatty acid transport and oxidation during the development of HF; (2) tissue metabolite profiles were more broadly regulated than corresponding metabolic gene regulatory changes, suggesting significant regulation at the post-transcriptional level; (3) metabolomic signatures distinguished pathological and physiological forms of cardiac hypertrophy and served as robust markers for the onset of HF; and (4) the pattern of metabolite derangements in the failing heart suggests bottlenecks of carbon substrate flux into the Krebs cycle. Mitochondrial energy metabolic derangements that occur during the early development of pressure overload-induced HF involve both transcriptional and post-transcriptional events. A subset of the myocardial metabolomic profile robustly distinguished pathological and physiological cardiac remodeling. © 2014 American Heart Association, Inc.

  16. Ablation of Lgr4 enhances energy adaptation in skeletal muscle via activation of Ampk/Sirt1/Pgc1α pathway.

    PubMed

    Sun, Yingkai; Hong, Jie; Chen, Maopei; Ke, Yingying; Zhao, Shaoqian; Liu, Wen; Ma, Qinyun; Shi, Juan; Zou, Yaoyu; Ning, Tinglu; Zhang, Zhiguo; Liu, Ruixin; Wang, Jiqiu; Ning, Guang

    2015-08-21

    Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is a newfound obese-associated gene. Previous study reveals that heterozygous mutation of Lgr4 correlates with decreased body weight in human. In our recent study, we demonstrate that Lgr4 ablation promotes browning of white adipose tissue and improves whole-body metabolic status. However little is known about its role in other metabolic tissues. Herein, we show that Lgr4 homozygous mutant (Lgr4(m/m)) mice show increased respiratory exchange ratio (RER, closer to 1.0) than wild-type mice at 12:00 AM (food-intake time for mice) while decreased RER (closer to 0.75) at 12:00 PM (fasting for mice), indicating a glucose-prone versus fatty acid-prone metabolic pattern, respectively. Furthermore, Lgr4 ablation increases lipid oxidation-related gene expression while suppresses glucose transporter type 4 (Glut4) levels in skeletal muscle under fasting condition. These data suggest that Lgr4 ablation enhances the flexibility of skeletal muscle to switch energy provider from glucose to fatty acid in response to glucose depletion. We further reveal the activation of Ampk/Sirt1/Pgc1α pathway during this adaptive fuel shift due to Lgr4 ablation. This study suggests that Lgr4 might serve as an adaptive regulator between glucose and lipid metabolism in skeletal muscle and reveals a potentially new regulator for a well-established adaptive network. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.

    PubMed

    Zwingmann, Claudia; Leibfritz, Dieter; Hazell, Alan S

    2003-06-01

    A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.

  18. The GSK3 Signaling Axis Regulates Adaptive Glutamine Metabolism in Lung Squamous Cell Carcinoma.

    PubMed

    Momcilovic, Milica; Bailey, Sean T; Lee, Jason T; Fishbein, Michael C; Braas, Daniel; Go, James; Graeber, Thomas G; Parlati, Francesco; Demo, Susan; Li, Rui; Walser, Tonya C; Gricowski, Michael; Shuman, Robert; Ibarra, Julio; Fridman, Deborah; Phelps, Michael E; Badran, Karam; St John, Maie; Bernthal, Nicholas M; Federman, Noah; Yanagawa, Jane; Dubinett, Steven M; Sadeghi, Saman; Christofk, Heather R; Shackelford, David B

    2018-05-14

    Altered metabolism is a hallmark of cancer growth, forming the conceptual basis for development of metabolic therapies as cancer treatments. We performed in vivo metabolic profiling and molecular analysis of lung squamous cell carcinoma (SCC) to identify metabolic nodes for therapeutic targeting. Lung SCCs adapt to chronic mTOR inhibition and suppression of glycolysis through the GSK3α/β signaling pathway, which upregulates glutaminolysis. Phospho-GSK3α/β protein levels are predictive of response to single-therapy mTOR inhibition while combinatorial treatment with the glutaminase inhibitor CB-839 effectively overcomes therapy resistance. In addition, we identified a conserved metabolic signature in a broad spectrum of hypermetabolic human tumors that may be predictive of patient outcome and response to combined metabolic therapies targeting mTOR and glutaminase. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus).

    PubMed

    Zhang, Jiliang; Sun, Ping; Yang, Fan; Kong, Tao; Zhang, Ruichen

    2016-06-01

    Tributyltin (TBT) can induce obesogen response. However, little is known about the adverse effects of TBT on food intake and energy metabolism. The present study was designed to investigate the effects of TBT, at environmental concentrations of 2.44 and 24.4 ng/L (1 and 10 ng/L as Sn), on feeding and energy metabolism in goldfish (Carassius auratus). After exposure for 54 d, TBT increased the weight gain and food intake in fish. The patterns of brain neuropeptide genes expression were in line with potential orexigenic effects, with increased expression of neuropeptide Y and apelin, and decreased expression of pro-opiomelanocortin, ghrelin, cocaine and amphetamine-regulated transcript, and corticotropin-releasing factor. Interestingly, the energy metabolism indicators (oxygen consumption, ammonia exertion and swimming activity) and the serum thyroid hormones were all significantly increased at the 2.44 ng/L TBT group in fish. However, no changes of energy metabolism indicators or a decrease of thyroid hormones was found at the 24.4 ng/L TBT group, which indicated a complex disrupting effect on metabolism of TBT. In short, TBT can alter feeding and energy metabolism in fish, which might promote the obesogenic responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Energy metabolism and nutritional status in hospitalized patients with lung cancer.

    PubMed

    Takemura, Yumi; Sasaki, Masaya; Goto, Kenichi; Takaoka, Azusa; Ohi, Akiko; Kurihara, Mika; Nakanishi, Naoko; Nakano, Yasutaka; Hanaoka, Jun

    2016-09-01

    This study aimed to investigate the energy metabolism of patients with lung cancer and the relationship between energy metabolism and proinflammatory cytokines. Twenty-eight patients with lung cancer and 18 healthy controls were enrolled in this study. The nutritional status upon admission was analyzed using nutritional screening tools and laboratory tests. The resting energy expenditure and respiratory quotient were measured using indirect calorimetry, and the predicted resting energy expenditure was calculated using the Harris-Benedict equation. Energy expenditure was increased in patients with advanced stage disease, and there were positive correlations between measured resting energy expenditure/body weight and interleukin-6 levels and between measured resting energy expenditure/predicted resting energy expenditure and interleukin-6 levels. There were significant relationships between body mass index and plasma leptin or acylated ghrelin levels. However, the level of appetite controlling hormones did not affect dietary intake. There was a negative correlation between plasma interleukin-6 levels and dietary intake, suggesting that interleukin-6 plays a role in reducing dietary intake. These results indicate that energy expenditure changes significantly with lung cancer stage and that plasma interleukin-6 levels affect energy metabolism and dietary intake. Thus, nutritional management that considers the changes in energy metabolism is important in patients with lung cancer.

  1. Flavonoids: a metabolic network mediating plants adaptation to their real estate.

    PubMed

    Mouradov, Aidyn; Spangenberg, German

    2014-01-01

    From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.

  2. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.

    PubMed

    Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long

    2015-07-07

    It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.

  3. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  4. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria.

    PubMed

    Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2016-08-25

    Brain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. On mitochondria in vivo located in neuronal soma (somatic) and on mitochondria of synapses (synaptic), the catalytic activities of regulatory enzymes of mitochondrial energy-yielding metabolic pathways were assayed. Antidepressants in vivo treatment modified the activities of selected enzymes of different mitochondria, leading to metabolic modifications in the energy metabolism of brain cortex: (a) the enhancement of cytochrome oxidase activity on somatic mitochondria; (b) the decrease of malate, succinate dehydrogenase and glutamate-pyruvate transaminase activities of synaptic mitochondria; (c) the selective effect of fluoxetine on enzymes related to glutamate metabolism. These results overcome the conflicting data so far obtained with antidepressants on brain energy metabolism, because the enzymatic analyses were made on mitochondria with diversified neuronal in vivo localization, i.e. on somatic and synaptic. This research is the first investigation on the pharmacodynamics of antidepressants studied at subcellular level, in the perspective of (i) assessing the role of energy metabolism of cerebral mitochondria in animal models of mood disorders, and (ii) highlighting new therapeutical strategies for antidepressants targeting brain bioenergetics. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure.

    PubMed

    Lacourt, Tamara E; Vichaya, Elisabeth G; Chiu, Gabriel S; Dantzer, Robert; Heijnen, Cobi J

    2018-01-01

    Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.

  6. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure

    PubMed Central

    Lacourt, Tamara E.; Vichaya, Elisabeth G.; Chiu, Gabriel S.; Dantzer, Robert; Heijnen, Cobi J.

    2018-01-01

    Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue

  7. Energy transfer in “parasitic” cancer metabolism

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Howell, Anthony; Tykocinski, Mark L; Nagajyothi, Fnu; Machado, Fabiana S; Tanowitz, Herbert B

    2011-01-01

    It is now widely recognized that the tumor microenvironment promotes cancer cell growth and metastasis via changes in cytokine secretion and extra-cellular matrix remodeling. However, the role of tumor stromal cells in providing energy for epithelial cancer cell growth is a newly emerging paradigm. For example, we and others have recently proposed that tumor growth and metastasis is related to an energy imbalance. Host cells produce energy-rich nutrients via catabolism (through autophagy, mitophagy and aerobic glycolysis), which are then transferred to cancer cells, to fuel anabolic tumor growth. Stromal cell derived L-lactate is taken up by cancer cells and is used for mitochondrial oxidative phosphorylation (OXPHOS), to produce ATP efficiently. However, “parasitic” energy transfer may be a more generalized mechanism in cancer biology than previously appreciated. Two recent papers in Science and Nature Medicine now show that lipolysis in host tissues also fuels tumor growth. These studies demonstrate that free fatty acids produced by host cell lipolysis are re-used via β-oxidation (β-OX) in cancer cell mitochondria. Thus, stromal catabolites (such as lactate, ketones, glutamine and free fatty acids) promote tumor growth by acting as high-energy onco-metabolites. As such, host catabolism via autophagy, mitophagy and lipolysis may explain the pathogenesis of cancer-associated cachexia and provides exciting new druggable targets for novel therapeutic interventions. Taken together, these findings also suggest that tumor cells promote their own growth and survival by behaving as a “parasitic organism.” Hence, we propose the term “parasitic cancer metabolism” to describe this type of metabolic-coupling in tumors. Targeting tumor cell mitochondria (OXPHOS and β-OX) would effectively uncouple tumor cells from their hosts, leading to their acute starvation. In this context, we discuss new evidence that high-energy onco-metabolites (produced by the stroma

  8. Modeling central metabolism and energy biosynthesis across microbial life.

    PubMed

    Edirisinghe, Janaka N; Weisenhorn, Pamela; Conrad, Neal; Xia, Fangfang; Overbeek, Ross; Stevens, Rick L; Henry, Christopher S

    2016-08-08

    Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. To overcome this challenge, we developed methods and tools ( http://coremodels.mcs.anl.gov ) to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. We predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to

  9. Tissue physiological metabolic adaptability in young and old leaves of reed (Phragmites communis) in Songnen grassland.

    PubMed

    Guo, Rui; Bai, Zhenzi; Zhou, Ji; Zhong, XiuLi; Gu, FengXue; Liu, Qi; Li, HaoRu

    2018-07-01

    Common reed (Phragmites communis) is widely distributed as the dominant plant species in the Songnen Plain of China. The aim of this study was to investigate different physiological adaptive mechanisms to salinity tolerance between young and old leaves. The profiles of 68 metabolites were measured and studied in reed leaves by gas chromatography-mass spectrometer. The nitrogen, carbon, and pigment contents showed stronger growth inhibition for older leaves with salinity stress. In young leaves, high K + contents not only promoted cell growth, but also prevented influx of superfluous Na + ions in cells; the Ca 2+ accumulation in old leaves implied that Ca 2+ triggered the SOS-Na + exclusion system and reduced Na + toxicity. Thus, the mechanism of enhanced tolerance differed between young and old leaves. The metabolite results indicated that the young and old leaves had different mechanisms of osmotic regulation; sugars/polyols and amino acids played important roles in developing salinity tolerance in young leaves but high contents of fatty acids were important for old leaves. These results implied dramatically enhanced sugars and amino acid synthesis but inhibited energy metabolism in young leaves. In contrast, fatty acid synthesis was enhanced in old leaves. The results extended our understanding of the differences in physiological metabolism in adaptive to the salt-alkalization of soil in Songnen grassland between young and old leaves of reeds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State

    PubMed Central

    Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony

    2012-01-01

    A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary

  11. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals.

    PubMed

    Chowen, Julie A; Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Frago, Laura M; Horvath, Tamas L; Argente, Jesús

    2016-09-01

    The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha.

    PubMed

    Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J

    2018-01-01

    Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.

  13. ERRα: a metabolic function for the oldest orphan

    PubMed Central

    Villena, Josep A.; Kralli, Anastasia

    2009-01-01

    Estrogen receptor related receptor (ERR)α was one of the first identified (1988) orphan nuclear receptors. Many of the orphan receptors identified after ERRα were deorphanized in a timely manner and appreciated as key transcriptional regulators of metabolic pathways. ERRα, however, remains an orphan. Nevertheless, recent studies have defined regulatory mechanisms and transcriptional targets of ERRα, allowing this receptor to join ranks with other nuclear receptors that control metabolism. Notably, mice lacking ERRα show defects when challenged with stressors that require a ‘shift of gears’ in energy metabolism, such as exposure to cold, cardiac overload or infection. These findings establish the importance of ERRα for adaptive energy metabolism, and suggest that strategies targeting ERRα may be useful in fighting metabolic diseases. PMID:18778951

  14. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    PubMed

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  15. Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model

    PubMed Central

    Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun

    2016-01-01

    A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting. PMID:27910887

  16. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  17. A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism

    PubMed Central

    Ahn, In-Young; Guillaumot, Charlène; Danis, Bruno

    2017-01-01

    Antarctic marine organisms are adapted to an extreme environment, characterized by a very low but stable temperature and a strong seasonality in food availability arousing from variations in day length. Ocean organisms are particularly vulnerable to global climate change with some regions being impacted by temperature increase and changes in primary production. Climate change also affects the biotic components of marine ecosystems and has an impact on the distribution and seasonal physiology of Antarctic marine organisms. Knowledge on the impact of climate change in key species is highly important because their performance affects ecosystem functioning. To predict the effects of climate change on marine ecosystems, a holistic understanding of the life history and physiology of Antarctic key species is urgently needed. DEB (Dynamic Energy Budget) theory captures the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model is a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. In this study, we estimate the DEB model parameters for the bivalve Laternula elliptica using literature-extracted and field data. The DEB model we present here aims at better understanding the biology of L. elliptica and its levels of adaptation to its habitat with a special focus on food seasonality. The model parameters describe a metabolism specifically adapted to low temperatures, with a low maintenance cost and a high capacity to uptake and mobilise energy, providing this organism with a level of energetic performance matching that of related species from temperate regions. It was also found that L. elliptica has a large energy reserve that allows enduring long periods of starvation. Additionally, we applied DEB parameters to time-series data on biological traits (organism condition, gonad growth) to describe the effect of a

  18. A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism.

    PubMed

    Agüera, Antonio; Ahn, In-Young; Guillaumot, Charlène; Danis, Bruno

    2017-01-01

    Antarctic marine organisms are adapted to an extreme environment, characterized by a very low but stable temperature and a strong seasonality in food availability arousing from variations in day length. Ocean organisms are particularly vulnerable to global climate change with some regions being impacted by temperature increase and changes in primary production. Climate change also affects the biotic components of marine ecosystems and has an impact on the distribution and seasonal physiology of Antarctic marine organisms. Knowledge on the impact of climate change in key species is highly important because their performance affects ecosystem functioning. To predict the effects of climate change on marine ecosystems, a holistic understanding of the life history and physiology of Antarctic key species is urgently needed. DEB (Dynamic Energy Budget) theory captures the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model is a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. In this study, we estimate the DEB model parameters for the bivalve Laternula elliptica using literature-extracted and field data. The DEB model we present here aims at better understanding the biology of L. elliptica and its levels of adaptation to its habitat with a special focus on food seasonality. The model parameters describe a metabolism specifically adapted to low temperatures, with a low maintenance cost and a high capacity to uptake and mobilise energy, providing this organism with a level of energetic performance matching that of related species from temperate regions. It was also found that L. elliptica has a large energy reserve that allows enduring long periods of starvation. Additionally, we applied DEB parameters to time-series data on biological traits (organism condition, gonad growth) to describe the effect of a

  19. Recovery of phenotypes obtained by adaptive evolution through inverse metabolic engineering.

    PubMed

    Hong, Kuk-Ki; Nielsen, Jens

    2012-11-01

    In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one of the mutations RAS2(Lys77), RAS2(Tyr112), and ERG5(Pro370) were constructed and evaluated. The mutants were also combined with overexpression of PGM2, earlier proved as a beneficial target for galactose utilization. The constructed strains were analyzed for their gross phenotype, transcriptome and targeted metabolites, and the results were compared to those obtained from reference strains and the evolved strains. The RAS2(Lys77) mutation resulted in the highest specific galactose uptake rate among all of the strains with an increased maximum specific growth rate on galactose. The RAS2(Tyr112) mutation also improved the specific galactose uptake rate and also resulted in many transcriptional changes, including ergosterol metabolism. The ERG5(Pro370) mutation only showed a small improvement, but when it was combined with PGM2 overexpression, the phenotype was almost the same as that of the evolved mutants. Combination of the RAS2 mutations with PGM2 overexpression also led to a complete recovery of the adaptive phenotype in galactose utilization. Recovery of the gross phenotype by the reconstructed mutants was achieved with much fewer changes in the genome and transcriptome than for the evolved mutants. Our study demonstrates how the identification of specific mutations by systems biology can direct new metabolic engineering strategies for improving galactose utilization by yeast.

  20. Maternal metabolic adaptations to pregnancy among young women in Cebu, Philippines.

    PubMed

    Fried, Ruby L; Mayol, Nanette L; McDade, Thom W; Kuzawa, Christopher W

    2017-09-10

    Evidence that fetal development has long-term impacts on health has increased interest in maternal-fetal nutrient exchange. Although maternal metabolism is known to change during gestation to accommodate fetal nutrient demands, little is known about these modifications outside of a Western, clinical context. This study characterizes maternal metabolic adaptations to pregnancy, and their associations with offspring birth weight (BW), among women living in the Philippines. Fasting glucose, triglycerides, insulin, leptin, and adiponectin were assessed in 808 participants in the Cebu Longitudinal Health and Nutrition Survey (Metropolitan Cebu, Philippines). Cross-sectional relationships between metabolites and hormones and gestational and lactational status were evaluated. Among the subset of currently pregnant women, associations between maternal glucose and triglycerides and offspring BW were also examined. Women in their second and third trimesters had significantly lower fasting glucose and adiponectin compared to nulliparous women, and leptin levels and triglyceride levels were notably higher late in pregnancy (all P < .05). Among pregnant women, fasting glucose was a positive predictor of offspring BW, but only in males (P = .012, R 2  = .28). Hormones and metabolites in post-partum women trend back toward levels found in nulliparous women, with some differences by breastfeeding status. We find evidence for marked changes in maternal lipid and carbohydrate metabolism during pregnancy, consistent with known adaptations to support fetal growth. The finding of sex-specific relationships between maternal glucose and offspring BW adds to evidence for greater impacts of the maternal-gestational environment on biology and health in male offspring. © 2017 Wiley Periodicals, Inc.

  1. Bone: from a reservoir of minerals to a regulator of energy metabolism

    PubMed Central

    Confavreux, Cyrille B

    2011-01-01

    Besides locomotion, organ protection, and calcium–phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:21346725

  2. Metabolic characteristics of keto-adapted ultra-endurance runners.

    PubMed

    Volek, Jeff S; Freidenreich, Daniel J; Saenz, Catherine; Kunces, Laura J; Creighton, Brent C; Bartley, Jenna M; Davitt, Patrick M; Munoz, Colleen X; Anderson, Jeffrey M; Maresh, Carl M; Lee, Elaine C; Schuenke, Mark D; Aerni, Giselle; Kraemer, William J; Phinney, Stephen D

    2016-03-01

    Many successful ultra-endurance athletes have switched from a high-carbohydrate to a low-carbohydrate diet, but they have not previously been studied to determine the extent of metabolic adaptations. Twenty elite ultra-marathoners and ironman distance triathletes performed a maximal graded exercise test and a 180 min submaximal run at 64% VO2max on a treadmill to determine metabolic responses. One group habitually consumed a traditional high-carbohydrate (HC: n=10, %carbohydrate:protein:fat=59:14:25) diet, and the other a low-carbohydrate (LC; n=10, 10:19:70) diet for an average of 20 months (range 9 to 36 months). Peak fat oxidation was 2.3-fold higher in the LC group (1.54±0.18 vs 0.67±0.14 g/min; P=0.000) and it occurred at a higher percentage of VO2max (70.3±6.3 vs 54.9±7.8%; P=0.000). Mean fat oxidation during submaximal exercise was 59% higher in the LC group (1.21±0.02 vs 0.76±0.11 g/min; P=0.000) corresponding to a greater relative contribution of fat (88±2 vs 56±8%; P=0.000). Despite these marked differences in fuel use between LC and HC athletes, there were no significant differences in resting muscle glycogen and the level of depletion after 180 min of running (-64% from pre-exercise) and 120 min of recovery (-36% from pre-exercise). Compared to highly trained ultra-endurance athletes consuming an HC diet, long-term keto-adaptation results in extraordinarily high rates of fat oxidation, whereas muscle glycogen utilization and repletion patterns during and after a 3 hour run are similar. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains.

    PubMed

    Hua, Qiang; Joyce, Andrew R; Fong, Stephen S; Palsson, Bernhard Ø

    2006-12-05

    Experimental evolution is now frequently applied to many biological systems to achieve desired objectives. To obtain optimized performance for metabolite production, a successful strategy has been recently developed that couples metabolic engineering techniques with laboratory evolution of microorganisms. Previously, we reported the growth characteristics of three lactate-producing, adaptively evolved Escherichia coli mutant strains designed by the OptKnock computational algorithm. Here, we describe the use of (13)C-labeled experiments and mass distribution measurements to study the evolutionary effects on the fluxome of these differently designed strains. Metabolic flux ratios and intracellular flux distributions as well as physiological data were used to elucidate metabolic responses over the course of adaptive evolution and metabolic differences among strains. The study of 3 unevolved and 12 evolved engineered strains as well as a wild-type strain suggests that evolution resulted in remarkable improvements in both substrate utilization rate and the proportion of glycolytic flux to total glucose utilization flux. Among three strain designs, the most significant increases in the fraction of glucose catabolized through glycolysis (>50%) and the glycolytic fluxes (>twofold) were observed in phosphotransacetylase and phosphofructokinase 1 (PFK1) double deletion (pta- pfkA) strains, which were likely attributed to the dramatic evolutionary increase in gene expression and catalytic activity of the minor PFK encoded by pfkB. These fluxomic studies also revealed the important role of acetate synthetic pathway in anaerobic lactate production. Moreover, flux analysis suggested that independent of genetic background, optimal relative flux distributions in cells could be achieved faster than physiological parameters such as nutrient utilization rate. (c) 2006 Wiley Periodicals, Inc.

  4. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  5. Consequences of divergent selection for residual feed intake in pigs on muscle energy metabolism and meat quality.

    PubMed

    Faure, J; Lefaucheur, L; Bonhomme, N; Ecolan, P; Meteau, K; Coustard, S Metayer; Kouba, M; Gilbert, H; Lebret, B

    2013-01-01

    Selection to decrease Residual Feed Intake (RFI) is a relevant way to improve feed efficiency in growing pigs. However, RFI criterion is correlated with body composition and muscle characteristics. Present study evaluated adaptive responses to divergent selection on RFI on muscle metabolism and homeostasis through AMP-activated protein kinase pathway. Consequences on technological and sensory meat quality were also analyzed in two lines of Large White pigs after six generations of divergent selection on RFI. RFI(-) pigs (n=60) exhibited similar growth rate but lower feed intake and conversion ratio, and were leaner than RFI(+) pigs (n=57). Despite higher glycogen content, metabolic enzyme capacities involved in glycolytic, fatty acid oxidation pathway and energy balance were reduced in the Longissimus muscle of the RFI(-) pigs. Reduced muscle homeostasis in the RFI(-) line influenced post-mortem metabolism and impaired technological quality traits of loin and ham but had only slight effects on meat eating quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    PubMed

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  7. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool

    PubMed Central

    van de Pol, Iris; Flik, Gert; Gorissen, Marnix

    2017-01-01

    Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent

  8. Fatty acids in energy metabolism of the central nervous system.

    PubMed

    Panov, Alexander; Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

  9. Fatty Acids in Energy Metabolism of the Central Nervous System

    PubMed Central

    Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups. PMID:24883315

  10. Energy metabolism in neuroblastoma and Wilms tumor

    PubMed Central

    Aminzadeh, Sepideh; Vidali, Silvia; Sperl, Wolfgang; Feichtinger, René G.

    2015-01-01

    To support high proliferation, the majority of cancer cells undergo fundamental metabolic changes such as increasing their glucose uptake and shifting to glycolysis for ATP production at the expense of far more efficient mitochondrial energy production by oxidative phosphorylation (OXPHOS), which at first glance is a paradox. This phenomenon is known as the Warburg effect. However, enhanced glycolysis is necessary to provide building blocks for anabolic growth. Apart from the generation of ATP, intermediates of glycolysis serve as precursors for a variety of biosynthetic pathways essential for cell proliferation. In the last 10-15 years the field of tumor metabolism has experienced an enormous boom in interest. It is now well established that tumor suppressor genes and oncogenes often play a central role in the regulation of cellular metabolism. Therefore, they significantly contribute to the manifestation of the Warburg effect. While much attention has focused on adult solid tumors, so far there has been comparatively little effort directed at elucidation of the mechanism responsible for the Warburg effect in childhood cancers. In this review we focus on metabolic pathways in neuroblastoma (NB) and Wilms tumor (WT), the two most frequent solid tumors in children. Both tumor types show alterations of the OXPHOS system and glycolytic features. Chromosomal alterations and activation of oncogenes like MYC or inactivation of tumor suppressor genes like TP53 can in part explain the changes of energy metabolism in these cancers. The strict dependence of cancer cells on glucose metabolism is a fairly common feature among otherwise biologically diverse types of cancer. Therefore, inhibition of glycolysis or starvation of cancer cells through glucose deprivation via a high-fat low-carbohydrate diet may be a promising avenue for future adjuvant therapeutic strategies. PMID:26835356

  11. Energy metabolism, body composition, and urea generation rate in hemodialysis patients.

    PubMed

    Sridharan, Sivakumar; Vilar, Enric; Berdeprado, Jocelyn; Farrington, Ken

    2013-10-01

    Hemodialysis (HD) adequacy is currently assessed using normalized urea clearance (Kt/V), although scaling based on Watson volume (V) may disadvantage women and men with low body weight. Alternative scaling factors such as resting energy expenditure and high metabolic rate organ mass have been suggested. The relationship between such factors and uremic toxin generation has not been established. We aimed to study the relationship between body size, energy metabolism, and urea generation rate. A cross-sectional cohort of 166 HD patients was studied. Anthropometric measurements were carried on all. Resting energy expenditure was measured by indirect calorimetry, fat-free mass by bio-impedance and total energy expenditure by combining resting energy expenditure with a questionnaire-derived physical activity data. High metabolic rate organ mass was calculated using a published equation and urea generation rate using formal urea kinetic modeling. Metabolic factors including resting energy expenditure, total energy expenditure and fat-free mass correlated better with urea generation rate than did Watson volume. Total energy expenditure and fat-free mass (but not Watson Volume) were independent predictors of urea generation rate, the model explaining 42% of its variation. Small women (energy expenditure correlated significantly with urea generation rate. Energy metabolism, body composition and physical activity play important roles in small solute uremic toxin generation in HD patients and hence may impact on minimum dialysis requirements. Small women generate relatively more small solute toxins than other groups and thus may have a higher relative need for dialysis. © 2013 The Authors. Hemodialysis

  12. Modeling central metabolism and energy biosynthesis across microbial life

    DOE PAGES

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; ...

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential

  13. Modeling central metabolism and energy biosynthesis across microbial life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential

  14. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    PubMed

    Renaud, Helen J; Cui, Yue Julia; Lu, Hong; Zhong, Xiao-bo; Klaassen, Curtis D

    2014-01-01

    The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age). The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched), Day 10-Day 20 (pre-weaning-enriched), and Day 25-Day 60 (adolescence/adulthood-enriched). Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty acids-like 3. These

  15. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption

    PubMed Central

    2014-01-01

    Forward A composite unifying theory on causes of obesity related-MetS has been formulated and published in an accompanying article (1). In the current article, the historical and recent past, present and future corollaries of this theory are discussed. By presenting this composite theory and corollaries, it is hoped that human evolution and physiology will be viewed and studied from a new vantage point. The politics of management of ecological farming and nutrition will change, a profound reconfiguration of scientific theory generation and advancement in a ‘high-tech’ world can be made, and pathways for solutions recognised. Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome’s underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A ‘dual system’ is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to

  16. [Assessment of energy metabolism and nutritional supply in children with mechanical ventilation].

    PubMed

    Ji, Jian; Qian, Suyun; Yan, Jie

    2016-01-01

    To determine the resting energy expenditure on mechanical ventilation in pediatric intensive care unit (PICU) by indirect calorimetry, and analyze the distribution of metabolic states. The nutrition supply was assessed according to the resting energy expenditure. An observational study which was held in PICU of Beijing Children's Hospital from November 2013 to April 2014. Critically ill children with mechanical ventilation were enrolled in this study. The inclusion criteria included the following: (1) pediatric critical illness score < 90, or meet the United States PICU admission criteria; (2) age > 29 days, < 18 years old; (3) time of mechanical ventilation > 24 hours; (4) volume of mechanical ventilation > 60 ml. Resting energy expenditure was determined by US Med Graphic Company CCM/D energy metabolism test system. Predictive resting energy expenditure was calculated for each subject with age-appropriate equation (Schofield-HTWT). According to the actual energy intake records and required energy intake (10% higher than the measured value) to define the nutritional status. The selected subjects were grouped according to gender, age, types of disease and nutritional status, and compared the metabolic status and nutritional supply of different groups. Sixty-eight children were enrolled in this study, 46 were boys and 22 were girls, including 25 cases of pneumonia with respiratory failure, 23 cases of central nervous system diseases complicated with respiratory failure and 20 cases of postoperative tracheal intubation. The ratio of boys and girls was 2:1. The results showed 36 patients in a low metabolic state, accounting for 53%, 23 patients in a high metabolic state, accounting for 34% and 9 patients (13%) in the metabolism of the normal state. In the male children, 12 cases (26%) were in the high metabolism and 26 cases (57%) were in the low metabolism, and 8 cases (17%) were in the normal metabolism. In the female children, 11 cases (50%) were classified into

  17. Thermodynamics of the living organisms. Allometric relationship between the total metabolic energy, chemical energy and body temperature in mammals

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2017-11-01

    The study present relationship between the total metabolic energy (ETME(c), J) derived as a function of body chemical energy (Gchem, J) and absolute temperature (Tb, K) in mammals: ETME(c) =Gchem (Tb/Tn). In formula the temperature Tn =2.73K appears normalization temperature. The calculated total metabolic energy ETME(c) differs negligible from the total metabolic energy ETME(J), received as a product between the basal metabolic rate (Pm, J/s) and the lifespan (Tls, s) of mammals: ETME = Pm×Tls. The physical nature and biological mean of the normalization temperature (Tn, K) is unclear. It is made the hypothesis that the kTn energy (where k= 1.3806×10-23 J/K -Boltzmann constant) presents energy of excitation states (modes) in biomolecules and body structures that could be in equilibrium with chemical energy accumulated in body. This means that the accumulated chemical energy allows trough all body molecules and structures to propagate excitations states with kTn energy with wavelength in the rage of width of biological membranes. The accumulated in biomolecules chemical energy maintains spread of the excited states through biomolecules without loss of energy.

  18. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells

    PubMed Central

    Bai, Li-Ping; Jiang, Zhi-Hong; Guo, Yue; Kong, Ah-Ng Tony; Wang, Rui; Kam, Richard Kin Ting; Law, Betty Yuen Kwan; Hsiao, Wendy Wen Luen; Chan, Ka Man; Wang, Jingrong; Chan, Rick Wai Kit; Guo, Jianru; Zhang, Wei; Yen, Feng Gen; Zhou, Hua; Leung, Elaine Lai Han; Yu, Zhiling; Liu, Liang

    2016-01-01

    Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells. PMID:26799418

  19. Inducible variation in anaerobic energy metabolism reflects hypoxia tolerance across the intertidal and subtidal distribution of the Pacific oyster (Crassostrea gigas).

    PubMed

    Meng, Jie; Wang, Ting; Li, Li; Zhang, Guofan

    2018-07-01

    Pacific oyster (Crassostrea gigas) distribute a steep gradient of environmental stress between intertidal and subtidal habits and provide insight into population-scale patterns and underlying processes of variation in physiological tolerance. In this study, 1-year-old-F 1 oysters, collected from subtidal and intertidal habitats, were obtained after common garden experiment. Genetic differentiation and physiological responses under air exposure were examined to determine whether they had evolved into local adapted subpopulations. Mortality rate, anaerobic glycolysis metabolism, and energy status indicated that oyster had initiated metabolism depression and anaerobic glycolysis metabolism in both intertidal and subtidal oysters under air exposure. However, the subtidal oysters displayed the larger energy metabolism depressions and the earlier anaerobic glycolysis responses. This may indicate that subtidal oysters were more sensitives to hypoxia stress, which may lead the higher mortality rate under long term of air exposure. Based on a common garden experimental design, we propose that this diversification may have a genetic background. Overall, the clear differences between intertidal and subtidal oysters under air exposure have provided an important reference for their aquaculture and transportation used in commercial production. Copyright © 2018. Published by Elsevier Ltd.

  20. Less-than-expected weight loss in normal-weight women undergoing caloric restriction and exercise is accompanied by preservation of fat-free mass and metabolic adaptations.

    PubMed

    Koehler, K; De Souza, M J; Williams, N I

    2017-03-01

    Normal-weight women frequently restrict their caloric intake and exercise, but little is known about the effects on body weight, body composition and metabolic adaptations in this population. We conducted a secondary analysis of data from a randomized controlled trial in sedentary normal-weight women. Women were assigned to a severe energy deficit (SEV: -1062±80 kcal per day; n=9), a moderate energy deficit (MOD: -633±71 kcal per day; n=7) or energy balance (BAL; n=9) while exercising five times per week for 3 months. Outcome variables included changes in body weight, body composition, resting metabolic rate (RMR) and metabolic hormones associated with energy conservation. Weight loss occurred in SEV (-3.7±0.9 kg, P<0.001) and MOD (-2.7±0.8 kg; P=0.003), but weight loss was significantly less than predicted (SEV: -11.1±1.0 kg; MOD: -6.5±1.1 kg; both P<0.001 vs actual). Fat mass declined in SEV (P<0.001) and MOD (P=0.006), whereas fat-free mass remained unchanged in all groups (P>0.33). RMR decreased by -6±2% in MOD (P=0.020). In SEV, RMR did not change on a group level (P=0.66), but participants whose RMR declined lost more weight (P=0.020) and had a higher baseline RMR (P=0.026) than those whose RMR did not decrease. Characteristic changes in leptin (P=0.003), tri-iodothyronine (P=0.013), insulin-like growth factor-1 (P=0.016) and ghrelin (P=0.049) occurred only in SEV. The energy deficit and adaptive changes in RMR explained 54% of the observed weight loss. In normal-weight women, caloric restriction and exercise resulted in less-than-predicted weight loss. In contrast to previous literature, weight loss consisted almost exclusively of fat mass, whereas fat-free mass was preserved.

  1. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Metabolic adaptation of Mycobacterium avium subsp. paratuberculosis to the gut environment.

    PubMed

    Weigoldt, Mathias; Meens, Jochen; Bange, Franz-Christoph; Pich, Andreas; Gerlach, Gerald F; Goethe, Ralph

    2013-02-01

    Knowledge on the proteome level about the adaptation of pathogenic mycobacteria to the environment in their natural hosts is limited. Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a chronic and incurable granulomatous enteritis of ruminants, and has been suggested to be a putative aetiological agent of Crohn's disease in humans. Using a comprehensive LC-MS-MS and 2D difference gel electrophoresis (DIGE) approach, we compared the protein profiles of clinical strains of MAP prepared from the gastrointestinal tract of diseased cows with the protein profiles of the same strains after they were grown in vitro. LC-MS-MS analyses revealed that the principal enzymes for the central carbon metabolic pathways, including glycolysis, gluconeogenesis, the tricaboxylic acid cycle and the pentose phosphate pathway, were present under both conditions. Moreover, a broad spectrum of enzymes for β-oxidation of lipids, nine of which have been shown to be necessary for mycobacterial growth on cholesterol, were detected in vivo and in vitro. Using 2D-DIGE we found increased levels of several key enzymes that indicated adaptation of MAP to the host. Among these, FadE5, FadE25 and AdhB indicated that cholesterol is used as a carbon source in the bovine intestinal mucosa; the respiratory enzymes AtpA, NuoG and SdhA suggested increased respiration during infection. Furthermore higher levels of the pentose phosphate pathway enzymes Gnd2, Zwf and Tal as well as of KatG, SodA and GroEL indicated a vigorous stress response of MAP in vivo. In conclusion, our results provide novel insights into the metabolic adaptation of a pathogenic mycobacterium in its natural host.

  3. Ibogaine affects brain energy metabolism.

    PubMed

    Paskulin, Roman; Jamnik, Polona; Zivin, Marko; Raspor, Peter; Strukelj, Borut

    2006-12-15

    Ibogaine is an indole alkaloid present in the root of the plant Tabernanthe iboga. It is known to attenuate abstinence syndrome in animal models of drug addiction. Since the anti-addiction effect lasts longer than the presence of ibogaine in the body, some profound metabolic changes are expected. The aim of this study was to investigate the effect of ibogaine on protein expression in rat brains. Rats were treated with ibogaine at 20 mg/kg body weight i.p. and subsequently examined at 24 and 72 h. Proteins were extracted from whole brain and separated by two-dimensional (2-D) electrophoresis. Individual proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Enzymes of glycolysis and tricarboxylic acid (TCA) cycle namely glyceraldehyde-3-phosphate dehydrogenase, aldolase A, pyruvate kinase and malate dehydrogenase were induced. The results suggest that the remedial effect of ibogaine could be mediated by the change in energy availability. Since energy dissipating detoxification and reversion of tolerance to different drugs of abuse requires underlying functional and structural changes in the cell, higher metabolic turnover would be favourable. Understanding the pharmacodynamics of anti-addiction drugs highlights the subcellular aspects of addiction diseases, in addition to neurological and psychological perspectives.

  4. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation.

    PubMed

    Sinclair, Charles; Bommakanti, Gayathri; Gardinassi, Luiz; Loebbermann, Jens; Johnson, Matthew Joseph; Hakimpour, Paul; Hagan, Thomas; Benitez, Lydia; Todor, Andrei; Machiah, Deepa; Oriss, Timothy; Ray, Anuradha; Bosinger, Steven; Ravindran, Rajesh; Li, Shuzhao; Pulendran, Bali

    2017-09-08

    Antigen-presenting cells (APCs) occupy diverse anatomical tissues, but their tissue-restricted homeostasis remains poorly understood. Here, working with mouse models of inflammation, we found that mechanistic target of rapamycin (mTOR)-dependent metabolic adaptation was required at discrete locations. mTOR was dispensable for dendritic cell (DC) homeostasis in secondary lymphoid tissues but necessary to regulate cellular metabolism and accumulation of CD103 + DCs and alveolar macrophages in lung. Moreover, while numbers of mTOR-deficient lung CD11b + DCs were not changed, they were metabolically reprogrammed to skew allergic inflammation from eosinophilic T helper cell 2 (T H 2) to neutrophilic T H 17 polarity. The mechanism for this change was independent of translational control but dependent on inflammatory DCs, which produced interleukin-23 and increased fatty acid oxidation. mTOR therefore mediates metabolic adaptation of APCs in distinct tissues, influencing the immunological character of allergic inflammation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Signals for the lysosome: a control center for cellular clearance and energy metabolism

    PubMed Central

    Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.

    2015-01-01

    Preface For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master gene, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy, has revealed how the lysosome adapts to environmental cues, such as starvation, and suggests novel therapeutic strategies for modulating lysosomal function in human disease. PMID:23609508

  6. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    PubMed

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-03-11

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.

  7. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  8. State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep.

    PubMed

    Schmidt, Markus H; Swang, Theodore W; Hamilton, Ian M; Best, Janet A

    2017-01-01

    Metabolic rate reduction has been considered the mechanism by which sleep conserves energy, similar to torpor or hibernation. This mechanism of energy savings is in conflict with the known upregulation (compared to wake) of diverse functions during sleep and neglects a potential role in energy conservation for partitioning of biological operations by behavioral state. Indeed, energy savings as derived from state-dependent resource allocations have yet to be examined. A mathematical model is presented based on relative rates of energy deployment for biological processes upregulated during either wake or sleep. Using this model, energy savings from sleep-wake cycling over constant wakefulness is computed by comparing stable limit cycles for systems of differential equations. A primary objective is to compare potential energy savings derived from state-dependent metabolic partitioning versus metabolic rate reduction. Additionally, energy conservation from sleep quota and the circadian system are also quantified in relation to a continuous wake condition. As a function of metabolic partitioning, our calculations show that coupling of metabolic operations with behavioral state may provide comparatively greater energy savings than the measured decrease in metabolic rate, suggesting that actual energy savings derived from sleep may be more than 4-fold greater than previous estimates. A combination of state-dependent metabolic partitioning and modest metabolic rate reduction during sleep may enhance energy savings beyond what is achievable through metabolic partitioning alone; however, the relative contribution from metabolic partitioning diminishes as metabolic rate is decreased during the rest phase. Sleep quota and the circadian system further augment energy savings in the model. Finally, we propose that state-dependent resource allocation underpins both sleep homeostasis and the optimization of daily energy conservation across species. This new paradigm identifies an

  9. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants.

    PubMed

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2016-03-28

    The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (75-100 %) energy restriction (ER) interspersed with normal eating. This study aimed to characterise the early metabolic response to these varying degrees of ER, which occurs acutely and prior to weight loss. Ten (three female) healthy, overweight/obese participants (36 (SEM 5) years; 29·0 (sem 1·1) kg/m2) took part in this acute three-way cross-over study. Participants completed three 1-d dietary interventions in a randomised order with a 1-week washout period: isoenergetic intake, partial 75 % ER and total 100 % ER. Fasting and postprandial (6-h) metabolic responses to a liquid test meal were assessed the following morning via serial blood sampling and indirect calorimetry. Food intake was also recorded for two subsequent days of ad libitum intake. Relative to the isoenergetic control, postprandial glucose responses were increased following total ER (+142 %; P=0·015) and to a lesser extent after partial ER (+76 %; P=0·051). There was also a delay in the glucose time to peak after total ER only (P=0·024). Both total and partial ER interventions produced comparable reductions in postprandial TAG responses (-75 and -59 %, respectively; both P<0·05) and 3-d energy intake deficits of approximately 30 % (both P=0·015). Resting and meal-induced thermogenesis were not significantly affected by either ER intervention. In conclusion, our data demonstrate the ability of substantial ER to acutely alter postprandial glucose-lipid metabolism (with partial ER producing the more favourable overall response), as well as incomplete energy-intake compensation amongst overweight/obese participants. Further investigations are required to establish how metabolism adapts over time to the repeated perturbations experienced during IER, as well as the implications for long-term health.

  10. Energy metabolism of intervertebral disc under mechanical loading.

    PubMed

    Wang, Chong; Gonzales, Silvia; Levene, Howard; Gu, Weiyong; Huang, Chun-Yuh Charles

    2013-11-01

    Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism. © 2013 Orthopaedic Research Society.

  11. Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice.

    PubMed

    Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Nguyen, Amanda; Schaack, Jerome; Hay, William W; Shao, Jianhua

    2017-05-01

    Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout ( Adipoq -/- ) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector-mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq -/- dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq -/- dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq -/- dams. Hepatic glucose and triglyceride production rates of Adipoq -/- dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq -/- dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq -/- and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq -/- dams. Furthermore, β-cell mass, but not glucose-stimulated insulin release, in Adipoq -/- dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy. © 2017 by the American Diabetes Association.

  12. Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice

    PubMed Central

    Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Nguyen, Amanda; Schaack, Jerome; Hay, William W.

    2017-01-01

    Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout (Adipoq−/−) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector–mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq−/− dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq−/− dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq−/− dams. Hepatic glucose and triglyceride production rates of Adipoq−/− dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq−/− dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq−/− and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq−/− dams. Furthermore, β-cell mass, but not glucose-stimulated insulin release, in Adipoq−/− dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy. PMID:28073830

  13. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    PubMed

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  14. Mitochondrial Energy Metabolism and Redox Signaling in Brain Aging and Neurodegeneration

    PubMed Central

    Yin, Fei; Boveris, Alberto

    2014-01-01

    Abstract Significance: The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. Recent Advances: The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. Critical Issues: This review focuses on a coordinated metabolic network—cytosolic signaling, transcriptional regulation, and mitochondrial function—that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. Future Directions: Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371. PMID:22793257

  15. An adaptive interpolation scheme for molecular potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  16. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.

    PubMed

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2018-04-05

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.

  17. [Modifications in myocardial energy metabolism in diabetic patients

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2001-01-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  18. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations

    PubMed Central

    Franchi, Martino V.; Reeves, Neil D.; Narici, Marco V.

    2017-01-01

    Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively); however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT) is assumed to produce greater hypertrophy than concentric resistance training (CON RT). Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood. Thus, the present review aims to, (a) critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b) clarify the molecular mechanisms that may regulate such adaptations. We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions. PMID:28725197

  19. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-03-28

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  20. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    PubMed Central

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  1. Brain metabolism in health, aging, and neurodegeneration.

    PubMed

    Camandola, Simonetta; Mattson, Mark P

    2017-06-01

    Brain cells normally respond adaptively to bioenergetic challenges resulting from ongoing activity in neuronal circuits, and from environmental energetic stressors such as food deprivation and physical exertion. At the cellular level, such adaptive responses include the "strengthening" of existing synapses, the formation of new synapses, and the production of new neurons from stem cells. At the molecular level, bioenergetic challenges result in the activation of transcription factors that induce the expression of proteins that bolster the resistance of neurons to the kinds of metabolic, oxidative, excitotoxic, and proteotoxic stresses involved in the pathogenesis of brain disorders including stroke, and Alzheimer's and Parkinson's diseases. Emerging findings suggest that lifestyles that include intermittent bioenergetic challenges, most notably exercise and dietary energy restriction, can increase the likelihood that the brain will function optimally and in the absence of disease throughout life. Here, we provide an overview of cellular and molecular mechanisms that regulate brain energy metabolism, how such mechanisms are altered during aging and in neurodegenerative disorders, and the potential applications to brain health and disease of interventions that engage pathways involved in neuronal adaptations to metabolic stress. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears.

    PubMed

    Molnár, Péter K; Klanjscek, Tin; Derocher, Andrew E; Obbard, Martyn E; Lewis, Mark A

    2009-08-01

    Many species experience large fluctuations in food availability and depend on energy from fat and protein stores for survival, reproduction and growth. Body condition and, more specifically, energy stores thus constitute key variables in the life history of many species. Several indices exist to quantify body condition but none can provide the amount of stored energy. To estimate energy stores in mammals, we propose a body composition model that differentiates between structure and storage of an animal. We develop and parameterize the model specifically for polar bears (Ursus maritimus Phipps) but all concepts are general and the model could be easily adapted to other mammals. The model provides predictive equations to estimate structural mass, storage mass and storage energy from an appropriately chosen measure of body length and total body mass. The model also provides a means to estimate basal metabolic rates from body length and consecutive measurements of total body mass. Model estimates of body composition, structural mass, storage mass and energy density of 970 polar bears from Hudson Bay were consistent with the life history and physiology of polar bears. Metabolic rate estimates of fasting adult males derived from the body composition model corresponded closely to theoretically expected and experimentally measured metabolic rates. Our method is simple, non-invasive and provides considerably more information on the energetic status of individuals than currently available methods.

  3. Cellular energy metabolism maintains young status in old queen honey bees (Apis mellifera).

    PubMed

    Lu, Cheng-Yen; Qiu, Jiantai Timothy; Hsu, Chin-Yuan

    2018-05-02

    Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β-oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees. © 2018 Wiley Periodicals, Inc.

  4. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    PubMed Central

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  5. Energy metabolism, fuel selection and body weight regulation

    PubMed Central

    Galgani, J; Ravussin, E

    2010-01-01

    Energy homeostasis is critical for the survival of species. Therefore, multiple and complex mechanisms have evolved to regulate energy intake and expenditure to maintain body weight. For weight maintenance, not only does energy intake have to match energy expenditure, but also macronutrient intake must balance macronutrient oxidation. However, this equilibrium seems to be particularly difficult to achieve in individuals with low fat oxidation, low energy expenditure, low sympathetic activity or low levels of spontaneous physical activity, as in addition to excess energy intake, all of these factors explain the tendency of some people to gain weight. Additionally, large variability in weight change is observed when energy surplus is imposed experimentally or spontaneously. Clearly, the data suggest a strong genetic influence on body weight regulation implying a normal physiology in an ‘obesogenic’ environment. In this study, we also review evidence that carbohydrate balance may represent the potential signal that regulates energy homeostasis by impacting energy intake and body weight. Because of the small storage capacity for carbohydrate and its importance for metabolism in many tissues and organs, carbohydrate balance must be maintained at a given level. This drive for balance may in turn cause increased energy intake when consuming a diet high in fat and low in carbohydrate. If sustained over time, such an increase in energy intake cannot be detected by available methods, but may cause meaningful increases in body weight. The concept of metabolic flexibility and its impact on body weight regulation is also presented. PMID:19136979

  6. Metabolic sensing neurons and the control of energy homeostasis.

    PubMed

    Levin, Barry E

    2006-11-30

    The brain and periphery carry on a constant conversation; the periphery informs the brain about its metabolic needs and the brain provides for these needs through its control of somatomotor, autonomic and neurohumoral pathways involved in energy intake, expenditure and storage. Metabolic sensing neurons are the integrators of a variety of metabolic, humoral and neural inputs from the periphery. Such neurons, originally called "glucosensing", also respond to fatty acids, hormones and metabolites from the periphery. They are integrated within neural pathways involved in the regulation of energy homeostasis. Unlike most neurons, they utilize glucose and other metabolites as signaling molecules to regulate their membrane potential and firing rate. For glucosensing neurons, glucokinase acts as the rate-limiting step in glucosensing while the pathways that mediate responses to metabolites like lactate, ketone bodies and fatty acids are less well characterized. Many metabolic sensing neurons also respond to insulin and leptin and other peripheral hormones and receive neural inputs from peripheral organs. Each set of afferent signals arrives with different temporal profiles and by different routes and these inputs are summated at the level of the membrane potential to produce a given neural firing pattern. In some obese individuals, the relative sensitivity of metabolic sensing neurons to various peripheral inputs is genetically reduced. This may provide one mechanism underlying their propensity to become obese when exposed to diets high in fat and caloric density. Thus, metabolic sensing neurons may provide a potential therapeutic target for the treatment of obesity.

  7. Metabolic programming of obesity by energy restriction during the perinatal period: different outcomes depending on gender and period, type and severity of restriction

    PubMed Central

    Picó, Catalina; Palou, Mariona; Priego, Teresa; Sánchez, Juana; Palou, Andreu

    2012-01-01

    Epidemiological studies in humans and controlled intervention studies in animals have shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. The phenotypes of health or disease are hence the result of the interaction between genetic and environmental factors, starting right from conception. In this sense, gestation and lactation are disclosed as critical periods. Continuous food restriction during these stages may lead to permanent adaptations with lasting effects on the metabolism of the offspring and may influence the propensity to develop different chronic diseases associated with obesity. However, the different outcomes of these adaptations on later health may depend on factors such as the type, duration, period, and severity of the exposure to energy restriction conditions, and they are, in part, gender specific. A better understanding of the factors and mechanisms involved in metabolic programming, and their effects, may contribute significantly to the prevention of obesity, which is considered to be one of the major health concerns of our time. Here, the different outcomes of maternal food restriction during gestation and lactation in the metabolic health of offspring, as well as potential mechanisms underlying these effects are reviewed. PMID:23189059

  8. Estimation of metabolic energy expenditure from core temperature using a human thermoregulatory model

    USDA-ARS?s Scientific Manuscript database

    Measuring metabolic energy expenditure in humans may provide a means of monitoring and reducing obesity, estimating nutritional requirements, reducing obesity, maintaining energy balance during athletics, and modeling human thermoregulatory responses. However, measuring metabolic rate (M) is challen...

  9. An adaptive interpolation scheme for molecular potential energy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Larsson, Elisabeth; Heryudono, Alfa

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within amore » given accuracy compared to the non-adaptive version.« less

  10. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes

    PubMed Central

    Ahmed, Faisal

    2018-01-01

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90–94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models. PMID:29621169

  11. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.

    PubMed

    Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J

    2017-08-01

    Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions

  12. Analysis of metabolic energy utilization in the Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Skylab biomedical data regarding man's metabolic processes for extended periods of weightlessness is presented. The data was used in an integrated metabolic balance analysis which included analysis of Skylab water balance, electrolyte balance, evaporative water loss, and body composition. A theoretical analysis of energy utilization in man is presented. The results of the analysis are presented in tabular and graphic format.

  13. Metabolic Power in Team Sports - Part 2: Aerobic and Anaerobic Energy Yields.

    PubMed

    Osgnach, Cristian; di Prampero, Pietro Enrico

    2018-06-14

    A previous approach to estimate the time course of instantaneous metabolic power and O 2 consumption in team sports has been updated to assess also energy expenditure against air resistance and to identify walking and running separately. Whole match energy expenditure turned out ≈14% smaller than previously obtained, the fraction against the air resistance amounting to ≈2% of the total. Estimated net O 2 consumption and overall energy expenditure are fairly close to those measured by means of a portable metabolic cart; the average difference, after a 45 min exercise period of variable intensity and mode, amounting to ≈10%. Aerobic and anaerobic energy yields, metabolic power, energy expenditure and duration of High (HI) and Low (LI) intensity bouts can also be estimated. Indeed, data on 497 soccer players during the 2014/2015 Italian "Serie A" show that the number of HI efforts decreased from the first to the last 15-min periods of the match, without substantial changes in mean metabolic power (≈22 W·kg -1 ) and duration (≈6.5 s). On the contrary, mean metabolic power of the LI decreased (5.8 to 4.8 W·kg -1 ), mainly because of a longer duration thereof, thus underscoring the need for longer recovery periods between HI. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes - experimental study.

    PubMed

    Tepp, Kersti; Timohhina, Natalja; Chekulayev, Vladimir; Shevchuk, Igor; Kaambre, Tuuli; Saks, Valdur

    2010-01-01

    The main focus of this research was to apply Metabolic Control Analysis to quantitative investigation of the regulation of respiration by components of the Mitochondrial Interactosome (MI, a supercomplex consisting of ATP Synthasome, mitochondrial creatine kinase (MtCK), voltage dependent anion channel (VDAC), and tubulin) in permeabilized cardiomyocytes. Flux control coefficients (FCC) were measured using two protocols: 1) with direct ADP activation, and 2) with MtCK activation by creatine (Cr) in the presence of ATP and pyruvate kinase-phosphoenolpyruvate system. The results show that the metabolic control is much stronger in the latter case: the sum of the measured FCC is 2.7 versus 0.74 (ADP activation). This is consistent with previous data showing recycling of ADP and ATP inside the MI due to the functional coupling between MtCK and ANT and limited permeability of VDAC for these compounds, PCr being the major energy carrier between the mitochondria and ATPases. In physiological conditions, when the MI is activated, the key sites of regulation of respiration in mitochondria are MtCK (FCC = 0.93), adenine nucleotide translocase ANT (FCC = 0.95) and CoQ cytochrome c oxidoreductase (FCC = 0.4). These results show clearly that under the physiological conditions the energy transfer from mitochondria to the cytoplasm is regulated by the MI supercomplex and is very sensitive to metabolic signals.

  15. Estimation of metabolic energy expenditure from core temperature using a human thermoregulatory model.

    PubMed

    Welles, Alexander P; Buller, Mark J; Looney, David P; Rumpler, William V; Gribok, Andrei V; Hoyt, Reed W

    2018-02-01

    Human metabolic energy expenditure is critical to many scientific disciplines but can only be measured using expensive and/or restrictive equipment. The aim of this work is to determine whether the SCENARIO thermoregulatory model can be adapted to estimate metabolic rate (M) from core body temperature (T C ). To validate this method of M estimation, data were collected from fifteen test volunteers (age = 23 ± 3yr, height = 1.73 ± 0.07m, mass = 68.6 ± 8.7kg, body fat = 16.7 ± 7.3%; mean ± SD) who wore long sleeved nylon jackets and pants (I tot,clo = 1.22, I m = 0.41) during treadmill exercise tasks (32 trials; 7.8 ± 0.5km in 1h; air temp. = 22°C, 50% RH, wind speed = 0.35ms -1 ). Core body temperatures were recorded by ingested thermometer pill and M data were measured via whole room indirect calorimetry. Metabolic rate was estimated for 5min epochs in a two-step process. First, for a given epoch, a range of M values were input to the SCENARIO model and a corresponding range of T C values were output. Second, the output T C range value with the lowest absolute error relative to the observed T C for the given epoch was identified and its corresponding M range input was selected as the estimated M for that epoch. This process was then repeated for each subsequent remaining epoch. Root mean square error (RMSE), mean absolute error (MAE), and bias between observed and estimated M were 186W, 130 ± 174W, and 33 ± 183W, respectively. The RMSE for total energy expenditure by exercise period was 0.30 MJ. These results indicate that the SCENARIO model is useful for estimating M from T C when measurement is otherwise impractical. Published by Elsevier Ltd.

  16. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors.

    PubMed

    Peterson, Christine; Vannucci, Marina; Karakas, Cemal; Choi, William; Ma, Lihua; Maletić-Savatić, Mirjana

    2013-10-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation.

  17. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors

    PubMed Central

    PETERSON, CHRISTINE; VANNUCCI, MARINA; KARAKAS, CEMAL; CHOI, WILLIAM; MA, LIHUA; MALETIĆ-SAVATIĆ, MIRJANA

    2014-01-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation. PMID:24533172

  18. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    PubMed

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  19. A pocket-sized metabolic analyzer for assessment of resting energy expenditure.

    PubMed

    Zhao, Di; Xian, Xiaojun; Terrera, Mirna; Krishnan, Ranganath; Miller, Dylan; Bridgeman, Devon; Tao, Kevin; Zhang, Lihua; Tsow, Francis; Forzani, Erica S; Tao, Nongjian

    2014-04-01

    The assessment of metabolic parameters related to energy expenditure has a proven value for weight management; however these measurements remain too difficult and costly for monitoring individuals at home. The objective of this study is to evaluate the accuracy of a new pocket-sized metabolic analyzer device for assessing energy expenditure at rest (REE) and during sedentary activities (EE). The new device performs indirect calorimetry by measuring an individual's oxygen consumption (VO2) and carbon dioxide production (VCO2) rates, which allows the determination of resting- and sedentary activity-related energy expenditure. VO2 and VCO2 values of 17 volunteer adult subjects were measured during resting and sedentary activities in order to compare the metabolic analyzer with the Douglas bag method. The Douglas bag method is considered the Gold Standard method for indirect calorimetry. Metabolic parameters of VO2, VCO2, and energy expenditure were compared using linear regression analysis, paired t-tests, and Bland-Altman plots. Linear regression analysis of measured VO2 and VCO2 values, as well as calculated energy expenditure assessed with the new analyzer and Douglas bag method, had the following linear regression parameters (linear regression slope LRS0, and R-squared coefficient, r(2)) with p = 0: LRS0 (SD) = 1.00 (0.01), r(2) = 0.9933 for VO2; LRS0 (SD) = 1.00 (0.01), r(2) = 0.9929 for VCO2; and LRS0 (SD) = 1.00 (0.01), r(2) = 0.9942 for energy expenditure. In addition, results from paired t-tests did not show statistical significant difference between the methods with a significance level of α = 0.05 for VO2, VCO2, REE, and EE. Furthermore, the Bland-Altman plot for REE showed good agreement between methods with 100% of the results within ±2SD, which was equivalent to ≤10% error. The findings demonstrate that the new pocket-sized metabolic analyzer device is accurate for determining VO2, VCO2, and energy expenditure. Copyright © 2013 Elsevier Ltd and

  20. Rhodanese Functions as Sulfur Supplier for Key Enzymes in Sulfur Energy Metabolism

    PubMed Central

    Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-01-01

    How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus. PMID:22496367

  1. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.

    PubMed

    Kresnowati, M T A P; van Winden, W A; van Gulik, W M; Heijnen, J J

    2008-11-01

    Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.

  2. Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids.

    PubMed

    Gallagher, Austin J; Skubel, Rachel A; Pethybridge, Heidi R; Hammerschlag, Neil

    2017-01-01

    Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species ( n  = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations.

  3. Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids

    PubMed Central

    Skubel, Rachel A.; Pethybridge, Heidi R.; Hammerschlag, Neil

    2017-01-01

    Abstract Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species (n = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations. PMID:28852506

  4. Extra-metabolic energy use and the rise in human hyper-density

    NASA Astrophysics Data System (ADS)

    Burger, Joseph R.; Weinberger, Vanessa P.; Marquet, Pablo A.

    2017-03-01

    Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth’s ’energetic equivalence rule’ supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.

  5. Extra-metabolic energy use and the rise in human hyper-density.

    PubMed

    Burger, Joseph R; Weinberger, Vanessa P; Marquet, Pablo A

    2017-03-02

    Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth's 'energetic equivalence rule' supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.

  6. Environmental metabolomics reveal geographic variation in aerobic metabolism and metabolic substrates in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Shi, Yao-Long; Chi, Qing-Sheng; Liu, Wei; Fu, He-Ping; Wang, De-Hua

    2015-06-01

    Mongolian gerbils (Meriones unguiculatus) have a large-scale distribution in northern China. Geographic physiological variations which related to energy and water metabolism are critical to animals' local adaptation and distribution. However, the underlying biochemical mechanism of such variation and its role in adaptation remains largely unknown. We used GC-MS metabolomics approach to investigate the biochemical adaptation of Mongolian gerbils from xeric (desert), transition (desert steppe) and mesic (typical steppe) environments. Gerbils in desert population had lower resting metabolic rate (RMR) and total evaporative water loss (TEWL) than mesic population. Serum metabolomics revealed that concentrations of five tricarboxylic acid cycle intermediates (citrate, cis-aconitate, α-ketoglutarate, fumarate and malate) were lower in desert population than mesic population. Gastrocnemius metabolomics and citrate synthase activity analysis showed a lower concentration of citrate and lower citrate synthase activity in desert population. These findings suggest that desert dwelling gerbils decrease RMR and TEWL via down-regulation of aerobic respiration. Gastrocnemius metabolomics also revealed that there were higher concentrations of glucose and glycolytic intermediates, but lower concentrations of lipids, amino acids and urea in desert population than mesic population. This geographic variation in metabolic substrates may enhance metabolic water production per oxygen molecule for desert population while constraining aerobic respiration to reduce RMR and TEWL. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  8. Effect of hemoglobin and immunization status on energy metabolism of weanling pigs.

    PubMed

    Gentry, J L; Swinkels, J W; Lindemann, M D; Schrama, J W

    1997-04-01

    We investigated the effect of (Hb) and immunization status on energy metabolism of newly weaned pigs. An additional focus of the study was to determine the development of circadian rhythms as evidenced by heat production patterns. Twenty-four 4-wk-old crossbred weanling barrows were placed into groups of three based on weight and litter origin, and the groups were allotted to one of four treatments. Treatments were arranged as a 2 x 2 factorial. The factors included 1) Hb status (low vs high) and 2) immunization status (antigen vs placebo). Hemoglobin status was obtained by injecting 3-d-old barrows with 100 (low) or 200 mg (high) of Fe. At 4 wk, initial blood Hb concentrations were 6.0 mM for the low group and 7.8 mM for the high group. Energy metabolism was measured using two weekly total energy and nitrogen balance collections. Energy intake and retention were higher (P < .05) in pigs with a high Hb level. Energy metabolism was not affected (P > .10) by immunization status, and heat production was not affected (P > .10) by either Hb or immunization status. Total heat production (HTOT) increased (P < .001) daily and reflected a daily increase (P < .001) in activity (HACT) and activity-free (HCOR) heat production. An increase (P < .001) in HTOT and HACT was detected for the light period compared with the dark period over the total experimental period but a decrease (P < .001) in HCOR was detected; however, HACT for the dark period was approximately half of that measured during the light period. In conclusion, Hb status affected energy metabolism; pigs having a high Hb status had a higher energy retention. Immunization status had minimal effects on energy metabolism and heat production. Additionally, the diurnal circadian rhythm seen in older pigs had not been established by 2 wk after weaning.

  9. Functional Electron Microscopy in Studies of Plant response and adaptation to Anaerobic Stress

    PubMed Central

    VARTAPETIAN, BORIS B.; ANDREEVA, IRINA N.; GENEROZOVA, INNA P.; POLYAKOVA, LYLI I.; MASLOVA, INNA P.; DOLGIKH, YULIA I.; STEPANOVA, ANNA YU.

    2003-01-01

    This article reviews the contribution made by functional electron microscopy towards identifying and understanding the reactions of plant roots and shoots to anaerobic stress. Topics examined include: (1) unexpected hypersensitivity, rather than hyper‐resistance, to anoxia of root tips of flooding‐tolerant plants; (2) protective, rather than damaging, effects of a stimulated energy metabolism (glycolysis and fermentation) under anaerobic conditions; (3) the concept of two main strategies of plant adaptation to anaerobic environments, namely avoidance of anaerobiosis on the whole plant level, termed ‘apparent’ tolerance, and metabolic adaptation at the cellular and molecular levels, termed ‘true’ tolerance; (4) the importance of protein synthesis during hypoxia and anoxia for enhanced energy production and metabolic adaptation; (5) a general adaptive syndrome in plants to stress at the ultrastructural level and a possible molecular mechanism for its realization under anoxia; (6) the physiological role of anaerobically synthesized lipids and nitrate as alternative electron acceptors in an oxygen‐free medium; and (7) the selection of cell lines derived from callus cultures that possess enhanced tolerance to anoxia and can regenerate whole plants with improved tolerance of soil waterlogging. PMID:12509337

  10. AMPK in skeletal muscle function and metabolism

    PubMed Central

    Kjøbsted, Rasmus; Hingst, Janne R.; Fentz, Joachim; Foretz, Marc; Sanz, Maria-Nieves; Pehmøller, Christian; Shum, Michael; Marette, André; Mounier, Remi; Treebak, Jonas T.; Wojtaszewski, Jørgen F. P.; Viollet, Benoit; Lantier, Louise

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism. PMID:29242278

  11. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.

    PubMed

    Nargund, Shilpa; Qiu, Jinshu; Goudar, Chetan T

    2015-01-01

    (13)C-metabolic flux analysis was used to understand copper deficiency-related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein-producing CHO cells. Stationary-phase labeling experiments with U-(13)C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed-batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC-MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%-79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%-23% and 74%, respectively) compared with the Cu-containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper-deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation. © 2015 American Institute of Chemical Engineers.

  12. Energy metabolism during activity-promoting video games practice in subjects with spinal cord injury: evidences for health promotion.

    PubMed

    Gaffurini, P; Bissolotti, L; Calza, S; Calabretto, C; Orizio, C; Gobbo, M

    2013-02-01

    Activity promoting video game (APVG) practice significantly affects energy metabolism through energy expenditure (EE) increase and has been recently included in strategies for health promotion. It is not known if the APVG practice provides similar outcomes in subjects with spinal cord injury (SCI). Aim of the study was to evaluate cardio-pulmonary and metabolic adaptations during APVG practice and to find whether EE increase above resting condition could suggest the inclusion of this exercise in a more general strategy for health promotion and body weight control in subjects with SCI. Repeated measures study. Rehabilitation Institute. Ten male subjects with SCI (lesion levels from C7 to L1) age 26 to 55 years. We recorded pulmonary ventilation (VE), oxygen consumption (VO2) for EE esteem and heart rate (HR) at rest and while playing virtual bowling, tennis and boxing games using a portable metabolimeter equipped with ECG electrodes. The standard metabolic equivalent of task (METs) was calculated offline. The metabolic and functional parameters were referred to the 10th minute of each activity. Metabolic and functional parameters increased significantly from rest to bowling, tennis and boxing. METs exceeded in average 3 during boxing. One hour of APVG can increase daily EE by about 6% (bowling), 10% (tennis) and 15% (boxing). These considerable results suggest that physical exertion during APVG practice in subjects with SCI could contribute to health promotion as well as caloric balance control, especially when boxing is considered. This can be safely achieved at home with regular activity. These findings substantiate the potential for novel exercise modalities to counteract deconditioning due to inactivity in subjects with SCI by promoting physical activity through implementation of APVG exercise programs.

  13. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice.

    PubMed

    Foglesong, Grant D; Huang, Wei; Liu, Xianglan; Slater, Andrew M; Siu, Jason; Yildiz, Vedat; Salton, Stephen R J; Cao, Lei

    2016-03-01

    Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF.

  14. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice

    PubMed Central

    Foglesong, Grant D.; Huang, Wei; Liu, Xianglan; Slater, Andrew M.; Siu, Jason; Yildiz, Vedat; Salton, Stephen R. J.

    2016-01-01

    Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF. PMID:26730934

  15. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists.

    PubMed

    Rossignol, Rodrigue

    2015-06-01

    Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    PubMed Central

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978

  17. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    PubMed

    Amoedo, N D; Obre, E; Rossignol, R

    2017-08-01

    metabolism and to follow the efficiency of a treatment at a preclinical or clinical stage. Relevant descriptors of tumor metabolism are now required to better stratify patients for the development of personalized metabolic medicine. In this review, we discuss the current limitations in basic research and drug discovery in the field of cancer metabolism to foster the need for more clinically relevant target identification and validation. We discuss the design of adapted drug screening assays and compound efficacy evaluation methods for the discovery of innovative anti-cancer therapeutic approaches at the level of tumor energetics. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Thermal adaptation of decomposer communities in warming soils

    PubMed Central

    Bradford, Mark A.

    2013-01-01

    Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function of both enzymes and membranes. I review the basis for these trade-offs and show that they, like substrate depletion, are plausible mechanisms explaining soil respiration responses to warming. I argue that controversies over whether soil microbes adapt to warming stem from disregarding the evolutionary physiology of cellular metabolism, and confusion arising from the term thermal acclimation to represent phenomena at the organism- and ecosystem-levels with different underlying mechanisms. Measurable physiological adjustments of the soil microbial biomass reflect shifts from colder- to warmer-adapted taxa. Hypothesized declines in the growth efficiency of soil microbial biomass under warming are controversial given limited data and a weak theoretical basis. I suggest that energy spilling (aka waste metabolism) is a more plausible mechanism for efficiency declines than the commonly invoked increase in maintenance-energy demands. Energy spilling has many fitness benefits for microbes and its response to climate warming is uncertain. Modeled responses of soil carbon to warming are sensitive to microbial growth efficiency, but declines in efficiency mitigate warming-induced carbon losses in microbial models and exacerbate them in conventional models. Both modeling structures assume that microbes regulate soil carbon turnover, highlighting the need for a third structure where microbes are not regulators. I conclude that microbial physiology must be considered if we are to have confidence in projected feedbacks between soil carbon stocks, atmospheric CO2, and climate change. PMID

  19. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    PubMed Central

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  20. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals.

    PubMed

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.

  1. Description of a bovine model for studying digestive and metabolic effects of a positive energy balance not biased by lactation or gravidity.

    PubMed

    Dänicke, Sven; Meyer, Ulrich; Winkler, Janine; Schulz, Kirsten; Ulrich, Sebastian; Frahm, Jana; Kersten, Susanne; Rehage, Jürgen; Breves, Gerhard; Häussler, Susanne; Sauerwein, Helga; Locher, Lena

    2014-12-01

    Physiological consequences of adaptation to and continued feeding of a high-energetic diet were studied in eight non-pregnant, non-lactating dairy Holstein cows over a period of 16 weeks. The first six weeks served as an adaptation period from the low energetic straw-based diet (3.8 MJ NEL/kg DM) to the high-energetic ration (7.5 MJ NEL/kg DM). Intake of dry matter (DM) increased with dietary energy concentration from 9 to 20 kg/d up to week 9 to 12 and decreased thereafter. The initial live weight (LW) of 550 ± 60 kg was increased linearly and corresponded to an average daily LW gain of 2.3 ± 0.3 kg. Energy balance increased approximately nine-fold to a maximum of 114 MJ NEL/d in week 10. Ruminal fermentation pattern was completely changed from an acetate dominating profile to a propionate based one, which was paralleled by a marked increase in the rumen fluid endotoxin concentration. Unlike blood glucose concentration, which increased continuously, that of cholesterol and triglycerides started to increase after an initial stagnation. In conclusion, both ruminal adaptation to a high-energetic diet and the continued feeding of such a diet induced digestive and metabolic adaptations in non-pregnant, non-lactating cows characterised by a progressing positive energy balance.

  2. The gut microbiota modulates host energy and lipid metabolism in mice[S

    PubMed Central

    Velagapudi, Vidya R.; Hezaveh, Rahil; Reigstad, Christopher S.; Gopalacharyulu, Peddinti; Yetukuri, Laxman; Islam, Sama; Felin, Jenny; Perkins, Rosie; Borén, Jan; Orešič, Matej; Bäckhed, Fredrik

    2010-01-01

    The gut microbiota has recently been identified as an environmental factor that may promote metabolic diseases. To investigate the effect of gut microbiota on host energy and lipid metabolism, we compared the serum metabolome and the lipidomes of serum, adipose tissue, and liver of conventionally raised (CONV-R) and germ-free mice. The serum metabolome of CONV-R mice was characterized by increased levels of energy metabolites, e.g., pyruvic acid, citric acid, fumaric acid, and malic acid, while levels of cholesterol and fatty acids were reduced. We also showed that the microbiota modified a number of lipid species in the serum, adipose tissue, and liver, with its greatest effect on triglyceride and phosphatidylcholine species. Triglyceride levels were lower in serum but higher in adipose tissue and liver of CONV-R mice, consistent with increased lipid clearance. Our findings show that the gut microbiota affects both host energy and lipid metabolism and highlights its role in the development of metabolic diseases. PMID:20040631

  3. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    PubMed

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    PubMed

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  5. Computational model of in vivo human energy metabolism during semi-starvation and re-feeding

    PubMed Central

    Hall, Kevin D.

    2008-01-01

    Changes of body weight and composition are the result of complex interactions among metabolic fluxes contributing to macronutrient balances. To better understand these interactions, a mathematical model was constructed that used the measured dietary macronutrient intake during semi-starvation and re-feeding as model inputs and computed whole-body energy expenditure, de novo lipogenesis, gluconeogenesis, as well as turnover and oxidation of carbohydrate, fat and protein. Published in vivo human data provided the basis for the model components which were integrated by fitting a few unknown parameters to the classic Minnesota human starvation experiment. The model simulated the measured body weight and fat mass changes during semi-starvation and re-feeding and predicted the unmeasured metabolic fluxes underlying the body composition changes. The resting metabolic rate matched the experimental measurements and required a model of adaptive thermogenesis. Re-feeding caused an elevation of de novo lipogenesis which, along with increased fat intake, resulted in a rapid repletion and overshoot of body fat. By continuing the computer simulation with the pre-starvation diet and physical activity, the original body weight and composition was eventually restored, but body fat mass was predicted to take more than one additional year to return to within 5% of its original value. The model was validated by simulating a recently published short-term caloric restriction experiment without changing the model parameters. The predicted changes of body weight, fat mass, resting metabolic rate, and nitrogen balance matched the experimental measurements thereby providing support for the validity of the model. PMID:16449298

  6. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressedmore » genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.« less

  7. [Phase changes in energy metabolism during periodic hypoxia].

    PubMed

    Portnichenko, V I; Nosar', V I; Portnichenko, A G; Drevitskaia, T I; Sidorenko, A M; Man'kovskaia, I N

    2012-01-01

    Male Wistar rats were exposed to periodic hypobaric hypoxia (PHH), by "lifting" in barochamber at "altitude" 5600 m for 1 h every 3 days (6 séances). The dynamics of changes in oxygen consumption (VO2), and body temperature (Tm), as well as in HIF-1alpha and HIF-3alpha gene expression, and mitochondrial respiration in the ventricles of the heart was studied. On the basis of the data we identified four phases of the physiological changes. The first phase, hypometabolic (1-3 séances), is characterized by decrease in VO2 and Tm, induction of HIF-1alpha and HIF-3alpha with delayed transient stimulation of metabolism in response to each séance of hypoxia. In heart mitochondria, V3 and V4 are increased, but V3/V4 and ADP/O are reduced. During the second phase, transitional (3-4 séances), there is reorganization of metabolism and decrease its hypoxic reactivity. The third phase, hypermetabolic (4-5 séances), is characterized by intensification of metabolism and compensation of hypoxic disorders. The fourth phase (after 5 séance) - is a state of metabolic adaptation with normalization of VO2 and Tm, expression of HIF-1alpha and HIF-3alpha, mitochondrial respiration, increased NAD-dependent oxidation of carbohydrate and lipid substrates. Thus, during PHH consequent rebuilding of processes of oxygen transport, tissue respiration and thermogenesis occurs, mediated by induction of the HIF subunits.

  8. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training

    PubMed Central

    Thompson, Christopher; Wylie, Lee J.; Blackwell, Jamie R.; Fulford, Jonathan; Black, Matthew I.; Kelly, James; McDonagh, Sinead T. J.; Carter, James; Bailey, Stephen J.; Vanhatalo, Anni

    2017-01-01

    We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and NO3−-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and NO3−-rich beetroot juice (~13 mmol NO3−/day; SIT+BR); or 3) no training and NO3−-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training. PMID:27909231

  9. Sense and Nonsense in Metabolic Control of Reproduction

    PubMed Central

    Schneider, Jill E.; Klingerman, Candice M.; Abdulhay, Amir

    2012-01-01

    An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable. PMID:22649413

  10. Sense and nonsense in metabolic control of reproduction.

    PubMed

    Schneider, Jill E; Klingerman, Candice M; Abdulhay, Amir

    2012-01-01

    An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable.

  11. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    PubMed

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  12. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism.

    PubMed

    Park, Hyeong-Kyu; Ahima, Rexford S

    2015-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Body Temperature and Energy Metabolism of Brown Lemming in Relation to Running Speed,

    DTIC Science & Technology

    1979-01-01

    ADASOG 382 ARCTIC INST OF NORTH AMERICA ARLINGTON VA F/B 6/16 BOOT TEMPERATURE AND ENERGY METABOLISM OF BROWN LEMMING IN RELA--ETC(U) W4LSIID 1979 T...M CASEY N00014-75-C-0635UNCLASSIFIEDh l o I - Body temperature and energy metabolism *of brown lemming in relation to running speed) by Timothy M...Casey Dept. of E. Physiology Cook College, Rutgers University New Brunswick, New Jersey 08903 C2 Running head: Metabolism and Tb of running lemmings. ALU

  14. Brown adipose tissue and lipid metabolism.

    PubMed

    Heeren, Joerg; Scheja, Ludger

    2018-06-01

    This article explores how the interplay between lipid metabolism and thermogenic adipose tissues enables proper physiological adaptation to cold environments in rodents and humans. Cold exposure triggers systemic changes in lipid metabolism, which increases fatty acid delivery to brown adipose tissue (BAT) by various routes. Next to fatty acids generated intracellularly by de-novo lipogenesis or by lipolysis at lipid droplets, brown adipocytes utilize fatty acids released by white adipose tissue (WAT) for adaptive thermogenesis. WAT-derived fatty acids are internalized directly by BAT, or indirectly after hepatic conversion to very low-density lipoproteins and acylcarnitines. In the postprandial state, chylomicrons hydrolyzed by lipoprotein lipase - activated specifically in thermogenic adipocytes - are the predominant fatty acid source. Cholesterol-enriched chylomicron remnants and HDL generated by intravascular lipolysis in BAT are cleared more rapidly by the liver, explaining the antiatherogenic effects of BAT activation. Notably, increased cholesterol flux and elevated hepatic synthesis of bile acids under cold exposure further promote BAT-dependent thermogenesis. Although pathways providing fatty acids for activated BAT have been identified, more research is needed to understand the integration of lipid metabolism in BAT, WAT and liver, and to determine the relevance of BAT for human energy metabolism.

  15. The Big Breakfast Study: Chrono-nutrition influence on energy expenditure and bodyweight.

    PubMed

    Ruddick-Collins, L C; Johnston, J D; Morgan, P J; Johnstone, A M

    2018-06-01

    A growing body of evidence highlights the importance of the biological clock as a modulator of energy balance and metabolism. Recent studies in humans have shown that ingested calories are apparently utilised more efficiently in the morning than in the evening and this is manifest through improved weight loss, even under iso-energetic calorie intake. The mechanisms behind this enhanced morning energy metabolism are not yet clear, although it may result from behavioural adaptations or circadian driven variations in physiology and energy metabolism. A major objective of the newly funded Big Breakfast Study therefore is to investigate the mechanistic basis of this amplified morning thermogenesis leading to enhanced weight loss, by exploring behavioural and physiological adaptations in energy expenditure alongside the underlying circadian biology. This report briefly discusses the current research linking meal timing, circadian rhythms and metabolism; highlights the research gaps; and provides an overview of the studies being undertaken as part of the Medical Research Council-funded Big Breakfast Study .

  16. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response

    PubMed Central

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O.; Sokolova, Inna M.; Bock, Christian

    2010-01-01

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated Pco2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and Peco2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO− 3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperaturedependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and

  17. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-08-11

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy

  18. Energy metabolism of hyperthyroid gilthead sea bream Sparus aurata L.

    PubMed

    Vargas-Chacoff, Luis; Ruiz-Jarabo, Ignacio; Arjona, Francisco J; Laiz-Carrión, Raúl; Flik, Gert; Klaren, Peter H M; Mancera, Juan M

    2016-01-01

    Thyroid hormones, in particular 3,5,3'-triiodothyronine or T3, are involved in multiple physiological processes in mammals such as protein, fat and carbohydrate metabolism. However, the metabolic actions of T3 in fish are still not fully elucidated. We therefore tested the effects of T3 on Sparus aurata energy metabolism and osmoregulatory system, a hyperthyroid-induced model that was chosen. Fish were implanted with coconut oil depots (containing 0, 2.5, 5.0 and 10.0μg T3/g body weight) and sampled at day 3 and 6 post-implantation. Plasma levels of free T3 as well as glucose, lactate and triglyceride values increased with increasing doses of T3 at days 3 and 6 post-implantation. Changes in plasma and organ metabolite levels (glucose, glycogen, triglycerides, lactate and total α amino acid) and enzyme activities related to carbohydrate, lactate, amino acid and lipid pathways were detected in organs involved in metabolism (liver) and osmoregulation (gills and kidney). Our data implicate that the liver uses amino acids as an energy source in response to the T3 treatment, increasing protein catabolism and gluconeogenic pathways. The gills, the most important extruder of ammonia, are fuelled not only by amino acids, but also by lactate. The kidney differs significantly in its substrate preference from the gills, as it obtained metabolic energy from lactate but also from lipid oxidation processes. We conclude that in S. aurata lipid catabolism and protein turnover are increased as a consequence of experimentally induced hyperthyroidism, with secondary osmoregulatory effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Metabolic adaptation to chronic hypoxia in cardiac mitochondria.

    PubMed

    Heather, Lisa C; Cole, Mark A; Tan, Jun-Jie; Ambrose, Lucy J A; Pope, Simon; Abd-Jamil, Amira H; Carter, Emma E; Dodd, Michael S; Yeoh, Kar Kheng; Schofield, Christopher J; Clarke, Kieran

    2012-05-01

    Chronic hypoxia decreases cardiomyocyte respiration, yet the mitochondrial mechanisms remain largely unknown. We investigated the mitochondrial metabolic pathways and enzymes that were decreased following in vivo hypoxia, and questioned whether hypoxic adaptation was protective for the mitochondria. Wistar rats were housed in hypoxia (7 days acclimatisation and 14 days at 11% oxygen), while control rats were housed in normoxia. Chronic exposure to physiological hypoxia increased haematocrit and cardiac vascular endothelial growth factor, in the absence of weight loss and changes in cardiac mass. In both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria isolated from hypoxic hearts, state 3 respiration rates with fatty acid were decreased by 17-18%, and with pyruvate were decreased by 29-15%, respectively. State 3 respiration rates with electron transport chain (ETC) substrates were decreased only in hypoxic SSM, not in hypoxic IFM. SSM from hypoxic hearts had decreased activities of ETC complexes I, II and IV, which were associated with decreased reactive oxygen species generation and protection against mitochondrial permeability transition pore (MPTP) opening. In contrast, IFM from hypoxic hearts had decreased activity of the Krebs cycle enzyme, aconitase, which did not modify ROS production or MPTP opening. In conclusion, cardiac mitochondrial respiration was decreased following chronic hypoxia, associated with downregulation of different pathways in the two mitochondrial populations, determined by their subcellular location. Hypoxic adaptation was not deleterious for the mitochondria, in fact, SSM acquired increased protection against oxidative damage under the oxygen-limited conditions.

  20. Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.

    PubMed

    Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo

    2015-04-20

    Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.

  1. Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation.

    PubMed

    Nadtochiy, Sergiy M; Urciuoli, William; Zhang, Jimmy; Schafer, Xenia; Munger, Joshua; Brookes, Paul S

    2015-11-01

    Ischemic preconditioning (IPC) protects tissues such as the heart from prolonged ischemia-reperfusion (IR) injury. We previously showed that the lysine deacetylase SIRT1 is required for acute IPC, and has numerous metabolic targets. While it is known that metabolism is altered during IPC, the underlying metabolic regulatory mechanisms are unknown, including the relative importance of SIRT1. Thus, we sought to test the hypothesis that some of the metabolic adaptations that occur in IPC may require SIRT1 as a regulatory mediator. Using both ex-vivo-perfused and in-vivo mouse hearts, LC-MS/MS based metabolomics and (13)C-labeled substrate tracing, we found that acute IPC altered several metabolic pathways including: (i) stimulation of glycolysis, (ii) increased synthesis of glycogen and several amino acids, (iii) increased reduced glutathione levels, (iv) elevation in the oncometabolite 2-hydroxyglutarate, and (v) inhibition of fatty-acid dependent respiration. The majority (83%) of metabolic alterations induced by IPC were ablated when SIRT1 was acutely inhibited with splitomicin, and a principal component analysis revealed that metabolic changes in response to IPC were fundamentally different in nature when SIRT1 was inhibited. Furthermore, the protective benefit of IPC was abrogated by eliminating glucose from perfusion media while sustaining normal cardiac function by burning fat, thus indicating that glucose dependency is required for acute IPC. Together, these data suggest that SIRT1 signaling is required for rapid cardioprotective metabolic adaptation in acute IPC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism.

    PubMed

    Lavie, Julie; De Belvalet, Harmony; Sonon, Sessinou; Ion, Ana Madalina; Dumon, Elodie; Melser, Su; Lacombe, Didier; Dupuy, Jean-William; Lalou, Claude; Bénard, Giovanni

    2018-06-05

    The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    PubMed

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  4. Mitochondrial DNA variation in human metabolic rate and energy expenditure

    PubMed Central

    Tranah, Gregory J.; Manini, Todd M.; Lohman, Kurt K.; Nalls, Michael A.; Kritchevsky, Stephen; Newman, Anne B.; Harris, Tamara B.; Miljkovic, Iva; Biffi, Alessandro; Cummings, Steven R.; Liu, Yongmei

    2014-01-01

    The role of climate in driving selection of mtDNA as Homo sapiens migrated out of Africa into Eurasia remains controversial. We evaluated the role of mtDNA variation in resting metabolic rate (RMR) and total energy expenditure (TEE) among 294 older, community-dwelling African and European American adults from the Health, Aging and Body Composition Study. Common African haplogroups L0, L2 and L3 had significantly lower RMRs than European haplogroups H, JT and UK with haplogroup L1 RMR being intermediate to these groups. This study links mitochondrial haplogroups with ancestry-associated differences in metabolic rate and energy expenditure. PMID:21586348

  5. Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression.

    PubMed

    Óvilo, Cristina; González-Bulnes, Antonio; Benítez, Rita; Ayuso, Miriam; Barbero, Alicia; Pérez-Solana, Maria L; Barragán, Carmen; Astiz, Susana; Fernández, Almudena; López-Bote, Clemente

    2014-02-01

    Maternal energy restriction during pregnancy predisposes to metabolic alterations in the offspring. The present study was designed to evaluate phenotypic and metabolic consequences following maternal undernutrition in an obese pig model and to define the potential role of hypothalamic gene expression in programming effects. Iberian sows were fed a control or a 50 % restricted diet for the last two-thirds of gestation. Newborns were assessed for body and organ weights, hormonal and metabolic status, and hypothalamic expression of genes implicated in energy homeostasis, glucocorticoid function and methylation. Weight and adiposity were measured in adult littermates. Newborns of the restricted sows were lighter (P <0·01), but brain growth was spared. The plasma concentration of TAG was lower in the restricted newborns than in the control newborns of both the sexes (P <0·01), while the concentration of cortisol was higher in females born to the restricted sows (P <0·04), reflecting a situation of metabolic stress by nutrient insufficiency. A lower hypothalamic expression of anorexigenic peptides (LEPR and POMC, P <0·01 and P <0·04, respectively) was observed in females born to the restricted sows, but no effect was observed in the males. The expression of HSD11B1 gene was down-regulated in the restricted animals (P <0·05), suggesting an adaptive mechanism for reducing the harmful effects of elevated concentrations of cortisol. At 4 and 7 months of age, the restricted females were heavier and fatter than the controls (P< 0·01). Maternal feed restriction induces asymmetrical growth retardation and metabolic alterations in the offspring. Differences in gene expression at birth and higher growth and adiposity in adulthood suggest a female-specific programming effect for a positive energy balance, possibly due to overexposure to endogenous stress-induced glucocorticoids.

  6. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators.

    PubMed

    Roa, Juan; Tena-Sempere, Manuel

    2014-11-01

    It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Glycolysis in energy metabolism during seizures.

    PubMed

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-05-15

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment.

  8. Glycolysis in energy metabolism during seizures☆

    PubMed Central

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-01-01

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  9. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

    PubMed

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Computation of free energy profiles with parallel adaptive dynamics

    NASA Astrophysics Data System (ADS)

    Lelièvre, Tony; Rousset, Mathias; Stoltz, Gabriel

    2007-04-01

    We propose a formulation of an adaptive computation of free energy differences, in the adaptive biasing force or nonequilibrium metadynamics spirit, using conditional distributions of samples of configurations which evolve in time. This allows us to present a truly unifying framework for these methods, and to prove convergence results for certain classes of algorithms. From a numerical viewpoint, a parallel implementation of these methods is very natural, the replicas interacting through the reconstructed free energy. We demonstrate how to improve this parallel implementation by resorting to some selection mechanism on the replicas. This is illustrated by computations on a model system of conformational changes.

  11. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  12. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans.

    PubMed

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature (P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  13. Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling.

    PubMed

    Shao, Mengle; Shan, Bo; Liu, Yang; Deng, Yiping; Yan, Cheng; Wu, Ying; Mao, Ting; Qiu, Yifu; Zhou, Yubo; Jiang, Shan; Jia, Weiping; Li, Jingya; Li, Jia; Rui, Liangyou; Yang, Liu; Liu, Yong

    2014-03-27

    Although the mammalian IRE1α-XBP1 branch of the cellular unfolded protein response has been implicated in glucose and lipid metabolism, the exact metabolic role of IRE1α signalling in vivo remains poorly understood. Here we show that hepatic IRE1α functions as a nutrient sensor that regulates the metabolic adaptation to fasting. We find that prolonged deprivation of food or consumption of a ketogenic diet activates the IRE1α-XBP1 pathway in mouse livers. Hepatocyte-specific abrogation of Ire1α results in impairment of fatty acid β-oxidation and ketogenesis in the liver under chronic fasting or ketogenic conditions, leading to hepatosteatosis; liver-specific restoration of XBP1s reverses the defects in IRE1α null mice. XBP1s directly binds to and activates the promoter of PPARα, the master regulator of starvation responses. Hence, our results demonstrate that hepatic IRE1α promotes the adaptive shift of fuel utilization during starvation by stimulating mitochondrial β-oxidation and ketogenesis through the XBP1s-PPARα axis.

  14. Alterations in energy substrate metabolism in mice with different degrees of sepsis.

    PubMed

    Irahara, Takayuki; Sato, Norio; Otake, Kosuke; Matsumura, Shigenobu; Inoue, Kazuo; Ishihara, Kengo; Fushiki, Tohru; Yokota, Hiroyuki

    2018-07-01

    Nutritional management is crucial during the acute phase of severe illnesses. However, the appropriate nutritional requirements for patients with sepsis are poorly understood. We investigated alterations in carbohydrate, fat, and protein metabolism in mice with different degrees of sepsis. C57BL/6 mice were divided into three groups: control mice group, administered with saline, and low- and high-dose lipopolysaccharide (LPS) groups, intraperitoneally administered with 1 and 5 mg of LPS/kg, respectively. Rectal temperature, food intake, body weight, and spontaneous motor activity were measured. Indirect calorimetry was performed using a respiratory gas analysis for 120 h, after which carbohydrate oxidation and fatty acid oxidation were calculated. Urinary nitrogen excretion was measured to evaluate protein metabolism. The substrate utilization ratio was recalculated. Plasma and liver carbohydrate and lipid levels were evaluated at 24, 72, and 120 h after LPS administration. Biological reactions decreased significantly in the low- and high-LPS groups. Fatty acid oxidation and protein oxidation increased significantly 24 h after LPS administration, whereas carbohydrate oxidation decreased significantly. Energy substrate metabolism changed from glucose to predominantly lipid metabolism depending on the degree of sepsis, and protein metabolism was low. Plasma lipid levels decreased, whereas liver lipid levels increased at 24 h, suggesting that lipids were transported to the liver as the energy source. Our findings revealed that energy substrate metabolism changed depending on the degree of sepsis. Therefore, in nutritional management, such metabolic alterations must be considered, and further studies on the optimum nutritional intervention during severe sepsis are necessary. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Energy stress-induced lncRNA HAND2-AS1 represses HIF1α-mediated energy metabolism and inhibits osteosarcoma progression

    PubMed Central

    Kang, Yao; Zhu, Xiaojun; Xu, Yanyang; Tang, Qinglian; Huang, Zongwen; Zhao, Zhiqiang; Lu, Jinchang; Song, Guohui; Xu, Huaiyuan; Deng, Chuangzhong; Wang, Jin

    2018-01-01

    During recent years, long noncoding RNAs (lncRNAs) have been recognized as key regulators in the development and progression of human cancers, however, their roles in osteosarcoma metabolism are still not well understood. The present study aims to investigate the expression profiles and potential modulation of specific lncRNA(s) in osteosarcoma metabolism. The high-throughput Hiseq sequencing was performed to screen for abnormally expressed lncRNAs in osteosarcoma cells cultured under glucose starvation condition, and lncRNA HAND2-AS1 was eventually identified as one that was significantly up-regulated when compared with normal cultured cells. Mechanistic investigations indicated that knockdown of HAND2-AS1 abrogated the energy stress-induced effect on cell apoptosis and proliferation, and promoted osteosarcoma progression. Moreover, knockdown of HAND2-AS1 promoted glucose uptake, lactate production, and the expression level of a serious of enzymes that involved in energy metabolism. Subsequently, RNA pull-down and RNA immuneprecipitation revealed that, upon energy stress, HAND2-AS1 regulated osteosarcoma metabolism through sequestering FBP1 from binding to HIF1α, thereby releasing HIF1α expression and promoting the protein level. Taken together, our integrated approach reveals a regulatory mechanism by lncRNA HAND2-AS1 to control energy metabolism and tumor development in osteosarcoma. Thus, HAND2-AS1 may be a potential biomarker and therapeutic target for the repression of osteosarcoma metabolism. PMID:29637006

  16. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions.

    PubMed

    Tielen, Petra; Rosin, Nathalie; Meyer, Ann-Kathrin; Dohnt, Katrin; Haddad, Isam; Jänsch, Lothar; Klein, Johannes; Narten, Maike; Pommerenke, Claudia; Scheer, Maurice; Schobert, Max; Schomburg, Dietmar; Thielen, Bernhard; Jahn, Dieter

    2013-01-01

    Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.

  17. Regulatory and Metabolic Networks for the Adaptation of Pseudomonas aeruginosa Biofilms to Urinary Tract-Like Conditions

    PubMed Central

    Dohnt, Katrin; Haddad, Isam; Jänsch, Lothar; Klein, Johannes; Narten, Maike; Pommerenke, Claudia; Scheer, Maurice; Schobert, Max; Schomburg, Dietmar; Thielen, Bernhard; Jahn, Dieter

    2013-01-01

    Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections. PMID:23967252

  18. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. © 2015 FEBS.

  19. Association Between Energy Balance and Metabolic Hormone Suppression During Ultraendurance Exercise.

    PubMed

    Geesmann, Bjoern; Gibbs, Jenna C; Mester, Joachim; Koehler, Karsten

    2017-08-01

    Ultraendurance athletes often accumulate an energy deficit when engaging in ultraendurance exercise, and on completion of the exercise, they exhibit endocrine changes that are reminiscent of starvation. However, it remains unclear whether these endocrine changes are a result of the exercise per se or secondary to the energy deficit and, more important, whether these changes can be attenuated by increased dietary intake. The goal of the study was to assess the relationship between changes in key metabolic hormones after ultraendurance exercise and measures of energy balance. Metabolic hormones, as well as energy intake and expenditure, were assessed in 14 well-trained male cyclists who completed a 1230-km ultraendurance cycling event. After completion of the event, serum testosterone (-67% ± 18%), insulin-like growth factor-1 (IGF-1) (-45% ± 8%), and leptin (-79% ± 9%) were significantly suppressed (P < .001) and remained suppressed after a 12-h recovery period (P < .001). Changes in IGF-1 were positively correlated with energy balance over the course of the event (r = .65, P = .037), which ranged from an 11,859-kcal deficit to a 3593-kcal surplus. The marked suppression of testosterone, IGF-1, and leptin after ultraendurance exercise is comparable to changes occurring during acute starvation. The suppression of IGF-1, but not that of other metabolic hormones, was strongly associated with the magnitude of the energy deficit, indicating that athletes who attained a greater energy deficit exhibited a more pronounced drop in IGF-1. Future studies are needed to determine whether increased dietary intake can attenuate the endocrine response to ultraendurance exercise.

  20. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    PubMed Central

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  1. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    PubMed

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  2. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism.

    PubMed

    Goforth, Paulette B; Myers, Martin G

    The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.

  3. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    PubMed

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  4. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    PubMed Central

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  5. Identification of Metabolic Modifiers That Underlie Phenotypic Variations in Energy-Balance Regulation

    PubMed Central

    Chang, Chia Lin; Cai, James J.; Cheng, Po Jen; Chueh, Ho Yen; Hsu, Sheau Yu Teddy

    2011-01-01

    OBJECTIVE Although recent studies have shown that human genomes contain hundreds of loci that exhibit signatures of positive selection, variants that are associated with adaptation in energy-balance regulation remain elusive. We reasoned that the difficulty in identifying such variants could be due to heterogeneity in selection pressure and that an integrative approach that incorporated experiment-based evidence and population genetics-based statistical judgments would be needed to reveal important metabolic modifiers in humans. RESEARCH DESIGN AND METHODS To identify common metabolic modifiers that underlie phenotypic variation in diabetes-associated or obesity-associated traits in humans, or both, we screened 207 candidate loci for regulatory single nucleotide polymorphisms (SNPs) that exhibited evidence of gene–environmental interactions. RESULTS Three SNPs (rs3895874, rs3848460, and rs937301) at the 5′ gene region of human GIP were identified as prime metabolic-modifier candidates at the enteroinsular axis. Functional studies have shown that GIP promoter reporters carrying derived alleles of these three SNPs (haplotype GIP−1920A) have significantly lower transcriptional activities than those with ancestral alleles at corresponding positions (haplotype GIP−1920G). Consistently, studies of pregnant women who have undergone a screening test for gestational diabetes have shown that patients with a homozygous GIP−1920A/A genotype have significantly lower serum concentrations of glucose-dependent insulinotropic polypeptide (GIP) than those carrying an ancestral GIP−1920G haplotype. After controlling for a GIPR variation, we showed that serum glucose concentrations of patients carrying GIP−1920A/A homozygotes are significantly higher than that of those carrying an ancestral GIP−1920G haplotype (odds ratio 3.53). CONCLUSIONS Our proof-of-concept study indicates that common regulatory GIP variants impart a difference in GIP and glucose metabolism. The

  6. Adipose-specific ablation of Nrf2 transiently delayed high-fat diet-induced obesity by altering glucose, lipid and energy metabolism of male mice.

    PubMed

    Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Keller, Jeffrey N

    2016-01-01

    Nuclear factor E2-related factor 2 (NRF2) is a well-known master controller of the cellular adaptive antioxidant and detoxification response. Recent studies demonstrated altered glucose, lipid and energy metabolism in mice with a global Nrf2 knockout. In the present study, we aim to determine the effects of an adipose-specific ablation of Nrf2 (ASAN) on diet-induced obesity (DIO) in male mice. The 6-week-old adipose-specific Nrf2 knockout (NK) and its Nrf2 control (NC) mice were fed with either control diet (CD) or high-fat diet (HFD) for 14 weeks. NK mice exhibited transiently delayed body weight (BW) growth from week 5 to week 11 of HFD feeding, higher daily physical activity levels and preferential use of fat over carbohydrates as a source of energy at week 8 of the CD-feeding period. After 14 weeks of feeding, NK mice showed comparable results with NC mice with respect to the overall BW and body fat content, but exhibited reduced blood glucose, reduced number but increased size of adipocytes, accompanied with elevated expression of many genes and proteins in the visceral fat related to glucose, lipid and energy metabolism (e.g. Fgf21 , Pgc1a ). These results indicated that NRF2 is an important mediator for glucose, lipid and energy metabolism in adipose tissue, and ASAN could have beneficial effect for prevention of DIO during the early development of mice.

  7. Mitochondrial energy metabolism in a model of undernutrition induced by dexamethasone

    PubMed Central

    Dumas, Jean-François; Simard, Gilles; Roussel, Damien; Douay, Olivier; Foussard, Françoise; Malthiery, Yves; Ritz, Patrick

    2003-01-01

    This investigation was undertaken to evaluate whether mitochondrial energy metabolism is altered in a malnutrition model associated with dexamethasone treatment (1.5mg/kg/day for 5 days). Gastrocnemius and liver mitochondria were isolated from dexamethasone (DEX)-treated, pair-fed (PF) and control (CON) rats. Body weight was significantly more reduced in DEX-treated group (−16%) than in PF group (−9%). Dexamethasone increased the liver mass (+59% vs. PF and +23% vs. CON) and decreased gastrocnemius mass. Moreover, in DEX-treated rats, liver mitochondria exhibited an increased rate of non-phosphorylative oxygen consumption with all substrates (approximately +42%). There was no difference in enzymatic complex activities in liver mitochondria between rat groups. Collectively, these results suggest an increased proton leak and/or redox slipping in liver mitochondria of DEX-treated rats. In addition, dexamethasone decreased the thermodynamic coupling and efficiency of oxidative phosphorylation. We therefore suggest that this increase in the proton leak and/or of redox slip in liver is responsible for the decrease in the thermodynamic efficiency of energy conversion. In contrast, none of the determined parameters of energy metabolism were altered by dexamethasone in gastrocnemius mitochondria. Therefore, it appears that dexamethasone specifically affects mitochondrial energy metabolism in liver. PMID:14667190

  8. The adaptive evolution of the mammalian mitochondrial genome

    PubMed Central

    da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria João; Antunes, Agostinho

    2008-01-01

    Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906

  9. Fasting energy metabolism of the Yucatan miniature pig.

    PubMed

    Parsons, A H; Mathieson, K W; Tagliaferro, A R

    1990-03-01

    The fasting metabolic rates (FMR) of Yucatan miniature swine were determined using an open-circuit indirect respiration calorimeter. Mature nulliparous females had a mean FMR of 93 kcal/kg BW.75 and did not change significantly during the estrous cycle. This value is comparable to that observed in mature domestic swine. The calculated metabolizable energy requirement for maintenance for the Yucatan sow is 116 kcal/kg BW.75. Growing Yucatan boars had FMR of 127, 119 and 101 kcal/kg BW.75 at 15, 21 and 38 weeks of age, respectively, and were similar to values for comparably aged domestic swine. The calculated estimate for the metabolizable energy requirement for maintenance for Yucatan boars ranged from 158 kcal at 15 weeks of age to 126 kcal/kg BW.75 for 38 week old animals. Based on the similarity between the FMR of the Yucatan miniature swine in the present study and values published for standard size commercial hogs, it is concluded that the metabolic rates of these breeds of pig are similar. It is suggested that the daily energy needs of the Yucatan miniature pig may be met using values published for production livestock having similar physiological condition when adjusted for the smaller body size of the Yucatan breed.

  10. Role of interleukins in obesity: implications for metabolic disease.

    PubMed

    Febbraio, Mark A

    2014-06-01

    It has been two decades since the discovery that pro-inflammatory cytokines are expressed in obesity. This initial work was the catalyst for the now-accepted paradigm that nutrient overload promotes inflammation and links the metabolic and immune systems, where inflammation may be pathological. However, inflammation is an adaptive and, importantly, an energy-consuming process. Indeed, the rapid mobilization of stored energy reserves by cytokines such as the interleukins, is critical to mounting any successful inflammatory response. Thus, the role of the interleukins in metabolism and energy homeostasis is more complex than first thought and recent evidence is mounting that, for several interleukins, although excess production is negative, blockade or insufficiency is equally undesirable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    PubMed Central

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  12. Predicting growth of the healthy infant using a genome scale metabolic model.

    PubMed

    Nilsson, Avlant; Mardinoglu, Adil; Nielsen, Jens

    2017-01-01

    An estimated 165 million children globally have stunted growth, and extensive growth data are available. Genome scale metabolic models allow the simulation of molecular flux over each metabolic enzyme, and are well adapted to analyze biological systems. We used a human genome scale metabolic model to simulate the mechanisms of growth and integrate data about breast-milk intake and composition with the infant's biomass and energy expenditure of major organs. The model predicted daily metabolic fluxes from birth to age 6 months, and accurately reproduced standard growth curves and changes in body composition. The model corroborates the finding that essential amino and fatty acids do not limit growth, but that energy is the main growth limiting factor. Disruptions to the supply and demand of energy markedly affected the predicted growth, indicating that elevated energy expenditure may be detrimental. The model was used to simulate the metabolic effect of mineral deficiencies, and showed the greatest growth reduction for deficiencies in copper, iron, and magnesium ions which affect energy production through oxidative phosphorylation. The model and simulation method were integrated to a platform and shared with the research community. The growth model constitutes another step towards the complete representation of human metabolism, and may further help improve the understanding of the mechanisms underlying stunting.

  13. Adaptations to Climate in Candidate Genes for Common Metabolic Disorders

    PubMed Central

    Hancock, Angela M; Witonsky, David B; Gordon, Adam S; Eshel, Gidon; Pritchard, Jonathan K; Coop, Graham; Di Rienzo, Anna

    2008-01-01

    Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders. PMID:18282109

  14. IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3

    PubMed Central

    Reid, Michael A.; Lowman, Xazmin H.; Pan, Min; Tran, Thai Q.; Warmoes, Marc O.; Ishak Gabra, Mari B.; Yang, Ying; Locasale, Jason W.; Kong, Mei

    2016-01-01

    Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability. PMID:27585591

  15. Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity.

    PubMed

    Weng, Jing-Ke; Ye, Mingli; Li, Bin; Noel, Joseph P

    2016-08-11

    Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats.

    PubMed

    Ferreira, Gabriela Kozuchovski; Cardoso, Eria; Vuolo, Francieli Silva; Michels, Monique; Zanoni, Elton Torres; Carvalho-Silva, Milena; Gomes, Lara Mezari; Dal-Pizzol, Felipe; Rezin, Gislaine Tezza; Streck, Emilio L; Paula, Marcos Marques da Silva

    2015-12-01

    This study evaluated the parameters of oxidative stress and energy metabolism after the acute and long-term administration of gold nanoparticles (GNPs, 10 and 30 nm in diameter) in different organs of rats. Adult male Wistar rats received a single intraperitoneal injection or repeated injections (once daily for 28 days) of saline solution, GNPs-10 or GNPs-30. Twenty-four hours after the last administration, the animals were killed, and the liver, kidney, and heart were isolated for biochemical analysis. We demonstrated that acute administration of GNPs-30 increased the TBARS levels, and that GNPs-10 increased the carbonyl protein levels. The long-term administration of GNPs-10 increased the TBARS levels, and the carbonyl protein levels were increased by GNPs-30. Acute administration of GNPs-10 and GNPs-30 increased SOD activity. Long-term administration of GNPs-30 increased SOD activity. Acute administration of GNPs-10 decreased the activity of CAT, whereas long-term administration of GNP-10 and GNP-30 altered CAT activity randomly. Our results also demonstrated that acute GNPs-30 administration decreased energy metabolism, especially in the liver and heart. Long-term GNPs-10 administration increased energy metabolism in the liver and decreased energy metabolism in the kidney and heart, whereas long-term GNPs-30 administration increased energy metabolism in the heart. The results of our study are consistent with other studies conducted in our research group and reinforce the fact that GNPs can lead to oxidative damage, which is responsible for DNA damage and alterations in energy metabolism.

  17. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.

    PubMed

    Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R; Georgiou, Konstantina; MacRae, James I; Barrett, Michael P; Creek, Darren J; McConville, Malcolm J; Waters, Andrew P

    2016-12-01

    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.

  18. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments

    PubMed Central

    Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R.; Georgiou, Konstantina; MacRae, James I.; Barrett, Michael P.; McConville, Malcolm J.

    2016-01-01

    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design. PMID:28027318

  19. Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats.

    PubMed

    So, Mandy; Gaidhu, Mandeep P; Maghdoori, Babak; Ceddia, Rolando B

    2011-06-16

    High-fat (HF) diet has been extensively used as a model to study metabolic disorders of human obesity in rodents. However, the adaptive whole-body metabolic responses that drive the development of obesity with chronically feeding a HF diet are not fully understood. Therefore, this study investigated the physiological mechanisms by which whole-body energy balance and substrate partitioning are adjusted in the course of HF diet-induced obesity. Male Wistar rats were fed ad libitum either a standard or a HF diet for 8 weeks. Food intake (FI) and body weight were monitored daily, while oxygen consumption, respiratory exchange ratio, physical activity, and energy expenditure (EE) were assessed weekly. At week 8, fat mass and lean body mass (LBM), fatty acid oxidation and uncoupling protein-1 (UCP-1) content in brown adipose tissue (BAT), as well as acetyl-CoA carboxylase (ACC) content in liver and epidydimal fat were measured. Within 1 week of ad libitum HF diet, rats were able to spontaneously reduce FI to precisely match energy intake of control rats, indicating that alterations in dietary energy density were rapidly detected and FI was self-regulated accordingly. Oxygen consumption was higher in HF than controls throughout the study as whole-body fat oxidation also progressively increased. In HF rats, EE initially increased, but then reduced as dark cycle ambulatory activity reached values ~38% lower than controls. No differences in LBM were detected; however, epidydimal, inguinal, and retroperitoneal fat pads were 1.85-, 1.89-, and 2.54-fold larger in HF-fed than control rats, respectively. Plasma leptin was higher in HF rats than controls throughout the study, indicating the induction of leptin resistance by HF diet. At week 8, UCP-1 content and palmitate oxidation in BAT were 3.1- and 1.5-fold higher in HF rats than controls, respectively, while ACC content in liver and epididymal fat was markedly reduced. The thermogenic response induced by the HF diet was offset

  20. Experimental ocean acidification alters the allocation of metabolic energy

    PubMed Central

    Pan, T.-C. Francis; Applebaum, Scott L.; Manahan, Donal T.

    2015-01-01

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors. PMID:25825763

  1. Experimental ocean acidification alters the allocation of metabolic energy.

    PubMed

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  2. Cooperative Energy Harvesting-Adaptive MAC Protocol for WBANs

    PubMed Central

    Esteves, Volker; Antonopoulos, Angelos; Kartsakli, Elli; Puig-Vidal, Manel; Miribel-Català, Pere; Verikoukis, Christos

    2015-01-01

    In this paper, we introduce a cooperative medium access control (MAC) protocol, named cooperative energy harvesting (CEH)-MAC, that adapts its operation to the energy harvesting (EH) conditions in wireless body area networks (WBANs). In particular, the proposed protocol exploits the EH information in order to set an idle time that allows the relay nodes to charge their batteries and complete the cooperation phase successfully. Extensive simulations have shown that CEH-MAC significantly improves the network performance in terms of throughput, delay and energy efficiency compared to the cooperative operation of the baseline IEEE 802.15.6 standard. PMID:26029950

  3. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans.

    PubMed

    Yasuda, Kayo; Hartman, Philip S; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki

    2011-01-21

    Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    PubMed

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  5. Role of innate and adaptive immunity in obesity-associated metabolic disease

    PubMed Central

    McLaughlin, Tracey; Ackerman, Shelley E.; Shen, Lei

    2017-01-01

    Chronic inflammation in adipose tissue, possibly related to adipose cell hypertrophy, hypoxia, and/or intestinal leakage of bacteria and their metabolic products, likely plays a critical role in the development of obesity-associated insulin resistance (IR). Cells of both the innate and adaptive immune system residing in adipose tissues, as well as in the intestine, participate in this process. Thus, M1 macrophages, IFN-γ–secreting Th1 cells, CD8+ T cells, and B cells promote IR, in part through secretion of proinflammatory cytokines. Conversely, eosinophils, Th2 T cells, type 2 innate lymphoid cells, and possibly Foxp3+ Tregs protect against IR through local control of inflammation. PMID:28045397

  6. Proteomic analysis of endothelial cold-adaptation

    PubMed Central

    2011-01-01

    Background Understanding how human cells in tissue culture adapt to hypothermia may aid in developing new clinical procedures for improved ischemic and hypothermic protection. Human coronary artery endothelial cells grown to confluence at 37°C and then transferred to 25°C become resistant over time to oxidative stress and injury induced by 0°C storage and rewarming. This protection correlates with an increase in intracellular glutathione at 25°C. To help understand the molecular basis of endothelial cold-adaptation, isolated proteins from cold-adapted (25°C/72 h) and pre-adapted cells were analyzed by quantitative proteomic methods and differentially expressed proteins were categorized using the DAVID Bioinformatics Resource. Results Cells adapted to 25°C expressed changes in the abundance of 219 unique proteins representing a broad range of categories such as translation, glycolysis, biosynthetic (anabolic) processes, NAD, cytoskeletal organization, RNA processing, oxidoreductase activity, response-to-stress and cell redox homeostasis. The number of proteins that decreased significantly with cold-adaptation exceeded the number that increased by 2:1. Almost half of the decreases were associated with protein metabolic processes and a third were related to anabolic processes including protein, DNA and fatty acid synthesis. Changes consistent with the suppression of cytoskeletal dynamics provided further evidence that cold-adapted cells are in an energy conserving state. Among the specific changes were increases in the abundance and activity of redox proteins glutathione S-transferase, thioredoxin and thioredoxin reductase, which correlated with a decrease in oxidative stress, an increase in protein glutathionylation, and a recovery of reduced protein thiols during rewarming from 0°C. Increases in S-adenosylhomocysteine hydrolase and nicotinamide phosphoribosyltransferase implicate a central role for the methionine-cysteine transulfuration pathway in increasing

  7. Metabolic evolution and the self-organization of ecosystems.

    PubMed

    Braakman, Rogier; Follows, Michael J; Chisholm, Sallie W

    2017-04-11

    Metabolism mediates the flow of matter and energy through the biosphere. We examined how metabolic evolution shapes ecosystems by reconstructing it in the globally abundant oceanic phytoplankter Prochlorococcus To understand what drove observed evolutionary patterns, we interpreted them in the context of its population dynamics, growth rate, and light adaptation, and the size and macromolecular and elemental composition of cells. This multilevel view suggests that, over the course of evolution, there was a steady increase in Prochlorococcus ' metabolic rate and excretion of organic carbon. We derived a mathematical framework that suggests these adaptations lower the minimal subsistence nutrient concentration of cells, which results in a drawdown of nutrients in oceanic surface waters. This, in turn, increases total ecosystem biomass and promotes the coevolution of all cells in the ecosystem. Additional reconstructions suggest that Prochlorococcus and the dominant cooccurring heterotrophic bacterium SAR11 form a coevolved mutualism that maximizes their collective metabolic rate by recycling organic carbon through complementary excretion and uptake pathways. Moreover, the metabolic codependencies of Prochlorococcus and SAR11 are highly similar to those of chloroplasts and mitochondria within plant cells. These observations lead us to propose a general theory relating metabolic evolution to the self-amplification and self-organization of the biosphere. We discuss the implications of this framework for the evolution of Earth's biogeochemical cycles and the rise of atmospheric oxygen.

  8. Metabolic engineering tools in model cyanobacteria.

    PubMed

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. The Csr System Regulates Escherichia coli Fitness by Controlling Glycogen Accumulation and Energy Levels.

    PubMed

    Morin, Manon; Ropers, Delphine; Cinquemani, Eugenio; Portais, Jean-Charles; Enjalbert, Brice; Cocaign-Bousquet, Muriel

    2017-10-31

    In the bacterium Escherichia coli , the posttranscriptional regulatory system Csr was postulated to influence the transition from glycolysis to gluconeogenesis. Here, we explored the role of the Csr system in the glucose-acetate transition as a model of the glycolysis-to-gluconeogenesis switch. Mutations in the Csr system influence the reorganization of gene expression after glucose exhaustion and disturb the timing of acetate reconsumption after glucose exhaustion. Analysis of metabolite concentrations during the transition revealed that the Csr system has a major effect on the energy levels of the cells after glucose exhaustion. This influence was demonstrated to result directly from the effect of the Csr system on glycogen accumulation. Mutation in glycogen metabolism was also demonstrated to hinder metabolic adaptation after glucose exhaustion because of insufficient energy. This work explains how the Csr system influences E. coli fitness during the glycolysis-gluconeogenesis switch and demonstrates the role of glycogen in maintenance of the energy charge during metabolic adaptation. IMPORTANCE Glycogen is a polysaccharide and the main storage form of glucose from bacteria such as Escherichia coli to yeasts and mammals. Although its function as a sugar reserve in mammals is well documented, the role of glycogen in bacteria is not as clear. By studying the role of posttranscriptional regulation during metabolic adaptation, for the first time, we demonstrate the role of sugar reserve played by glycogen in E. coli Indeed, glycogen not only makes it possible to maintain sufficient energy during metabolic transitions but is also the key component in the capacity of cells to resume growth. Since the essential posttranscriptional regulatory system Csr is a major regulator of glycogen accumulation, this work also sheds light on the central role of posttranscriptional regulation in metabolic adaptation. Copyright © 2017 Morin et al.

  10. Birth weight predicted baseline muscular efficiency, but not response of energy expenditure to calorie restriction: An empirical test of the predictive adaptive response hypothesis.

    PubMed

    Workman, Megan; Baker, Jack; Lancaster, Jane B; Mermier, Christine; Alcock, Joe

    2016-07-01

    Aiming to test the evolutionary significance of relationships linking prenatal growth conditions to adult phenotypes, this study examined whether birth size predicts energetic savings during fasting. We specifically tested a Predictive Adaptive Response (PAR) model that predicts greater energetic saving among adults who were born small. Data were collected from a convenience sample of young adults living in Albuquerque, NM (n = 34). Indirect calorimetry quantified changes in resting energy expenditure (REE) and active muscular efficiency that occurred in response to a 29-h fast. Multiple regression analyses linked birth weight to baseline and postfast metabolic values while controlling for appropriate confounders (e.g., sex, body mass). Birth weight did not moderate the relationship between body size and energy expenditure, nor did it predict the magnitude change in REE or muscular efficiency observed from baseline to after fasting. Alternative indicators of birth size were also examined (e.g., low v. normal birth weight, comparison of tertiles), with no effects found. However, baseline muscular efficiency improved by 1.1% per 725 g (S.D.) increase in birth weight (P = 0.037). Birth size did not influence the sensitivity of metabolic demands to fasting-neither at rest nor during activity. Moreover, small birth size predicted a reduction in the efficiency with which muscles convert energy expended into work accomplished. These results do not support the ascription of adaptive function to phenotypes associated with small birth size. © 2015 Wiley Periodicals, Inc. Am. J. Hum. Biol. 28:484-492, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Metabolic markers in sports medicine.

    PubMed

    Banfi, Giuseppe; Colombini, Alessandra; Lombardi, Giovanni; Lubkowska, Anna

    2012-01-01

    Physical exercise induces adaptations in metabolism considered beneficial for health. Athletic performance is linked to adaptations, training, and correct nutrition in individuals with genetic traits that can facilitate such adaptations. Intense and continuous exercise, training, and competitions, however, can induce changes in the serum concentrations of numerous laboratory parameters. When these modifications, especially elevated laboratory levels, result outside the reference range, further examinations are ordered or participation in training and competition is discontinued or sports practice loses its appeal. In order to correctly interpret commonly used laboratory data, laboratory professionals and sport physicians need to know the behavior of laboratory parameters during and after practice and competition. We reviewed the literature on liver, kidney, muscle, heart, energy, and bone parameters in athletes with a view to increase the knowledge about clinical chemistry applied to sport and to stimulate studies in this field. In liver metabolism, the interpretation of serum aminotransferases concentration in athletes should consider the release of aspartate aminotransferase (AST) from muscle and of alanine aminotransferase (ALT) mainly from the liver, when bilirubin can be elevated because of continuous hemolysis, which is typical of exercise. Muscle metabolism parameters such as creatine kinase (CK) are typically increased after exercise. This parameter can be used to interpret the physiological release of CK from muscle, its altered release due to rhabdomyolysis, or incomplete recovery due to overreaching or trauma. Cardiac markers are released during exercise, and especially endurance training. Increases in these markers should not simply be interpreted as a signal of cardiac damage or wall stress but rather as a sign of regulation of myocardial adaptation. Renal function can be followed in athletes by measuring serum creatinine concentration, but it should

  12. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    PubMed

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  13. Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism.

    PubMed

    Zeng, Zhaobin; Jing, Da; Zhang, Xiaodong; Duan, Yinzhong; Xue, Feng

    2015-10-01

    Energy metabolism is essential for maintaining function and substance metabolism in osteoblasts. However, the role of cyclic stretch in regulating osteoblastic energy metabolism and the underlying mechanisms remain poorly understood. In this study, we found that cyclic stretch (10% elongation at 0.1 Hz) significantly enhanced glucose consumption, lactate levels (determined using a glucose/lactate assay kit), intracellular adenosine triphosphate (ATP) levels (quantified using rLuciferase/Luciferin reagent) and the mRNA expression of energy metabolism-related enzymes [mitochondrial ATP synthase, L-lactate dehydrogenase A (LDHA) and enolase 1; measured by RT-qPCR], and increased the phosphorylation levels of Akt, mammalian target of rapamycin (mTOR) and p70s6k (measured by western blot analysis) in human osteoblast‑like MG‑63 cells. Furthermore, the inhibition of Akt or mTOR with an antagonist (wortmannin or rapamycin) suppressed the stretch-induced increase in glucose consumption, lactate levels, intracellular ATP levels and the expression of mitochondrial ATP synthase and LDHA, indicating the significance of the Akt/mTOR/p70s6k pathway in regulating osteoblastic energy metabolism in response to mechanical stretch. Thus, we concluded that cyclic stretch regulates energy metabolism in MG‑63 cells partially through the Akt/mTOR/p70s6k signaling pathway. The present findings provide novel insight into osteoblastic mechanobiology from the perspective of energy metabolism.

  14. Neuron-glia metabolic coupling and plasticity.

    PubMed

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  15. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    PubMed

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  16. Energy metabolism in feasting and fasting.

    PubMed

    Owen, O E; Reichard, G A; Patel, M S; Boden, G

    1979-01-01

    During feasting on a balanced carbohydrate, fat, and protein meal resting metabolic rate, body temperature and respiratory quotient all increase. The dietary components are utilized to replenish and augment glycogen and fat stores in the body. Excessive carbohydrate is also converted to lipid in the liver and stored along with the excessive lipids of dietary origin as triglycerides in adipose tissue, the major fuel storage depot. Amino acids in excess of those needed for protein synthesis are preferentially catabolized over glucose and fat for energy production. This occurs because there are no significant storage sites for amino acids or proteins, and the accumulation of nitrogenous compounds is ill tolerated. During fasting, adipose tissue, muscle, liver, and kidneys work in concert to supply, to convert, and to conserve fuels for the body. During the brief postabsorptive period, blood fuel homeostasis is maintained primarily by hepatic glycogenolysis and adipose tissue lipolysis. As fasting progresses, muscle proteolysis supplies glycogenic amino acids for heightened hepatic gluconeogenesis for a short period of time. After about three days of starvation, the metabolic profile is set to conserve protein and to supply greater quantities of alternate fuels. In particular, free fatty acids and ketone bodies are utilized to maintain energy needs. The ability of the kidney to conserve ketone bodies prevents the loss of large quantities of these valuable fuels in the urine. This delicate interplay among liver, muscle, kidney, and adipose tissue maintains blood fuel homeostasis and allows humans to survive caloric deprivation for extended periods.

  17. Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy's wildlife implications.

    PubMed

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned-creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  18. Cautious but Committed: Moving Toward Adaptive Planning and Operation Strategies for Renewable Energy's Wildlife Implications

    NASA Astrophysics Data System (ADS)

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned—creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  19. Driven Metadynamics: Reconstructing Equilibrium Free Energies from Driven Adaptive-Bias Simulations

    PubMed Central

    2013-01-01

    We present a novel free-energy calculation method that constructively integrates two distinct classes of nonequilibrium sampling techniques, namely, driven (e.g., steered molecular dynamics) and adaptive-bias (e.g., metadynamics) methods. By employing nonequilibrium work relations, we design a biasing protocol with an explicitly time- and history-dependent bias that uses on-the-fly work measurements to gradually flatten the free-energy surface. The asymptotic convergence of the method is discussed, and several relations are derived for free-energy reconstruction and error estimation. Isomerization reaction of an atomistic polyproline peptide model is used to numerically illustrate the superior efficiency and faster convergence of the method compared with its adaptive-bias and driven components in isolation. PMID:23795244

  20. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective

    PubMed Central

    Schönfeld, Peter; Wojtczak, Lech

    2016-01-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  1. Energy metabolism in BPH/2J genetically hypertensive mice.

    PubMed

    Jackson, Kristy L; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-05-01

    Recent evidence indicates that genetic hypertension in BPH/2J mice is sympathetically mediated, but these mice also have lower body weight (BW) and elevated locomotor activity compared with BPN/3J normotensive mice, suggestive of metabolic abnormalities. The aim of the present study was to determine whether hypertension in BPH/2J mice is associated with metabolic differences. Whole-body metabolic and cardiovascular parameters were measured over 24 h by indirect calorimetry and radiotelemetry respectively, in conscious young (10-13 weeks) and older (22-23 weeks) BPH/2J, normotensive BPN/3J and C57Bl6 mice. Blood pressure (BP) was greater in BPH/2J compared with both normotensive strains at both ages (P<0.01). Metabolic rate was greater in young BPH/2J compared with BPN/3J mice (P<0.01) but similar to C57Bl6 mice indicating that high metabolic rate is not necessarily related to the hypertension per say. The slope of the BP-metabolic rate relationship was comparable between BPH/2J and normotensive mice when adjusted for activity (P>0.1) suggesting differences in this relationship are not responsible for hypertension. EchoMRI revealed that percentage body composition was comparable in BPN/3J and BPH/2J mice (P>0.1) and both strains gained weight similarly with age (P=0.3). Taken together, the present findings indicate that hypertension in BPH/2J mice does not appear to be related to altered energy metabolism.

  2. Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts

    PubMed Central

    Moura, Michelle B.; Momcilovic, Olga; Easley, Charles A.; Ramalho-Santos, João; Van Houten, Bennett; Schatten, Gerald

    2011-01-01

    Background Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human

  3. Energy expenditure during tennis play: a preliminary video analysis and metabolic model approach.

    PubMed

    Botton, Florent; Hautier, Christophe; Eclache, Jean-Paul

    2011-11-01

    The aim of this study was to estimate, using video analysis, what proportion of the total energy expenditure during a tennis match is accounted for by aerobic and anaerobic metabolism, respectively. The method proposed involved estimating the metabolic power (MP) of 5 activities, which are inherent to tennis: walking, running, hitting the ball, serving, and sitting down to rest. The energy expenditure concerned was calculated by sequencing the activity by video analysis. A bioenergetic model calculated the aerobic energy expenditure (EEO2mod) in terms of MP, and the anaerobic energy expenditure was calculated by subtracting this (MP - EEO2mod). Eight tennis players took part in the experiment as subjects (mean ± SD: age 25.2 ± 1.9 years, weight 79.3 ± 10.8 kg, VO2max 54.4 ± 5.1 ml·kg(-1)·min(-1)). The players started off by participating in 2 games while wearing the K4b2, with their activity profile measured by the video analysis system, and then by playing a set without equipment but with video analysis. There was no significant difference between calculated and measured oxygen consumptions over the 16 games (p = 0.763), and these data were strongly related (r = 0.93, p < 0.0001). The EEO2mod was quite weak over all the games (49.4 ± 4.8% VO2max), whereas the MP during points was up to 2 or 3 times the VO2max. Anaerobic metabolism reached 32% of the total energy expenditure across all the games 67% for points and 95% for hitting the ball. This method provided a good estimation of aerobic energy expenditure and made it possible to calculate the anaerobic energy expenditure. This could make it possible to estimate the metabolic intensity of training sessions and matches using video analysis.

  4. Sirtuins and the metabolic hurdles in cancer

    PubMed Central

    German, Natalie J.; Haigis, Marcia C.

    2017-01-01

    The metabolic demands of cancer cannot be met by normal cell metabolism. Cancer cells undergo dramatic alteration of metabolic pathways in a process called reprogramming, characterized by increased nutrient uptake and re-purposing of these fuels for biosynthetic, bioenergetic or signaling pathways. Partitioning carbon sources toward growth and away from ATP production necessitates other means of generating energy for biosynthetic reactions. Additionally, cancer cell adaptations frequently leads to increased production of reactive oxygen species and lactic acid- metabolites which can be beneficial to cancer growth but also are potentially toxic and must be appropriately cleared. Sirtuins are a family of deacylases and ADP-ribosyltransferases with clear links to the regulation of cancer metabolism. Through their unique ability to integrate cellular stress and nutrient status with coordination of metabolic outputs, sirtuins are well poised to play pivotal roles in tumor metabolism. Here, we review the multi-faceted duties of sirtuins in tackling the metabolic hurdles in cancer. We focus on both beneficial and adverse effects of sirtuins in the regulation of energetic, biosynthetic and toxicity barriers faced by cancer cells. PMID:26126285

  5. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    PubMed

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-04

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  6. In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments.

    PubMed

    Silva, Lourival A; Vinaud, Marina C; Castro, Ana Maria; Cravo, Pedro Vítor L; Bezerra, José Clecildo B

    2015-01-01

    Leishmaniasis is a complex disease that affects mammals and is caused by approximately 20 distinct protozoa from the genus Leishmania. Leishmaniasis is an endemic disease that exerts a large socioeconomic impact on poor and developing countries. The current treatment for leishmaniasis is complex, expensive, and poorly efficacious. Thus, there is an urgent need to develop more selective, less expensive new drugs. The energy metabolism pathways of Leishmania include several interesting targets for specific inhibitors. In the present study, we sought to establish which energy metabolism enzymes in Leishmania could be targets for inhibitors that have already been approved for the treatment of other diseases. We were able to identify 94 genes and 93 Leishmania energy metabolism targets. Using each gene's designation as a search criterion in the TriTrypDB database, we located the predicted peptide sequences, which in turn were used to interrogate the DrugBank, Therapeutic Target Database (TTD), and PubChem databases. We identified 44 putative targets of which 11 are predicted to be amenable to inhibition by drugs which have already been approved for use in humans for 11 of these targets. We propose that these drugs should be experimentally tested and potentially used in the treatment of leishmaniasis.

  7. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    PubMed

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  8. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet.more » The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service

  9. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    PubMed

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  10. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism

    PubMed Central

    den Besten, Gijs; van Eunen, Karen; Groen, Albert K.; Venema, Koen; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2013-01-01

    Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism. PMID:23821742

  11. Targeting SIRT1 to improve metabolism: all you need is NAD+?

    PubMed Central

    Cantó, Carles; Auwerx, Johan

    2013-01-01

    SIRT1 is an evolutionary conserved NAD+-dependent deacetylase that is at the pinnacle of metabolic control, all the way from yeast to humans. SIRT1 senses changes in intracellular NAD+ levels, which reflect energy level, and uses this information to adapt the cellular energy output, such that the it matches cellular energy requirements. Generally, but not exclusively, the changes induced by SIRT1 activation are transcriptional in nature and are related to an increase in mitochondrial metabolism and antioxidant protection. These attractive features have validated SIRT1 as a therapeutic target in the management of metabolic disease and prompted an intensive search to identify pharmacological SIRT1 activators. In this review we will first give an overview of the SIRT1 biology with a particular focus on its role in metabolic control. We will then analyze the pros and cons of the current strategies used to activate SIRT1 and explore the emerging evidence indicating that modulation of NAD+ levels could provide an effective way to achieve such goals. PMID:22106091

  12. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea

    PubMed Central

    McGlynn, Shawn E.

    2017-01-01

    Anaerobic methane oxidation in archaea is often presented to operate via a pathway of “reverse methanogenesis”. However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens—in addition to unique terminal reductases—biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing “reverse” thermodynamic potentials. PMID:28321009

  13. Energy Metabolism Rewiring Precedes UVB-Induced Primary Skin Tumor Formation.

    PubMed

    Hosseini, Mohsen; Dousset, Léa; Mahfouf, Walid; Serrano-Sanchez, Martin; Redonnet-Vernhet, Isabelle; Mesli, Samir; Kasraian, Zeinab; Obre, Emilie; Bonneu, Marc; Claverol, Stephane; Vlaski, Marija; Ivanovic, Zoran; Rachidi, Walid; Douki, Thierry; Taieb, Alain; Bouzier-Sore, Anne-Karine; Rossignol, Rodrigue; Rezvani, Hamid Reza

    2018-06-19

    Although growing evidence indicates that bioenergetic metabolism plays an important role in the progression of tumorigenesis, little information is available on the contribution of reprogramming of energy metabolism in cancer initiation. By applying a quantitative proteomic approach and targeted metabolomics, we find that specific metabolic modifications precede primary skin tumor formation. Using a multistage model of ultraviolet B (UVB) radiation-induced skin cancer, we show that glycolysis, tricarboxylic acid (TCA) cycle, and fatty acid β-oxidation are decreased at a very early stage of photocarcinogenesis, while the distal part of the electron transport chain (ETC) is upregulated. Reductive glutamine metabolism and the activity of dihydroorotate dehydrogenase (DHODH) are both necessary for maintaining high ETC. Mice with decreased DHODH activity or impaired ETC failed to develop pre-malignant and malignant lesions. DHODH activity represents a major link between DNA repair efficiency and bioenergetic patterning during skin carcinogenesis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Macrophage-Mediated Clofazimine Sequestration is Accompanied by a Shift in Host Energy Metabolism

    PubMed Central

    Trexel, Julie; Yoon, Gi S.; Keswani, Rahul K.; McHugh, Cora; Yeomans, Larisa; Vitvitsky, Victor; Banerjee, Ruma; Sud, Sudha; Sun, Yihan; Rosania, Gus R.; Stringer, Kathleen A.

    2017-01-01

    Prolonged (8 weeks) oral administration of clofazimine results in a profound pharmacodynamic response- bioaccumulation in macrophages (including Kupffer cells) as intracellular crystal-like drug inclusions (CLDIs) with an associated increase in interleukin-1 receptor antagonist production. Notably, CLDI formation in Kupffer cells concomitantly occurs with the formation of macrophage-centric granulomas. Accordingly, we sought to understand the impact of these events on host metabolism using 1H-nuclear magnetic resonance metabolomics. Mice received a clofazimine - or vehicle-enriched (sham) diet for at least 8 weeks. At two weeks, the antimicrobial activity of clofazimine was evident by changes in urine metabolites. From 2 to 8 weeks, there was a striking change in metabolite levels indicative of a reorientation of host energy metabolism paralleling the onset of CLDI and granuloma formation. This was evidenced by a progressive reduction in urine levels of metabolites involved in one-carbon metabolism with corresponding increases in whole blood, and changes in metabolites associated with lipid, nucleotide and amino acid metabolism, and glycolysis. Although clofazimine-fed mice ate more, they gained less weight than control mice. Together, these results indicate that macrophage sequestration of clofazimine as CLDIs and granuloma formation is accompanied by a profound metabolic disruption in energy homeostasis and one-carbon metabolism. PMID:28007559

  15. The AMPK β2 subunit is required for energy homeostasis during metabolic stress.

    PubMed

    Dasgupta, Biplab; Ju, Jeong Sun; Sasaki, Yo; Liu, Xiaona; Jung, Su-Ryun; Higashida, Kazuhiko; Lindquist, Diana; Milbrandt, Jeffrey

    2012-07-01

    AMP activated protein kinase (AMPK) plays a key role in the regulatory network responsible for maintaining systemic energy homeostasis during exercise or nutrient deprivation. To understand the function of the regulatory β2 subunit of AMPK in systemic energy metabolism, we characterized β2 subunit-deficient mice. Using these mutant mice, we demonstrated that the β2 subunit plays an important role in regulating glucose, glycogen, and lipid metabolism during metabolic stress. The β2 mutant animals failed to maintain euglycemia and muscle ATP levels during fasting. In addition, β2-deficient animals showed classic symptoms of metabolic syndrome, including hyperglycemia, glucose intolerance, and insulin resistance when maintained on a high-fat diet (HFD), and were unable to maintain muscle ATP levels during exercise. Cell surface-associated glucose transporter levels were reduced in skeletal muscle from β2 mutant animals on an HFD. In addition, they displayed poor exercise performance and impaired muscle glycogen metabolism. These mutant mice had decreased activation of AMPK and deficits in PGC1α-mediated transcription in skeletal muscle. Our results highlight specific roles of AMPK complexes containing the β2 subunit and suggest the potential utility of AMPK isoform-specific pharmacological modulators for treatment of metabolic, cardiac, and neurological disorders.

  16. Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles

    2011-01-01

    Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336

  17. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthey-Schulten, Zaida

    The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictivemore » power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project

  18. [Effects of aconite root on energy metabolism and expression of related genes in rats].

    PubMed

    Yu, Huayun; Ji, Xuming; Wu, Zhichun; Wang, Shijun

    2011-09-01

    To study the influence of aconite root, a Chinese medicinal herb with hot property, on energy metabolism and gene expression spectrum, and to analyze the possible mechanism of it effect. Thirty two SPF Wistar rats were randomly divided into aconite root group and control group. Decoction of aconite root and NS were intragastrically administrated with the concentration of 10 mL x kg(-1) respectively once a day for 20 days. Temperature, energy intake (EI), digestive energy (DE) and metabolic energy (ME) were measured. The activity of ATPase and succinate dehydrogenase (SDH) in liver was detected by colorimetry. The gene expression of liver was detected with Illumina's rat ref-12 gene array. The differential expression genes were selected, annotated and classified based on gene ontology (GO). Real-time quantitative reverse-transcriptase PCR (Q-RT-PCR) was used to test the accuracy of the array results. Compared with the control group, the toe temperature (TT) on the 10th and 20th day after the administration,the EI/BM( body mass), DE/BM, ME/BM and the activity of Na+ - K+ - ATPase, Ca2+ - Mg2+ - ATPase and SDH of liver in the aconite root group increased significantly (P<0.05). There were 592 differential expression genes in aconite root group compared with the control group. Based on Go analysis, the most significant genes was related to metabolic process (lgP = - 15.5897). Aconite root could improve the energy metabolism in rats, by influencing the metabolic process of sugar, lipid and amino acid, which may be the main molecular mechanism of warming yang and dispelling cold for the treatment of the cold syndrome according to Chinese medicine theory.

  19. Multi‐omic profiling ­of EPO‐producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    PubMed Central

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup

    2015-01-01

    ABSTRACT Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi‐omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO‐K1 cells under growth‐limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO‐producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)+, adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT‐PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)+ and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post‐translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time‐course analysis of high‐ and low‐producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity. Biotechnol. Bioeng. 2015;112: 2373–2387. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID

  20. Identifying poor metabolic adaptation during early lactation in dairy cows using cluster analysis.

    PubMed

    Tremblay, M; Kammer, M; Lange, H; Plattner, S; Baumgartner, C; Stegeman, J A; Duda, J; Mansfeld, R; Döpfer, D

    2018-05-02

    Currently, cows with poor metabolic adaptation during early lactation, or poor metabolic adaptation syndrome (PMAS), are often identified based on detection of hyperketonemia. Unfortunately, elevated blood ketones do not manifest consistently with indications of PMAS. Expected indicators of PMAS include elevated liver enzymes and bilirubin, decreased rumen fill, reduced rumen contractions, and a decrease in milk production. Cows with PMAS typically are higher producing, older cows that are earlier in lactation and have greater body condition score at the start of lactation. It was our aim to evaluate commonly used measures of metabolic health (input variables) that were available [i.e., blood β-hydroxybutyrate acid, milk fat:protein ratio, blood nonesterified fatty acids (NEFA)] to characterize PMAS. Bavarian farms (n = 26) with robotic milking systems were enrolled for weekly visits for an average of 6.7 wk. Physical examinations of the cows (5-50 d in milk) were performed by veterinarians during each visit, and blood and milk samples were collected. Resulting data included 790 observations from 312 cows (309 Simmental, 1 Red Holstein, 2 Holstein). Principal component analysis was conducted on the 3 input variables, followed by K-means cluster analysis of the first 2 orthogonal components. The 5 resulting clusters were then ascribed to low, intermediate, or high PMAS classes based on their degree of agreement with expected PMAS indicators and characteristics in comparison with other clusters. Results revealed that PMAS classes were most significantly associated with blood NEFA levels. Next, we evaluated NEFA values that classify observations into appropriate PMAS classes in this data set, which we called separation values. Our resulting NEFA separation values [<0.39 mmol/L (95% confidence limits = 0.360-0.410) to identify low PMAS observations and ≥0.7 mmol/L (95% confidence limits = 0.650-0.775) to identify high PMAS observations] were similar to values

  1. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.

    PubMed

    Koller, Jeffrey R; Jacobs, Daniel A; Ferris, Daniel P; Remy, C David

    2015-11-04

    Robotic ankle exoskeletons can provide assistance to users and reduce metabolic power during walking. Our research group has investigated the use of proportional myoelectric control for controlling robotic ankle exoskeletons. Previously, these controllers have relied on a constant gain to map user's muscle activity to actuation control signals. A constant gain may act as a constraint on the user, so we designed a controller that dynamically adapts the gain to the user's myoelectric amplitude. We hypothesized that an adaptive gain proportional myoelectric controller would reduce metabolic energy expenditure compared to walking with the ankle exoskeleton unpowered because users could choose their preferred control gain. We tested eight healthy subjects walking with the adaptive gain proportional myoelectric controller with bilateral ankle exoskeletons. The adaptive gain was updated each stride such that on average the user's peak muscle activity was mapped to maximal power output of the exoskeleton. All subjects participated in three identical training sessions where they walked on a treadmill for 50 minutes (30 minutes of which the exoskeleton was powered) at 1.2 ms(-1). We calculated and analyzed metabolic energy consumption, muscle recruitment, inverse kinematics, inverse dynamics, and exoskeleton mechanics. Using our controller, subjects achieved a metabolic reduction similar to that seen in previous work in about a third of the training time. The resulting controller gain was lower than that seen in previous work (β=1.50±0.14 versus a constant β=2). The adapted gain allowed users more total ankle joint power than that of unassisted walking, increasing ankle power in exchange for a decrease in hip power. Our findings indicate that humans prefer to walk with greater ankle mechanical power output than their unassisted gait when provided with an ankle exoskeleton using an adaptive controller. This suggests that robotic assistance from an exoskeleton can allow

  2. Astrocyte glycogen and brain energy metabolism.

    PubMed

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  3. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  4. Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism.

    PubMed

    Nasr Esfahani, Maryam; Kusano, Miyako; Nguyen, Kien Huu; Watanabe, Yasuko; Ha, Chien Van; Saito, Kazuki; Sulieman, Saad; Herrera-Estrella, Luis; Tran, L S

    2016-08-09

    Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops.

  5. Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel.

    PubMed

    Gunasekera, Thusitha S; Striebich, Richard C; Mueller, Susan S; Strobel, Ellen M; Ruiz, Oscar N

    2013-01-01

    Fuel is a harsh environment for microbial growth. However, some bacteria can grow well due to their adaptive mechanisms. Our goal was to characterize the adaptations required for Pseudomonas aeruginosa proliferation in fuel. We have used DNA-microarrays and RT-PCR to characterize the transcriptional response of P. aeruginosa to fuel. Transcriptomics revealed that genes essential for medium- and long-chain n-alkane degradation including alkB1 and alkB2 were transcriptionally induced. Gas chromatography confirmed that P. aeruginosa possesses pathways to degrade different length n-alkanes, favoring the use of n-C11-18. Furthermore, a gamut of synergistic metabolic pathways, including porins, efflux pumps, biofilm formation, and iron transport, were transcriptionally regulated. Bioassays confirmed that efflux pumps and biofilm formation were required for growth in jet fuel. Furthermore, cell homeostasis appeared to be carefully maintained by the regulation of porins and efflux pumps. The Mex RND efflux pumps were required for fuel tolerance; blockage of these pumps precluded growth in fuel. This study provides a global understanding of the multiple metabolic adaptations required by bacteria for survival and proliferation in fuel-containing environments. This information can be applied to improve the fuel bioremediation properties of bacteria.

  6. Distinct mechanisms underlie adaptation of proximal tubule Na+/H+ exchanger isoform 3 in response to chronic metabolic and respiratory acidosis.

    PubMed

    Silva, Pedro Henrique Imenez; Girardi, Adriana Castello Costa; Neri, Elida Adalgisa; Rebouças, Nancy Amaral

    2012-04-01

    The Na(+/)H(+) exchanger isoform 3 (NHE3) is essential for HCO(3)(-) reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO(3)(-) concentration in the cell culture medium and respiratory acidosis by increasing CO(2) tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

  7. Skeletal Muscle Thermogenesis and Its Role in Whole Body Energy Metabolism

    PubMed Central

    Herrera, Jose Luis; Reis, Felipe C. G.

    2017-01-01

    Obesity and diabetes has become a major epidemic across the globe. Controlling obesity has been a challenge since this would require either increased physical activity or reduced caloric intake; both are difficult to enforce. There has been renewed interest in exploiting pathways such as uncoupling protein 1 (UCP1)-mediated uncoupling in brown adipose tissue (BAT) and white adipose tissue to increase energy expenditure to control weight gain. However, relying on UCP1-based thermogenesis alone may not be sufficient to control obesity in humans. On the other hand, skeletal muscle is the largest organ and a major contributor to basal metabolic rate and increasing energy expenditure in muscle through nonshivering thermogenic mechanisms, which can substantially affect whole body metabolism and weight gain. In this review we will describe the role of Sarcolipin-mediated uncoupling of Sarcoplasmic Reticulum Calcium ATPase (SERCA) as a potential mechanism for increased energy expenditure both during cold and diet-induced thermogenesis. PMID:29086530

  8. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation?

    PubMed

    Gertsch, Jürg

    2017-06-01

    The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB 2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB 1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB 1 /CB 2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British Pharmacological Society.

  9. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.

    PubMed

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.

  10. Regulation of Hepatic Energy Metabolism and Gluconeogenesis by BAD

    PubMed Central

    Giménez-Cassina, Alfredo; Garcia-Haro, Luisa; Choi, Cheol Soo; Osundiji, Mayowa A.; Lane, Elizabeth; Huang, Hu; Yildirim, Muhammed A.; Szlyk, Benjamin; Fisher, Jill K.; Polak, Klaudia; Patton, Elaura; Wiwczar, Jessica; Godes, Marina; Lee, Dae Ho; Robertson, Kirsten; Kim, Sheene; Kulkarni, Ameya; Distefano, Alberto; Samuel, Varman; Cline, Gary; Kim, Young-Bum; Shulman, Gerald I.; Danial, Nika N.

    2014-01-01

    SUMMARY The homeostatic balance of hepatic glucose utilization, storage and production is exquisitely controlled by hormonal signals and hepatic carbon metabolism during fed and fasted states. How the liver senses extracellular glucose to cue glucose utilization versus production is not fully understood. Here, we show that the physiologic balance of hepatic glycolysis and gluconeogenesis is regulated by BAD, a dual function protein with roles in apoptosis and metabolism. BAD deficiency reprograms hepatic substrate and energy metabolism towards diminished glycolysis, excess fatty acid oxidation and exaggerated glucose production that escapes suppression by insulin. Genetic and biochemical evidence suggest that BAD’s suppression of gluconeogenesis is actuated by phosphorylation of its BH3 domain and subsequent activation of glucokinase. The physiologic relevance of these findings is evident from the ability of a BAD phospho-mimic variant to counteract unrestrained gluconeogenesis and improve glycemia in leptin resistant and high-fat diet models of diabetes and insulin resistance. PMID:24506868

  11. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    PubMed Central

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  12. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis.

    PubMed

    Karl, J Philip; Margolis, Lee M; Murphy, Nancy E; Carrigan, Christopher T; Castellani, John W; Madslien, Elisabeth H; Teien, Hilde-Kristin; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-09-01

    Military training studies provide unique insight into metabolic responses to extreme physiologic stress induced by multiple stressor environments, and the impacts of nutrition in mediating these responses. Advances in metabolomics have provided new approaches for extending current understanding of factors modulating dynamic metabolic responses in these environments. In this study, whole-body metabolic responses to strenuous military training were explored in relation to energy balance and macronutrient intake by performing nontargeted global metabolite profiling on plasma collected from 25 male soldiers before and after completing a 4-day, 51-km cross-country ski march that produced high total daily energy expenditures (25.4 MJ/day [SD 2.3]) and severe energy deficits (13.6 MJ/day [SD 2.5]). Of 737 identified metabolites, 478 changed during the training. Increases in 88% of the free fatty acids and 91% of the acylcarnitines, and decreases in 88% of the mono- and diacylglycerols detected within lipid metabolism pathways were observed. Smaller increases in 75% of the tricarboxylic acid cycle intermediates, and 50% of the branched-chain amino acid metabolites detected were also observed. Changes in multiple metabolites related to lipid metabolism were correlated with body mass loss and energy balance, but not with energy and macronutrient intakes or energy expenditure. These findings are consistent with an increase in energy metabolism, lipolysis, fatty acid oxidation, ketogenesis, and branched-chain amino acid catabolism during strenuous military training. The magnitude of the energy deficit induced by undereating relative to high energy expenditure, rather than macronutrient intake, appeared to drive these changes, particularly within lipid metabolism pathways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    PubMed

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Elder, E; Roper, J

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less

  15. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature.

    PubMed

    Zhou, Qian; Zhang, Chunlei; Cheng, Shunchang; Wei, Baodong; Liu, Xiuying; Ji, Shujuan

    2014-12-01

    Low-temperature storage and transport of blueberries is widely practiced in commercial blueberry production. In this research, the storage life of blueberries was extended at low temperature, but fruit stored for 30 d at 0°C pitted after 2d at room-temperature. Fruit cellular structure and physiological parameters accompanying pitting in blueberries were changed. The objective of this research was to characterise properties of energy metabolism accompanying pitting in blueberries during storage, including adenosine phosphates and mitochondrial enzymes involved in stress responses. Physiological and metabolic disorders, changes in cell ultrastructure, energy content and ATPase enzyme activity were observed in pitting blueberries. Energy shortages and increased activity of phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were observed in fruit kept at shelf life. The results suggested that sufficient available energy status and a stable enzymatic system in blueberries collectively contribute to improve chilling tolerance, thereby alleviating pitting and maintaining quality of blueberry fruit in long-term cold storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. [Strategies for successful weight reduction - focus on energy balance].

    PubMed

    Weck, M; Bornstein, S R; Barthel, A; Blüher, M

    2012-10-01

    The prevalence of obesity and related health problems is increasing worldwide and also in Germany. It is well known that substantial and sustained weight loss is difficult to accomplish. Therefore, a variety of studies has been performed in order to specify causes for weight gain and create hypotheses for better treatment options. Key factors of this problem are an adaptation of energy metabolism, especially resting metabolic rate (RMR), non-exercise thermogenesis and diet induced thermogenesis. The extremely high failure rate (> 80%) to keep the reduced weight after successful weight loss is due to adaptation processes of the body to maintain body energy stores. This so called "adaptive thermogenesis" is defined as a smaller than predicted change of energy expenditure in response to changes in energy balance. Adaptive thermogenesis appears to be a major reason for weight regain. The foremost objective of weight-loss programs is the reduction in body fat. However, a concomitant decline in lean tissue can frequently be observed. Since lean body mass (LBM) represents a key determinant of RMR it follows that a decrease in lean tissue could counteract the progress of weight loss. Therefore, with respect to long-term effectiveness of weight reduction programs, the loss of fat mass while maintaining LBM and RMR seems desirable. In this paper we will discuss the mechanisms of adaptive thermogenesis and develop therapeutic strategies with respect to avoiding weight regain successful weight reduction. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches

    PubMed Central

    Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-01-01

    Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions. PMID:29659554

  18. Within-Day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes.

    PubMed

    Torstveit, Monica Klungland; Fahrenholtz, Ida; Stenqvist, Thomas B; Sylta, Øystein; Melin, Anna

    2018-06-26

    Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMR ratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMR ratio  < 0.90, n = 20) or normal (RMR ratio  > 0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8-21.8] hr vs. 10.8 [2.5-16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. -1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = -.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.

  19. [Energy expenditure at rest and obesity].

    PubMed

    Müllerová, D; Matĕjková, D; Rusavý, Z; Müller, L

    1998-01-01

    Adult human body has to have, because of every day fluctuating energy intake and energy needs, very precious adaptive mechanisms for maintenance of heat homeostasis in the body and nearly stable body weight and body composition, which are optimal for life and reproduction. These short term functioning adaptive mechanisms are called "empty biochemical mechanisms", where chemically bound energy is transformed to heat without work performance. These mechanisms are present on the cellular level (substrates cycles, uncoupling of respiration chain), on the interorgan metabolic level (glycolysis and gluconeogenesis between liver and adipose tissue-glucose-lactate cycle). Central nervous system controls them via many factors; the most important are catecholamines, leptin, insulin, thyroid hormones, cortisol, growth and sex hormones. Neurotransmitters and neuronal net influence energy intake and other behavior. Obesity seems to be associated with the amelioration or overcoming of possibilities of function short-term effective adaptive mechanisms.

  20. Short photoperiod increases energy intake, metabolic thermogenesis and organ mass in silky starlings Sturnus sericeus

    PubMed Central

    WANG, Jia-Qi; WANG, Jia-Jia; WU, Xu-Jian; ZHENG, Wei-Hong; LIU, Jin-Song

    2016-01-01

    Environmental cues play important roles in the regulation of an animal’s physiology and behavior. One such cue, photoperiod, plays an important role in the seasonal acclimatization of birds. It has been demonstrated that an animal’s body mass, basal metabolic rate (BMR), and energy intake, are all affected by photoperiod. The present study was designed to examine photoperiod induced changes in the body mass, metabolism and metabolic organs of the silky starling, Sturnus sericeus. Captive silky starlings increased their body mass and BMR during four weeks of acclimation to a short photoperiod. Birds acclimated to a short photoperiod also increased the mass of certain organs (liver, gizzard and small intestine), and both gross energy intake (GEI) and digestible energy intake (DEI), relative to those acclimated to a long photoperiod. Furthermore, BMR was positively correlated with body mass, liver mass, GEI and DEI. These results suggest that silky starlings increase metabolic thermogenesis when exposed to a short photoperiod by increasing their body and metabolic organ mass, and their GEI and DEI. These findings support the hypothesis that bird species from temperate climates typically display high phenotypic flexibility in thermogenic capacity. PMID:27029864

  1. Effect of protein overfeeding on energy expenditure measured in a metabolic chamber.

    PubMed

    Bray, George A; Redman, Leanne M; de Jonge, Lilian; Covington, Jeffrey; Rood, Jennifer; Brock, Courtney; Mancuso, Susan; Martin, Corby K; Smith, Steven R

    2015-03-01

    Energy expenditure (EE) increases with overfeeding, but it is unclear how rapidly this is related to changes in body composition, increased body weight, or diet. The objective was to quantify the effects of excess energy from fat or protein on energy expenditure of men and women living in a metabolic chamber. We conducted a randomized controlled trial in 25 participants who ate ∼40% excess energy for 56 d from 5%, 15%, or 25% protein diets. Twenty-four-hour EE (24EE) and sleeping EE (SleepEE) were measured on days 1, 14, and 56 of overfeeding and on day 57 while consuming the baseline diet (usually day 57). Metabolic and molecular markers of muscle metabolism were measured in skeletal muscle biopsy specimens. In the low-protein diet group whose excess energy was fat, the 24EE and SleepEE did not increase during the first day of overfeeding. When extra energy contained protein, both 24EE and SleepEE increased in relation to protein intake (r = 0.50, P = 0.02). The 24EE over 8 wk in all 3 groups was correlated with protein intake (r = 0.60, P = 0.004) but not energy intake (r = 0.16; P = 0.70). SleepEE was unchanged by overfeeding in the low-protein diet group, and baseline surface area predicted increased 24EE in this group. Protein and fat oxidation were reciprocally related during overfeeding. Observed 24EE was higher than predicted on days 1 (P ≤ 0.05), 14 (P = 0.0001), and 56 (P = 0.0007). There was no relation between change in fat mass and change in EE. Excess energy, as fat, does not acutely increase 24EE, which rises slowly as body weight increases. Excess energy as protein acutely stimulates 24EE and SleepEE. The strongest relation with change in 24EE was the change in energy expenditure in tissue other than muscle or fat-free mass. © 2015 American Society for Nutrition.

  2. Pregnancy Suppresses the Daily Rhythmicity of Core Body Temperature and Adipose Metabolic Gene Expression in the Mouse.

    PubMed

    Wharfe, Michaela D; Wyrwoll, Caitlin S; Waddell, Brendan J; Mark, Peter J

    2016-09-01

    Maternal adaptations in lipid metabolism are crucial for pregnancy success due to the role of white adipose tissue as an energy store and the dynamic nature of energy needs across gestation. Because lipid metabolism is regulated by the rhythmic expression of clock genes, it was hypothesized that maternal metabolic adaptations involve changes in both adipose clock gene expression and the rhythmic expression of downstream metabolic genes. Maternal core body temperature (Tc) was investigated as a possible mechanism driving pregnancy-induced changes in clock gene expression. Gonadal adipose tissue and plasma were collected from C57BL/6J mice before and on days 6, 10, 14, and 18 of pregnancy (term 19 d) at 4-hour intervals across a 24-hour period. Adipose expression of clock genes and downstream metabolic genes were determined by quantitative RT-PCR, and Tc was measured by intraperitoneal temperature loggers. Adipose clock gene expression showed robust rhythmicity throughout pregnancy, but absolute levels varied substantially across gestation. Rhythmic expression of the metabolic genes Lipe, Pnpla2, and Lpl was clearly evident before pregnancy; however, this rhythmicity was lost with the onset of pregnancy. Tc rhythm was significantly altered by pregnancy, with a 65% decrease in amplitude by term and a 0.61°C decrease in mesor between days 6 and 18. These changes in Tc, however, did not appear to be linked to adipose clock gene expression across pregnancy. Overall, our data show marked adaptations in the adipose clock in pregnancy, with an apparent decoupling of adipose clock and lipolytic/lipogenic gene rhythms from early in gestation.

  3. Lysosomal Adaptation: How the Lysosome Responds to External Cues

    PubMed Central

    Settembre, Carmine; Ballabio, Andrea

    2014-01-01

    Recent evidence indicates that the importance of the lysosome in cell metabolism and organism physiology goes far beyond the simple disposal of cellular garbage. This dynamic organelle is situated at the crossroad of the most important cellular pathways and is involved in sensing, signaling, and transcriptional mechanisms that respond to environmental cues, such as nutrients. Two main mediators of these lysosomal adaptation mechanisms are the mTORC1 kinase complex and the transcription factor EB (TFEB). These two factors are linked in a lysosome-to-nucleus signaling pathway that provides the lysosome with the ability to adapt to extracellular cues and control its own biogenesis. Modulation of lysosomal function by acting on TFEB has a profound impact on cellular clearance and energy metabolism and is a promising therapeutic target for a large variety of disease conditions. PMID:24799353

  4. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons.

    PubMed

    Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin; Scheibye-Knudsen, Morten; Cheng, Aiwu; Cutler, Roy; Camandola, Simonetta; Mattson, Mark P

    2016-12-01

    During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD + /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. A link between hepatic glucose production and peripheral energy metabolism via hepatokines

    PubMed Central

    Abdul-Wahed, Aya; Gautier-Stein, Amandine; Casteras, Sylvie; Soty, Maud; Roussel, Damien; Romestaing, Caroline; Guillou, Hervé; Tourette, Jean-André; Pleche, Nicolas; Zitoun, Carine; Gri, Blandine; Sardella, Anne; Rajas, Fabienne; Mithieux, Gilles

    2014-01-01

    Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes. PMID:25061558

  6. A link between hepatic glucose production and peripheral energy metabolism via hepatokines.

    PubMed

    Abdul-Wahed, Aya; Gautier-Stein, Amandine; Casteras, Sylvie; Soty, Maud; Roussel, Damien; Romestaing, Caroline; Guillou, Hervé; Tourette, Jean-André; Pleche, Nicolas; Zitoun, Carine; Gri, Blandine; Sardella, Anne; Rajas, Fabienne; Mithieux, Gilles

    2014-08-01

    Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes.

  7. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota.

    PubMed

    Serino, Matteo; Luche, Elodie; Gres, Sandra; Baylac, Audrey; Bergé, Mathieu; Cenac, Claire; Waget, Aurelie; Klopp, Pascale; Iacovoni, Jason; Klopp, Christophe; Mariette, Jerome; Bouchez, Olivier; Lluch, Jerome; Ouarné, Francoise; Monsan, Pierre; Valet, Philippe; Roques, Christine; Amar, Jacques; Bouloumié, Anne; Théodorou, Vassilia; Burcelin, Remy

    2012-04-01

    The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.

  8. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    PubMed Central

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  9. Mitochondrial DNA Variant in COX1 Subunit Significantly Alters Energy Metabolism of Geographically Divergent Wild Isolates in Caenorhabditis elegans

    PubMed Central

    Dingley, Stephen D.; Polyak, Erzsebet; Ostrovsky, Julian; Srinivasan, Satish; Lee, Icksoo; Rosenfeld, Amy B.; Tsukikawa, Mai; Xiao, Rui; Selak, Mary A.; Coon, Joshua J.; Hebert, Alexander S.; Grimsrud, Paul A.; Kwon, Young Joon; Pagliarini, David J.; Gai, Xiaowu; Schurr, Theodore G.; Hüttemann, Maik; Nakamaru-Ogiso, Eiko; Falk, Marni J.

    2014-01-01

    Mitochondrial DNA (mtDNA) sequence variation can influence the penetrance of complex diseases and climatic adaptation. While studies in geographically defined human populations suggest that mtDNA mutations become fixed when they have conferred metabolic capabilities optimally suited for a specific environment, it has been challenging to definitively assign adaptive functions to specific mtDNA sequence variants in mammals. We investigated whether mtDNA genome variation functionally influences Caenorhabditis elegans wild isolates of distinct mtDNA lineages and geographic origins. We found that, relative to N2 (England) wild-type nematodes, CB4856 wild isolates from a warmer native climate (Hawaii) had a unique p.A12S amino acid substitution in the mtDNA-encoded COX1 core catalytic subunit of mitochondrial complex IV (CIV). Relative to N2, CB4856 worms grown at 20 °C had significantly increased CIV enzyme activity, mitochondrial matrix oxidant burden, and sensitivity to oxidative stress but had significantly reduced lifespan and mitochondrial membrane potential. Interestingly, mitochondrial membrane potential was significantly increased in CB4856 grown at its native temperature of 25 °C. A transmitochondrial cybrid worm strain, chpIR (M, CB4856 > N2), was bred as homoplasmic for the CB4856 mtDNA genome in the N2 nuclear background. The cybrid strain also displayed significantly increased CIV activity, demonstrating that this difference results from the mtDNA-encoded p.A12S variant. However, chpIR (M, CB4856 > N2) worms had significantly reduced median and maximal lifespan relative to CB4856, which may relate to their nuclear– mtDNA genome mismatch. Overall, these data suggest that C. elegans wild isolates of varying geographic origins may adapt to environmental challenges through mtDNA variation to modulate critical aspects of mitochondrial energy metabolism. PMID:24534730

  10. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  11. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    PubMed

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  12. Consequences of complex environments: Temperature and energy intake interact to influence growth and metabolic rate.

    PubMed

    Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L

    2015-09-01

    The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    PubMed Central

    Michoud, Grégoire; Jebbar, Mohamed

    2016-01-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins. PMID:27250364

  14. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    NASA Astrophysics Data System (ADS)

    Michoud, Grégoire; Jebbar, Mohamed

    2016-06-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

  15. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk.

    PubMed

    Koch, Franziska; Lamp, Ole; Eslamizad, Mehdi; Weitzel, Joachim; Kuhla, Björn

    2016-01-01

    Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production

  16. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk

    PubMed Central

    Eslamizad, Mehdi; Weitzel, Joachim; Kuhla, Björn

    2016-01-01

    Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production

  17. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metabolic and Behavioral Compensations in Response to Caloric Restriction: Implications for the Maintenance of Weight Loss

    PubMed Central

    Redman, Leanne M.; Heilbronn, Leonie K.; Martin, Corby K.; de Jonge, Lilian; Williamson, Donald A.; Delany, James P.; Ravussin, Eric

    2009-01-01

    Background Metabolic and behavioral adaptations to caloric restriction (CR) in free-living conditions have not yet been objectively measured. Methodology and Principal Findings Forty-eight (36.8±1.0 y), overweight (BMI 27.8±0.7 kg/m2) participants were randomized to four groups for 6-months; Control: energy intake at 100% of energy requirements; CR: 25% calorie restriction; CR+EX: 12.5% CR plus 12.5% increase in energy expenditure by structured exercise; LCD: low calorie diet (890 kcal/d) until 15% weight reduction followed by weight maintenance. Body composition (DXA) and total daily energy expenditure (TDEE) over 14-days by doubly labeled water (DLW) and activity related energy activity (AREE) were measured after 3 (M3) and 6 (M6) months of intervention. Weight changes at M6 were −1.0±1.1% (Control), −10.4±0.9% (CR), −10.0±0.8% (CR+EX) and −13.9±0.8% (LCD). At M3, absolute TDEE was significantly reduced in CR (−454±76 kcal/d) and LCD (−633±66 kcal/d) but not in CR+EX or controls. At M6 the reduction in TDEE remained lower than baseline in CR (−316±118 kcal/d) and LCD (−389±124 kcal/d) but reached significance only when CR and LCD were combined (−351±83 kcal/d). In response to caloric restriction (CR/LCD combined), TDEE adjusted for body composition, was significantly lower by −431±51 and −240±83 kcal/d at M3 and M6, respectively, indicating a metabolic adaptation. Likewise, physical activity (TDEE adjusted for sleeping metabolic rate) was significantly reduced from baseline at both time points. For control and CR+EX, adjusted TDEE (body composition or sleeping metabolic rate) was not changed at either M3 or M6. Conclusions For the first time we show that in free-living conditions, CR results in a metabolic adaptation and a behavioral adaptation with decreased physical activity levels. These data also suggest potential mechanisms by which CR causes large inter-individual variability in the rates of weight loss and how exercise

  19. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective.

    PubMed

    Massucci, Francesco A; DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Castillo, Isaac Perez; Marinari, Enzo; De Martino, Andrea

    2013-10-10

    The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange.

  20. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective

    PubMed Central

    2013-01-01

    Background The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange. PMID:24112710

  1. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  2. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    PubMed

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO

  3. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-04-16

    Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4⁺ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4⁺ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4⁺ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.

  4. Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, D.W.

    1987-01-01

    Regional brain glucose utilization (rCMRglc) was measured in rats during steady-state levels of intravenous anesthesia to determine if alterations in brain function due to anesthesia could provide information on the mechanisms of anesthesia. Intravenous anesthetics from three different chemical classes were studied: etomidate, ketamine and thiopental. All rCMRglc experiments were conducted in freely moving rats in isolation chambers, with the use of (6-/sup 14/C) glucose and guantitative autoradiography. Etomidate caused a rostral-to-caudal gradient of depression of rCMRglc. The four doses of etomidate did not differ in their effects on energy metabolism. Sub-anesthetic (5 mg kg/sup -1/) and anesthetic (30 mgmore » kg /sup -1/) doses of ketamine produced markedly different patterns of behavior. Brain energy metabolism during the sub-anesthetic dose was stimulated in most regions, while the anesthetic dose selectively stimulated the hippocampus, leaving most brain regions unaffected. Thiopental produced a dose-dependent reduction of rCMRglc in all gray matter regions. No brain region was selectively affected. Comparison of the drug-specific alterations of cerebral energy metabolism suggests these anesthetics do not act through a common mechanism. The hypothesis that each acts by binding to specific cell membrane receptors is consistent with these observations.« less

  5. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    PubMed Central

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  6. Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism

    PubMed Central

    San Martín, Alejandro; Arce-Molina, Robinson; Galaz, Alex; Pérez-Guerra, Gustavo; Barros, L. Felipe

    2017-01-01

    Nitric oxide (NO) is an intercellular messenger involved in multiple bodily functions. Prolonged NO exposure irreversibly inhibits respiration by covalent modification of mitochondrial cytochrome oxidase, a phenomenon of pathological relevance. However, the speed and potency of NO's metabolic effects at physiological concentrations are incompletely characterized. To this end, we set out to investigate the metabolic effects of NO in cultured astrocytes from mice by taking advantage of the high spatiotemporal resolution afforded by genetically encoded Förster resonance energy transfer (FRET) nanosensors. NO exposure resulted in immediate and reversible intracellular glucose depletion and lactate accumulation. Consistent with cytochrome oxidase involvement, the glycolytic effect was enhanced at a low oxygen level and became irreversible at a high NO concentration or after prolonged exposure. Measurements of both glycolytic rate and mitochondrial pyruvate consumption revealed significant effects even at nanomolar NO concentrations. We conclude that NO can modulate astrocytic energy metabolism in the short term, reversibly, and at concentrations known to be released by endothelial cells under physiological conditions. These findings suggest that NO modulates the size of the astrocytic lactate reservoir involved in neuronal fueling and signaling. PMID:28341740

  7. Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism.

    PubMed

    San Martín, Alejandro; Arce-Molina, Robinson; Galaz, Alex; Pérez-Guerra, Gustavo; Barros, L Felipe

    2017-06-02

    Nitric oxide (NO) is an intercellular messenger involved in multiple bodily functions. Prolonged NO exposure irreversibly inhibits respiration by covalent modification of mitochondrial cytochrome oxidase, a phenomenon of pathological relevance. However, the speed and potency of NO's metabolic effects at physiological concentrations are incompletely characterized. To this end, we set out to investigate the metabolic effects of NO in cultured astrocytes from mice by taking advantage of the high spatiotemporal resolution afforded by genetically encoded Förster resonance energy transfer (FRET) nanosensors. NO exposure resulted in immediate and reversible intracellular glucose depletion and lactate accumulation. Consistent with cytochrome oxidase involvement, the glycolytic effect was enhanced at a low oxygen level and became irreversible at a high NO concentration or after prolonged exposure. Measurements of both glycolytic rate and mitochondrial pyruvate consumption revealed significant effects even at nanomolar NO concentrations. We conclude that NO can modulate astrocytic energy metabolism in the short term, reversibly, and at concentrations known to be released by endothelial cells under physiological conditions. These findings suggest that NO modulates the size of the astrocytic lactate reservoir involved in neuronal fueling and signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Triptolide improves systolic function and myocardial energy metabolism of diabetic cardiomyopathy in streptozotocin-induced diabetic rats.

    PubMed

    Liang, Zhongshu; Leo, Sunnar; Wen, Helin; Ouyang, Mao; Jiang, Weihong; Yang, Kan

    2015-05-13

    Triptolide treatment leads to an improvement in Diabetic Cardiomyopathy (DCM) in streptozotocin-induced diabetic rat model. DCM is characterized by abnormal cardiac energy metabolism. We hypothesized that triptolide ameliorated cardiac metabolic abnormalities in DCM. We proposed (31)P nuclear magnetic resonance ((31)P NMR) spectrometry method for assessing cardiac energy metabolism in vivo and evaluating the effect of triptolide treatment in DCM rats. Six weeks triptolide treatment was conducted on streptozotocin-induced diabetic rats with dose of 100, 200 or 400 μg/kg/day respectively. Sex- and age-matched non-diabetic rats were used as control group. Cardiac chamber dimension and function were determined with echocardiography. Whole heart preparations were perfused with Krebs-Henseleit buffer and (31)P NMR spectroscopy was performed. Cardiac p38 Mitogen Activating Protein Kinase (MAPK) was measured using real time PCR and western blot analysis. In diabetic rats, cardiac mass index was significantly higher, where as cardiac EF was lower than control group. (31)P NMR spectroscopy showed that ATP and pCr concentrations in diabetic groups were also remarkably lower than control group. Compared to non-treated diabetic rats, triptolide-treated diabetic groups showed remarkable lower cardiac mass index and higher EF, ATP, pCr concentrations, and P38 MAPK expressions. Best improvement was seen in group treated with Triptolide with dose 200 μg/kg/day. (31)P NMR spectroscopy enables assessment of cardiac energy metabolism in whole heart preparations. It detects energy metabolic abnormalities in DCM hearts. Triptolide therapy improves cardiac function and increases cardiac energy metabolism at least partly through upregulation of MAPK signaling transduction.

  9. Adaptive Control Model Reveals Systematic Feedback and Key Molecules in Metabolic Pathway Regulation

    PubMed Central

    Moffitt, Richard A.; Merrill, Alfred H.; Wang, May D.

    2011-01-01

    Abstract Robust behavior in metabolic pathways resembles stabilized performance in systems under autonomous control. This suggests we can apply control theory to study existing regulation in these cellular networks. Here, we use model-reference adaptive control (MRAC) to investigate the dynamics of de novo sphingolipid synthesis regulation in a combined theoretical and experimental case study. The effects of serine palmitoyltransferase over-expression on this pathway are studied in vitro using human embryonic kidney cells. We report two key results from comparing numerical simulations with observed data. First, MRAC simulations of pathway dynamics are comparable to simulations from a standard model using mass action kinetics. The root-sum-square (RSS) between data and simulations in both cases differ by less than 5%. Second, MRAC simulations suggest systematic pathway regulation in terms of adaptive feedback from individual molecules. In response to increased metabolite levels available for de novo sphingolipid synthesis, feedback from molecules along the main artery of the pathway is regulated more frequently and with greater amplitude than from other molecules along the branches. These biological insights are consistent with current knowledge while being new that they may guide future research in sphingolipid biology. In summary, we report a novel approach to study regulation in cellular networks by applying control theory in the context of robust metabolic pathways. We do this to uncover potential insight into the dynamics of regulation and the reverse engineering of cellular networks for systems biology. This new modeling approach and the implementation routines designed for this case study may be extended to other systems. Supplementary Material is available at www.liebertonline.com/cmb. PMID:21314456

  10. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    PubMed

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  11. GH and IGF1: roles in energy metabolism of long-living GH mutant mice.

    PubMed

    Brown-Borg, Holly M; Bartke, Andrzej

    2012-06-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.

  12. Regulation of lipid metabolism by energy availability: a role for the central nervous system.

    PubMed

    Nogueiras, R; López, M; Diéguez, C

    2010-03-01

    The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.

  13. Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities.

    PubMed

    Yang, Yun; Yu, Dandan; Wang, Hua; Guo, Lin

    2017-12-01

    Currently, with booming development and worldwide usage of rechargeable electrochemical energy storage devices, their safety issues, operation stability, service life, and user experience are garnering special attention. Smart and intelligent energy storage devices with self-protection and self-adaptation abilities aiming to address these challenges are being developed with great urgency. In this Progress Report, we highlight recent achievements in the field of smart energy storage systems that could early-detect incoming internal short circuits and self-protect against thermal runaway. Moreover, intelligent devices that are able to take actions and self-adapt in response to external mechanical disruption or deformation, i.e., exhibiting self-healing or shape-memory behaviors, are discussed. Finally, insights into the future development of smart rechargeable energy storage devices are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cancer is an adaptation that selects in animals against energy dissipation.

    PubMed

    Muller, Anthonie W J

    2017-07-01

    As cancer usually follows reproduction, it is generally assumed that cancer does not select. Graham has however argued that juvenile cancer, which precedes reproduction, could during evolution have implemented a "cancer selection" that resulted in novel traits that suppress this juvenile cancer; an example is protection against UV sunlight-induced cancer, required for the emergence of terrestrial animals from the sea. We modify the cancer selection mechanism to the posited "cancer adaptation" mechanism, in which juvenile mortality is enhanced through the diminished care received by juveniles from their (grand) parents when these suffer from cancer in old age. Moreover, it is posited that the cancer adaptation selects against germline "dissipative genes", genes that result in enhanced free energy dissipation. Cancer's progression is interpreted as a cascade at increasing scale of repeated amplification of energy dissipation, a cascade involving heat shock, the Warburg effect, the cytokine IL-6, tumours, and hypermetabolism. Disturbance of any physiological process must enhance energy dissipation if the animal remains functioning normally, what explains multicausality, why "everything gives you cancer". The hypothesis thus comprises two newly invoked partial processes-diminished (grand) parental care and dissipation amplification-and results in a "selection against enhanced energy dissipation" which gives during evolution the benefit of energy conservation. Due to this benefit, cancer would essentially be an adaptation, and not a genetic disease, as assumed in the "somatic mutation theory". Cancer by somatic mutations is only a side process. The cancer adaptation hypothesis is substantiated by (1) cancer's extancy, (2) the failure of the somatic mutation theory, (3) cancer's initiation by a high temperature, (4) the interpretation of cancer's progression as a thermal process, and (5) the interpretation of tumours as organs that implement thermogenesis. The hypothesis

  15. OCIAD1 Controls Electron Transport Chain Complex I Activity to Regulate Energy Metabolism in Human Pluripotent Stem Cells.

    PubMed

    Shetty, Deeti K; Kalamkar, Kaustubh P; Inamdar, Maneesha S

    2018-06-14

    Pluripotent stem cells (PSCs) derive energy predominantly from glycolysis and not the energy-efficient oxidative phosphorylation (OXPHOS). Differentiation is initiated with energy metabolic shift from glycolysis to OXPHOS. We investigated the role of mitochondrial energy metabolism in human PSCs using molecular, biochemical, genetic, and pharmacological approaches. We show that the carcinoma protein OCIAD1 interacts with and regulates mitochondrial complex I activity. Energy metabolic assays on live pluripotent cells showed that OCIAD1-depleted cells have increased OXPHOS and may be poised for differentiation. OCIAD1 maintains human embryonic stem cells, and its depletion by CRISPR/Cas9-mediated knockout leads to rapid and increased differentiation upon induction, whereas OCIAD1 overexpression has the opposite effect. Pharmacological alteration of complex I activity was able to rescue the defects of OCIAD1 modulation. Thus, hPSCs can exist in energy metabolic substates. OCIAD1 provides a target to screen for additional modulators of mitochondrial activity to promote transient multipotent precursor expansion or enhance differentiation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Long-Term Impacts of Foetal Malnutrition Followed by Early Postnatal Obesity on Fat Distribution Pattern and Metabolic Adaptability in Adult Sheep

    PubMed Central

    Khanal, Prabhat; Johnsen, Lærke; Axel, Anne Marie Dixen; Hansen, Pernille Willert; Kongsted, Anna Hauntoft; Lyckegaard, Nette Brinch; Nielsen, Mette Olaf

    2016-01-01

    We aimed to investigate whether over- versus undernutrition in late foetal life combined with obesity development in early postnatal life have differential implications for fat distribution and metabolic adaptability in adulthood. Twin-pregnant ewes were fed NORM (100% of daily energy and protein requirements), LOW (50% of NORM) or HIGH (150%/110% of energy/protein requirements) diets during the last trimester. Postnatally, twin-lambs received obesogenic (HCHF) or moderate (CONV) diets until 6 months of age, and a moderate (obesity correcting) diet thereafter. At 2½ years of age (adulthood), plasma metabolite profiles during fasting, glucose, insulin and propionate (in fed and fasted states) tolerance tests were examined. Organ weights were determined at autopsy. Early obesity development was associated with lack of expansion of perirenal, but not other adipose tissues from adolescence to adulthood, resulting in 10% unit increased proportion of mesenteric of intra-abdominal fat. Prenatal undernutrition had a similar but much less pronounced effect. Across tolerance tests, LOW-HCHF sheep had highest plasma levels of cholesterol, urea-nitrogen, creatinine, and lactate. Sex specific differences were observed, particularly with respect to fat deposition, but direction of responses to early nutrition impacts were similar. However, prenatal undernutrition induced greater metabolic alterations in adult females than males. Foetal undernutrition, but not overnutrition, predisposed for adult hypercholesterolaemia, hyperureaemia, hypercreatinaemia and hyperlactataemia, which became manifested only in combination with early obesity development. Perirenal expandability may play a special role in this context. Differential nutrition recommendations may be advisable for individuals with low versus high birth weights. PMID:27257993

  17. Effects of dietary history on energy metabolism and physiological parameters in C57BL/6J mice.

    PubMed

    Hoevenaars, Femke P M; Keijer, Jaap; Swarts, Hans J; Snaas-Alders, Sophie; Bekkenkamp-Grovenstein, Melissa; van Schothorst, Evert M

    2013-05-01

    Understanding body weight regulation is essential to fight obesity. Mouse studies, using different types of diets, showed conflicting results in terms of body weight persistence after changing from an ad libitum high-fat diet to an ad libitum low-fat diet. In this study, we questioned specifically whether the energy content of the diet has a lasting effect on energy balance and body weight, using multiple switches and two purified diets with a different fat-to-sugar ratio, but otherwise identical ingredients. Young-adult obesity-prone male C57BL/6J mice were fed single or double switches of semi-purified diets with either 10 energy % (en%) fat (LF) or 40en% fat (HF), with starch replaced by fat, while protein content remained equal. After none, one or two dietary changes, energy metabolism was assessed at 5, 14 and 19 weeks. We observed no systematic continuous compensation in diet and energy intake when returning to LF after HF consumption. Body weight, white adipose tissue mass and histology, serum metabolic parameters, energy expenditure and substrate usage all significantly reflected the current diet intake, independent of dietary changes. This contrasts with studies that used diets with different ingredients and showed persistent effects of dietary history on body weight, suggesting diet-dependent metabolic set points. We conclude that body weight and metabolic parameters 'settle', based on current energetic input and output. This study also highlights the importance of considering the choice of diet in physiological and metabolic intervention studies.

  18. Study of AMPK-Regulated Metabolic Fluxes in Neurons Using the Seahorse XFe Analyzer.

    PubMed

    Marinangeli, Claudia; Kluza, Jérome; Marchetti, Philippe; Buée, Luc; Vingtdeux, Valérie

    2018-01-01

    AMP-activated protein kinase (AMPK) is the intracellular master energy sensor and metabolic regulator. AMPK is involved in cell energy homeostasis through the regulation of glycolytic flux and mitochondrial biogenesis. Interestingly, metabolic dysfunctions and AMPK deregulations are observed in many neurodegenerative diseases, including Alzheimer's. While these deregulations could play a key role in the development of these diseases, the study of metabolic fluxes has remained quite challenging and time-consuming. In this chapter, we describe the Seahorse XFe respirometry assay as a fundamental experimental tool to investigate the role of AMPK in controlling and modulating cell metabolic fluxes in living and intact differentiated primary neurons. The Seahorse XFe respirometry assay allows the real-time monitoring of glycolytic flux and mitochondrial respiration from different kind of cells, tissues, and isolated mitochondria. Here, we specify a protocol optimized for primary neuronal cells using several energy substrates such as glucose, pyruvate, lactate, glutamine, and ketone bodies. Nevertheless, this protocol can easily be adapted to monitor metabolic fluxes from other types of cells, tissues, or isolated mitochondria by taking into account the notes proposed for each key step of this assay.

  19. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    PubMed

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  20. Metabolic Adaptation to Nutrients Involves Coregulation of Gene Expression by the RNA Helicase Dbp2 and the Cyc8 Corepressor in Saccharomyces cerevisiae.

    PubMed

    Wang, Siwen; Xing, Zheng; Pascuzzi, Pete E; Tran, Elizabeth J

    2017-07-05

    Cells fine-tune their metabolic programs according to nutrient availability in order to maintain homeostasis. This is achieved largely through integrating signaling pathways and the gene expression program, allowing cells to adapt to nutritional change. Dbp2, a member of the DEAD-box RNA helicase family in Saccharomyces cerevisiae , has been proposed to integrate gene expression with cellular metabolism. Prior work from our laboratory has reported the necessity of DBP2 in proper gene expression, particularly for genes involved in glucose-dependent regulation. Here, by comparing differentially expressed genes in dbp2 ∆ to those of 700 other deletion strains from other studies, we find that CYC8 and TUP1 , which form a complex and inhibit transcription of numerous genes, corepress a common set of genes with DBP2 Gene ontology (GO) annotations reveal that these corepressed genes are related to cellular metabolism, including respiration, gluconeogenesis, and alternative carbon-source utilization genes. Consistent with a direct role in metabolic gene regulation, loss of either DBP2 or CYC8 results in increased cellular respiration rates. Furthermore, we find that corepressed genes have a propensity to be associated with overlapping long noncoding RNAs and that upregulation of these genes in the absence of DBP2 correlates with decreased binding of Cyc8 to these gene promoters. Taken together, this suggests that Dbp2 integrates nutrient availability with energy homeostasis by maintaining repression of glucose-repressed, Cyc8-targeted genes across the genome. Copyright © 2017 Wang et al.

  1. Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals

    PubMed Central

    Tourmente, Maximiliano; Roldan, Eduardo R. S.

    2015-01-01

    Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals. PMID:26371474

  2. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    PubMed

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.

  3. Cannabimimetic phytochemicals in the diet – an evolutionary link to food selection and metabolic stress adaptation?*

    PubMed Central

    2017-01-01

    The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro‐homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co‐evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter‐gatherers and pastoralists with the high‐carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid‐type 2 (CB2) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1/CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high‐calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. Linked Articles This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc PMID:27891602

  4. Adaptation to walking with an exoskeleton that assists ankle extension.

    PubMed

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Whey Protein Components - Lactalbumin and Lactoferrin - Improve Energy Balance and Metabolism.

    PubMed

    Zapata, Rizaldy C; Singh, Arashdeep; Pezeshki, Adel; Nibber, Traj; Chelikani, Prasanth K

    2017-08-30

    Whey protein promotes weight loss and improves diabetic control, however, less is known of its bioactive components that produce such benefits. We compared the effects of normal protein (control) diet with high protein diets containing whey, or its fractions lactalbumin and lactoferrin, on energy balance and metabolism. Diet-induced obese rats were randomized to isocaloric diets: Control, Whey, Lactalbumin, Lactoferrin, or pair-fed to lactoferrin. Whey and lactalbumin produced transient hypophagia, whereas lactoferrin caused prolonged hypophagia; the hypophagia was likely due to decreased preference. Lactalbumin decreased weight and fat gain. Notably, lactoferrin produced sustained weight and fat loss, and attenuated the reduction in energy expenditure associated with calorie restriction. Lactalbumin and lactoferrin decreased plasma leptin and insulin, and lactalbumin increased peptide YY. Whey, lactalbumin and lactoferrin improved glucose clearance partly through differential upregulation of glucoregulatory transcripts in the liver and skeletal muscle. Interestingly, lactalbumin and lactoferrin decreased hepatic lipidosis partly through downregulation of lipogenic and/or upregulation of β-oxidation transcripts, and differentially modulated cecal bacterial populations. Our findings demonstrate that protein quantity and quality are important for improving energy balance. Dietary lactalbumin and lactoferrin improved energy balance and metabolism, and decreased adiposity, with the effects of lactoferrin being partly independent of caloric intake.

  6. Lowering threshold energy for femtosecond laser pulse photodisruption through turbid media using adaptive optics

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Ripken, Tammo; Krueger, Ronald R.; Lubatschowski, Holger

    2011-03-01

    Focussed femtosecond laser pulses are applied in ophthalmic tissues to create an optical breakdown and therefore a tissue dissection through photodisruption. The threshold irradiance for the optical breakdown depends on the photon density in the focal volume which can be influenced by the pulse energy, the size of the irradiated area (focus), and the irradiation time. For an application in the posterior eye segment the aberrations of the anterior eye elements cause a distortion of the wavefront and therefore an increased focal volume which reduces the photon density and thus raises the required energy for surpassing the threshold irradiance. The influence of adaptive optics on lowering the pulse energy required for photodisruption by refining a distorted focus was investigated. A reduction of the threshold energy can be shown when using adaptive optics. The spatial confinement with adaptive optics furthermore raises the irradiance at constant pulse energy. The lowered threshold energy allows for tissue dissection with reduced peripheral damage. This offers the possibility for moving femtosecond laser surgery from corneal or lental applications in the anterior eye to vitreal or retinal applications in the posterior eye.

  7. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    PubMed

    Santos, Daniel M V; Katzmarzyk, Peter T; Diego, Vincent P; Souza, Michele C; Chaves, Raquel N; Blangero, John; Maia, José A R

    2013-01-01

    Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001) for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  8. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    PubMed Central

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2) were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms. PMID:27248429

  9. Deciphering the adaptation strategies of Desulfovibrio piezophilus to hydrostatic pressure through metabolic and transcriptional analyses.

    PubMed

    Amrani, Amira; van Helden, Jacques; Bergon, Aurélie; Aouane, Aicha; Ben Hania, Wajdi; Tamburini, Christian; Loriod, Béatrice; Imbert, Jean; Ollivier, Bernard; Pradel, Nathalie; Dolla, Alain

    2016-08-01

    Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. The UPR reduces glucose metabolism via IRE1 signaling.

    PubMed

    van der Harg, Judith M; van Heest, Jessica C; Bangel, Fabian N; Patiwael, Sanne; van Weering, Jan R T; Scheper, Wiep

    2017-04-01

    Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].

    PubMed

    Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

    2010-03-01

    Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level.

  12. Metabolic plasticity and the energy economizing effect of ibogaine, the principal alkaloid of Tabernanthe iboga.

    PubMed

    Paškulin, Roman; Jamnik, Polona; Danevčič, Tjaša; Koželj, Gordana; Krašovec, Rok; Krstić-Milošević, Dijana; Blagojević, Duško; Strukelj, Borut

    2012-08-30

    The root bark of iboga plant-Tabernanthe iboga has been used traditionally in Central Africa as a psychoactive substance in religious rituals, while in smaller doses it is appreciated due to its stimulant properties. The iboga root bark, iboga extract or pure ibogaine are being recognized in the West as an anti-addiction remedy and their use is increasing. Our previous studies have demonstrated a transient ATP pool reduction under ibogaine accompanied by the induction of energy metabolism related enzymes. The present study aimed to find the cause of this energy deprivation and to foresee its immediate and long-term impact on metabolism. The overall project is designed to disclose the common mechanism of action at these seemingly diverse indications for iboga use, to predict eventual adverse effects and to build the grounds for its safe and beneficial utilization. The rate of carbon dioxide (CO(2)) as a marker of energy metabolism in stationary yeast model under aerobic conditions in the presence of ibogaine at concentration of 1, 4 and 20mg/l was measured for 5h by gas chromatography. The overall oxidative load was determined fluorimetrically by 2',7'-dichlorofluorescein diacetate (H(2)DCFDA) and in vitro antioxidant properties of ibogaine were defined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. The CO(2) production under ibogaine was temporarily increased in a dose dependent manner. The increased energy consumption as an early effect of ibogaine was proven by the fact that in spite of energy mobilization, the ATP pool has been simultaneously decreased. Although increased cellular respiration co-produces reactive oxygen species (ROS), the overall oxidative load was significantly lowered by ibogaine. Since ibogaine does not show any significant in vitro antioxidant properties, the results indicate its stimulating influence on physiological oxidative stress defence system. Ibogaine triggers remodeling of the housekeeping metabolism. Under the initial energy cost it

  13. Role of leptin as a link between metabolism and the immune system.

    PubMed

    Pérez-Pérez, Antonio; Vilariño-García, Teresa; Fernández-Riejos, Patricia; Martín-González, Jenifer; Segura-Egea, Juan José; Sánchez-Margalet, Víctor

    2017-06-01

    Leptin is an adipocyte-derived hormone not only with an important role in the central control of energy metabolism, but also with many pleiotropic effects in different physiological systems. One of these peripheral functions of leptin is a regulatory role in the interplay between energy metabolism and the immune system, being a cornerstone of the new field of immunometabolism. Leptin receptor is expressed throughout the immune system and the regulatory effects of leptin include cells from both the innate and adaptive immune system. Leptin is one of the adipokines responsible for the inflammatory state found in obesity that predisposes not only to type 2 diabetes, metabolic syndrome and cardiovascular disease, but also to autoimmune and allergic diseases. Leptin is an important mediator of the immunosuppressive state in undernutrition status. Placenta is the second source of leptin and it may play a role in the immunomodulation during pregnancy. Finally, recent work has pointed to the participation of leptin and leptin receptor in the pathophysiology of inflammation in oral biology. Therefore, leptin and leptin receptor should be considered for investigation as a marker of inflammation and immune activation in the frontier of innate-adaptive system, and as possible targets for intervention in the immunometabolic mediated pathophysiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The kidney of chicken adapts to chronic metabolic acidosis: in vivo and in vitro studies.

    PubMed

    Craan, A G; Lemieux, G; Vinay, P; Gougoux, A

    1982-08-01

    Renal adaptation to chronic metabolic acidosis was studies in Arbor Acre hens receiving ammonium chloride by stomach tube 0.75 g/kg/day during 6 days. During a 14-day study, it was shown that the animals could excrete as much as 60% of the acid load during ammonium chloride administration. At the same time urate excretion fell markedly but the renal contribution to urate excretion (14%) did not change. During acidosis, blood glutamine increased twofold and the tissue concentration of glutamine rose in both liver and kidney. Infusion of L-glutamine led to increased ammonia excretion and more so in acidotic animals. Glutaminase I, glutamate dehydrogenase, alanine aminotransferase (GPT), and malic enzyme activities increased in the kidney during acidosis but phosphoenolpyruvate carboxykinase (PEPCK) activity did not change. Glutaminase I was not found in the liver, but hepatic glutamine synthetase rose markedly during acidosis. Glutamine synthetase was not found in the kidney. Renal tubules incubated with glutamine and alanine were ammoniagenic and gluconeogenic to the same degree as rat tubules with the same increments in acidosis. Lactate was gluconeogenic without increment during acidosis. The present study indicates that the avian kidney adapts to chronic metabolic acidosis with similarities and differences when compared to dog and rat. Glutamine originating from the liver appears to be the major ammoniagenic substrate. Our data also support the hypothesis that hepatic urate synthesis is decreased during acidosis.

  15. Cardiovascular and metabolic adaptations in horses competing in cross-country events.

    PubMed

    Muñoz, A; Riber, C; Santisteban, R; Rubio, M D; Agüera, E I; Castejón, F M

    1999-01-01

    The cardiovascular and metabolic response to two cross-country events (CC*: preliminary level and CC*** advanced level) were analysed in 8 male eventing horses (4 Anglo-Hunter and 4 Anglo-Arabian). This study focused on the establishment of the main metabolic pathways involved in the muscle energy resynthesis during the competitions. Heart rate (HR) was recorded throughout the CC events. Jugular venous blood samples were withdrawn before the warm-up period, immediately after the competitions and at 5 and 10 min in the recuperation period. The following haematological parameters were studied: red blood cells (RBC), packed cell volume (PCV), haemoglobin concentration (Hb), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), white blood cells (WBC), and number and percentages of lymphocytes (LYM) and granulocytes and monocytes (GRAN). One fraction of blood was centrifuged and, in plasma, lactate (LA), total plasma protein (TPP) and the rate of LA disappearance were determined. The competitions induced significant increases in RBC, Hb, PCV, MCV and TPP. Plasma LA response exceeded the anaerobic threshold of 4 mmol/l, reaching a maximum level of 13.3 mmol/l. HR ranged from 140 to more than 200 bpm, peaking at 230 bpm, revealing a limitation in the oxygen supply to the working muscles. It was concluded that muscle energy resynthesis during a CC event is provided both through oxidative processes and glycolysis with LA formation. Therefore, both stamina and power exercises are required for eventing horses.

  16. Effects of a nonnutritive sweetener on body adiposity and energy metabolism in mice with diet-induced obesity.

    PubMed

    Mitsutomi, Kimihiko; Masaki, Takayuki; Shimasaki, Takanobu; Gotoh, Koro; Chiba, Seiichi; Kakuma, Tetsuya; Shibata, Hirotaka

    2014-01-01

    Nonnutritive sweeteners (NNSs) have been studied in terms of their potential roles in type 2 diabetes, obesity, and related metabolic disorders. Several studies have suggested that NNSs have several specific effects on metabolism such as reduced postprandial hyperglycemia and insulin resistance. However, the detailed effects of NNSs on body adiposity and energy metabolism have not been fully elucidated. We investigated the effects of an NNS on energy metabolism in mice with diet-induced obesity (DIO). DIO mice were divided into NNS-administered (4% NNS in drinking water), sucrose-administered (33% sucrose in drinking water), and control (normal water) groups. After supplementation for 4 weeks, metabolic parameters, including uncoupling protein (UCP) levels and energy expenditure, were assessed. Sucrose supplementation increased hyperglycemia, body adiposity, and body weight compared to the NNS-administered and control groups (P<0.05 for each). In addition, NNS supplementation decreased hyperglycemia compared to the sucrose-administered group (P<0.05). Interestingly, NNS supplementation increased body adiposity, which was accompanied by hyperinsulinemia, compared to controls (P<0.05 for each). NNS also increased leptin levels in white adipose tissue and triglyceride levels in tissues compared to controls (P<0.05 for each). Notably, compared to controls, NNS supplementation decreased the UCP1 level in brown adipose tissue and decreased O2 consumption in the dark phase. NNSs may be good sugar substitutes for people with hyperglycemia, but appear to influence energy metabolism in DIO mice. © 2013.

  17. Metabolic Analysis of Adaptation to Short-Term Changes in Culture Conditions of the Marine Diatom Thalassiosira pseudonana

    PubMed Central

    Bromke, Mariusz A.; Giavalisco, Patrick; Willmitzer, Lothar; Hesse, Holger

    2013-01-01

    This report describes the metabolic and lipidomic profiling of 97 low-molecular weight compounds from the primary metabolism and 124 lipid compounds of the diatom Thalassiosira pseudonana. The metabolic profiles were created for diatoms perturbed for 24 hours with four different treatments: (I) removal of nitrogen, (II) lower iron concentration, (III) addition of sea salt, (IV) addition of carbonate to their growth media. Our results show that as early as 24 hours after nitrogen depletion significant qualitative and quantitative change in lipid composition as well as in the primary metabolism of Thalassiosira pseudonana occurs. So we can observe the accumulation of several storage lipids, namely triacylglycerides, and TCA cycle intermediates, of which citric acid increases more than 10-fold. These changes are positively correlated with expression of TCA enzymes genes. Next to the TCA cycle intermediates and storage lipid changes, we have observed decrease in N-containing lipids and primary metabolites such as amino acids. As a measure of counteracting nitrogen starvation, we have observed elevated expression levels of nitrogen uptake and amino acid biosynthetic genes. This indicates that diatoms can fast and efficiently adapt to changing environment by altering the metabolic fluxes and metabolite abundances. Especially, the accumulation of proline and the decrease of dimethylsulfoniopropionate suggest that the proline is the main osmoprotectant for the diatom in nitrogen rich conditions. PMID:23799147

  18. Fetal endocrine and metabolic adaptations to hypoxia: the role of the hypothalamic-pituitary-adrenal axis

    PubMed Central

    Newby, Elizabeth A.; Myers, Dean A.

    2015-01-01

    In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus. PMID:26173460

  19. Impaired brain energy metabolism in the BACHD mouse model of Huntington's disease: critical role of astrocyte–neuron interactions

    PubMed Central

    Boussicault, Lydie; Hérard, Anne-Sophie; Calingasan, Noel; Petit, Fanny; Malgorn, Carole; Merienne, Nicolas; Jan, Caroline; Gaillard, Marie-Claude; Lerchundi, Rodrigo; Barros, Luis F; Escartin, Carole; Delzescaux, Thierry; Mariani, Jean; Hantraye, Philippe; Flint Beal, M; Brouillet, Emmanuel; Véga, Céline; Bonvento, Gilles

    2014-01-01

    Huntington's disease (HD) is caused by cytosine-adenine-guanine (CAG) repeat expansions in the huntingtin (Htt) gene. Although early energy metabolic alterations in HD are likely to contribute to later neurodegenerative processes, the cellular and molecular mechanisms responsible for these metabolic alterations are not well characterized. Using the BACHD mice that express the full-length mutant huntingtin (mHtt) protein with 97 glutamine repeats, we first demonstrated localized in vivo changes in brain glucose use reminiscent of what is observed in premanifest HD carriers. Using biochemical, molecular, and functional analyses on different primary cell culture models from BACHD mice, we observed that mHtt does not directly affect metabolic activity in a cell autonomous manner. However, coculture of neurons with astrocytes from wild-type or BACHD mice identified mutant astrocytes as a source of adverse non-cell autonomous effects on neuron energy metabolism possibly by increasing oxidative stress. These results suggest that astrocyte-to-neuron signaling is involved in early energy metabolic alterations in HD. PMID:24938402

  20. Transcriptome Profiles of the Protoscoleces of Echinococcus granulosus Reveal that Excretory-Secretory Products Are Essential to Metabolic Adaptation

    PubMed Central

    Pan, Wei; Shen, Yujuan; Han, Xiuming; Wang, Ying; Liu, Hua; Jiang, Yanyan; Zhang, Yumei; Wang, Yanjuan; Xu, Yuxin; Cao, Jianping

    2014-01-01

    Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. PMID:25500817

  1. Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer.

    PubMed

    Snezhkina, Anastasiya Vladimirovna; Krasnov, George Sergeevich; Zaretsky, Andrew Rostislavovich; Zhavoronkov, Alex; Nyushko, Kirill Mikhailovich; Moskalev, Alexey Alexandrovich; Karpova, Irina Yurievna; Afremova, Anastasiya Isaevna; Lipatova, Anastasiya Valerievna; Kochetkov, Dmitriy Vladimitovich; Fedorova, Maria Sergeena; Volchenko, Nadezhda Nikolaevna; Sadritdinova, Asiya Fayazovna; Melnikova, Nataliya Vladimirovna; Sidorov, Dmitry Vladimirovich; Popov, Anatoly Yurievich; Kalinin, Dmitry Valerievich; Kaprin, Andrey Dmitrievich; Alekseev, Boris Yakovlevich; Dmitriev, Alexey Alexandrovich; Kudryavtseva, Anna Viktorovna

    2016-12-28

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. CRC molecular pathogenesis is heterogeneous and may be followed by mutations in oncogenes and tumor suppressor genes, chromosomal and microsatellite instability, alternative splicing alterations, hypermethylation of CpG islands, oxidative stress, impairment of different signaling pathways and energy metabolism. In the present work, we have studied the alterations of alternative splicing patterns of genes related to energy metabolism in CRC. Using CrossHub software, we analyzed The Cancer Genome Atlas (TCGA) RNA-Seq datasets derived from colon tumor and matched normal tissues. The expression of 1014 alternative mRNA isoforms involved in cell energy metabolism was examined. We found 7 genes with differentially expressed alternative transcripts whereas overall expression of these genes was not significantly altered in CRC. A set of 8 differentially expressed transcripts of interest has been validated by qPCR. These eight isoforms encoded by OGDH, COL6A3, ICAM1, PHPT1, PPP2R5D, SLC29A1, and TRIB3 genes were up-regulated in colorectal tumors, and this is in concordance with the bioinformatics data. The alternative transcript NM_057167 of COL6A3 was also strongly up-regulated in breast, lung, prostate, and kidney tumors. Alternative transcript of SLC29A1 (NM_001078177) was up-regulated only in CRC samples, but not in the other tested tumor types. We identified tumor-specific expression of alternative spliced transcripts of seven genes involved in energy metabolism in CRC. Our results bring new knowledge on alternative splicing in colorectal cancer and suggest a set of mRNA isoforms that could be used for cancer diagnosis and development of treatment methods.

  2. [Adaptive specific features of energy metabolism in fish ontogenesis].

    PubMed

    Ozerniuk, N D

    2011-01-01

    A review of data on the pattern of change of the intensity of oxygen consumption during early ontogenesis of different fish species (rainbow trout, loach, zebrafish, carp, and grass carp) is provided. It has a similar pattern: this index increases in the period of embryonic and larval development and, after passing of larvae to an active feeding, it begins to gradually decline. This dynamics is determined by specific features of an increase in the rate of oxygen uptake and body weight in the course of early stages of fish ontogenesis. For determining optimal temperature conditions of development, a method of total (for a definite stage of development) oxygen uptake was suggested, which makes it possible to determine minimal energy expenditures necessary for the process of a particular stage of embryogenesis to take place. Analysis of temperature dependence of kinetic properties of enzymes with reference to the Michaelis constant (Km) for lactate dehydrogenase demonstrated that minimal Km, corresponding to maximal enzyme-substrate affinity, for embryos of different fish species differs in correspondence with differences in temperature conditions of development of these species in nature. For embryos of one species developing at changing temperature conditions (salmonids), this index changes in accordance with a temperature drift in nature.

  3. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism.

    PubMed

    Jansen, S W; Akintola, A A; Roelfsema, F; van der Spoel, E; Cobbaert, C M; Ballieux, B E; Egri, P; Kvarta-Papp, Z; Gereben, B; Fekete, C; Slagboom, P E; van der Grond, J; Demeneix, B A; Pijl, H; Westendorp, R G J; van Heemst, D

    2015-06-19

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism.

  4. Mechanisms linking energy balance and reproduction: impact of prenatal environment.

    PubMed

    Rhinehart, Erin M

    2016-01-01

    The burgeoning field of metabolic reproduction regulation has been gaining momentum due to highly frequent discoveries of new neuroendocrine factors regulating both energy balance and reproduction. Universally throughout the animal kingdom, energy deficits inhibit the reproductive axis, which demonstrates that reproduction is acutely sensitive to fuel availability. Entrainment of reproductive efforts with energy availability is especially critical for females because they expend large amounts of energy on gestation and lactation. Research has identified an assortment of both central and peripheral factors involved in the metabolic regulation of reproduction. From an evolutionary perspective, these mechanisms likely evolved to optimize reproductive fitness in an environment with an unpredictable food supply and regular bouts of famine. To be effective, however, the mechanisms responsible for the metabolic regulation of reproduction must also retain developmental plasticity to allow organisms to adapt their reproductive strategies to their particular niche. In particular, the prenatal environment has emerged as a critical developmental window for programming the mechanisms responsible for the metabolic control of reproduction. This review will discuss the current knowledge about hormonal and molecular mechanisms that entrain reproduction with prevailing energy availability. In addition, it will provide an evolutionary, human life-history framework to assist in the interpretation of findings on gestational programming of the female reproductive function, with a focus on pubertal timing as an example. Future research should aim to shed light on mechanisms underlying the prenatal modulation of the adaptation to an environment with unstable resources in a way that optimizes reproductive fitness.

  5. Energy Intake and Energy Expenditure for Determining Excess Weight Gain in Pregnant Women

    PubMed Central

    Gilmore, L. Anne; Butte, Nancy F.; Ravussin, Eric; Han, Hongmei; Burton, Jeffrey H.; Redman, Leanne M.

    2016-01-01

    Objective To conduct a secondary analysis designed to test whether gestational weight gain is due to increased energy intake or adaptive changes in energy expenditures. Methods In this secondary analysis, energy intake and energy expenditure of 45 pregnant women (BMI 18.5–24.9 kg/m2, n=33 and BMI ≥ 25, n=12) were measured preconceptionally 22, and 36 weeks of gestation. Energy intake was calculated as the sum of total energy expenditure measured by doubly labeled water and energy deposition determined by the 4-compartment body composition model. Weight, body composition, and metabolic chamber measurement were completed preconceptionally, 9, 22, and 36 weeks of gestation. Basal metabolic rate was measured by indirect calorimetry in a room calorimeter and activity energy expenditure by doubly labeled water. Results Energy intake from 22 to 36 weeks of gestation was significantly higher in high gainers (n=19) (3437 ± 99 kcal/d) versus low + ideal gainers (n=26) (2687 ± 110 p< .001) within both BMI categories. Basal metabolic rate increased in proportion to gestational weight gain; however, basal metabolic rate adjusted for body composition changes with gestational weight gain was not significantly different between high gainers and low + ideal gainers (151 ± 33 vs. 129 ± 36 kcal/d; p=.66). Activity energy expenditure decreased throughout pregnancy in both groups (low + ideal gainers: −150 ± 70 kcal/d; p=.04 and high gainers: −230 ± 92 kcal/day; p=.01), but there was no difference between high gainers and low + ideal gainers (p=.49). Conclusion Interventions designed to increase adherence to the IOM guidelines for weight gain in pregnancy may have increased efficacy if focused on limiting energy intake while increasing nutrient density and maintaining levels of physical activity. PMID:27054928

  6. Calorie restriction in overweight males ameliorates obesity-related metabolic alterations and cellular adaptations through anti-aging effects, possibly including AMPK and SIRT1 activation.

    PubMed

    Kitada, Munehiro; Kume, Shinji; Takeda-Watanabe, Ai; Tsuda, Shin-ichi; Kanasaki, Keizo; Koya, Daisuke

    2013-10-01

    Calorie restriction (CR) is accepted as an experimental anti-aging paradigm. Several important signal transduction pathways including AMPK and SIRT1 are implicated in the regulation of physiological processes of CR. However, the mechanisms responsible for adaptations remain unclear in humans. Four overweight male participants were enrolled and treated with 25% CR of their baseline energy requirements for 7weeks. Characteristics, including body weight (BW), body mass index (BMI), %fat, visceral fat area (VFA), mean blood pressure (MBP) and VO2 max, as well as metabolic parameters, such as insulin, lipid profiles and inflammatory makers and the expression of phosphorylated AMPK and SIRT1 in peripheral blood mononuclear cells (PBMNCs), were determined at baseline and then after 7weeks. In addition, we assessed the effects of the serum collected from the participants on AMPK and SIRT1 activation and mitochondrial biogenesis in cultured human skeletal muscle cells. After CR, BW, BMI, %fat, VFA and MBP all significantly decreased, while VO2 max increased, compared to those at baseline. The levels of fasting insulin, free fatty acid, and inflammatory makers, such as interleukin-6 and visfatin, were significantly reduced, whereas the expression of phosphorylated AMPK and SIRT1 was significantly increased in PBMNCs collected after CR, compared to those at baseline. The skeletal muscle cells that were cultured in serum collected after CR showed an increase in AMPK and SIRT1 activity as well as mitochondrial biogenesis. CR is beneficial for obesity-related metabolic alterations and induces cellular adaptations against aging, possibly through AMPK and SIRT1 activation via circulating factors. © 2013.

  7. Energy requirements of lactating women derived from doubly labeled water and milk energy output.

    PubMed

    Butte, N F; Wong, W W; Hopkinson, J M

    2001-01-01

    Instead of using an incremental approach to assess the energy requirements of lactation, a more comprehensive approach may be taken by measuring total energy expenditure (TEE), milk energy output and energy mobilization from tissue stores. The latter approach avoids assumptions regarding energetic efficiency and changes in physical activity and adiposity. The purpose of this study was threefold: to assess the energy requirements of lactation; to compare these estimates with energy requirements in the nonpregnant, nonlactating state and to test for energetic adaptations in basal metabolic rate (BMR) and physical activity during the energy-demanding process of lactation. Milk production and composition, body weight and composition, TEE, BMR and physical activity levels were measured in 24 well-nourished women during exclusive breastfeeding at 3 mo postpartum and after the cessation of breastfeeding at 18 or 24 mo postpartum. TEE was measured by the doubly labeled water method, milk production by 3-d test-weighing, milk energy by bomb calorimetry on a 24-h milk sample, body composition by dual-energy x-ray absorptiometry and BMR by room respiration calorimetry. TEE, BMR and physical activity level (physical activity level = TEE/BMR) did not differ between the lactating and nonlactating state (TEE 10.0 +/- 1.5 versus 10.6 +/- 2.1 MJ/d). Mean milk energy output was equivalent to 2.02 +/- 0.33 MJ/d. Total energy requirements were greater during lactation than afterward (12.0 +/- 1.4 versus 10.6 +/- 2.1 MJ/d, P: = 0.002). Energy mobilization from tissue stores (-0.65 +/- 0.97 MJ/d) resulted in net energy requirements during lactation of 11.4 +/- 1.8 MJ/d. Because adaptations in basal metabolism and physical activity were not evident in these well-nourished women, energy requirements during lactation were met primarily from the diet and only partially by mobilization of tissue stores.

  8. Studying the evolutionary significance of thermal adaptation in ectotherms: The diversification of amphibians' energetics.

    PubMed

    Nespolo, Roberto F; Figueroa, Julio; Solano-Iguaran, Jaiber J

    2017-08-01

    A fundamental problem in evolutionary biology is the understanding of the factors that promote or constrain adaptive evolution, and assessing the role of natural selection in this process. Here, comparative phylogenetics, that is, using phylogenetic information and traits to infer evolutionary processes has been a major paradigm . In this study, we discuss Ornstein-Uhlenbeck models (OU) in the context of thermal adaptation in ectotherms. We specifically applied this approach to study amphibians's evolution and energy metabolism. It has been hypothesized that amphibians exploit adaptive zones characterized by low energy expenditure, which generate specific predictions in terms of the patterns of diversification in standard metabolic rate (SMR). We complied whole-animal metabolic rates for 122 species of amphibians, and adjusted several models of diversification. According to the adaptive zone hypothesis, we expected: (1) to find "accelerated evolution" in SMR (i.e., diversification above Brownian Motion expectations, BM), (2) that a model assuming evolutionary optima (i.e., an OU model) fits better than a white-noise model and (3) that a model assuming multiple optima (according to the three amphibians's orders) fits better than a model assuming a single optimum. As predicted, we found that the diversification of SMR occurred most of the time, above BM expectations. Also, we found that a model assuming an optimum explained the data in a better way than a white-noise model. However, we did not find evidence that an OU model with multiple optima fits the data better, suggesting a single optimum in SMR for Anura, Caudata and Gymnophiona. These results show how comparative phylogenetics could be applied for testing adaptive hypotheses regarding history and physiological performance in ectotherms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation

    PubMed Central

    Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan

    2016-01-01

    Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747

  10. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake.

    PubMed

    Drougard, Anne; Fournel, Audren; Valet, Philippe; Knauf, Claude

    2015-01-01

    Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  11. mTor Regulates Lysosomal ATP-sensitive Two-Pore Na+ Channel to Adapt to Metabolic State

    PubMed Central

    Navarro, Betsy; Seo, Young-jun; Aranda, Kimberly; Shi, Lucy; Battaglia-Hsu, Shyuefang; Nissim, Itzhak; Clapham, David E.; Ren, Dejian

    2014-01-01

    SUMMARY Survival in the wild requires organismal adaptations to the availability of nutrients. Endosomes and lysosomes are key intracellular organelles that couple nutrition and metabolic status to cellular responses, but how they detect cytosolic ATP levels is not well understood. Here we identify an endolysosomal ATP-sensitive Na+ channel (lysoNaATP). The channel is a complex formed by Two-Pore Channels (TPC1 and TPC2), ion channels previously thought to be gated by nicotinic acid adenine dinucleotide phosphate (NAADP), and the mammalian target of rapamycin (mTOR). The channel complex detects nutrient status, becomes constitutively open upon nutrient removal and mTOR translocation off the lysosomal membrane, and controls the lysosome's membrane potential, pH stability, and the amino acid homeostasis. Mutant mice lacking lysoNaATP have much reduced exercise endurance after fasting. Thus, TPCs are a new ion channel family that couple the cell's metabolic state to endolysosomal function and are crucial for physical endurance during food restriction. PMID:23394946

  12. Prediction-based manufacturing center self-adaptive demand side energy optimization in cyber physical systems

    NASA Astrophysics Data System (ADS)

    Sun, Xinyao; Wang, Xue; Wu, Jiangwei; Liu, Youda

    2014-05-01

    Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufacturing center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.

  13. The sedentary (r)evolution: Have we lost our metabolic flexibility?

    PubMed

    Freese, Jens; Klement, Rainer Johannes; Ruiz-Núñez, Begoña; Schwarz, Sebastian; Lötzerich, Helmut

    2017-01-01

    During the course of evolution, up until the agricultural revolution, environmental fluctuations forced the human species to develop a flexible metabolism in order to adapt its energy needs to various climate, seasonal and vegetation conditions. Metabolic flexibility safeguarded human survival independent of food availability. In modern times, humans switched their primal lifestyle towards a constant availability of energy-dense, yet often nutrient-deficient, foods, persistent psycho-emotional stressors and a lack of exercise. As a result, humans progressively gain metabolic disorders, such as the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, certain types of cancer, cardiovascular disease and Alzheimer´s disease, wherever the sedentary lifestyle spreads in the world. For more than 2.5 million years, our capability to store fat for times of food shortage was an outstanding survival advantage. Nowadays, the same survival strategy in a completely altered surrounding is responsible for a constant accumulation of body fat. In this article, we argue that the metabolic disease epidemic is largely based on a deficit in metabolic flexibility. We hypothesize that the modern energetic inflexibility, typically displayed by symptoms of neuroglycopenia, can be reversed by re-cultivating suppressed metabolic programs, which became obsolete in an affluent environment, particularly the ability to easily switch to ketone body and fat oxidation. In a simplified model, the basic metabolic programs of humans' primal hunter-gatherer lifestyle are opposed to the current sedentary lifestyle. Those metabolic programs, which are chronically neglected in modern surroundings, are identified and conclusions for the prevention of chronic metabolic diseases are drawn.

  14. The sedentary (r)evolution: Have we lost our metabolic flexibility?

    PubMed Central

    Freese, Jens; Klement, Rainer Johannes; Ruiz-Núñez, Begoña; Schwarz, Sebastian; Lötzerich, Helmut

    2018-01-01

    During the course of evolution, up until the agricultural revolution, environmental fluctuations forced the human species to develop a flexible metabolism in order to adapt its energy needs to various climate, seasonal and vegetation conditions. Metabolic flexibility safeguarded human survival independent of food availability. In modern times, humans switched their primal lifestyle towards a constant availability of energy-dense, yet often nutrient-deficient, foods, persistent psycho-emotional stressors and a lack of exercise. As a result, humans progressively gain metabolic disorders, such as the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, certain types of cancer, cardiovascular disease and Alzheimer´s disease, wherever the sedentary lifestyle spreads in the world. For more than 2.5 million years, our capability to store fat for times of food shortage was an outstanding survival advantage. Nowadays, the same survival strategy in a completely altered surrounding is responsible for a constant accumulation of body fat. In this article, we argue that the metabolic disease epidemic is largely based on a deficit in metabolic flexibility. We hypothesize that the modern energetic inflexibility, typically displayed by symptoms of neuroglycopenia, can be reversed by re-cultivating suppressed metabolic programs, which became obsolete in an affluent environment, particularly the ability to easily switch to ketone body and fat oxidation. In a simplified model, the basic metabolic programs of humans’ primal hunter-gatherer lifestyle are opposed to the current sedentary lifestyle. Those metabolic programs, which are chronically neglected in modern surroundings, are identified and conclusions for the prevention of chronic metabolic diseases are drawn. PMID:29225776

  15. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    PubMed

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-10-29

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.

  16. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism

    PubMed Central

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  17. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    PubMed Central

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  18. Hepatic autophagy contributes to the metabolic response to dietary protein restriction.

    PubMed

    Henagan, Tara M; Laeger, Thomas; Navard, Alexandra M; Albarado, Diana; Noland, Robert C; Stadler, Krisztian; Elks, Carrie M; Burk, David; Morrison, Christopher D

    2016-06-01

    Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease

    PubMed Central

    Angelini, Aude; Pi, Xinchun; Xie, Liang

    2017-01-01

    The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside. PMID:29311974

  20. Comparative functional genomics of adaptation to muscular disuse in hibernating mammals

    PubMed Central

    Fedorov, Vadim B.; Goropashnaya, Anna V.; Stewart, Nathan C.; Tøien, Øivind; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C.; Showe, Michael K.; Barnes, Brian M.

    2014-01-01

    Hibernation is an energy saving adaptation that involves a profound suppression of physical activity that can continue for 6-8 months in highly seasonal environments. While immobility and disuse generate muscle loss in most mammalian species, in contrast, hibernating bears and ground squirrels demonstrate limited muscle atrophy over the prolonged periods of physical inactivity during winter suggesting that hibernating mammals have adaptive mechanisms to prevent disuse muscle atrophy. To identify common transcriptional programs that underlie molecular mechanisms preventing muscle loss, we conducted a large-scale gene expression screen in hind limb muscles comparing hibernating and summer active black bears and arctic ground squirrels using custom 9,600 probe cDNA microarrays. A molecular pathway analysis showed an elevated proportion of over-expressed genes involved in all stages of protein biosynthesis and ribosome biogenesis in muscle of both species during torpor of hibernation that suggests induction of translation at different hibernation states. The induction of protein biosynthesis likely contributes to attenuation of disuse muscle atrophy through the prolonged periods of immobility of hibernation. The lack of directional changes in genes of protein catabolic pathways does not support the importance of metabolic suppression for preserving muscle mass during winter. Coordinated reduction of multiple genes involved in oxidation reduction and glucose metabolism detected in both species is consistent with metabolic suppression and lower energy demand in skeletal muscle during inactivity of hibernation. PMID:25314618

  1. Chronic exposure of mice to environmental endocrine-disrupting chemicals disturbs their energy metabolism.

    PubMed

    Jin, Yuanxiang; Lin, Xiaojian; Miao, Wenyu; Wu, Tao; Shen, Hangjie; Chen, Shan; Li, Yanhong; Pan, Qiaoqiao; Fu, Zhengwei

    2014-03-21

    We evaluated the effects of a 20-week chronic exposure of mice to a low dose of cypermethrin (CYP), atrazine (ATZ) and 17α-ethynyestradiol (EE2) on energy metabolism. Here, male mice were exposed to 50 μg/kg BW/day CYP, 100 μg/kg BW/day ATZ or 1 μg/kg BW/day EE2 supplied in their drinking water for 20 weeks. During the exposure, mice were fed a high energy diet (HD). The bodyweights were not significantly affected by chronic exposure to EDCs, while the serum-free fatty acids (FFA) levels, hepatic lipid accumulation and triacylglycerol (TG) contents increased significantly in the ATZ- and CYP-HD groups. To determine the mechanism involved, we determined the expression levels of the genes in the glucose and fat metabolism pathways in the liver and adipose tissue. The results showed that chronic exposure to ATZ and CYP increased the mRNA levels of a number of key genes involved in both the de novo FFA synthesis pathway and the transport of FFA from blood. The increased amount of FFA was partially consumed as energy through β-oxidation in the mitochondria. Some of the FFA was used to synthesize TG in the liver by up-regulating primary genes, which resulted in increased TG levels and lipid accumulation. The results indicate that chronic exposure to EDCs has the potential to cause energy metabolic dysregulation and hepatotoxicity in mice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.

    PubMed

    Rivera-Brown, Anita M; Frontera, Walter R

    2012-11-01

    Physical activity and fitness are associated with a lower prevalence of chronic diseases, such as heart disease, cancer, high blood pressure, and diabetes. This review discusses the body's response to an acute bout of exercise and long-term physiological adaptations to exercise training with an emphasis on endurance exercise. An overview is provided of skeletal muscle actions, muscle fiber types, and the major metabolic pathways involved in energy production. The importance of adequate fluid intake during exercise sessions to prevent impairments induced by dehydration on endurance exercise, muscular power, and strength is discussed. Physiological adaptations that result from regular exercise training such as increases in cardiorespiratory capacity and strength are mentioned. The review emphasizes the cardiovascular and metabolic adaptations that lead to improvements in maximal oxygen capacity. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Metabolic Cost of Lateral Stabilization during Walking in People with Incomplete Spinal Cord Injury

    PubMed Central

    Matsubara, J.H.; Wu, M.; Gordon, K.E.

    2015-01-01

    People with incomplete spinal cord injury (iSCI) expend considerable energy to walk, which can lead to rapid fatigue and limit community ambulation. Selecting locomotor patterns that enhance lateral stability may contribute to this population’s elevated cost of transport. The goal of the current study was to quantify the metabolic energy demands of maintaining lateral stability during gait in people with iSCI. To quantify this metabolic cost, we observed ten individuals with iSCI walking with and without external lateral stabilization. We hypothesized that with external lateral stabilization, people with iSCI would adapt their gait by decreasing step width, which would correspond with a substantial decrease in cost of transport. Our findings support this hypothesis. Subjects significantly (p < 0.05) decreased step width by 22%, step width variability by 18%, and minimum lateral margin of stability by 25% when they walked with external lateral stabilization compared to unassisted walking. Metabolic cost of transport also decreased significantly (p < 0.05) by 10% with external lateral stabilization. These findings suggest that this population is capable of adapting their gait to meet changing demands placed on balance. The percent reduction in cost of transport when walking with external lateral stabilization was strongly correlated with functional impairment level as assessed by subjects’ scores on the Berg Balance Scale (R = 0.778) and Lower Extremity Motor Score (R = 0.728). These relationships suggest that as functional balance and strength decrease, the amount of metabolic energy used to maintain lateral stability during gait will increase. PMID:25670651

  4. Exercise-Induced Skeletal Muscle Remodeling and Metabolic Adaptation: Redox Signaling and Role of Autophagy

    PubMed Central

    Giammarioli, Anna Maria; Chiandotto, Sergio; Spoletini, Ilaria

    2014-01-01

    Abstract Significance: Skeletal muscle is a highly plastic tissue. Exercise evokes signaling pathways that strongly modify myofiber metabolism and physiological and contractile properties of skeletal muscle. Regular physical activity is beneficial for health and is highly recommended for the prevention of several chronic conditions. In this review, we have focused our attention on the pathways that are known to mediate physical training-induced plasticity. Recent Advances: An important role for redox signaling has recently been proposed in exercise-mediated muscle remodeling and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) activation. Still more currently, autophagy has also been found to be involved in metabolic adaptation to exercise. Critical Issues: Both redox signaling and autophagy are processes with ambivalent effects; they can be detrimental and beneficial, depending on their delicate balance. As such, understanding their role in the chain of events induced by exercise and leading to skeletal muscle remodeling is a very complicated matter. Moreover, the study of the signaling induced by exercise is made even more difficult by the fact that exercise can be performed with several different modalities, with this having different repercussions on adaptation. Future Directions: Unraveling the complexity of the molecular signaling triggered by exercise on skeletal muscle is crucial in order to define the therapeutic potentiality of physical training and to identify new pharmacological compounds that are able to reproduce some beneficial effects of exercise. In evaluating the effect of new “exercise mimetics,” it will also be necessary to take into account the involvement of reactive oxygen species, reactive nitrogen species, and autophagy and their controversial effects. Antioxid. Redox Signal. 21, 154–176. PMID:24450966

  5. Energy metabolism and inflammation in brain aging and Alzheimer's disease.

    PubMed

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-11-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Division of Energy Biosciences annual report and summaries of FY 1996 activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanism affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes. This report gives summaries on 225 projects on photosynthesis, membrane or ion transport, plant metabolism and biosynthesis, carbohydrate metabolism lipid metabolism, plant growth and development, plant genetic regulation and genetic mechanisms, plant cell wall development, lignin-polysaccharide breakdown, nitrogen fixation and plant-microbial symbiosis, mechanism for plant adaptation, fermentative microbial metabolism, one and two carbon microbial metabolism, extremophilic microbes, microbial respiration, nutrition and metal metabolism, and materials biosynthesis.« less

  7. Comparative Genomic Analysis Indicates that Niche Adaptation of Terrestrial Flavobacteria Is Strongly Linked to Plant Glycan Metabolism

    PubMed Central

    Kolton, Max; Sela, Noa; Elad, Yigal; Cytryn, Eddie

    2013-01-01

    Flavobacteria are important members of aquatic and terrestrial bacterial communities, displaying extreme variations in lifestyle, geographical distribution and genome size. They are ubiquitous in soil, but are often strongly enriched in the rhizosphere and phyllosphere of plants. In this study, we compared the genome of a root-associated Flavobacterium that we recently isolated, physiologically characterized and sequenced, to 14 additional Flavobacterium genomes, in order to pinpoint characteristics associated with its high abundance in the rhizosphere. Interestingly, flavobacterial genomes vary in size by approximately two-fold, with terrestrial isolates having predominantly larger genomes than those from aquatic environments. Comparative functional gene analysis revealed that terrestrial and aquatic Flavobacteria generally segregated into two distinct clades. Members of the aquatic clade had a higher ratio of peptide and protein utilization genes, whereas members of the terrestrial clade were characterized by a significantly higher abundance and diversity of genes involved in metabolism of carbohydrates such as xylose, arabinose and pectin. Interestingly, genes encoding glycoside hydrolase (GH) families GH78 and GH106, responsible for rhamnogalacturonan utilization (exclusively associated with terrestrial plant hemicelluloses), were only present in terrestrial clade genomes, suggesting adaptation of the terrestrial strains to plant-related carbohydrate metabolism. The Peptidase/GH ratio of aquatic clade Flavobacteria was significantly higher than that of terrestrial strains (1.7±0.7 and 9.7±4.7, respectively), supporting the concept that this relation can be used to infer Flavobacterium lifestyles. Collectively, our research suggests that terrestrial Flavobacteria are highly adapted to plant carbohydrate metabolism, which appears to be a key to their profusion in plant environments. PMID:24086761

  8. Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions

    PubMed Central

    Margalef-Català, Mar; Araque, Isabel; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2016-01-01

    Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF. PMID

  9. Differential regulation of metabolic parameters by energy deficit and hunger.

    PubMed

    Kitka, Tamás; Tuza, Sebestyén; Varga, Balázs; Horváth, Csilla; Kovács, Péter

    2015-10-01

    Hypocaloric diet decreases both energy expenditure (EE) and respiratory exchange rate (RER), affecting the efficacy of dieting inversely. Energy deficit and hunger may be modulated separately both in human and animal studies by drug treatment or food restriction. Thus it is important to separate the effects of energy deficit and hunger on EE and RER. Three parallel and analogous experiments were performed using three pharmacologically distinct anorectic drugs: rimonabant, sibutramine and tramadol. Metabolic parameters of vehicle- and drug-treated and pair-fed diet-induced obese mice from the three experiments underwent common statistical analysis to identify effects independent of the mechanisms of action. Diet-induced obesity (DIO) test of tramadol was also performed to examine its anti-obesity efficacy. RER was decreased similarly by drug treatments and paired feeding throughout the experiment irrespective of the cause of reduced food intake. Contrarily, during the passive phase, EE was decreased more by paired feeding than by both vehicle and drug treatment irrespective of the drug used. In the active phase, EE was influenced by the pharmacological mechanisms of action. Tramadol decreased body weight in the DIO test. Our results suggest that RER is mainly affected by the actual state of energy balance; conversely, EE is rather influenced by hunger. Therefore, pharmacological medications that decrease hunger may enhance the efficacy of a hypocaloric diet by maintaining metabolic rate. Furthermore, our results yield the proposal that effects of anorectic drugs on EE and RER should be determined compared to vehicle and pair-fed groups, respectively, in animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells.

    PubMed

    Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G

    2017-05-01

    The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mechanisms of β-cell functional adaptation to changes in workload

    PubMed Central

    Wortham, Matthew; Sander, Maike

    2016-01-01

    Insulin secretion must be tightly coupled to nutritional state to maintain blood glucose homeostasis. To this end, pancreatic β-cells sense and respond to changes in metabolic conditions, thereby anticipating insulin demands for a given physiological context. This is achieved in part through adjustments of nutrient metabolism, which is controlled at several levels including allosteric regulation, posttranslational modifications, and altered expression of metabolic enzymes. In this review, we discuss mechanisms of β-cell metabolic and functional adaptation in the context of two physiological states that alter glucose-stimulated insulin secretion: fasting and insulin resistance. We review current knowledge of metabolic changes that occur in the β-cell during adaptation and specifically discuss transcriptional mechanisms that underlie β-cell adaptation. A more comprehensive understanding of how β-cells adapt to changes in nutrient state could identify mechanisms to be co-opted for therapeutically modulating insulin secretion in metabolic disease. PMID:27615135

  12. Metabolic consequences of physical inactivity.

    PubMed

    Biolo, Gianni; Ciocchi, Beniamino; Stulle, Manuela; Piccoli, Arianna; Lorenzon, Stefania; Dal Mas, Viviana; Barazzoni, Rocco; Zanetti, Michela; Guarnieri, Gianfranco

    2005-01-01

    Physical inactivity is associated with alteration of normal physiologic processes leading to muscle atrophy, reduced exercise capacity, insulin resistance, and altered energy balance. Bed rest studies in human beings using stable isotopes of amino acids indicate that muscle unloading decreases the turnover rates of muscle and whole-body proteins, with a prevailing inhibition of protein synthesis. In the fasting state, muscle and whole-body nitrogen loss was not accelerated during bed rest. In experimental postprandial states, the amino acid-mediated stimulation of protein synthesis was impaired, whereas the ability of combined insulin and glucose infusion to decrease whole-body proteolysis was not affected by muscle inactivity. Thus, an impaired ability of protein/amino acid feeding to stimulate body protein synthesis is the major catabolic mechanism for the effect of bed rest on protein metabolism. This suggests that a protein intake level greater than normal could be required to achieve the same postprandial anabolic effect during muscle inactivity. Metabolic adaptation to muscle inactivity also involves development of resistance to the glucoregulatory action of insulin, decreased energy requirements, and increased insulin and leptin secretion. These alterations may lead to the development of the metabolic syndrome that is defined as the association of hyperinsulinemia, dyslipidemia, hypertension, hyperglycemia, and abdominal obesity. This cluster of metabolic abnormalities is a risk factor for coronary artery disease and stroke. Evidence indicates that exercise training programs may counteract all of these abnormalities both in healthy sedentary subjects and in patients affected by a variety of chronic disease states.

  13. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera , detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  14. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera)

    PubMed Central

    Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R.

    2017-01-01

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food. PMID:28193870

  15. Metabolic adaptation to the aqueous leaf extract of Moringa oleifera Lam.-supplemented diet is related to the modulation of gut microbiota in mice.

    PubMed

    Gao, Xiaoyu; Xie, Qiuhong; Liu, Ling; Kong, Ping; Sheng, Jun; Xiang, Hongyu

    2017-06-01

    The aqueous leaf extract of Moringa oleifera Lam. (LM-A) is reported to have many health beneficial bioactivities and no obvious toxicity, but have mild adverse effects. Little is known about the mechanism of these reported adverse effects. Notably, there has been no report about the influence of LM-A on intestinal microecology. In this study, animal experiments were performed to explore the relationships between metabolic adaptation to an LM-A-supplemented diet and gut microbiota changes. After 8-week feeding with normal chow diet, the body weight of mice entered a stable period, and one of the group received daily doses of 750-mg/kg body weight LM-A by gavage for 4 weeks (assigned as LM); the other group received the vehicle (assigned as NCD). The liver weight to body weight ratio was enhanced, and the ceca were enlarged in the LM group compared with the NCD group. LM-A-supplemented-diet mice elicited a uniform metabolic adaptation, including slightly influenced fasting glucose and blood lipid profiles, significantly reduced liver triglycerides content, enhanced serum lipopolysaccharide level, activated inflammatory responses in the intestine and liver, compromised gut barrier function, and broken intestinal homeostasis. Many metabolic changes in mice were significantly correlated with altered specific gut bacteria. Changes in Firmicutes, Eubacterium rectale/Clostridium coccoides group, Faecalibacterium prausnitzii, Akkermansia muciniphila, segmented filamentous bacteria, Enterococcus spp., and Sutterella spp. may play an important role in the process of host metabolic adaptation to LM-A administration. Our research provides an explanation of the adverse effects of LM-A administration on normal adult individuals in the perspective of microecology.

  16. Metabolic effects of altering the 24 h energy intake in man, using direct and indirect calorimetry.

    PubMed

    Dauncey, M J

    1980-03-01

    1. The metabolic effects of increasing or decreasing the usual energy intake for only 1 d were assessed in eight adult volunteers. Each subject lived for 28 h in a whole-body calorimeter at 26 degrees on three separate occasions of high, medium or low energy intake. Intakes (mean +/- SEM) of 13830 +/- 475 (high), 8400 +/- 510 (medium) and 3700 +/- 359 (low) kj/24 h were eaten in three meals of identical nutrient composition. 2. Energy expenditure was measured continuously by two methods: direct calorimetry, as total heat loss partitioned into its evaporative and sensible components: and indirect calorimetry, as heat production calculated from oxygen consumption and carbon dioxide production. For the twenty-four sessions there was a mean difference of only 1.2 +/- 0.14 (SEM) % between the two estimates of 24 h energy expenditure, with heat loss being less than heat production. Since experimental error was involved in both estimates it would be wrong to ascribe greater accuracy to either one of the measures of energy expenditure. 3. Despite the wide variation in the metabolic responses of the subjects to over-eating and under-eating, in comparison with the medium intake the 24 h heat production increased significantly by 10% on the high intake and decreased by 6% on the low intake. Mean (+/- SEM) values for 24 h heat production were 8770 +/- 288, 7896 +/- 297 and 7495 +/- 253 kJ on the high, medium and low intakes respectively. The effects of over-eating were greatest at night and the resting metabolic rate remained elevated by 12% 14 h after the last meal. By contrast, during under-eating the metabolic rate at night decreased by only 1%. 4. Evaporative heat loss accounted for an average of 25% of the total heat loss at each level of intake. Changes in evaporative heat loss were +14% on the high intake and -10% on the low intake. Sensible heat loss altered by +9 and -5% on the high and low intakes respectively. 5. It is concluded that (a) the effects on 24 h energy

  17. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines

    PubMed Central

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  18. Free fatty acid receptors and their role in regulation of energy metabolism.

    PubMed

    Hara, Takafumi; Kimura, Ikuo; Inoue, Daisuke; Ichimura, Atsuhiko; Hirasawa, Akira

    2013-01-01

    The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

  19. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine.

    PubMed

    Villa, Roberto Federico; Ferrari, Federica; Bagini, Laura; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2017-07-15

    Alterations in mitochondrial functions have been hypothesized to participate in the pathogenesis of depression, because brain bioenergetic abnormalities have been detected in depressed patients by neuroimaging in vivo studies. However, this hypothesis is not clearly demonstrated in experimental studies: some suggest that antidepressants are inhibitors of mitochondrial metabolism, while others observe the opposite. In this study, the effects of 21-day treatment with desipramine (15 mg/kg) and fluoxetine (10 mg/kg) were examined on the energy metabolism of rat hippocampus, evaluating the catalytic activity of regulatory enzymes of mitochondrial energy-yielding metabolic pathways. Because of the micro-heterogeneity of brain mitochondria, we have distinguished between (a) non-synaptic mitochondria (FM) of neuronal perikaryon (post-synaptic compartment) and (b) intra-synaptic light (LM) and heavy (HM) mitochondria (pre-synaptic compartment). Desipramine and fluoxetine changed the catalytic activity of specific enzymes in the different types of mitochondria: (a) in FM, both drugs enhanced cytochrome oxidase and glutamate dehydrogenase, (b) in LM, the overall bioenergetics was unaffected and (c) in HM only desipramine increased malate dehydrogenase and decreased the activities of Electron Transport Chain Complexes. These results integrate the pharmacodynamic features of desipramine and fluoxetine at subcellular level, overcoming the previous conflicting data about the effects of antidepressants on brain energy metabolism, mainly referred to whole brain homogenates or to bulk of cerebral mitochondria. With the differentiation in non-synaptic and intra-synaptic mitochondria, this study demonstrates that desipramine and fluoxetine lead to adjustments in the mitochondrial bioenergetics respect to the energy requirements of pre- and post-synaptic compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Changes in Energy Metabolism after Continuous Positive Airway Pressure for Obstructive Sleep Apnea.

    PubMed

    Tachikawa, Ryo; Ikeda, Kaori; Minami, Takuma; Matsumoto, Takeshi; Hamada, Satoshi; Murase, Kimihiko; Tanizawa, Kiminobu; Inouchi, Morito; Oga, Toru; Akamizu, Takashi; Mishima, Michiaki; Chin, Kazuo

    2016-09-15

    Disrupted energy homeostasis in obstructive sleep apnea (OSA) may lead to weight gain. Paradoxically, treating OSA with continuous positive airway pressure (CPAP) may also promote weight gain, although the underlying mechanism remains unclear. To explore the underlying mechanism by which patients with OSA gain weight after CPAP. A comprehensive assessment of energy metabolism was performed in 63 newly diagnosed OSA study participants (51 men; 60.8 ± 10.1 yr; apnea-hypopnea index >20 h(-1)) at baseline, CPAP initiation, and at a 3-month follow-up. Measurements included polysomnography, body weight, body composition, basal metabolic rate (BMR), hormones (norepinephrine, cortisol, leptin, ghrelin, insulin-like growth factor-1), dietary intake, eating behavior, and physical activity. BMR significantly decreased after CPAP (1,584 kcal/d at baseline, 1,561 kcal/d at CPAP initiation, and 1,508 kcal/d at follow-up; P < 0.001), whereas physical activity and total caloric intake did not significantly change. In multivariate regression, baseline apnea-hypopnea index, Δurine norepinephrine, and CPAP adherence were significant predictors of ΔBMR. The weight gainers had higher leptin levels, lower ghrelin levels, and higher eating behavior scores than the non-weight gainers, indicating a positive energy balance and disordered eating behavior among the weight gainers. Among the parameters related to energy metabolism, increased caloric intake was a particularly significant predictor of weight gain. Although a reduction in BMR after CPAP predisposes to a positive energy balance, dietary intake and eating behavior had greater impacts on weight change. These findings highlight the importance of lifestyle modifications combined with CPAP. Clinical trial registered with http://www.umin.ac.jp/english/ (UMIN000012639).

  1. Role of baseline leptin and ghrelin levels on body weight and fat mass changes after an energy-restricted diet intervention in obese women: effects on energy metabolism.

    PubMed

    Labayen, Idoia; Ortega, Francisco B; Ruiz, Jonatan R; Lasa, Arrate; Simón, Edurne; Margareto, Javier

    2011-06-01

    Hormones related to energy balance control may play an important role on weight loss resistance after low-caloric diet (LCD) intervention. To investigate the predictive value of baseline leptin and ghrelin on body fat mass (FM) loss after 12 wk of LCD intervention and to study whether these associations could be related to changes in resting metabolic rate (RMR). The study comprised a total of 78 obese women (age 36.7 ± 7 yr). We measured, before and after the LCD intervention, FM (dual-energy x-ray absorptiometry) and RMR (kilojoules per kilogram body weight per day, indirect calorimetry). We also analyzed fasting serum leptin and ghrelin, and leptin to ghrelin ratio was calculated. FM and RMR changes (data at baseline - data after the intervention) were assessed. Baseline serum leptin (r = -0.301; age- and baseline FM-adjusted P = 0.009) and ghrelin (r = 0.314, adjusted P = 0.014) levels as well as leptin to ghrelin levels (r = -0.331; adjusted P = 0.009) were significantly correlated with FM changes. Leptin to ghrelin ratio was significantly correlated with RMR at baseline and after the LCD (both P < 0.010). Baseline leptin to ghrelin ratio significantly predicted changes in RMR after the LCD (r = 0.298; P = 0.019) regardless of age, baseline RMR, and total body weight (r = 0.307; P = 0.016) or FM loss (r = 0.312; P = 0.015). Obese women with higher leptin and lower ghrelin levels at baseline seem to be more resistant to FM loss. The leptin to ghrelin ratio could be proposed as a biomarker for predicting metabolic adaptations to energy restriction treatment and, if confirmed in future studies, as a predictor of treatment success/failure.

  2. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    PubMed Central

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID

  3. Neuropeptide Y and peptide YY: important regulators of energy metabolism.

    PubMed

    Nguyen, Amy D; Herzog, Herbert; Sainsbury, Amanda

    2011-02-01

    An overview of recent developments documenting the neuropeptide Y (NPY) family's role in energy metabolism. Specifically focusing on site-specific functions of NPY and increasing evidence of peptide YY (PYY) as a weight loss therapeutic. Studying the NPY family in hypothalamic nuclei, other than the arcuate and paraventricular nuclei, is a recent shift in metabolic research. NPY overexpression in the dorsomedial hypothalamus increases food intake whereas its ablation in this area reduces hyperphagia and obesity. Similarly, NPY exerts orexigenic effects in the ventromedial nucleus. However, specific arcuate Y2 receptor ablation leads to positive energy balance, suggesting the NPY family demonstrates location-specific functions. Peripherally, dual blockade of cannabinoid and NPY pathways has synergistic effects on weight loss, as does combined administration of PYY3-36 and oxyntomodulin in reducing food intake, perhaps due to the recently discovered role of PYY in mediating intestinal Gpr119 activity and controlling glucose tolerance. Conditional Y receptor knockout models have provided deeper insights on NPY's functions according to location. Further study of PYY appears vital, due to recent evidence of its role in intestinal motility, with exercise positively influencing PYY levels.

  4. The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism.

    PubMed

    Birkel, Garrett W; Ghosh, Amit; Kumar, Vinay S; Weaver, Daniel; Ando, David; Backman, Tyler W H; Arkin, Adam P; Keasling, Jay D; Martín, Héctor García

    2017-04-05

    Modeling of microbial metabolism is a topic of growing importance in biotechnology. Mathematical modeling helps provide a mechanistic understanding for the studied process, separating the main drivers from the circumstantial ones, bounding the outcomes of experiments and guiding engineering approaches. Among different modeling schemes, the quantification of intracellular metabolic fluxes (i.e. the rate of each reaction in cellular metabolism) is of particular interest for metabolic engineering because it describes how carbon and energy flow throughout the cell. In addition to flux analysis, new methods for the effective use of the ever more readily available and abundant -omics data (i.e. transcriptomics, proteomics and metabolomics) are urgently needed. The jQMM library presented here provides an open-source, Python-based framework for modeling internal metabolic fluxes and leveraging other -omics data for the scientific study of cellular metabolism and bioengineering purposes. Firstly, it presents a complete toolbox for simultaneously performing two different types of flux analysis that are typically disjoint: Flux Balance Analysis and 13 C Metabolic Flux Analysis. Moreover, it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA). In addition, the library includes a demonstration of a method that uses proteomics data to produce actionable insights to increase biofuel production. Finally, the use of the jQMM library is illustrated through the addition of several Jupyter notebook demonstration files that enhance reproducibility and provide the capability to be adapted to the user's specific needs. jQMM will facilitate the design and metabolic engineering of organisms for biofuels and other chemicals, as well as investigations of cellular metabolism and leveraging -omics data. As an open source software project, we hope it will

  5. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    PubMed

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals

    PubMed Central

    Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.

    2015-01-01

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359

  7. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    PubMed

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.

  8. The Role of Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and Signaling.

    PubMed

    Olson, Kenneth R; Straub, Karl D

    2016-01-01

    The chemical versatility of sulfur and its abundance in the prebiotic Earth as reduced sulfide (H2S) implicate this molecule in the origin of life 3.8 billion years ago and also as a major source of energy in the first seven-eighths of evolution. The tremendous increase in ambient oxygen ∼ 600 million years ago brought an end to H2S as an energy source, and H2S-dependent animals either became extinct, retreated to isolated sulfide niches, or adapted. The first 3 billion years of molecular tinkering were not lost, however, and much of this biochemical armamentarium easily adapted to an oxic environment where it contributes to metabolism and signaling even in humans. This review examines the role of H2S in evolution and the evolution of H2S metabolism and signaling. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  9. The inflammation highway: metabolism accelerates inflammatory traffic in obesity

    PubMed Central

    Johnson, Amy R.; Milner, J. Justin; Makowski, Liza

    2012-01-01

    Summary As humans evolved, perhaps the two strongest selection determinants of survival were a robust immune response able to clear bacterial, viral, and parasitic infection and an ability to efficiently store nutrients to survive times when food sources were scarce. These traits are not mutually exclusive. It is now apparent that critical proteins necessary for regulating energy metabolism such as peroxisome proliferator-activated receptors (PPARs), Toll-like receptors (TLRs), and fatty acid-binding proteins (FABPs) also act as links between nutrient metabolism and inflammatory pathway activation in immune cells. Obesity in humans is a symptom of energy imbalance: the scale has been tipped such that energy intake exceeds energy output and may be a result, in part, of evolutionary selection toward a phenotype characterized by efficient energy storage. As discussed in this review, obesity is a state of low-grade, chronic inflammation that promotes the development of insulin resistance and diabetes. Ironically, the formation of systemic and/or local, tissue-specific insulin resistance upon inflammatory cell activation may actually be a protective mechanism that co-evolved to repartition energy sources within the body during times of stress during infection. However, the point has been reached where a once beneficial adaptive trait has become detrimental to the health of the individual and an immense public health and economic burden. This article reviews the complex relationship between obesity, insulin resistance/diabetes, and inflammation, and while the liver, brain, pancreas, muscle, and other tissues are relevant, we focus specifically on how the obese adipose microenvironment can promote immune cell influx and sustain damaging inflammation that can lead to the onset of insulin resistance and diabetes. Finally, we address how substrate metabolism may regulate the immune response and discuss how fuel uptake and metabolism may be a targetable approach to limit or

  10. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle. Copyright

  11. Adaptive control of dynamic balance in human gait on a split-belt treadmill.

    PubMed

    Buurke, Tom J W; Lamoth, Claudine J C; Vervoort, Danique; van der Woude, Lucas H V; den Otter, Rob

    2018-05-17

    Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait. © 2018. Published by The Company of Biologists Ltd.

  12. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.

    PubMed

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2014-06-03

    The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Metabolic Inflexibility: When Mitochondrial Indecision Leads to Metabolic Gridlock

    PubMed Central

    Muoio, Deborah M.

    2016-01-01

    Normal energy metabolism is characterized by periodic shifts in glucose and fat oxidation, as the mitochondrial machinery responsible for carbon combustion switches freely between alternative fuels according to physiological and nutritional circumstances. These transitions in fuel choice are orchestrated by an intricate network of metabolic and cell signaling events that enable exquisite crosstalk and cooperation between competing substrates to maintain energy and glucose homeostasis. By contrast, obesity-related cardiometabolic diseases are increasingly recognized as disorders of metabolic inflexibility, in which nutrient overload and heightened substrate competition result in mitochondrial indecision, impaired fuel switching, and energy dysregulation. This Perspective offers a speculative view on the molecular origins and pathophysiological consequences of metabolic inflexibility. PMID:25480291

  14. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.

    PubMed

    Zhao, Xiaoling; Wu, Nan; Zhu, Qing; Gaur, Uma; Gu, Ting; Li, Diyan

    2016-09-01

    The problem of hypoxia adaptation in high altitudes is an unsolved brainteaser in the field of life sciences. As one of the best chicken breeds with adaptability to highland environment, the Tibetan chicken, is genetically different from lowland chicken breeds. In order to gain a better understanding of the mechanism of hypoxic adaptability in high altitude, in the present study, we focused on the MT-COI together with ATP-6 gene to explore the regulatory mechanisms for hypoxia adaptability in Tibet chicken. Here, we sequenced MT-COI of 29 Tibetan chickens and 30 Chinese domestic chickens and ATP-6 gene of 28 Tibetan chickens and 29 Chinese domestic chickens. In MT-COI gene, 9 single nucleotide polymorphisms (SNPs) were detected though none of these was a missense mutation, confirming the fact that MT-COI gene is a largely conservative sequence. In ATP-6 gene, 6 single nucleotide polymorphisms (SNPs) were detected and we found a missense mutation (m.9441G > A) in the ATP-6 gene of Tibetan chicken resulting in an amino acid substitution. Due to the critical role of ATP-6 gene in the proton translocation and energy metabolism, we speculated the possibility of this mutation playing an important role in easier energy conversion and metabolism in Tibetan chickens than Chinese domestic chickens so as to better adapt to the harsh environment of the high-altitude areas. The Median-joining profile also suggested that haplotype Ha2 has the ancestral position to the other haplotypes and has significant relationship with high-altitude adaptation in ATP-6 gene. Therefore, we considered that the polymorphism (m.9441G > A) in the ATP-6 gene may affect the specific functions of ATP-6 enzyme relating to high-altitude adaptation of Tibetan chicken and MT-COI gene is a largely conservative sequence.

  15. Inflexibility of AMPK-mediated metabolic reprogramming in mitochondrial disease

    PubMed Central

    Lin, Dar-Shong; Kao, Shu-Huei; Ho, Che-Sheng; Wei, Yau-Huei; Hung, Pi-Lien; Hsu, Mei-Hsin; Wu, Tsu-Yen; Wang, Tuan-Jen; Jian, Yuan-Ren; Lee, Tsung-Han; Chiang, Ming-Fu

    2017-01-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is most commonly caused by the A3243G mutation of mitochondrial DNA. The capacity to utilize fatty acid or glucose as a fuel source and how such dynamic switches of metabolic fuel preferences and transcriptional modulation of adaptive mechanism in response to energy deficiency in MELAS syndrome have not been fully elucidated. The fibroblasts from patients with MELAS syndrome demonstrated a remarkable deficiency of electron transport chain complexes I and IV, an impaired cellular biogenesis under glucose deprivation, and a decreased ATP synthesis. In situ analysis of the bioenergetic properties of MELAS cells demonstrated an attenuated fatty acid oxidation that concomitantly occurred with impaired mitochondrial respiration, while energy production was mostly dependent on glycolysis. Furthermore, the transcriptional modulation was mediated by the AMP-activated protein kinase (AMPK) signaling pathway, which activated its downstream modulators leading to a subsequent increase in glycolytic flux through activation of pyruvate dehydrogenase. In contrast, the activities of carnitine palmitoyltransferase for fatty acid oxidation and acetyl-CoA carboxylase-1 for fatty acid synthesis were reduced and transcriptional regulation factors for biogenesis were not altered. These results provide novel information that MELAS cells lack the adaptive mechanism to switch fuel source from glucose to fatty acid, as glycolysis rates increase in response to energy deficiency. The aberrant secondary cellular responses to disrupted metabolic homeostasis mediated by AMPK signaling pathway may contribute to the development of the clinical phenotype. PMID:29088732

  16. Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review

    PubMed Central

    Porporato, Paolo E.; Dhup, Suveera; Dadhich, Rajesh K.; Copetti, Tamara; Sonveaux, Pierre

    2011-01-01

    Cancer is a metabolic disease and the solution of two metabolic equations: to produce energy with limited resources and to fulfill the biosynthetic needs of proliferating cells. Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in the tricarboxylic acid cycle, a process known as the glycolytic switch. This review addresses in a comprehensive manner the main molecular events accounting for high-rate glycolysis in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1 in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the necessary involvement of aerobic glycolysis (the Warburg effect) in cancer cell proliferation. Based on the many observations positioning glycolysis as a central player in malignancy, the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed. PMID:21904528

  17. Improving the Usability of Integrated Assessment for Adaptation Practice: Insights from the U.S. Southeast Energy Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Bremond, Ariane; Preston, Benjamin; Rice, Jennie S.

    2014-10-01

    Energy systems comprise a key sector of the U.S. economy, and one that has been identified as potentially vulnerable to the effects of climate variability and change. However, understanding of adaptation processes in energy companies and private entities more broadly is limited. It is unclear, for example, the extent to which energy companies are well-served by existing knowledge and tools emerging from the impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities and/or what experiments, analyses, and model results have practical utility for informing adaptation in the energy sector. As part of a regional IAM development project, wemore » investigated available evidence of adaptation processes in the energy sector, with a particular emphasis on the U.S. Southeast and Gulf Coast region. A mixed methods approach of literature review and semi-structured interviews with key informants from energy utilities was used to compare existing knowledge from the IAV community with that of regional stakeholders. That comparison revealed that much of the IAV literature on the energy sector is climate-centric and therefore disconnected from the more integrated decision-making processes and institutional perspectives of energy utilities. Increasing the relevance of research and assessment for the energy sector will necessitate a greater investment in integrated assessment and modeling efforts that respond to practical decision-making needs as well as greater collaboration between energy utilities and researchers in the design, execution, and communication of those efforts.« less

  18. The yak genome and adaptation to life at high altitude.

    PubMed

    Qiu, Qiang; Zhang, Guojie; Ma, Tao; Qian, Wubin; Wang, Junyi; Ye, Zhiqiang; Cao, Changchang; Hu, Quanjun; Kim, Jaebum; Larkin, Denis M; Auvil, Loretta; Capitanu, Boris; Ma, Jian; Lewin, Harris A; Qian, Xiaoju; Lang, Yongshan; Zhou, Ran; Wang, Lizhong; Wang, Kun; Xia, Jinquan; Liao, Shengguang; Pan, Shengkai; Lu, Xu; Hou, Haolong; Wang, Yan; Zang, Xuetao; Yin, Ye; Ma, Hui; Zhang, Jian; Wang, Zhaofeng; Zhang, Yingmei; Zhang, Dawei; Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang; Liu, Wenbin; Zhang, Yan; Huang, Zhiyong; Zhang, Shengxiang; Long, Ruijun; Yang, Huanming; Wang, Jian; Lenstra, Johannes A; Cooper, David N; Wu, Yi; Wang, Jun; Shi, Peng; Wang, Jian; Liu, Jianquan

    2012-07-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.

  19. Maternal nutrient restriction during late gestation and early postnatal growth in sheep differentially reset the control of energy metabolism in the gastric mucosa.

    PubMed

    Sebert, S P; Dellschaft, N S; Chan, L L Y; Street, H; Henry, M; Francois, C; Sharma, V; Fainberg, H P; Patel, N; Roda, J; Keisler, D; Budge, H; Symonds, M E

    2011-07-01

    Fetal growth restriction followed by accelerated postnatal growth contributes to impaired metabolic function in adulthood. The extent to which these outcomes may be mediated centrally within the hypothalamus, as opposed to in the periphery within the digestive tract, remains unknown. In a sheep model, we achieved intrauterine growth restriction experimentally by maternal nutrient restriction (R) that involved a 40% reduction in food intake through late gestation. R offspring were then either reared singly to accelerate postnatal growth (RA) or as twins and compared with controls also reared singly. From weaning, all offspring were maintained indoors until adulthood. A reduced litter size accelerated postnatal growth for only the first month of lactation. Independently from postnatal weight gain and later fat mass, R animals developed insulin resistance as adults. However, restricted accelerated offspring compared with both the control accelerated and restricted restricted offspring ate less and had higher fasting plasma leptin as adults, an adaptation which was accompanied by changes in energy sensing and cell proliferation within the abomasum. Additionally, although fetal restriction down-regulated gene expression of mammalian target of rapamycin and carnitine palmitoyltransferase 1-dependent pathways in the abomasum, RA offspring compensated for this by exhibiting greater activity of AMP-activated kinase-dependent pathways. This study demonstrates a role for perinatal nutrition in the peripheral control of food intake and in energy sensing in the gastric mucosal and emphasizes the importance of diet in early life in regulating energy metabolism during adulthood.

  20. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    PubMed

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.