Modeling-Error-Driven Performance-Seeking Direct Adaptive Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V.; Kaneshige, John; Krishnakumar, Kalmanje; Burken, John
2008-01-01
This paper presents a stable discrete-time adaptive law that targets modeling errors in a direct adaptive control framework. The update law was developed in our previous work for the adaptive disturbance rejection application. The approach is based on the philosophy that without modeling errors, the original control design has been tuned to achieve the desired performance. The adaptive control should, therefore, work towards getting this performance even in the face of modeling uncertainties/errors. In this work, the baseline controller uses dynamic inversion with proportional-integral augmentation. Dynamic inversion is carried out using the assumed system model. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to the dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. Contrary to the typical Lyapunov-based adaptive approaches that guarantee only stability, the current approach investigates conditions for stability as well as performance. A high-fidelity F-15 model is used to illustrate the overall approach.
NASA Astrophysics Data System (ADS)
Ulrich, Steve
This work addresses the direct adaptive trajectory tracking control problem associated with lightweight space robotic manipulators that exhibit elastic vibrations in their joints, and which are subject to parametric uncertainties and modeling errors. Unlike existing adaptive control methodologies, the proposed flexible-joint control techniques do not require identification of unknown parameters, or mathematical models of the system to be controlled. The direct adaptive controllers developed in this work are based on the model reference adaptive control approach, and manage modeling errors and parametric uncertainties by time-varying the controller gains using new adaptation mechanisms, thereby reducing the errors between an ideal model and the actual robot system. More specifically, new decentralized adaptation mechanisms derived from the simple adaptive control technique and fuzzy logic control theory are considered in this work. Numerical simulations compare the performance of the adaptive controllers with a nonadaptive and a conventional model-based controller, in the context of 12.6 m xx 12.6 m square trajectory tracking. To validate the robustness of the controllers to modeling errors, a new dynamics formulation that includes several nonlinear effects usually neglected in flexible-joint dynamics models is proposed. Results obtained with the adaptive methodologies demonstrate an increased robustness to both uncertainties in joint stiffness coefficients and dynamics modeling errors, as well as highly improved tracking performance compared with the nonadaptive and model-based strategies. Finally, this work considers the partial state feedback problem related to flexible-joint space robotic manipulators equipped only with sensors that provide noisy measurements of motor positions and velocities. An extended Kalman filter-based estimation strategy is developed to estimate all state variables in real-time. The state estimation filter is combined with an adaptive
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms. PMID:25751878
Chemachema, Mohamed
2012-12-01
A direct adaptive control algorithm, based on neural networks (NN) is presented for a class of single input single output (SISO) nonlinear systems. The proposed controller is implemented without a priori knowledge of the nonlinear systems; and only the output of the system is considered available for measurement. Contrary to the approaches available in the literature, in the proposed controller, the updating signal used in the adaptive laws is an estimate of the control error, which is directly related to the NN weights instead of the tracking error. A fuzzy inference system (FIS) is introduced to get an estimate of the control error. Without any additional control term to the NN adaptive controller, all the signals involved in the closed loop are proven to be exponentially bounded and hence the stability of the system. Simulation results demonstrate the effectiveness of the proposed approach. PMID:23037773
Design implementation and control of MRAS error dynamics. [Model-Reference Adaptive System
NASA Technical Reports Server (NTRS)
Colburn, B. K.; Boland, J. S., III
1974-01-01
Use is made of linearized error characteristic equation for model-reference adaptive systems to determine a parameter adjustment rule for obtaining time-invariant error dynamics. Theoretical justification of error stability is given and an illustrative example included to demonstrate the utility of the proposed technique.
NASA Astrophysics Data System (ADS)
Chowdhary, Girish; Mühlegg, Maximilian; Johnson, Eric
2014-08-01
In model reference adaptive control (MRAC) the modelling uncertainty is often assumed to be parameterised with time-invariant unknown ideal parameters. The convergence of parameters of the adaptive element to these ideal parameters is beneficial, as it guarantees exponential stability, and makes an online learned model of the system available. Most MRAC methods, however, require persistent excitation of the states to guarantee that the adaptive parameters converge to the ideal values. Enforcing PE may be resource intensive and often infeasible in practice. This paper presents theoretical analysis and illustrative examples of an adaptive control method that leverages the increasing ability to record and process data online by using specifically selected and online recorded data concurrently with instantaneous data for adaptation. It is shown that when the system uncertainty can be modelled as a combination of known nonlinear bases, simultaneous exponential tracking and parameter error convergence can be guaranteed if the system states are exciting over finite intervals such that rich data can be recorded online; PE is not required. Furthermore, the rate of convergence is directly proportional to the minimum singular value of the matrix containing online recorded data. Consequently, an online algorithm to record and forget data is presented and its effects on the resulting switched closed-loop dynamics are analysed. It is also shown that when radial basis function neural networks (NNs) are used as adaptive elements, the method guarantees exponential convergence of the NN parameters to a compact neighbourhood of their ideal values without requiring PE. Flight test results on a fixed-wing unmanned aerial vehicle demonstrate the effectiveness of the method.
Bio-inspired adaptive feedback error learning architecture for motor control.
Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo
2012-10-01
This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs). PMID:22907270
NASA Astrophysics Data System (ADS)
Hirthe, E. M.; Graf, T.
2012-04-01
Fluid density variations occur due to changes in the solute concentration, temperature and pressure of groundwater. Examples are interaction between freshwater and seawater, radioactive waste disposal, groundwater contamination, and geothermal energy production. The physical coupling between flow and transport introduces non-linearity in the governing mathematical equations, such that solving variable-density flow problems typically requires very long computational time. Computational efficiency can be attained through the use of adaptive time-stepping schemes. The aim of this work is therefore to apply a non-iterative adaptive time-stepping scheme based on local truncation error in variable-density flow problems. That new scheme is implemented into the code of the HydroGeoSphere model (Therrien et al., 2011). The new time-stepping scheme is applied to the Elder (1967) and the Shikaze et al. (1998) problem of free convection in porous and fractured-porous media, respectively. Numerical simulations demonstrate that non-iterative time-stepping based on local truncation error control fully automates the time step size and efficiently limits the temporal discretization error to the user-defined tolerance. Results of the Elder problem show that the new time-stepping scheme presented here is significantly more efficient than uniform time-stepping when high accuracy is required. Results of the Shikaze problem reveal that the new scheme is considerably faster than conventional time-stepping where time step sizes are either constant or controlled by absolute head/concentration changes. Future research will focus on the application of the new time-stepping scheme to variable-density flow in complex real-world fractured-porous rock.
Padrão, Gonçalo; Penhune, Virginia; de Diego-Balaguer, Ruth; Marco-Pallares, Josep; Rodriguez-Fornells, Antoni
2014-10-15
The ability to detect and use information from errors is essential during the acquisition of new skills. There is now a wealth of evidence about the brain mechanisms involved in error processing. However, the extent to which those mechanisms are engaged during the acquisition of new motor skills remains elusive. Here we examined rhythm synchronization learning across 12 blocks of practice in musically naïve individuals and tracked changes in ERP signals associated with error-monitoring and error-awareness across distinct learning stages. Synchronization performance improved with practice, and performance improvements were accompanied by dynamic changes in ERP components related to error-monitoring and error-awareness. Early in learning, when performance was poor and the internal representations of the rhythms were weaker we observed a larger error-related negativity (ERN) following errors compared to later learning. The larger ERN during early learning likely results from greater conflict between competing motor responses, leading to greater engagement of medial-frontal conflict monitoring processes and attentional control. Later in learning, when performance had improved, we observed a smaller ERN accompanied by an enhancement of a centroparietal positive component resembling the P3. This centroparietal positive component was predictive of participant's performance accuracy, suggesting a relation between error saliency, error awareness and the consolidation of internal templates of the practiced rhythms. Moreover, we showed that during rhythm learning errors led to larger auditory evoked responses related to attention orientation which were triggered automatically and which were independent of the learning stage. The present study provides crucial new information about how the electrophysiological signatures related to error-monitoring and error-awareness change during the acquisition of new skills, extending previous work on error processing and cognitive
NASA Astrophysics Data System (ADS)
Zhang, Menghua; Ma, Xin; Rong, Xuewen; Tian, Xincheng; Li, Yibin
2016-08-01
In a practical application, overhead cranes are usually subjected to system parameter uncertainties, such as uncertain payload masses, cable lengths, frictions, and external disturbances, such as air resistance. Most existing crane control methods treat the payload swing as that of a single-pendulum. However, certain types of payloads and hoisting mechanisms result in double-pendulum dynamics. The double-pendulum effects will make most existing crane control methods fail to work normally. Therefore, an adaptive tracking controller for double-pendulum overhead cranes subject to parametric uncertainties and external disturbances is developed in this paper. The proposed adaptive tracking control method guarantees that the trolley tracking error is always within a prior set of boundary conditions and converges to zero rapidly. The asymptotic stability of the closed-loop system's equilibrium point is assured by Lyapunov techniques and Barbalat's Lemma. Simulation results show that the proposed adaptive tracking control method is robust with respect to system parametric uncertainties and external disturbances.
Zaafouri, Abderrahmen; Ben Regaya, Chiheb; Ben Azza, Hechmi; Châari, Abdelkader
2016-01-01
This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. PMID:26653141
Aircraft system modeling error and control error
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)
2012-01-01
A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method. PMID:20876014
NASA Astrophysics Data System (ADS)
Hirthe, Eugenia M.; Graf, Thomas
2012-12-01
The automatic non-iterative second-order time-stepping scheme based on the temporal truncation error proposed by Kavetski et al. [Kavetski D, Binning P, Sloan SW. Non-iterative time-stepping schemes with adaptive truncation error control for the solution of Richards equation. Water Resour Res 2002;38(10):1211, http://dx.doi.org/10.1029/2001WR000720.] is implemented into the code of the HydroGeoSphere model. This time-stepping scheme is applied for the first time to the low-Rayleigh-number thermal Elder problem of free convection in porous media [van Reeuwijk M, Mathias SA, Simmons CT, Ward JD. Insights from a pseudospectral approach to the Elder problem. Water Resour Res 2009;45:W04416, http://dx.doi.org/10.1029/2008WR007421.], and to the solutal [Shikaze SG, Sudicky EA, Schwartz FW. Density-dependent solute transport in discretely-fractured geological media: is prediction possible? J Contam Hydrol 1998;34:273-91] problem of free convection in fractured-porous media. Numerical simulations demonstrate that the proposed scheme efficiently limits the temporal truncation error to a user-defined tolerance by controlling the time-step size. The non-iterative second-order time-stepping scheme can be applied to (i) thermal and solutal variable-density flow problems, (ii) linear and non-linear density functions, and (iii) problems including porous and fractured-porous media.
Adaptive control for accelerators
Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.
1991-01-01
An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.
Control by model error estimation
NASA Technical Reports Server (NTRS)
Likins, P. W.; Skelton, R. E.
1976-01-01
Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST).
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors
Murphy, Peter R.; van Moort, Marianne L.; Nieuwenhuis, Sander
2016-01-01
Reaction time (RT) is commonly observed to slow down after an error. This post-error slowing (PES) has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES. PMID:27010472
Hybrid Adaptive Flight Control with Model Inversion Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Larson, Michael J; LeCheminant, James D; Carbine, Kaylie; Hill, Kyle R; Christenson, Edward; Masterson, Travis; LeCheminant, Rick
2015-01-01
An increasing trend in the workplace is for employees to walk on treadmills while working to attain known health benefits; however, the effect of walking on a treadmill during cognitive control and executive function tasks is not well known. We compared the cognitive control processes of conflict adaptation (i.e., congruency sequence effects-improved performance following high-conflict relative to low-conflict trials), post-error slowing (i.e., Rabbitt effect), and response inhibition during treadmill walking (1.5 mph) relative to sitting. Understanding the influence of treadmill desks on these cognitive processes may have implications for worker health and productivity. Sixty-nine individuals were randomized to either a sitting (n = 35) or treadmill-walking condition (n = 34). Groups did not differ in age or body mass index. All participants completed a computerized Eriksen flanker task and a response-inhibition go/no-go task in random order while either walking on a treadmill or seated. Response times (RTs) and accuracy were analyzed separately for each task using mixed model analysis of variance. Separate ANOVAs for RTs and accuracy showed the expected conflict adaptation effects, post-error slowing, and response inhibition effects when collapsed across sitting and treadmill groups (all Fs > 78.77, Ps < 0.001). There were no main effects or interactions as a function of group for any analyses (Fs < 0.79, Ps > 0.38), suggesting no decrements or enhancements in conflict-related control and adjustment processes or response inhibition for those walking on a treadmill versus sitting. We conclude that cognitive control performance remains relatively unaffected during slow treadmill walking relative to sitting. PMID:26074861
Larson, Michael J.; LeCheminant, James D.; Carbine, Kaylie; Hill, Kyle R.; Christenson, Edward; Masterson, Travis; LeCheminant, Rick
2015-01-01
An increasing trend in the workplace is for employees to walk on treadmills while working to attain known health benefits; however, the effect of walking on a treadmill during cognitive control and executive function tasks is not well known. We compared the cognitive control processes of conflict adaptation (i.e., congruency sequence effects—improved performance following high-conflict relative to low-conflict trials), post-error slowing (i.e., Rabbitt effect), and response inhibition during treadmill walking (1.5 mph) relative to sitting. Understanding the influence of treadmill desks on these cognitive processes may have implications for worker health and productivity. Sixty-nine individuals were randomized to either a sitting (n = 35) or treadmill-walking condition (n = 34). Groups did not differ in age or body mass index. All participants completed a computerized Eriksen flanker task and a response-inhibition go/no-go task in random order while either walking on a treadmill or seated. Response times (RTs) and accuracy were analyzed separately for each task using mixed model analysis of variance. Separate ANOVAs for RTs and accuracy showed the expected conflict adaptation effects, post-error slowing, and response inhibition effects when collapsed across sitting and treadmill groups (all Fs > 78.77, Ps < 0.001). There were no main effects or interactions as a function of group for any analyses (Fs < 0.79, Ps > 0.38), suggesting no decrements or enhancements in conflict-related control and adjustment processes or response inhibition for those walking on a treadmill versus sitting. We conclude that cognitive control performance remains relatively unaffected during slow treadmill walking relative to sitting. PMID:26074861
Retransmission error control with memory
NASA Technical Reports Server (NTRS)
Sindhu, P. S.
1977-01-01
In this paper, an error control technique that is a basic improvement over automatic-repeat-request ARQ is presented. Erroneously received blocks in an ARQ system are used for error control. The technique is termed ARQ-with-memory (MRQ). The general MRQ system is described, and simple upper and lower bounds are derived on the throughput achievable by MRQ. The performance of MRQ with respect to throughput, message delay and probability of error is compared to that of ARQ by simulating both systems using error data from a VHF satellite channel being operated in the ALOHA packet broadcasting mode.
Adaptive nonlinear flight control
NASA Astrophysics Data System (ADS)
Rysdyk, Rolf Theoduor
1998-08-01
Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Criticality of Adaptive Control Dynamics
NASA Astrophysics Data System (ADS)
Patzelt, Felix; Pawelzik, Klaus
2011-12-01
We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.
Effects of incomplete adaptation and disturbance in adaptive control.
NASA Technical Reports Server (NTRS)
Lindorff, D. P.
1972-01-01
In this paper consideration is given to the effects of disturbance and incomplete parameter adaptation on the performance of adaptive control systems in which Liapunov theory is used in deriving the control law. A design equation for the bounded error is derived. It is further shown that parameters in the adaptive controller may not converge in the presence of disturbance unless the input signal has a rich enough frequency constant. Design examples are presented.
Feedback Error Learning in neuromotor control
NASA Astrophysics Data System (ADS)
Ishihara, Abraham K.
This thesis is concerned with adaptive human motor control. Adaptation is a highly desirable characteristic of any biological system. Failure is an undesirable, yet very real, characteristic of the human motor control systems. Variability is a ubiquitous observation in human movements that has no direct analogue in the design and analysis of robotic control algorithms. This thesis attempts to link these three aspects of motor control under the constraints of a biologically inspired control framework termed Feedback Error Learning (FEL). Utilizing nonlinear and adaptive control methods we prove conditions for which the FEL framework is stable and successful learning can occur. Utilizing singular perturbation methods, we derive conditions for which the system is guaranteed to fail. Variability is analyzed using Ito Calculus and stochastic Lyapunov functionals where signal dependent noise, a commonly observed phenomenon, enters in the learning algorithm. We also show how signal dependent noise might benefit biological control systems despite the inherent variability introduced into the motor control loops. Lastly, we investigate a force tracking control task, where subjects are asked to track a time-varying plant. Using basic control and system identification techniques, we probe the human motor learning system and extract learning rates with respect to the FEL model.
Shelhamer, Mark
2014-01-01
Adaptive processes are crucial in maintaining the accuracy of body movements and rely on error storage and processing mechanisms. Although classically studied with adaptation paradigms, evidence of these ongoing error-correction mechanisms should also be detectable in other movements. Despite this connection, current adaptation models are challenged when forecasting adaptation ability with measures of baseline behavior. On the other hand, we have previously identified an error-correction process present in a particular form of baseline behavior, the generation of predictive saccades. This process exhibits long-term intertrial correlations that decay gradually (as a power law) and are best characterized with the tools of fractal time series analysis. Since this baseline task and adaptation both involve error storage and processing, we sought to find a link between the intertrial correlations of the error-correction process in predictive saccades and the ability of subjects to alter their saccade amplitudes during an adaptation task. Here we find just such a relationship: the stronger the intertrial correlations during prediction, the more rapid the acquisition of adaptation. This reinforces the links found previously between prediction and adaptation in motor control and suggests that current adaptation models are inadequate to capture the complete dynamics of these error-correction processes. A better understanding of the similarities in error processing between prediction and adaptation might provide the means to forecast adaptation ability with a baseline task. This would have many potential uses in physical therapy and the general design of paradigms of motor adaptation. PMID:24598520
Plessen, Kerstin J.; Allen, Elena A.; Eichele, Heike; van Wageningen, Heidi; Høvik, Marie Farstad; Sørensen, Lin; Worren, Marius Kalsås; Hugdahl, Kenneth; Eichele, Tom
2016-01-01
Background We examined the blood-oxygen level–dependent (BOLD) activation in brain regions that signal errors and their association with intraindividual behavioural variability and adaptation to errors in children with attention-deficit/hyperactivity disorder (ADHD). Methods We acquired functional MRI data during a Flanker task in medication-naive children with ADHD and healthy controls aged 8–12 years and analyzed the data using independent component analysis. For components corresponding to performance monitoring networks, we compared activations across groups and conditions and correlated them with reaction times (RT). Additionally, we analyzed post-error adaptations in behaviour and motor component activations. Results We included 25 children with ADHD and 29 controls in our analysis. Children with ADHD displayed reduced activation to errors in cingulo-opercular regions and higher RT variability, but no differences of interference control. Larger BOLD amplitude to error trials significantly predicted reduced RT variability across all participants. Neither group showed evidence of post-error response slowing; however, post-error adaptation in motor networks was significantly reduced in children with ADHD. This adaptation was inversely related to activation of the right-lateralized ventral attention network (VAN) on error trials and to task-driven connectivity between the cingulo-opercular system and the VAN. Limitations Our study was limited by the modest sample size and imperfect matching across groups. Conclusion Our findings show a deficit in cingulo-opercular activation in children with ADHD that could relate to reduced signalling for errors. Moreover, the reduced orienting of the VAN signal may mediate deficient post-error motor adaptions. Pinpointing general performance monitoring problems to specific brain regions and operations in error processing may help to guide the targets of future treatments for ADHD. PMID:26441332
Adaptive Controller Effects on Pilot Behavior
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2014-01-01
Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.
Decentralized adaptive control
NASA Technical Reports Server (NTRS)
Oh, B. J.; Jamshidi, M.; Seraji, H.
1988-01-01
A decentralized adaptive control is proposed to stabilize and track the nonlinear, interconnected subsystems with unknown parameters. The adaptation of the controller gain is derived by using model reference adaptive control theory based on Lyapunov's direct method. The adaptive gains consist of sigma, proportional, and integral combination of the measured and reference values of the corresponding subsystem. The proposed control is applied to the joint control of a two-link robot manipulator, and the performance in computer simulation corresponds with what is expected in theoretical development.
Finite element error estimation and adaptivity based on projected stresses
Jung, J.
1990-08-01
This report investigates the behavior of a family of finite element error estimators based on projected stresses, i.e., continuous stresses that are a least squared error fit to the conventional Gauss point stresses. An error estimate based on element force equilibrium appears to be quite effective. Examples of adaptive mesh refinement for a one-dimensional problem are presented. Plans for two-dimensional adaptivity are discussed. 12 refs., 82 figs.
Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting
NASA Technical Reports Server (NTRS)
Trujillo, Anna; Gregory, Irene
2013-01-01
Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.
Adaptation of bit error rate by coding
NASA Astrophysics Data System (ADS)
Marguinaud, A.; Sorton, G.
1984-07-01
The use of coding in spacecraft wideband communication to reduce power transmission, save bandwith, and lower antenna specifications was studied. The feasibility of a coder decoder functioning at a bit rate of 10 Mb/sec with a raw bit error rate (BER) of 0.001 and an output BER of 0.000000001 is demonstrated. A single block code protection, and two coding levels protection are examined. A single level protection BCH code with 5 errors correction capacity, 16% redundancy, and interleaving depth 4 giving a coded block of 1020 bits is simple to implement, but has BER = 0.000000007. A single level BCH code with 7 errors correction capacity and 12% redundancy meets specifications, but is more difficult to implement. Two level protection with 9% BCH outer and 10% BCH inner codes, both levels with 3 errors correction capacity and 8% redundancy for a coded block of 7050 bits is the most complex, but offers performance advantages.
Automatic-repeat-request error control schemes
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.; Miller, M. J.
1983-01-01
Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.
Error Signals in Motor Cortices Drive Adaptation in Reaching.
Inoue, Masato; Uchimura, Motoaki; Kitazawa, Shigeru
2016-06-01
Reaching movements are subject to adaptation in response to errors induced by prisms or external perturbations. Motor cortical circuits have been hypothesized to provide execution errors that drive adaptation, but human imaging studies to date have reported that execution errors are encoded in parietal association areas. Thus, little evidence has been uncovered that supports the motor hypothesis. Here, we show that both primary motor and premotor cortices encode information on end-point errors in reaching. We further show that post-movement microstimulation to these regions caused trial-by-trial increases in errors, which subsided exponentially when the stimulation was terminated. The results indicate for the first time that motor cortical circuits provide error signals that drive trial-by-trial adaptation in reaching movements. PMID:27181058
Adaptive error correction codes for face identification
NASA Astrophysics Data System (ADS)
Hussein, Wafaa R.; Sellahewa, Harin; Jassim, Sabah A.
2012-06-01
Face recognition in uncontrolled environments is greatly affected by fuzziness of face feature vectors as a result of extreme variation in recording conditions (e.g. illumination, poses or expressions) in different sessions. Many techniques have been developed to deal with these variations, resulting in improved performances. This paper aims to model template fuzziness as errors and investigate the use of error detection/correction techniques for face recognition in uncontrolled environments. Error correction codes (ECC) have recently been used for biometric key generation but not on biometric templates. We have investigated error patterns in binary face feature vectors extracted from different image windows of differing sizes and for different recording conditions. By estimating statistical parameters for the intra-class and inter-class distributions of Hamming distances in each window, we encode with appropriate ECC's. The proposed approached is tested for binarised wavelet templates using two face databases: Extended Yale-B and Yale. We shall demonstrate that using different combinations of BCH-based ECC's for different blocks and different recording conditions leads to in different accuracy rates, and that using ECC's results in significantly improved recognition results.
Error magnitude estimation in model-reference adaptive systems
NASA Technical Reports Server (NTRS)
Colburn, B. K.; Boland, J. S., III
1975-01-01
A second order approximation is derived from a linearized error characteristic equation for Lyapunov designed model-reference adaptive systems and is used to estimate the maximum error between the model and plant states, and the time to reach this peak following a plant perturbation. The results are applicable in the analysis of plants containing magnitude-dependent nonlinearities.
Visuomotor adaptation needs a validation of prediction error by feedback error
Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle
2014-01-01
The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly
A neural fuzzy controller learning by fuzzy error propagation
NASA Technical Reports Server (NTRS)
Nauck, Detlef; Kruse, Rudolf
1992-01-01
In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.
NASA Technical Reports Server (NTRS)
Narendra, K. S.; Annaswamy, A. M.
1985-01-01
Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.
A posteriori error estimator and error control for contact problems
NASA Astrophysics Data System (ADS)
Weiss, Alexander; Wohlmuth, Barbara I.
2009-09-01
In this paper, we consider two error estimators for one-body contact problems. The first error estimator is defined in terms of H( div ) -conforming stress approximations and equilibrated fluxes while the second is a standard edge-based residual error estimator without any modification with respect to the contact. We show reliability and efficiency for both estimators. Moreover, the error is bounded by the first estimator with a constant one plus a higher order data oscillation term plus a term arising from the contact that is shown numerically to be of higher order. The second estimator is used in a control-based AFEM refinement strategy, and the decay of the error in the energy is shown. Several numerical tests demonstrate the performance of both estimators.
Adaptive periodic error correction for the VLT telescopes
NASA Astrophysics Data System (ADS)
Erm, Toomas; Sandrock, Stefan
2003-02-01
As a further step to improve the excellent tracking performance of the VLT telescopes, the intrinsic errors in the telescope drive systems are analysed. These errors fall into two categories, torque disturbances and sensor errors and they have different impact on the performance. Models for the errors are developed and algorithms for on line adaptive parameter identification are presented. The models can be used to significantly reduce the influence of the errors and also to monitor parameters like friction and unbalance. The VLT servo model is used to test and verify the models and algorithms. It follows a description of the real-time software aspects of the algorithms, which have been implemented for VxWorks-based systems. The software design allows various options for the adaptation of the process coefficients, either running permanently in background, only on demand through maintenance procedures, or fixed off-line modeling based on recorded process data. Finally, real test data are presented.
Error Argumentation Enhance Adaptability in Adults With Low Motor Ability.
Lee, Chi-Mei; Bo, Jin
2016-01-01
The authors focused on young adults with varying degrees of motor difficulties and examined their adaptability in a visuomotor adaptation task where the visual feedback of participants' movement error was presented with either 1:1 ratio (i.e., regular feedback schedule) or 1:2 ratio (i.e., enhanced feedback schedule). Within-subject design was used with two feedback schedules counter-balanced and separated for 10 days. Results revealed that participants with greater motor difficulties showed less adaptability than those with normal motor abilities in the regular feedback schedule; however, all participants demonstrated similar level of adaptability in the enhanced feedback schedule. The results suggest that error argumentation enhances adaptability in adults with low motor ability. PMID:26672393
A cascaded coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Lin, S.
1985-01-01
A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.
Repair of streaming multimedia with adaptive forward error correction
NASA Astrophysics Data System (ADS)
French, Kenneth; Claypool, Mark
2001-11-01
Internet multimedia applications have timing constraints that are often not met by TCP, the de facto Internet transport protocol, hence, most multimedia applications use UDP. Since UDP does not guarantee data arrival, UDP flows often have high data loss rates. Network data loss can be ameliorated by the use of Forward Error Compression (FEC), where a server adds redundant data to the flow to help the client repair lost data. However, the effectiveness of FEC depends upon the network burst loss rates, and current FEC approaches are non-adaptive or adapt without effectively monitoring this rate. We propose a Forward Error Correction protocol that explicitly adapts the redundancy to the measured network burst loss rates. Through evaluation under a variety of network conditions, we find our adaptive FEC approach achieves minimal end-to-end delay and low loss rates after repair.
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Adaptive signed distance transform for curves with guaranteed error bounds
Laney, D A; Duchaineau, M A; Max, N L
2000-12-04
We present an adaptive signed distance transform algorithm for curves in the plane. The algorithm provides guaranteed error bounds with a selective refinement approach. The domain over which the signed distance function is desired is adaptive triangulated and piecewise discontinuous linear approximations are constructed within each triangle. The resulting transform performs work only were requested and does not rely on a preset sampling rate or other constraints.
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
Adaptive sequential controller
El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso
1994-01-01
An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.
Diederen, Kelly M J; Spencer, Tom; Vestergaard, Martin D; Fletcher, Paul C; Schultz, Wolfram
2016-06-01
Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning. PMID:27181060
NASA Astrophysics Data System (ADS)
Reif, Konrad
Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.
Structured near-optimal channel-adapted quantum error correction
NASA Astrophysics Data System (ADS)
Fletcher, Andrew S.; Shor, Peter W.; Win, Moe Z.
2008-01-01
We present a class of numerical algorithms which adapt a quantum error correction scheme to a channel model. Given an encoding and a channel model, it was previously shown that the quantum operation that maximizes the average entanglement fidelity may be calculated by a semidefinite program (SDP), which is a convex optimization. While optimal, this recovery operation is computationally difficult for long codes. Furthermore, the optimal recovery operation has no structure beyond the completely positive trace-preserving constraint. We derive methods to generate structured channel-adapted error recovery operations. Specifically, each recovery operation begins with a projective error syndrome measurement. The algorithms to compute the structured recovery operations are more scalable than the SDP and yield recovery operations with an intuitive physical form. Using Lagrange duality, we derive performance bounds to certify near-optimality.
A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Sanner, Robert M.
2012-01-01
Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.
Effects of incomplete adaption and disturbance in adaptive control
NASA Technical Reports Server (NTRS)
Lindorff, D. P.
1972-01-01
This investigation focused attention on the fact that the synthesis of adaptive control systems has often been discussed in the framework of idealizations which may represent over simplifications. A condition for boundedness of the tracking error has been derived for the case in which incomplete adaption and disturbance are present. When using Parks' design it is shown that instability of the adaptive gains can result due to the presence of disturbance. The theory has been applied to a nontrivial example in order to illustrate the concepts involved.
Adaptive periodic error correction for Heidenhain tape encoders
NASA Astrophysics Data System (ADS)
Warner, Michael; Krabbendam, Victor; Schumacher, German
2008-07-01
Heidenhain position tape encoders are in use on almost all modern telescopes with excellent results. Performance of these systems can be limited by minor mechanical misalignments between the tape and read head causing errors at the grating period. The first and second harmonics of the measured signal are the dominant errors, and have a varying frequency dependant on axis rate. When the error spectrum is within the mount servo bandwidth it results in periodic telescope pointing jitter. This paper will describe an adaptive error correction using elliptic interpolation of the raw signals, based on the well known compensation technique developed by Heydemann [1]. The approach allows the compensation to track in real time with no need of a large static look-up table, or frequent calibrations. This paper also presents the results obtained after applying this approach on data measured on the SOAR telescope.
Adaptation to sensory-motor reflex perturbations is blind to the source of errors
Hudson, Todd E.; Landy, Michael S.
2012-01-01
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error-source information is used to generate an optimal adaptive response. If the self-generated source of the visually-induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal. PMID:22228797
Adaptive Femtosecond Quantum Control
NASA Astrophysics Data System (ADS)
Gerber, Gustav
2003-03-01
Obtaining active control over the dynamics of quantum-mechanical systems is a fascinating perspective in modern physics. A promising tool for this purpose is available with femtosecond laser technologies. The intrinsically broad spectral distribution and the phase function of femtosecond laser pulses can be specifically manipulated by pulse shapers to drive molecular systems coherently into the desired reaction pathways [1]. The approach of adaptive femtosecond quantum control follows the suggestion of Judson and Rabitz [2], in which a computer-controlled pulse shaper is used in combination with a learning algorithm [3] and direct feedback from the experiment to achieve coherent control over quantum-mechanical processes in an automated fashion, without requiring any model for the system's response. This technique can be applied to the control of gas-phase photodissociation processes [4]. Different bond-cleaving reactions can be preferentially selected, resulting in chemically different products. Prior knowledge about molecular Hamiltonians or reaction mechanisms is not required in this automated control loop, and this scheme works for complex systems. Adaptive pulse-shaping techniques can be transferred to the control of photoprocesses in the liquid phase as well, motivated by the wish to achieve control at particle densities high enough for (bimolecular) synthetic-chemical applications. Chemically selective molecular excitation is achieved by many-parameter adaptive quantum control [5], despite the failure of typical single-parameter approaches (such as wavelength control, intensity control, or linear chirp control). This experiment demonstrates that photoprocesses in two different molecular species can be controlled simultaneously. Applications are envisioned in bimolecular reaction control where specific educt molecules could selectively be "activated" for purposes of chemical synthesis. A new technological development further increases the possibilities and
Adaptive feedback active noise control
NASA Astrophysics Data System (ADS)
Kuo, Sen M.; Vijayan, Dipa
Feedforward active noise control (ANC) systems use a reference sensor that senses a reference input to the controller. This signal is assumed to be unaffected by the secondary source and is a good measure of the undesired noise to be cancelled by the system. The reference sensor may be acoustic (e.g., microphone) or non-acoustic (e.g., tachometer, optical transducer). An obvious problem when using acoustic sensors is that the reference signal may be corrupted by the canceling signal generated by the secondary source. This problem is known as acoustic feedback. One way of avoiding this is by using a feedback active noise control (FANC) system which dispenses with the reference sensor. The FANC technique originally proposed by Olson and May employs a high gain negative feedback amplifier. This system suffered from the drawback that the error microphone had to be placed very close to the loudspeaker. The operation of the system was restricted to low frequency range and suffered from instability due to the possibility of positive feedback. Feedback systems employing adaptive filtering techniques for active noise control were developed. This paper presents the FANC system modeled as an adaptive prediction scheme.
Adaptive control: Myths and realities
NASA Technical Reports Server (NTRS)
Athans, M.; Valavani, L.
1984-01-01
It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed.
Linearization of Attitude-Control Error Dynamics
NASA Technical Reports Server (NTRS)
Bach, Ralph; Paielli, Russell
1993-01-01
Direction cosines and quaternions are useful for representing rigid-body attitude because they exhibit no kinematic singularities. Each utilizes more variables than the minimum three degrees of freedom required to specify attitude. Therefore, application of a nonlinear inversion procedure to either formulation introduces singularities. Furthermore, in designing an attitude-control system, it is not appropriate to express attitude error as a difference of direction cosines (or quaternions). One should employ a measure of attitude error that not only is minimal but preserves orthogonal rotation properties as well. This note applies an inversion procedure to an appropriate measure of attitude error, so that the singularity occurs when the error reaches +/- 180 deg. This approach leads to the realization of a new model-follower attitude-control system that exhibits exact linear attitude-error dynamics.
The successively temporal error concealment algorithm using error-adaptive block matching principle
NASA Astrophysics Data System (ADS)
Lee, Yu-Hsuan; Wu, Tsai-Hsing; Chen, Chao-Chyun
2014-09-01
Generally, the temporal error concealment (TEC) adopts the blocks around the corrupted block (CB) as the search pattern to find the best-match block in previous frame. Once the CB is recovered, it is referred to as the recovered block (RB). Although RB can be the search pattern to find the best-match block of another CB, RB is not the same as its original block (OB). The error between the RB and its OB limits the performance of TEC. The successively temporal error concealment (STEC) algorithm is proposed to alleviate this error. The STEC procedure consists of tier-1 and tier-2. The tier-1 divides a corrupted macroblock into four corrupted 8 × 8 blocks and generates a recovering order for them. The corrupted 8 × 8 block with the first place of recovering order is recovered in tier-1, and remaining 8 × 8 CBs are recovered in tier-2 along the recovering order. In tier-2, the error-adaptive block matching principle (EA-BMP) is proposed for the RB as the search pattern to recover remaining corrupted 8 × 8 blocks. The proposed STEC outperforms sophisticated TEC algorithms on average PSNR by 0.3 dB on the packet error rate of 20% at least.
Xu, Jing; Klemfuss, Nola M.; Griffiths, Thomas L.; Ivry, Richard B.
2013-01-01
The cerebellum has long been recognized to play an important role in motor adaptation. Individuals with cerebellar ataxia exhibit impaired learning in visuomotor adaptation tasks such as prism adaptation and force field learning. Both types of tasks involve the adjustment of an internal model to compensate for an external perturbation. This updating process is error driven, with the error signal based on the difference between anticipated and actual sensory information. This process may entail a credit assignment problem, with a distinction made between error arising from faulty representation of the environment and error arising from noise in the controller. We hypothesized that people with ataxia may perform poorly at visuomotor adaptation because they attribute a greater proportion of their error to their motor control difficulties. We tested this hypothesis using a computational model based on a Kalman filter. We imposed a 20-deg visuomotor rotation in either a single large step or in a series of smaller 5-deg steps. The ataxic group exhibited a comparable deficit in both conditions. The computational analyses indicate that the patients' deficit cannot be accounted for simply by their increased motor variability. Rather, the patients' deficit in learning may be related to difficulty in estimating the instability in the environment or variability in their motor system. PMID:23197450
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error control in data communications is analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. The probability of undetected error of the above error control scheme is derived and upper bounded. Two specific exmaples are analyzed. In the first example, the inner code is a distance-4 shortened Hamming code with generator polynomial (X+1)(X(6)+X+1) = X(7)+X(6)+X(2)+1 and the outer code is a distance-4 shortened Hamming code with generator polynomial (X+1)X(15+X(14)+X(13)+X(12)+X(4)+X(3)+X(2)+X+1) = X(16)+X(12)+X(5)+1 which is the X.25 standard for packet-switched data network. This example is proposed for error control on NASA telecommand links. In the second example, the inner code is the same as that in the first example but the outer code is a shortened Reed-Solomon code with symbols from GF(2(8)) and generator polynomial (X+1)(X+alpha) where alpha is a primitive element in GF(z(8)).
Adaptive Error Estimation in Linearized Ocean General Circulation Models
NASA Technical Reports Server (NTRS)
Chechelnitsky, Michael Y.
1999-01-01
Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large
Engine identification for adaptive control
NASA Technical Reports Server (NTRS)
Leonard, R. G.; Arnett, E. M.
1980-01-01
An attempt to obtain a dynamic model for a turbofan gas turbine engine for the purpose of adaptive control is described. The requirements for adaptive control indicate that a dynamic model should be identified from data sampled during engine operation. The dynamic model identified was of the form of linear differential equations with time varying coefficients. A turbine engine is, however, a highly nonlinear system, so the identified model would be valid only over a small area near the operating point, thus requiring frequent updating of the coefficients in the model. Therefore it is necessary that the identifier use only recent information to perform its function. The identifier selected minimized the square of the equation errors. Known linear systems were used to test the characteristics of the identifier. It was found that the performance was dependent on the number of data points used in the computations and upon the time interval over which the data points were obtained. Preliminary results using an engine deck for the quiet, clean, shorthaul experimental engine indicate that the identified model predicts the engine motion well when there is sufficient dynamic information, that is when the engine is in transient operation.
Efficient hybrid ARQ protocols with adaptive forward error correction
NASA Astrophysics Data System (ADS)
Kallel, Samir
1994-02-01
In this paper, efficient Stop-and-Wait, Go-Back-N , and Selective-Repeat hybrid ARQ protocols with Adaptive Forward Error Correction (AFEC) using convolutional coding are proposed and analyzed. The basic idea is to vary the coding rate for error correction according to system parameters, such as the signal-to-noise ratio, the round trip delay, and the buffer size at the receiver, so as to maximize the throughput efficiency. The performances of the proposed ARQ protocols are evaluated for two channel models: a non-fading and an ideally-interleaved Rayleigh-fading additive white Gaussian noise channel. In all cases, it is found that the hybrid ARQ protocols with AFEC yield a comparatively high throughput under all channel conditions.
Error Correction, Control Systems and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Smith, Earl B.
2004-01-01
This paper will be a discussion on dealing with errors. While error correction and communication is important when dealing with spacecraft vehicles, the issue of control system design is also important. There will be certain commands that one wants a motion device to execute. An adequate control system will be necessary to make sure that the instruments and devices will receive the necessary commands. As it will be discussed later, the actual value will not always be equal to the intended or desired value. Hence, an adequate controller will be necessary so that the gap between the two values will be closed.
Performance of focused error control codes
NASA Astrophysics Data System (ADS)
Alajaji, Fady; Fuja, Thomas
1994-02-01
Consider an additive noise channel with inputs and outputs in the field GF(q) where qgreater than 2; every time a symbol is transmitted over such a channel, there are q - 1 different errors that can occur, corresponding to the q - 1 non-zero elements that the channel can add to the transmitted symbol. In many data communication/storage systems, there are some errors that occur much more frequently than others; however, traditional error correcting codes - designed with respect to the Hamming metric - treat each of these q - 1 errors the same. Fuja and Heegard have designed a class of codes, called focused error control codes, that offer different levels of protection against common and uncommon errors; the idea is to define the level of protection in a way based not only on the number of errors, but the kind as well. In this paper, the performance of these codes is analyzed with respect to idealized 'skewed' channels as well as realistic non-binary modulation schemes. It is shown that focused codes, used in conjunction with PSK and QAM signaling, can provide more than 1.0 dB of additional coding gain when compared with Reed-Solomon codes for small blocklengths.
Error control in the GCF: An information-theoretic model for error analysis and coding
NASA Technical Reports Server (NTRS)
Adeyemi, O.
1974-01-01
The structure of data-transmission errors within the Ground Communications Facility is analyzed in order to provide error control (both forward error correction and feedback retransmission) for improved communication. Emphasis is placed on constructing a theoretical model of errors and obtaining from it all the relevant statistics for error control. No specific coding strategy is analyzed, but references to the significance of certain error pattern distributions, as predicted by the model, to error correction are made.
Hanajima, Ritsuko; Shadmehr, Reza; Ohminami, Shinya; Tsutsumi, Ryosuke; Shirota, Yuichiro; Shimizu, Takahiro; Tanaka, Nobuyuki; Terao, Yasuo; Tsuji, Shoji; Ugawa, Yoshikazu; Uchimura, Motoaki; Inoue, Masato; Kitazawa, Shigeru
2015-10-01
Cerebellar damage can profoundly impair human motor adaptation. For example, if reaching movements are perturbed abruptly, cerebellar damage impairs the ability to learn from the perturbation-induced errors. Interestingly, if the perturbation is imposed gradually over many trials, people with cerebellar damage may exhibit improved adaptation. However, this result is controversial, since the differential effects of gradual vs. abrupt protocols have not been observed in all studies. To examine this question, we recruited patients with pure cerebellar ataxia due to cerebellar cortical atrophy (n = 13) and asked them to reach to a target while viewing the scene through wedge prisms. The prisms were computer controlled, making it possible to impose the full perturbation abruptly in one trial, or build up the perturbation gradually over many trials. To control visual feedback, we employed shutter glasses that removed visual feedback during the reach, allowing us to measure trial-by-trial learning from error (termed error-sensitivity), and trial-by-trial decay of motor memory (termed forgetting). We found that the patients benefited significantly from the gradual protocol, improving their performance with respect to the abrupt protocol by exhibiting smaller errors during the exposure block, and producing larger aftereffects during the postexposure block. Trial-by-trial analysis suggested that this improvement was due to increased error-sensitivity in the gradual protocol. Therefore, cerebellar patients exhibited an improved ability to learn from error if they experienced those errors gradually. This improvement coincided with increased error-sensitivity and was present in both groups of subjects, suggesting that control of error-sensitivity may be spared despite cerebellar damage. PMID:26311179
Multijoint error compensation mediates unstable object control.
Cluff, Tyler; Manos, Aspasia; Lee, Timothy D; Balasubramaniam, Ramesh
2012-08-01
A key feature of skilled object control is the ability to correct performance errors. This process is not straightforward for unstable objects (e.g., inverted pendulum or "stick" balancing) because the mechanics of the object are sensitive to small control errors, which can lead to rapid performance changes. In this study, we have characterized joint recruitment and coordination processes in an unstable object control task. Our objective was to determine whether skill acquisition involves changes in the recruitment of individual joints or distributed error compensation. To address this problem, we monitored stick-balancing performance across four experimental sessions. We confirmed that subjects learned the task by showing an increase in the stability and length of balancing trials across training sessions. We demonstrated that motor learning led to the development of a multijoint error compensation strategy such that after training, subjects preferentially constrained joint angle variance that jeopardized task performance. The selective constraint of destabilizing joint angle variance was an important metric of motor learning. Finally, we performed a combined uncontrolled manifold-permutation analysis to ensure the variance structure was not confounded by differences in the variance of individual joint angles. We showed that reliance on multijoint error compensation increased, whereas individual joint variation (primarily at the wrist joint) decreased systematically with training. We propose a learning mechanism that is based on the accurate estimation of sensory states. PMID:22623491
Adaptive Inner-Loop Rover Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.
2006-01-01
Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.
Adaptive control of robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.
Adaptive neural control of spacecraft using control moment gyros
NASA Astrophysics Data System (ADS)
Leeghim, Henzeh; Kim, Donghoon
2015-03-01
An adaptive control technique is applied to reorient spacecraft with uncertainty using control moment gyros. A nonlinear quaternion feedback law is chosen as a baseline controller. An additional adaptive control input supported by neural networks can estimate and eliminate unknown terms adaptively. The normalized input neural networks are considered for reliable computation of the adaptive input. To prove the stability of the closed-loop dynamics with the control law, the Lyapunov stability theory is considered. Accordingly, the proposed approach results in the uniform ultimate boundedness in tracking error. For reorientation maneuvers, control moment gyros are utilized with a well-known singularity problem described in this work investigated by predicting one-step ahead singularity index. A momentum vector recovery approach using magnetic torquers is also introduced to evaluate the avoidance strategies indirectly. Finally, the suggested methods are demonstrated by numerical simulation studies.
Adaptive control strategies for flexible robotic arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
The importance of robust error control in data compression applications
NASA Technical Reports Server (NTRS)
Woolley, S. I.
1993-01-01
Data compression has become an increasingly popular option as advances in information technology have placed further demands on data storage capabilities. With compression ratios as high as 100:1 the benefits are clear; however, the inherent intolerance of many compression formats to error events should be given careful consideration. If we consider that efficiently compressed data will ideally contain no redundancy, then the introduction of a channel error must result in a change of understanding from that of the original source. While the prefix property of codes such as Huffman enables resynchronisation, this is not sufficient to arrest propagating errors in an adaptive environment. Arithmetic, Lempel-Ziv, discrete cosine transform (DCT) and fractal methods are similarly prone to error propagating behaviors. It is, therefore, essential that compression implementations provide sufficient combatant error control in order to maintain data integrity. Ideally, this control should be derived from a full understanding of the prevailing error mechanisms and their interaction with both the system configuration and the compression schemes in use.
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2015-01-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735
NASA Astrophysics Data System (ADS)
Hellander, Andreas; Lawson, Michael J.; Drawert, Brian; Petzold, Linda
2014-06-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps were adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the diffusive finite-state projection (DFSP) method, to incorporate temporal adaptivity.
Hybrid adaptive control of a dragonfly model
NASA Astrophysics Data System (ADS)
Couceiro, Micael S.; Ferreira, Nuno M. F.; Machado, J. A. Tenreiro
2012-02-01
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive ( HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive ( DA) method in terms of faster and improved tracking and parameter convergence.
Adaptive Wavefront Calibration and Control for the Gemini Planet Imager
Poyneer, L A; Veran, J
2007-02-02
Quasi-static errors in the science leg and internal AO flexure will be corrected. Wavefront control will adapt to current atmospheric conditions through Fourier modal gain optimization, or the prediction of atmospheric layers with Kalman filtering.
Error control coding for meteor burst channels
NASA Astrophysics Data System (ADS)
Frederick, T. J.; Belkerdid, M. A.; Georgiopoulos, M.
The performance of several error control coding schemes for a meteor burst channel is studied via analysis and simulation. These coding strategies are compared using the probability of successful transmission of a fixed size packet through a single burst as a performance measure. The coding methods are compared via simulation for several realizations of meteor burst. It is found that, based on complexity and probability of success, fixed-rate convolutional codes with soft decision Viterbi decoding provide better performance.
Efficient text segmentation and adaptive color error diffusion for text enhancement
NASA Astrophysics Data System (ADS)
Kwon, Jae-Hyun; Park, Tae-Yong; Kim, Yun-Tae; Cho, Yang-Ho; Ha, Yeong-Ho
2005-01-01
This paper proposes an adaptive error diffusion algorithm for text enhancement followed by an efficient text segmentation that uses the maximum gradient difference (MGD). The gradients are calculated along with scan lines, then the MGD values are filled within a local window to merge text segments. If the value is above a threshold, the pixel is considered as potential text. Isolated segments are then eliminated in a non-text region filtering process. After the text segmentation, a conventional error diffusion method is applied to the background, while edge enhancement error diffusion is used for the text. Since it is inevitable that visually objectionable artifacts are generated when using two different halftoning algorithms, gradual dilation is proposed to minimize the boundary artifacts in the segmented text blocks before halftoning. Sharpening based on the gradually dilated text region (GDTR) then prevents the printing of successive dots around the text region boundaries. The method is extended to halftone color images to sharpen the text regions. The proposed adaptive error diffusion algorithm involves color halftoning that controls the amount of edge enhancement using a general error filter. However, edge enhancement unfortunately produces color distortion, as edge enhancement and color difference are trade-offs. The multiplicative edge enhancement parameters are selected based on the amount of edge sharpening and color difference. Plus, an additional error factor is introduced to reduce the dot elimination artifact generated by the edge enhancement error diffusion. In experiments, the text of a scanned image was sharper when using the proposed algorithm than with conventional error diffusion without changing the background.
Efficient text segmentation and adaptive color error diffusion for text enhancement
NASA Astrophysics Data System (ADS)
Kwon, Jae-Hyun; Park, Tae-Yong; Kim, Yun-Tae; Cho, Yang-Ho; Ha, Yeong-Ho
2004-12-01
This paper proposes an adaptive error diffusion algorithm for text enhancement followed by an efficient text segmentation that uses the maximum gradient difference (MGD). The gradients are calculated along with scan lines, then the MGD values are filled within a local window to merge text segments. If the value is above a threshold, the pixel is considered as potential text. Isolated segments are then eliminated in a non-text region filtering process. After the text segmentation, a conventional error diffusion method is applied to the background, while edge enhancement error diffusion is used for the text. Since it is inevitable that visually objectionable artifacts are generated when using two different halftoning algorithms, gradual dilation is proposed to minimize the boundary artifacts in the segmented text blocks before halftoning. Sharpening based on the gradually dilated text region (GDTR) then prevents the printing of successive dots around the text region boundaries. The method is extended to halftone color images to sharpen the text regions. The proposed adaptive error diffusion algorithm involves color halftoning that controls the amount of edge enhancement using a general error filter. However, edge enhancement unfortunately produces color distortion, as edge enhancement and color difference are trade-offs. The multiplicative edge enhancement parameters are selected based on the amount of edge sharpening and color difference. Plus, an additional error factor is introduced to reduce the dot elimination artifact generated by the edge enhancement error diffusion. In experiments, the text of a scanned image was sharper when using the proposed algorithm than with conventional error diffusion without changing the background.
Aircraft adaptive learning control
NASA Technical Reports Server (NTRS)
Lee, P. S. T.; Vanlandingham, H. F.
1979-01-01
The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.
Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.
O'Shea, Jacinta; Gaveau, Valérie; Kandel, Matthieu; Koga, Kazuo; Susami, Kenji; Prablanc, Claude; Rossetti, Yves
2014-03-01
This study investigated the motor control mechanisms that enable healthy individuals to adapt their pointing movements during prism exposure to a rightward optical shift. In the prism adaptation literature, two processes are typically distinguished. Strategic motor adjustments are thought to drive the pattern of rapid endpoint error correction typically observed during the early stage of prism exposure. This is distinguished from so-called 'true sensorimotor realignment', normally measured with a different pointing task, at the end of prism exposure, which reveals a compensatory leftward 'prism after-effect'. Here, we tested whether each mode of motor compensation - strategic adjustments versus 'true sensorimotor realignment' - could be distinguished, by analyzing patterns of kinematic change during prism exposure. We hypothesized that fast feedforward versus slower feedback error corrective processes would map onto two distinct phases of the reach trajectory. Specifically, we predicted that feedforward adjustments would drive rapid compensation of the initial (acceleration) phase of the reach, resulting in the rapid reduction of endpoint errors typically observed early during prism exposure. By contrast, we expected visual-proprioceptive realignment to unfold more slowly and to reflect feedback influences during the terminal (deceleration) phase of the reach. The results confirmed these hypotheses. Rapid error reduction during the early stage of prism exposure was achieved by trial-by-trial adjustments of the motor plan, which were proportional to the endpoint error feedback from the previous trial. By contrast, compensation of the terminal reach phase unfolded slowly across the duration of prism exposure. Even after 100 trials of pointing through prisms, adaptation was incomplete, with participants continuing to exhibit a small rightward shift in both the reach endpoints and in the terminal phase of reach trajectories. Individual differences in the degree of
Zhou, Hui; Kunz, Thomas; Schwartz, Howard
2011-01-01
Traditional oscillators used in timing modules of CDMA and WiMAX base stations are large and expensive. Applying cheaper and smaller, albeit more inaccurate, oscillators in timing modules is an interesting research challenge. An adaptive control algorithm is presented to enhance the oscillators to meet the requirements of base stations during holdover mode. An oscillator frequency stability model is developed for the adaptive control algorithm. This model takes into account the control loop which creates the correction signal when the timing module is in locked mode. A recursive prediction error method is used to identify the system model parameters. Simulation results show that an oscillator enhanced by our adaptive control algorithm improves the oscillator performance significantly, compared with uncorrected oscillators. Our results also show the benefit of explicitly modeling the control loop. Finally, the cumulative time error upper bound of such enhanced oscillators is investigated analytically and comparison results between the analytical and simulated upper bound are provided. The results show that the analytical upper bound can serve as a practical guide for system designers. PMID:21244973
Hansen, M; Haugland, M K
2001-01-01
Adaptive restriction rules based on fuzzy logic have been developed to eliminate errors and to increase stimulation safety in the foot-drop correction application, specifically when using adaptive logic networks to provide a stimulation control signal based on neural activity recorded from peripheral sensory nerve branches. The fuzzy rules were designed to increase flexibility and offer easier customization, compared to earlier versions of restriction rules. The rules developed quantified the duration of swing and stance phases into states of accepting or rejecting new transitions, based on the cyclic nature of gait and statistics on the current gait patterns. The rules were easy to custom design for a specific application, using linguistic terms to model the actions of the rules. The rules were tested using pre-recorded gait data processed through a gait event detector and proved to reduce detection delay and the number of errors, compared to conventional rules. PMID:11601442
Direct adaptive control for nonlinear uncertain dynamical systems
NASA Astrophysics Data System (ADS)
Hayakawa, Tomohisa
; direct discrete-time adaptive control with guaranteed parameter error convergence; and hybrid adaptive control for nonlinear uncertain impulsive dynamical systems.
An integrated architecture of adaptive neural network control for dynamic systems
Ke, Liu; Tokar, R.; Mcvey, B.
1994-07-01
In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.
Adaptive Control Of Remote Manipulator
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander
2015-04-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106
Error Budget Analysis for an Adaptive Optics Optical Coherence Tomography System
Evans, Julia W.; Zawadzki, Robert J.; Jones, Steven M.; Olivier, Scot S.; Werner, John S.
2009-01-01
The combination of adaptive optics (AO) technology with optical coherence tomography (OCT) instrumentation for imaging the retina has proven to be a valuable tool for clinicians and researchers in understanding the healthy and diseased eye. The micrometer-isotropic resolution achieved by such a system allows imaging of the retina at a cellular level, however imaging of some cell types remains elusive. Improvement in contrast rather than resolution is needed and can be achieved through better AO correction of wavefront aberration. A common tool for assessing and ultimately improving AO system performance is the development of an error budget. Specifically, this is a list of the magnitude of the constituent residual errors of an optical system so that resources can be directed towards efficient performance improvement. Here we present an error budget developed for the UC Davis AO-OCT instrument indicating that bandwidth and controller errors are the limiting errors of our AO system, which should be corrected first to improve performance. We also discuss the scaling of error sources for different subjects and the need to improve the robustness of the system by addressing subject variability. PMID:19654784
Adaptive Control For Flexible Structures
NASA Technical Reports Server (NTRS)
Bayard, David S.; Ih, Che-Hang Charles; Wang, Shyh Jong
1988-01-01
Paper discusses ways to cope with measurement noise in adaptive control system for large, flexible structure in outer space. System generates control signals for torque and thrust actuators to turn all or parts of structure to desired orientations while suppressing torsional and other vibrations. Main result of paper is general theory for introduction of filters to suppress measurement noise while preserving stability.
Geometric view of adaptive optics control.
Wiberg, Donald M; Max, Claire E; Gavel, Donald T
2005-05-01
The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A 73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures. PMID:15898546
Finite-approximation-error-based discrete-time iterative adaptive dynamic programming.
Wei, Qinglai; Wang, Fei-Yue; Liu, Derong; Yang, Xiong
2014-12-01
In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, a new generalized value iteration algorithm of ADP is developed to make the iterative performance index function converge to the solution of the Hamilton-Jacobi-Bellman equation. The generalized value iteration algorithm permits an arbitrary positive semi-definite function to initialize it, which overcomes the disadvantage of traditional value iteration algorithms. When the iterative control law and iterative performance index function in each iteration cannot accurately be obtained, for the first time a new "design method of the convergence criteria" for the finite-approximation-error-based generalized value iteration algorithm is established. A suitable approximation error can be designed adaptively to make the iterative performance index function converge to a finite neighborhood of the optimal performance index function. Neural networks are used to implement the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the developed method. PMID:25265640
Adaptive Control with Reference Model Modification
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example
Adaptive control based on retrospective cost optimization
NASA Technical Reports Server (NTRS)
Santillo, Mario A. (Inventor); Bernstein, Dennis S. (Inventor)
2012-01-01
A discrete-time adaptive control law for stabilization, command following, and disturbance rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm includes guidelines concerning the modeling information needed for implementation. This information includes the relative degree, the first nonzero Markov parameter, and the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros whose absolute value is less than the plant's spectral radius, the required zero information can be approximated by a sufficient number of Markov parameters. No additional information about the poles or zeros need be known. Numerical examples are presented to illustrate the algorithm's effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and saturation.
Capitalization on Item Calibration Error in Adaptive Testing. Research Report 98-07.
ERIC Educational Resources Information Center
van der Linden, Wim J.; Glas, Cees A. W.
In adaptive testing, item selection is sequentially optimized during the test. Since the optimization takes place over a pool of items calibrated with estimation error, capitalization on these errors is likely to occur. How serious the consequences of this phenomenon are depends not only on the distribution of the estimation errors in the pool or…
Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model
NASA Technical Reports Server (NTRS)
Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.
2010-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.
Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.
2006-10-01
This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.
Model reference adaptive control of robots
NASA Technical Reports Server (NTRS)
Steinvorth, Rodrigo
1991-01-01
This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher
2015-01-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106
Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
Peng, Jinzhu; Yu, Jie; Wang, Jie
2014-07-01
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. PMID:24917071
The reduced order model problem in distributed parameter systems adaptive identification and control
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.
1980-01-01
The research concerning the reduced order model problem in distributed parameter systems is reported. The adaptive control strategy was chosen for investigation in the annular momentum control device. It is noted, that if there is no observation spill over, and no model errors, an indirect adaptive control strategy can be globally stable. Recent publications concerning adaptive control are included.
Johnson, Dominic D P; Blumstein, Daniel T; Fowler, James H; Haselton, Martie G
2013-08-01
Counterintuitively, biases in behavior or cognition can improve decision making. Under conditions of uncertainty and asymmetric costs of 'false-positive' and 'false-negative' errors, biases can lead to mistakes in one direction but - in so doing - steer us away from more costly mistakes in the other direction. For example, we sometimes think sticks are snakes (which is harmless), but rarely that snakes are sticks (which can be deadly). We suggest that 'error management' biases: (i) have been independently identified by multiple interdisciplinary studies, suggesting the phenomenon is robust across domains, disciplines, and methodologies; (ii) represent a general feature of life, with common sources of variation; and (iii) offer an explanation, in error management theory (EMT), for the evolution of cognitive biases as the best way to manage errors under cognitive and evolutionary constraints. PMID:23787087
On fractional order composite model reference adaptive control
NASA Astrophysics Data System (ADS)
Wei, Yiheng; Sun, Zhenyuan; Hu, Yangsheng; Wang, Yong
2016-08-01
This paper presents a novel composite model reference adaptive control approach for a class of fractional order linear systems with unknown constant parameters. The method is extended from the model reference adaptive control. The parameter estimation error of our method depends on both the tracking error and the prediction error, whereas the existing method only depends on the tracking error, which makes our method has better transient performance in the sense of generating smooth system output. By the aid of the continuous frequency distributed model, stability of the proposed approach is established in the Lyapunov sense. Furthermore, the convergence property of the model parameters estimation is presented, on the premise that the closed-loop control system is stable. Finally, numerical simulation examples are given to demonstrate the effectiveness of the proposed schemes.
Adaptable state based control system
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)
2004-01-01
An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.
Persistent residual errors in motor adaptation tasks: reversion to baseline and exploratory escape.
Vaswani, Pavan A; Shmuelof, Lior; Haith, Adrian M; Delnicki, Raymond J; Huang, Vincent S; Mazzoni, Pietro; Shadmehr, Reza; Krakauer, John W
2015-04-29
When movements are perturbed in adaptation tasks, humans and other animals show incomplete compensation, tolerating small but sustained residual errors that persist despite repeated trials. State-space models explain this residual asymptotic error as interplay between learning from error and reversion to baseline, a form of forgetting. Previous work using zero-error-clamp trials has shown that reversion to baseline is not obligatory and can be overcome by manipulating feedback. We posited that novel error-clamp trials, in which feedback is constrained but has nonzero error and variance, might serve as a contextual cue for recruitment of other learning mechanisms that would then close the residual error. When error clamps were nonzero and had zero variance, human subjects changed their learning policy, using exploration in response to the residual error, despite their willingness to sustain such an error during the training block. In contrast, when the distribution of feedback in clamp trials was naturalistic, with persistent mean error but also with variance, a state-space model accounted for behavior in clamps, even in the absence of task success. Therefore, when the distribution of errors matched those during training, state-space models captured behavior during both adaptation and error-clamp trials because error-based learning dominated; when the distribution of feedback was altered, other forms of learning were triggered that did not follow the state-space model dynamics exhibited during training. The residual error during adaptation appears attributable to an error-dependent learning process that has the property of reversion toward baseline and that can suppress other forms of learning. PMID:25926471
Persistent Residual Errors in Motor Adaptation Tasks: Reversion to Baseline and Exploratory Escape
Shmuelof, Lior; Haith, Adrian M.; Delnicki, Raymond J.; Huang, Vincent S.; Mazzoni, Pietro; Shadmehr, Reza; Krakauer, John W.
2015-01-01
When movements are perturbed in adaptation tasks, humans and other animals show incomplete compensation, tolerating small but sustained residual errors that persist despite repeated trials. State-space models explain this residual asymptotic error as interplay between learning from error and reversion to baseline, a form of forgetting. Previous work using zero-error-clamp trials has shown that reversion to baseline is not obligatory and can be overcome by manipulating feedback. We posited that novel error-clamp trials, in which feedback is constrained but has nonzero error and variance, might serve as a contextual cue for recruitment of other learning mechanisms that would then close the residual error. When error clamps were nonzero and had zero variance, human subjects changed their learning policy, using exploration in response to the residual error, despite their willingness to sustain such an error during the training block. In contrast, when the distribution of feedback in clamp trials was naturalistic, with persistent mean error but also with variance, a state-space model accounted for behavior in clamps, even in the absence of task success. Therefore, when the distribution of errors matched those during training, state-space models captured behavior during both adaptation and error-clamp trials because error-based learning dominated; when the distribution of feedback was altered, other forms of learning were triggered that did not follow the state-space model dynamics exhibited during training. The residual error during adaptation appears attributable to an error-dependent learning process that has the property of reversion toward baseline and that can suppress other forms of learning. PMID:25926471
Method For Model-Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Relatively simple method of model-reference adaptive control (MRAC) developed from two prior classes of MRAC techniques: signal-synthesis method and parameter-adaption method. Incorporated into unified theory, which yields more general adaptation scheme.
An error control system with multiple-stage forward error corrections
NASA Technical Reports Server (NTRS)
Takata, Toyoo; Fujiwara, Toru; Kasami, Tadao; Lin, Shu
1990-01-01
A robust error-control coding system is presented. This system is a cascaded FEC (forward error control) scheme supported by parity retransmissions for further error correction in the erroneous data words. The error performance and throughput efficiency of the system are analyzed. Two specific examples of the error-control system are studied. The first example does not use an inner code, and the outer code, which is not interleaved, is a shortened code of the NASA standard RS code over GF(28). The second example, as proposed for NASA, uses the same shortened RS code as the base outer code C2, except that it is interleaved to a depth of 2. It is shown that both examples provide high reliability and throughput efficiency even for high channel bit-error rates in the range of 0.01.
Adaptive feed-forward loop connection based on error signal
NASA Astrophysics Data System (ADS)
Hidaka, Koichi
2005-12-01
In this paper, we investigate effect of changing the connection of feed-forward loop based on error signal. Our motivation of this work is solution to progress of human skill. For the skill model, we study a human simple action such as arm motion. Many models that describe the human arm dynamics have been proposed in recent year. While one type does not need an inverse model of human dynamics, the system based on the model does not include feed-forward loop. On the other hand, another type model has a feed-forward loop and feedback loop systems. This type assumes feed-forward element includes an internal model by repeating action or training and this loop progress our skill. Then we usually have to exercise to get a good performance. This says that we design the internal motion model by training and we move on prediction for motion. Under the assumption, Kawato model is well known. The model proposed that learning of feed-forward element is promoted in brain so that the error of feedback loop decreases. Furthermore, we assume the connections in feedback loop and feed-forward loop are changed. We show numerical simulations and consider that the position error given by our vision changes the skill element and we confirm that the position error is the one of the estimate function for the improvement in our skill.
An hp-adaptivity and error estimation for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1995-01-01
This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.
Adaptive Force Control in Compliant Motion
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.
Adaptive support vector regression for UAV flight control.
Shin, Jongho; Jin Kim, H; Kim, Youdan
2011-01-01
This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model. PMID:20970303
Keck adaptive optics: control subsystem
Brase, J.M.; An, J.; Avicola, K.
1996-03-08
Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.
Experimental investigation of adaptive control of a parallel manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1992-01-01
The implementation of a joint-space adaptive control scheme used to control non-compliant motion of a Stewart Platform-based Manipulator (SPBM) is presented. The SPBM is used in a facility called the Hardware Real-Time Emulator (HRTE) developed at Goddard Space Flight Center to emulate space operations. The SPBM is comprised of two platforms and six linear actuators driven by DC motors, and possesses six degrees of freedom. The report briefly reviews the development of the adaptive control scheme which is composed of proportional-derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories of the SPBM actuator lengths. The derivation of the adaptation law is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that SPBM motion is slow as compared to the controller adaptation rate. An experimental study is conducted to evaluate the performance of the adaptive control scheme implemented to control the SPBM to track a vertical and circular paths under step changes in payload. Experimental results show that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
A Java Applet for Illustrating Internet Error Control
ERIC Educational Resources Information Center
Holliday, Mark A.
2004-01-01
This paper discusses the author's experiences developing a Java applet that illustrates how error control is implemented in the Transmission Control Protocol (TCP). One section discusses the concepts which the TCP error control Java applet is intended to convey, while the nature of the Java applet is covered in another section. The author…
Evaluation and control of spatial frequency errors in reflective telescopes
NASA Astrophysics Data System (ADS)
Zhang, Xuejun; Zeng, Xuefeng; Hu, Haixiang; Zheng, Ligong
2015-08-01
In this paper, the influence on the image quality of manufacturing residual errors was studied. By analyzing the statistical distribution characteristics of the residual errors and their effects on PSF and MTF, we divided those errors into low, middle and high frequency domains using the unit "cycles per aperture". Two types of mid-frequency errors, algorithm intrinsic and tool path induced were analyzed. Control methods in current deterministic polishing process, such as MRF or IBF were presented.
Intelligent Engine Systems: Adaptive Control
NASA Technical Reports Server (NTRS)
Gibson, Nathan
2008-01-01
We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.
Alavandar, Srinivasan; Nigam, M J
2009-10-01
Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller. PMID:19523623
Attitude control with realization of linear error dynamics
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1993-01-01
An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.
Error estimation and adaptive mesh refinement for parallel analysis of shell structures
NASA Technical Reports Server (NTRS)
Keating, Scott C.; Felippa, Carlos A.; Park, K. C.
1994-01-01
The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.
Short-term adaptation of the VOR: non-retinal-slip error signals and saccade substitution
NASA Technical Reports Server (NTRS)
Eggers, Sscott D Z.; De Pennington, Nick; Walker, Mark F.; Shelhamer, Mark; Zee, David S.
2003-01-01
We studied short-term (30 min) adaptation of the vestibulo-ocular reflex (VOR) in five normal humans using a "position error" stimulus without retinal image motion. Both before and after adaptation a velocity gain (peak slow-phase eye velocity/peak head velocity) and a position gain (total eye movement during chair rotation/amplitude of chair motion) were measured in darkness using search coils. The vestibular stimulus was a brief ( approximately 700 ms), 15 degrees chair rotation in darkness (peak velocity 43 degrees /s). To elicit adaptation, a straight-ahead fixation target disappeared during chair movement and when the chair stopped the target reappeared at a new location in front of the subject for gain-decrease (x0) adaptation, or 10 degrees opposite to chair motion for gain-increase (x1.67) adaptation. This position-error stimulus was effective at inducing VOR adaptation, though for gain-increase adaptation the primary strategy was to substitute augmenting saccades during rotation while for gain-decrease adaptation both corrective saccades and a decrease in slow-phase velocity occurred. Finally, the presence of the position-error signal alone, at the end of head rotation, without any attempt to fix upon it, was not sufficient to induce adaptation. Adaptation did occur, however, if the subject did make a saccade to the target after head rotation, or even if the subject paid attention to the new location of the target without actually looking at it.
Adaptive control system for pulsed megawatt klystrons
Bolie, Victor W.
1992-01-01
The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.
Adaptive Flight Control for Aircraft Safety Enhancements
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.
2008-01-01
This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.
Missile guidance law design using adaptive cerebellar model articulation controller.
Lin, Chih-Min; Peng, Ya-Fu
2005-05-01
An adaptive cerebellar model articulation controller (CMAC) is proposed for command to line-of-sight (CLOS) missile guidance law design. In this design, the three-dimensional (3-D) CLOS guidance problem is formulated as a tracking problem of a time-varying nonlinear system. The adaptive CMAC control system is comprised of a CMAC and a compensation controller. The CMAC control is used to imitate a feedback linearization control law and the compensation controller is utilized to compensate the difference between the feedback linearization control law and the CMAC control. The online adaptive law is derived based on the Lyapunov stability theorem to learn the weights of receptive-field basis functions in CMAC control. In addition, in order to relax the requirement of approximation error bound, an estimation law is derived to estimate the error bound. Then the adaptive CMAC control system is designed to achieve satisfactory tracking performance. Simulation results for different engagement scenarios illustrate the validity of the proposed adaptive CMAC-based guidance law. PMID:15940993
Model reference adaptive attitude control of spacecraft using reaction wheels
NASA Technical Reports Server (NTRS)
Singh, Sahjendra N.
1986-01-01
A nonlinear model reference adaptive control law for large angle rotational maneuvers of spacecraft using reaction wheels in the presence of uncertainty is presented. The derivation of control law does not require any information on the values of the system parameters and the disturbance torques acting on the spacecraft. The controller includes a dynamic system in the feedback path. The control law is a nonlinear function of the attitude error, the rate of the attitude error, and the compensator state. Simulation results are prsented to show that large angle rotational maneuvers can be performed in spite of the uncertainty in the system.
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.
2002-01-01
Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.
NASA Astrophysics Data System (ADS)
Wu, Heng
2000-10-01
In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
Robust adaptive control for Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Kahveci, Nazli E.
anti-windup compensation. Our analysis on the indirect adaptive scheme reveals that the perturbation terms due to parameter errors do not cause any unbounded signals in the closed-loop. The stability of the adaptive system is established, and the properties of the proposed control scheme are demonstrated through simulations on a UAV model with input magnitude saturation constraints. The robust adaptive control design is further developed to extend our results to rate-saturated systems.
Designing to Control Flight Crew Errors
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Willshire, Kelli F.
1997-01-01
It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.
Servo control booster system for minimizing following error
Wise, William L.
1985-01-01
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Novel Hybrid Adaptive Controller for Manipulation in Complex Perturbation Environments
Smith, Alex M. C.; Yang, Chenguang; Ma, Hongbin; Culverhouse, Phil; Cangelosi, Angelo; Burdet, Etienne
2015-01-01
In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing. PMID:26029916
Novel hybrid adaptive controller for manipulation in complex perturbation environments.
Smith, Alex M C; Yang, Chenguang; Ma, Hongbin; Culverhouse, Phil; Cangelosi, Angelo; Burdet, Etienne
2015-01-01
In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing. PMID:26029916
Yang, Yana; Hua, Changchun; Guan, Xinping
2016-03-01
Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method. PMID:25823053
Online Error Reporting for Managing Quality Control Within Radiology.
Golnari, Pedram; Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L
2016-06-01
Information technology systems within health care, such as picture archiving and communication system (PACS) in radiology, can have a positive impact on production but can also risk compromising quality. The widespread use of PACS has removed the previous feedback loop between radiologists and technologists. Instead of direct communication of quality discrepancies found for an examination, the radiologist submitted a paper-based quality-control report. A web-based issue-reporting tool can help restore some of the feedback loop and also provide possibilities for more detailed analysis of submitted errors. The purpose of this study was to evaluate the hypothesis that data from use of an online error reporting software for quality control can focus our efforts within our department. For the 372,258 radiologic examinations conducted during the 6-month period study, 930 errors (390 exam protocol, 390 exam validation, and 150 exam technique) were submitted, corresponding to an error rate of 0.25 %. Within the category exam protocol, technologist documentation had the highest number of submitted errors in ultrasonography (77 errors [44 %]), while imaging protocol errors were the highest subtype error for computed tomography modality (35 errors [18 %]). Positioning and incorrect accession had the highest errors in the exam technique and exam validation error category, respectively, for nearly all of the modalities. An error rate less than 1 % could signify a system with a very high quality; however, a more likely explanation is that not all errors were detected or reported. Furthermore, staff reception of the error reporting system could also affect the reporting rate. PMID:26510753
Dual-arm manipulators with adaptive control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.
Simple method for model reference adaptive control
NASA Technical Reports Server (NTRS)
Seraji, H.
1989-01-01
A simple method is presented for combined signal synthesis and parameter adaptation within the framework of model reference adaptive control theory. The results are obtained using a simple derivation based on an improved Liapunov function.
Two hybrid ARQ error control schemes for near earth satellite communications
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao
1986-01-01
Two hybrid automatic repeat request (ARQ) error control schemes are proposed for NASA near earth satellite communications. Both schemes are adaptive in nature, and employ cascaded codes to achieve both high reliability and throughput efficiency for high data rate file transfer.
Two hybrid ARQ error control schemes for near Earth satellite communications
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
Two hybrid Automatic Repeat Request (ARQ) error control schemes are proposed for NASA near Earth satellite communications. Both schemes are adaptive in nature, and employ cascaded codes to achieve both high reliability and throughput efficiency for high data rate file transfer.
Error control for reliable digital data transmission and storage systems
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, R. H.
1985-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.
Statistical Physics for Adaptive Distributed Control
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.
Adaptive Control of Truss Structures for Gossamer Spacecraft
NASA Technical Reports Server (NTRS)
Yang Bong-Jun; Calise, anthony J.; Craig, James I.; Whorton, Mark S.
2007-01-01
Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.
Flexible beam control using an adaptive truss
NASA Technical Reports Server (NTRS)
Warrington, Thomas J.; Horner, C. Garnett
1990-01-01
To demonstrate the feasibility of adaptive trusses for vibration suppression, a 12-ft-long beam is attached to a single cell of an adaptive truss which has three active battens. With the base of the adaptive truss attached to the laboratory frame, the measured strain of the vibrating beam shows the adaptive truss to be very effective in suppressing vibration when subjected to initial conditions. Control is accomplished by a PC/XT computer that implements an LQR-designed control law.
Flight Test Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Development of error criteria for adaptive multi-element polynomial chaos approaches
NASA Astrophysics Data System (ADS)
Chouvion, B.; Sarrouy, E.
2016-01-01
This paper presents and compares different methodologies to create an adaptive stochastic space partitioning in polynomial chaos applications which use a multi-element approach. To implement adaptive partitioning, Wan and Karniadakis first developed a criterion based on the relative error in local variance. We propose here two different error criteria: one based on the residual error and the other on the local variance discontinuity created by partitioning. The methods are applied to classical differential equations with long-term integration difficulties, including the Kraichnan-Orszag three-mode problem, and to simple linear and nonlinear mechanical systems whose stochastic dynamic responses are investigated. The efficiency and robustness of the approaches are investigated by comparison with Monte-Carlo simulations. For the different examples considered, they show significantly better convergence characteristics than the original error criterion used.
Adaptive, predictive controller for optimal process control
Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.
1995-12-01
One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.
Correctable noise of quantum-error-correcting codes under adaptive concatenation
NASA Astrophysics Data System (ADS)
Fern, Jesse
2008-01-01
We examine the transformation of noise under a quantum-error-correcting code (QECC) concatenated repeatedly with itself, by analyzing the effects of a quantum channel after each level of concatenation using recovery operators that are optimally adapted to use error syndrome information from the previous levels of the code. We use the Shannon entropy of these channels to estimate the thresholds of correctable noise for QECCs and find considerable improvements under this adaptive concatenation. Similar methods could be used to increase quantum-fault-tolerant thresholds.
Hybrid adaptive ascent flight control for a flexible launch vehicle
NASA Astrophysics Data System (ADS)
Lefevre, Brian D.
hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight
Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Kwak, Dochan (Technical Monitor)
2002-01-01
This paper presents the development of a mesh adaptation module for a multilevel Cartesian solver. While the module allows mesh refinement to be driven by a variety of different refinement parameters, a central feature in its design is the incorporation of a multilevel error estimator based upon direct estimates of the local truncation error using tau-extrapolation. This error indicator exploits the fact that in regions of uniform Cartesian mesh, the spatial operator is exactly the same on the fine and coarse grids, and local truncation error estimates can be constructed by evaluating the residual on the coarse grid of the restricted solution from the fine grid. A new strategy for adaptive h-refinement is also developed to prevent errors in smooth regions of the flow from being masked by shocks and other discontinuous features. For certain classes of error histograms, this strategy is optimal for achieving equidistribution of the refinement parameters on hierarchical meshes, and therefore ensures grid converged solutions will be achieved for appropriately chosen refinement parameters. The robustness and accuracy of the adaptation module is demonstrated using both simple model problems and complex three dimensional examples using meshes with from 10(exp 6), to 10(exp 7) cells.
Error estimation and adaptive order nodal method for solving multidimensional transport problems
Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.
1998-01-01
The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.
Compton, Rebecca J; Hofheimer, Julia; Kazinka, Rebecca
2013-03-01
In this study, we tested the relationship between error-related signals of cognitive control and cortisol reactivity, investigating the hypothesis of common systems for cognitive and emotional self-regulation. Eighty-three participants completed a Stroop task while electroencephalography (EEG) was recorded. Three error-related indices were derived from the EEG: the error-related negativity (ERN), error positivity (Pe), and error-related alpha suppression (ERAS). Pre- and posttask salivary samples were assayed for cortisol, and cortisol change scores were correlated with the EEG variables. Better error-correct differentiation in the ERN predicted less cortisol increase during the task, whereas greater ERAS predicted greater cortisol increase during the task; the Pe was not correlated with cortisol changes. We concluded that an enhanced ERN, part of an adaptive cognitive control system, predicts successful stress regulation. In contrast, an enhanced ERAS response may reflect error-related arousal that is not adaptive. The results support the concept of overlapping systems for cognitive and emotional self-regulation. PMID:23055094
Adaptive and predictive control of a simulated robot arm.
Tolu, Silvia; Vanegas, Mauricio; Garrido, Jesús A; Luque, Niceto R; Ros, Eduardo
2013-06-01
In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs). PMID:23627657
Adaptive control of Hammerstein-Wiener nonlinear systems
NASA Astrophysics Data System (ADS)
Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong
2016-07-01
The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.
The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation.
Fadaee, Shannon B; Migliaccio, Americo A
2016-04-01
The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1% increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2%). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1-2 retinal image position error signals every 100 ms (i.e. target position update rate 15-20 Hz) are sufficient to drive VOR adaptation. PMID:26715411
Hussain, Sara J; Hanson, Angela S; Tseng, Shih-Chiao; Morton, Susanne M
2013-08-01
Locomotor patterns are generally very consistent but also contain a high degree of adaptability. Motor adaptation is a short-term type of learning that utilizes this plasticity to alter locomotor behaviors quickly and transiently. In this study, we used a variation of an adaptation paradigm in order to test whether explicit information as well as the removal of the visual error signal after adaptation could improve retention of a newly learned walking pattern 24 h later. On two consecutive days of testing, participants walked on a treadmill while viewing a visual display that showed erroneous feedback of swing times for each leg. Participants were instructed to use this feedback to monitor and adjust swing times so they appeared symmetric within the display. This was achieved by producing a novel interlimb asymmetry between legs. For both legs, we measured adaptation magnitudes and rates and immediate and 24-h retention magnitudes. Participants showed similar adaptation on both days but a faster rate of readaptation on day 2. There was complete retention of adapted swing times on the increasing leg (i.e., no evidence of performance decay over 24 h). Overall, these findings suggest that the inclusion of explicit information and the removal of the visual error signal are effective in inducing full retention of adapted increases in swing time over a moderate (24 h) interval of time. PMID:23741038
Research in digital adaptive flight controllers
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.
Error-measure for anisotropic grid-adaptation in turbulence-resolving simulations
NASA Astrophysics Data System (ADS)
Toosi, Siavash; Larsson, Johan
2015-11-01
Grid-adaptation requires an error-measure that identifies where the grid should be refined. In the case of turbulence-resolving simulations (DES, LES, DNS), a simple error-measure is the small-scale resolved energy, which scales with both the modeled subgrid-stresses and the numerical truncation errors in many situations. Since this is a scalar measure, it does not carry any information on the anisotropy of the optimal grid-refinement. The purpose of this work is to introduce a new error-measure for turbulence-resolving simulations that is capable of predicting nearly-optimal anisotropic grids. Turbulent channel flow at Reτ ~ 300 is used to assess the performance of the proposed error-measure. The formulation is geometrically general, applicable to any type of unstructured grid.
Survey of adaptive control using Liapunov design
NASA Technical Reports Server (NTRS)
Lindorff, D. P.; Carroll, R. L.
1973-01-01
A survey of the literature in which Liapunov's second method is used in determining the control law is presented, with emphasis placed on the model-tracking adaptive control problem. Forty references are listed. Following a brief tutorial exposition of the adaptive control problem, the techniques for treating reduction of order, disturbance and time-varying parameters, multivariable systems, identification, and adaptive observers are discussed. The method is critically evaluated, particularly with respect to possibilities for application.
An adaptive Cartesian control scheme for manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.
Composite Gauss-Legendre Quadrature with Error Control
ERIC Educational Resources Information Center
Prentice, J. S. C.
2011-01-01
We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)
High Dimensional Variable Selection with Error Control.
Kim, Sangjin; Halabi, Susan
2016-01-01
Background. The iterative sure independence screening (ISIS) is a popular method in selecting important variables while maintaining most of the informative variables relevant to the outcome in high throughput data. However, it not only is computationally intensive but also may cause high false discovery rate (FDR). We propose to use the FDR as a screening method to reduce the high dimension to a lower dimension as well as controlling the FDR with three popular variable selection methods: LASSO, SCAD, and MCP. Method. The three methods with the proposed screenings were applied to prostate cancer data with presence of metastasis as the outcome. Results. Simulations showed that the three variable selection methods with the proposed screenings controlled the predefined FDR and produced high area under the receiver operating characteristic curve (AUROC) scores. In applying these methods to the prostate cancer example, LASSO and MCP selected 12 and 8 genes and produced AUROC scores of 0.746 and 0.764, respectively. Conclusions. We demonstrated that the variable selection methods with the sequential use of FDR and ISIS not only controlled the predefined FDR in the final models but also had relatively high AUROC scores. PMID:27597974
High Dimensional Variable Selection with Error Control
2016-01-01
Background. The iterative sure independence screening (ISIS) is a popular method in selecting important variables while maintaining most of the informative variables relevant to the outcome in high throughput data. However, it not only is computationally intensive but also may cause high false discovery rate (FDR). We propose to use the FDR as a screening method to reduce the high dimension to a lower dimension as well as controlling the FDR with three popular variable selection methods: LASSO, SCAD, and MCP. Method. The three methods with the proposed screenings were applied to prostate cancer data with presence of metastasis as the outcome. Results. Simulations showed that the three variable selection methods with the proposed screenings controlled the predefined FDR and produced high area under the receiver operating characteristic curve (AUROC) scores. In applying these methods to the prostate cancer example, LASSO and MCP selected 12 and 8 genes and produced AUROC scores of 0.746 and 0.764, respectively. Conclusions. We demonstrated that the variable selection methods with the sequential use of FDR and ISIS not only controlled the predefined FDR in the final models but also had relatively high AUROC scores. PMID:27597974
Ishikawa, Takumi; Sakaguchi, Yutaka
2013-01-01
An important issue in motor learning/adaptation research is how the brain accepts the error information necessary for maintaining and improving task performance in a changing environment. The present study focuses on the effect of timing of error feedback. Previous research has demonstrated that adaptation to displacement of the visual field by prisms in a manual reaching task is significantly slowed by delayed visual feedback of the endpoint, suggesting that error feedback is most effective when given at the end of a movement. To further elucidate the brain mechanism by which error information is accepted in visuomotor adaptation, we tested whether error acceptance is linked to the end of a given task or to the end of an executed movement. We conducted a behavioral experiment using a virtual shooting task in which subjects controlled their wrist movements to meet a target with a cursor as accurately as possible. We manipulated the timing of visual feedback of the impact position so that it occurred either ahead of or behind the true time of impact. In another condition, the impact timing was explicitly indicated by an additional cue. The magnitude of the aftereffect significantly varied depending on the timing of feedback (p < 0.05, Friedman's Test). Interestingly, two distinct peaks of aftereffect were observed around movement-end and around task-end, irrespective of the existence of the timing cue. However, the peak around task-end was sharper when the timing cue was given. Our results demonstrate that the brain efficiently accepts error information at both movement-end and task-end, suggesting that two different learning mechanisms may underlie visuomotor transformation. PMID:23393602
Adaptive control of dual-arm robots
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
Three strategies for adaptive control of cooperative dual-arm robots are described. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through the load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions, while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are rejected by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. The controllers have simple structures and are computationally fast for on-line implementation with high sampling rates.
p-adaption for compressible flow problems using a goal-based error estimator
NASA Astrophysics Data System (ADS)
Ekelschot, Dirk; Moxey, David; Peiro, Joaquim; Sherwin, Spencer
2014-11-01
We present an approach of applying p-adaption to compressible flow problems using a dual-weighted error estimator. This technique has been implemented in the high-order h/p spectral element library Nektar + + . The compressible solver uses a high-order discontinuous Galerkin (DG) discretization. This approach is generally considered to be expensive and that is why the introduced p-adaption technique aims for lowering the computational cost while preserving the high-order accuracy and the exponential convergence properties. The numerical fluxes between the elements are discontinuous which allows one to use a different polynomial order in each element. After identifying and localizing the sources of error, the order of approximation of the solution within the element is improved. The solution to the adjoint equations for the compressible Euler equations is used to weigh the local residual of the primal solution. This provides both the error in the target quantity, which is typically the lift or drag coefficient, and an indication on how sensitive the local solution is to the target quantity. The dual-weighted error within each element serves then as a local refinement indicator that drives the p-adaptive algorithm. The performance of this p-adaptive method is demonstrated using a test case of subsonic flow past a 3D wing geometry.
The Influence of Item Calibration Error on Variable-Length Computerized Adaptive Testing
ERIC Educational Resources Information Center
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi
2013-01-01
Variable-length computerized adaptive testing (VL-CAT) allows both items and test length to be "tailored" to examinees, thereby achieving the measurement goal (e.g., scoring precision or classification) with as few items as possible. Several popular test termination rules depend on the standard error of the ability estimate, which in turn depends…
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
Automatic Time Stepping with Global Error Control for Groundwater Flow Models
Tang, Guoping
2008-09-01
An automatic time stepping with global error control is proposed for the time integration of the diffusion equation to simulate groundwater flow in confined aquifers. The scheme is based on an a posteriori error estimate for the discontinuous Galerkin (dG) finite element methods. A stability factor is involved in the error estimate and it is used to adapt the time step and control the global temporal error for the backward difference method. The stability factor can be estimated by solving a dual problem. The stability factor is not sensitive to the accuracy of the dual solution and the overhead computational cost can be minimized by solving the dual problem using large time steps. Numerical experiments are conducted to show the application and the performance of the automatic time stepping scheme. Implementation of the scheme can lead to improvement in accuracy and efficiency for groundwater flow models.
Adaptive neural network motion control of manipulators with experimental evaluations.
Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910
Error control coding for multi-frequency modulation
NASA Astrophysics Data System (ADS)
Ives, Robert W.
1990-06-01
Multi-frequency modulation (MFM) has been developed at NPS using both quadrature-phase-shift-keyed (QPSK) and quadrature-amplitude-modulated (QAM) signals with good bit error performance at reasonable signal-to-noise ratios. Improved performance can be achieved by the introduction of error control coding. This report documents a FORTRAN simulation of the implementation of error control coding into an MFM communication link with additive white Gaussian noise. Four Reed-Solomon codes were incorporated, two for 16-QAM and two for 32-QAM modulation schemes. The error control codes used were modified from the conventional Reed-Solomon codes in that one information symbol was sacrificed to parity in order to use a simplified decoding algorithm which requires no iteration and enhances error detection capability. Bit error rates as a function of SNR and E(sub b)/N(sub 0) were analyzed, and bit error performance was weighed against reduction in information rate to determine the value of the codes.
On Using Exponential Parameter Estimators with an Adaptive Controller
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.
QOS-aware error recovery in wireless body sensor networks using adaptive network coding.
Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah
2015-01-01
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts. PMID:25551485
QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding
Razzaque, Mohammad Abdur; Javadi, Saeideh S.; Coulibaly, Yahaya; Hira, Muta Tah
2015-01-01
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts. PMID:25551485
Hofheimer, Julia; Kazinka, Rebecca
2012-01-01
In this study, we tested the relationship between error-related signals of cognitive control and cortisol reactivity, investigating the hypothesis of common systems for cognitive and emotional self-regulation. Eighty-three participants completed a Stroop task while electroencephalography (EEG) was recorded. Three error-related indices were derived from the EEG: the error-related negativity (ERN), error positivity (Pe), and error-related alpha suppression (ERAS). Pre- and posttask salivary samples were assayed for cortisol, and cortisol change scores were correlated with the EEG variables. Better error–correct differentiation in the ERN predicted less cortisol increase during the task, whereas greater ERAS predicted greater cortisol increase during the task; the Pe was not correlated with cortisol changes. We concluded that an enhanced ERN, part of an adaptive cognitive control system, predicts successful stress regulation. In contrast, an enhanced ERAS response may reflect error-related arousal that is not adaptive. The results support the concept of overlapping systems for cognitive and emotional self-regulation. PMID:23055094
Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rohrs, C. E.
1982-01-01
Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.
NASA Astrophysics Data System (ADS)
Lee, J.; Yoon, M.; Lee, J.
2014-12-01
Current Global Navigation Satellite Systems (GNSS) augmentation systems attempt to consider all possible ionospheric events in their correction computations of worst-case errors. This conservatism can be mitigated by subdividing anomalous conditions and using different values of ionospheric threat-model bounds for each class. A new concept of 'real-time ionospheric threat adaptation' that adjusts the threat model in real time instead of always using the same 'worst-case' model was introduced in my previous research. The concept utilizes predicted values of space weather indices for determining the corresponding threat model based on the pre-defined worst-case threat as a function of space weather indices. Since space weather prediction is not reliable due to prediction errors, prediction errors are needed to be bounded to the required level of integrity of the system being supported. The previous research performed prediction error bounding using disturbance, storm time (Dst) index. The distribution of Dst prediction error over the 15-year data was bounded by applying 'inflated-probability density function (pdf) Gaussian bounding'. Since the error distribution has thick and non-Gaussian tails, investigation on statistical distributions which properly describe heavy tails with less conservatism is required for the system performance. This paper suggests two potential approaches for improving space weather prediction error bounding. First, we suggest using different statistical models when fit the error distribution, such as the Laplacian distribution which has fat tails, and the folded Gaussian cumulative distribution function (cdf) distribution. Second approach is to bound the error distribution by segregating data based on the overall level of solar activity. Bounding errors using only solar minimum period data will have less uncertainty and it may allow the use of 'solar cycle prediction' provided by NASA when implementing to real-time threat adaptation. Lastly
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Dynamically corrected gates for singlet-triplet spin qubits with control-dependent errors
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Witzel, Wayne M.; Nielsen, Erik; Carroll, Malcolm S.
2013-03-01
Magnetic field inhomogeneity due to random polarization of quasi-static local magnetic impurities is a major source of environmentally induced error for singlet-triplet double quantum dot (DQD) spin qubits. Moreover, for singlet-triplet qubits this error may depend on the applied controls. This effect is significant when a static magnetic field gradient is applied to enable full qubit control. Through a configuration interaction analysis, we observe that the dependence of the field inhomogeneity-induced error on the DQD bias voltage can vary systematically as a function of the controls for certain experimentally relevant operating regimes. To account for this effect, we have developed a straightforward prescription for adapting dynamically corrected gate sequences that assume control-independent errors into sequences that compensate for systematic control-dependent errors. We show that accounting for such errors may lead to a substantial increase in gate fidelities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Research on error control and compensation in magnetorheological finishing.
Dai, Yifan; Hu, Hao; Peng, Xiaoqiang; Wang, Jianmin; Shi, Feng
2011-07-01
Although magnetorheological finishing (MRF) is a deterministic finishing technology, the machining results always fall short of simulation precision in the actual process, and it cannot meet the precision requirements just through a single treatment but after several iterations. We investigate the reasons for this problem through simulations and experiments. Through controlling and compensating the chief errors in the manufacturing procedure, such as removal function calculation error, positioning error of the removal function, and dynamic performance limitation of the CNC machine, the residual error convergence ratio (ratio of figure error before and after processing) in a single process is obviously increased, and higher figure precision is achieved. Finally, an improved technical process is presented based on these researches, and the verification experiment is accomplished on the experimental device we developed. The part is a circular plane mirror of fused silica material, and the surface figure error is improved from the initial λ/5 [peak-to-valley (PV) λ=632.8 nm], λ/30 [root-mean-square (rms)] to the final λ/40 (PV), λ/330 (rms) just through one iteration in 4.4 min. Results show that a higher convergence ratio and processing precision can be obtained by adopting error control and compensation techniques in MRF. PMID:21743536
Ham, Timothy; Leff, Alex; de Boissezon, Xavier; Joffe, Anna; Sharp, David J
2013-04-17
The Salience Network (SN) consists of the dorsal anterior cingulate cortex (dACC) and bilateral insulae. The network responds to behaviorally salient events, and an important question is how its nodes interact. One theory is that the dACC provides the earliest cortical signal of behaviorally salient events, such as errors. Alternatively, the anterior right insula (aRI) has been proposed to provide an early cognitive control signal. As these regions frequently coactivate, it has been difficult to disentangle their roles using conventional methods. Here we use dynamic causal modeling and a Bayesian model evidence technique to investigate the causal relationships between nodes in the SN after errors. Thirty-five human subjects performed the Simon task. The task has two conditions (congruent and incongruent) producing two distinct error types. Neural activity associated with errors was investigated using fMRI. Subjects made a total of 1319 congruent and 1617 incongruent errors. Errors resulted in robust activation of the SN. Dynamic causal modeling analyses demonstrated that input into the SN was most likely via the aRI for both error types and that the aRI was the only region intrinsically connected to both other nodes. Only incongruent errors produced behavioral adaptation, and the strength of the connection between the dACC and the left insulae correlated with the extent of this behavioral change. We conclude that the aRI, not the dACC, drives the SN after errors on an attentionally demanding task, and that a change in the effective connectivity of the dACC is associated with behavioral adaptation after errors. PMID:23595766
When soft controls get slippery: User interfaces and human error
Stubler, W.F.; O`Hara, J.M.
1998-12-01
Many types of products and systems that have traditionally featured physical control devices are now being designed with soft controls--input formats appearing on computer-based display devices and operated by a variety of input devices. A review of complex human-machine systems found that soft controls are particularly prone to some types of errors and may affect overall system performance and safety. This paper discusses the application of design approaches for reducing the likelihood of these errors and for enhancing usability, user satisfaction, and system performance and safety.
On the undetected error probability of a concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Deng, H.; Costello, D. J., Jr.
1984-01-01
Consider a concatenated coding scheme for error control on a binary symmetric channel, called the inner channel. The bit error rate (BER) of the channel is correspondingly called the inner BER, and is denoted by Epsilon (sub i). Two linear block codes, C(sub f) and C(sub b), are used. The inner code C(sub f), called the frame code, is an (n,k) systematic binary block code with minimum distance, d(sub f). The frame code is designed to correct + or fewer errors and simultaneously detect gamma (gamma +) or fewer errors, where + + gamma + 1 = to or d(sub f). The outer code C(sub b) is either an (n(sub b), K(sub b)) binary block with a n(sub b) = mk, or an (n(sub b), k(Sub b) maximum distance separable (MDS) code with symbols from GF(q), where q = 2(b) and the code length n(sub b) satisfies n(sub)(b) = mk. The integerim is the number of frames. The outercode is designed for error detection only.
Adaptive control applied to Space Station attitude control system
NASA Technical Reports Server (NTRS)
Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John
1992-01-01
This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.
Experimental implementation of adaptive control for flexible space structures
NASA Technical Reports Server (NTRS)
Mcgraw, Gary A.
1988-01-01
On-going research at The Aerospace Corporation studying the feasibility of applying adaptive control methodologies to the control of flexible space structures is described. A laboratory testbed was established to test system identification and control approaches. The laboratory set-up and controller design approach are discussed. The ARX least squares parameter estimation technique is analyzed in terms of frequency domain transfer function bias error. This analysis approach enables the determination of the effects of sampling rate, sensor type, and data prefiltering on the estimation performance. The ability to identify space structure dynamics over a range of frequencies is shown to be heavily dependent on these factors.
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Adaptive muffler based on controlled flow valves.
Šteblaj, Peter; Čudina, Mirko; Lipar, Primož; Prezelj, Jurij
2015-06-01
An adaptive muffler with a flexible internal structure is considered. Flexibility is achieved using controlled flow valves. The proposed adaptive muffler is able to adapt to changes in engine operating conditions. It consists of a Helmholtz resonator, expansion chamber, and quarter wavelength resonator. Different combinations of the control valves' states at different operating conditions define the main working principle. To control the valve's position, an active noise control approach was used. With the proposed muffler, the transmission loss can be increased by more than 10 dB in the selected frequency range. PMID:26093462
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan
2009-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.
Adaptive Impedance Control Of Redundant Manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.
1994-01-01
Improved method of controlling mechanical impedance of end effector of redundant robotic manipulator based on adaptive-control theory. Consists of two subsystems: adaptive impedance controller generating force-control inputs in Cartesian space of end effector to provide desired end-effector-impedance characteristics, and subsystem implementing algorithm that maps force-control inputs into torques applied to joints of manipulator. Accurate control of end effector and effective utilization of redundancy achieved simultaneously by use of method. Potential use to improve performance of such typical impedance-control tasks as deburring edges and accommodating transitions between unconstrained and constrained motions of end effectors.
Servo control booster system for minimizing following error
Wise, W.L.
1979-07-26
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Adaptive spacecraft attitude control utilizing eigenaxis rotations
NASA Technical Reports Server (NTRS)
Cochran, J. E., Jr.; Colburn, B. K.; Speakman, N. O.
1975-01-01
Conventional and adaptive attitude control of spacecraft which use control moment gyros (CMG's) as torque sources are discussed. Control laws predicated on the assumption of a linear system are used since the spacecraft equations of motion are formulated in an 'eigenaxis system' so that they are essentially linear during 'slow' maneuvers even if large angles are involved. The overall control schemes are 'optimal' in several senses. Eigenaxis rotations and a weighted pseudo-inverse CMG steering law are used and, in the adaptive case, a Model Reference Adaptive System (MRAS) controller based on Liapunov's Second Method is adopted. To substantiate the theory, digital simulation results obtained using physical parameters of a Large Space Telescope type spacecraft are presented. These results indicate that an adaptive control law is often desirable.
Digital adaptive control laws for VTOL aircraft
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.
1979-01-01
Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.
The adaptive control system of acetylene generator
NASA Astrophysics Data System (ADS)
Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad
2015-12-01
The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.
Optimal control of quaternion propagation errors in spacecraft navigation
NASA Technical Reports Server (NTRS)
Vathsal, S.
1986-01-01
Optimal control techniques are used to drive the numerical error (truncation, roundoff, commutation) in computing the quaternion vector to zero. The normalization of the quaternion is carried out by appropriate choice of a performance index, which can be optimized. The error equations are derived from Friedland's (1978) theoretical development, and a matrix Riccati equation results for the computation of the gain matrix. Simulation results show that a high precision of the order of 10 to the -12th can be obtained using this technique in meeting the q(T)q=1 constraint. The performance of the estimator in the presence of the feedback control that maintains the normalization, is studied.
Reliability, Safety and Error Recovery for Advanced Control Software
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2003-01-01
For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.
Li, Lebao; Sun, Lingling; Zhang, Shengzhou
2016-05-01
A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. PMID:26899554
Adaptive Flight Control Research at NASA
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2008-01-01
A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.
Implementation of a mesh adaptive scheme based on an element-level error indicator
NASA Technical Reports Server (NTRS)
Keating, Scott; Felippa, Carlos A.; Militello, Carmelo
1993-01-01
We investigate the formulation and application of element-level error indicators based on parametrized variational principles. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited to drive adaptive mesh refinement on parallel computers where access to neighboring elements resident on different processors may incur significant computational overhead. Furthermore, such indicators are not affected by physical jumps at junctures or interfaces. An element-level indicator has been derived from the higher-order element energy and applied to r and h mesh adaptation of meshes in plates and shell structures. We report on our initial experiments with a cylindrical shell that intersects with fist plates forming a simplified 'wing-body intersection' benchmark problem.
Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang
2015-01-01
This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450
NASA Astrophysics Data System (ADS)
Shi, Lei; Wang, Z. J.
2015-08-01
Adjoint-based mesh adaptive methods are capable of distributing computational resources to areas which are important for predicting an engineering output. In this paper, we develop an adjoint-based h-adaptation approach based on the high-order correction procedure via reconstruction formulation (CPR) to minimize the output or functional error. A dual-consistent CPR formulation of hyperbolic conservation laws is developed and its dual consistency is analyzed. Super-convergent functional and error estimate for the output with the CPR method are obtained. Factors affecting the dual consistency, such as the solution point distribution, correction functions, boundary conditions and the discretization approach for the non-linear flux divergence term, are studied. The presented method is then used to perform simulations for the 2D Euler and Navier-Stokes equations with mesh adaptation driven by the adjoint-based error estimate. Several numerical examples demonstrate the ability of the presented method to dramatically reduce the computational cost comparing with uniform grid refinement.
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
Self-Tuning Adaptive-Controller Using Online Frequency Identification
NASA Technical Reports Server (NTRS)
Chiang, W. W.; Cannon, R. H., Jr.
1985-01-01
A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods.
Artificial neural network implementation of a near-ideal error prediction controller
NASA Technical Reports Server (NTRS)
Mcvey, Eugene S.; Taylor, Lynore Denise
1992-01-01
A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error
Optimal Control Modification Adaptive Law for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
On Fractional Model Reference Adaptive Control
Shi, Bao; Dong, Chao
2014-01-01
This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability and effectiveness of the proposed methodology. PMID:24574897
On fractional Model Reference Adaptive Control.
Shi, Bao; Yuan, Jian; Dong, Chao
2014-01-01
This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability and effectiveness of the proposed methodology. PMID:24574897
Simple adaptive tracking control for mobile robots
NASA Astrophysics Data System (ADS)
Bobtsov, Alexey; Faronov, Maxim; Kolyubin, Sergey; Pyrkin, Anton
2014-12-01
The problem of simple adaptive and robust control is studied for the case of parametric and dynamic dimension uncertainties: only the maximum possible relative degree of the plant model is known. The control approach "consecutive compensator" is investigated. To illustrate the efficiency of proposed approach an example with the mobile robot motion control using computer vision system is considered.
Continuous quantum error correction as classical hybrid control
NASA Astrophysics Data System (ADS)
Mabuchi, Hideo
2009-10-01
The standard formulation of quantum error correction (QEC) comprises repeated cycles of error estimation and corrective intervention in the free dynamics of a qubit register. QEC can thus be seen as a form of feedback control, and it is of interest to seek a deeper understanding of the connection between the associated theories. Here we present a focused case study within this broad program, connecting continuous QEC with elements of hybrid control theory. We show that canonical methods of the latter engineering discipline, such as recursive filtering and dynamic programming approaches to solving the optimal control problem, can be applied fruitfully in the design of separated controller structures for quantum memories based on coding and continuous syndrome measurement.
An adaptive grid with directional control
NASA Technical Reports Server (NTRS)
Brackbill, J. U.
1993-01-01
An adaptive grid generator for adaptive node movement is here derived by combining a variational formulation of Winslow's (1981) variable-diffusion method with a directional control functional. By applying harmonic-function theory, it becomes possible to define conditions under which there exist unique solutions of the resulting elliptic equations. The results obtained for the grid generator's application to the complex problem posed by the fluid instability-driven magnetic field reconnection demonstrate one-tenth the computational cost of either a Eulerian grid or an adaptive grid without directional control.
A new adaptive configuration of PID type fuzzy logic controller.
Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed
2015-05-01
In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time. PMID:25530256
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Adaptive Control for Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.
2005-01-01
Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.
Model-adaptive hybrid dynamic control for robotic assembly tasks
Austin, D.J.; McCarragher, B.J.
1999-10-01
A new task-level adaptive controller is presented for the hybrid dynamic control of robotic assembly tasks. Using a hybrid dynamic model of the assembly task, velocity constraints are derived from which satisfactory velocity commands are obtained. Due to modeling errors and parametric uncertainties, the velocity commands may be erroneous and may result in suboptimal performance. Task-level adaptive control schemes, based on the occurrence of discrete events, are used to change the model parameters from which the velocity commands are determined. Two adaptive schemes are presented: the first is based on intuitive reasoning about the vector spaces involved whereas the second uses a search region that is reduced with each iteration. For the first adaptation law, asymptotic convergence to the correct model parameters is proven except for one case. This weakness motivated the development of the second adaptation law, for which asymptotic convergence is proven in all cases. Automated control of a peg-in-hole assembly task is given as an example, and simulations and experiments for this task are presented. These results demonstrate the success of the method and also indicate properties for rapid convergence.
Developing control charts to review and monitor medication errors.
Ciminera, J L; Lease, M P
1992-03-01
There is a need to monitor reported medication errors in a hospital setting. Because the quantity of errors vary due to external reporting, quantifying the data is extremely difficult. Typically, these errors are reviewed using classification systems that often have wide variations in the numbers per class per month. The authors recommend the use of control charts to review historical data and to monitor future data. The procedure they have adopted is a modification of schemes using absolute (i.e., positive) values of successive differences to estimate the standard deviation when only single incidence values are available in time rather than sample averages, and when many successive differences may be zero. PMID:10116719
Controlling type-1 error rates in whole effluent toxicity testing
Smith, R.; Johnson, S.C.
1995-12-31
A form of variability, called the dose x test interaction, has been found to affect the variability of the mean differences from control in the statistical tests used to evaluate Whole Effluent Toxicity Tests for compliance purposes. Since the dose x test interaction is not included in these statistical tests, the assumed type-1 and type-2 error rates can be incorrect. The accepted type-1 error rate for these tests is 5%. Analysis of over 100 Ceriodaphnia, fathead minnow and sea urchin fertilization tests showed that when the test x dose interaction term was not included in the calculations the type-1 error rate was inflated to as high as 20%. In a compliance setting, this problem may lead to incorrect regulatory decisions. Statistical tests are proposed that properly incorporate the dose x test interaction variance.
Adaptive control of molecular alignment
Horn, C.; Wollenhaupt, M.; Krug, M.; Baumert, T.; Nalda, R. de; Banares, L.
2006-03-15
We demonstrate control on nonadiabatic molecular alignment by using a spectrally phase-shaped laser pulse. An evolutionary algorithm in a closed feedback loop has been used in order to find pulse shapes that maximize a given effect. In particular, this scheme has been applied to the optimization of total alignment, and to the control of the temporal structure of the alignment transient within a revival. Asymmetric temporal pulse shapes have been found to be very effective for the latter and have been studied separately in a single-parameter control scheme. Our experimental results are supported by numerical simulations.
Empirical versus time stepping with embedded error control for density-driven flow in porous media
NASA Astrophysics Data System (ADS)
Younes, Anis; Ackerer, Philippe
2010-08-01
Modeling density-driven flow in porous media may require very long computational time due to the nonlinear coupling between flow and transport equations. Time stepping schemes are often used to adapt the time step size in order to reduce the computational cost of the simulation. In this work, the empirical time stepping scheme which adapts the time step size according to the performance of the iterative nonlinear solver is compared to an adaptive time stepping scheme where the time step length is controlled by the temporal truncation error. Results of the simulations of the Elder problem show that (1) the empirical time stepping scheme can lead to inaccurate results even with a small convergence criterion, (2) accurate results are obtained when the time step size selection is based on the truncation error control, (3) a non iterative scheme with proper time step management can be faster and leads to more accurate solution than the standard iterative procedure with the empirical time stepping and (4) the temporal truncation error can have a significant effect on the results and can be considered as one of the reasons for the differences observed in the Elder numerical results.
Attitude-Control Algorithm for Minimizing Maneuver Execution Errors
NASA Technical Reports Server (NTRS)
Acikmese, Behcet
2008-01-01
A G-RAC attitude-control algorithm is used to minimize maneuver execution error in a spacecraft with a flexible appendage when said spacecraft must induce translational momentum by firing (in open loop) large thrusters along a desired direction for a given period of time. The controller is dynamic with two integrators and requires measurement of only the angular position and velocity of the spacecraft. The global stability of the closed-loop system is guaranteed without having access to the states describing the dynamics of the appendage and with severe saturation in the available torque. Spacecraft apply open-loop thruster firings to induce a desired translational momentum with an extended appendage. This control algorithm will assist this maneuver by stabilizing the attitude dynamics around a desired orientation, and consequently minimize the maneuver execution errors.
Optimal wavefront control for adaptive segmented mirrors
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
A ground-based astronomical telescope with a segmented primary mirror will suffer image-degrading wavefront aberrations from at least two sources: (1) atmospheric turbulence and (2) segment misalignment or figure errors of the mirror itself. This paper describes the derivation of a mirror control feedback matrix that assumes the presence of both types of aberration and is optimum in the sense that it minimizes the mean-squared residual wavefront error. Assumptions of the statistical nature of the wavefront measurement errors, atmospheric phase aberrations, and segment misalignment errors are made in the process of derivation. Examples of the degree of correlation are presented for three different types of wavefront measurement data and compared to results of simple corrections.
Post-error slowing is influenced by cognitive control demand.
Regev, Shirley; Meiran, Nachshon
2014-10-01
Post-error slowing (PES) has been shown to reflect a control failure due to automatic attentional capture by the error. Here we aimed to assess whether PES also involves an increase in cognitive control. Using a cued-task-switching paradigm (Experiment 1) and a Stroop task (Experiment 2), the demand for top down control was manipulated. In Experiment 1, one group received dimension cues indicating the relevant stimulus dimension (e.g., "number") without specifying the response-category-to-key mapping, hence requiring considerable top down control. Another group was shown mapping cues providing information regarding both the relevant task identity and its category-to-key mapping (e.g., "one three"), requiring less top down control, and the last group received both types of cues, intermixed. In Experiment 2, one group performed a pure incongruent Stroop condition (name ink color of incongruent color names, high control demand), and another group received a pure neutral Stroop condition (name color patches, low control demand). In Experiment 2a, participants received the two conditions, intermixed. A larger PES was observed with dimension cues as compared with mapping cues, and with incongruent Stroop stimuli as compared to neutral stimuli, but not when the conditions were intermixed. These findings reveal that PES is influenced by the control demands that characterize the given block-wide experimental context and show that proactive cognitive control is involved in PES. PMID:25089881
An adaptive error modeling scheme for the lossless compression of EEG signals.
Sriraam, N; Eswaran, C
2008-09-01
Lossless compression of EEG signal is of great importance for the neurological diagnosis as the specialists consider the exact reconstruction of the signal as a primary requirement. This paper discusses a lossless compression scheme for EEG signals that involves a predictor and an adaptive error modeling technique. The prediction residues are arranged based on the error count through an histogram computation. Two optimal regions are identified in the histogram plot through a heuristic search such that the bit requirement for encoding the two regions is minimum. Further improvement in the compression is achieved by removing the statistical redundancy that is present in the residue signal by using a context-based bias cancellation scheme. Three neural network predictors, namely, single-layer perceptron, multilayer perceptron, and Elman network and two linear predictors, namely, autoregressive model and finite impulse response filter are considered. Experiments are conducted using EEG signals recorded under different physiological conditions and the performances of the proposed methods are evaluated in terms of the compression ratio. It is shown that the proposed adaptive error modeling schemes yield better compression results compared to other known compression methods. PMID:18779073
Adaptive Control Strategies for Flexible Robotic Arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1996-01-01
The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.
Using brain potentials to understand prism adaptation: the error-related negativity and the P300.
MacLean, Stephane J; Hassall, Cameron D; Ishigami, Yoko; Krigolson, Olav E; Eskes, Gail A
2015-01-01
Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)-a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN. PMID:26124715
Using brain potentials to understand prism adaptation: the error-related negativity and the P300
MacLean, Stephane J.; Hassall, Cameron D.; Ishigami, Yoko; Krigolson, Olav E.; Eskes, Gail A.
2015-01-01
Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)—a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN. PMID:26124715
Language control in bilinguals: The adaptive control hypothesis
Abutalebi, Jubin
2013-01-01
Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual. PMID:25077013
Language control in bilinguals: The adaptive control hypothesis.
Green, David W; Abutalebi, Jubin
2013-08-01
Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual. PMID:25077013
Adaptive gain control during human perceptual choice
Cheadle, Samuel; Wyart, Valentin; Tsetsos, Konstantinos; Myers, Nicholas; de Gardelle, Vincent; Castañón, Santiago Herce; Summerfield, Christopher
2015-01-01
Neural systems adapt to background levels of stimulation. Adaptive gain control has been extensively studied in sensory systems, but overlooked in decision-theoretic models. Here, we describe evidence for adaptive gain control during the serial integration of decision-relevant information. Human observers judged the average information provided by a rapid stream of visual events (samples). The impact that each sample wielded over choices depended on its consistency with the previous sample, with more consistent or expected samples wielding the greatest influence over choice. This bias was also visible in the encoding of decision information in pupillometric signals, and in cortical responses measured with functional neuroimaging. These data can be accounted for with a new serial sampling model in which the gain of information processing adapts rapidly to reflect the average of the available evidence. PMID:24656259
Adaptive output feedback control of flexible systems
NASA Astrophysics Data System (ADS)
Yang, Bong-Jun
Neural network-based adaptive output feedback approaches that augment a linear control design are described in this thesis, and emphasis is placed on their real-time implementation with flexible systems. Two different control architectures that are robust to parametric uncertainties and unmodelled dynamics are presented. The unmodelled effects can consist of minimum phase internal dynamics of the system together with external disturbance process. Within this context, adaptive compensation for external disturbances is addressed. In the first approach, internal model-following control, adaptive elements are designed using feedback inversion. The effect of an actuator limit is treated using control hedging, and the effect of other actuation nonlinearities, such as dead zone and backlash, is mitigated by a disturbance observer-based control design. The effectiveness of the approach is illustrated through simulation and experimental testing with a three-disk torsional system, which is subjected to control voltage limit and stiction. While the internal model-following control is limited to minimum phase systems, the second approach, external model-following control, does not involve feedback linearization and can be applied to non-minimum phase systems. The unstable zero dynamics are assumed to have been modelled in the design of the existing linear controller. The laboratory tests for this method include a three-disk torsional pendulum, an inverted pendulum, and a flexible-base robot manipulator. The external model-following control architecture is further extended in three ways. The first extension is an approach for control of multivariable nonlinear systems. The second extension is a decentralized adaptive control approach for large-scale interconnected systems. The third extension is to make use of an adaptive observer to augment a linear observer-based controller. In this extension, augmenting terms for the adaptive observer can be used to achieve adaptation in
Adaptive Modal Identification for Flutter Suppression Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.
2016-01-01
In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.
Dual adaptive control: Design principles and applications
NASA Technical Reports Server (NTRS)
Mookerjee, Purusottam
1988-01-01
The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.
Goffin, Mark A.; Baker, Christopher M.J.; Buchan, Andrew G.; Pain, Christopher C.; Eaton, Matthew D.; Smith, Paul N.
2013-06-01
This article presents a method for goal-based anisotropic adaptive methods for the finite element method applied to the Boltzmann transport equation. The neutron multiplication factor, k{sub eff}, is used as the goal of the adaptive procedure. The anisotropic adaptive algorithm requires error measures for k{sub eff} with directional dependence. General error estimators are derived for any given functional of the flux and applied to k{sub eff} to acquire the driving force for the adaptive procedure. The error estimators require the solution of an appropriately formed dual equation. Forward and dual error indicators are calculated by weighting the Hessian of each solution with the dual and forward residual respectively. The Hessian is used as an approximation of the interpolation error in the solution which gives rise to the directional dependence. The two indicators are combined to form a single error metric that is used to adapt the finite element mesh. The residual is approximated using a novel technique arising from the sub-grid scale finite element discretisation. Two adaptive routes are demonstrated: (i) a single mesh is used to solve all energy groups, and (ii) a different mesh is used to solve each energy group. The second method aims to capture the benefit from representing the flux from each energy group on a specifically optimised mesh. The k{sub eff} goal-based adaptive method was applied to three examples which illustrate the superior accuracy in criticality problems that can be obtained.
Errors in paleomagnetism: Structural control on overlapped vectors - mathematical models
NASA Astrophysics Data System (ADS)
Rodríguez-Pintó, A.; Ramón, M. J.; Oliva-Urcia, B.; Pueyo, E. L.; Pocoví, A.
2011-05-01
The reliability of paleomagnetic data is a keystone to obtain trustable kinematics interpretations. The determination of the real paleomagnetic component recorded at certain time in the geological evolution of a rock can be affected by several sources of errors: inclination shallowing, declination biases caused by incorrect restoration to the ancient field, internal deformation of rock volumes and lack of isolation of the paleomagnetic primary vector during the laboratory procedures (overlapping of components). These errors will limit or impede the validity of paleomagnetism as the only three-dimension reference. This paper presents the first systematic modeling of the effect of overlapped vectors referred to declination, inclination and stability tests taking into account the key variables: orientation of a primary and secondary (overlapped to the primary) vectors, degree of overlapping (intensity ratio of primary and secondary paleomagnetic vectors) and the fold axis orientation and dip of bedding plane. In this way, several scenarios of overlapping have been modeled in different fold geometries considering both polarities and all the variables aforementioned, allowing to calculate the deviations of the vector obtained in the laboratory (overlapped) with respect to the paleomagnetic reference (not overlapped). Observations from the models confirm that declination errors are larger than the inclination ones. In addition to the geometry factor, errors are mainly controlled by the relative magnitude of the primary respect to the secondary component (P/S ratio). We observe larger asymmetries and bigger magnitudes of errors along the fold location if the primary and secondary records have different polarities. If the primary record (declination) and the fold axis orientation are perpendicular ( Ω = 90°), errors reach maximum magnitudes and larger asymmetries along the fold surface (different dips). The effect of overlapping in the fold and reversal tests is also
Human error model adaptation and validation for Savannah River Site nonreactor facilities
Eide, S.A.; Benhardt, H.C.; Held, J.E.; Olsen, L.M.; Vail, R.E.
1993-09-01
As part of an overall effort to improve safety analysis methods for the Savannah River Site (SRS) nonreactor nuclear facilities, a comprehensive human reliability analysis (HRA) methodology has been developed and selectively validated. The HRA methodology covers a wide variety of human errors that may exist in risk analyses of the nonreactor nuclear facilities. Such risk analyses are an integral part of safety analysis reports (SARS) at the SRS, forming the basis for severe accident analysis and assisting in the identification of safety classes for equipment. Nonreactor nuclear facilities at the SRS include nuclear fuel fabrication and reprocessing, nuclear waste processing, and nuclear waste storage and disposal. The SRS HRA methodology improvement included both adaptation of existing human error models and validation of selected model results with SRS-specific data on actual human errors. The data were obtained from three existing SRS data bases: (1) Fuel Processing, (2) Fuel Fabrication, and (3) Waste Management. These three are part of the Risk Analysis Methodology (RAM) Fault Tree data banks. Events in these data banks are obtained from a wide variety of sources, including operator log books, occurrence reports, safety newsletters, and others. Validation of the human error models involved comparison with SRS-specific data and calibration of model results where appropriate.
High speed and adaptable error correction for megabit/s rate quantum key distribution
Dixon, A. R.; Sato, H.
2014-01-01
Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416
High speed and adaptable error correction for megabit/s rate quantum key distribution
NASA Astrophysics Data System (ADS)
Dixon, A. R.; Sato, H.
2014-12-01
Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.
Optimal and adaptive control in canine postural regulation.
Schuster, D; Talbott, R E
1980-07-01
For analytic purposes, dogs trained to stand quietly on an oscillating platform can be likened to a fixed-length inverted pendulum with a point mass. Describing function analysis permitted derivation of torque and error values as functions of phase and gain relative to platform movement. A phase criterion was determined for minimization of either control torque at a given error amplitude or error at a given control torque amplitude. Describing functions for dogs with and without vision approached optimal phase. Stretch reflex control involving proportional-plus-rate feedback is not sufficient to account for the approach to optimal phase. Blindfolded labyrinthectomized dogs did not exhibit optimal behavior and the phase constraint for stretch reflex control was satisfied at most frequencies. The observed behavior is best accounted for by a model involving both otolith and visual feedforward (pursuit-precognitive) control processes. Reductions in phase lag by blindfolded dogs during the first few cycles of platform motion provide evidence of adaptive control. PMID:7396044
Coordinated joint motion control system with position error correction
Danko, George L.
2016-04-05
Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.
Coordinated joint motion control system with position error correction
Danko, George
2011-11-22
Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.
An adaptive robust controller for time delay maglev transportation systems
NASA Astrophysics Data System (ADS)
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1991-01-01
Research activities related to error control techniques for satellite and space communication are reported. Specific areas of research include: coding gains for bandwidth efficient codes, hardware implementation of a bandwidth efficient coding scheme for the Hubble Space Telescope, construction of long trellis codes for use with sequential decoding, performance analysis of multilevel trellis codes, and M-algorithm decoding of trellis codes. Each topic is discussed in a corresponding paper that appears in the appendices.
Error message recording and reporting in the SLC control system
Spencer, N.; Bogart, J.; Phinney, N.; Thompson, K.
1985-04-01
Error or information messages that are signaled by control software either in the VAX host computer or the local microprocessor clusters are handled by a dedicated VAX process (PARANOIA). Messages are recorded on disk for further analysis and displayed at the appropriate console. Another VAX process (ERRLOG) can be used to sort, list and histogram various categories of messages. The functions performed by these processes and the algorithms used are discussed.
Adaptive neural control of aeroelastic response
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.
1996-05-01
The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.
Robust Transmission of H.264/AVC Streams Using Adaptive Group Slicing and Unequal Error Protection
NASA Astrophysics Data System (ADS)
Thomos, Nikolaos; Argyropoulos, Savvas; Boulgouris, Nikolaos V.; Strintzis, Michael G.
2006-12-01
We present a novel scheme for the transmission of H.264/AVC video streams over lossy packet networks. The proposed scheme exploits the error-resilient features of H.264/AVC codec and employs Reed-Solomon codes to protect effectively the streams. A novel technique for adaptive classification of macroblocks into three slice groups is also proposed. The optimal classification of macroblocks and the optimal channel rate allocation are achieved by iterating two interdependent steps. Dynamic programming techniques are used for the channel rate allocation process in order to reduce complexity. Simulations clearly demonstrate the superiority of the proposed method over other recent algorithms for transmission of H.264/AVC streams.
Neuronal Control of Adaptive Thermogenesis
Yang, Xiaoyong; Ruan, Hai-Bin
2015-01-01
The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and dissipates chemical energy as heat. The development and activation of “brown-like” adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation. PMID:26441839
Inhibitory control and error monitoring by human subthalamic neurons
Bastin, J; Polosan, M; Benis, D; Goetz, L; Bhattacharjee, M; Piallat, B; Krainik, A; Bougerol, T; Chabardès, S; David, O
2014-01-01
The subthalamic nucleus (STN) has been shown to be implicated in the control of voluntary action, especially during tasks involving conflicting choice alternatives or rapid response suppression. However, the precise role of the STN during nonmotor functions remains controversial. First, we tested whether functionally distinct neuronal populations support different executive control functions (such as inhibitory control or error monitoring) even within a single subterritory of the STN. We used microelectrode recordings during deep brain stimulation surgery to study extracellular activity of the putative associative-limbic part of the STN while patients with severe obsessive-compulsive disorder performed a stop-signal task. Second, 2–4 days after the surgery, local field potential recordings of STN were used to test the hypothesis that STN oscillations may also reflect executive control signals. Extracellular recordings revealed three functionally distinct neuronal populations: the first one fired selectively before and during motor responses, the second one selectively increased their firing rate during successful inhibitory control, and the last one fired selectively during error monitoring. Furthermore, we found that beta band activity (15–35 Hz) rapidly increased during correct and incorrect behavioral stopping. Taken together, our results provide critical electrophysiological support for the hypothesized role of the STN in the integration of motor and cognitive-executive control functions. PMID:25203170
NASA Astrophysics Data System (ADS)
Wu, Zhenhui; Dong, Chaoyang
2006-11-01
Because of nonlinearity and strong coupling of reaction-jet and aerodynamics compound control missile, a missile autopilot design method based on adaptive fuzzy sliding mode control (AFSMC) is proposed in this paper. The universal approximation ability of adaptive fuzzy system is used to approximate the nonlinear function in missile dynamics equation during the flight of high angle of attack. And because the sliding mode control is robustness to external disturbance strongly, the sliding mode surface of the error system is constructed to overcome the influence of approximation error and external disturbance so that the actual overload can track the maneuvering command with high precision. Simulation results show that the missile autopilot designed in this paper not only can track large overload command with higher precision than traditional method, but also is robust to model uncertainty and external disturbance strongly.
Robust, Practical Adaptive Control for Launch Vehicles
NASA Technical Reports Server (NTRS)
Orr, Jeb. S.; VanZwieten, Tannen S.
2012-01-01
A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.
NASA Astrophysics Data System (ADS)
Fusi, F.; Congedo, P. M.
2016-03-01
In this work, a strategy is developed to deal with the error affecting the objective functions in uncertainty-based optimization. We refer to the problems where the objective functions are the statistics of a quantity of interest computed by an uncertainty quantification technique that propagates some uncertainties of the input variables through the system under consideration. In real problems, the statistics are computed by a numerical method and therefore they are affected by a certain level of error, depending on the chosen accuracy. The errors on the objective function can be interpreted with the abstraction of a bounding box around the nominal estimation in the objective functions space. In addition, in some cases the uncertainty quantification methods providing the objective functions also supply the possibility of adaptive refinement to reduce the error bounding box. The novel method relies on the exchange of information between the outer loop based on the optimization algorithm and the inner uncertainty quantification loop. In particular, in the inner uncertainty quantification loop, a control is performed to decide whether a refinement of the bounding box for the current design is appropriate or not. In single-objective problems, the current bounding box is compared to the current optimal design. In multi-objective problems, the decision is based on the comparison of the error bounding box of the current design and the current Pareto front. With this strategy, fewer computations are made for clearly dominated solutions and an accurate estimate of the objective function is provided for the interesting, non-dominated solutions. The results presented in this work prove that the proposed method improves the efficiency of the global loop, while preserving the accuracy of the final Pareto front.
Evolving Systems and Adaptive Key Component Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
Adaptive control of a robotic manipulator
NASA Technical Reports Server (NTRS)
Lewis, R. A.
1977-01-01
A control hierarchy for a robotic manipulator is described. The hierarchy includes perception and robot/environment interaction, the latter consisting of planning, path control, and terminal guidance loops. Environment-sensitive features include the provision of control governed by proximity, tactile, and visual sensors as well as the usual kinematic sensors. The manipulator is considered as part of an overall robot system. 'Adaptive control' in the present context refers to both the hierarchical nature of the control system and to its environment-responsive nature.
Adaptive control of sulfur recovery units
Cunningham, D.B. )
1994-08-01
In a recent trial, adaptive control reduce the standard deviation of the tail gas ratio by 38%--increasing sulfur recovery efficiency by an estimated 0.3%. By using the controller on other control loops in the process, further increases are expected. Improved process control is a cost effective way to meet existing emissions limits. Future legislation will reduce the permissible emissions level, so it is imperative that existing sulfur recovery equipment by operated at peak efficiency. Peak efficiency can only be achieved with good trim air control, since it determines recovery efficiency. But process time delays and changes in the incoming gas stream make good control difficult to achieve. An adaptive controller is well suited to trim air control, since it can easily handle time delay sand adapt to changing process conditions. The improved efficiency is a considerable economic benefit to gas processing plants, since: (1) capital and operating expenses needed to improve recovery efficiency are avoided; (2) increased production is possible, since sulfur license limits are easier to meet; and (3) catalyst bed life is extended. Results of the test are discussed.
Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Boskovic, Jovan D.
2008-01-01
This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.
Adaptive prediction of human eye pupil position and effects on wavefront errors
NASA Astrophysics Data System (ADS)
Garcia-Rissmann, Aurea; Kulcsár, Caroline; Raynaud, Henri-François; El Mrabet, Yamina; Sahin, Betul; Lamory, Barbara
2011-03-01
The effects of pupil motion on retinal imaging are studied in this paper. Involuntary eye or head movements are always present in the imaging procedure, decreasing the output quality and preventing a more detailed diagnostics. When the image acquisition is performed using an adaptive optics (AO) system, substantial gain is foreseen if pupil motion is accounted for. This can be achieved using a pupil tracker as the one developed by Imagine Eyes R®, which provides pupil position measurements at a 80Hz sampling rate. In any AO loop, there is inevitably a delay between the wavefront measurement and the correction applied to the deformable mirror, meaning that an optimal compensation requires prediction. We investigate several ways of predicting pupil movement, either by retaining the last value given by the pupil tracker, which is close to the optimal solution in the case of a pure random walk, or by performing position prediction thanks to auto-regressive (AR) models with parameters updated in real time. We show that a small improvement in prediction with respect to predicting with the latest measured value is obtained through adaptive AR modeling. We evaluate the wavefront errors obtained by computing the root mean square of the difference between a wavefront displaced by the assumed true position and the predicted one, as seen by the imaging system. The results confirm that pupil movements have to be compensated in order to minimize wavefront errors.
Logan, Dustin M.; Hill, Kyle R.; Larson, Michael J.
2015-01-01
Poor awareness has been linked to worse recovery and rehabilitation outcomes following moderate-to-severe traumatic brain injury (M/S TBI). The error positivity (Pe) component of the event-related potential (ERP) is linked to error awareness and cognitive control. Participants included 37 neurologically healthy controls and 24 individuals with M/S TBI who completed a brief neuropsychological battery and the error awareness task (EAT), a modified Stroop go/no-go task that elicits aware and unaware errors. Analyses compared between-group no-go accuracy (including accuracy between the first and second halves of the task to measure attention and fatigue), error awareness performance, and Pe amplitude by level of awareness. The M/S TBI group decreased in accuracy and maintained error awareness over time; control participants improved both accuracy and error awareness during the course of the task. Pe amplitude was larger for aware than unaware errors for both groups; however, consistent with previous research on the Pe and TBI, there were no significant between-group differences for Pe amplitudes. Findings suggest possible attention difficulties and low improvement of performance over time may influence specific aspects of error awareness in M/S TBI. PMID:26217212
Integration of auditory and somatosensory error signals in the neural control of speech movements
Feng, Yongqiang; Gracco, Vincent L.
2011-01-01
We investigated auditory and somatosensory feedback contributions to the neural control of speech. In task I, sensorimotor adaptation was studied by perturbing one of these sensory modalities or both modalities simultaneously. The first formant (F1) frequency in the auditory feedback was shifted up by a real-time processor and/or the extent of jaw opening was increased or decreased with a force field applied by a robotic device. All eight subjects lowered F1 to compensate for the up-shifted F1 in the feedback signal regardless of whether or not the jaw was perturbed. Adaptive changes in subjects' acoustic output resulted from adjustments in articulatory movements of the jaw or tongue. Adaptation in jaw opening extent in response to the mechanical perturbation occurred only when no auditory feedback perturbation was applied or when the direction of adaptation to the force was compatible with the direction of adaptation to a simultaneous acoustic perturbation. In tasks II and III, subjects' auditory and somatosensory precision and accuracy were estimated. Correlation analyses showed that the relationships 1) between F1 adaptation extent and auditory acuity for F1 and 2) between jaw position adaptation extent and somatosensory acuity for jaw position were weak and statistically not significant. Taken together, the combined findings from this work suggest that, in speech production, sensorimotor adaptation updates the underlying control mechanisms in such a way that the planning of vowel-related articulatory movements takes into account a complex integration of error signals from previous trials but likely with a dominant role for the auditory modality. PMID:21562187
Predictive Control of Speededness in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2009-01-01
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Adaptive control system for gas producing wells
Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko
2015-03-10
Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.
Robust Adaptive Control In Hilbert Space
NASA Technical Reports Server (NTRS)
Wen, John Ting-Yung; Balas, Mark J.
1990-01-01
Paper discusses generalization of scheme for adaptive control of finite-dimensional system to infinite-dimensional Hilbert space. Approach involves generalization of command-generator tracker (CGT) theory. Does not require reference model to be same order as that of plant, and knowledge of order of plant not needed. Suitable for application to high-order systems, main emphasis on adjustment of low-order feedback-gain matrix. Analysis particularly relevant to control of large, flexible structures.
Robust adaptive control of HVDC systems
Reeve, J.; Sultan, M. )
1994-07-01
The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.
Adaptive Variable Bias Magnetic Bearing Control
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1998-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.
NASA Astrophysics Data System (ADS)
Lausch, Anthony; Chen, Jeff; Ward, Aaron D.; Gaede, Stewart; Lee, Ting-Yim; Wong, Eugene
2014-11-01
Parametric response map (PRM) analysis is a voxel-wise technique for predicting overall treatment outcome, which shows promise as a tool for guiding personalized locally adaptive radiotherapy (RT). However, image registration error (IRE) introduces uncertainty into this analysis which may limit its use for guiding RT. Here we extend the PRM method to include an IRE-related PRM analysis confidence interval and also incorporate multiple graded classification thresholds to facilitate visualization. A Gaussian IRE model was used to compute an expected value and confidence interval for PRM analysis. The augmented PRM (A-PRM) was evaluated using CT-perfusion functional image data from patients treated with RT for glioma and hepatocellular carcinoma. Known rigid IREs were simulated by applying one thousand different rigid transformations to each image set. PRM and A-PRM analyses of the transformed images were then compared to analyses of the original images (ground truth) in order to investigate the two methods in the presence of controlled IRE. The A-PRM was shown to help visualize and quantify IRE-related analysis uncertainty. The use of multiple graded classification thresholds also provided additional contextual information which could be useful for visually identifying adaptive RT targets (e.g. sub-volume boosts). The A-PRM should facilitate reliable PRM guided adaptive RT by allowing the user to identify if a patient’s unique IRE-related PRM analysis uncertainty has the potential to influence target delineation.
Modeling and adaptive control of acoustic noise
NASA Astrophysics Data System (ADS)
Venugopal, Ravinder
Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor
Geometry control in prestressed adaptive space trusses
NASA Technical Reports Server (NTRS)
Sener, Murat; Utku, Senol; Wada, Ben K.
1993-01-01
In this work the actuator placement problem for the precision control in prestressed adaptive space trusses is studied. These structures cannot be statically determinate, implying that the length-adjusting actuators have to work against the existing prestressing forces, and also against the stresses caused by the actuation. This type of difficulties does not exist in statically determinate adaptive trusses where, except for overcoming the friction, the actuators operate under zero axial force, and require almost no energy. The actuator placement problem in statically inderterminate trusses is, therefore, governed seriously by the energy and the strength requirements. The paper provides various methodologies for the actuator placement problem in prestressed space trusses.
High-speed train control based on multiple-model adaptive control with second-level adaptation
NASA Astrophysics Data System (ADS)
Zhou, Yonghua; Zhang, Zhenlin
2014-05-01
Speed uplift has become the leading trend for the development of current railway traffic. Ideally, under the high-speed transportation infrastructure, trains run at specified positions with designated speeds at appointed times. In view of the faster adaptation ability of multiple-model adaptive control with second-level adaptation (MMAC-SLA), we propose one type of MMAC-SLA for a class of nonlinear systems such as cascaded vehicles. By using an input decomposition technique, the corresponding stability proof is solved for the proposed MMAC-SLA, which synthesises the control signals from the weighted multiple models. The control strategy is utilised to challenge the position and speed tracking of high-speed trains with uncertain parameters. The simulation results demonstrate that the proposed MMAC-SLA can achieve small tracking errors with moderate in-train forces incurred under the control of flattening input signals with practical enforceability. This study also provides a new idea for the control of in-train forces by tracking the positions and speeds of cars while considering power constraints.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Adaptive control of Space Station with control moment gyros
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; Paynter, Scott J.; Sunkel, John W.
1992-01-01
An adaptive approach to Space Station attitude control is investigated. The main components of the controller are the parameter identification scheme, the control gain calculation, and the control law. The control law is a full-state feedback space station baseline control law. The control gain calculation is based on linear-quadratic regulator theory with eigenvalues placement in a vertical strip. The parameter identification scheme is a recursive extended Kalman filter that estimates the inertias and also provides an estimate of the unmodeled disturbances due to the aerodynamic torques and to the nonlinear effects. An analysis of the inertia estimation problem suggests that it is possible to estimate Space Station inertias accurately during nominal control moment gyro operations. The closed-loop adaptive control law is shown to be capable of stabilizing the Space Station after large inertia changes. Results are presented for the pitch axis.
Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation
NASA Astrophysics Data System (ADS)
Ullah, Nasim; Wang, Shaoping; Wang, Xingjian
2015-07-01
This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1976-01-01
A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.
Adaptive spark control with knock detection
Boccadoro, V.; Kizer, T.
1984-01-01
Since 1981 RENIX has produced for RENAULT a digital ignition system with knock detection and advance correction capabilities. The knock detection uses the signal from a wide bank accelerometre mounted on the cylinder head. Good signal to noise ratio is obtained primarily through angular discrimination. RENIX's module technology leads to high performance to cost radio. The anti knock capability has now been included in RENAULT's latest engine control system to appear in the USA on MY 85. The presence of a powerful microprocessor allowed the development of an advanced control strategy which includes individual cylinder corrections and adaptive control. This is described together with the vehicle application at AMC.
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
Development of HIDEC adaptive engine control systems
NASA Technical Reports Server (NTRS)
Landy, R. J.; Yonke, W. A.; Stewart, J. F.
1986-01-01
The purpose of NASA's Highly Integrated Digital Electronic Control (HIDEC) flight research program is the development of integrated flight propulsion control modes, and the evaluation of their benefits aboard an F-15 test aircraft. HIDEC program phases are discussed, with attention to the Adaptive Engine Control System (ADECS I); this involves the upgrading of PW1128 engines for operation at higher engine pressure ratios and the production of greater thrust. ADECS II will involve the development of a constant thrust mode which will significantly reduce turbine operating temperatures.
F-8C adaptive flight control laws
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.; Stein, G.; Carlson, D. N.; Hendrick, R. C.
1977-01-01
Three candidate digital adaptive control laws were designed for NASA's F-8C digital flyby wire aircraft. Each design used the same control laws but adjusted the gains with a different adaptative algorithm. The three adaptive concepts were: high-gain limit cycle, Liapunov-stable model tracking, and maximum likelihood estimation. Sensors were restricted to conventional inertial instruments (rate gyros and accelerometers) without use of air-data measurements. Performance, growth potential, and computer requirements were used as criteria for selecting the most promising of these candidates for further refinement. The maximum likelihood concept was selected primarily because it offers the greatest potential for identifying several aircraft parameters and hence for improved control performance in future aircraft application. In terms of identification and gain adjustment accuracy, the MLE design is slightly superior to the other two, but this has no significant effects on the control performance achievable with the F-8C aircraft. The maximum likelihood design is recommended for flight test, and several refinements to that design are proposed.
Adaptive power-controllable orbital angular momentum (OAM) multicasting
Li, Shuhui; Wang, Jian
2015-01-01
We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, “up-down” power multicasting and “ladder” power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251
Adaptive power-controllable orbital angular momentum (OAM) multicasting.
Li, Shuhui; Wang, Jian
2015-01-01
We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, "up-down" power multicasting and "ladder" power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251
An error function minimization approach for the inverse problem of adaptive mirrors tuning
NASA Astrophysics Data System (ADS)
Vannoni, Maurizio; Yang, Fan; Siewert, Frank; Sinn, Harald
2014-09-01
Adaptive x-ray optics are more and more used in synchrotron beamlines, and it is probable that they will be considered for the future high-power free-electron laser sources, as the European XFEL now under construction in Hamburg, or similar projects now in discussion. These facilities will deliver a high power x-ray beam, with an expected high heat load delivered on the optics. For this reason, bendable mirrors are required to actively compensate the resulting wavefront distortion. On top of that, the mirror could have also intrinsic surface defects, as polishing errors or mounting stresses. In order to be able to correct the mirror surface with a high precision to maintain its challenging requirements, the mirror surface is usually characterized with a high accuracy metrology to calculate the actuators pulse functions and to assess its initial shape. After that, singular value decomposition (SVD) is used to find the signals to be applied into the actuators, to reach the desired surface deformation or correction. But in some cases this approach could be not robust enough for the needed performance. We present here a comparison between the classical SVD method and an error function minimization based on root-mean-square calculation. Some examples are provided, using a simulation of the European XFEL mirrors design as a case of study, and performances of the algorithms are evaluated in order to reach the ultimate quality in different scenarios. The approach could be easily generalized to other situations as well.
Selgrade, Brian P.
2014-01-01
During movement, errors are typically corrected only if they hinder performance. Preferential correction of task-relevant deviations is described by the minimal intervention principle but has not been demonstrated in the joints during locomotor adaptation. We studied hopping as a tractable model of locomotor adaptation of the joints within the context of a limb-force-specific task space. Subjects hopped while adapting to shifted visual feedback that induced them to increase peak ground reaction force (GRF). We hypothesized subjects would preferentially reduce task-relevant joint torque deviations over task-irrelevant deviations to increase peak GRF. We employed a modified uncontrolled manifold analysis to quantify task-relevant and task-irrelevant joint torque deviations for each individual hop cycle. As would be expected by the explicit goal of the task, peak GRF errors decreased in early adaptation before reaching steady state during late adaptation. Interestingly, during the early adaptation performance improvement phase, subjects reduced GRF errors by decreasing only the task-relevant joint torque deviations. In contrast, during the late adaption performance maintenance phase, all torque deviations decreased in unison regardless of task relevance. In deadaptation, when the shift in visual feedback was removed, all torque deviations decreased in unison, possibly because performance improvement was too rapid to detect changes in only the task-relevant dimension. We conclude that limb force adaptation in hopping switches from a minimal intervention strategy during performance improvement to a noise reduction strategy during performance maintenance, which may represent a general control strategy for locomotor adaptation of limb force in other bouncing gaits, such as running. PMID:25475343
A frequency-domain estimator for use in adaptive control systems
NASA Technical Reports Server (NTRS)
Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter
1991-01-01
This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.
A frequency-domain estimator for use in adaptive control systems
NASA Technical Reports Server (NTRS)
Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter
1987-01-01
The paper presents a frequency-domain estimator which can identify both a nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which is called a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.
2005-01-01
This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge
An Adaptive Buddy Check for Observational Quality Control
NASA Technical Reports Server (NTRS)
Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)
2000-01-01
An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.
High-Velocity Angular Vestibulo-Ocular Reflex Adaptation to Position Error Signals
Scherer, Matthew; Schubert, Michael C.
2010-01-01
Background and Purpose Vestibular rehabilitation strategies including gaze stabilization exercises have been shown to increase gain of the angular vestibulo-ocular reflex (aVOR) using a retinal slip error signal (ES). The identification of additional ESs capable of promoting substitution strategies or aVOR adaptation is an important goal in the management of vestibular hypofunction. Position ESs have been shown to increase both aVOR gain and recruitment of compensatory saccades (CSs) during passive whole body rotation. This may be a useful compensatory strategy for gaze instability during active head rotation as well. In vestibular rehabilitation, the imaginary target exercise is often prescribed to improve gaze stability. This exercise uses a position ES; however, the mechanism for its effect has not been investigated. We compared aVOR gain adaptation using 2 types of small position ES: constant versus incremental. Methods Ten subjects with normal vestibular function were assessed with unpredictable and active head rotations before and after a 20-minute training session. Subjects performed 9 epochs of 40 active, high-velocity head impulses using a position ES stimulus to increase aVOR gain. Results Five subjects demonstrated significant aVOR gain increases with the constant-position ES (mean, 2%; range, −18% to 12%) compared with another 5 subjects showing significant aVOR gain increases to the incremental-position ES (mean, 3.7%; range, −2% to 22.6%). There was no difference in aVOR gain adaptation or CS recruitment between the 2 paradigms. Discussion and Conclusion These findings suggest that some subjects can increase their aVOR gain in response to high-velocity active head movement training using a position ES. The primary mechanism for this seems to be aVOR gain adaptation because CS use was not modified. The overall low change in aVOR gain adaptation with position ES suggests that retinal slip is a more powerful aVOR gain modifier. PMID:20588093
Durham adaptive optics real-time controller.
Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy
2010-11-10
The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems. PMID:21068868
Applying statistical process control to the adaptive rate control problem
NASA Astrophysics Data System (ADS)
Manohar, Nelson R.; Willebeek-LeMair, Marc H.; Prakash, Atul
1997-12-01
Due to the heterogeneity and shared resource nature of today's computer network environments, the end-to-end delivery of multimedia requires adaptive mechanisms to be effective. We present a framework for the adaptive streaming of heterogeneous media. We introduce the application of online statistical process control (SPC) to the problem of dynamic rate control. In SPC, the goal is to establish (and preserve) a state of statistical quality control (i.e., controlled variability around a target mean) over a process. We consider the end-to-end streaming of multimedia content over the internet as the process to be controlled. First, at each client, we measure process performance and apply statistical quality control (SQC) with respect to application-level requirements. Then, we guide an adaptive rate control (ARC) problem at the server based on the statistical significance of trends and departures on these measurements. We show this scheme facilitates handling of heterogeneous media. Last, because SPC is designed to monitor long-term process performance, we show that our online SPC scheme could be used to adapt to various degrees of long-term (network) variability (i.e., statistically significant process shifts as opposed to short-term random fluctuations). We develop several examples and analyze its statistical behavior and guarantees.
Optimal conditional error functions for the control of conditional power.
Brannath, Werner; Bauer, Peter
2004-09-01
Ethical considerations and the competitive environment of clinical trials usually require that any given trial have sufficient power to detect a treatment advance. If at an interim analysis the available data are used to decide whether the trial is promising enough to be continued, investigators and sponsors often wish to have a high conditional power, which is the probability to reject the null hypothesis given the interim data and the alternative of interest. Under this requirement a design with interim sample size recalculation, which keeps the overall and conditional power at a prespecified value and preserves the overall type I error rate, is a reasonable alternative to a classical group sequential design, in which the conditional power is often too small. In this article two-stage designs with control of overall and conditional power are constructed that minimize the expected sample size, either for a simple point alternative or for a random mixture of alternatives given by a prior density for the efficacy parameter. The presented optimality result applies to trials with and without an interim hypothesis test; in addition, one can account for constraints such as a minimal sample size for the second stage. The optimal designs will be illustrated with an example, and will be compared to the frequently considered method of using the conditional type I error level of a group sequential design. PMID:15339294
A concatenated coded modulation scheme for error control (addition 2)
NASA Technical Reports Server (NTRS)
Lin, Shu
1988-01-01
A concatenated coded modulation scheme for error control in data communications is described. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and a relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is particularly effective for high-speed satellite communications for large file transfer where high reliability is required. This paper also presents a simple method for constructing block codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft-decision Viterbi decoding algorithm. Furthermore, some of these codes are phase invariant under multiples of 45 deg rotation.
A concatenated coded modulation scheme for error control
NASA Technical Reports Server (NTRS)
Lin, Shu
1988-01-01
A concatenated coded modulation scheme for error control in data communications is presented. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and a relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is very effective for high speed satellite communications for large file transfer where high reliability is required. A simple method is also presented for constructing codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft decision Viterbi decoding algorithm. Furthermore, some of these codes are phase invariant under multiples of 45 deg rotation.
A concatenated coded modulation scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, Tadao; Lin, Shu
1988-01-01
A concatenated coded modulation scheme for error control in data communications is presented. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is particularly effective for high speed satellite communication for large file transfer where high reliability is required. Also presented is a simple method for constructing block codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft decision Viterbi decoding algorithm.
Closed-loop adaptive control for torsional micromirrors
NASA Astrophysics Data System (ADS)
Liao, Ke-Min; Wang, Yi-Chih; Yeh, Chih-Hsien; Chen, Rongshun
2004-01-01
An adaptive control scheme to achieve accurate positioning and trajectory tracking of torsional micromirror is presented in this study. The torsional micromirror is fabricated by using surface micromachining processes, in which phosphorusdoped polysilicon is employed as the structure layer as well as the bottom electrode. Generally, every fabrication step contributes to imperfections in micromirror. The proposed adaptive self-tuning controller has advantages of on-line compensating parameter variations or model uncertainty of the torsional micromirror, resulting from fabrication imperfections that produce asymmetric structures, misalignment of actuation mechanism, and deviations of the center of mass from the geometric center. In our design, the amount of detection of differential capacitance between the left and right electrodes at the femtofarad (fF) level is utilized as feedback signals. Simulation results show that the designed controller has better transient response compared to the PID control scheme. The micromirror can follow the reference trajectory (5 kHz) with acceptable error in several microseconds, thus the convergence of the controller is confirmed. Furthermore, the unknown model parameters can be identified correctly while the so-called persistent excitation condition is satisfied.
Genetic Adaptive Control for PZT Actuators
NASA Technical Reports Server (NTRS)
Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.
1995-01-01
A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.
Neural Control Adaptation to Motor Noise Manipulation
Hasson, Christopher J.; Gelina, Olga; Woo, Garrett
2016-01-01
Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487
Neural Control Adaptation to Motor Noise Manipulation.
Hasson, Christopher J; Gelina, Olga; Woo, Garrett
2016-01-01
Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487
Comments on 'Hamiltonian adaptive control of spacecraft'
NASA Astrophysics Data System (ADS)
Fossen, Thor I.
1993-04-01
In the adaptive scheme presented by Slotine and Benedetto (1990) for attitude tracking control of rigid spacecraft, the spacecraft is parameterized in terms of the inertial frame. This note shows how a parameterization in body coordinates considerably simplifies the representation of the adaptation scheme. The new symbolic expression for the regressor matrix is easy to find even for 6-degrees of freedom (DOF) Hamiltonian systems with a large number of unknown parameters. If the symbolic expression for the regressor matrix is known in advance, the computational complexity is approximately equal for both representations. In the scheme presented by Slotine and Benedetto this is not trivial because the transformation matrix between the inertial frame and the body coordinates is included in the expression for the regressor matrix. Hence, implementation for higher DOF systems is strongly complicated. An example illustrates the advantage of the new representation when modeling a simple three-DOF model of the lateral motion of a space shuttle.
Kalman filtering to suppress spurious signals in Adaptive Optics control
Poyneer, L; Veran, J P
2010-03-29
In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Road map to adaptive optimal control. [jet engine control
NASA Technical Reports Server (NTRS)
Boyer, R.
1980-01-01
A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.
Kertzscher, Gustavo Andersen, Claus E.; Tanderup, Kari
2014-05-15
Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was
Adaptive control of a Stewart platform-based manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.
1993-01-01
A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.
A Methodology for Investigating Adaptive Postural Control
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Riccio, G. E.
1999-01-01
Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies. PMID:18269938
Noradrenergic control of error perseveration in medial prefrontal cortex.
Caetano, Marcelo S; Jin, Lu E; Harenberg, Linda; Stachenfeld, Kimberly L; Arnsten, Amy F T; Laubach, Mark
2012-01-01
The medial prefrontal cortex (mPFC) plays a key role in behavioral variability, action monitoring, and inhibitory control. The functional role of mPFC may change over the lifespan due to a number of aging-related issues, including dendritic regression, increased cAMP signaling, and reductions in the efficacy of neuromodulators to influence mPFC processing. A key neurotransmitter in mPFC is norepinephrine. Previous studies have reported aging-related changes in the sensitivity of mPFC-dependent tasks to noradrenergic agonist drugs, such as guanfacine. Here, we assessed the effects of yohimbine, an alpha-2 noradrenergic antagonist, in cohorts of younger and older rats in a classic test of spatial working memory (using a T-maze). Older rats (23-29 mo.) were impaired by a lower dose of yohimbine compared to younger animals (5-10 mo.). To determine if the drug acts on alpha-2 noradrenergic receptors in mPFC and if its effects are specific to memory-guided performance, we made infusions of yohimbine into mPFC of a cohort of young rats (6 mo.) using an operant delayed response task. The task involved testing rats in blocks of trials with memory- and stimulus-guided performance. Yohimbine selectively impaired memory-guided performance and was associated with error perseveration. Infusions of muscimol (a GABA-A agonist) at the same sites also selectively impaired memory-guided performance, but did not lead to error perseveration. Based on these results, we propose several potential interpretations for the role for the noradrenergic system in the performance of delayed response tasks, including the encoding of previous response locations, task rules (i.e., using a win-stay strategy instead of a win-shift strategy), and performance monitoring (e.g., prospective encoding of outcomes). PMID:23293590
Noradrenergic control of error perseveration in medial prefrontal cortex
Caetano, Marcelo S.; Jin, Lu E.; Harenberg, Linda; Stachenfeld, Kimberly L.; Arnsten, Amy F. T.; Laubach, Mark
2013-01-01
The medial prefrontal cortex (mPFC) plays a key role in behavioral variability, action monitoring, and inhibitory control. The functional role of mPFC may change over the lifespan due to a number of aging-related issues, including dendritic regression, increased cAMP signaling, and reductions in the efficacy of neuromodulators to influence mPFC processing. A key neurotransmitter in mPFC is norepinephrine. Previous studies have reported aging-related changes in the sensitivity of mPFC-dependent tasks to noradrenergic agonist drugs, such as guanfacine. Here, we assessed the effects of yohimbine, an alpha-2 noradrenergic antagonist, in cohorts of younger and older rats in a classic test of spatial working memory (using a T-maze). Older rats (23–29 mo.) were impaired by a lower dose of yohimbine compared to younger animals (5–10 mo.). To determine if the drug acts on alpha-2 noradrenergic receptors in mPFC and if its effects are specific to memory-guided performance, we made infusions of yohimbine into mPFC of a cohort of young rats (6 mo.) using an operant delayed response task. The task involved testing rats in blocks of trials with memory- and stimulus-guided performance. Yohimbine selectively impaired memory-guided performance and was associated with error perseveration. Infusions of muscimol (a GABA-A agonist) at the same sites also selectively impaired memory-guided performance, but did not lead to error perseveration. Based on these results, we propose several potential interpretations for the role for the noradrenergic system in the performance of delayed response tasks, including the encoding of previous response locations, task rules (i.e., using a win-stay strategy instead of a win-shift strategy), and performance monitoring (e.g., prospective encoding of outcomes). PMID:23293590
Adaptive Accommodation Control Method for Complex Assembly
NASA Astrophysics Data System (ADS)
Kang, Sungchul; Kim, Munsang; Park, Shinsuk
Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.
Adaptive control of space based robot manipulators
NASA Technical Reports Server (NTRS)
Walker, Michael W.; Wee, Liang-Boon
1991-01-01
For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.
Reinhart, Robert M. G.; Zhu, Julia; Park, Sohee; Woodman, Geoffrey F.
2015-01-01
Executive control and flexible adjustment of behavior following errors are essential to adaptive functioning. Loss of adaptive control may be a biomarker of a wide range of neuropsychiatric disorders, particularly in the schizophrenia spectrum. Here, we provide support for the view that oscillatory activity in the frontal cortex underlies adaptive adjustments in cognitive processing following errors. Compared with healthy subjects, patients with schizophrenia exhibited low frequency oscillations with abnormal temporal structure and an absence of synchrony over medial-frontal and lateral-prefrontal cortex following errors. To demonstrate that these abnormal oscillations were the origin of the impaired adaptive control in patients with schizophrenia, we applied noninvasive dc electrical stimulation over the medial-frontal cortex. This noninvasive stimulation descrambled the phase of the low-frequency neural oscillations that synchronize activity across cortical regions. Following stimulation, the behavioral index of adaptive control was improved such that patients were indistinguishable from healthy control subjects. These results provide unique causal evidence for theories of executive control and cortical dysconnectivity in schizophrenia. PMID:26124116
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.
2014-01-01
Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth; Bayard, David S.
1988-01-01
A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.
Adaptive control: Stability, convergence, and robustness
NASA Technical Reports Server (NTRS)
Sastry, Shankar; Bodson, Marc
1989-01-01
The deterministic theory of adaptive control (AC) is presented in an introduction for graduate students and practicing engineers. Chapters are devoted to basic AC approaches, notation and fundamental theorems, the identification problem, model-reference AC, parameter convergence using averaging techniques, and AC robustness. Consideration is given to the use of prior information, the global stability of indirect AC schemes, multivariable AC, linearizing AC for a class of nonlinear systems, AC of linearizable minimum-phase systems, and MIMO systems decouplable by static state feedback.
Direct adaptive control of wind energy conversion systems using Gaussian networks.
Mayosky, M A; Cancelo, I E
1999-01-01
Grid connected wind energy conversion systems (WECS) present interesting control demands, due to the intrinsic nonlinear characteristics of windmills and electric generators. In this paper a direct adaptive control strategy for WECS control is proposed. It is based on the combination of two control actions: a radial basis zfunction network-based adaptive controller, which drives the tracking error to zero with user specified dynamics, and a supervisory controller, based on crude bounds of the system's nonlinearities. The supervisory controller fires when the finite neural-network approximation properties cannot be guaranteed. The form of the supervisor control and the adaptation law for the neural controller are derived from a Lyapunov analysis of stability. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution. PMID:18252585
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
Induction machine Direct Torque Control system based on fuzzy adaptive control
NASA Astrophysics Data System (ADS)
Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng
2009-07-01
Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.
NASA Astrophysics Data System (ADS)
Shankar, Praveen
The performance of nonlinear control algorithms such as feedback linearization and dynamic inversion is heavily dependent on the fidelity of the dynamic model being inverted. Incomplete or incorrect knowledge of the dynamics results in reduced performance and may lead to instability. Augmenting the baseline controller with approximators which utilize a parametrization structure that is adapted online reduces the effect of this error between the design model and actual dynamics. However, currently existing parameterizations employ a fixed set of basis functions that do not guarantee arbitrary tracking error performance. To address this problem, we develop a self-organizing parametrization structure that is proven to be stable and can guarantee arbitrary tracking error performance. The training algorithm to grow the network and adapt the parameters is derived from Lyapunov theory. In addition to growing the network of basis functions, a pruning strategy is incorporated to keep the size of the network as small as possible. This algorithm is implemented on a high performance flight vehicle such as F-15 military aircraft. The baseline dynamic inversion controller is augmented with a Self-Organizing Radial Basis Function Network (SORBFN) to minimize the effect of the inversion error which may occur due to imperfect modeling, approximate inversion or sudden changes in aircraft dynamics. The dynamic inversion controller is simulated for different situations including control surface failures, modeling errors and external disturbances with and without the adaptive network. A performance measure of maximum tracking error is specified for both the controllers a priori. Excellent tracking error minimization to a pre-specified level using the adaptive approximation based controller was achieved while the baseline dynamic inversion controller failed to meet this performance specification. The performance of the SORBFN based controller is also compared to a fixed RBF network
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Lawrence, D. A.
1981-01-01
The reduced order model problem in distributed parameter systems adaptive identification and control is investigated. A comprehensive examination of real-time centralized adaptive control options for flexible spacecraft is provided.
Adaptive source rate control for wireless video conferencing
NASA Astrophysics Data System (ADS)
Liu, Hang; El Zarki, Magda
1997-12-01
Hybrid ARQ schemes can yield much better throughput and reliability than static FEC schemes for the transmission of data over time-varying wireless channels. However these schemes result in higher delay. They adapt to the varying channel conditions by retransmitting erroneous packets, this results in variable effective data rates for current PCS networks because the channel bandwidth is constant. Hybrid ARQ schemes are currently being proposed as the error control schemes for real-time video transmission. The standardization process is on-going in ITU, MPEG-4 and wireless ATM forum. The important issue is how to ensure low delay while taking advantage of the high throughput and reliability that these schemes provide for. In this paper we propose an adaptive source rate control (ASRC) protocol which can work together with the hybrid ARQ error control schemes to achieve efficient transmission of real-time video with low delay and high reliability. The ASRC scheme adjusts the source rate based on the channel conditions, the transport buffer occupancy and the delay constraints. It optimizes the video quality by dynamically changing both the number of the forced update (intracoded) macroblocks and the quantization scale used in a frame. The number of the forced update macroblocks used in a frame is first adjusted according to the allocated source rate. This reduces the fluctuation of the quantization scale with the change in the channel conditions during encoding so that the uniformity of the video quality is improved. The simulation results show that the proposed ASRC protocol performs very well for both slow fading and fast fading channels.
A self-adaptive feedforward rf control system for linacs
NASA Astrophysics Data System (ADS)
Zhang, Renshan; Ben-Zvi, Ilan; Xie, Jialin
1993-01-01
The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6°. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±0.5% in amplitude and simultaneously to ±1° in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±0.2%.
Adaptive Control of Flexible Structures Using Residual Mode Filters
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2010-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.
Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.
Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu
2015-01-01
This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. PMID:25034649
Adaptive collaborative control of highly redundant robots
NASA Astrophysics Data System (ADS)
Handelman, David A.
2008-04-01
The agility and adaptability of biological systems are worthwhile goals for next-generation unmanned ground vehicles. Management of the requisite number of degrees of freedom, however, remains a challenge, as does the ability of an operator to transfer behavioral intent from human to robot. This paper reviews American Android research funded by NASA, DARPA, and the U.S. Army that attempts to address these issues. Limb coordination technology, an iterative form of inverse kinematics, provides a fundamental ability to control balance and posture independently in highly redundant systems. Goal positions and orientations of distal points of the robot skeleton, such as the hands and feet of a humanoid robot, become variable constraints, as does center-of-gravity position. Behaviors utilize these goals to synthesize full-body motion. Biped walking, crawling and grasping are illustrated, and behavior parameterization, layering and portability are discussed. Robotic skill acquisition enables a show-and-tell approach to behavior modification. Declarative rules built verbally by an operator in the field define nominal task plans, and neural networks trained with verbal, manual and visual signals provide additional behavior shaping. Anticipated benefits of the resultant adaptive collaborative controller for unmanned ground vehicles include increased robot autonomy, reduced operator workload and reduced operator training and skill requirements.
Wavefront Control for Extreme Adaptive Optics
Poyneer, L A
2003-07-16
Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.
Common medial frontal mechanisms of adaptive control in humans and rodents
Frank, Michael J.; Laubach, Mark
2013-01-01
In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310
Veran
2000-07-01
Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field. PMID:10883986
Quantum Error Correction: Optimal, Robust, or Adaptive? Or, Where is The Quantum Flyball Governor?
NASA Astrophysics Data System (ADS)
Kosut, Robert; Grace, Matthew
2012-02-01
In The Human Use of Human Beings: Cybernetics and Society (1950), Norbert Wiener introduces feedback control in this way: ``This control of a machine on the basis of its actual performance rather than its expected performance is known as feedback ... It is the function of control ... to produce a temporary and local reversal of the normal direction of entropy.'' The classic classroom example of feedback control is the all-mechanical flyball governor used by James Watt in the 18th century to regulate the speed of rotating steam engines. What is it that is so compelling about this apparatus? First, it is easy to understand how it regulates the speed of a rotating steam engine. Secondly, and perhaps more importantly, it is a part of the device itself. A naive observer would not distinguish this mechanical piece from all the rest. So it is natural to ask, where is the all-quantum device which is self regulating, ie, the Quantum Flyball Governor? Is the goal of quantum error correction (QEC) to design such a device? Devloping the computational and mathematical tools to design this device is the topic of this talk.
Feischl, Michael; Gantner, Gregor; Praetorius, Dirk
2015-01-01
We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698
ERIC Educational Resources Information Center
Kluge, Annette; Sauer, Juergen; Burkolter, Dina; Ritzmann, Sandrina
2010-01-01
Training in process control environments requires operators to be prepared for temporal and adaptive transfer of skill. Three training methods were compared with regard to their effectiveness in supporting transfer: Drill & Practice (D&P), Error Training (ET), and procedure-based and error heuristics training (PHT). Communication electronics…
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
Das, D.; Nanda, J.; Kothari, M.L.; Kothari, D.P. )
1990-01-01
The paper presents an analysis of the automatic generation control based on a new area control error strategy for an interconnected hydrothermal system in the discrete-mode considering generation rate constraints (GRCs). The investigations reveal that the system dynamic performances following a step load perturbation in either of the areas with constrained optimum gain settings and unconstrained optimum gain settings are not much different, hence optimum controller settings can be achieved without considering GRCs in the mathematical model.
MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.
Najjar-Khodabakhsh, Abbas; Soltani, Jafar
2016-03-01
In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. PMID:26830002
Adaptive Control of Small Outboard-Powered Boats for Survey Applications
NASA Technical Reports Server (NTRS)
VanZwieten, T.S.; VanZwieten, J.H.; Fisher, A.D.
2009-01-01
Four autopilot controllers have been developed in this work that can both hold a desired heading and follow a straight line. These PID, adaptive PID, neuro-adaptive, and adaptive augmenting control algorithms have all been implemented into a numerical simulation of a 33-foot center console vessel with wind, waves, and current disturbances acting in the perpendicular (across-track) direction of the boat s desired trajectory. Each controller is tested for its ability to follow a desired heading in the presence of these disturbances and then to follow a straight line at two different throttle settings for the same disturbances. These controllers were tuned for an input thrust of 2000 N and all four controllers showed good performance with none of the controllers significantly outperforming the others when holding a constant heading and following a straight line at this engine thrust. Each controller was then tested for a reduced engine thrust of 1200 N per engine where each of the three adaptive controllers reduced heading error and across-track error by approximately 50% after a 300 second tuning period when compared to the fixed gain PID, showing that significant robustness to changes in throttle setting was gained by using an adaptive algorithm.
Adaptive powertrain control for plugin hybrid electric vehicles
Kedar-Dongarkar, Gurunath; Weslati, Feisel
2013-10-15
A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.
Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems
NASA Astrophysics Data System (ADS)
Volyanskyy, Kostyantyn Y.
Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance
FPGA-accelerated adaptive optics wavefront control
NASA Astrophysics Data System (ADS)
Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.
2014-03-01
The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.
An adaptive control system for wing TE shape control
NASA Astrophysics Data System (ADS)
Dimino, I.; Concilio, A.; Schueller, M.; Gratias, A.
2013-03-01
A key technology to enable morphing aircraft for enhanced aerodynamic performance is the design of an adaptive control system able to emulate target structural shapes. This paper presents an approach to control the shape of a morphing wing by employing internal, integrated actuators acting on the trailing edge. The adaptive-wing concept employs active ribs, driven by servo actuators, controlled in turn by a dedicated algorithm aimed at shaping the wing cross section, according to a pre-defined geometry. The morphing control platform is presented and a suitable control algorithm is implemented in a dedicated routine for real-time simulations. The work is organized as follows. A finite element model of the uncontrolled, non-actuated structure is used to obtain the plant model for actuator torque and displacement control. After having characterized and simulated pure rotary actuator behavior over the structure, selected target wing shapes corresponding to rigid trailing edge rotations are achieved through both open-loop and closed-loop control logics.
Robust adaptive vibration control of a flexible structure.
Khoshnood, A M; Moradi, H M
2014-07-01
Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. PMID:24703188
Direct adaptive control of manipulators in Cartesian space
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.
Dynamic modeling and adaptive control for space stations
NASA Technical Reports Server (NTRS)
Ih, C. H. C.; Wang, S. J.
1985-01-01
Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations. The aspects of space station operational properties are first examined, including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction, and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained.
Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.
Kang, Hao-Bo; Wang, Jian-Hui
2013-11-01
This paper studies an adaptive control strategy for a class of 5 DOF upper-limb exoskeleton robot with a special safety consideration. The safety requirement plays a critical role in the clinical treatment when assisting patients with shoulder, elbow and wrist joint movements. With the objective of assuring the tracking performance of the pre-specified operations, the proposed adaptive controller is firstly designed to be robust to the model uncertainties. To further improve the safety and fault-tolerance in the presence of unknown large parameter variances or even actuator faults, the adaptive controller is on-line updated according to the information provided by an adaptive observer without additional sensors. An output tracking performance is well achieved with a tunable error bound. The experimental example also verifies the effectiveness of the proposed control scheme. PMID:23906739
Integrated flight/propulsion control - Adaptive engine control system mode
NASA Technical Reports Server (NTRS)
Yonke, W. A.; Terrell, L. A.; Meyers, L. P.
1985-01-01
The adaptive engine control system mode (ADECS) which is developed and tested on an F-15 aircraft with PW1128 engines, using the NASA sponsored highly integrated digital electronic control program, is examined. The operation of the ADECS mode, as well as the basic control logic, the avionic architecture, and the airframe/engine interface are described. By increasing engine pressure ratio (EPR) additional thrust is obtained at intermediate power and above. To modulate the amount of EPR uptrim and to prevent engine stall, information from the flight control system is used. The performance benefits, anticipated from control integration are shown for a range of flight conditions and power settings. It is found that at higher altitudes, the ADECS mode can increase thrust as much as 12 percent, which is used for improved acceleration, improved turn rate, or sustained turn angle.
Adaptive Control of a Serial-in-Parallel Robotic Rehabilitation Device
Pehlivan, Ali Utku; Sergi, Fabrizio; O’Malley, Marcia K.
2013-01-01
Robotic rehabilitation is an effective platform for sensorimotor training after neurological injuries. In this paper, an adaptive controller is developed and implemented for the RiceWrist, a serial-in-parallel robot mechanism for upper extremity robotic rehabilitation. The model-based adaptive controller implementation requires a closed form dynamic model, valid for a restricted domain of generalized coordinates. We have used an existing method to define this domain and verify that the domain is widely within the range of admissible tasks required for the considered application (movements-based wrist and forearm rehabilitation). Simulation and experimental results that compare the performance of the adaptive controller to a proportional- derivative controller show that the trajectory tracking performance of the adaptive controller is better compared to the performance of a PD controller using the same values of feed-back gains. Further, comparable absolute error performance is obtained with the adaptive controller for feedback gains nearly one third that required for the PD controller. With the lower gains used in the adaptive controller, good tracking performance is achieved with a more compliant controller that will allow the subject to indicate their ability to independently initiate and maintain movement during a rehabilitation session. PMID:24187231
Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.; Wright, Alan D.
2009-01-01
Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.
A survey of adaptive control technology in robotics
NASA Technical Reports Server (NTRS)
Tosunoglu, S.; Tesar, D.
1987-01-01
Previous work on the adaptive control of robotic systems is reviewed. Although the field is relatively new and does not yet represent a mature discipline, considerable attention has been given to the design of sophisticated robot controllers. Here, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.
Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control
NASA Technical Reports Server (NTRS)
Pahle, Joe W.
2008-01-01
This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.
Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems.
Zhao, Xudong; Shi, Peng; Zheng, Xiaolong
2016-06-01
In this paper, tracking control problems are investigated for a class of uncertain nonlinear systems in lower triangular form. First, a state-feedback controller is designed by using adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. During the design procedure, a developed method with less computation is proposed by constructing one maximum adaptive parameter. Furthermore, adaptive controllers with nonsymmetric dead-zone are also designed for the systems. Then, a sampled-data control scheme is presented to discretize the obtained continuous-time controller by using the forward Euler method. It is shown that both proposed continuous and discrete controllers can ensure that the system output tracks the target signal with a small bounded error and the other closed-loop signals remain bounded. Two simulation examples are presented to verify the effectiveness and applicability of the proposed new design techniques. PMID:26208376
Controlling qubit drift by recycling error correction syndromes
NASA Astrophysics Data System (ADS)
Blume-Kohout, Robin
2015-03-01
Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE
Adaptive Control Allocation in the Presence of Actuator Failures
NASA Technical Reports Server (NTRS)
Liu, Yu; Crespo, Luis G.
2010-01-01
In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.
Lipnikov, Konstantin; Agouzal, Abdellatif; Vassilevski, Yuri
2009-01-01
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.
Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki
2015-01-01
Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors. PMID:25674058
NASA Technical Reports Server (NTRS)
Militello, Carmelo; Felippa, Carlos A.
1992-01-01
The formulation and application of element-level error indicators based on parametrized variational principles are investigated. These indicators are ideally suited to drive adaptive mesh refinment on parallel computers where access to neighboring elements resident on different processors may incur significant computational overhead. Furthermore, such estimators are not affected by physical jumps at wavefronts or interfaces. An estimator derived from the higher-order element energy is applied to r adaptation of meshes in plates and shell structures where the exact solution is known.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1990-01-01
An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1994-01-01
The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.
IPTV multicast with peer-assisted lossy error control
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhu, Xiaoqing; Begen, Ali C.; Girod, Bernd
2010-07-01
Emerging IPTV technology uses source-specific IP multicast to deliver television programs to end-users. To provide reliable IPTV services over the error-prone DSL access networks, a combination of multicast forward error correction (FEC) and unicast retransmissions is employed to mitigate the impulse noises in DSL links. In existing systems, the retransmission function is provided by the Retransmission Servers sitting at the edge of the core network. In this work, we propose an alternative distributed solution where the burden of packet loss repair is partially shifted to the peer IP set-top boxes. Through Peer-Assisted Repair (PAR) protocol, we demonstrate how the packet repairs can be delivered in a timely, reliable and decentralized manner using the combination of server-peer coordination and redundancy of repairs. We also show that this distributed protocol can be seamlessly integrated with an application-layer source-aware error protection mechanism called forward and retransmitted Systematic Lossy Error Protection (SLEP/SLEPr). Simulations show that this joint PARSLEP/ SLEPr framework not only effectively mitigates the bottleneck experienced by the Retransmission Servers, thus greatly enhancing the scalability of the system, but also efficiently improves the resistance to the impulse noise.
Modular and Adaptive Control of Sound Processing
NASA Astrophysics Data System (ADS)
van Nort, Douglas
parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.
Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.
Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying
2016-03-01
This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. PMID:26830003
Long, Lijun; Zhao, Jun
2015-07-01
This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed. PMID:25122844
Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Burken, John; Ishihara, Abraham
2011-01-01
This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.
NASA Astrophysics Data System (ADS)
Fiorentini, Marcello; Orlandini, Stefano; Paniconi, Claudio
2015-07-01
A process-based numerical model of integrated surface-subsurface flow is analyzed in order to identify, track, and reduce the mass balance errors affiliated with the model's coupling scheme. The sources of coupling error include a surface-subsurface grid interface that requires node-to-cell and cell-to-node interpolation of exchange fluxes and ponding heads, and a sequential iterative time matching procedure that includes a time lag in these same exchange terms. Based on numerical experiments carried out for two synthetic test cases and for a complex drainage basin in northern Italy, it is shown that the coupling mass balance error increases during the flood recession limb when the rate of change in the fluxes exchanged between the surface and subsurface is highest. A dimensionless index that quantifies the degree of coupling and a saturated area index are introduced to monitor the sensitivity of the model to coupling error. Error reduction is achieved through improvements to the heuristic procedure used to control and adapt the time step interval and to the interpolation algorithm used to pass exchange variables from nodes to cells. The analysis presented illustrates the trade-offs between a flexible description of surface and subsurface flow processes and the numerical errors inherent in sequential iterative coupling with staggered nodal points at the land surface interface, and it reveals mitigation strategies that are applicable to all integrated models sharing this coupling and discretization approach.
Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes
NASA Astrophysics Data System (ADS)
Florjanczyk, Jan; Brun, Todd; Center for Quantum Information Science; Technology Team
We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.
NASA Astrophysics Data System (ADS)
Asif, Muhammad; Junaid Khan, Muhammad; Cai, Ning
2014-05-01
In this paper, novel adaptive sliding mode dynamic controller with integrator in the loop is proposed for nonholonomic wheeled mobile robot (WMR). The modified kinematics controller is used to generate kinematics velocities of WMR which are subsequently used as the input to adaptive dynamic controller. Actuator dynamics are also derived to generate actuator voltage of WMR through torque and velocity vectors. Stability of both kinematics and dynamic controller is presented using Lyapunov stability analysis. The proposed scheme is verified and validated using computer simulations for tracking the desired trajectory of WMR. The performance of proposed scheme is compared with standard backstepping kinematics controller and classical sliding mode control. In addition, the performance is further compared with standard backstepping kinematics controller with adaptive sliding mode controller without integrator. It is shown that the proposed scheme exhibits zero steady state error, fast error convergence and robustness in the presence of continuous disturbances and uncertainties.
ERIC Educational Resources Information Center
Rigoni, Davide; Wilquin, Helene; Brass, Marcel; Burle, Boris
2013-01-01
The belief that one can exert intentional control over behavior is deeply rooted in virtually all human beings. It has been shown that weakening such belief--e.g. by exposure to "anti-free will" messages--can lead people to display antisocial tendencies. We propose that this cursory and irresponsible behavior may be facilitated by a breakdown of…
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
Williams, Rube B.
2004-02-04
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Reducing Pointing Errors During Cassini Reaction Control System Orbit Trim Maneuvers
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2013-01-01
The effect of altering a gain parameter in the Cassini reaction control system (RCS) delta-V controller on the maneuver execution errors during orbit trim maneuvers (OTMs) is explored. Cassini consists of two reaction control thruster branches (A & B) each with eight thrusters. Currently, the B-branch is operational while the A-branch serves as a back-up. The four Z-thrusters control the X and Y-axes, while the four Y-thrusters control the Z-axis. During an OTM, the Z-thrusters fire to maintain the X and Y-axes pointing within an attitude control dead-zone (-10 to 10 milliradians). The errors do not remain at zero due to pointing error sources such as spacecraft center of mass offset from the geometric center of the Z-facing thrusters, and variability in the thruster forces due to the thruster hardware differences. The delta-V reaction control system (RCS) controller ensures that the attitude error remains within this dead-zone. Gain parameters within the RCS delta-V controller affect the maneuver execution errors. Different parameter values are used to explore effect on these errors. It is found that pointing error decreases and magnitude error increases rapidly for gain parameters 10 times greater than the current parameter values used in the flight software.
Neural control of chronic stress adaptation
Herman, James P.
2013-01-01
Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212
Learning arm's posture control using reinforcement learning and feedback-error-learning.
Kambara, H; Kim, J; Sato, M; Koike, Y
2004-01-01
In this paper, we propose a learning model using the Actor-Critic method and the feedback-error-learning scheme. The Actor-Critic method, which is one of the major frameworks in reinforcement learning, has attracted attention as a computational learning model in the basal ganglia. Meanwhile, the feedback-error-learning is learning architecture proposed as a computationally coherent model of cerebellar motor learning. This learning architecture's purpose is to acquire a feed-forward controller by using a feedback controller's output as an error signal. In past researches, a predetermined constant gain feedback controller was used for the feedback-error-learning. We use the Actor-Critic method for obtaining a feedback controller in the feedback-error-earning. By applying the proposed learning model to an arm's posture control, we show that high-performance feedback and feed-forward controller can be acquired from only by using a scalar value of reward. PMID:17271719
Synthetic consciousness: the distributed adaptive control perspective.
Verschure, Paul F M J
2016-08-19
Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.
1986-01-01
The performance of NASA Telecommand System was analyzed. A random coding approach was taken to determine the optimum code rate to use in forward error correcting (FEC) system with a fixed signal energy to noise power density ration, but no bandwidth constraint. Capacity and cutoff rates of concatened coding systems were determined. A lower bound on the minium distance growth rate between unmerged codewords was obtained for time invarient convolutional codes.
Adaptive control system for large annular momentum control device
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Johnson, C. R., Jr.
1981-01-01
A dual momentum vector control concept, consisting of two counterrotating rings (each designated as an annular momentum control device), was studied for pointing and slewing control of large spacecraft. In a disturbance free space environment, the concept provides for three axis pointing and slewing capabilities while requiring no expendables. The approach utilizes two large diameter counterrotating rings or wheels suspended magnetically in many race supports distributed around the antenna structure. When the magnets are energized, attracting the two wheels, the resulting gyroscopic torque produces a rate along the appropriate axis. Roll control is provided by alternating the radiative rotational velocity of the two wheels. Wheels with diameters of 500 to 800 m and with sufficient momentum storage capability require rims only a few centimeters thick. The wheels are extremely flexible; therefore, it is necessary to account for the distributed nature of the rings in the design of the bearing controllers. Also, ring behavior is unpredictably sensitive to ring temperature, spin rate, manufacturing imperfections, and other variables. An adaptive control system designed to handle these problems is described.
Adaptive data rate control TDMA systems as a rain attenuation compensation technique
NASA Technical Reports Server (NTRS)
Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru
1993-01-01
Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.
Adaptive Force Control For Compliant Motion Of A Robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Two adaptive control schemes offer robust solutions to problem of stable control of forces of contact between robotic manipulator and objects in its environment. They are called "adaptive admittance control" and "adaptive compliance control." Both schemes involve use of force-and torque sensors that indicate contact forces. These schemes performed well when tested in computational simulations in which they were used to control seven-degree-of-freedom robot arm in executing contact tasks. Choice between admittance or compliance control is dictated by requirements of the application at hand.
NASA Technical Reports Server (NTRS)
Sargent, Jeff Scott
1988-01-01
A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.
Performance analysis of a hybrid ARQ error control scheme for near earth satellite communications
NASA Technical Reports Server (NTRS)
Lin, Shu
1987-01-01
A robust error control coding scheme is presented. The scheme is a cascaded forward error correction (FEC) scheme supported by parity retransmissions for further error correction in the erroneous data words. The error performance and throughput efficiency of the scheme are analyzed. Two specific schemes are proposed for NASA near earth satellite communications. It is shown that both schemes provide high reliability and throughput efficiency even for high channel bit error rates in the range of .002. The schemes are suitable for high data rate file transfer.
ANALYSIS OF CASE-CONTROL DATA WITH COVARIATE MEASUREMENT ERROR: APPLICATION TO DIET AND COLON CANCER
We propose a method for estimating odds ratios from case-control data in which ovariates are subject to mesurement error. he mesurement error may contain both a random component and a systematic difference between cases and controls (recall bias). ultivariate normal discriminant ...
Neural self-tuning adaptive control of non-minimum phase system
NASA Technical Reports Server (NTRS)
Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.
1993-01-01
The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.
Adaptive control technique for accelerators using digital signal processing
Eaton, L.; Jachim, S.; Natter, E.
1987-01-01
The use of present Digital Signal Processing (DSP) techniques can drastically reduce the residual rf amplitude and phase error in an accelerating rf cavity. Accelerator beam loading contributes greatly to this residual error, and the low-level rf field control loops cannot completely absorb the fast transient of the error. A feedforward technique using DSP is required to maintain the very stringent rf field amplitude and phase specifications. 7 refs.
Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.
Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong
2015-03-01
This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique. PMID:25720014
Detecting and correcting partial errors: Evidence for efficient control without conscious access.
Rochet, N; Spieser, L; Casini, L; Hasbroucq, T; Burle, B
2014-09-01
Appropriate reactions to erroneous actions are essential to keeping behavior adaptive. Erring, however, is not an all-or-none process: electromyographic (EMG) recordings of the responding muscles have revealed that covert incorrect response activations (termed "partial errors") occur on a proportion of overtly correct trials. The occurrence of such "partial errors" shows that incorrect response activations could be corrected online, before turning into overt errors. In the present study, we showed that, unlike overt errors, such "partial errors" are poorly consciously detected by participants, who could report only one third of their partial errors. Two parameters of the partial errors were found to predict detection: the surface of the incorrect EMG burst (larger for detected) and the correction time (between the incorrect and correct EMG onsets; longer for detected). These two parameters provided independent information. The correct(ive) responses associated with detected partial errors were larger than the "pure-correct" ones, and this increase was likely a consequence, rather than a cause, of the detection. The respective impacts of the two parameters predicting detection (incorrect surface and correction time), along with the underlying physiological processes subtending partial-error detection, are discussed. PMID:24347086
An adaptive controller for enhancing operator performance during teleoperation
NASA Technical Reports Server (NTRS)
Carignan, Craig R.; Tarrant, Janice M.; Mosier, Gary E.
1989-01-01
An adaptive controller is developed for adjusting robot arm parameters while manipulating payloads of unknown mass and inertia. The controller is tested experimentally in a master/slave configuration where the adaptive slave arm is commanded via human operator inputs from a master. Kinematically similar six-joint master and slave arms are used with the last three joints locked for simplification. After a brief initial adaptation period for the unloaded arm, the slave arm retrieves different size payloads and maneuvers them about the workspace. Comparisons are then drawn with similar tasks where the adaptation is turned off. Several simplifications of the controller dynamics are also addressed and experimentally verified.
Pulse front control with adaptive optics
NASA Astrophysics Data System (ADS)
Sun, B.; Salter, P. S.; Booth, M. J.
2016-03-01
The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.
NASA Technical Reports Server (NTRS)
Tao, Gang; Joshi, Suresh M.
2008-01-01
In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.
Method for removing tilt control in adaptive optics systems
Salmon, J.T.
1998-04-28
A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.
Method for removing tilt control in adaptive optics systems
Salmon, Joseph Thaddeus
1998-01-01
A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)
Adaptive neural network nonlinear control for BTT missile based on the differential geometry method
NASA Astrophysics Data System (ADS)
Wu, Hao; Wang, Yongji; Xu, Jiangsheng
2007-11-01
A new nonlinear control strategy incorporated the differential geometry method with adaptive neural networks is presented for the nonlinear coupling system of Bank-to-Turn missile in reentry phase. The basic control law is designed using the differential geometry feedback linearization method, and the online learning neural networks are used to compensate the system errors due to aerodynamic parameter errors and external disturbance in view of the arbitrary nonlinear mapping and rapid online learning ability for multi-layer neural networks. The online weights and thresholds tuning rules are deduced according to the tracking error performance functions by Levenberg-Marquardt algorithm, which will make the learning process faster and more stable. The six degree of freedom simulation results show that the attitude angles can track the desired trajectory precisely. It means that the proposed strategy effectively enhance the stability, the tracking performance and the robustness of the control system.
One Unequal Error Control Method for Telemetric Data Transmission
NASA Astrophysics Data System (ADS)
Hirner, Tomáš; Farkaš, Peter; Krile, Srečko
2011-05-01
In wireless sensor networks (WSN) it is necessary to use very simple codes for transmission of information since the nodes in these networks have usually only limited energy available not only for transmission but also for processing. On the other hand, common codes do not usually take into account the fact that in case of telemetric information the weights of individual orders are not equal and errors in different orders cause different deviations from correct value. In this contribution, new very simple codes for transmission of telemetric information on WSN will be presented, which take into account the above-mentioned requirements. Resulting square deviation will be used as a quality evaluation criterion.
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Cabral, Hermano A.; He, Jiali
1997-01-01
Bootstrap Hybrid Decoding (BHD) (Jelinek and Cocke, 1971) is a coding/decoding scheme that adds extra redundancy to a set of convolutionally encoded codewords and uses this redundancy to provide reliability information to a sequential decoder. Theoretical results indicate that bit error probability performance (BER) of BHD is close to that of Turbo-codes, without some of their drawbacks. In this report we study the use of the Multiple Stack Algorithm (MSA) (Chevillat and Costello, Jr., 1977) as the underlying sequential decoding algorithm in BHD, which makes possible an iterative version of BHD.
Adaptive robust control of the EBR-II reactor
Power, M.A.; Edwards, R.M.
1996-05-01
Simulation results are presented for an adaptive H{sub {infinity}} controller, a fixed H{sub {infinity}} controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H{sub {infinity}} controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H{sub {infinity}} and classical controllers. This makes for a superior and more robust controller.
A novel adaptive controller for two-degree of freedom polar robot with unknown perturbations
NASA Astrophysics Data System (ADS)
Faieghi, Mohammad Reza; Delavari, Hadi; Baleanu, Dumitru
2012-02-01
In industrial applications, the performance of robot manipulators is always affected due to the presence of uncertainties and disturbances. This paper proposes a novel adaptive control scheme for robust control of robotic manipulators perturbed by unknown uncertainties and disturbances. First, an active sliding mode controller is designed and a sufficient condition is obtained guarantying reachability of the states to hit the sliding surface in finite time. Then, based on a Lyapunov function candidate an adaptive switching gain is derived which make the controller capable to bring the tracking error to zero without any disturbance exerted upon the stability. By virtue of this controller it can be shown that the controller can track the desired trajectories even in the presence of unknown perturbations. For the problem of determining the control parameters Particle Swarm Optimization (PSO) algorithm has been employed. Our theoretic achievements are verified by numerical simulations.
Adaptive control of piezoelectric fast steering mirror for high precision tracking application
NASA Astrophysics Data System (ADS)
Wang, Geng; Rao, Changhui
2015-03-01
A piezoelectric fast steering mirror (PFSM) is a complex, strong coupling nonlinear system that integrates optics, mechanics, electrics, and control. Due to the existence of hysteresis nonlinearity, mechanical resonance, and all kinds of disturbances, precise tracking control of a PFSM is a challenging task. This paper presents a comprehensive study of modeling, controller design, and simulation evaluation for a PFSM system. First a general model of a PFSM system integrating mechanical dynamics, electrical dynamics, and hysteresis nonlinearity is proposed, and then a robust adaptive controller is developed under both unknown hysteresis nonlinearities and parameter uncertainties. The parameters needed directly in the formulation of the controller are adaptively estimated. The proposed control law ensures the uniform boundedness of all signals in the closed-loop system. Furthermore, a stability analysis of the control system is performed to guarantee that the output tracking error converges to zero asymptotically. Finally, simulation tests with different motion trajectories are conducted to verify the effectiveness of the proposed method.
Monitoring the Performance of a Neuro-Adaptive Controller
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gupta, Pramod
2004-01-01
Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.
An adaptive control scheme for coordinated multimanipulator systems
Jonghann Jean; Lichen Fu . Dept. of Electrical Engineering)
1993-04-01
The problem of adaptive coordinated control of multiple robot arms transporting an object is addressed. A stable adaptive control scheme for both trajectory tracking and internal force control is presented. Detailed analyses on tracking properties of the object position, velocity and the internal forces exerted on the object are given. It is shown that this control scheme can achieve satisfactory tracking performance without using the measurement of contact forces and their derivatives. It can be shown that this scheme can be realized by decentralized implementation to reduce the computational burden. Moreover, some efficient adaptive control strategies can be incorporated to reduce the computational complexity.
Adaptive controller for a needle free jet-injector system.
Modak, Ashin; Hogan, N Catherine; Hunter, Ian W
2015-08-01
A nonlinear, sliding mode adaptive controller was created for a needle-free jet injection system. The controller was based on a simplified lumped-sum parameter model of the jet-injection mechanics. The adaptive control scheme was compared to a currently-used Feed-forward+PID controller in both ejection of water into air, and injection of dye into ex-vivo porcine tissue. The adaptive controller was more successful in trajectory tracking and was more robust to the biological variations caused by a tissue load. PMID:26737988
Survey of adaptive control using Liapunov design
NASA Technical Reports Server (NTRS)
Lindorff, D. P.; Carroll, R. L.
1972-01-01
A survey was made of the literature devoted to the synthesis of model-tracking adaptive systems based on application of Liapunov's second method. The basic synthesis procedure is introduced and a critical review of extensions made to the theory since 1966 is made. The extensions relate to design for relative stability, reduction of order techniques, design with disturbance, design with time variable parameters, multivariable systems, identification, and an adaptive observer.
Sense of Control and Career Adaptability among Undergraduate Students
ERIC Educational Resources Information Center
Duffy, Ryan D.
2010-01-01
The current study examined the direct relation of sense of control to career adaptability, as well as its ability to function as a mediator for other established predictors, with a sample of 1,991 undergraduate students. Students endorsing a greater sense of personal control were more likely to view themselves as adaptable to the world of work.…
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.
1986-01-01
The performance anlaysis of NASA's telecommand systems was summarized. It is assumed that the decoded frames are scrambled prior to decoding by the outer code. The average decoded bit error rate are examined which allows the possibility of evaluating many different frame coding options. The capacity and cutoff rate of the outer channel formed by the combination of the actual physical channel and the inner encoder and decoder in a concatenated coding system were analyzed. The best combination of inner and outer codes to use in a concatenated coding system were determined. It was established that in general: (1) it is better not to interleave between the inner and outer codes; and (2) for a fixed overall code rate, it is better to use higher rate inner codes and lower rate outer codes. Inner convolutional codes are considered. The analysis is more difficult in this case because the inner decoder error events do not appear in blocks of fixed length but can be of many different lengths.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1995-01-01
This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.
1986-01-01
High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline. PMID:24808214
Closing the Certification Gaps in Adaptive Flight Control Software
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
2008-01-01
Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.
Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Kiruthika
Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions.
Dynamics modeling and adaptive control of flexible manipulators
NASA Technical Reports Server (NTRS)
Sasiadek, J. Z.
1991-01-01
An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.
Adaptive sliding mode control for a class of chaotic systems
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-30
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
Reed Solomon codes for error control in byte organized computer memory systems
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation are presented. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
Systems and Methods for Derivative-Free Adaptive Control
NASA Technical Reports Server (NTRS)
Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.
Internal Models in Sensorimotor Integration: Perspectives from Adaptive Control Theory
Tin, Chung; Poon, Chi-Sang
2007-01-01
Internal model and adaptive control are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning are reviewed and their possible relevance to motor control is discussed. Possible applicability of Luenberger observer and extended Kalman filter to state estimation problems such as sensorimotor prediction or the resolution of vestibular sensory ambiguity is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal model in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future. PMID:16135881
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1992-01-01
Worked performed during the reporting period is summarized. Construction of robustly good trellis codes for use with sequential decoding was developed. The robustly good trellis codes provide a much better trade off between free distance and distance profile. The unequal error protection capabilities of convolutional codes was studied. The problem of finding good large constraint length, low rate convolutional codes for deep space applications is investigated. A formula for computing the free distance of 1/n convolutional codes was discovered. Double memory (DM) codes, codes with two memory units per unit bit position, were studied; a search for optimal DM codes is being conducted. An algorithm for constructing convolutional codes from a given quasi-cyclic code was developed. Papers based on the above work are included in the appendix.
Deep space communications, weather effects, and error control
NASA Technical Reports Server (NTRS)
Posner, Edward C.
1989-01-01
Deep space telemetry is and will remain signal-to-noise limited and vulnerable to interference. A need exists to increase received signal power and decrease noise. This includes going to Ka-band in the mid-1990's to increase directivity. The effects of a wet atmosphere can increase the noise temperature by a factor of 5 or more, even at X-band, but the order of magnitude increase in average data rate obtainable at Ka-band relative to X-band makes the increased uncertainty a good trade. Lowbit error probabilities required by data compression are available both theoretically and practically with coding, at an infinitesimal power penalty rather than the 10 to 15 dB more power required to reduce error probabilities without coding. Advances are coming rapidly in coding, as with the new constraint-length 15 rate 1/4 convolutional code concatenated with the already existing Reed-Solomon code to be demonstrated on Galileo. In addition, high density spacecraft data storage will allow selective retransmissions, even from the edge of the Solar System, to overcome weather effects. In general, deep space communication was able to operate, and will continue to operate, closer to theoretical limits than any other form of communication. These include limits in antenna area and directivity, system noise temperature, coding efficiency, and everything else. The deep space communication links of the mid-90's and beyond will be compatible with new instruments and compression algorithms and represent a sensible investment in an overall end-to-end information system design.
A new approach to adaptive control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.
Individual differences in political ideology are effects of adaptive error management.
Petersen, Michael Bang; Aarøe, Lene
2014-06-01
We apply error management theory to the analysis of individual differences in the negativity bias and political ideology. Using principles from evolutionary psychology, we propose a coherent theoretical framework for understanding (1) why individuals differ in their political ideology and (2) the conditions under which these individual differences influence and fail to influence the political choices people make. PMID:24970447
Robust adaptive tracking control of MIMO nonlinear systems in the presence of actuator hysteresis
NASA Astrophysics Data System (ADS)
Fu, Guiyuan; Ou, Linlin; Zhang, Weidong
2016-07-01
Adaptive tracking control of a class of MIMO nonlinear system preceded by unknown hysteresis is investigated. Based on dynamic surface control, an adaptive robust control law is developed and compensators are designed to mitigate the influences of both the unknown bounded external uncertainties and the unknown Prandtl-Islinskii hysteresis. By adopting the low-pass filters, the explosion of complexity caused by tedious computation of the time derivatives of the virtual control laws is overcome. With the proposed control scheme, the closed-loop system is proved to be semi-globally ultimately bounded by the Lyapunov stability theory, and the output of the controlled system can track the desired trajectories with an arbitrarily small error. Finally, numerical simulations are given to verify the effectiveness of the proposed approach.
Adaptive containment control of nonlinear multi-agent systems with non-identical agents
NASA Astrophysics Data System (ADS)
Haghshenas, Hamed; Badamchizadeh, Mohammad Ali; Baradarannia, Mahdi
2015-08-01
This paper addresses the containment control problem for a group of non-identical agents, where the dynamics of agents are supposed to be nonlinear with unknown parameters and parameterised by some functions. In controller design approach for each follower, adaptive control and Lyapunov theory are utilised as the main control strategies to guarantee the convergence of all non-identical followers to the dynamic convex hull formed by the leaders. The design of distributed adaptive controllers is based on the exchange of neighbourhood errors among the agents. For analysis of containment control problem, a new formulation has been developed using M-matrices. The validity of theoretical results are demonstrated through an example.
NASA Technical Reports Server (NTRS)
Chiang, W.-W.; Cannon, R. H., Jr.
1985-01-01
A fourth-order laboratory dynamic system featuring very low structural damping and a noncolocated actuator-sensor pair has been used to test a novel real-time adaptive controller, implemented in a minicomputer, which consists of a state estimator, a set of state feedback gains, and a frequency-locked loop for real-time parameter identification. The adaptation algorithm employed can correct controller error and stabilize the system for more than 50 percent variation in the plant's natural frequency, compared with a 10 percent stability margin in frequency variation for a fixed gain controller having the same performance as the nominal plant condition. The very rapid convergence achievable by this adaptive system is demonstrated experimentally, and proven with simple, root-locus methods.
NASA Astrophysics Data System (ADS)
Yang, Chi-Ching; Ou, Chung-Jen
2013-03-01
Under the existence of system uncertainties, external disturbances, and input nonlinearity, complete synchronization and anti-synchronization between two chaotic gyros are achieved by introducing a novel adaptive terminal sliding mode (ATSM) controller. In the literature, by taking account of input nonlinearity, the magnitudes of bounded nonlinear dynamics of synchronous error system were required in the designed sliding mode controller. In this study, the proposed ATSM controller associated with time-varying feedback gains can tackle nonlinear dynamics according to the novel adaptive rules. These feedback gains are not necessary to be determined in advance but updated by the adaptive rules without known the magnitudes of bounded nonlinear dynamics, system uncertainties, and external disturbances. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem, and the numerical simulations are performed to verify the effectiveness of presented schemes.
An averaging analysis of discrete-time indirect adaptive control
NASA Technical Reports Server (NTRS)
Phillips, Stephen M.; Kosut, Robert L.; Franklin, Gene F.
1988-01-01
An averaging analysis of indirect, discrete-time, adaptive control systems is presented. The analysis results in a signal-dependent stability condition and accounts for unmodeled plant dynamics as well as exogenous disturbances. This analysis is applied to two discrete-time adaptive algorithms: an unnormalized gradient algorithm and a recursive least-squares (RLS) algorithm with resetting. Since linearization and averaging are used for the gradient analysis, a local stability result valid for small adaptation gains is found. For RLS with resetting, the assumption is that there is a long time between resets. The results for the two algorithms are virtually identical, emphasizing their similarities in adaptive control.
Adaptive artificial neural network for autonomous robot control
NASA Technical Reports Server (NTRS)
Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.
1992-01-01
The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.
Global adaptive control for uncertain nonaffine nonlinear hysteretic systems.
Liu, Yong-Hua; Huang, Liangpei; Xiao, Dongming; Guo, Yong
2015-09-01
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes. PMID:26169122
Application of parameter estimation to aircraft stability and control: The output-error approach
NASA Technical Reports Server (NTRS)
Maine, Richard E.; Iliff, Kenneth W.
1986-01-01
The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.
Projection Operator: A Step Towards Certification of Adaptive Controllers
NASA Technical Reports Server (NTRS)
Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.
Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks
Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo
2006-01-01
Background The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. Methods The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. Results The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Conclusion Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice. PMID:17029636
Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft
NASA Technical Reports Server (NTRS)
Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.
2006-01-01
Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.
Advances in adaptive control theory: Gradient- and derivative-free approaches
NASA Astrophysics Data System (ADS)
Yucelen, Tansel
In this dissertation, we present new approaches to improve standard designs in adaptive control theory, and novel adaptive control architectures. We first present a novel Kalman filter based approach for approximately enforcing a linear constraint in standard adaptive control design. One application is that this leads to alternative forms for well known modification terms such as e-modification. In addition, it leads to smaller tracking errors without incurring significant oscillations in the system response and without requiring high modification gain. We derive alternative forms of e- and adaptive loop recovery (ALR-) modifications. Next, we show how to use Kalman filter optimization to derive a novel adaptation law. This results in an optimization-based time-varying adaptation gain that reduces the need for adaptation gain tuning. A second major contribution of this dissertation is the development of a novel derivative-free, delayed weight update law for adaptive control. The assumption of constant unknown ideal weights is relaxed to the existence of time-varying weights, such that fast and possibly discontinuous variation in weights are allowed. This approach is particulary advantageous for applications to systems that can undergo a sudden change in dynamics, such as might be due to reconfiguration, deployment of a payload, docking, or structural damage, and for rejection of external disturbance processes. As a third and final contribution, we develop a novel approach for extending all the methods developed in this dissertation to the case of output feedback. The approach is developed only for the case of derivative-free adaptive control, and the extension of the other approaches developed previously for the state feedback case to output feedback is left as a future research topic. The proposed approaches of this dissertation are illustrated in both simulation and flight test.
NASA Astrophysics Data System (ADS)
Xie, Haibo; Liu, Zhibin; Yang, Huayong
2016-05-01
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control (ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.
NASA Astrophysics Data System (ADS)
Xie, Haibo; Liu, Zhibin; Yang, Huayong
2016-04-01
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control (ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.
Analysis of modified SMI method for adaptive array weight control
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Moses, R. L.
1989-01-01
An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.
Learner Control and Error Correction in ICALL: Browsers, Peekers, and Adamants.
ERIC Educational Resources Information Center
Heift, Trude
2002-01-01
Reports a study on the impact of learner control on the error correction process within a web-based Intelligent Language Tutoring System (ILTS). During three 1-hour grammar practice sessions, 33 students used an ILTS for German that provided error-specific and individualized feedback. Results indicate the majority of students (85%) sought to…
The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control
ERIC Educational Resources Information Center
Page, A.; Moreno, R.; Candelas, P.; Belmar, F.
2008-01-01
In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…
Adaptive torque control of variable speed wind turbines
NASA Astrophysics Data System (ADS)
Johnson, Kathryn E.
Wind is a clean, renewable resource that has become more popular in recent years due to numerous advances in technology and public awareness. Wind energy is quickly becoming cost competitive with fossil fuels, but further reductions in the cost of wind energy are necessary before it can grow into a fully mature technology. One reason for higher-than-necessary cost of the wind energy is uncertainty in the aerodynamic parameters, which leads to inefficient controllers. This thesis explores an adaptive control technique designed to reduce the negative effects of this uncertainty. The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry. The standard controller was developed for variable speed wind turbines operating below rated power. The new adaptive controller uses a simple, highly intuitive gain adaptation law intended to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds. The adaptive controller has been tested both in simulation and on a real turbine, with numerous experimental results provided in this work. Simulations have considered the effects of erroneous wind measurements and time-varying turbine parameters, both of which are concerns on the real turbine. The adaptive controller has been found to operate as desired under realistic operating conditions, and energy capture has increased on the real turbine as a result. Theoretical analyses of the standard and adaptive controllers were performed, as well, providing additional insight into the system. Finally, a few extensions were made with the intent of making the adaptive control idea even more appealing in the commercial wind turbine market.
Zhang, Fan; Liu, Ming; Huang, He
2015-01-01
Recent studies have reported various methods that recognize amputees' intent regarding locomotion modes, which is potentially useful for volitional control of powered artificial legs. However, occasional errors in locomotion mode recognition are inevitable. When these intent recognition decisions are used for volitional prosthesis control, the effects of the decision errors on the operation of the prosthesis and user's task performance is unknown. Hence, the goals of this study were to 1) systematically investigate the effects of locomotion mode recognition errors on volitional control of powered prosthetic legs and the user's gait stability, and 2) identify the critical mode recognition errors that impact safe and confident use of powered artificial legs in lower limb amputees. Five able-bodied subjects and two above-knee (AK) amputees were recruited and tested when wearing a powered AK prosthesis. Four types of locomotion mode recognition errors with different duration and at different gait phases were purposely applied to the prosthesis control. The subjects' gait stabilities were subjectively and objectively quantified. The results showed that not all of the mode recognition errors in volitional prosthesis control disturb the subjects' gait stability. The effects of errors on the user's balance depended on 1) the gait phase when the errors happened and 2) the amount of mechanical work change applied on the powered knee caused by the errors. Based on the study results, "critical errors" were defined and suggested as a new index to evaluate locomotion mode recognition algorithms for artificial legs. The outcome of this study might aid the future design of volitionally-controlled powered prosthetic legs that are reliable and safe for practice. PMID:25486645
Hormesis and adaptive cellular control systems
Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...
Error Control Techniques for Satellite and Space Communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1996-01-01
In this report, we present the results of our recent work on turbo coding in two formats. Appendix A includes the overheads of a talk that has been given at four different locations over the last eight months. This presentation has received much favorable comment from the research community and has resulted in the full-length paper included as Appendix B, 'A Distance Spectrum Interpretation of Turbo Codes'. Turbo codes use a parallel concatenation of rate 1/2 convolutional encoders combined with iterative maximum a posteriori probability (MAP) decoding to achieve a bit error rate (BER) of 10(exp -5) at a signal-to-noise ratio (SNR) of only 0.7 dB. The channel capacity for a rate 1/2 code with binary phase shift-keyed modulation on the AWGN (additive white Gaussian noise) channel is 0 dB, and thus the Turbo coding scheme comes within 0.7 DB of capacity at a BER of 10(exp -5).
Yang, Chenguang; Li, Zhijun; Li, Jing
2013-02-01
In this paper, we investigate optimized adaptive control and trajectory generation for a class of wheeled inverted pendulum (WIP) models of vehicle systems. Aiming at shaping the controlled vehicle dynamics to be of minimized motion tracking errors as well as angular accelerations, we employ the linear quadratic regulation optimization technique to obtain an optimal reference model. Adaptive control has then been developed using variable structure method to ensure the reference model to be exactly matched in a finite-time horizon, even in the presence of various internal and external uncertainties. The minimized yaw and tilt angular accelerations help to enhance the vehicle rider's comfort. In addition, due to the underactuated mechanism of WIP, the vehicle forward velocity dynamics cannot be controlled separately from the pendulum tilt angle dynamics. Inspired by the control strategy of human drivers, who usually manipulate the tilt angle to control the forward velocity, we design a neural-network-based adaptive generator of implicit control trajectory (AGICT) of the tilt angle which indirectly "controls" the forward velocity such that it tracks the desired velocity asymptotically. The stability and optimal tracking performance have been rigorously established by theoretic analysis. In addition, simulation studies have been carried out to demonstrate the efficiency of the developed AGICT and optimized adaptive controller. PMID:22695357
Adaptive Fuzzy Control of a Direct Drive Motor
NASA Technical Reports Server (NTRS)
Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.
1997-01-01
This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.
Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects
NASA Technical Reports Server (NTRS)
Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.
1998-01-01
This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.
Sun, W Y
1993-04-01
This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.
NASA Astrophysics Data System (ADS)
Jones, Reese E.; Mandadapu, Kranthi K.
2012-04-01
We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, Xiaoqian; Misra, Arun K.
2014-03-01
Minimum Sliding Mode Error Feedback Control (MSMEFC) is proposed to improve the control precision of spacecraft formations based on the conventional sliding mode control theory. This paper proposes a new approach to estimate and offset the system model errors, which include various kinds of uncertainties and disturbances, as well as smoothes out the effect of nonlinear switching control terms. To facilitate the analysis, the concept of equivalent control error is introduced, which is the key to the utilization of MSMEFC. A cost function is formulated on the basis of the principle of minimum sliding mode error; then the equivalent control error is estimated and fed back to the conventional sliding mode control. It is shown that the sliding mode after the MSMEFC will approximate to the ideal sliding mode, resulting in improved control performance and quality. The new methodology is applied to spacecraft formation flying. It guarantees global asymptotic convergence of the relative tracking error in the presence of J2 perturbations. In addition, some fault tolerant situations such as thruster failure for a period of time, thruster degradation and so on, are also considered to verify the effectiveness of MSMEFC. Numerical simulations are performed to demonstrate the efficacy of the proposed methodology to maintain and reconfigure the satellite formation with the existence of initial offsets and J2 perturbation effects, even in the fault-tolerant cases.
Laubach, Mark; Caetano, Marcelo S; Narayanan, Nandakumar S
2015-01-01
Studies in rats, monkeys and humans have established that the medial prefrontal cortex is crucial for the ability to exert adaptive control over behavior. Here, we review studies on the role of the rat medial prefrontal cortex in adaptive control, with a focus on simple reaction time tasks that can be easily used across species and have clinical relevance. The performance of these tasks is associated with neural activity in the medial prefrontal cortex that reflects stimulus detection, action timing, and outcome monitoring. We describe rhythmic neural activity that occurs when animals initiate a temporally extended action. Such rhythmic activity is coterminous with major changes in population spike activity. Testing animals over a series of sessions with varying pre-stimulus intervals showed that the signals adapt to the current temporal demands of the task. Disruptions of rhythmic neural activity occur on error trials (premature responding) and lead to a persistent encoding of the error and a subsequent change in behavioral performance (i.e. post-error slowing). Analysis of simultaneously recorded spike activity suggests that the presence of strong theta rhythms is coterminous with altered network dynamics, and might serve as a mechanism for adaptive control. Computational modeling suggests that these signals may enable learning from errors. Together, our findings contribute to an emerging literature and provide a new perspective on the neuronal mechanisms for the adaptive control of action. PMID:25636373
Optimal estimation of large structure model errors. [in Space Shuttle controller design
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1979-01-01
In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.
Design of Low Complexity Model Reference Adaptive Controllers
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
Adaptive Instability Suppression Controls in a Liquid-fueled Combustor
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.
2002-01-01
An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074
Smart Rehabilitation Devices: Part II – Adaptive Motion Control
Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine
2008-01-01
This article presents a study of adaptive motion control of smart versatile rehabilitation devices using MR fluids. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Adaptive controls are developed to regulate resistance force based on the prescription of the therapist. Special consideration has been given to the human–machine interaction in the adaptive control that can modify the behavior of the device to account for strength gains or muscle fatigue of the human subject. PMID:18548131
Development of a digital adaptive optimal linear regulator flight controller
NASA Technical Reports Server (NTRS)
Berry, P.; Kaufman, H.
1975-01-01
Digital adaptive controllers have been proposed as a means for retaining uniform handling qualities over the flight envelope of a high-performance aircraft. Towards such an implementation, an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized lateral equations of motion for a typical fighter aircraft. The system is composed of an online weighted least-squares parameter identifier, a Kalman state filter, and a model following control law designed using optimal linear regulator theory. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for onboard implementation.
Discrete-time adaptive control of robot manipulators
NASA Technical Reports Server (NTRS)
Tarokh, M.
1989-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that asymptotic trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation.
Disturbance Accommodating Adaptive Control with Application to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan
2012-01-01
Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.
Identification and dual adaptive control of a turbojet engine
NASA Technical Reports Server (NTRS)
Merrill, W.; Leininger, G.
1979-01-01
The objective of this paper is to utilize the design methods of modern control theory to realize a dual-adaptive feedback control unit for a highly nonlinear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the nonlinear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a dual-adaptive control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.
Adaptive optimization and control using neural networks
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal
2006-01-01
This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.
Adaptive control of mobile robots using a neural network.
de Sousa Júnior, C; Hermerly, E M
2001-06-01
A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results. PMID:11574958
Stability and Performance Metrics for Adaptive Flight Control
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens
2009-01-01
This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.
Hauser, Tobias U; Iannaccone, Reto; Walitza, Susanne; Brandeis, Daniel; Brem, Silvia
2015-01-01
Adolescence is associated with quickly changing environmental demands which require excellent adaptive skills and high cognitive flexibility. Feedback-guided adaptive learning and cognitive flexibility are driven by reward prediction error (RPE) signals, which indicate the accuracy of expectations and can be estimated using computational models. Despite the importance of cognitive flexibility during adolescence, only little is known about how RPE processing in cognitive flexibility deviates between adolescence and adulthood. In this study, we investigated the developmental aspects of cognitive flexibility by means of computational models and functional magnetic resonance imaging (fMRI). We compared the neural and behavioral correlates of cognitive flexibility in healthy adolescents (12-16years) to adults performing a probabilistic reversal learning task. Using a modified risk-sensitive reinforcement learning model, we found that adolescents learned faster from negative RPEs than adults. The fMRI analysis revealed that within the RPE network, the adolescents had a significantly altered RPE-response in the anterior insula. This effect seemed to be mainly driven by increased responses to negative prediction errors. In summary, our findings indicate that decision making in adolescence goes beyond merely increased reward-seeking behavior and provides a developmental perspective to the behavioral and neural mechanisms underlying cognitive flexibility in the context of reinforcement learning. PMID:25234119
L1 adaptive output-feedback control architectures
NASA Astrophysics Data System (ADS)
Kharisov, Evgeny
This research focuses on development of L 1 adaptive output-feedback control. The objective is to extend the L1 adaptive control framework to a wider class of systems, as well as obtain architectures that afford more straightforward tuning. We start by considering an existing L1 adaptive output-feedback controller for non-strictly positive real systems based on piecewise constant adaptation law. It is shown that L 1 adaptive control architectures achieve decoupling of adaptation from control, which leads to bounded away from zero time-delay and gain margins in the presence of arbitrarily fast adaptation. Computed performance bounds provide quantifiable performance guarantees both for system output and control signal in transient and steady state. A noticeable feature of the L1 adaptive controller is that its output behavior can be made close to the behavior of a linear time-invariant system. In particular, proper design of the lowpass filter can achieve output response, which almost scales for different step reference commands. This property is relevant to applications with human operator in the loop (for example: control augmentation systems of piloted aircraft), since predictability of the system response is necessary for adequate performance of the operator. Next we present applications of the L1 adaptive output-feedback controller in two different fields of engineering: feedback control of human anesthesia, and ascent control of a NASA crew launch vehicle (CLV). The purpose of the feedback controller for anesthesia is to ensure that the patient's level of sedation during surgery follows a prespecified profile. The L1 controller is enabled by anesthesiologist after he/she achieves sufficient patient sedation level by introducing sedatives manually. This problem formulation requires safe switching mechanism, which avoids controller initialization transients. For this purpose, we used an L1 adaptive controller with special output predictor initialization routine
Higher order direct model reference adaptive control with generic uniform ultimate boundedness
NASA Astrophysics Data System (ADS)
Maity, Arnab; Höcht, Leonhard; Holzapfel, Florian
2015-10-01
This paper proposes a new higher order model reference adaptive control (HO-MRAC) approach following direct adaptive control philosophy, which estimates unknown time-varying parameters. This approach leads to a Lyapunov based conventional MRAC update law, augmented by an observer type parameter predictor dynamics. The predictor dynamics are composed of a stable known part, a feedback of the parameter error and unknown higher order parameters, which are updated using a Lyapunov based adaptive design. So, this HO-MRAC can cope with rapidly changing parameters, due to estimation of their time derivatives. Moreover, for stability analysis, a Lyapunov based generic ultimate boundedness theorem is presented, which allows for a computation of separate bounds for each state vector partition. Furthermore, this theorem formulates the explicit specification of transient and ultimate bounds, reaching time on the ultimate bounds and a set of admissible initial conditions. Two challenging illustrative examples demonstrate the effectiveness of the proposed approach.
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Adaptive control in series load PWM induction heating inverters
NASA Astrophysics Data System (ADS)
Szelitzky, Tibor; Henrietta Dulf, Eva
2013-12-01
Permanent variations of the electric properties of the load in induction heating equipment make difficult to control the plant. To overcome these disadvantages, the authors propose a new approach based on adaptive control methods. For real plants it is enough to present desired performances or start-up variables for the controller, from which the algorithms tune the controllers by itself. To present the advantages of the proposed controllers, comparisons are made to a PI controller tuned through Ziegler-Nichols method.
An error recovery technique for a satellite channel assignment system with distributed control
NASA Astrophysics Data System (ADS)
Emstad, P. J.; Halaas, A.
1980-09-01
A distributed control system for a set of earth stations sharing satellite communication channels is studied. The stations communicate by messages which may be corrupted by errors. A sufficient set of message types are defined to allow stations to enter and leave the system, to arbitrate for communication channels, and to recover from error situations. The error processes assumed are of a transient nature, mainly existing on the interstation control channels. The signaling communication protocols are informally described in a Pascal-like language. The protocols are simulated in Simula and are found to work correctly in all cases studied.
NASA Technical Reports Server (NTRS)
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
Adult Development, Control, and Adaptive Functioning.
ERIC Educational Resources Information Center
Schulz, Richard; And Others
1991-01-01
Research suggests that primary control increases as humans develop from infancy through middle age and then decreases in old age. To minimize losses, individuals rely on cognitively based secondary control processes in middle and old age. Literature on adult control processes is reviewed. (SLD)
Adaptive Importance Sampling for Control and Inference
NASA Astrophysics Data System (ADS)
Kappen, H. J.; Ruiz, H. C.
2016-03-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.
A model following inverse controller with adaptive compensation for General Aviation aircraft
NASA Astrophysics Data System (ADS)
Bruner, Hugh S.
The theory for an adaptive inverse flight controller, suitable for use on General Aviation aircraft, is developed in this research. The objectives of this controller are to separate the normally coupled modes of the basic aircraft and thereby permit direct control of airspeed and flight-path angle, meet prescribed performance characteristics as defined by damping ratio and natural frequency, adapt to uncertainties in the physical plant, and be computationally efficient. The three basic elements of the controller are a linear prefilter, an inverse transfer function, and an adaptive neural network compensator. The linear prefilter shapes accelerations required of the overall system in order to achieve the desired system performance characteristics. The inverse transfer function is used to compute the aircraft control inputs required to achieve the necessary accelerations. The adaptive neural network compensator is used to compensate for modeling errors during design or real-time changes in the physical plant. This architecture is patterned after the work of Calise, but differs by not requiring dynamic feedback of the state variables. The controller is coded in ANSI C and integrated with a simulation of a typical General Aviation aircraft. Twenty-three cases are simulated to prove that the objectives for the controller are met. Among these cases are simulated stability and controllability failures in the physical plant, as well as several simulated failures of the neural network. With the exception of some bounded speed-tracking error, the controller is capable of continued flight with any foreseeable failure of the neural network. Recommendations are provided for follow-on investigations by other researchers.
Adaptive hybrid position/force control of robotic manipulators
NASA Technical Reports Server (NTRS)
Pourboghrat, F.
1987-01-01
The problem of position and force control for the compliant motion of the manipulators is considered. The external force and the position of the end-effector are related by a second order impedance function. The force control problem is then translated into a position control problem. For that, an adaptive controller is designed to achieve the compliant motion. The design uses the Liapunov's direct method to derive the adaptation law. The stability of the process is guaranteed from the Liapunov's stability theory. The controller does not require the knowledge of the system parameters for the implementation, and hence is easy for applications.
Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.; Pratt, S. G.
1979-01-01
A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.
Actuator placement in prestressed adaptive trusses for vibration control
NASA Technical Reports Server (NTRS)
Jalihal, P.; Utku, Senol; Wada, Ben K.
1993-01-01
This paper describes the optimal location selection of actuators for vibration control in prestressed adaptive trusses. Since prestressed adaptive trusses are statically indeterminate, the actuators to be used for vibration control purposes must work against (1) existing static axial prestressing forces, (2) static axial forces caused by the actuation, and (3) dynamic axial forces caused by the motion of the mass. In statically determinate adaptive trusses (1) and (2) are non - existing. The actuator placement problem in statically indeterminate trusses is therefore governed by the actuation energy and the actuator strength requirements. Assuming output feedback type control of selected vibration modes in autonomous systems, a procedure is given for the placement of vibration controlling actuators in prestressed adaptive trusses.
Lai, Guanyu; Liu, Zhi; Zhang, Yun; Philip Chen, C L
2016-06-01
This paper is concentrated on the problem of adaptive fuzzy tracking control for an uncertain nonlinear system whose actuator is encountered by the asymmetric backlash behavior. First, we propose a new smooth inverse model which can approximate the asymmetric actuator backlash arbitrarily. By applying it, two adaptive fuzzy control scenarios, namely, the compensation-based control scheme and nonlinear decomposition-based control scheme, are then developed successively. It is worth noticing that the first fuzzy controller exhibits a better tracking control performance, although it recourses to a known slope ratio of backlash nonlinearity. The second one further removes the restriction, and also gets a desirable control performance. By the strict Lyapunov argument, both adaptive fuzzy controllers guarantee that the output tracking error is convergent to an adjustable region of zero asymptotically, while all the signals remain semiglobally uniformly ultimately bounded. Lastly, two comparative simulations are conducted to verify the effectiveness of the proposed fuzzy controllers. PMID:27187937
Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.
Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J
2008-08-01
This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN. PMID:18632393
Adaptive control with an expert system based supervisory level. Thesis
NASA Technical Reports Server (NTRS)
Sullivan, Gerald A.
1991-01-01
Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up
Fault tolerant small satellite attitude control using adaptive non-singular terminal sliding mode
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, XiaoQian; Sheng, Tao
2013-06-01
The Attitude Control System (ACS) plays a pivotal role in the whole performance of the spacecraft on the orbit; therefore, it is vitally important to design the control system with the performance of rapid response, high control precision and insensitive to external perturbations. In the first place, this paper proposes two adaptive nonlinear control algorithms based on the sliding mode control (SMC), which are designed for small satellite attitude control system. The nonlinear dynamics describing the attitude of small satellite is considered in a circle reference orbit, and the stability of the closed-loop system in the presence of external perturbations is investigated. Then, in order to account for accidental or degradation fault in satellite actuators, the fault-tolerant control schemes are presented. Hence, two adaptive fault-tolerant control laws (continuous sliding mode control and non-singular terminal sliding mode control) are developed by adopting the nonlinear analytical model to describe the system, which can guarantee global asymptotic convergence of the attitude control error with the existence of unknown external perturbations. The nonlinear hyperplane based Terminal sliding mode is introduced into the control law design; therefore, the system convergence performance improves and the control error is convergent in "finite time". As a result, the study on the non-singular terminal sliding mode control is the emphasis and the continuous sliding mode control is used to compare with the non-singular terminal sliding mode control. Meanwhile, an adaptive fuzzy algorithm has been proposed to suppress the chattering phenomenon. Moreover, several numerical examples are presented to demonstrate the efficacy of the proposed controllers by correcting for the external perturbations. Simulation results confirm that the suggested methodologies yield high control precision in control. In addition, actuator degradation, actuator stuck and actuator failure for a
Spectrum management considerations of adaptive power control in satellite networks
NASA Technical Reports Server (NTRS)
Sawitz, P.; Sullivan, T.
1983-01-01
Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.
Adaptive Attitude Control of the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Muse, Jonathan
2010-01-01
An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.
Adaptive stochastic control for a class of linear systems.
NASA Technical Reports Server (NTRS)
Tse, E.; Athans, M.
1972-01-01
The problem considered in this paper deals with the control of linear discrete-time stochastic systems with unknown (possibly time-varying and random) gain parameters. The philosophy of control is based on the use of an open-loop feedback optimal (OLFO) control using a quadratic index of performance. It is shown that the OLFO system consists of (1) an identifier that estimates the system state variables and gain parameters and (2) a controller described by an 'adaptive' gain and correction term. Several qualitative properties and asymptotic properties of the OLFO adaptive system are discussed. Simulation results dealing with the control of stable and unstable third-order plants are presented. The key quantitative result is the precise variation of the control system adaptive gains as a function of the future expected uncertainty of the parameters; thus, in this problem the ordinary 'separation theorem' does not hold.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive pitch control for load mitigation of wind turbines
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Tang, J.
2015-04-01
In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.
An error-resistant linguistic protocol for air traffic control
NASA Technical Reports Server (NTRS)
Cushing, Steven
1989-01-01
The research results described here are intended to enhance the effectiveness of the DATALINK interface that is scheduled by the Federal Aviation Administration (FAA) to be deployed during the 1990's to improve the safety of various aspects of aviation. While voice has a natural appeal as the preferred means of communication both among humans themselves and between humans and machines as the form of communication that people find most convenient, the complexity and flexibility of natural language are problematic, because of the confusions and misunderstandings that can arise as a result of ambiguity, unclear reference, intonation peculiarities, implicit inference, and presupposition. The DATALINK interface will avoid many of these problems by replacing voice with vision and speech with written instructions. This report describes results achieved to date on an on-going research effort to refine the protocol of the DATALINK system so as to avoid many of the linguistic problems that still remain in the visual mode. In particular, a working prototype DATALINK simulator system has been developed consisting of an unambiguous, context-free grammar and parser, based on the current air-traffic-control language and incorporated into a visual display involving simulated touch-screen buttons and three levels of menu screens. The system is written in the C programming language and runs on the Macintosh II computer. After reviewing work already done on the project, new tasks for further development are described.
Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
1975-01-01
The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1978-01-01
A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.
Chen, Baojun; Wang, Qining
2015-01-01
Affording lower-limb amputees the ability to volitionally control robotic prostheses can improve the adaptability to terrain changes as well as enhancing proprioception. However, it also increases amputees' conscious burdens for prosthesis control. Therefore, in this paper, we aim to propose a hybrid controller which combines human volitional control with the intrinsic controller on the robotic transtibial prosthesis, enabling the amputee actively controlling prosthesis with little conscious attention. In this preliminary study, a hybrid controller for adaptive slope walking was designed. A slope estimator was embedded in the intrinsic controller to estimate the ground slope of the previous step using signals measured by prosthetic sensors. And a myoelectric controller allows the amputee subject to convey slope changes to prosthetic controller by volitionally contract his residual muscles, whose electromyography signals were mapped to the slope increment. The hybrid controller combined these two results to obtain the estimated slope. One male transtibial amputee subject was recruited in this research. Experiment results showed that the intrinsic slope estimator produced satisfactory estimation results with an average absolute error of 0.70 ± 0.54 degrees. By adding amputee's volitional control, the hybrid controller is able to predict the upcoming slope changes. PMID:26737362
HIDEC F-15 adaptive engine control system flight test results
NASA Technical Reports Server (NTRS)
Smolka, James W.
1987-01-01
NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.
Variable neural adaptive robust control: a switched system approach.
Lian, Jianming; Hu, Jianghai; Żak, Stanislaw H
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multiinput multioutput uncertain systems. The controllers incorporate a novel variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. It can determine the network structure online dynamically by adding or removing RBFs according to the tracking performance. The structure variation is systematically considered in the stability analysis of the closed-loop system using a switched system approach with the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations. PMID:25881366
Decentralized adaptive control of manipulators - Theory, simulation, and experimentation
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
The author presents a simple decentralized adaptive-control scheme for multijoint robot manipulators based on the independent joint control concept. The control objective is to achieve accurate tracking of desired joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simply by a PID (proportional-integral-derivative) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. Simulation results are given for a two-link direct-drive manipulator under adaptive independent joint control. The results illustrate trajectory tracking under coupled dynamics and varying payload. The proposed scheme is implemented on a MicroVAX II computer for motion control of the three major joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite coupled nonlinear joint dynamics.
Control of sound radiation with active/adaptive structures
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.
1992-01-01
Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.
Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don
2003-01-01
This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.
Identification and dual adaptive control of a turbojet engine
NASA Technical Reports Server (NTRS)
Merrill, W.; Leininger, G.
1979-01-01
The objective of this paper is to utilize the design methods of modern control theory to realize a 'dual-adaptive' feedback control unit for a highly non-linear single spool airbreathing turbojet engine. Using a very detailed and accurate simulation of the non-linear engine as the data source, linear operating point models of unspecified dimension are identified. Feedback control laws are designed at each operating point for a prespecified set of sampling rates using sampled-data output regulator theory. The control system sampling rate is determined by an adaptive sampling algorithm in correspondence with turbojet engine performance. The result is a 'dual-adpative' control law that is functionally dependent upon the sampling rate selected and environmental operating conditions. Simulation transients demonstrate the utility of the dual-adaptive design to improve on-board computer utilization while maintaining acceptable levels of engine performance.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
2009-01-01
In this paper we show by means of numerical experiments that the error introduced in a numerical domain because of a Perfectly Matched Layer or Damping Layer boundary treatment can be controlled. These experimental demonstrations are for acoustic propagation with the Linearized Euler Equations with both uniform and steady jet flows. The propagating signal is driven by a time harmonic pressure source. Combinations of Perfectly Matched and Damping Layers are used with different damping profiles. These layer and profile combinations allow the relative error introduced by a layer to be kept as small as desired, in principle. Tradeoffs between error and cost are explored.
Zhao, Guoliang; Li, Hongxing
2013-01-01
This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897
H∞ Adaptive tracking control for switched systems based on an average dwell-time method
NASA Astrophysics Data System (ADS)
Wu, Caiyun; Zhao, Jun
2015-10-01
This paper investigates the H∞ state tracking model reference adaptive control (MRAC) problem for a class of switched systems using an average dwell-time method. First, a stability criterion is established for a switched reference model. Then, an adaptive controller is designed and the state tracking control problem is converted into the stability analysis. The global practical stability of the error switched system can be guaranteed under a class of switching signals characterised by an average dwell time. Consequently, sufficient conditions for the solvability of the H∞ state tracking MRAC problem are derived. An example of highly manoeuvrable aircraft technology vehicle is given to demonstrate the feasibility and effectiveness of the proposed design method.
Adaptive neural control for an uncertain robotic manipulator with joint space constraints
NASA Astrophysics Data System (ADS)
Tang, Zhong-Liang; Ge, Shuzhi Sam; Tee, Keng Peng; He, Wei
2016-07-01
In this paper, adaptive neural tracking control is proposed for a robotic manipulator with uncertainties in both manipulator dynamics and joint actuator dynamics. The manipulator joints are subject to inequality constraints, i.e., the joint angles are required to remain in some compact sets. Integral barrier Lyapunov functionals (iBLFs) are employed to address the joint space constraints directly without performing an additional mapping to the error space. Neural networks (NNs) are utilised to compensate for the unknown robot dynamics and external force. Adapting parameters are developed to estimate the unknown bounds on NN approximations. By the Lyapunov synthesis, the proposed control can guarantee the semi-global uniform ultimate boundedness of the closed-loop system, and the practical tracking of joint reference trajectory is achieved without the violation of predefined joint space constraints. Simulation results are given to validate the effectiveness of the proposed control scheme.
ADAPTIVE CLEARANCE CONTROL SYSTEMS FOR TURBINE ENGINES
NASA Technical Reports Server (NTRS)
Blackwell, Keith M.
2004-01-01
The Controls and Dynamics Technology Branch at NASA Glenn Research Center primarily deals in developing controls, dynamic models, and health management technologies for air and space propulsion systems. During the summer of 2004 I was granted the privilege of working alongside professionals who were developing an active clearance control system for commercial jet engines. Clearance, the gap between the turbine blade tip and the encompassing shroud, increases as a result of wear mechanisms and rubbing of the turbine blades on shroud. Increases in clearance cause larger specific fuel consumption (SFC) and loss of efficient air flow. This occurs because, as clearances increase, the engine must run hotter and bum more fuel to achieve the same thrust. In order to maintain efficiency, reduce fuel bum, and reduce exhaust gas temperature (EGT), the clearance must be accurately controlled to gap sizes no greater than a few hundredths of an inch. To address this problem, NASA Glenn researchers have developed a basic control system with actuators and sensors on each section of the shroud. Instead of having a large uniform metal casing, there would be sections of the shroud with individual sensors attached internally that would move slightly to reform and maintain clearance. The proposed method would ultimately save the airline industry millions of dollars.
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth
1988-01-01
An approach using a globally nonsingular representation is proposed for the attitude control problem of a rigid body. The attitude dynamics are described by the nonlinear Euler equation together with the nonlinear kinematic equations which relate a representation of attitude to the angular velocity of the body. When this approach is combined with an energy-motivated Lyapunov function, a large class of globally stable attitude control laws can be derived. This class includes model-independent tracking control, model-dependent tracking control, and adaptive control, allowing tradeoffs between controller complexity, attainable performance, and available model information.
Direct adaptive control of a PUMA 560 industrial robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Lee, Thomas; Delpech, Michel
1989-01-01
The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cattafesta, L. N.; Ha, C.
2002-01-01
Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.
Simulation of a Reconfigurable Adaptive Control Architecture
NASA Astrophysics Data System (ADS)
Rapetti, Ryan John
A set of algorithms and software components are developed to investigate the use of a priori models of damaged aircraft to improve control of similarly damaged aircraft. An addition to Model Predictive Control called state trajectory extrapolation is also developed to deliver good handling qualities in nominal an off-nominal aircraft. System identification algorithms are also used to improve model accuracy after a damage event. Simulations were run to demonstrate the efficacy of the algorithms and software components developed herein. The effect of model order on system identification convergence and performance is also investigated. A feasibility study for flight testing is also conducted. A preliminary hardware prototype was developed, as was the necessary software to integrate the avionics and ground station systems. Simulation results show significant improvement in both tracking and cross-coupling performance when a priori control models are used, and further improvement when identified models are used.
NASA Astrophysics Data System (ADS)
Tryfonidis, Michail
It has been observed that during orbital spaceflight the absence of gravitation related sensory inputs causes incongruence between the expected and the actual sensory feedback resulting from voluntary movements. This incongruence results in a reinterpretation or neglect of gravity-induced sensory input signals. Over time, new internal models develop, gradually compensating for the loss of spatial reference. The study of adaptation of goal-directed movements is the main focus of this thesis. The hypothesis is that during the adaptive learning process the neural connections behave in ways that can be described by an adaptive control method. The investigation presented in this thesis includes two different sets of experiments. A series of dart throwing experiments took place onboard the space station Mir. Experiments also took place at the Biomechanics lab at MIT, where the subjects performed a series of continuous trajectory tracking movements while a planar robotic manipulandum exerted external torques on the subjects' moving arms. The experimental hypothesis for both experiments is that during the first few trials the subjects will perform poorly trying to follow a prescribed trajectory, or trying to hit a target. A theoretical framework is developed that is a modification of the sliding control method used in robotics. The new control framework is an attempt to explain the adaptive behavior of the subjects. Numerical simulations of the proposed framework are compared with experimental results and predictions from competitive models. The proposed control methodology extends the results of the sliding mode theory to human motor control. The resulting adaptive control model of the motor system is robust to external dynamics, even those of negative gain, uses only position and velocity feedback, and achieves bounded steady-state error without explicit knowledge of the system's nonlinearities. In addition, the experimental and modeling results demonstrate that
Adaptive Attitude Control System For Space Station
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Bayard, David S.; Wang, Shyh J.
1995-01-01
Report presents theoretical foundation for attitude control system for proposed Space Station Freedom in orbit around Earth. Intended to maintain space station in torque equilibrium with designated axes of its structure aligned with local vertical, local along-trajectory horizontal, and local across-trajectory horizontal axes, respectively. System required to provide desired combination of control performance and stability in presence of disturbances (e.g., variations in masses of payloads, movements of astronauts and equipment, atmospheric drag, gravitational anomalies, and interactions with docking spacecraft).
Neural and Fuzzy Adaptive Control of Induction Motor Drives
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-12
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
Neural and Fuzzy Adaptive Control of Induction Motor Drives
NASA Astrophysics Data System (ADS)
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-01
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
Many Tests of Significance: New Methods for Controlling Type I Errors
ERIC Educational Resources Information Center
Keselman, H. J.; Miller, Charles W.; Holland, Burt
2011-01-01
There have been many discussions of how Type I errors should be controlled when many hypotheses are tested (e.g., all possible comparisons of means, correlations, proportions, the coefficients in hierarchical models, etc.). By and large, researchers have adopted familywise (FWER) control, though this practice certainly is not universal. Familywise…