Performance of an Adaptive Matched Filter Using the Griffiths Algorithm
1988-12-01
Simon. Introduction to Adaptive Filters. New York: Macmillan Publishing Company, 1984. 11. Sklar , Bernard . Digital Communications Fundamentals and...York: Harper and Row, 1986. 8. Widrow, Bernard and Samuel D. Stearns. Adaptive Signal Processing. Englewood Cliffs, N.J.: Prentice-Hall, 1985. 9...Fourier Transforms. and Optics. New York: John Wiley and Sons, 1978. 15. Widrow, Bernard and others. "The Complex LMS Algorithm," Proceedings of the IEEE
Investigation of Adaptive Robust Kalman Filtering Algorithms for GPS/DR Navigation System Filters
NASA Astrophysics Data System (ADS)
Elzoghby, MOSTAFA; Arif, USMAN; Li, FU; Zhi Yu, XI
2017-03-01
The conventional Kalman filter (KF) algorithm is suitable if the characteristic noise covariance for states as well as measurements is readily known but in most cases these are unknown. Similarly robustness is required instead of smoothing if states are changing abruptly. Such an adaptive as well as robust Kalman filter is vital for many real time applications, like target tracking and navigating aerial vehicles. A number of adaptive as well as robust Kalman filtering methods are available in the literature. In order to investigate the performance of some of these methods, we have selected three different Kalman filters, namely Sage Husa KF, Modified Adaptive Robust KF and Adaptively Robust KF, which are easily simulate able as well as implementable for real time applications. These methods are simulated for land based vehicle and the results are compared with conventional Kalman filter. Results show that the Modified Adaptive Robust KF is best amongst the selected methods and can be used for Navigation applications.
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-12-19
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.
Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms
2004-08-06
identification. Figure 1 shows a very basic example of this type of system . x(n) Figure 1. Basic system identification using adaptive filters block diagram...block diagram of adaptive wavelet filtering system . The main objective of the system shown in Figure 2 is to minimize the error signal, e(k), which is...in Table 1. Daub4 wavelets use filter banks (Vaidyanathan 1992) containing exactly four elements. 5 Figure 4. Time-Domain Representation of
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-01-01
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361
NASA Astrophysics Data System (ADS)
Shen, Ting-ao; Li, Hua-nan; Zhang, Qi-xin; Li, Ming
2017-02-01
The convergence rate and the continuous tracking precision are two main problems of the existing adaptive notch filter (ANF) for frequency tracking. To solve the problems, the frequency is detected by interpolation FFT at first, which aims to overcome the convergence rate of the ANF. Then, referring to the idea of negative feedback, an evaluation factor is designed to monitor the ANF parameters and realize continuously high frequency tracking accuracy. According to the principle, a novel adaptive frequency estimation algorithm based on interpolation FFT and improved ANF is put forward. Its basic idea, specific measures and implementation steps are described in detail. The proposed algorithm obtains a fast estimation of the signal frequency, higher accuracy and better universality qualities. Simulation results verified the superiority and validity of the proposed algorithm when compared with original algorithms.
An algorithmic approach to adaptive state filtering using recurrent neural networks.
Parlos, A G; Menon, S K; Atiya, A
2001-01-01
Practical algorithms are presented for adaptive state filtering in nonlinear dynamic systems when the state equations are unknown. The state equations are constructively approximated using neural networks. The algorithms presented are based on the two-step prediction-update approach of the Kalman filter. The proposed algorithms make minimal assumptions regarding the underlying nonlinear dynamics and their noise statistics. Non-adaptive and adaptive state filtering algorithms are presented with both off-line and online learning stages. The algorithms are implemented using feedforward and recurrent neural network and comparisons are presented. Furthermore, extended Kalman filters (EKFs) are developed and compared to the filter algorithms proposed. For one of the case studies, the EKF converges but results in higher state estimation errors that the equivalent neural filters. For another, more complex case study with unknown system dynamics and noise statistics, the developed EKFs do not converge. The off-line trained neural state filters converge quite rapidly and exhibit acceptable performance. Online training further enhances the estimation accuracy of the developed adaptive filters, effectively decoupling the eventual filter accuracy from the accuracy of the process model.
Ergün, Ayla; Barbieri, Riccardo; Eden, Uri T; Wilson, Matthew A; Brown, Emery N
2007-03-01
The stochastic state point process filter (SSPPF) and steepest descent point process filter (SDPPF) are adaptive filter algorithms for state estimation from point process observations that have been used to track neural receptive field plasticity and to decode the representations of biological signals in ensemble neural spiking activity. The SSPPF and SDPPF are constructed using, respectively, Gaussian and steepest descent approximations to the standard Bayes and Chapman-Kolmogorov (BCK) system of filter equations. To extend these approaches for constructing point process adaptive filters, we develop sequential Monte Carlo (SMC) approximations to the BCK equations in which the SSPPF and SDPPF serve as the proposal densities. We term the two new SMC point process filters SMC-PPFs and SMC-PPFD, respectively. We illustrate the new filter algorithms by decoding the wind stimulus magnitude from simulated neural spiking activity in the cricket cercal system. The SMC-PPFs and SMC-PPFD provide more accurate state estimates at low number of particles than a conventional bootstrap SMC filter algorithm in which the state transition probability density is the proposal density. We also use the SMC-PPFs algorithm to track the temporal evolution of a spatial receptive field of a rat hippocampal neuron recorded while the animal foraged in an open environment. Our results suggest an approach for constructing point process adaptive filters using SMC methods.
Time-sequenced adaptive filtering using a modified P-vector algorithm
NASA Astrophysics Data System (ADS)
Williams, Robert L.
1996-10-01
An adaptive algorithm and two stage filter structure were developed for adaptive filtering of certain classes of signals that exhibit cyclostationary characteristics. The new modified P-vector algorithm (mPa) eliminates the need for a separate desired signal which is typically required by conventional adaptive algorithms. It is then implemented in a time-sequenced manner to counteract the nonstationary characteristics typically found in certain radar and bioelectromagnetic signals. Initial algorithm testing is performed on evoked responses generated by the visual cortex of the human brain with the objective, ultimately, to transition the results to radar signals. Each sample of the evoked response is modeled as the sum of three uncorrelated signal components, a time-varying mean (M), a noise component (N), and a random jitter component (Q). A two stage single channel time-sequenced adaptive filter structure was developed which improves convergence characteristics by de coupling the time-varying mean component from the `Q' and noise components in the first stage. The EEG statistics must be known a priori and are adaptively estimated from the pre stimulus data. The performance of the two stage mPa time-sequenced adaptive filter approaches the performance for the ideal case of an adaptive filter having a noiseless desired response.
Envelope analysis with a genetic algorithm-based adaptive filter bank for bearing fault detection.
Kang, Myeongsu; Kim, Jaeyoung; Choi, Byeong-Keun; Kim, Jong-Myon
2015-07-01
This paper proposes a fault detection methodology for bearings using envelope analysis with a genetic algorithm (GA)-based adaptive filter bank. Although a bandpass filter cooperates with envelope analysis for early identification of bearing defects, no general consensus has been reached as to which passband is optimal. This study explores the impact of various passbands specified by the GA in terms of a residual frequency components-to-defect frequency components ratio, which evaluates the degree of defectiveness in bearings and finally outputs an optimal passband for reliable bearing fault detection.
Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.
Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi
2011-04-01
Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system.
A fast image super-resolution algorithm using an adaptive Wiener filter.
Hardie, Russell
2007-12-01
A computationally simple super-resolution algorithm using a type of adaptive Wiener filter is proposed. The algorithm produces an improved resolution image from a sequence of low-resolution (LR) video frames with overlapping field of view. The algorithm uses subpixel registration to position each LR pixel value on a common spatial grid that is referenced to the average position of the input frames. The positions of the LR pixels are not quantized to a finite grid as with some previous techniques. The output high-resolution (HR) pixels are obtained using a weighted sum of LR pixels in a local moving window. Using a statistical model, the weights for each HR pixel are designed to minimize the mean squared error and they depend on the relative positions of the surrounding LR pixels. Thus, these weights adapt spatially and temporally to changing distributions of LR pixels due to varying motion. Both a global and spatially varying statistical model are considered here. Since the weights adapt with distribution of LR pixels, it is quite robust and will not become unstable when an unfavorable distribution of LR pixels is observed. For translational motion, the algorithm has a low computational complexity and may be readily suitable for real-time and/or near real-time processing applications. With other motion models, the computational complexity goes up significantly. However, regardless of the motion model, the algorithm lends itself to parallel implementation. The efficacy of the proposed algorithm is demonstrated here in a number of experimental results using simulated and real video sequences. A computational analysis is also presented.
NASA Astrophysics Data System (ADS)
Peña, M.
2016-10-01
Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
Adaptive Bloom Filter: A Space-Efficient Counting Algorithm for Unpredictable Network Traffic
NASA Astrophysics Data System (ADS)
Matsumoto, Yoshihide; Hazeyama, Hiroaki; Kadobayashi, Youki
The Bloom Filter (BF), a space-and-time-efficient hashcoding method, is used as one of the fundamental modules in several network processing algorithms and applications such as route lookups, cache hits, packet classification, per-flow state management or network monitoring. BF is a simple space-efficient randomized data structure used to represent a data set in order to support membership queries. However, BF generates false positives, and cannot count the number of distinct elements. A counting Bloom Filter (CBF) can count the number of distinct elements, but CBF needs more space than BF. We propose an alternative data structure of CBF, and we called this structure an Adaptive Bloom Filter (ABF). Although ABF uses the same-sized bit-vector used in BF, the number of hash functions employed by ABF is dynamically changed to record the number of appearances of a each key element. Considering the hash collisions, the multiplicity of a each key element on ABF can be estimated from the number of hash functions used to decode the membership of the each key element. Although ABF can realize the same functionality as CBF, ABF requires the same memory size as BF. We describe the construction of ABF and IABF (Improved ABF), and provide a mathematical analysis and simulation using Zipf's distribution. Finally, we show that ABF can be used for an unpredictable data set such as real network traffic.
Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.
2007-10-29
We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.
FASART: An iterative reconstruction algorithm with inter-iteration adaptive NAD filter.
Zhou, Ziying; Li, Yugang; Zhang, Fa; Wan, Xiaohua
2015-01-01
Electron tomography (ET) is an essential imaging technique for studying structures of large biological specimens. These structures are reconstructed from a set of projections obtained at different sample orientations by tilting the specimen. However, most of existing reconstruction methods are not appropriate when the data are extremely noisy and incomplete. A new iterative method has been proposed: adaptive simultaneous algebraic reconstruction with inter-iteration adaptive non-linear anisotropic diffusion (NAD) filter (FASART). We also adopted an adaptive parameter and discussed the step for the filter in this reconstruction method. Experimental results show that FASART can restrain the noise generated in the process of iterative reconstruction and still preserve the more details of the structure edges.
NASA Astrophysics Data System (ADS)
Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani
2015-05-01
For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.
Tsanas, Athanasios; Zañartu, Matías; Little, Max A; Fox, Cynthia; Ramig, Lorraine O; Clifford, Gari D
2014-05-01
There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required.
Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.
2014-01-01
There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269
Filter selection using genetic algorithms
NASA Astrophysics Data System (ADS)
Patel, Devesh
1996-03-01
Convolution operators act as matched filters for certain types of variations found in images and have been extensively used in the analysis of images. However, filtering through a bank of N filters generates N filtered images, consequently increasing the amount of data considerably. Moreover, not all these filters have the same discriminatory capabilities for the individual images, thus making the task of any classifier difficult. In this paper, we use genetic algorithms to select a subset of relevant filters. Genetic algorithms represent a class of adaptive search techniques where the processes are similar to natural selection of biological evolution. The steady state model (GENITOR) has been used in this paper. The reduction of filters improves the performance of the classifier (which in this paper is the multi-layer perceptron neural network) and furthermore reduces the computational requirement. In this study we use the Laws filters which were proposed for the analysis of texture images. Our aim is to recognize the different textures on the images using the reduced filter set.
NASA Astrophysics Data System (ADS)
Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan
2014-11-01
Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.
Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan
2015-01-01
We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165
Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan
2015-05-13
We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Adaptive filters: stable but divergent
NASA Astrophysics Data System (ADS)
Rupp, Markus
2015-12-01
The pros and cons of a quadratic error measure in the context of various applications have often been discussed. In this tutorial, we argue that it is not only a suboptimal but definitely the wrong choice when describing the stability behavior of adaptive filters. We take a walk through the past and recent history of adaptive filters and present 14 canonical forms of adaptive algorithms and even more variants thereof contrasting their mean-square with their l 2-stability conditions. In particular, in safety critical applications, the convergence in the mean-square sense turns out to provide wrong results, often not leading to stability at all. Only the robustness concept with its l 2-stability conditions ensures the absence of divergence.
Objects tracking with adaptive correlation filters and Kalman filtering
NASA Astrophysics Data System (ADS)
Ontiveros-Gallardo, Sergio E.; Kober, Vitaly
2015-09-01
Object tracking is commonly used for applications such as video surveillance, motion based recognition, and vehicle navigation. In this work, a tracking system using adaptive correlation filters and robust Kalman prediction of target locations is proposed. Tracking is performed by means of multiple object detections in reduced frame areas. A bank of filters is designed from multiple views of a target using synthetic discriminant functions. An adaptive approach is used to improve discrimination capability of the synthesized filters adapting them to multiple types of backgrounds. With the help of computer simulation, the performance of the proposed algorithm is evaluated in terms of detection efficiency and accuracy of object tracking.
NASA Astrophysics Data System (ADS)
Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki
2008-03-01
Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.
Fast autodidactic adaptive equalization algorithms
NASA Astrophysics Data System (ADS)
Hilal, Katia
Autodidactic equalization by adaptive filtering is addressed in a mobile radio communication context. A general method, using an adaptive stochastic gradient Bussgang type algorithm, to deduce two low cost computation algorithms is given: one equivalent to the initial algorithm and the other having improved convergence properties thanks to a block criteria minimization. Two start algorithms are reworked: the Godard algorithm and the decision controlled algorithm. Using a normalization procedure, and block normalization, the performances are improved, and their common points are evaluated. These common points are used to propose an algorithm retaining the advantages of the two initial algorithms. This thus inherits the robustness of the Godard algorithm and the precision and phase correction of the decision control algorithm. The work is completed by a study of the stable states of Bussgang type algorithms and of the stability of the Godard algorithms, initial and normalized. The simulation of these algorithms, carried out in a mobile radio communications context, and under severe conditions on the propagation channel, gave a 75% reduction in the number of samples required for the processing in relation with the initial algorithms. The improvement of the residual error was of a much lower return. These performances are close to making possible the use of autodidactic equalization in the mobile radio system.
1990-12-01
the ensemble average given a perfect adaptation. The last algorithm is the calculation of /. 3-5 As stated earlier, the gain constant /s is determined...Vita .. .. .. .. ... ... .. ... ... ... ... ... ... ... .. VITA-i vii List of Figures Figure Page 2.1. Ensemble Average of SDAT, M...2-8 2.6. Ensemble Average of N1 . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 2.7. Variance of N
Matched filter based iterative adaptive approach
NASA Astrophysics Data System (ADS)
Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William
2016-05-01
Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.
An improved conscan algorithm based on a Kalman filter
NASA Technical Reports Server (NTRS)
Eldred, D. B.
1994-01-01
Conscan is commonly used by DSN antennas to allow adaptive tracking of a target whose position is not precisely known. This article describes an algorithm that is based on a Kalman filter and is proposed to replace the existing fast Fourier transform based (FFT-based) algorithm for conscan. Advantages of this algorithm include better pointing accuracy, continuous update information, and accommodation of missing data. Additionally, a strategy for adaptive selection of the conscan radius is proposed. The performance of the algorithm is illustrated through computer simulations and compared to the FFT algorithm. The results show that the Kalman filter algorithm is consistently superior.
An adaptive filter for smoothing noisy radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Stiles, J. A.; Shanmugam, K. S.; Holtzman, J. C.; Smith, S. A.
1981-01-01
A spatial domain adaptive Wiener filter for smoothing radar images corrupted by multiplicative noise is presented. The filter is optimum in a minimum mean squared error sense, computationally efficient, and preserves edges in the image better than other filters. The proposed algorithm can also be used for processing optical images with illumination variations that have a multiplicative effect.
NASA Astrophysics Data System (ADS)
Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You
2017-02-01
Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.
Color image diffusion using adaptive bilateral filter.
Xie, Jun; Ann Heng, Pheng
2005-01-01
In this paper, we propose an approach to diffuse color images based on the bilateral filter. Real image data has a level of uncertainty that is manifested in the variability of measures assigned to pixels. This uncertainty is usually interpreted as noise and considered an undesirable component of the image data. Image diffusion can smooth away small-scale structures and noise while retaining important features, thus improving the performances for many image processing algorithms such as image compression, segmentation and recognition. The bilateral filter is noniterative, simple and fast. It has been shown to give similar and possibly better filtering results than iterative approaches. However, the performance of this filter is greatly affected by the choose of the parameters of filtering kernels. In order to remove noise and maintain the significant features on images, we extend the bilateral filter by introducing an adaptive domain spread into the nonlinear diffusion scheme. For color images, we employ the CIE-Lab color system to describe input images and the filtering process is operated using three channels together. Our analysis shows that the proposed method is more suitable for preserving strong edges on noisy images than the original bilateral filter. Empirical results on both nature images and color medical images confirm the novel method's advantages, and show it can diffuse various kinds of color images correctly and efficiently.
Speed adaptation as Kalman filtering.
Barraza, Jose F; Grzywacz, Norberto M
2008-10-01
If the purpose of adaptation is to fit sensory systems to different environments, it may implement an optimization of the system. What the optimum is depends on the statistics of these environments. Therefore, the system should update its parameters as the environment changes. A Kalman-filtering strategy performs such an update optimally by combining current estimations of the environment with those from the past. We investigate whether the visual system uses such a strategy for speed adaptation. We performed a matching-speed experiment to evaluate the time course of adaptation to an abrupt velocity change. Experimental results are in agreement with Kalman-modeling predictions for speed adaptation. When subjects adapt to a low speed and it suddenly increases, the time course of adaptation presents two phases, namely, a rapid decrease of perceived speed followed by a slower phase. In contrast, when speed changes from fast to slow, adaptation presents a single phase. In the Kalman-model simulations, this asymmetry is due to the prevalence of low speeds in natural images. However, this asymmetry disappears both experimentally and in simulations when the adapting stimulus is noisy. In both transitions, adaptation now occurs in a single phase. Finally, the model also predicts the change in sensitivity to speed discrimination produced by the adaptation.
Adaptive filter design using recurrent cerebellar model articulation controller.
Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S
2010-07-01
A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.
Adaptive continuous twisting algorithm
NASA Astrophysics Data System (ADS)
Moreno, Jaime A.; Negrete, Daniel Y.; Torres-González, Victor; Fridman, Leonid
2016-09-01
In this paper, an adaptive continuous twisting algorithm (ACTA) is presented. For double integrator, ACTA produces a continuous control signal ensuring finite time convergence of the states to zero. Moreover, the control signal generated by ACTA compensates the Lipschitz perturbation in finite time, i.e. its value converges to the opposite value of the perturbation. ACTA also keeps its convergence properties, even in the case that the upper bound of the derivative of the perturbation exists, but it is unknown.
Frequency domain FIR and IIR adaptive filters
NASA Technical Reports Server (NTRS)
Lynn, D. W.
1990-01-01
A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.
Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms
NASA Technical Reports Server (NTRS)
Linares, Irving (Inventor)
2004-01-01
The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.
Musical noise reduction using an adaptive filter
NASA Astrophysics Data System (ADS)
Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya
2003-10-01
This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.
Adaptive filtering with correlated state noise
NASA Technical Reports Server (NTRS)
Argentiero, P.
1972-01-01
An adaptive filter which uses a minimum variance criteria to estimate state noise covariance is presented. It is not necessary to assume white state noise in order to implement the filter. Simulation results are given which demonstrate that the filter tracks a satellite in the presence of modeling errors better than a conventional minimum variance filter with state noise. It is also shown that the propagated convariance matrix of the filter is an accurate indicator of the filter's performance.
Real time microcontroller implementation of an adaptive myoelectric filter.
Bagwell, P J; Chappell, P H
1995-03-01
This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.
2007-06-05
tive to the AMF, [1] and [5] discovered that multi-channel and two-dimensional parametric estimation approaches could (1) reduce the computational...dimensional (2-D) parametric estimation using the 2-D least-squares-based lattice algorithm [4]. The specifics of the inverse are found in the next...non- parametric estimation techniques • Least square error (LSE) vs mean square error (MSE) • Primarily multi-channel (M-C) structures; also try 2-D
Coordinated adaptive filters for motion simulators.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Dieudonne, J. E.; Bowles, R. L.; Martin, D. J.
1973-01-01
A new approach to providing motion drive signals to a flight simulator utilizing coordinated adaptive filters is presented. Some motivation for the use of coordinated washout is discussed, along with conditions that determine the burden of coordination. The coordinated adaptive filters are derived, based on continuous steepest descent, and the application of the filters to simulated flight data is demonstrated.
Filter banks and the EM algorithm
Mair, B.A.; Carroll, R.B.; Anderson, J.M.M.
1996-12-31
In this paper, we present a wavelet based modification of the ML-EM algorithm for reconstructing positron emission tomography images. By using the filter bank implementation of the wavelet transform, this algorithm has the flexibility to incorporate a priori information, while maintaining the same computational complexity as the standard ML-EM algorithm. Thus, it has a significant computational advantage over usual Bayesian methods. It differs from recent wavelet-based Bayesian methods as it achieves {open_quotes}regularization{close_quotes} by an adaptive, wavelet-based method of thresholding which minimizes Stein`s Unbiased Estimate of Risk. The basic method consists of applying Donoho and Johnstone`s SureShrink wavelet denoising of the Poisson data, and then applying the standard ML-EM algorithm to the denoised data. A more elaborate method is discussed in which a wavelet denoising step is inserted after each EM iteration. This technique differs from previous smoothing techniques applied to the ML-EM algorithm since it is able to recover edges in discontinuous images.
CMOS analog switches for adaptive filters
NASA Technical Reports Server (NTRS)
Dixon, C. E.
1980-01-01
Adaptive active low-pass filters incorporate CMOS (Complimentary Metal-Oxide Semiconductor) analog switches (such as 4066 switch) that reduce variation in switch resistance when filter is switched to any selected transfer function.
Building block for an orthonormal-lattice-filter adaptive network
NASA Astrophysics Data System (ADS)
Gabriel, W. F.
1980-07-01
The recent algorithm for a multistage multichannel orthonormal lattice filter proposed by M. Aftab Alam is a welcome addition to the library of adaptive-processing algorithms and provides a flexible alternative to the conventional approach of an optimum Weiner filter. This algorithm is based on a Gram-Schmidt orthonormalization procedure which is similar to cascade adaptive processing techniques described in earlier works. One of the most desirable features of this type of processing network is that it can be implemented with simple one-stage orthogonal-filter building blocks which directly filter the input data samples. These building blocks are the major subject of this report, and a particular configuration is developed based on a modified version of the familiar Howells-Applebaum algorithm. It can be implemented in either analog or digital form, data storage is not required, it is unconditionally stable, speed of convergence is no longer a problem, and the design is simple. The performance characteristics of a complete orthogonal-lattice-filter network operating in the spacial domain were simulated for example cases of one, two, and three strong incoherent signal sources spaced within a beamwidth for a eight-element linear-array antenna. The adaptive spacial filter patterns and the transient responses demonstrate that the building block has sufficient transient-response speed and control to permit full use of the processing capabilities inherent in a Gram-Schmidt cascade network.
Adaptive Mallow's optimization for weighted median filters
NASA Astrophysics Data System (ADS)
Rachuri, Raghu; Rao, Sathyanarayana S.
2002-05-01
This work extends the idea of spectral optimization for the design of Weighted Median filters and employ adaptive filtering that updates the coefficients of the FIR filter from which the weights of the median filters are derived. Mallows' theory of non-linear smoothers [1] has proven to be of great theoretical significance providing simple design guidelines for non-linear smoothers. It allows us to find a set of positive weights for a WM filter whose sample selection probabilities (SSP's) are as close as possible to a SSP set predetermined by Mallow's. Sample selection probabilities have been used as a basis for designing stack smoothers as they give a measure of the filter's detail preserving ability and give non-negative filter weights. We will extend this idea to design weighted median filters admitting negative weights. The new method first finds the linear FIR filter coefficients adaptively, which are then used to determine the weights of the median filter. WM filters can be designed to have band-pass, high-pass as well as low-pass frequency characteristics. Unlike the linear filters, however, the weighted median filters are robust in the presence of impulsive noise, as shown by the simulation results.
Enhanced adaptive loop filter for motion compensated frame.
Yoo, Young-Joe; Seo, Chan-Won; Han, Jong-Ki; Nguyen, Truong Q
2011-08-01
We propose an adaptive loop filter to remove the redundancy between current and motion compensated frames so that the residual signal is minimized, thus coding efficiency increases. The loop filter coefficients and offset are optimized for each frame or a set of blocks to minimize the total energy of the residual signal resulting from motion estimation and compensation. The optimized loop filter with offset is applied for the set of blocks where the filtering process gives coding gain based upon rate-distortion cost. The proposed loop filter is used for the motion compensated frame whereas the conventional adaptive interpolation filter (AIF) is applied to the reference frames to interpolate the subpixel values. Another conventional scheme adaptive loop filter (ALF), is used after deblocking filtering to enhance quality of reconstructed frames, not to minimize energy of residual signal. The proposed loop filter can be used in combination with the AIF and ALF. Experimental results show that proposed algorithm provides the averaged bit reduction of 8% compared to conventional H.264/AVC scheme. When the proposed scheme is combined with AIF and ALF, the coding gain increases even further.
Adaptive marginal median filter for colour images.
Morillas, Samuel; Gregori, Valentín; Sapena, Almanzor
2011-01-01
This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.
A hybrid method for optimization of the adaptive Goldstein filter
NASA Astrophysics Data System (ADS)
Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue
2014-12-01
The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-01-01
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-12-03
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method.
Suppression of Biodynamic Interference by Adaptive Filtering
NASA Technical Reports Server (NTRS)
Velger, M.; Merhav, S. J.; Grunwald, A. J.
1984-01-01
Preliminary experimental results obtained in moving base simulator tests are presented. Both for pursuit and compensatory tracking tasks, a strong deterioration in tracking performance due to biodynamic interference is found. The use of adaptive filtering is shown to substantially alleviate these effects, resulting in a markedly improved tracking performance and reduction in task difficulty. The effect of simulator motion and of adaptive filtering on human operator describing functions is investigated. Adaptive filtering is found to substantially increase pilot gain and cross-over frequency, implying a more tight tracking behavior. The adaptive filter is found to be effective in particular for high-gain proportional dynamics, low display forcing function power and for pursuit tracking task configurations.
Enhancement of Electrolaryngeal Speech by Adaptive Filtering.
ERIC Educational Resources Information Center
Espy-Wilson, Carol Y.; Chari, Venkatesh R.; MacAuslan, Joel M.; Huang, Caroline B.; Walsh, Michael J.
1998-01-01
A study tested the quality and intelligibility, as judged by several listeners, of four users' electrolaryngeal speech, with and without filtering to compensate for perceptually objectionable acoustic characteristics. Results indicated that an adaptive filtering technique produced a noticeable improvement in the quality of the Transcutaneous…
Demosaicking algorithm for the Kodak-RGBW color filter array
NASA Astrophysics Data System (ADS)
Rafinazari, M.; Dubois, E.
2015-01-01
Digital cameras capture images through different Color Filter Arrays and then reconstruct the full color image. Each CFA pixel only captures one primary color component; the other primary components will be estimated using information from neighboring pixels. During the demosaicking algorithm, the two unknown color components will be estimated at each pixel location. Most of the demosaicking algorithms use the RGB Bayer CFA pattern with Red, Green and Blue filters. The least-Squares Luma-Chroma demultiplexing method is a state of the art demosaicking method for the Bayer CFA. In this paper we develop a new demosaicking algorithm using the Kodak-RGBW CFA. This particular CFA reduces noise and improves the quality of the reconstructed images by adding white pixels. We have applied non-adaptive and adaptive demosaicking method using the Kodak-RGBW CFA on the standard Kodak image dataset and the results have been compared with previous work.
Extended adaptive filtering for wide-angle SAR image formation
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Roberts, William; Li, Jian
2005-05-01
For two-dimensional (2-D) spectral analysis, the adaptive filtering based technologies, such as CAPON and APES (Amplitude and Phase EStimation), are developed under the implicit assumption that the data sets are rectangular. However, in real SAR applications, especially for the wide-angle cases, the collected data sets are always non-rectangular. This raises the problem of how to extend the original adaptive filtering based algorithms for such kind of scenarios. In this paper, we propose an extended adaptive filtering (EAF) approach, which includes Extended APES (E-APES) and Extended CAPON (E-CAPON), for arbitrarily shaped 2-D data. The EAF algorithms adopt a missing-data approach where the unavailable data samples close to the collected data set are assumed missing. Using a group of filter-banks with varying sizes, these algorithms are non-iterative and do not require the estimation of the unavailable samples. The improved imaging results of the proposed algorithms are demonstrated by applying them to two different SAR data sets.
Adaptive conductance filtering for spatially varying noise in PET images
NASA Astrophysics Data System (ADS)
Padfield, Dirk R.; Manjeshwar, Ravindra
2006-03-01
PET images that have been reconstructed with unregularized algorithms are commonly smoothed with linear Gaussian filters to control noise. Since these filters are spatially invariant, they degrade feature contrast in the image, compromising lesion detectability. Edge-preserving smoothing filters can differentially preserve edges and features while smoothing noise. These filters assume spatially uniform noise models. However, the noise in PET images is spatially variant, approximately following a Poisson behavior. Therefore, different regions of a PET image need smoothing by different amounts. In this work, we introduce an adaptive filter, based on anisotropic diffusion, designed specifically to overcome this problem. In this algorithm, the diffusion is varied according to a local estimate of the noise using either the local median or the grayscale image opening to weight the conductance parameter. The algorithm is thus tailored to the task of smoothing PET images, or any image with Poisson-like noise characteristics, by adapting itself to varying noise while preserving significant features in the image. This filter was compared with Gaussian smoothing and a representative anisotropic diffusion method using three quantitative task-relevant metrics calculated on simulated PET images with lesions in the lung and liver. The contrast gain and noise ratio metrics were used to measure the ability to do accurate quantitation; the Channelized Hotelling Observer lesion detectability index was used to quantify lesion detectability. The adaptive filter improved the signal-to-noise ratio by more than 45% and lesion detectability by more than 55% over the Gaussian filter while producing "natural" looking images and consistent image quality across different anatomical regions.
Learning algorithms for stack filter classifiers
Porter, Reid B; Hush, Don; Zimmer, Beate G
2009-01-01
Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.
3-D adaptive nonlinear complex-diffusion despeckling filter.
Rodrigues, Pedro; Bernardes, Rui
2012-12-01
This work aims to improve the process of speckle noise reduction while preserving edges and other relevant features through filter expansion from 2-D to 3-D. Despeckling is very important for data visual inspection and as a preprocessing step for other algorithms, as they are usually notably influenced by speckle noise. To that intent, a 3-D approach is proposed for the adaptive complex-diffusion filter. This 3-D iterative filter was applied to spectral-domain optical coherence tomography medical imaging volumes of the human retina and a quantitative evaluation of the results was performed to allow a demonstration of the better performance of the 3-D over the 2-D filtering and to choose the best total diffusion time. In addition, we propose a fast graphical processing unit parallel implementation so that the filter can be used in a clinical setting.
Local image registration by adaptive filtering.
Caner, Gulcin; Tekalp, A Murat; Sharma, Gaurav; Heinzelman, Wendi
2006-10-01
We propose a new adaptive filtering framework for local image registration, which compensates for the effect of local distortions/displacements without explicitly estimating a distortion/displacement field. To this effect, we formulate local image registration as a two-dimensional (2-D) system identification problem with spatially varying system parameters. We utilize a 2-D adaptive filtering framework to identify the locally varying system parameters, where a new block adaptive filtering scheme is introduced. We discuss the conditions under which the adaptive filter coefficients conform to a local displacement vector at each pixel. Experimental results demonstrate that the proposed 2-D adaptive filtering framework is very successful in modeling and compensation of both local distortions, such as Stirmark attacks, and local motion, such as in the presence of a parallax field. In particular, we show that the proposed method can provide image registration to: a) enable reliable detection of watermarks following a Stirmark attack in nonblind detection scenarios, b) compensate for lens distortions, and c) align multiview images with nonparametric local motion.
Streak image denoising and segmentation using adaptive Gaussian guided filter.
Jiang, Zhuocheng; Guo, Baoping
2014-09-10
In streak tube imaging lidar (STIL), streak images are obtained using a CCD camera. However, noise in the captured streak images can greatly affect the quality of reconstructed 3D contrast and range images. The greatest challenge for streak image denoising is reducing the noise while preserving details. In this paper, we propose an adaptive Gaussian guided filter (AGGF) for noise removal and detail enhancement of streak images. The proposed algorithm is based on a guided filter (GF) and part of an adaptive bilateral filter (ABF). In the AGGF, the details are enhanced by optimizing the offset parameter. AGGF-denoised streak images are significantly sharper than those denoised by the GF. Moreover, the AGGF is a fast linear time algorithm achieved by recursively implementing a Gaussian filter kernel. Experimentally, AGGF demonstrates its capacity to preserve edges and thin structures and outperforms the existing bilateral filter and domain transform filter in terms of both visual quality and peak signal-to-noise ratio performance.
Hanna, Andrew I; Mandic, Danilo P
2003-03-01
A complex-valued nonlinear gradient descent (CNGD) learning algorithm for a simple finite impulse response (FIR) nonlinear neural adaptive filter with an adaptive amplitude of the complex activation function is proposed. This way the amplitude of the complex-valued analytic nonlinear activation function of a neuron in the learning algorithm is made gradient adaptive to give the complex-valued adaptive amplitude nonlinear gradient descent (CAANGD). Such an algorithm is beneficial when dealing with signals that have rich dynamical behavior. Simulations on the prediction of complex-valued coloured and nonlinear input signals show the gradient adaptive amplitude, CAANGD, outperforming the standard CNGD algorithm.
Adaptive filtering for the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Marié, Simon; Gloerfelt, Xavier
2017-03-01
In this study, a new selective filtering technique is proposed for the Lattice Boltzmann Method. This technique is based on an adaptive implementation of the selective filter coefficient σ. The proposed model makes the latter coefficient dependent on the shear stress in order to restrict the use of the spatial filtering technique in sheared stress region where numerical instabilities may occur. Different parameters are tested on 2D test-cases sensitive to numerical stability and on a 3D decaying Taylor-Green vortex. The results are compared to the classical static filtering technique and to the use of a standard subgrid-scale model and give significant improvements in particular for low-order filter consistent with the LBM stencil.
Adaptive protection algorithm and system
Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA
2009-04-28
An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.
Convergence Analysis of LMS based Adaptive filter
NASA Astrophysics Data System (ADS)
Rai, Amrita; Kohli, Amit Kumar
2010-11-01
A standard algorithm for LMS-filter simulation, tested with several convergence criteria is presented in this paper. We analyze the steady-state mean square error (MSE) convergence of the LMS algorithm when random functions are used as reference inputs. In this paper, we make a more precise analysis using the deterministic nature of the reference inputs and their time-variant correlation matrix. Simulations performed under MATLAB show remarkable differences between convergence criteria with various value of the step size.
An adaptive neural fuzzy filter and its applications.
Lin, C T; Juang, C F
1997-01-01
A new kind of nonlinear adaptive filter, the adaptive neural fuzzy filter (ANFF), based upon a neural network's learning ability and fuzzy if-then rule structure, is proposed in this paper. The ANFF is inherently a feedforward multilayered connectionist network which can learn by itself according to numerical training data or expert knowledge represented by fuzzy if-then rules. The adaptation here includes the construction of fuzzy if-then rules (structure learning), and the tuning of the free parameters of membership functions (parameter learning). In the structure learning phase, fuzzy rules are found based on the matching of input-output clusters. In the parameter learning phase, a backpropagation-like adaptation algorithm is developed to minimize the output error. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially, and both the structure learning and parameter learning are performed concurrently as the adaptation proceeds. However, if some linguistic information about the design of the filter is available, such knowledge can be put into the ANFF to form an initial structure with hidden nodes. Two major advantages of the ANFF can thus be seen: 1) a priori knowledge can be incorporated into the ANFF which makes the fusion of numerical data and linguistic information in the filter possible; and 2) no predetermination, like the number of hidden nodes, must be given, since the ANFF can find its optimal structure and parameters automatically.
Adaptive-feedback control algorithm.
Huang, Debin
2006-06-01
This paper is motivated by giving the detailed proofs and some interesting remarks on the results the author obtained in a series of papers [Phys. Rev. Lett. 93, 214101 (2004); Phys. Rev. E 71, 037203 (2005); 69, 067201 (2004)], where an adaptive-feedback algorithm was proposed to effectively stabilize and synchronize chaotic systems. This note proves in detail the strictness of this algorithm from the viewpoint of mathematics, and gives some interesting remarks for its potential applications to chaos control & synchronization. In addition, a significant comment on synchronization-based parameter estimation is given, which shows some techniques proposed in literature less strict and ineffective in some cases.
VSP wave separation by adaptive masking filters
NASA Astrophysics Data System (ADS)
Rao, Ying; Wang, Yanghua
2016-06-01
In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation
Gearbox Fault Diagnosis Using Adaptive Wavelet Filter
NASA Astrophysics Data System (ADS)
LIN, J.; ZUO, M. J.
2003-11-01
Vibration signals from a gearbox are usually noisy. As a result, it is difficult to find early symptoms of a potential failure in a gearbox. Wavelet transform is a powerful tool to disclose transient information in signals. An adaptive wavelet filter based on Morlet wavelet is introduced in this paper. The parameters in the Morlet wavelet function are optimised based on the kurtosis maximisation principle. The wavelet used is adaptive because the parameters are not fixed. The adaptive wavelet filter is found to be very effective in detection of symptoms from vibration signals of a gearbox with early fatigue tooth crack. Two types of discrete wavelet transform (DWT), the decimated with DB4 wavelet and the undecimated with harmonic wavelet, are also used to analyse the same signals for comparison. No periodic impulses appear on any scale in either DWT decomposition.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
Adaptive wavelet transform algorithm for lossy image compression
NASA Astrophysics Data System (ADS)
Pogrebnyak, Oleksiy B.; Ramirez, Pablo M.; Acevedo Mosqueda, Marco Antonio
2004-11-01
A new algorithm of locally adaptive wavelet transform based on the modified lifting scheme is presented. It performs an adaptation of the wavelet high-pass filter at the prediction stage to the local image data activity. The proposed algorithm uses the generalized framework for the lifting scheme that permits to obtain easily different wavelet filter coefficients in the case of the (~N, N) lifting. Changing wavelet filter order and different control parameters, one can obtain the desired filter frequency response. It is proposed to perform the hard switching between different wavelet lifting filter outputs according to the local data activity estimate. The proposed adaptive transform possesses a good energy compaction. The designed algorithm was tested on different images. The obtained simulation results show that the visual and quantitative quality of the restored images is high. The distortions are less in the vicinity of high spatial activity details comparing to the non-adaptive transform, which introduces ringing artifacts. The designed algorithm can be used for lossy image compression and in the noise suppression applications.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Adaptive noise Wiener filter for scanning electron microscope imaging system.
Sim, K S; Teh, V; Nia, M E
2016-01-01
Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-07-26
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
A practical sub-space adaptive filter.
Zaknich, A
2003-01-01
A Sub-Space Adaptive Filter (SSAF) model is developed using, as a basis, the Modified Probabilistic Neural Network (MPNN) and its extension the Tuneable Approximate Piecewise Linear Regression (TAPLR) model. The TAPLR model can be adjusted by a single smoothing parameter continuously from the best piecewise linear model in each sub-space to the best approximately piecewise linear model over the whole data space. A suitable value in between ensures that all neighbouring piecewise linear models merge together smoothly at their boundaries. This model was developed by altering the form of the MPNN, a network used for general nonlinear regression. The MPNNs special structure allows it to be easily used to model a process by appropriately weighting piecewise linear models associated with each of the network's radial basis functions. The model has now been further extended to allow each piecewise linear model section to be adapted separately as new data flows through it. By doing this, the proposed SSAF model represents a learning/filtering method for nonlinear processes that provides one solution to the stability/plasticity dilemma associated with standard adaptive filters.
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-05-15
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-01-01
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
NASA Astrophysics Data System (ADS)
Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar
2016-03-01
The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.
Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.
Zhang, Zhen; Ma, Yaopeng
2016-02-06
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively.
Microseismic event denoising via adaptive directional vector median filters
NASA Astrophysics Data System (ADS)
Zheng, Jing; Lu, Ji-Ren; Jiang, Tian-Qi; Liang, Zhe
2017-01-01
We present a novel denoising scheme via Radon transform-based adaptive vector directional median filters named adaptive directional vector median filter (AD-VMF) to suppress noise for microseismic downhole dataset. AD-VMF contains three major steps for microseismic downhole data processing: (i) applying Radon transform on the microseismic data to obtain the parameters of the waves, (ii) performing S-transform to determine the parameters for filters, and (iii) applying the parameters for vector median filter (VMF) to denoise the data. The steps (i) and (ii) can realize the automatic direction detection. The proposed algorithm is tested with synthetic and field datasets that were recorded with a vertical array of receivers. The P-wave and S-wave direct arrivals are properly denoised for poor signal-to-noise ratio (SNR) records. In the simulation case, we also evaluate the performance with mean square error (MSE) in terms of signal-to-noise ratio (SNR). The result shows that the distortion of the proposed method is very low; the SNR is even less than 0 dB.
Nonlinear adaptive filtering of stimulus artifact.
Grieve, R; Parker, P A; Hudgins, B; Englehart, K
2000-03-01
Noninvasive measurements of somatosensory evoked potentials have both clinical and research applications. The electrical artifact which results from the stimulus is an interference which can distort the evoked signal, and introduce errors in response onset timing estimation. Given that this interference is synchronous with the evoked signal, it cannot be reduced by the conventional technique of ensemble averaging. The technique of adaptive noise cancelling has potential in this regard however, and has been used effectively in other similar problems. An adaptive noise cancelling filter which uses a neural network as the adaptive element is investigated in this application. The filter is implemented and performance determined in the cancelling of artifact for in vivo measurements on the median nerve. A technique of segmented neural network training is proposed in which the network is trained on that segment of the record time window which does not contain the evoked signal. The neural network is found to generalize well from this training to include the segment of the window containing the evoked signal. Both quantitative and qualitative measures show that significant stimulus artifact reduction is achieved.
Noninvasive fetal ECG estimation using adaptive comb filter.
Wei, Zheng; Xueyun, Wei; Jian jian, Zhong; Hongxing, Liu
2013-10-01
This paper describes a robust and simple algorithm for fetal electrocardiogram (FECG) estimation from abdominal signal using adaptive comb filter (ACF). The ACF can adjust itself to the temporal variations in fundamental frequency, which makes it qualified for the estimation of quasi-periodic component from physiologic signal, such as ECG. The validity and performance of the described method are confirmed through experiments on real fetal ECG data. A comparison with the well-known independent component analysis (ICA) method has also been presented.
Improved adaptive complex diffusion despeckling filter.
Bernardes, Rui; Maduro, Cristina; Serranho, Pedro; Araújo, Adérito; Barbeiro, Sílvia; Cunha-Vaz, José
2010-11-08
Despeckling optical coherence tomograms from the human retina is a fundamental step to a better diagnosis or as a preprocessing stage for retinal layer segmentation. Both of these applications are particularly important in monitoring the progression of retinal disorders. In this study we propose a new formulation for a well-known nonlinear complex diffusion filter. A regularization factor is now made to be dependent on data, and the process itself is now an adaptive one. Experimental results making use of synthetic data show the good performance of the proposed formulation by achieving better quantitative results and increasing computation speed.
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Vectorization of linear discrete filtering algorithms
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1977-01-01
Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.
Adaptive noise cancellation based on beehive pattern evolutionary digital filter
NASA Astrophysics Data System (ADS)
Zhou, Xiaojun; Shao, Yimin
2014-01-01
Evolutionary digital filtering (EDF) exhibits the advantage of avoiding the local optimum problem by using cloning and mating searching rules in an adaptive noise cancellation system. However, convergence performance is restricted by the large population of individuals and the low level of information communication among them. The special beehive structure enables the individuals on neighbour beehive nodes to communicate with each other and thus enhance the information spread and random search ability of the algorithm. By introducing the beehive pattern evolutionary rules into the original EDF, this paper proposes an improved beehive pattern evolutionary digital filter (BP-EDF) to overcome the defects of the original EDF. In the proposed algorithm, a new evolutionary rule which combines competing cloning, complete cloning and assistance mating methods is constructed to enable the individuals distributed on the beehive to communicate with their neighbours. Simulation results are used to demonstrate the improved performance of the proposed algorithm in terms of convergence speed to the global optimum compared with the original methods. Experimental results also verify the effectiveness of the proposed algorithm in extracting feature signals that are contaminated by significant amounts of noise during the fault diagnosis task.
IIR algorithms for adaptive line enhancement
David, R.A.; Stearns, S.D.; Elliott, G.R.; Etter, D.M.
1983-01-01
We introduce a simple IIR structure for the adaptive line enhancer. Two algorithms based on gradient-search techniques are presented for adapting the structure. Results from experiments which utilized real data as well as computer simulations are provided.
Bayesian adaptive estimation of the auditory filter.
Shen, Yi; Richards, Virginia M
2013-08-01
A Bayesian adaptive procedure for estimating the auditory-filter shape was proposed and evaluated using young, normal-hearing listeners at moderate stimulus levels. The resulting quick-auditory-filter (qAF) procedure assumed the power spectrum model of masking with the auditory-filter shape being modeled using a spectrally symmetric, two-parameter rounded-exponential (roex) function. During data collection using the qAF procedure, listeners detected the presence of a pure-tone signal presented in the spectral notch of a noise masker. Dependent on the listener's response on each trial, the posterior probability distributions of the model parameters were updated, and the resulting parameter estimates were then used to optimize the choice of stimulus parameters for the subsequent trials. Results showed that the qAF procedure gave similar parameter estimates to the traditional threshold-based procedure in many cases and was able to reasonably predict the masked signal thresholds. Additional measurements suggested that occasional failures of the qAF procedure to reliably converge could be a consequence of incorrect responses early in a qAF track. The addition of a parameter describing lapses of attention reduced the likelihood of such failures.
A New Adaptive Framework for Collaborative Filtering Prediction.
Almosallam, Ibrahim A; Shang, Yi
2008-06-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system.
Median filtering algorithms for multichannel detectors
NASA Astrophysics Data System (ADS)
Hovhannisyan, A.; Chilingarian, A.
2011-05-01
Particle detectors of worldwide networks are continuously measuring various secondary particle fluxes incident on Earth surface. At the Aragats Space Environmental Center (ASEC), the data of 12 cosmic ray particle detectors with a total of ˜280 measuring channels (count rates of electrons, muons and neutrons channels) are sent each minute via wireless bridges to a MySQL database. These time series are used for the different tasks of off-line physical analysis and for online forewarning services. Usually long time series contain several types of errors (gaps due to failures of high or low voltage power supply, spurious spikes due to radio interferences, abrupt changes of mean values of several channels or/and slowly trends in mean values due to aging of electronics components, etc.). To avoid erroneous physical inference and false alarms of alerting systems we introduce offline and online filters to "purify" multiple time-series. In the presented paper we classify possible mistakes in time series and introduce median filtering algorithms for online and off-line "purification" of multiple time-series.
Adaptive box filters for removal of random noise from digital images
Eliason, E.M.; McEwen, A.S.
1990-01-01
We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors
Low-Complexity Lossless Compression of Hyperspectral Imagery via Adaptive Filtering
NASA Technical Reports Server (NTRS)
Klimesh, M.
2005-01-01
A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.
Adaptive Kalman filtering methods for tracking GPS signals in high noise/high dynamic environments
NASA Astrophysics Data System (ADS)
Zuo, Qiyao; Yuan, Hong; Lin, Baojun
2007-11-01
GPS C/A signal tracking algorithms have been developed based on adaptive Kalman filtering theory. In the research, an adaptive Kalman filter is used to substitute for standard tracking loop filters. The goal is to improve estimation accuracy and tracking stabilization in high noise and high dynamic environments. The linear dynamics model and the measurements model are designed to estimate code phase, carrier phase, Doppler shift, and rate of change of Doppler shift. Two adaptive algorithms are applied to improve robustness and adaptive faculty of the tracking, one is Sage adaptive filtering approach and the other is strong tracking method. Both the new algorithms and the conventional tracking loop have been tested by using simulation data. In the simulation experiment, the highest jerk of the receiver is set to 10G m/s 3 with the lowest C/No 30dBHz. The results indicate that the Kalman filtering algorithms are more robust than the standard tracking loop, and performance of tracking loop using the algorithms is satisfactory in such extremely adverse circumstances.
Adaptive Wiener filter super-resolution of color filter array images.
Karch, Barry K; Hardie, Russell C
2013-08-12
Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.
Adaptive bad pixel correction algorithm for IRFPA based on PCNN
NASA Astrophysics Data System (ADS)
Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian
2013-10-01
Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.
Adaptive filters for detection of gravitational waves from coalescing binaries
Eleuteri, Antonio; Milano, Leopoldo; De Rosa, Rosario; Garufi, Fabio; Acernese, Fausto; Barone, Fabrizio; Giordano, Lara; Pardi, Silvio
2006-06-15
In this work we propose use of infinite impulse response adaptive line enhancer (IIR ALE) filters for detection of gravitational waves from coalescing binaries. We extend our previous work and define an adaptive matched filter structure. Filter performance is analyzed in terms of the tracking capability and determination of filter parameters. Furthermore, following the Neyman-Pearson strategy, receiver operating characteristics are derived, with closedform expressions for detection threshold, false alarm, and detection probability. Extensive tests demonstrate the effectiveness of adaptive filters both in terms of small computational cost and robustness.
Design of suboptimal adaptive filter for stochastic systems
NASA Astrophysics Data System (ADS)
Ahn, Jun Il; Shin, Vladimir
2005-12-01
In this paper, the problem of estimating the system state in for linear discrete-time systems with uncertainties is considered. In [1], [2], we have proposed the fusion formula (FF) for an arbitrary number of correlated and uncorrelated estimates. The FF is applied to detection and filtering problem. The new suboptimal adaptive filter with parallel structure is herein proposed. In consequence of parallel structure of the proposed filter, parallel computers can be used for their design. A lower computational complexity and lower memory demand are achieved with the proposed filter than in the optimal adaptive Lainiotis-Kalman filter. Example demonstrates the accuracy of the new filter.
Modified Log-LMS adaptive filter with low signal distortion for biomedical applications.
Jiao, Yuzhong; Cheung, Rex Y P; Mok, Mark P C
2012-01-01
Life signals from human body, e.g. heartbeat or electrocardiography (ECG), are usually weak and susceptible to external noise and interference. Adaptive filter is a good tool to reduce the influence of ambient noise/interference on the life signals. Least mean squares (LMS) algorithm, as one of most popular adaptive algorithms for active noise cancellation (ANC) by adaptive filtering, has the advantage of easy implementation. In order to further decrease the complexity of LMS algorithm based adaptive filter, a Log-LMS algorithm was proposed, which quantized signals by the function of log2. The algorithm can replace multipliers by simple shifting. However, both LMS algorithm and Log-LMS algorithm have the disadvantage of serious signal distortion in biomedical applications. In this paper, a modified Log-LMS algorithm is presented, which divides the convergence process into two different stages, and utilizes different quantization method in each stage. Two scenarios of biomedical applications are used for analysis, 1) using stethoscope in emergence medical helicopter and 2) measuring ECG under power line interference. The simulated results show that the modified algorithm can achieve fast convergence and low signal distortion in processing periodic life signals.
A Simple and Fast Spline Filtering Algorithm for Surface Metrology.
Zhang, Hao; Ott, Daniel; Song, John; Tong, Mingsi; Chu, Wei
2015-01-01
Spline filters and their corresponding robust filters are commonly used filters recommended in ISO (the International Organization for Standardization) standards for surface evaluation. Generally, these linear and non-linear spline filters, composed of symmetric, positive-definite matrices, are solved in an iterative fashion based on a Cholesky decomposition. They have been demonstrated to be relatively efficient, but complicated and inconvenient to implement. A new spline-filter algorithm is proposed by means of the discrete cosine transform or the discrete Fourier transform. The algorithm is conceptually simple and very convenient to implement.
[Evaluation of an adaptive filter for CT under low-CNR condition: comparison with linear filter].
Mori, Issei; Uchida, Miho; Sato, Ami; Sato, Shingo; Tamura, Hajime; Takai, Yoshihiro; Ishibashi, Tadashi; Saito, Haruo; Hosokai, Yoshiyuki; Ogura, Takahide; Chida, Koichi; Machida, Yoshio
2009-01-20
The use of an adaptive filter for CT images is becoming a common procedure and is said to reduce image noise while preserving sharpness and helping to reduce the required X-ray dose. Although many reports support this view, the validity of such evaluations is arguable. When the linearity of a system is in question, physical performance indexes should be measured under conditions similar to those of clinical use. Evaluations of diagnosis using clinical images may be fallible because the non-filtered image used as the reference might not have been optimally reconstructed. We have chosen simple, but commonly used, adaptive filters for our evaluation. As a reference for comparing performance, we designed linear filters that best approximate the noise characteristics of the adaptive filters. MTF is measured through observation of the edge-spread function. Clinical abdominal images are used to compare the performance of adaptive filters and linear filters. We conclude that the performance of the type of adaptive filter we have chosen is virtually the same as that of the linear filter, as long as the image quality of soft tissues is our interest. Both the noise SD and MTF are virtually the same if the contrast of the object is not substantially higher than 150 HU. Images of soft tissues obtained with the use of adaptive filters are also virtually the same as those obtained by linear filters. The edge-preservation characteristic of this adaptive filter is not observable for soft tissues.
Real-time 3D adaptive filtering for portable imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.
Block-adaptive filtering and its application to seismic-event detection
Clark, G.A.
1981-04-01
Block digital filtering involves the calculation of a block or finite set of filter output samples from a block of input samples. The motivation for block processing arises from computational advantages of the technique. Block filters take good advantage of parallel processing architectures, which are becoming more and more attractive with the advent of very large scale integrated (VLSI) circuits. This thesis extends the block technique to Wiener and adaptive filters, both of which are statistical filters. The key ingredient to this extension turns out to be the definition of a new performance index, block mean square error (BMSE), which combines the well known sum square error (SSE) and mean square error (MSE). A block adaptive filtering procedure is derived in which the filter coefficients are adjusted once per each output block in accordance with a generalized block least mean-square (BLMS) algorithm. Convergence properties of the BLMS algorithm are studied, including conditions for guaranteed convergence, convergence speed, and convergence accuracy. Simulation examples are given for clarity. Convergence properties of the BLMS and LMS algorithms are analyzed and compared. They are shown to be analogous, and under the proper circumstances, equivalent. The block adaptive filter was applied to the problem of detecting small seismic events in microseismic background noise. The predictor outperformed the world-wide standardized seismograph network (WWSSN) seismometers in improving signal-to-noise ratio (SNR).
A backtracking algorithm that deals with particle filter degeneracy
NASA Astrophysics Data System (ADS)
Baarsma, Rein; Schmitz, Oliver; Karssenberg, Derek
2016-04-01
Particle filters are an excellent way to deal with stochastic models incorporating Bayesian data assimilation. While they are computationally demanding, the particle filter has no problem with nonlinearity and it accepts non-Gaussian observational data. In the geoscientific field it is this computational demand that creates a problem, since dynamic grid-based models are often already quite computationally demanding. As such it is of the utmost importance to keep the amount of samples in the filter as small as possible. Small sample populations often lead to filter degeneracy however, especially in models with high stochastic forcing. Filter degeneracy renders the sample population useless, as the population is no longer statistically informative. We have created an algorithm in an existing data assimilation framework that reacts to and deals with filter degeneracy based on Spiller et al. [2008]. During the Bayesian updating step of the standard particle filter, the algorithm tests the sample population for filter degeneracy. If filter degeneracy has occurred, the algorithm resets to the last time the filter did work correctly and recalculates the failed timespan of the filter with an increased sample population. The sample population is then reduced to its original size and the particle filter continues as normal. This algorithm was created in the PCRaster Python framework, an open source tool that enables spatio-temporal forward modelling in Python [Karssenberg et al., 2010] . The framework already contains several data assimilation algorithms, including a standard particle filter and a Kalman filter. The backtracking particle filter algorithm has been added to the framework, which will make it easy to implement in other research. The performance of the backtracking particle filter is tested against a standard particle filter using two models. The first is a simple nonlinear point model, and the second is a more complex geophysical model. The main testing
Improved LMS algorithm for adaptive beamforming
NASA Technical Reports Server (NTRS)
Godara, Lal C.
1990-01-01
Two adaptive algorithms which make use of all the available samples to estimate the required gradient are proposed and studied. The first algorithm is referred to as the recursive LMS (least mean squares) and is applicable to a general array. The second algorithm is referred to as the improved LMS algorithm and exploits the Toeplitz structure of the ACM (array correlation matrix); it can be used only for an equispaced linear array.
Adjustment of adaptive sum comb filter for PPG signals.
Pilt, Kristjan; Meigas, Kalju; Ferenets, Rain; Kaik, Juri
2009-01-01
AC component of photoplethysmography signal carries important information for diagnostics. Registered signal may be affected by noises, which are sharing the same bandwidth. Adaptive comb filter is used for the AC component extraction. Due to filter averaging behavior it decreases the signal shape difference between consecutive beats. Comb filter needs to be adjusted for PPG signal. Comb filter new weight values are determined through numerical computation. Experiments with generated photoplethysmographic signals were carried out to compare adjusted and non-adjusted adaptive sum comb filter.
Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.
Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim
2014-09-19
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter.
Adaptive box filters for removal of random noise from digital images
NASA Technical Reports Server (NTRS)
Eliason, Eric M.; Mcewen, Alfred S.
1990-01-01
Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.
Adaptive wavelet transform algorithm for image compression applications
NASA Astrophysics Data System (ADS)
Pogrebnyak, Oleksiy B.; Manrique Ramirez, Pablo
2003-11-01
A new algorithm of locally adaptive wavelet transform is presented. The algorithm implements the integer-to-integer lifting scheme. It performs an adaptation of the wavelet function at the prediction stage to the local image data activity. The proposed algorithm is based on the generalized framework for the lifting scheme that permits to obtain easily different wavelet coefficients in the case of the (N~,N) lifting. It is proposed to perform the hard switching between (2, 4) and (4, 4) lifting filter outputs according to an estimate of the local data activity. When the data activity is high, i.e., in the vicinity of edges, the (4, 4) lifting is performed. Otherwise, in the plain areas, the (2,4) decomposition coefficients are calculated. The calculations are rather simples that permit the implementation of the designed algorithm in fixed point DSP processors. The proposed adaptive transform possesses the perfect restoration of the processed data and possesses good energy compactation. The designed algorithm was tested on different images. The proposed adaptive transform algorithm can be used for image/signal lossless compression.
Study on GPS attitude determination system aided INS using adaptive Kalman filter
NASA Astrophysics Data System (ADS)
Bian, Hongwei; Jin, Zhihua; Tian, Weifeng
2005-10-01
A marine INS/GPS (inertial navigation system/global positioning system) adaptive navigation system is presented in this paper. The GPS with two antennae providing vessel attitude is selected as the auxiliary system to fuse with INS. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The conventional Kalman filter (CKF) assumes that the statistics of the noise of each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However, the GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce a fuzzy logic control method into innovation-based adaptive estimation Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However, how to design the fuzzy logic controller is a very complicated problem, which is still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested in the developed INS/GPS integrated marine navigation system. Real field test results show that the adaptive Kalman filter outperforms the CKF with higher accuracy and robustness. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise existing in the Kalman filter.
QPSO-based adaptive DNA computing algorithm.
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.
Progress in adaptive control of flexible spacecraft using lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.
1985-01-01
This paper reviews the use of the least square lattice filter in adaptive control systems. Lattice filters have been used primarily in speech and signal processing, but they have utility in adaptive control because of their order-recursive nature. They are especially useful in dealing with structural dynamics systems wherein the order of a controller required to damp a vibration is variable depending on the number of modes significantly excited. Applications are presented for adaptive control of a flexible beam. Also, difficulties in the practical implementation of the lattice filter in adaptive control are discussed.
Jokinen, Emma; Yrttiaho, Santeri; Pulakka, Hannu; Vainio, Martti; Alku, Paavo
2012-12-01
Post-filtering can be utilized to improve the quality and intelligibility of telephone speech. Previous studies have shown that energy reallocation with a high-pass type filter works effectively in improving the intelligibility of speech in difficult noise conditions. The present study introduces a signal-to-noise ratio adaptive post-filtering method that utilizes energy reallocation to transfer energy from the first formant to higher frequencies. The proposed method adapts to the level of the background noise so that, in favorable noise conditions, the post-filter has a flat frequency response and the effect of the post-filtering is increased as the level of the ambient noise increases. The performance of the proposed method is compared with a similar post-filtering algorithm and unprocessed speech in subjective listening tests which evaluate both intelligibility and listener preference. The results indicate that both of the post-filtering methods maintain the quality of speech in negligible noise conditions and are able to provide intelligibility improvement over unprocessed speech in adverse noise conditions. Furthermore, the proposed post-filtering algorithm performs better than the other post-filtering method under evaluation in moderate to difficult noise conditions, where intelligibility improvement is mostly required.
Adaptive filtering for white-light LED visible light communication
NASA Astrophysics Data System (ADS)
Hsu, Chin-Wei; Chen, Guan-Hong; Wei, Liang-Yu; Chow, Chi-Wai; Lu, I.-Cheng; Liu, Yen-Liang; Chen, Hsing-Yu; Yeh, Chien-Hung; Liu, Yang
2017-01-01
White-light phosphor-based light-emitting diode (LED) can be used to provide lighting and visible light communication (VLC) simultaneously. However, the long relaxation time of phosphor can reduce the modulation bandwidth and limit the VLC data rate. Recent VLC works focus on improving the LED modulation bandwidths. Here, we propose and demonstrate the use of adaptive Volterra filtering (AVF) to increase the data rate of a white-light LED VLC system. The detailed algorithm and implementation of the AVF for the VLC system have been discussed. Using our proposed electrical frontend circuit and the proposed AVF, a significant data rate enhancement to 700.68 Mbit/s is achieved after 1-m free-space transmission using a single white-light phosphor-based LED.
Numerical comparison of Kalman filter algorithms - Orbit determination case study
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Thornton, C. L.
1977-01-01
Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.
Flight data processing with the F-8 adaptive algorithm
NASA Technical Reports Server (NTRS)
Hartmann, G.; Stein, G.; Petersen, K.
1977-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described
Algorithme d'adaptation du filtre de Kalman aux variations soudaines de bruit
NASA Astrophysics Data System (ADS)
Canciu, Vintila
This research targets the case of Kalman filtering as applied to linear time-invariant systems having unknown process noise covariance and measurement noise covariance matrices and addresses the problem represented by the incomplete a priori knowledge of these two filter initialization parameters. The goal of this research is to determine in realtime both the process covariance matrix and the noise covariance matrix in the context of adaptive Kalman filtering. The resultant filter, called evolutionary adaptive Kalman filter, is able to adapt to sudden noise variations and constitutes a hybrid solution for adaptive Kalman filtering based on metaheuristic algorithms. MATLAB/Simulink simulation using several processes and covariance matrices plus comparison with other filters was selected as validation method. The Cramer-Rae Lower Bound (CRLB) was used as performance criterion. The thesis begins with a description of the problem under consideration (the design of a Kalman filter that is able to adapt to sudden noise variations) followed by a typical application (INS-GPS integrated navigation system) and by a statistical analysis of publications related to adaptive Kalman filtering. Next, the thesis presents the current architectures of the adaptive Kalman filtering: the innovation adaptive estimator (IAE) and the multiple model adaptive estimator (MMAE). It briefly presents their formulation, their behavior, and the limit of their performances. The thesis continues with the architectural synthesis of the evolutionary adaptive Kalman filter. The steps involved in the solution of the problem under consideration is also presented: an analysis of Kalman filtering and sub-optimal filtering methods, a comparison of current adaptive Kalman and sub-optimal filtering methods, the emergence of evolutionary adaptive Kalman filter as an enrichment of sub-optimal filtering with the help of biological-inspired computational intelligence methods, and the step-by-step architectural
Feasability of adaptive vibration control of a space truss using modal filters and a neural network
NASA Astrophysics Data System (ADS)
Bosse, Albert; Fisher, Shalom; Shelley, Stuart J.; Lim, Tae W.
1996-05-01
An adaptive algorithm is proposed for the control of a large space truss structure which uses modal filters for independent modal space control and a simple neural network that provides an on-line system identification capability. The modal filters are computed off-line using measured frequency response functions and estimated pole values for the modes of interest, and provide a coordinate transformation that yields modal coordinates from physical response measurements. The time histories for the modal coordinates are then processed in real time by the neural network, which models a single degree of freedom system transfer function and provides estimates of modal parameters, namely, frequency, damping ratio and modal gain. The modal filters are used to implement independent modal space control on a 3.74 meter space truss using a single reaction-mass actuator and 32 accelerometers. The performance of the modal filter based controller is compared to that of a local rate feedback controller using the same actuator. The applicability of the adaptive filter to adaptive control is demonstrated by real time estimation of the modal parameters of the truss with and without control. Because the modal filter control gain can be adjusted to maintain a desired closed loop damping ratio, which is tracked by the adaptive filter, adaptive control of individual modes in a time-varying system is possible. The goal of this work is to field a control system which can maintain desired closed loop damping ratios for mode frequency variations as high as 10%.
Decision-directed entropy-based adaptive filtering
NASA Astrophysics Data System (ADS)
Myler, Harley R.; Weeks, Arthur R.; Van Dyke-Lewis, Michelle
1991-12-01
A recurring problem in adaptive filtering is selection of control measures for parameter modification. A number of methods reported thus far have used localized order statistics to adaptively adjust filter parameters. The most effective techniques are based on edge detection as a decision mechanism to allow the preservation of edge information while noise is filtered. In general, decision-directed adaptive filters operate on a localized area within an image by using statistics of the area as a discrimination parameter. Typically, adaptive filters are based on pixel to pixel variations within a localized area that are due to either edges or additive noise. In homogeneous areas within the image where variances are due to additive noise, the filter should operate to reduce the noise. Using an edge detection technique, a decision directed adaptive filter can vary the filtering proportional to the amount of edge information detected. We show an approach using an entropy measure on edges to differentiate between variations in the image due to edge information as compared against noise. The method uses entropy calculated against the spatial contour variations of edges in the window.
Simplification of digital filtering algorithms using multirate concepts (Invited Paper)
NASA Astrophysics Data System (ADS)
Mitra, Sanjit K.
1992-02-01
The polyphase decomposition of a sequence is a useful tool in multirate signal processing such as in the design of computationally efficient decimators and interpolators, the design of analysis/synthesis filter banks, and the development of fast discrete transform algorithms. This paper reviews a recently introduced generalization of the polyphase decomposition concept and outlines some of its applications in the simplification of digital filtering algorithms such as the design and implementation of finite-impulse-response (FIR) digital filters, the design of decimators and interpolators, and discrete Fourier transform computations.
A gradient-adaptive lattice-based complex adaptive notch filter
NASA Astrophysics Data System (ADS)
Zhu, Rui; Yang, Feiran; Yang, Jun
2016-12-01
This paper presents a new complex adaptive notch filter to estimate and track the frequency of a complex sinusoidal signal. The gradient-adaptive lattice structure instead of the traditional gradient one is adopted to accelerate the convergence rate. It is proved that the proposed algorithm results in unbiased estimations by using the ordinary differential equation approach. The closed-form expressions for the steady-state mean square error and the upper bound of step size are also derived. Simulations are conducted to validate the theoretical analysis and demonstrate that the proposed method generates considerably better convergence rates and tracking properties than existing methods, particularly in low signal-to-noise ratio environments.
An adaptive Kalman filter for ECG signal enhancement.
Vullings, Rik; de Vries, Bert; Bergmans, Jan W M
2011-04-01
The ongoing trend of ECG monitoring techniques to become more ambulatory and less obtrusive generally comes at the expense of decreased signal quality. To enhance this quality, consecutive ECG complexes can be averaged triggered on the heartbeat, exploiting the quasi-periodicity of the ECG. However, this averaging constitutes a tradeoff between improvement of the SNR and loss of clinically relevant physiological signal dynamics. Using a bayesian framework, in this paper, a sequential averaging filter is developed that, in essence, adaptively varies the number of complexes included in the averaging based on the characteristics of the ECG signal. The filter has the form of an adaptive Kalman filter. The adaptive estimation of the process and measurement noise covariances is performed by maximizing the bayesian evidence function of the sequential ECG estimation and by exploiting the spatial correlation between several simultaneously recorded ECG signals, respectively. The noise covariance estimates thus obtained render the filter capable of ascribing more weight to newly arriving data when these data contain morphological variability, and of reducing this weight in cases of no morphological variability. The filter is evaluated by applying it to a variety of ECG signals. To gauge the relevance of the adaptive noise-covariance estimation, the performance of the filter is compared to that of a Kalman filter with fixed, (a posteriori) optimized noise covariance. This comparison demonstrates that, without using a priori knowledge on signal characteristics, the filter with adaptive noise estimation performs similar to the filter with optimized fixed noise covariance, favoring the adaptive filter in cases where no a priori information is available or where signal characteristics are expected to fluctuate.
A New Synchronized Miniature Rubidium Oscillator with an Auto-Adaptive Disciplining Filter
2001-11-01
33rd Annual Precise Time and Time Interval (PTTI) Meeting A NEW SYNCHRONIZED MINIATURE RUBIDIUM DISCIPLINING FILTER OSCILLATOR WITH AN AUTO...ADAPTIVE Pascal Rochat and Bernard Leuenberger Temex Neuchfitel Time SA, Switzerland Abstract A new rubidium line (SRO) integrating timing functions and... time interval measurements was developed using an auto-adaptive disciplining algorithm. This led to an ultra-stable time & frequency machine usable
The cerebellum as an adaptive filter: a general model?
Dean, Paul; Porrill, John
2010-01-01
Many functional models of the cerebellar microcircuit are based on the adaptive-filter model first proposed by Fujita. The adaptive filter has powerful signal processing capacities that are suitable for both sensory and motor tasks, and uses a simple and intuitively plausible decorrelation learning rule that offers and account of the evolution of the inferior olive. Moreover, in those cases where the input-output transformations of cerebellar microzones have been sufficiently characterised, they appear to conform to those predicted by the adaptive-filter model. However, these cases are few in number, and comparing the model with the internal operations of the microcircuit itself has not proved straightforward. Whereas some microcircuit features appear compatible with adaptive-filter function, others such as simple granular-layer processing or Purkinje cell bistability, do not. How far these seeming incompatibilities indicate additional computational roles for the cerebellar microcircuit remains to be determined.
Performance Evaluation of Different Ground Filtering Algorithms for Uav-Based Point Clouds
NASA Astrophysics Data System (ADS)
Serifoglu, C.; Gungor, O.; Yilmaz, V.
2016-06-01
Digital Elevation Model (DEM) generation is one of the leading application areas in geomatics. Since a DEM represents the bare earth surface, the very first step of generating a DEM is to separate the ground and non-ground points, which is called ground filtering. Once the point cloud is filtered, the ground points are interpolated to generate the DEM. LiDAR (Light Detection and Ranging) point clouds have been used in many applications thanks to their success in representing the objects they belong to. Hence, in the literature, various ground filtering algorithms have been reported to filter the LiDAR data. Since the LiDAR data acquisition is still a costly process, using point clouds generated from the UAV images to produce DEMs is a reasonable alternative. In this study, point clouds with three different densities were generated from the aerial photos taken from a UAV (Unmanned Aerial Vehicle) to examine the effect of point density on filtering performance. The point clouds were then filtered by means of five different ground filtering algorithms as Progressive Morphological 1D (PM1D), Progressive Morphological 2D (PM2D), Maximum Local Slope (MLS), Elevation Threshold with Expand Window (ETEW) and Adaptive TIN (ATIN). The filtering performance of each algorithm was investigated qualitatively and quantitatively. The results indicated that the ATIN and PM2D algorithms showed the best overall ground filtering performances. The MLS and ETEW algorithms were found as the least successful ones. It was concluded that the point clouds generated from the UAVs can be a good alternative for LiDAR data.
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
Adaptive median filtering for preprocessing of time series measurements
NASA Technical Reports Server (NTRS)
Paunonen, Matti
1993-01-01
A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.
The prediction of EEG signals using a feedback-structured adaptive rational function filter.
Kim, H S; Kim, T S; Choi, Y H; Park, S H
2000-08-01
In this article, we present a feedback-structured adaptive rational function filter based on a recursive modified Gram-Schmidt algorithm and apply it to the prediction of an EEG signal that has nonlinear and nonstationary characteristics. For the evaluation of the prediction performance, the proposed filter is compared with other methods, where a single-step prediction and a multi-step prediction are considered for a short-term prediction, and the prediction performance is assessed in normalized mean square error. The experimental results show that the proposed filter shows better performance than other methods considered for the short-term prediction of EEG signals.
Filter. Remix. Make.: Cultivating Adaptability through Multimodality
ERIC Educational Resources Information Center
Dusenberry, Lisa; Hutter, Liz; Robinson, Joy
2015-01-01
This article establishes traits of adaptable communicators in the 21st century, explains why adaptability should be a goal of technical communication educators, and shows how multimodal pedagogy supports adaptability. Three examples of scalable, multimodal assignments (infographics, research interviews, and software demonstrations) that evidence…
Adaptive Control of Flexible Structures Using Residual Mode Filters
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2010-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.
Adaptive link selection algorithms for distributed estimation
NASA Astrophysics Data System (ADS)
Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent
2015-12-01
This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.
Performance Analysis of Adaptive Volterra Filters in the Finite-Alphabet Input Case
NASA Astrophysics Data System (ADS)
Besbes, Hichem; Jaïdane, Mériem; Ezzine, Jelel
2004-12-01
This paper deals with the analysis of adaptive Volterra filters, driven by the LMS algorithm, in the finite-alphabet inputs case. A tailored approach for the input context is presented and used to analyze the behavior of this nonlinear adaptive filter. Complete and rigorous mean square analysis is provided without any constraining independence assumption. Exact transient and steady-state performances expressed in terms of critical step size, rate of transient decrease, optimal step size, excess mean square error in stationary mode, and tracking nonstationarities are deduced.
NASA Astrophysics Data System (ADS)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter
NASA Astrophysics Data System (ADS)
Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio
2012-01-01
Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.
Information filtering via weighted heat conduction algorithm
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Guo, Qiang; Zhang, Yi-Cheng
2011-06-01
In this paper, by taking into account effects of the user and object correlations on a heat conduction (HC) algorithm, a weighted heat conduction (WHC) algorithm is presented. We argue that the edge weight of the user-object bipartite network should be embedded into the HC algorithm to measure the object similarity. The numerical results indicate that both the accuracy and diversity could be improved greatly compared with the standard HC algorithm and the optimal values reached simultaneously. On the Movielens and Netflix datasets, the algorithmic accuracy, measured by the average ranking score, can be improved by 39.7% and 56.1% in the optimal case, respectively, and the diversity could reach 0.9587 and 0.9317 when the recommendation list equals to 5. Further statistical analysis indicates that, in the optimal case, the distributions of the edge weight are changed to the Poisson form, which may be the reason why HC algorithm performance could be improved. This work highlights the effect of edge weight on a personalized recommendation study, which maybe an important factor affecting personalized recommendation performance.
On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hsieh, Shih-Fu
1990-01-01
In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends
Optimal Hops-Based Adaptive Clustering Algorithm
NASA Astrophysics Data System (ADS)
Xuan, Xin; Chen, Jian; Zhen, Shanshan; Kuo, Yonghong
This paper proposes an optimal hops-based adaptive clustering algorithm (OHACA). The algorithm sets an energy selection threshold before the cluster forms so that the nodes with less energy are more likely to go to sleep immediately. In setup phase, OHACA introduces an adaptive mechanism to adjust cluster head and load balance. And the optimal distance theory is applied to discover the practical optimal routing path to minimize the total energy for transmission. Simulation results show that OHACA prolongs the life of network, improves utilizing rate and transmits more data because of energy balance.
An Efficient Conflict Detection Algorithm for Packet Filters
NASA Astrophysics Data System (ADS)
Lee, Chun-Liang; Lin, Guan-Yu; Chen, Yaw-Chung
Packet classification is essential for supporting advanced network services such as firewalls, quality-of-service (QoS), virtual private networks (VPN), and policy-based routing. The rules that routers use to classify packets are called packet filters. If two or more filters overlap, a conflict occurs and leads to ambiguity in packet classification. This study proposes an algorithm that can efficiently detect and resolve filter conflicts using tuple based search. The time complexity of the proposed algorithm is O(nW+s), and the space complexity is O(nW), where n is the number of filters, W is the number of bits in a header field, and s is the number of conflicts. This study uses the synthetic filter databases generated by ClassBench to evaluate the proposed algorithm. Simulation results show that the proposed algorithm can achieve better performance than existing conflict detection algorithms both in time and space, particularly for databases with large numbers of conflicts.
Adaptive Cuckoo Search Algorithm for Unconstrained Optimization
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.
1996-12-01
algorithms for obtaining rapid convergence of the tap weights of a transversal filter to their optimum settings ( Godard , 1974). This algorithm is...1366, Dec. 1989. 10. Godard , D. N. (1974) "Channel equalization using a Kalman filter for fast data transmission," IBM K. Res. Dev., vol. 18, pp. 267
NASA Astrophysics Data System (ADS)
Rahimi, Afshin; Kumar, Krishna Dev; Alighanbari, Hekmat
2017-05-01
Reaction wheels, as one of the most commonly used actuators in satellite attitude control systems, are prone to malfunction which could lead to catastrophic failures. Such malfunctions can be detected and addressed in time if proper analytical redundancy algorithms such as parameter estimation and control reconfiguration are employed. Major challenges in parameter estimation include speed and accuracy of the employed algorithm. This paper presents a new approach for improving parameter estimation with adaptive unscented Kalman filter. The enhancement in tracking speed of unscented Kalman filter is achieved by systematically adapting the covariance matrix to the faulty estimates using innovation and residual sequences combined with an adaptive fault annunciation scheme. The proposed approach provides the filter with the advantage of tracking sudden changes in the system non-measurable parameters accurately. Results showed successful detection of reaction wheel malfunctions without requiring a priori knowledge about system performance in the presence of abrupt, transient, intermittent, and incipient faults. Furthermore, the proposed approach resulted in superior filter performance with less mean squared errors for residuals compared to generic and adaptive unscented Kalman filters, and thus, it can be a promising method for the development of fail-safe satellites.
New cardiac MRI gating method using event-synchronous adaptive digital filter.
Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung
2009-11-01
When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
Weighted adaptive spatial filtering in digital holographic microscopy
NASA Astrophysics Data System (ADS)
Hong, Yuan; Shi, Tielin; Wang, Xiao; Zhang, Yichun; Chen, Kepeng; Liao, Guanglan
2017-01-01
Spatial filtering, a key point to realize real-time measurement, is used commonly in digital off-axis holography to extract desired terms. In this paper, we propose a weighted adaptive spatial filtering method by weighting the adaptive filtering window (obtained from image segmentation) based on signal to noise ratio. The advantages of this method are evaluated by simulations and further verified by recorded digital image plane holograms. The results demonstrate that our method is effective in suppressing noise and retaining the sharp edges in the reconstructed 3D profiles.
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum
Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks. PMID:26257638
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum.
Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Dean, Paul; Anderson, Sean R; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.
Gear Fault Signal Detection based on an Adaptive Fractional Fourier Transform Filter
NASA Astrophysics Data System (ADS)
Zhou, Xiaojun; Shao, Yimin; Zhen, Dong; Gu, Fengshou; Ball, Andrew
2011-07-01
Vibration-based fault diagnosis is widely used for gearbox monitoring. However, it often needs considerable effort to extract effective diagnostic feature signal from noisy vibration signals because of rich signal components contained in a complex gear transmission system. In this paper, an adaptive fractional Fourier transform filter is proposed to suppress noise in gear vibration signals and hence to highlight signal components originated from gear fault dynamic characteristics. The approach relies on the use of adaptive filters in the fractional Fourier transform domain with the optimised fractional transform order and the filter parameters, while the transform orders are selected when the signal have the highest energy gathering and the filter parameters are determined by evolutionary rules. The results from the simulation and experiments have verified the performance of the proposed algorithm in extracting the gear failure signal components from the noisy signals based on a multistage gearbox system.
A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Sanner, Robert M.
2012-01-01
Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.
Fast HDR image upscaling using locally adapted linear filters
NASA Astrophysics Data System (ADS)
Talebi, Hossein; Su, Guan-Ming; Yin, Peng
2015-02-01
A new method for upscaling high dynamic range (HDR) images is introduced in this paper. Overshooting artifact is the common problem when using linear filters such as bicubic interpolation. This problem is visually more noticeable while working on HDR images where there exist more transitions from dark to bright. Our proposed method is capable of handling these artifacts by computing a simple gradient map which enables the filter to be locally adapted to the image content. This adaptation consists of first, clustering pixels into regions with similar edge structures and second, learning the shape and length of our symmetric linear filter for each of these pixel groups. This new filter can be implemented in a separable fashion which perfectly fits hardware implementations. Our experimental results show that training our filter with HDR images can effectively reduce the overshooting artifacts and improve upon the visual quality of the existing linear upscaling approaches.
A study of infrared spectroscopy de-noising based on LMS adaptive filter
NASA Astrophysics Data System (ADS)
Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao
2015-12-01
Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.
Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV
NASA Astrophysics Data System (ADS)
Fahringer, Timothy W.; Thurow, Brian S.
2016-09-01
A new algorithm for reconstruction of 3D particle fields from plenoptic image data is presented. The algorithm is based on the technique of computational refocusing with the addition of a post reconstruction filter to remove the out of focus particles. This new algorithm is tested in terms of reconstruction quality on synthetic particle fields as well as a synthetically generated 3D Gaussian ring vortex. Preliminary results indicate that the new algorithm performs as well as the MART algorithm (used in previous work) in terms of the reconstructed particle position accuracy, but produces more elongated particles. The major advantage to the new algorithm is the dramatic reduction in the computational cost required to reconstruct a volume. It is shown that the new algorithm takes 1/9th the time to reconstruct the same volume as MART while using minimal resources. Experimental results are presented in the form of the wake behind a cylinder at a Reynolds number of 185.
Improving nonlinear modeling capabilities of functional link adaptive filters.
Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio
2015-09-01
The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown.
Fast algorithm for calculating optical binary amplitude filters
NASA Astrophysics Data System (ADS)
Knopp, Jerome; Matalgah, Mustafa M.
1995-08-01
A new geometric viewpoint is presented for optimizing a binary amplitude filter based on finding an ordered set of phasors, the uncoiled phasor set (UPS), from the filter object's discrete Fourier transform that determines a convex polygon. The maximum distance across the polygon determines the value of the correlation peak and the set of frequencies that the optimal filter should pass. Algorithms are presented for finding the UPS and the maximum distance across the polygon that are competititve with optimization approaches that use the binning (Farn and Goodman). The new viewpoint provides a simple way to establish a bound on binning error.
Lee, Boreom; Kee, Youngwook; Han, Jonghee; Yi, Won Jin
2011-01-01
Photoplethysmographic (PPG) signal can provide important information about cardiovascular and respiratory conditions of individuals in a hospital or daily life. However, PPG can be distorted by motion artifacts significantly. Therefore, the reduction of the effects of motion artifacts is very important procedure for monitoring cardio-respiratory system by PPG. There have been many adaptive techniques to reduce motion artifacts from PPG signal including normalized least mean squares (NLMS) method, recursive least squares (RLS) filter, and Kalman filter. In the present study, we propose the adaptive comb filter (ACF) for reducing the effects of motion artifacts from PPG signal. ACF with adaptive lattice infinite impulse response (IIR) notch filter (ALNF) successfully reduced the motion artifacts from the quasi-periodic PPG signal.
Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter
Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang
2017-01-01
In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment. PMID:28098829
Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.
Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang
2017-01-14
In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.
2014-01-01
Background The calculation of arterial oxygen saturation (SpO2) relies heavily on the amplitude information of the high-quality photoplethysmographic (PPG) signals, which could be contaminated by motion artifacts (MA) during monitoring. Methods A new method combining temporally constrained independent component analysis (cICA) and adaptive filters is presented here to extract the clean PPG signals from the MA corrupted PPG signals with the amplitude information reserved. The underlying PPG signal could be extracted from the MA contaminated PPG signals automatically by using cICA algorithm. Then the amplitude information of the PPG signals could be recovered by using adaptive filters. Results Compared with conventional ICA algorithms, the proposed approach is permutation and scale ambiguity-free. Numerical examples with both synthetic datasets and real-world MA corrupted PPG signals demonstrate that the proposed method could remove the MA from MA contaminated PPG signals more effectively than the two existing FFT-LMS and moving average filter (MAF) methods. Conclusions This paper presents a new method which combines the cICA algorithm and adaptive filter to extract the underlying PPG signals from the MA contaminated PPG signals with the amplitude information reserved. The new method could be used in the situations where one wants to extract the interested source automatically from the mixed observed signals with the amplitude information reserved. The results of study demonstrated the efficacy of this proposed method. PMID:24761769
Pritamdas, K; Singh, Kh Manglem; Singh, L Lolitkumar
2016-01-01
A new adaptive switching algorithm is presented where two adaptive filters are switched correspondingly for lower and higher noise ratio of the image. An adaptive center weighted vector median filter is used for the lower noise ratio whereas for higher noise ratio the noisy pixels are detected based on the comparison of the difference between the mean of the vector pixels in the window and the approximated variance of the vector pixels in the window. Then the window comprising the detected noisy pixel is further considered where the pixels are given exponential weights according to their similarity to the other neighboring pixels, spatially and radio metrically. The noisy pixels are then replaced by the weighted average of the pixels within the window. The filter is able to preserve higher signal content in the higher noise ratio as compared to other robust filters in comparison. With a little high in computational complexity, this technique performs well both in lower and higher noise ratios. Simulation results on various RGB images show that the proposed algorithm outperforms many other existing nonlinear filters in terms of preservation of edges and fine details.
NASA Astrophysics Data System (ADS)
Julge, Kalev; Ellmann, Artu; Gruno, Anti
2014-01-01
Numerous filtering algorithms have been developed in order to distinguish the ground surface from nonground points acquired by airborne laser scanning. These algorithms automatically attempt to determine the ground points using various features such as predefined parameters and statistical analysis. Their efficiency also depends on landscape characteristics. The aim of this contribution is to test the performance of six common filtering algorithms embedded in three freeware programs. The algorithms' adaptive TIN, elevation threshold with expand window, maximum local slope, progressive morphology, multiscale curvature, and linear prediction were tested on four relatively large (4 to 8 km2) and diverse landscape areas, which included steep sloped hills, urban areas, ridge-like eskers, and a river valley. The results show that in diverse test areas each algorithm yields various commission and omission errors. It appears that adaptive TIN is suitable in urban areas while the multiscale curvature algorithm is best suited in wooded areas. The multiscale curvature algorithm yielded the overall best results with average root-mean-square error values of 0.35 m.
A novel iris localization algorithm using correlation filtering
NASA Astrophysics Data System (ADS)
Pohit, Mausumi; Sharma, Jitu
2015-06-01
Fast and efficient segmentation of iris from the eye images is a primary requirement for robust database independent iris recognition. In this paper we have presented a new algorithm for computing the inner and outer boundaries of the iris and locating the pupil centre. Pupil-iris boundary computation is based on correlation filtering approach, whereas iris-sclera boundary is determined through one dimensional intensity mapping. The proposed approach is computationally less extensive when compared with the existing algorithms like Hough transform.
Aboy, Mateo; Márquez, Oscar W; McNames, James; Hornero, Roberto; Trong, Tran; Goldstein, Brahm
2005-08-01
We describe an algorithm to estimate the instantaneous power spectral density (PSD) of nonstationary signals. The algorithm is based on a dual Kalman filter that adaptively generates an estimate of the autoregressive model parameters at each time instant. The algorithm exhibits superior PSD tracking performance in nonstationary signals than classical nonparametric methodologies, and does not assume local stationarity of the data. Furthermore, it provides better time-frequency resolution, and is robust to model mismatches. We demonstrate its usefulness by a sample application involving PSD estimation of intracranial pressure signals (ICP) from patients with traumatic brain injury (TBI).
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
NASA Technical Reports Server (NTRS)
Keel, Byron M.
1989-01-01
An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.
Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J
2014-05-01
In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.
Filter algorithm for airborne LIDAR data
NASA Astrophysics Data System (ADS)
Li, Qi; Ma, Hongchao; Wu, Jianwei; Tian, Liqiao; Qiu, Feng
2007-11-01
Airborne laser scanning data has become an accepted data source for highly automated acquisition of digital surface models(DSM) as well as for the generation of digital terrain models(DTM). To generate a high quality DTM using LIDAR data, 3D off-terrain points have to be separated from terrain points. Even though most LIDAR system can measure "last-return" data points, these "last-return" point often measure ground clutter like shrubbery, cars, buildings, and the canopy of dense foliage. Consequently, raw LIDAR points must be post-processed to remove these undesirable returns. The degree to which this post processing is successful is critical in determining whether LIDAR is cost effective for large-scale mapping application. Various techniques have been proposed to extract the ground surface from airborne LIDAR data. The basic problem is the separation of terrain points from off-terrain points which are both recorded by the LIDAR sensor. In this paper a new method, combination of morphological filtering and TIN densification, is proposed to separate 3D off-terrain points.
Joint tracking algorithm using particle filter and mean shift with target model updating
NASA Astrophysics Data System (ADS)
Zhang, Bo; Tian, Weifeng; Jin, Zhihua
2006-10-01
Roughly, visual tracking algorithms can be divided into two main classes: deterministic tracking and stochastic tracking. Mean shift and particle filter are their typical representatives, respectively. Recently, a hybrid tracker, seamlessly integrating the respective advantages of mean shift and particle filter (MSPF) has achieved impressive success in robust tracking. The pivot of MSPF is to sample fewer particles using particle filter and then those particles are shifted to their respective local maximum of target searching space by mean shift. MSPF not only can greatly reduce the number of particles that particle filter required, but can remedy the deficiency of mean shift. Unfortunately, due to its inherent principle, MSPF is restricted to those applications with little changes of the target model. To make MSPF more flexible and robust, an adaptive target model is extended to MSPF in this paper. Experimental results show that MSPF with target model updating can robustly track the target through the whole sequences regardless of the change of target model.
An augmented extended Kalman filter algorithm for complex-valued recurrent neural networks.
Goh, Su Lee; Mandic, Danilo P
2007-04-01
An augmented complex-valued extended Kalman filter (ACEKF) algorithm for the class of nonlinear adaptive filters realized as fully connected recurrent neural networks is introduced. This is achieved based on some recent developments in the so-called augmented complex statistics and the use of general fully complex nonlinear activation functions within the neurons. This makes the ACEKF suitable for processing general complex-valued nonlinear and nonstationary signals and also bivariate signals with strong component correlations. Simulations on benchmark and real-world complex-valued signals support the approach.
Seasonal signal capturing in time series of up coordinates by means of adaptive filters
NASA Astrophysics Data System (ADS)
Yalvac, S.; Ustun, A.
2013-12-01
Digital filters, is a system that performs mathematical operations on a sampled or discrete time signals. Adaptive filters designed for noise canceling are capable tools of decomposing correlated parts of data sets. This kind of filters which optimize itself using Least Mean Square (LMS) algorithm is a powerful tool for understand the truth hidden into the complex data sets like time series in Geosciences. The complex data sets such as CGPS (Continuously operating reference station) station's time series can be understood better with adaptive noise canceling by means of decompose coherent (seasonal effect, tectonic plate motion) and incoherent (noise; site-specific effects) parts of data. In this study, it is aimed to model the subsidence caused by groundwater withdrawal based on the seasonal correlation between consecutive years of CGPS time series. For this purpose, two stations where located into subsidence area of 3 year time series have analyzed with adaptive noise canceling filter. According to the results, the annual movement of these two stations have strong relationship. Also, subsidence behavior are correlated with annual rainfall data. BELD station one year filtered movement KAMN station one year filtered movements
Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca
2011-11-15
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold
Maier, Andreas; Wigström, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca
2011-01-01
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8
A reduced bias delay lock loop for adaptive filters
NASA Astrophysics Data System (ADS)
Fan, Guangteng; Huang, Yangbo; Su, Yingxue; Li, Jingyuan; Sun, Guangfu
2017-01-01
Narrowband interferences (NBIs) severely degrade the quality of a received signal and can hinder the operation of GPS receivers, and therefore, they are commonly excised using an adaptive transversal filter. This filter does not cause code tracking bias in the case of an ideal analog receiver channel when its magnitude and phase response are constant; however, distortion is induced by RF cables, amplifiers, and mixers that results in an asymmetric correlation function. This correlation function is further deformed by the adaptive transversal filter, resulting in a nonzero bias. Given the adaptive nature of this transversal filter, the bias varies based on the jamming pattern. For precision navigation applications, this bias must be mitigated. With this problem in mind, a new technique called amplitude estimating delay lock loop (AEDLL) is presented. By using data related to a known structure of the adaptive transversal filter, the proposed method only needs to estimate the amplitude of the correlation function and revise the correlation function for code tracking. Simulations show that the AEDLL method is capable of reducing the RMSE of code tracking bias to less than 0.12 ns, which is significantly smaller than that achieved using existing methods.
An Adaptive Kalman Filter Excisor for Suppressing Narrowband Interference
1993-11-01
interferences in- connues. Le filtre de Kalman doit alors "apprendre" ý ajuster un de ses param~tres pour effectuer le meilleur traitement. L’erreur est...4"L l B"• -- -- - - -.- ,_, . An~. A)7cQ 0 -QGOP II liii 111111 IIa( Naional 06fenso I ’ I Deence nitonals I "It AN ADAPTIVE KALMAN FILTER EXCISOR...Ottawa 0 A o~ oO Best Available COpy 4INational Defense Defence nationals AN ADAPTIVE KALMAN FILTER EXCISOR FOR SUPPRESSING NARROWBAND INTERFERENCE by
Maximum-Likelihood Adaptive Filter for Partially Observed Boolean Dynamical Systems
NASA Astrophysics Data System (ADS)
Imani, Mahdi; Braga-Neto, Ulisses M.
2017-01-01
Partially-observed Boolean dynamical systems (POBDS) are a general class of nonlinear models with application in estimation and control of Boolean processes based on noisy and incomplete measurements. The optimal minimum mean square error (MMSE) algorithms for POBDS state estimation, namely, the Boolean Kalman filter (BKF) and Boolean Kalman smoother (BKS), are intractable in the case of large systems, due to computational and memory requirements. To address this, we propose approximate MMSE filtering and smoothing algorithms based on the auxiliary particle filter (APF) method from sequential Monte-Carlo theory. These algorithms are used jointly with maximum-likelihood (ML) methods for simultaneous state and parameter estimation in POBDS models. In the presence of continuous parameters, ML estimation is performed using the expectation-maximization (EM) algorithm; we develop for this purpose a special smoother which reduces the computational complexity of the EM algorithm. The resulting particle-based adaptive filter is applied to a POBDS model of Boolean gene regulatory networks observed through noisy RNA-Seq time series data, and performance is assessed through a series of numerical experiments using the well-known cell cycle gene regulatory model.
Image reconstruction algorithms with wavelet filtering for optoacoustic imaging
NASA Astrophysics Data System (ADS)
Gawali, S.; Leggio, L.; Broadway, C.; González, P.; Sánchez, M.; Rodríguez, S.; Lamela, H.
2016-03-01
Optoacoustic imaging (OAI) is a hybrid biomedical imaging modality based on the generation and detection of ultrasound by illuminating the target tissue by laser light. Typically, laser light in visible or near infrared spectrum is used as an excitation source. OAI is based on the implementation of image reconstruction algorithms using the spatial distribution of optical absorption in tissues. In this work, we apply a time-domain back-projection (BP) reconstruction algorithm and a wavelet filtering for point and line detection, respectively. A comparative study between point detection and integrated line detection has been carried out by evaluating their effects on the image reconstructed. Our results demonstrate that the back-projection algorithm proposed is efficient for reconstructing high-resolution images of absorbing spheres embedded in a non-absorbing medium when it is combined with the wavelet filtering.
Robust Wiener filtering for Adaptive Optics
Poyneer, L A
2004-06-17
In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.
The new approach for infrared target tracking based on the particle filter algorithm
NASA Astrophysics Data System (ADS)
Sun, Hang; Han, Hong-xia
2011-08-01
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy
Adaptive Algorithms for HF Antenna Arrays.
1987-07-01
SUBJECT TERMS (Contnue on reverse dfnoceaq and identiy by bkICk numnber) FIELD GROUP SUB-GROUP HP Adaptive Arrays HrF Comunications Systems 4 HP...Although their heavy computational load renders them impractical *1 for many applications, the advancements in cheap, fast digital hardware have...or digital form. For many applications, the LMS algorithm represents a good trade off between speed of convergence* and implementational The speed of
Near-lossless compression algorithm for Bayer pattern color filter arrays
NASA Astrophysics Data System (ADS)
Bazhyna, Andriy; Gotchev, Atanas; Egiazarian, Karen
2005-02-01
In this contribution, we propose a near-lossless compression algorithm for Color Filter Arrays (CFA) images. It allows higher compression ratio than any strictly lossless algorithm for the price of some small and controllable error. In our approach a structural transformation is applied first in order to pack the pixels of the same color in a structure appropriate for the subsequent compression algorithm. The transformed data is compressed by a modified version of the JPEG-LS algorithm. A nonlinear and adaptive error quantization function is embedded in the JPEG-LS algorithm after the fixed and context adaptive predictors. It is step-like and adapts to the base signal level in such a manner that higher error values are allowed for lighter parts with no visual quality loss. These higher error values are then suppressed by gamma correction applied during the image reconstruction stage. The algorithm can be adjusted for arbitrary pixel resolution, gamma value and allowable error range. The compression performance of the proposed algorithm has been tested for real CFA raw data. The results are presented in terms of compression ratio versus reconstruction error and the visual quality of the reconstructed images is demonstrated as well.
Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters
NASA Astrophysics Data System (ADS)
Abhayaratne, Charith
2011-07-01
Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
The application of dummy noise adaptive Kalman filter in underwater navigation
NASA Astrophysics Data System (ADS)
Li, Song; Zhang, Chun-Hua; Luan, Jingde
2011-10-01
The track of underwater target is easy to be affected by the various by the various factors, which will cause poor performance in Kalman filter with the error in the state and measure model. In order to solve the situation, a method is provided with dummy noise compensative technology. Dummy noise is added to state and measure model artificially, and then the question can be solved by the adaptive Kalman filter with unknown time-changed statistical character. The simulation result of underwater navigation proves the algorithm is effective.
Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions.
Roujol, Sébastien; de Senneville, Baudouin Denis; Hey, Silke; Moonen, Chrit; Ries, Mario
2012-03-01
Real time magnetic resonance (MR) thermometry is gaining clinical importance for monitoring and guiding high intensity focused ultrasound (HIFU) ablations of tumorous tissue. The temperature information can be employed to adjust the position and the power of the HIFU system in real time and to determine the therapy endpoint. The requirement to resolve both physiological motion of mobile organs and the rapid temperature variations induced by state-of-the-art high-power HIFU systems require fast MRI-acquisition schemes, which are generally hampered by low signal-to-noise ratios (SNRs). This directly limits the precision of real time MR-thermometry and thus in many cases the feasibility of sophisticated control algorithms. To overcome these limitations, temporal filtering of the temperature has been suggested in the past, which has generally an adverse impact on the accuracy and latency of the filtered data. Here, we propose a novel filter that aims to improve the precision of MR-thermometry while monitoring and adapting its impact on the accuracy. For this, an adaptive extended Kalman filter using a model describing the heat transfer for acoustic heating in biological tissues was employed together with an additional outlier rejection to address the problem of sparse artifacted temperature points. The filter was compared to an efficient matched FIR filter and outperformed the latter in all tested cases. The filter was first evaluated on simulated data and provided in the worst case (with an approximate configuration of the model) a substantial improvement of the accuracy by a factor 3 and 15 during heat up and cool down periods, respectively. The robustness of the filter was then evaluated during HIFU experiments on a phantom and in vivo in porcine kidney. The presence of strong temperature artifacts did not affect the thermal dose measurement using our filter whereas a high measurement variation of 70% was observed with the FIR filter.
Adaptive Routing Algorithm for Priority Flows in a Network
2012-06-14
ADAPTIVE ROUTING ALGORITHM FOR PRIORITY FLOWS IN A NETWORK THESIS Timothy J. Carbino, Captain...ADAPTIVE ROUTING ALGORITHM FOR PRIORITY FLOWS IN A NETWORK THESIS Presented to the Faculty Department of Electrical and Computer... Thesis 20 Aug 10 – 14 Jun 12 Adaptive Routing Algorithm for Priority Flows in a Network 12629PCarbino, Timothy J, Captain, USAF Air Force Institute of
Automatic Data Filter Customization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mandrake, Lukas
2013-01-01
This work predicts whether a retrieval algorithm will usefully determine CO2 concentration from an input spectrum of GOSAT (Greenhouse Gases Observing Satellite). This was done to eliminate needless runtime on atmospheric soundings that would never yield useful results. A space of 50 dimensions was examined for predictive power on the final CO2 results. Retrieval algorithms are frequently expensive to run, and wasted effort defeats requirements and expends needless resources. This algorithm could be used to help predict and filter unneeded runs in any computationally expensive regime. Traditional methods such as the Fischer discriminant analysis and decision trees can attempt to predict whether a sounding will be properly processed. However, this work sought to detect a subsection of the dimensional space that can be simply filtered out to eliminate unwanted runs. LDAs (linear discriminant analyses) and other systems examine the entire data and judge a "best fit," giving equal weight to complex and problematic regions as well as simple, clear-cut regions. In this implementation, a genetic space of "left" and "right" thresholds outside of which all data are rejected was defined. These left/right pairs are created for each of the 50 input dimensions. A genetic algorithm then runs through countless potential filter settings using a JPL computer cluster, optimizing the tossed-out data s yield (proper vs. improper run removal) and number of points tossed. This solution is robust to an arbitrary decision boundary within the data and avoids the global optimization problem of whole-dataset fitting using LDA or decision trees. It filters out runs that would not have produced useful CO2 values to save needless computation. This would be an algorithmic preprocessing improvement to any computationally expensive system.
Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems
Technology Transfer Automated Retrieval System (TEKTRAN)
Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...
Robust visual tracking via adaptive kernelized correlation filter
NASA Astrophysics Data System (ADS)
Wang, Bo; Wang, Desheng; Liao, Qingmin
2016-10-01
Correlation filter based trackers have proved to be very efficient and robust in object tracking with a notable performance competitive with state-of-art trackers. In this paper, we propose a novel object tracking method named Adaptive Kernelized Correlation Filter (AKCF) via incorporating Kernelized Correlation Filter (KCF) with Structured Output Support Vector Machines (SOSVM) learning method in a collaborative and adaptive way, which can effectively handle severe object appearance changes with low computational cost. AKCF works by dynamically adjusting the learning rate of KCF and reversely verifies the intermediate tracking result by adopting online SOSVM classifier. Meanwhile, we bring Color Names in this formulation to effectively boost the performance owing to its rich feature information encoded. Experimental results on several challenging benchmark datasets reveal that our approach outperforms numerous state-of-art trackers.
Neural Network Aided Adaptive Extended Kalman Filtering Approach for DGPS Positioning
NASA Astrophysics Data System (ADS)
Jwo, Dah-Jing; Huang, Hung-Chih
2004-09-01
The extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1993-03-01
Path planning has to be fast to support real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To alleviate this problem, we present a learning algorithm that uses past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support faster planning. The algorithm is suitable for both stationary and incrementally-changing environments. To analyze our algorithm, we use a previously developed stochastic model that quantifies experience utility. Using this model, we characterize the situations in which the adaptive planner is useful, and provide quantitative bounds to predict its behavior. The results are demonstrated with problems in manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied to task planning or other planning domains in which experience is useful.
Adaptive Trajectory Prediction Algorithm for Climbing Flights
NASA Technical Reports Server (NTRS)
Schultz, Charles Alexander; Thipphavong, David P.; Erzberger, Heinz
2012-01-01
Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential operational benefits of some advanced features for NextGen. The algorithm described in this paper improves climb trajectory prediction accuracy by adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and airspeed measurements derived from position data to dynamically adjust the aircraft weight modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is able to adapt to within 3 percent of the actual gross weight within two minutes of the initial adaptation. The root-mean-square of altitude errors for five-minute predictions was reduced by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in missed alerts and a 10 percent reduction in false alerts. In a simulation with climb speed capture intent and weight uncertainty, the algorithm improved climb trajectory prediction accuracy by up to 30 percent and conflict detection performance, reducing missed and false alerts by up to 10 percent.
Deferred discrimination algorithm (nibbling) for target filter management
NASA Astrophysics Data System (ADS)
Caulfield, H. John; Johnson, John L.
1999-07-01
A new method of classifying objects is presented. Rather than trying to form the classifier in one step or in one training algorithm, it is done in a series of small steps, or nibbles. This leads to an efficient and versatile system that is trained in series with single one-shot examples but applied in parallel, is implemented with single layer perceptrons, yet maintains its fully sequential hierarchical structure. Based on the nibbling algorithm, a basic new method of target reference filter management is described.
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2016-07-01
The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.
Selected annotated bibliographies for adaptive filtering of digital image data
Mayers, Margaret; Wood, Lynnette
1988-01-01
Digital spatial filtering is an important tool both for enhancing the information content of satellite image data and for implementing cosmetic effects which make the imagery more interpretable and appealing to the eye. Spatial filtering is a context-dependent operation that alters the gray level of a pixel by computing a weighted average formed from the gray level values of other pixels in the immediate vicinity.Traditional spatial filtering involves passing a particular filter or set of filters over an entire image. This assumes that the filter parameter values are appropriate for the entire image, which in turn is based on the assumption that the statistics of the image are constant over the image. However, the statistics of an image may vary widely over the image, requiring an adaptive or "smart" filter whose parameters change as a function of the local statistical properties of the image. Then a pixel would be averaged only with more typical members of the same population. This annotated bibliography cites some of the work done in the area of adaptive filtering. The methods usually fall into two categories, (a) those that segment the image into subregions, each assumed to have stationary statistics, and use a different filter on each subregion, and (b) those that use a two-dimensional "sliding window" to continuously estimate the filter either the spatial or frequency domain, or may utilize both domains. They may be used to deal with images degraded by space variant noise, to suppress undesirable local radiometric statistics while enforcing desirable (user-defined) statistics, to treat problems where space-variant point spread functions are involved, to segment images into regions of constant value for classification, or to "tune" images in order to remove (nonstationary) variations in illumination, noise, contrast, shadows, or haze.Since adpative filtering, like nonadaptive filtering, is used in image processing to accomplish various goals, this bibliography
A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow
NASA Astrophysics Data System (ADS)
Yu, Lei; Xia, Mingliang; Xuan, Li
2013-10-01
The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.
Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming
NASA Astrophysics Data System (ADS)
Chang, John
Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic
Adaptive nonlocal means filtering based on local noise level for CT denoising
Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.
2014-01-15
Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the
Object tracking under nonuniform illumination with adaptive correlation filtering
NASA Astrophysics Data System (ADS)
Picos, Kenia; Díaz-Ramírez, Víctor H.; Kober, Vitaly
2013-09-01
A real-time system for illumination-invariant object tracking is proposed. The system is able to estimate at high-rate the position of a moving target in an input scene when is corrupted by the presence of a high cluttering background and nonuniform illumination. The position of the target is estimated with the help of a filter bank of space-variant correlation filters. The filters in the bank, adapt their parameters according to the local statistical parameters of the observed scene in a small region centered at coordinates of a predicted position for the target in each frame. The prediction is carried out by exploiting information of present and past frames, and by using a dynamic motion model of the target in a two-dimensional plane. Computer simulation results obtained with the proposed system are presented and discussed in terms of tracking accuracy, computational complexity, and tolerance to nonuniform illumination.
Kalman filtering to suppress spurious signals in adaptive optics control.
Poyneer, Lisa A; Véran, Jean-Pierre
2010-11-01
In many scenarios, an adaptive optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common-path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Kalman filtering to suppress spurious signals in Adaptive Optics control
Poyneer, L; Veran, J P
2010-03-29
In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Adaptive gain and filtering circuit for a sound reproduction system
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)
1998-01-01
Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.
Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images.
Xu, Xiaoyin; Miller, Eric L; Chen, Dongbin; Sarhadi, Mansoor
2004-02-01
In this paper, we present an adaptive two-pass rank order filter to remove impulse noise in highly corrupted images. When the noise ratio is high, rank order filters, such as the median filter for example, can produce unsatisfactory results. Better results can be obtained by applying the filter twice, which we call two-pass filtering. To further improve the performance, we develop an adaptive two-pass rank order filter. Between the passes of filtering, an adaptive process is used to detect irregularities in the spatial distribution of the estimated impulse noise. The adaptive process then selectively replaces some pixels changed by the first pass of filtering with their original observed pixel values. These pixels are then kept unchanged during the second filtering. In combination, the adaptive process and the second filter eliminate more impulse noise and restore some pixels that are mistakenly altered by the first filtering. As a final result, the reconstructed image maintains a higher degree of fidelity and has a smaller amount of noise. The idea of adaptive two-pass processing can be applied to many rank order filters, such as a center-weighted median filter (CWMF), adaptive CWMF, lower-upper-middle filter, and soft-decision rank-order-mean filter. Results from computer simulations are used to demonstrate the performance of this type of adaptation using a number of basic rank order filters.
Parameter testing for lattice filter based adaptive modal control systems
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Williams, J. P.; Montgomery, R. C.
1983-01-01
For Large Space Structures (LSS), an adaptive control system is highly desirable. The present investigation is concerned with an 'indirect' adaptive control scheme wherein the system order, mode shapes, and modal amplitudes are estimated on-line using an identification scheme based on recursive, least-squares, lattice filters. Using the identified model parameters, a modal control law based on a pole-placement scheme with the objective of vibration suppression is employed. A method is presented for closed loop adaptive control of a flexible free-free beam. The adaptive control scheme consists of a two stage identification scheme working in series and a modal pole placement control scheme. The main conclusion from the current study is that the identified parameters cannot be directly used for controller design purposes.
Adaptive-filter models of the cerebellum: computational analysis.
Dean, Paul; Porrill, John
2008-01-01
Many current models of the cerebellar cortical microcircuit are equivalent to an adaptive filter using the covariance learning rule. The adaptive filter is a development of the original Marr-Albus framework that deals naturally with continuous time-varying signals, thus addressing the issue of 'timing' in cerebellar function, and it can be connected in a variety of ways to other parts of the system, consistent with the microzonal organization of cerebellar cortex. However, its computational capacities are not well understood. Here we summarise the results of recent work that has focused on two of its intrinsic properties. First, an adaptive filter seeks to decorrelate its (mossy fibre) inputs from a (climbing fibre) teaching signal. This procedure can be used both for sensory processing, e.g. removal of interference from sensory signals, and for learning accurate motor commands, by decorrelating an efference copy of those commands from a sensory signal of inaccuracy. As a model of the cerebellum the adaptive filter thus forms a natural link between events at the cellular level, such as forms of synaptic plasticity and the learning rules they embody, and intelligent behaviour at the system level. Secondly, it has been shown that the covariance learning rule enables the filter to handle input and intrinsic noise optimally. Such optimality may underlie the recently described role of the cerebellum in producing accurate smooth pursuit eye movements in the face of sensory noise. Moreover, it has the consequence of driving most input weights to very small values, consistent with experimental data that many parallel-fibre synapses are normally silent. The effectiveness of silent synapses can only be altered by LTP, so learning tasks depending on a reduction of Purkinje cell firing require the synapses to be embedded in a second, inhibitory pathway from parallel fibre to Purkinje cell. This pathway and the appropriate climbing-fibre related plasticity have been described
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
A novel adaptive noise filtering method for SAR images
NASA Astrophysics Data System (ADS)
Li, Weibin; He, Mingyi
2009-08-01
In the most application situation, signal or image always is corrupted by additive noise. As a result there are mass methods to remove the additive noise while few approaches can work well for the multiplicative noise. The paper presents an improved MAP-based filter for multiplicative noise by adaptive window denoising technique. A Gamma noise models is discussed and a preprocessing technique to differential the matured and un-matured pixel is applied to get accurate estimate for Equivalent Number of Looks. Also the adaptive local window growth and 3 different denoise strategies are applied to smooth noise while keep its subtle information according to its local statistics feature. The simulation results show that the performance is better than existing filter. Several image experiments demonstrate its theoretical performance.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.
Chi-squared smoothed adaptive particle-filtering based prognosis
NASA Astrophysics Data System (ADS)
Ley, Christopher P.; Orchard, Marcos E.
2017-01-01
This paper presents a novel form of selecting the likelihood function of the standard sequential importance sampling/re-sampling particle filter (SIR-PF) with a combination of sliding window smoothing and chi-square statistic weighting, so as to: (a) increase the rate of convergence of a flexible state model with artificial evolution for online parameter learning (b) improve the performance of a particle-filter based prognosis algorithm. This is applied and tested with real data from oil total base number (TBN) measurements from three haul trucks. The oil data has high measurement uncertainty and an unknown phenomenological state model. Performance of the proposed algorithm is benchmarked against the standard form of SIR-PF estimation which utilises the Normal (Gaussian) likelihood function. Both implementations utilise the same particle filter based prognosis algorithm so as to provide a common comparison. A sensitivity analysis is also performed to further explore the effects of the combination of sliding window smoothing and chi-square statistic weighting to the SIR-PF.
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Model Adaptation for Prognostics in a Particle Filtering Framework
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, Kai Frank
2011-01-01
One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.
A Kalman filter approach to adaptive estimation of multispectral signatures
NASA Technical Reports Server (NTRS)
Crane, R. B.
1973-01-01
The signatures of remote sensing data from agricultural crops exhibit significant non-stationarity, so that the performance of fixed parameter classifiers degenerates with time and distance from the initial training data. A class of adaptive decision-directed classifiers are being developed, based on Kalman filter theory. Limited results to date on two data sets indicate approximately a 25 to 40% reduction in rates of misclassification.
Adaptively wavelet-based image denoising algorithm with edge preserving
NASA Astrophysics Data System (ADS)
Tan, Yihua; Tian, Jinwen; Liu, Jian
2006-02-01
A new wavelet-based image denoising algorithm, which exploits the edge information hidden in the corrupted image, is presented. Firstly, a canny-like edge detector identifies the edges in each subband. Secondly, multiplying the wavelet coefficients in neighboring scales is implemented to suppress the noise while magnifying the edge information, and the result is utilized to exclude the fake edges. The isolated edge pixel is also identified as noise. Unlike the thresholding method, after that we use local window filter in the wavelet domain to remove noise in which the variance estimation is elaborated to utilize the edge information. This method is adaptive to local image details, and can achieve better performance than the methods of state of the art.
Lepine, Nicholas N; Tajima, Takuro; Ogasawara, Takayuki; Kasahara, Ryoichi; Koizumi, Hiroshi; Lepine, Nicholas N; Tajima, Takuro; Ogasawara, Takayuki; Kasahara, Ryoichi; Koizumi, Hiroshi; Koizumi, Hiroshi; Ogasawara, Takayuki; Tajima, Takuro; Kasahara, Ryoichi; Lepine, Nicholas N
2016-08-01
An adaptive Kalman filter-based fusion algorithm capable of estimating respiration rate for unobtrusive respiratory monitoring is proposed. Using both signal characteristics and a priori information, the Kalman filter is adaptively optimized to improve accuracy. Furthermore, the system is able to combine the respiration-related signals extracted from a textile ECG sensor and an accelerometer to create a single robust measurement. We measured derived respiratory rates and, when compared to a reference, found root-mean-square error of 2.11 breaths-per-minute (BrPM) while lying down, 2.30 BrPM while sitting, 5.97 BrPM while walking, and 5.98 BrPM while running. These results demonstrate that the proposed system is applicable to unobtrusive monitoring for various applications.
Image super-resolution via adaptive filtering and regularization
NASA Astrophysics Data System (ADS)
Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming
2014-11-01
Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Singh, R.; Verma, H. K.
2013-12-01
This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.
Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kang, Bryan H.
2004-01-01
This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.
Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI
NASA Astrophysics Data System (ADS)
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.
2017-04-01
introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved
NASA Astrophysics Data System (ADS)
Piretzidis, Dimitrios; Sideris, Michael G.
2017-03-01
Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be
Optimization of an adaptive nonlinear filter for the analysis of nystagmus.
Engelken, E J; Stevens, K W; Enderle, J D
1991-01-01
An adaptive nonlinear digital filter has been designed for the analysis of an eye-movement signal called nystagmus. Nystagmus is a bi-phasic signal consisting of a sequence of tracking eye movements called "slow-phase" interspersed with brief, high-velocity refixation movements called "fast-phase." The objective of the analysis is to separate the nystagmus signal into its fast- and slow-phase components. Specifically, the goal is to produce an evenly sampled estimate of slow-phase velocity (SPV) and an estimate of the peak fast-phase velocity. Classically this has been done using pattern recognition methods that exploit the fact that the fast-phase is a relatively short duration, high-velocity movement compared to the slow-phase. Unfortunately, these velocity and duration differences do not reliably separate the slow- and fast-phases under all conditions, especially when the signal is noisy. We have designed and built an adaptive nonlinear digital filter that easily outperforms the more complex pattern recognition algorithms. This new filter, called an Adaptive Asymmetrically Trimmed-Mean (AATM) filter, works under the assumption that, on the average, the eyes spend more time in slow-phase than in fast-phase. Thus, in any given data segment, most of the data samples are slow-phase samples. By analyzing the amplitude distribution of the data samples in the segment we can determine which of these samples are slow-phase. We used computer generated nystagmus signals contaminated with 3 levels of noise to evaluate the filter. The filter parameters were then optimized using Monte Carlo procedures producing an extremely robust analysis method.
Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.
Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent
2015-12-01
In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.
Switched Band-Pass Filters for Adaptive Transceivers
NASA Technical Reports Server (NTRS)
Wang, Ray
2007-01-01
Switched band-pass filters are key components of proposed adaptive, software- defined radio transceivers that would be parts of envisioned digital-data-communication networks that would enable real-time acquisition and monitoring of data from geographically distributed sensors. Examples of sensors to be connected to such networks include security cameras, radio-frequency identification units, and geolocation units based on the Global Positioning System. Through suitable software configuration and without changing hardware, these transceivers could be made to operate according to any of a number of complex wireless-communication standards that could be characterized by diverse modulation schemes, bandwidths, and data-handling protocols. The adaptive transceivers would include field-programmable gate arrays (FPGAs) and digital signal-processing hardware. In the receiving path of a transceiver, the incoming signal would be amplified by a low-noise amplifier (LNA). The output spectrum of the LNA would be processed by a band-pass filter operating in the frequency range between 900 MHz and 2.4 GHz. Then a down-converter would translate the signal to a lower frequency range to facilitate analog-to-digital conversion, which would be followed by baseband processing by one or more FPGAs. In the transmitting path, a digital stream would first be converted to an analog signal, which would then be up-converted to a selected frequency band before being applied to a transmitting power amplifier. The aforementioned band-pass filter in the receiving path would be a combination of resonant inductor-and-capacitor filters and switched band-pass filters. The overall combination would implement a switch function designed mathematically to exhibit desired frequency responses and to switch the signal in each frequency band to an analog-to-digital converter appropriate for that band to produce a digital intermediate-frequency signal for digital signal processing.
Adaptive RED algorithm based on minority game
NASA Astrophysics Data System (ADS)
Wei, Jiaolong; Lei, Ling; Qian, Jingjing
2007-11-01
With more and more applications appearing and the technology developing in the Internet, only relying on terminal system can not satisfy the complicated demand of QoS network. Router mechanisms must be participated into protecting responsive flows from the non-responsive. Routers mainly use active queue management mechanism (AQM) to avoid congestion. In the point of interaction between the routers, the paper applies minority game to describe the interaction of the users and observes the affection on the length of average queue. The parameters α, β of ARED being hard to confirm, adaptive RED based on minority game can depict the interactions of main body and amend the parameter α, β of ARED to the best. Adaptive RED based on minority game optimizes ARED and realizes the smoothness of average queue length. At the same time, this paper extends the network simulator plat - NS by adding new elements. Simulation has been implemented and the results show that new algorithm can reach the anticipative objects.
A novel algorithm for real-time adaptive signal detection and identification
Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.
1998-04-01
This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem
NASA Astrophysics Data System (ADS)
Man, J.; Li, W.; Zeng, L.; Wu, L.
2015-12-01
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.
High performance 3D adaptive filtering for DSP based portable medical imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.
Improving the response of accelerometers for automotive applications by using LMS adaptive filters.
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo
2010-01-01
In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s(2)) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory.
Adaptive filtering of Echelle spectra of distant Quasars
NASA Technical Reports Server (NTRS)
Priebe, A.; Liebscher, D.-E.; Lorenz, H.; Richter, G.-M.
1992-01-01
The study of the Ly alpha - forest of distant (approximately greater than 3) Quasars is an important tool in obtaining a more detailed picture of the distribution of matter along the line of sight and thus of the general distribution of matter in the Universe and is therefore of important cosmological significance. Obviously, this is one of the tasks where spectral resolution plays an important role. The spectra used were obtained with the EFOSC at the ESO 3.6m telescope. Applying for the data reduction the standard Echelle procedure, as it is implemented for instance in the MIDAS-package, one uses stationary filters (e.g. median) for noise and cosmic particle event reduction in the 2-dimensional Echelle image. These filters are useful if the spatial spectrum of the noise reaches essentially higher frequencies then the highest resolution features in the image. Otherwise the resolution in the data will be degraded and the spectral lines smoothed. However, in the Echelle spectra the highest resolution is already in the range of one or a few pixels and therefore stationary filtering means always a loss of resolution. An Echelle reduction procedure on the basis of a space variable filter described which recognizes the local resolution in the presence of noise and adapts to it is developed. It was shown that this technique leads to an improvement in resolution by a factor of 2 with respect to standard procedures.
Hongda Wang; Chiu-Sing Choy
2016-08-01
The ability of correlation integral for automatic seizure detection using scalp EEG data has been re-examined in this paper. To facilitate the detection performance and overcome the shortcoming of correlation integral, nonlinear adaptive denoising and Kalman filter have been adopted for pre-processing and post-processing. The three-stage algorithm has achieved 84.6% sensitivity and 0.087/h false detection rate, which are comparable to many machine learning based methods, but at much lower computational cost. Since this algorithm is tested with long-term scalp EEG, it has the potential to achieve higher performance with intracranial EEG. The clinical value of this algorithm includes providing a pre-judgement to assist the doctor's diagnosis procedure and acting as a reliable warning system in a wearable device for epilepsy patients.
Zhu, Xinjun; Chen, Zhanqing; Tang, Chen; Mi, Qinghua; Yan, Xiusheng
2013-03-20
In this paper, we are concerned with denoising in experimentally obtained electronic speckle pattern interferometry (ESPI) speckle fringe patterns with poor quality. We extend the application of two existing oriented partial differential equation (PDE) filters, including the second-order single oriented PDE filter and the double oriented PDE filter, to two experimentally obtained ESPI speckle fringe patterns with very poor quality, and compare them with other efficient filtering methods, including the adaptive weighted filter, the improved nonlinear complex diffusion PDE, and the windowed Fourier transform method. All of the five filters have been illustrated to be efficient denoising methods through previous comparative analyses in published papers. The experimental results have demonstrated that the two oriented PDE models are applicable to low-quality ESPI speckle fringe patterns. Then for solving the main shortcoming of the two oriented PDE models, we develop the numerically fast algorithms based on Gauss-Seidel strategy for the two oriented PDE models. The proposed numerical algorithms are capable of accelerating the convergence greatly, and perform significantly better in terms of computational efficiency. Our numerically fast algorithms are extended automatically to some other PDE filtering models.
Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.
Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing
2011-01-01
In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.
Image denoising using a directional adaptive diffusion filter
NASA Astrophysics Data System (ADS)
Zhao, Cuifang; Shi, Caicheng; He, Peikun
2006-11-01
Partial differential equations (PDEs) are well-known due to their good processing results which it can not only smooth the noise but also preserve the edges. But the shortcomings of these processes came to being noticed by people. In some sense, PDE filter is called "cartoon model" as it produces an approximation of the input image, use the same diffusion model and parameters to process noise and signal because it can not differentiate them, therefore, the image is naturally modified toward piecewise constant functions. A new method called a directional adaptive diffusion filter is proposed in the paper, which combines PDE mode with wavelet transform. The undecimated discrete wavelet transform (UDWT) is carried out to get different frequency bands which have obviously directional selectivity and more redundancy details. Experimental results show that the proposed method provides a performance better to preserve textures, small details and global information.
Fast Source Camera Identification Using Content Adaptive Guided Image Filter.
Zeng, Hui; Kang, Xiangui
2016-03-01
Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy.
An Adaptive Multipath Mitigation Filter for GNSS Applications
NASA Astrophysics Data System (ADS)
Chang, Chung-Liang; Juang, Jyh-Ching
2008-12-01
Global navigation satellite system (GNSS) is designed to serve both civilian and military applications. However, the GNSS performance suffers from several errors, such as ionosphere delay, troposphere delay, ephemeris error, and receiver noise and multipath. Among these errors, the multipath is one of the most unpredictable error sources in high-accuracy navigation. This paper applies a modified adaptive filter to reduce code and carrier multipath errors in GPS. The filter employs a tap-delay line with an Adaline network to estimate the direction and the delayed-signal parameters. Then, the multipath effect is mitigated by subtracting the estimated multipath effects from the processed correlation function. The hardware complexity of the method is also compared with other existing methods. Simulation results show that the proposed method using field data has a significant reduction in multipath error especially in short-delay multipath scenarios.
Real-time scale-adaptive correlation filters tracker with depth information to handle occlusion
NASA Astrophysics Data System (ADS)
Pi, Jiatian; Gu, Yuzhang; Hu, Keli; Cheng, Xiaoliu; Zhan, Yunlong; Wang, Yingguan
2016-07-01
In visual object tracking, occlusions significantly undermine the performance of tracking algorithms. RGB-D cameras, such as Microsoft Kinect or the related PrimeSense camera, are widely available to consumers. Great attention has been focused on exploiting depth information for object tracking in recent years. We propose an algorithm that improves the existing correlation filter-based tracker for scale-adaptive tracking. Moreover, we utilize depth information provided by the Kinect camera to handle various types of occlusions. First, the optimal location of the target is obtained by the conventional kernelized correlation filter tracker. Then, we make use of the discriminative correlation filter for scale estimation as an independent part. At last, to further improve the tracking performance under occlusions, we present a simple yet effective occlusion handling mechanism to detect occlusion and recovery. In this mechanism, cluster analysis and object segmentation by K-means method have been applied to depth data. Numerous experiments on Princeton RGB-D tracking dataset demonstrate that the proposed algorithm outperforms several state-of-the-art trackers by successfully dealing with occlusions.
Subotić, Miško; Šarić, Zoran; Jovičić, Slobodan T
2012-03-01
Transient otoacoustic emission (TEOAE) is a method widely used in clinical practice for assessment of hearing quality. The main problem in TEOAE detection is its much lower level than the level of environmental and biological noise. While the environmental noise level can be controlled, the biological noise can be only reduced by appropriate signal processing. This paper presents a new two-probe preprocessing TEOAE system for suppression of the biological noise by adaptive filtering. The system records biological noises in both ears and applies a specific adaptive filtering approach for suppression of biological noise in the ear canal with TEOAE. The adaptive filtering approach includes robust sign error LMS algorithm, stimuli response summation according to the derived non-linear response (DNLR) technique, subtraction of the estimated TEOAE signal and residual noise suppression. The proposed TEOAE detection system is tested by three quality measures: signal-to-noise ratio (S/N), reproducibility of TEOAE, and measurement time. The maximal TEOAE detection improvement is dependent on the coherence function between biological noise in left and right ears. The experimental results show maximal improvement of 7 dB in S/N, improvement in reproducibility near 40% and reduction in duration of TEOAE measurement of over 30%.
NASA Astrophysics Data System (ADS)
Bordbar, Behzad; Farwell, Nathan H.; Vorontsov, Mikhail A.
2016-09-01
A novel scintillation resistant wavefront sensor based on a densely packed array of classical Zernike filters, referred to as the multi-aperture Zernike wavefront sensor (MAZ-WFS), is introduced and analyzed through numerical simulations. Wavefront phase reconstruction in the MAZ-WFS is performed using iterative algorithms that are optimized for phase aberration sensing in severe atmospheric turbulence conditions. The results demonstrate the potential of the MAZ-WFS for high-resolution retrieval of turbulence-induced phase aberrations in strong scintillation conditions for atmospheric sensing and adaptive optics applications.
SOGI-FLL Based Adaptive Filter for DSTATCOM Under Variable Supply Frequency
NASA Astrophysics Data System (ADS)
Puranik, Vishal; Arya, Sabha Raj
2016-12-01
This paper presents an adaptive filter based on second order generalized integrator-frequency locked loop (SOGI-FLL) for distribution static compensator (DSTATCOM) operating under variable supply frequency with nonlinear load. It is observed that under variable supply frequency, the FLL provides an excellent frequency tracking performance. Necessary compensation can be provided by DSTATCOM at any frequency with the help of SOGI-FLL. The MATLAB simulink model of DSTATCOM is developed with SOGI-FLL based control algorithm and rectifier based nonlinear load. This three wire system is simulated in power factor correction and zero voltage regulation mode under variable supply frequency.
Attitude determination using an adaptive multiple model filtering Scheme
NASA Technical Reports Server (NTRS)
Lam, Quang; Ray, Surendra N.
1995-01-01
Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown
Jeong, Jinsoo
2011-01-01
This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.
NASA Astrophysics Data System (ADS)
Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Fei
2016-04-01
A time-domain filtered-x Newton narrowband algorithm (the Fx-Newton algorithm) is proposed to address three major problems in active isolation of machinery vibration: multiple narrowband components, MIMO coupling, and amplitude and frequency fluctuations. In this algorithm, narrowband components are extracted by narrowband-pass filters (NBPF) and independently controlled by multi-controllers, and fast convergence of the control algorithm is achieved by inverse secondary-path filtering of the extracted sinusoidal reference signal and its orthogonal component using L×L numbers of 2nd-order filters in the time domain. Controller adapting and control signal generation are also implemented in the time domain, to ensure good real-time performance. The phase shift caused by narrowband filter is compensated online to improve the robustness of control system to frequency fluctuations. A double-reference Fx-Newton algorithm is also proposed to control double sinusoids in the same frequency band, under the precondition of acquiring two independent reference signals. Experiments are conducted with an MIMO single-deck vibration isolation system on which a 200 kW ship diesel generator is mounted, and the algorithms are tested under the vibration alternately excited by the diesel generator and inertial shakers. The results of control over sinusoidal vibration excited by inertial shakers suggest that the Fx-Newton algorithm with NBPF have much faster convergence rate and better attenuation effect than the Fx-LMS algorithm. For swept, frequency-jumping, double, double frequency-swept and double frequency-jumping sinusoidal vibration, and multiple high-level harmonics in broadband vibration excited by the diesel generator, the proposed algorithms also demonstrate large vibration suppression at fast convergence rate, and good robustness to vibration with frequency fluctuations.
Zhu, Wei; Wang, Wei; Yuan, Gannan
2016-06-01
In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).
Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.
Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui
2017-01-01
To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.
Independent motion detection with a rival penalized adaptive particle filter
NASA Astrophysics Data System (ADS)
Becker, Stefan; Hübner, Wolfgang; Arens, Michael
2014-10-01
Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic
Adaptive de-blocking filter for low bit rate applications
NASA Astrophysics Data System (ADS)
Jin, Xin; Zhu, Guangxi
2006-01-01
In block-based video compression technology, blocking artifacts are obvious because of the luminance and chrominance discontinuities which are caused by block-based discrete cosine transform (DCT) and motion compensation. As a kind of solution, an in-loop filter has been successfully used in H.264 adapting to quantization parameter and video content. In this paper, blocking artifacts distribution properties are analyzed carefully to reflect the blocking effect more accurately in the low bit rate applications. Two important parameters, named blocking severity and pixel variation, are defined to describe the boundary strength and the gradient of the samples across the edge respectively. Through series of statistical data retrieval and analysis for these parameters using multiple representative video sequences, a novel blocking artifacts distribution model is concluded. Based on this distribution model, an improved filter is proposed to H.264 with novel strength determination rule and different alpha model. Comparing with H.264 anchor results, the proposed de-blocking filter shows better performance especially in subjective aspect, which could be widely used in low bit rate applications.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.
Residual mode filters and adaptive control in large space structures
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1989-01-01
One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.
Zhang, Yin; Chase, Steve M
2013-01-01
Neural prosthetics are a promising technology for alleviating paralysis by actuating devices directly from the intention to move. Typical implementations of these devices require a calibration session to define decoding parameters that map recorded neural activity into movement of the device. However, a major factor limiting the clinical deployment of this technology is stability: with fixed decoding parameters, control of the prosthetic device has been shown to degrade over time. Here we apply a dual estimation procedure to adaptively capture changes in decoding parameters. In simulation, we find that our stabilized dual Kalman filter can run autonomously for hundreds of thousands of trials with little change in performance. Further, when we apply our algorithm off-line to estimate arm trajectories from neural data recorded over five consecutive days, we find that it outperforms a static Kalman filter, even when it is re-calibrated at the beginning of each day.
Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo
NASA Astrophysics Data System (ADS)
Garcia, Alejandro L.; Bell, John B.; Crutchfield, William Y.; Alder, Berni J.
1999-09-01
Adaptive mesh and algorithm refinement (AMAR) embeds a particle method within a continuum method at the finest level of an adaptive mesh refinement (AMR) hierarchy. The coupling between the particle region and the overlaying continuum grid is algorithmically equivalent to that between the fine and coarse levels of AMR. Direct simulation Monte Carlo (DSMC) is used as the particle algorithm embedded within a Godunov-type compressible Navier-Stokes solver. Several examples are presented and compared with purely continuum calculations.
Evaluating the adaptive-filter model of the cerebellum.
Dean, Paul; Porrill, John
2011-07-15
The adaptive-filter model of the cerebellar microcircuit is in widespread use, combining as it does an explanation of key microcircuit features with well-specified computational power. Here we consider two methods for its evaluation. One is to test its predictions concerning relations between cerebellar inputs and outputs. Where the relevant experimental data are available, e.g. for the floccular role in image stabilization, the predictions appear to be upheld. However, for the majority of cerebellar microzones these data have yet to be obtained. The second method is to test model predictions about details of the microcircuit. We focus on features apparently incompatible with the model, in particular non-linear patterns in Purkinje cell simple-spike firing. Analysis of these patterns suggests the following three conclusions. (i) It is important to establish whether they can be observed during task-related behaviour. (ii) Highly non-linear models based on these patterns are unlikely to be universal, because they would be incompatible with the (approximately) linear nature of floccular function. (iii) The control tasks for which these models are computationally suited need to be identified. At present, therefore, the adaptive filter remains a candidate model of at least some cerebellar microzones, and its evaluation suggests promising lines for future enquiry.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Adaptive Estimation and Parameter Identification Using Multiple Model Estimation Algorithm
1976-06-23
Point Continuous Linear Smoothing ," Proc. Joint Automatic Control Conf., June 1967, pp. 249-257. [26] J. S. Meditch , "On Optimal Linear Smoothing ...Theory," Infor- mation and Control, 10, 598-615 (1967). [27] J. S. Meditch , "A Successive Approximation Procedure for Nonlinear Data Smoothing ," Proc...algorithm Kalman filter algorithms multiple model smoothing algorithm 70. ABSTRACT (Coensnia• en rever.e side if eceossuy Adidonilty by block nu.wbe
Controller-structure interaction compensation using adaptive residual mode filters
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1990-01-01
It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.
Performance study of LMS based adaptive algorithms for unknown system identification
NASA Astrophysics Data System (ADS)
Javed, Shazia; Ahmad, Noor Atinah
2014-07-01
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Performance study of LMS based adaptive algorithms for unknown system identification
Javed, Shazia; Ahmad, Noor Atinah
2014-07-10
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Suppression of impulse noise in medical images with the use of Fuzzy Adaptive Median Filter.
Toprak, Abdullah; Güler, Inan
2006-12-01
A new rule based fuzzy filter for removal of highly impulse noise, called Rule Based Fuzzy Adaptive Median (RBFAM) Filter, is aimed to be discussed in this paper. The RBFAM filter is an improved version of Adaptive Median Filter (AMF) and is presented in the aim of noise reduction of images corrupted with additive impulse noise. The filter has three stages. Two of those stages are fuzzy rule based and last stage is based on standard median and adaptive median filter. The proposed filter can preserve image details better then AMF while suppressing additive salt & pepper or impulse type noise. In this paper, we placed our preference on bell-shaped membership function instead of triangular membership function in order to observe better results. Experimental results indicates that the proposed filter is improvable with increased fuzzy rules to reduce more noise corrupted images and to remove salt and pepper noise in a more effective way than what AMF filter does.
Adaptive control and noise suppression by a variable-gain gradient algorithm
NASA Technical Reports Server (NTRS)
Merhav, S. J.; Mehta, R. S.
1987-01-01
An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.
Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng
2016-05-30
Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity.
Badawi, Ahmed M; Rushdi, Muhammad A
2006-01-01
This paper proposes a novel algorithm for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. We propose a nonlinear image diffusion algorithm that incorporates two local parameters of image quality, namely, scatterer density and texture-based contrast in addition to gradient, to weight the nonlinear diffusion process. The scatterer density is proposed to replace the existing traditional measures of quality of the ultrasound diffusion process such as MSE, RMSE, SNR, and PSNR. This novel diffusion filter was then implemented using back propagation neural network for fast parallel processing of volumetric images. The experimental results show that weighting the image diffusion with these parameters produces better noise reduction and produces a better edge detection quality with reasonable computational cost. The proposed filter can be used as a preprocessing phase before applying any ultrasound segmentation or active contour model processes.
Automatic nevi segmentation using adaptive mean shift filters and feature analysis
NASA Astrophysics Data System (ADS)
King, Michael A.; Lee, Tim K.; Atkins, M. Stella; McLean, David I.
2004-05-01
A novel automatic method of segmenting nevi is explained and analyzed in this paper. The first step in nevi segmentation is to iteratively apply an adaptive mean shift filter to form clusters in the image and to remove noise. The goal of this step is to remove differences in skin intensity and hairs from the image, while still preserving the shape of nevi present on the skin. Each iteration of the mean shift filter changes pixel values to be a weighted average of pixels in its neighborhood. Some new extensions to the mean shift filter are proposed to allow for better segmentation of nevi from the skin. The kernel, that describes how the pixels in its neighborhood will be averaged, is adaptive; the shape of the kernel is a function of the local histogram. After initial clustering, a simple merging of clusters is done. Finally, clusters that are local minima are found and analyzed to determine which clusters are nevi. When this algorithm was compared to an assessment by an expert dermatologist, it showed a sensitivity rate and diagnostic accuracy of over 95% on the test set, for nevi larger than 1.5mm.
Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors
de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos
2012-01-01
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559
Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J
2015-08-01
This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.
Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.
de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos
2012-01-01
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance.
Adaptive fused Kalman filter based on imaging laser radar for TAN
NASA Astrophysics Data System (ADS)
Gong, Junbin; Xu, Hongbo; Tian, Jinwen; Cheng, Hua; Zhang, Jun
2007-11-01
Terrain aided navigation (TAN) is an efficient way to periodically correct the error accumulation of INS. The imaging laser radar is an ideal imaging sensor in TAN for the low-flying aircraft and unmanned air vehicles for the high precision multi-dimensional data acquisition capability and concealable attribute. In this paper, a new framework for applying the laser radar to terrain aided navigation is put forward. Then a new adaptive fused Kalman Filter is proposed to improve the accuracy and robustness. At last, the key factors affected the algorithm are analyzed and the comparative experimentations are presented. The simulating experiments show that the proposed algorithm improves the location accuracy, and has good initial error tolerance and fine robustness. It shows that this approach is a valid solution for the application.
NASA Astrophysics Data System (ADS)
Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.
2011-12-01
The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.
A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.
Rapoport, Benjamin I; Wattanapanitch, Woradorn; Penagos, Hector L; Musallam, Sam; Andersen, Richard A; Sarpeshkar, Rahul
2009-01-01
Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat.
Adaptive Current Control Method for Hybrid Active Power Filter
NASA Astrophysics Data System (ADS)
Chau, Minh Thuyen
2016-09-01
This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.
A numerical comparison of discrete Kalman filtering algorithms - An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
An improved Kalman filter algorithm based on a modified Givens matrix triangularization technique is proposed for solving a nonstationary discrete-time linear filtering problem. The proposed U-D covariance factorization filter uses orthogonal transformation technique; measurement and time updating of the U-D factors involve separate application of Gentleman's fast square-root-free Givens rotations. Numerical stability and accuracy of the algorithm are compared with those of the conventional and stabilized Kalman filters and the Potter-Schmidt square-root filter, by applying these techniques to a realistic planetary navigation problem (orbit determination for the Saturn approach phase of the Mariner Jupiter-Saturn Mission, 1977). The new algorithm is shown to combine the numerical precision of square root filtering with the efficiency of the original Kalman algorithm.
Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition
NASA Astrophysics Data System (ADS)
Kesrarat, Darun; Patanavijit, Vorapoj
2017-02-01
In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).
Adaptive data filtering of inertial sensors with variable bandwidth.
Alam, Mushfiqul; Rohac, Jan
2015-02-02
MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing.
Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting
NASA Astrophysics Data System (ADS)
Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.
2014-12-01
Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.
Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth
Alam, Mushfiqul; Rohac, Jan
2015-01-01
MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711
An Adaptive Cauchy Differential Evolution Algorithm for Global Numerical Optimization
Choi, Tae Jong; Ahn, Chang Wook; An, Jinung
2013-01-01
Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems. PMID:23935445
An adaptive Cauchy differential evolution algorithm for global numerical optimization.
Choi, Tae Jong; Ahn, Chang Wook; An, Jinung
2013-01-01
Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems.
Implementation of FFT Algorithm using DSP TMS320F28335 for Shunt Active Power Filter
NASA Astrophysics Data System (ADS)
Patel, Pinkal Jashvantbhai; Patel, Rajesh M.; Patel, Vinod
2016-07-01
This work presents simulation, analysis and experimental verification of Fast Fourier Transform (FFT) algorithm for shunt active power filter based on three-level inverter. Different types of filters can be used for elimination of harmonics in the power system. In this work, FFT algorithm for reference current generation is discussed. FFT control algorithm is verified using PSIM simulation results with DLL block and C-code. Simulation results are compared with experimental results for FFT algorithm using DSP TMS320F28335 for shunt active power filter application.
Lu, Jun; Xie, Kan; McFarland, Dennis J
2014-07-01
Movement related potentials (MRPs) are used as features in many brain-computer interfaces (BCIs) based on electroencephalogram (EEG). MRP feature extraction is challenging since EEG is noisy and varies between subjects. Previous studies used spatial and spatio-temporal filtering methods to deal with these problems. However, they did not optimize temporal information or may have been susceptible to overfitting when training data are limited and the feature space is of high dimension. Furthermore, most of these studies manually select data windows and low-pass frequencies. We propose an adaptive spatio-temporal (AST) filtering method to model MRPs more accurately in lower dimensional space. AST automatically optimizes all parameters by employing a Gaussian kernel to construct a low-pass time-frequency filter and a linear ridge regression (LRR) algorithm to compute a spatial filter. Optimal parameters are simultaneously sought by minimizing leave-one-out cross-validation error through gradient descent. Using four BCI datasets from 12 individuals, we compare the performances of AST filter to two popular methods: the discriminant spatial pattern filter and regularized spatio-temporal filter. The results demonstrate that our AST filter can make more accurate predictions and is computationally feasible.
NASA Astrophysics Data System (ADS)
Anam, Choirul; Haryanto, Freddy; Widita, Rena; Arif, Idam
2015-09-01
New noise reduction method for reducing dose of CT scans has been proposed. The new method is expected to address the major problems in the noise reduction algorithm, i.e. the decreasing in the spatial resolution of the image. The proposed method was developed by combining adaptive Wiener filtering and edge detection algorithms. The first step, the image was filtered with a Wiener filter. Separately, edge detection operation performed on the original image using the Prewitt method. The next step, a new image was generated based on the edge detection operation. At the edge area, the image was taken from the original image, while at the non-edge area, the image was taken from the image that had been filtered with a Wiener filter. The new method was tested on a CT image of the spatial resolution phantom, which was scanned by different current-time multiplication, namely 80, 130 and 200 mAs, while other exposure factors were kept in constant conditions. The spatial resolution phantom consists of six sets of bar pattern made of plexi-glass and separated at some distance by water. The new image quality assessed from the amount of noise and the magnitude of spatial resolution. Noise was calculated by determining the standard deviation of the homogeneous regions, while the spatial resolution was assessed by observation of the area sets of the bar pattern. In addition, to evaluate the performance of this new method has also been tested on patient CT images. From the measurements, the new method can reduce the noise to an average 64.85%, with a spatial resolution does not decrease significantly. Visually, the third set bar on the image phantom (the distance between the bar 1.0 mm) can still be distinguished, as well as on the original image. Meanwhile, if the image is only processed using Wiener filter, the second set bar (the distance between the bar 1.3 mm) are distinguishable. Testing this new method to patient image, its results in relatively the same. Thus, using this
A novel color filter array and demosaicking algorithm for hexagonal grids
NASA Astrophysics Data System (ADS)
Fröhlich, Alexander; Unterweger, Andreas
2015-03-01
We propose a new color filter array for hexagonal sampling grids and a corresponding demosaicking algorithm. By exploiting properties of the human visual system in their design, we show that our proposed color filter array and its demosaicking algorithm are able to outperform the widely used Bayer pattern with state-of-the-art demosaicking algorithms in terms of both, objective and subjective image quality.
Adaptive phase aberration correction based on imperialist competitive algorithm.
Yazdani, R; Hajimahmoodzadeh, M; Fallah, H R
2014-01-01
We investigate numerically the feasibility of phase aberration correction in a wavefront sensorless adaptive optical system, based on the imperialist competitive algorithm (ICA). Considering a 61-element deformable mirror (DM) and the Strehl ratio as the cost function of ICA, this algorithm is employed to search the optimum surface profile of DM for correcting the phase aberrations in a solid-state laser system. The correction results show that ICA is a powerful correction algorithm for static or slowly changing phase aberrations in optical systems, such as solid-state lasers. The correction capability and the convergence speed of this algorithm are compared with those of the genetic algorithm (GA) and stochastic parallel gradient descent (SPGD) algorithm. The results indicate that these algorithms have almost the same correction capability. Also, ICA and GA are almost the same in convergence speed and SPGD is the fastest of these algorithms.
Fan, Qinqin; Yan, Xuefeng
2016-01-01
The performance of the differential evolution (DE) algorithm is significantly affected by the choice of mutation strategies and control parameters. Maintaining the search capability of various control parameter combinations throughout the entire evolution process is also a key issue. A self-adaptive DE algorithm with zoning evolution of control parameters and adaptive mutation strategies is proposed in this paper. In the proposed algorithm, the mutation strategies are automatically adjusted with population evolution, and the control parameters evolve in their own zoning to self-adapt and discover near optimal values autonomously. The proposed algorithm is compared with five state-of-the-art DE algorithm variants according to a set of benchmark test functions. Furthermore, seven nonparametric statistical tests are implemented to analyze the experimental results. The results indicate that the overall performance of the proposed algorithm is better than those of the five existing improved algorithms.
Comparison of adaptive algorithms for the control of tonal disturbances in mechanical systems
NASA Astrophysics Data System (ADS)
Zilletti, M.; Elliott, S. J.; Cheer, J.
2016-09-01
This paper presents a study on the performance of adaptive control algorithms designed to reduce the vibration of mechanical systems excited by a harmonic disturbance. The mechanical system consists of a mass suspended on a spring and a damper. The system is equipped with a force actuator in parallel with the suspension. The control signal driving the actuator is generated by adjusting the amplitude and phase of a sinusoidal reference signal at the same frequency as the excitation. An adaptive feedforward control algorithm is used to adapt the amplitude and phase of the control signal, to minimise the mean square velocity of the mass. Two adaptation strategies are considered in which the control signal is either updated after each period of the oscillation or at every time sample. The first strategy is traditionally used in vibration control in helicopters for example; the second strategy is normally referred to as the filtered-x least mean square algorithm and is often used to control engine noise in cars. The two adaptation strategies are compared through a parametric study, which investigates the influence of the properties of both the mechanical system and the control system on the convergence speed of the two algorithms.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
NASA Astrophysics Data System (ADS)
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas
NASA Astrophysics Data System (ADS)
Zhao, Xiaoqian; Guo, Qinghua; Su, Yanjun; Xue, Baolin
2016-07-01
Filtering of light detection and ranging (LiDAR) data into the ground and non-ground points is a fundamental step in processing raw airborne LiDAR data. This paper proposes an improved progressive triangulated irregular network (TIN) densification (IPTD) filtering algorithm that can cope with a variety of forested landscapes, particularly both topographically and environmentally complex regions. The IPTD filtering algorithm consists of three steps: (1) acquiring potential ground seed points using the morphological method; (2) obtaining accurate ground seed points; and (3) building a TIN-based model and iteratively densifying TIN. The IPTD filtering algorithm was tested in 15 forested sites with various terrains (i.e., elevation and slope) and vegetation conditions (i.e., canopy cover and tree height), and was compared with seven other commonly used filtering algorithms (including morphology-based, slope-based, and interpolation-based filtering algorithms). Results show that the IPTD achieves the highest filtering accuracy for nine of the 15 sites. In general, it outperforms the other filtering algorithms, yielding the lowest average total error of 3.15% and the highest average kappa coefficient of 89.53%.
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space
Kalathil, Shaeen; Elias, Elizabeth
2014-01-01
This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB. PMID:26644921
RSTFC: A Novel Algorithm for Spatio-Temporal Filtering and Classification of Single-Trial EEG.
Qi, Feifei; Li, Yuanqing; Wu, Wei
2015-12-01
Learning optimal spatio-temporal filters is a key to feature extraction for single-trial electroencephalogram (EEG) classification. The challenges are controlling the complexity of the learning algorithm so as to alleviate the curse of dimensionality and attaining computational efficiency to facilitate online applications, e.g., brain-computer interfaces (BCIs). To tackle these barriers, this paper presents a novel algorithm, termed regularized spatio-temporal filtering and classification (RSTFC), for single-trial EEG classification. RSTFC consists of two modules. In the feature extraction module, an l2 -regularized algorithm is developed for supervised spatio-temporal filtering of the EEG signals. Unlike the existing supervised spatio-temporal filter optimization algorithms, the developed algorithm can simultaneously optimize spatial and high-order temporal filters in an eigenvalue decomposition framework and thus be implemented highly efficiently. In the classification module, a convex optimization algorithm for sparse Fisher linear discriminant analysis is proposed for simultaneous feature selection and classification of the typically high-dimensional spatio-temporally filtered signals. The effectiveness of RSTFC is demonstrated by comparing it with several state-of-the-arts methods on three brain-computer interface (BCI) competition data sets collected from 17 subjects. Results indicate that RSTFC yields significantly higher classification accuracies than the competing methods. This paper also discusses the advantage of optimizing channel-specific temporal filters over optimizing a temporal filter common to all channels.
Classification of adaptive memetic algorithms: a comparative study.
Ong, Yew-Soon; Lim, Meng-Hiot; Zhu, Ning; Wong, Kok-Wai
2006-02-01
Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.
Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array
NASA Astrophysics Data System (ADS)
Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine
2016-10-01
In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.
Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array.
Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J; Urbas, Augustine
2016-10-10
In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed "algorithmic spectrometry". We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.
Charisis, Vasileios S; Hadjileontiadis, Leontios J
2016-01-01
A new feature extraction technique for the detection of lesions created from mucosal inflammations in Crohn’s disease, based on wireless capsule endoscopy (WCE) images processing is presented here. More specifically, a novel filtering process, namely Hybrid Adaptive Filtering (HAF), was developed for efficient extraction of lesion-related structural/textural characteristics from WCE images, by employing Genetic Algorithms to the Curvelet-based representation of images. Additionally, Differential Lacunarity (DLac) analysis was applied for feature extraction from the HAF-filtered images. The resulted scheme, namely HAF-DLac, incorporates support vector machines for robust lesion recognition performance. For the training and testing of HAF-DLac, an 800-image database was used, acquired from 13 patients who undertook WCE examinations, where the abnormal cases were grouped into mild and severe, according to the severity of the depicted lesion, for a more extensive evaluation of the performance. Experimental results, along with comparison with other related efforts, have shown that the HAF-DLac approach evidently outperforms them in the field of WCE image analysis for automated lesion detection, providing higher classification results, up to 93.8% (accuracy), 95.2% (sensitivity), 92.4% (specificity) and 92.6% (precision). The promising performance of HAF-DLac paves the way for a complete computer-aided diagnosis system that could support physicians’ clinical practice. PMID:27818583
Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array
Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine
2016-01-01
In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme. PMID:27721506
MR images restoration with the use of fuzzy filter having adaptive membership parameters.
Güler, I; Toprak, A; Demirhan, A; Karakiş, R
2008-06-01
A new fuzzy adaptive median filter is presented for the noise reduction of magnetic resonance images corrupted with heavy impulse (salt and pepper) noise. In this paper, we have proposed a Fuzzy Adaptive Median Filter with Adaptive Membership Parameters (FAMFAMP) for removing highly corrupted salt and pepper noise, with preserving image edges and details. The FAMFAMP filter is an improved version of Adaptive Median Filter (AMF) and is presented in the aim of noise reduction of images corrupted with additive impulse noise. The proposed filter can preserve image details better than AMF while suppressing additive salt and pepper or impulse type noise. In this paper, we placed our preference on bell-shaped membership function with adaptive parameters instead of triangular membership function without variable coefficients in order to observe better results.
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-01-01
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-10-23
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.
A gradient-constrained morphological filtering algorithm for airborne LiDAR
NASA Astrophysics Data System (ADS)
Li, Yong; Wu, Huayi; Xu, Hanwei; An, Ru; Xu, Jia; He, Qisheng
2013-12-01
This paper presents a novel gradient-constrained morphological filtering algorithm for bare-earth extraction from light detection and ranging (LiDAR) data. Based on the gradient feature points determined by morphological half-gradients, the potential object points are located prior to filtering. Innovative gradient-constrained morphological operations are created, which are executed only for the potential object points. Compared with the traditional morphological operations, the new operations reduce many meaningless operations for object removal and consequently decrease the possibility of losing terrain to a great extent. The applicability and reliability of this algorithm are demonstrated by evaluating the filtering performance for fifteen sample datasets in various complex scenes. The proposed algorithm is found to achieve a high level of accuracy compared with eight other filtering algorithms tested by the International Society for Photogrammetry and Remote Sensing. Moreover, the proposed algorithm has minimal error oscillation for different landscapes, which is important for quality control of digital terrain model generation.
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
An adaptive filter model of cerebellar zone C3 as a basis for safe limb control?
Dean, Paul; Anderson, Sean; Porrill, John; Jörntell, Henrik
2013-11-15
The review asks how the adaptive filter model of the cerebellum might be relevant to experimental work on zone C3, one of the most extensively studied regions of cerebellar cortex. As far as features of the cerebellar microcircuit are concerned, the model appears to fit very well with electrophysiological discoveries concerning the importance of molecular layer interneurons and their plasticity, the significance of long-term potentiation and the striking number of silent parallel fibre synapses. Regarding external connectivity and functionality, a key feature of the adaptive filter model is its use of the decorrelation algorithm, which renders it uniquely suited to problems of sensory noise cancellation. However, this capacity can be extended to the avoidance of sensory interference, by appropriate movements of, for example, the eyes in the vestibulo-ocular reflex. Avoidance becomes particularly important when painful signals are involved, and as the climbing fibre input to zone C3 is extremely responsive to nociceptive stimuli, it is proposed that one function of this zone is the avoidance of pain by, for example, adjusting movements of the body to avoid self-harm. This hypothesis appears consistent with evidence from humans and animals concerning the role of the intermediate cerebellum in classically conditioned withdrawal reflexes, but further experiments focusing on conditioned avoidance are required to test the hypothesis more stringently. The proposed architecture may also be useful for automatic self-adjusting damage avoidance in robots, an important consideration for next generation 'soft' robots designed to interact with people.
Johansson, A Torbjorn; White, Paul R
2011-08-01
This paper proposes an adaptive filter-based method for detection and frequency estimation of whistle calls, such as the calls of birds and marine mammals, which are typically analyzed in the time-frequency domain using a spectrogram. The approach taken here is based on adaptive notch filtering, which is an established technique for frequency tracking. For application to automatic whistle processing, methods for detection and improved frequency tracking through frequency crossings as well as interfering transients are developed and coupled to the frequency tracker. Background noise estimation and compensation is accomplished using order statistics and pre-whitening. Using simulated signals as well as recorded calls of marine mammals and a human whistled speech utterance, it is shown that the proposed method can detect more simultaneous whistles than two competing spectrogram-based methods while not reporting any false alarms on the example datasets. In one example, it extracts complete 1.4 and 1.8 s bottlenose dolphin whistles successfully through frequency crossings. The method performs detection and estimates frequency tracks even at high sweep rates. The algorithm is also shown to be effective on human whistled utterances.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Zheng H.
2016-05-01
This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.
The PCNN adaptive segmentation algorithm based on visual perception
NASA Astrophysics Data System (ADS)
Zhao, Yanming
To solve network adaptive parameter determination problem of the pulse coupled neural network (PCNN), and improve the image segmentation results in image segmentation. The PCNN adaptive segmentation algorithm based on visual perception of information is proposed. Based on the image information of visual perception and Gabor mathematical model of Optic nerve cells receptive field, the algorithm determines adaptively the receptive field of each pixel of the image. And determines adaptively the network parameters W, M, and β of PCNN by the Gabor mathematical model, which can overcome the problem of traditional PCNN parameter determination in the field of image segmentation. Experimental results show that the proposed algorithm can improve the region connectivity and edge regularity of segmentation image. And also show the PCNN of visual perception information for segmentation image of advantage.
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-07-16
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.
An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers
Gelb, Anne; Archibald, Richard K
2015-01-01
Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses
Adaptive Filtering Methods for Identifying Cross-Frequency Couplings in Human EEG
Van Zaen, Jérôme; Murray, Micah M.; Meuli, Reto A.; Vesin, Jean-Marc
2013-01-01
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations. PMID:23560098
Adaptive filtering methods for identifying cross-frequency couplings in human EEG.
Van Zaen, Jérôme; Murray, Micah M; Meuli, Reto A; Vesin, Jean-Marc
2013-01-01
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.
Adaptively resizing populations: Algorithm, analysis, and first results
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Smuda, Ellen
1993-01-01
Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
Zeng, Gengsheng L
2013-12-01
Iterative maximum-likelihood expectation maximization and ordered-subset expectation maximization algorithms are excellent for image reconstruction and usually provide better images than filtered backprojection (FBP). Recently, an FBP algorithm able to incorporate noise weighting during reconstruction was developed. This paper compares the performance of the noise-weighted FBP algorithm and the iterative maximum-likelihood expectation maximization algorithm with Poisson noise-corrupted emission data generated by computer simulations and a SPECT experimental study. The results show comparable performance for these 2 algorithms.
Color filter array demosaicing: an adaptive progressive interpolation based on the edge type
NASA Astrophysics Data System (ADS)
Dong, Qiqi; Liu, Zhaohui
2015-10-01
Color filter array (CFA) is one of the key points for single-sensor digital cameras to produce color images. Bayer CFA is the most commonly used pattern. In this array structure, the sampling frequency of green is two times of red or blue, which is consistent with the sensitivity of human eyes to colors. However, each sensor pixel only samples one of three primary color values. To render a full-color image, an interpolation process, commonly referred to CFA demosaicing, is required to estimate the other two missing color values at each pixel. In this paper, we explore an adaptive progressive interpolation based on the edge type algorithm. The proposed demosaicing method consists of two successive steps: an interpolation step that estimates missing color values according to various edges and a post-processing step by iterative interpolation.
Adaptive wavelet packet-based de-speckling of ultrasound images with bilateral filter.
Esakkirajan, Sankaralingam; Vimalraj, Chinna Thambi; Muhammed, Rashad; Subramanian, Ganapathi
2013-12-01
A new adaptive wavelet packet-based approach to minimize speckle noise in ultrasound images is proposed. This method combines wavelet packet thresholding with a bilateral filter. Here, the best bases after wavelet packet decomposition are selected by comparing the first singular value of all sub-bands, and the noisy coefficients are thresholded using a modified NeighShrink technique. The algorithm is tested with various ultrasound images, and the results, in terms of peak signal-to-noise ratio and mean structural similarity values, are compared with those for some well-known de-speckling techniques. The simulation results indicate that the proposed method has better potential to minimize speckle noise and retain fine details of the ultrasound image.
Adaptive update using visual models for lifting-based motion-compensated temporal filtering
NASA Astrophysics Data System (ADS)
Li, Song; Xiong, H. K.; Wu, Feng; Chen, Hong
2005-03-01
Motion compensated temporal filtering is a useful framework for fully scalable video compression schemes. However, when supposed motion models cannot represent a real motion perfectly, both the temporal high and the temporal low frequency sub-bands may contain artificial edges, which possibly lead to a decreased coding efficiency, and ghost artifacts appear in the reconstructed video sequence at lower bit rates or in case of temporal scaling. We propose a new technique that is based on utilizing visual models to mitigate ghosting artifacts in the temporal low frequency sub-bands. Specifically, we propose content adaptive update schemes where visual models are used to determine image dependent upper bounds on information to be updated. Experimental results show that the proposed algorithm can significantly improve subjective visual quality of the low-pass temporal frames and at the same time, coding performance can catch or exceed the classical update steps.
A curvature filter and PDE based non-uniformity correction algorithm
NASA Astrophysics Data System (ADS)
Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui; Yin, Shimin
2016-10-01
In this paper, a curvature filter and PDE based non-uniformity correction algorithm is proposed, the key point of this algorithm is the way to estimate FPN. We use anisotropic diffusion to smooth noise and Gaussian curvature filter to extract the details of original image. Then combine these two parts together by guided image filter and subtract the result from original image to get the crude approximation of FPN. After that, a Temporal Low Pass Filter (TLPF) is utilized to filter out random noise and get the accurate FPN. Finally, subtract the FPN from original image to achieve non-uniformity correction. The performance of this algorithm is tested with two infrared image sequences, and the experimental results show that the proposed method achieves a better non-uniformity correction performance.
NASA Technical Reports Server (NTRS)
Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.
2012-01-01
A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.
Adaptive mean filtering for noise reduction in CT polymer gel dosimetry
Hilts, Michelle; Jirasek, Andrew
2008-01-15
X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.
Image Restoration on Copper Inscription Using Nonlinear Filtering and Adaptive Threshold
NASA Astrophysics Data System (ADS)
Chairy, A.; Suprapto, Y. K.; Yuniarno, E. M.
2017-01-01
Inscription is an important document inherited by history of kingdom. Inscription made on hard stuff such as stone and copper. Therefore it is necessary digitizing documents, to keep the authenticity of the document. But the document of the historical heritage have disruption on inscription plate which be called noise. So that, it is necessary to reduce the noise in the image of the inscription, to ease the documentation of historical digital. Then, separation between the background and the writing object carved on inscription is conducted so easy to read. This research is using nonlinear filtering method to reduce the noise and adaptive threshold to separate between the background and letter inscription. Nonlinear filtering method used is median filter, harmonic mean filter and contra harmonic mean filter, whereas in the adaptive threshold using adaptive mean and adaptive median threshold. The results of this research is using measurement methods MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio) and SNR (Signal to Noise Ratio).
NASA Astrophysics Data System (ADS)
Kobayashi, Taizo; Kato, Daiki; Koga, Hiroyuki; Morimoto, Kenichi; Fukuda, Makoto; Kinoshita, Yoshiharu; Yoshida, Hiroshi; Konishi, Satoshi
This paper proposes a cooperative operation of serially connected membrane filters toward adaptive blood cell separation system in order to overcome a restriction of a single membrane filter. Serially connected membrane filters allow that downstream filters extract blood plasma from residual blood at upstream filters. Consequently, it becomes possible to adapt filtering characteristics to changing properties of blood. We focus on trans-membrane pressure difference in order to prevent hemolysis. Our strategy can be realized as a miniaturized PDMS fluidic chip. Our laboratory experiment using a prototype shows that plasma extraction efficiency is improved from 34% to 75%. Toward an integrated system, this paper also demonstrates multiple filters are successfully integrated into a PDMS fluidic chip.
Berset, Torfinn; Geng, Di; Romero, Iñaki
2012-01-01
Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption.
Wavelet speech enhancement algorithm using exponential semi-soft mask filtering.
Lee, Gihyoun; Dae Na, Sung; Seong, KiWoong; Cho, Jin-Ho; Nam Kim, Myoung
2016-09-02
In this paper, we propose a new speech enhancement algorithm based on wavelet packet decomposition and mask filtering. In the traditional mask filtering such as ideal binary mask (IBM), the basic idea is to classify speech components as target signal and non-speech components as background noises. However, speech and non-speech components cannot be well separated in target signal and background noise. Therefore, the IBM has residual noise and signal loss. To overcome this problem, the proposed algorithm used semi-soft mask filter to exponentially increase. The semi-soft mask minimizes signal loss and the exponential filter removes residual noise. We performed experiments using various types of speech and noise signals, and experimental results show that the proposed algorithm achieves better performances than the traditional other speech enhancement algorithms.
A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.
Numerical comparison of discrete Kalman filter algorithms - Orbit determination case study
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Thornton, C. L.
1976-01-01
Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.
Automatic DarkAdaptation Threshold Detection Algorithm.
G de Azevedo, Dario; Helegda, Sergio; Glock, Flavio; Russomano, Thais
2005-01-01
This paper describes an algorithm used to automatically determine the threshold sensitivity in a new dark adaptometer. The new instrument is controlled by a personal computer and can be used in the investigation of several retinal diseases. The stimulus field is delivered to the eye through the modified optics of a fundus camera. An automated light stimulus source was developed to operate together with this fundus camera. New control parameters were developed in this instrument to improve the traditional Goldmann-Weekers dark adaptometer.
A robust face recognition algorithm under varying illumination using adaptive retina modeling
NASA Astrophysics Data System (ADS)
Cheong, Yuen Kiat; Yap, Vooi Voon; Nisar, Humaira
2013-10-01
Variation in illumination has a drastic effect on the appearance of a face image. This may hinder the automatic face recognition process. This paper presents a novel approach for face recognition under varying lighting conditions. The proposed algorithm uses adaptive retina modeling based illumination normalization. In the proposed approach, retina modeling is employed along with histogram remapping following normal distribution. Retina modeling is an approach that combines two adaptive nonlinear equations and a difference of Gaussians filter. Two databases: extended Yale B database and CMU PIE database are used to verify the proposed algorithm. For face recognition Gabor Kernel Fisher Analysis method is used. Experimental results show that the recognition rate for the face images with different illumination conditions has improved by the proposed approach. Average recognition rate for Extended Yale B database is 99.16%. Whereas, the recognition rate for CMU-PIE database is 99.64%.
NASA Astrophysics Data System (ADS)
Sithole, George; Vosselman, George
Over the past years, several filters have been developed to extract bare-Earth points from point clouds. ISPRS Working Group III/3 conducted a test to determine the performance of these filters and the influence of point density thereon, and to identify directions for future research. Twelve selected datasets have been processed by eight participants. In this paper, the test results are presented. The paper describes the characteristics of the provided datasets and the used filter approaches. The filter performance is analysed both qualitatively and quantitatively. All filters perform well in smooth rural landscapes, but all produce errors in complex urban areas and rough terrain with vegetation. In general, filters that estimate local surfaces are found to perform best. The influence of point density could not well be determined in this experiment. Future research should be directed towards the usage of additional data sources, segment-based classification, and self-diagnosis of filter algorithms.
Spatially adaptive regularized iterative high-resolution image reconstruction algorithm
NASA Astrophysics Data System (ADS)
Lim, Won Bae; Park, Min K.; Kang, Moon Gi
2000-12-01
High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The
Adapting Eclat algorithm to parallel environments with Charm++ library
NASA Astrophysics Data System (ADS)
Puścian, Marek; Grabski, Waldemar
2016-09-01
In this paper we describe Eclat algorithm that is adapted to deal with growing data repositories. The presented solution utilizes Master-Slave scheme to distribute data mining tasks among available computation nodes. Several improvements have been proposed and successfully implemented using Charm++ library. This paper introduces optimization techniques to reduce communication cost and synchronization overhead. It also discusses results of the performance of parallel Eclat algorithm against different databases and compares it with parallel Apriori algorithm. The proposed approach has been illustrated with many experiments and measurements performed using multiprocessor and multithreaded computer platform.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill B.; Cardullo, Frank M.
2012-01-01
Telban and Cardullo have developed and successfully implemented the non-linear optimal motion cueing algorithm at the Visual Motion Simulator (VMS) at the NASA Langley Research Center in 2005. The latest version of the non-linear algorithm performed filtering of motion cues in all degrees-of-freedom except for pitch and roll. This manuscript describes the development and implementation of the non-linear optimal motion cueing algorithm for the pitch and roll degrees of freedom. Presented results indicate improved cues in the specified channels as compared to the original design. To further advance motion cueing in general, this manuscript describes modifications to the existing algorithm, which allow for filtering at the location of the pilot's head as opposed to the centroid of the motion platform. The rational for such modification to the cueing algorithms is that the location of the pilot's vestibular system must be taken into account as opposed to the off-set of the centroid of the cockpit relative to the center of rotation alone. Results provided in this report suggest improved performance of the motion cueing algorithm.
Zhao, Haiquan; Zhang, Jiashu
2010-02-01
A novel nonlinear adaptive filter with pipelined Chebyshev functional link artificial recurrent neural network (PCFLARNN) is presented in this paper, which uses a modification real-time recurrent learning algorithm. The PCFLARNN consists of a number of simple small-scale Chebyshev functional link artificial recurrent neural network (CFLARNN) modules. Compared to the standard recurrent neural network (RNN), those modules of PCFLARNN can simultaneously be performed in a pipelined parallelism fashion, and this would lead to a significant improvement in its total computational efficiency. Furthermore, contrasted with the architecture of a pipelined RNN (PRNN), each module of PCFLARNN is a CFLARNN whose nonlinearity is introduced by enhancing the input pattern with Chebyshev functional expansion, whereas the RNN of each module in PRNN utilizing linear input and first-order recurrent term only fails to utilize the high-order terms of inputs. Therefore, the performance of PCFLARNN can further be improved at the cost of a slightly increased computational complexity. In addition, due to the introduced nonlinear functional expansion of each module in PRNN, the number of input signals can be reduced. Computer simulations have demonstrated that the proposed filter performs better than PRNN and RNN for nonlinear colored signal prediction, nonstationary speech signal prediction, and chaotic time series prediction.
A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.
Zhao, Haiquan; Zhang, Jiashu
2009-12-01
To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.
Charisis, Vasileios S; Hadjileontiadis, Leontios J
2016-03-01
The aim of this Letter is to present a new capsule endoscopy (CE) image analysis scheme for the detection of small bowel ulcers that relate to Crohn's disease. More specifically, this scheme is based on: (i) a hybrid adaptive filtering (HAF) process, that utilises genetic algorithms to the curvelet-based representation of images for efficient extraction of the lesion-related morphological characteristics, (ii) differential lacunarity (DL) analysis for texture feature extraction from the HAF-filtered images and (iii) support vector machines for robust classification performance. For the training of the proposed scheme, namely HAF-DL, an 800-image database was used and the evaluation was based on ten 30-second long endoscopic videos. Experimental results, along with comparison with other related efforts, have shown that the HAF-DL approach evidently outperforms the latter in the field of CE image analysis for automated lesion detection, providing higher classification results. The promising performance of HAF-DL paves the way for a complete computer-aided diagnosis system that could support the physicians' clinical practice.
Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.
Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin
2016-08-01
In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter.
Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples
Robert Hayes
2009-01-23
An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.
Effect of filters and reconstruction algorithms on I-124 PET in Siemens Inveon PET scanner
NASA Astrophysics Data System (ADS)
Ram Yu, A.; Kim, Jin Su
2015-10-01
Purpose: To assess the effects of filtering and reconstruction on Siemens I-124 PET data. Methods: A Siemens Inveon PET was used. Spatial resolution of I-124 was measured to a transverse offset of 50 mm from the center FBP, 2D ordered subset expectation maximization (OSEM2D), 3D re-projection algorithm (3DRP), and maximum a posteriori (MAP) methods were tested. Non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR) parameterized image quality. Mini deluxe phantom data of I-124 was also assessed. Results: Volumetric resolution was 7.3 mm3 from the transverse FOV center when FBP reconstruction algorithms with ramp filter was used. MAP yielded minimal NU with β =1.5. OSEM2D yielded maximal RC. SOR was below 4% for FBP with ramp, Hamming, Hanning, or Shepp-Logan filters. Based on the mini deluxe phantom results, an FBP with Hanning or Parzen filters, or a 3DRP with Hanning filter yielded feasible I-124 PET data.Conclusions: Reconstruction algorithms and filters were compared. FBP with Hanning or Parzen filters, or 3DRP with Hanning filter yielded feasible data for quantifying I-124 PET.
Gray, Morgan; Petit, Cyril; Rodionov, Sergey; Bocquet, Marc; Bertino, Laurent; Ferrari, Marc; Fusco, Thierry
2014-08-25
We propose a new algorithm for an adaptive optics system control law, based on the Linear Quadratic Gaussian approach and a Kalman Filter adaptation with localizations. It allows to handle non-stationary behaviors, to obtain performance close to the optimality defined with the residual phase variance minimization criterion, and to reduce the computational burden with an intrinsically parallel implementation on the Extremely Large Telescopes (ELTs).
Iris recognition using Gabor filters optimized by the particle swarm algorithm
NASA Astrophysics Data System (ADS)
Tsai, Chung-Chih; Taur, Jin-Shiuh; Tao, Chin-Wang
2009-04-01
An efficient feature extraction algorithm based on optimized Gabor filters and a relative variation analysis approach is proposed for iris recognition. The Gabor filters are optimized by using the particle swarm algorithm to adjust the parameters. Moreover, a sequential scheme is developed to determine the number of filters in the optimal Gabor filter bank. In the preprocessing step, the lower part of the iris image is unwrapped and normalized to a rectangular block that is then decomposed by the optimal Gabor filters. After that, a simple encoding method is adopted to generate a compact iris code. Experimental results show that with a smaller iris code size, the proposed method can produce comparable performance to that of the existing iris recognition systems.
Adaptive Filtering for Large Space Structures: A Closed-Form Solution
NASA Technical Reports Server (NTRS)
Rauch, H. E.; Schaechter, D. B.
1985-01-01
In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.
Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques
Arellano, J.; Hernandez, J.M.; Brase, J.
1993-05-01
This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.
An Adaptive Tradeoff Algorithm for Multi-issue SLA Negotiation
NASA Astrophysics Data System (ADS)
Son, Seokho; Sim, Kwang Mong
Since participants in a Cloud may be independent bodies, mechanisms are necessary for resolving different preferences in leasing Cloud services. Whereas there are currently mechanisms that support service-level agreement negotiation, there is little or no negotiation support for concurrent price and timeslot for Cloud service reservations. For the concurrent price and timeslot negotiation, a tradeoff algorithm to generate and evaluate a proposal which consists of price and timeslot proposal is necessary. The contribution of this work is thus to design an adaptive tradeoff algorithm for multi-issue negotiation mechanism. The tradeoff algorithm referred to as "adaptive burst mode" is especially designed to increase negotiation speed and total utility and to reduce computational load by adaptively generating concurrent set of proposals. The empirical results obtained from simulations carried out using a testbed suggest that due to the concurrent price and timeslot negotiation mechanism with adaptive tradeoff algorithm: 1) both agents achieve the best performance in terms of negotiation speed and utility; 2) the number of evaluations of each proposal is comparatively lower than previous scheme (burst-N).
Adaptation algorithms for 2-D feedforward neural networks.
Kaczorek, T
1995-01-01
The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).
A Procedure for Empirical Initialization of Adaptive Testing Algorithms.
ERIC Educational Resources Information Center
van der Linden, Wim J.
In constrained adaptive testing, the numbers of constraints needed to control the content of the tests can easily run into the hundreds. Proper initialization of the algorithm becomes a requirement because the presence of large numbers of constraints slows down the convergence of the ability estimator. In this paper, an empirical initialization of…
Extraction of a Weak Co-Channel Interfering Communication Signal Using Adaptive Filtering
2015-03-01
unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Conventional separation techniques such as filters cannot be used in a scenario where a...to achieve a reasonable error rate. 14. SUBJECT TERMS Adaptive filter, signal separation 15. NUMBER OF PAGES 71 16. PRICE CODE 17. SECURITY...INTENTIONALLY LEFT BLANK iv ABSTRACT Conventional separation techniques such as filters cannot be used in a scenario where a weak signal is embedded
Adaptive Spatial Filtering with Principal Component Analysis for Biomedical Photoacoustic Imaging
NASA Astrophysics Data System (ADS)
Nagaoka, Ryo; Yamazaki, Rena; Saijo, Yoshifumi
Photoacoustic (PA) signal is very sensitive to noise generated by peripheral equipment such as power supply, stepping motor or semiconductor laser. Band-pass filter is not effective because the frequency bandwidth of the PA signal also covers the noise frequency. The objective of the present study is to reduce the noise by using an adaptive spatial filter with principal component analysis (PCA).
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
An Adaptive Homomorphic Aperture Photometry Algorithm for Merging Galaxies
NASA Astrophysics Data System (ADS)
Huang, J. C.; Hwang, C. Y.
2017-03-01
We present a novel automatic adaptive aperture photometry algorithm for measuring the total magnitudes of merging galaxies with irregular shapes. First, we use a morphological pattern recognition routine for identifying the shape of an irregular source in a background-subtracted image. Then, we extend the shape of the source by using the Dilation image operation to obtain an aperture that is quasi-homomorphic to the shape of the irregular source. The magnitude measured from the homomorphic aperture would thus have minimal contamination from the nearby background. As a test of our algorithm, we applied our technique to the merging galaxies observed by the Sloan Digital Sky Survey and the Canada–France–Hawaii Telescope. Our results suggest that the adaptive homomorphic aperture algorithm can be very useful for investigating extended sources with irregular shapes and sources in crowded regions.
A new adaptive GMRES algorithm for achieving high accuracy
Sosonkina, M.; Watson, L.T.; Kapania, R.K.; Walker, H.F.
1996-12-31
GMRES(k) is widely used for solving nonsymmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram-Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES (k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order k. With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the variable storage requirements implied by varying k is not too difficult. The parameter k can be both increased and decreased-an increase-only strategy is described next followed by pseudocode.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
NASA Astrophysics Data System (ADS)
Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen
2016-11-01
To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.
Adaptive high temperature superconducting filters for interference rejection
Raihn, K.F.; Fenzi, N.O.; Hey-Shipton, G.L.; Saito, E.R.; Loung, P.V.; Aidnik, D.L.
1996-07-01
An optically switched high temperature superconducting (HTS) band-reject filter bank is presented. Fast low loss switching of high quality (Q) factor HTS filter elements enables digital selection of arbitrary pass-bands and stop-bands. Patterned pieces of GaAs and silicon are used in the manufacture of the photosensitive switches. Fiber optic cabling is used to transfer the optical energy from an LED to the switch. The fiber optic cable minimizes the thermal loading of the filter package and de-couples the switch`s power source from the RF circuit. This paper will discuss the development of a computer-controlled HTS bank of optically switchable, narrow band, high Q bandstop filters which incorporates a cryocooler to maintain the 77 K operating temperature of the HTS microwave circuit.
Adaptive enhancement of magnetoencephalographic signals via multichannel filtering
Lewis, P.S.
1989-01-01
A time-varying spatial/temporal filter for enhancing multichannel magnetoencephalographic (MEG) recordings of evoked responses is described. This filter is based in projections derived from a combination of measured data and a priori models of the expected response. It produces estimates of the evoked fields in single trial measurements. These estimates can reduce the need for signal averaging in some situations. The filter uses the a priori model information to enhance responses where they exist, but avoids creating responses that do not exist. Examples are included of the filter's application to both MEG single trial data containing an auditory evoked field and control data with no evoked field. 5 refs., 7 figs.
Multi-Core Parallel Implementation of Data Filtering Algorithm for Multi-Beam Bathymetry Data
NASA Astrophysics Data System (ADS)
Liu, Tianyang; Xu, Weiming; Yin, Xiaodong; Zhao, Xiliang
In order to improve the multi-beam bathymetry data processing speed, we propose a parallel filtering algorithm based on multi thread technology. The algorithm consists of two parts. The first is the parallel data re-order step, in which the surveying area is divided into a regular grid, and the discrete bathymetry data is arranged into each grid by parallel method. The second part is the parallel filtering step, which involves dividing the grid into blocks and parallel executing filtering process in each block. In the experiment, the speedup of the proposed algorithm reaches to about 3.67 with an 8 core computer. The result shows the method can improve computing efficiency significantly comparing to the traditional algorithm.
Fixed Interval Smoothing Algorithm for an Extended Kalman Filter for Over-the-Horizon Ship Tracking
1989-03-01
accurate than an estimate based only on the estimates up to time k, (.k,). Meditch [Ref. 10: p. 193] categorizes smoothing algorithms into three...NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC ELECTE A JUN0 89 * TEESIS In * FIXED INTERVAL SMOOTHING ALGORITHM FOR A\\ EXTENDED KALMAN 0 FILTER...track a maneuvering surface target using HFDF lines-of-bearing is sub -tantially improved by implementing a fixed interval smoothing algorithm and a
An Application of a Kalman Filter Fixed Interval Smoothing Algorithm to Underwater Target Tracking
1989-03-01
FIXED INTERVAL SMOOTHING ALGORITHM TO UNDERWATER TARGET TRACKING 12 Personal Author(s) Richard B. Nicidas 13a Type of Report 13b Time Covered 14 Date of...Terms (cnrln. on e’ rze ifnecessary and idewiify by block number) Field Group Subgroup Kalman Filter, smoothing algorithm, torpedo tracking. 19 Abstract... Smoothing Algorithm to optimally smooth data tracks generated by the short base-line tracking ranges at the Naval Torpedo Station, Keyport, Washington. The
Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.
Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun
2016-10-01
This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.
Noise-adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels.
Samsonov, Alexei A; Johnson, Chris R
2004-10-01
Anisotropic diffusion filtering is widely used for MR image enhancement. However, the anisotropic filter is nonoptimal for MR images with spatially varying noise levels, such as images reconstructed from sensitivity-encoded data and intensity inhomogeneity-corrected images. In this work, a new method for filtering MR images with spatially varying noise levels is presented. In the new method, a priori information regarding the image noise level spatial distribution is utilized for the local adjustment of the anisotropic diffusion filter. Our new method was validated and compared with the standard filter on simulated and real MRI data. The noise-adaptive method was demonstrated to outperform the standard anisotropic diffusion filter in both image error reduction and image signal-to-noise ratio (SNR) improvement. The method was also applied to inhomogeneity-corrected and sensitivity encoding (SENSE) images. The new filter was shown to improve segmentation of MR brain images with spatially varying noise levels.
Image Recommendation Algorithm Using Feature-Based Collaborative Filtering
NASA Astrophysics Data System (ADS)
Kim, Deok-Hwan
As the multimedia contents market continues its rapid expansion, the amount of image contents used in mobile phone services, digital libraries, and catalog service is increasing remarkably. In spite of this rapid growth, users experience high levels of frustration when searching for the desired image. Even though new images are profitable to the service providers, traditional collaborative filtering methods cannot recommend them. To solve this problem, in this paper, we propose feature-based collaborative filtering (FBCF) method to reflect the user's most recent preference by representing his purchase sequence in the visual feature space. The proposed approach represents the images that have been purchased in the past as the feature clusters in the multi-dimensional feature space and then selects neighbors by using an inter-cluster distance function between their feature clusters. Various experiments using real image data demonstrate that the proposed approach provides a higher quality recommendation and better performance than do typical collaborative filtering and content-based filtering techniques.
Fault detection method for railway wheel flat using an adaptive multiscale morphological filter
NASA Astrophysics Data System (ADS)
Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin
2017-02-01
This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.
Robust Scale Adaptive Tracking by Combining Correlation Filters with Sequential Monte Carlo
Ma, Junkai; Luo, Haibo; Hui, Bin; Chang, Zheng
2017-01-01
A robust and efficient object tracking algorithm is required in a variety of computer vision applications. Although various modern trackers have impressive performance, some challenges such as occlusion and target scale variation are still intractable, especially in the complex scenarios. This paper proposes a robust scale adaptive tracking algorithm to predict target scale by a sequential Monte Carlo method and determine the target location by the correlation filter simultaneously. By analyzing the response map of the target region, the completeness of the target can be measured by the peak-to-sidelobe rate (PSR), i.e., the lower the PSR, the more likely the target is being occluded. A strict template update strategy is designed to accommodate the appearance change and avoid template corruption. If the occlusion occurs, a retained scheme is allowed and the tracker refrains from drifting away. Additionally, the feature integration is incorporated to guarantee the robustness of the proposed approach. The experimental results show that our method outperforms other state-of-the-art trackers in terms of both the distance precision and overlap precision on the publicly available TB-50 dataset. PMID:28273840
Adaptive two-pass median filter based on support vector machines for image restoration.
Lin, Tzu-Chao; Yu, Pao-Ta
2004-02-01
In this letter, a novel adaptive filter, the adaptive two-pass median (ATM) filter based on support vector machines (SVMs), is proposed to preserve more image details while effectively suppressing impulse noise for image restoration. The proposed filter is composed of a noise decision maker and two-pass median filters. Our new approach basically uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a corrupted pixel, the noise-free reduction median filter will be triggered to replace it. Otherwise, it remains unchanged. Then, to improve the quality of the restored image, a decision impulse filter is put to work in the second-pass filtering procedure. As for the noise suppressing both fixed-valued and random-valued impulses without degrading the quality of the fine details, the results of our extensive experiments demonstrate that the proposed filter outperforms earlier median-based filters in the literature. Our new filter also provides excellent robustness at various percentages of impulse noise.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.
Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou
2011-09-01
To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.
A triangular covariance factorization for sequential filtering algorithms
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Peters, J. G.
1978-01-01
A method for propagating the square-root of the state error covariance matrix in lower triangular UDU form is described. This update method can be combined with the UDU transformation used by Bierman to obtain the equations of a square-root free triangular estimation algorithm. The method is compared with the state transition matrix time update algorithm on the basis of integration accuracy, computational efficiency and storage requirements.
Adaptive Flocking of Robot Swarms: Algorithms and Properties
NASA Astrophysics Data System (ADS)
Lee, Geunho; Chong, Nak Young
This paper presents a distributed approach for adaptive flocking of swarms of mobile robots that enables to navigate autonomously in complex environments populated with obstacles. Based on the observation of the swimming behavior of a school of fish, we propose an integrated algorithm that allows a swarm of robots to navigate in a coordinated manner, split into multiple swarms, or merge with other swarms according to the environment conditions. We prove the convergence of the proposed algorithm using Lyapunov stability theory. We also verify the effectiveness of the algorithm through extensive simulations, where a swarm of robots repeats the process of splitting and merging while passing around multiple stationary and moving obstacles. The simulation results show that the proposed algorithm is scalable, and robust to variations in the sensing capability of individual robots.
An Adaptive Hybrid Genetic Algorithm for Improved Groundwater Remediation Design
NASA Astrophysics Data System (ADS)
Espinoza, F. P.; Minsker, B. S.; Goldberg, D. E.
2001-12-01
Identifying optimal designs for a groundwater remediation system is computationally intensive, especially for complex, nonlinear problems such as enhanced in situ bioremediation technology. To improve performance, we apply a hybrid genetic algorithm (HGA), which is a two-step solution method: a genetic algorithm (GA) for global search using the entire population and then a local search (LS) to improve search speed for only a few individuals in the population. We implement two types of HGAs: a non-adaptive HGA (NAHGA), whose operations are invariant throughout the run, and a self-adaptive HGA (SAHGA), whose operations adapt to the performance of the algorithm. The best settings of the two HGAs for optimal performance are then investigated for a groundwater remediation problem. The settings include the frequency of LS with respect to the normal GA evaluation, probability of individual selection for LS, evolution criterion for LS (Lamarckian or Baldwinian), and number of local search iterations. A comparison of the algorithms' performance under different settings will be presented.
An adaptive multimeme algorithm for designing HIV multidrug therapies.
Neri, Ferrante; Toivanen, Jari; Cascella, Giuseppe Leonardo; Ong, Yew-Soon
2007-01-01
This paper proposes a period representation for modeling the multidrug HIV therapies and an Adaptive Multimeme Algorithm (AMmA) for designing the optimal therapy. The period representation offers benefits in terms of flexibility and reduction in dimensionality compared to the binary representation. The AMmA is a memetic algorithm which employs a list of three local searchers adaptively activated by an evolutionary framework. These local searchers, having different features according to the exploration logic and the pivot rule, have the role of exploring the decision space from different and complementary perspectives and, thus, assisting the standard evolutionary operators in the optimization process. Furthermore, the AMmA makes use of an adaptation which dynamically sets the algorithmic parameters in order to prevent stagnation and premature convergence. The numerical results demonstrate that the application of the proposed algorithm leads to very efficient medication schedules which quickly stimulate a strong immune response to HIV. The earlier termination of the medication schedule leads to lesser unpleasant side effects for the patient due to strong antiretroviral therapy. A numerical comparison shows that the AMmA is more efficient than three popular metaheuristics. Finally, a statistical test based on the calculation of the tolerance interval confirms the superiority of the AMmA compared to the other methods for the problem under study.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and
Adaptive Low Dissipative High Order Filter Methods for Multiscale MHD Flows
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, Bjoern
2004-01-01
Adaptive low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field [divergence of B] numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.
Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.
Smith, J E
2012-01-01
Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes
A model for radar images and its application to adaptive digital filtering of multiplicative noise
NASA Technical Reports Server (NTRS)
Frost, V. S.; Stiles, J. A.; Shanmugan, K. S.; Holtzman, J. C.
1982-01-01
Standard image processing techniques which are used to enhance noncoherent optically produced images are not applicable to radar images due to the coherent nature of the radar imaging process. A model for the radar imaging process is derived in this paper and a method for smoothing noisy radar images is also presented. The imaging model shows that the radar image is corrupted by multiplicative noise. The model leads to the functional form of an optimum (minimum MSE) filter for smoothing radar images. By using locally estimated parameter values the filter is made adaptive so that it provides minimum MSE estimates inside homogeneous areas of an image while preserving the edge structure. It is shown that the filter can be easily implemented in the spatial domain and is computationally efficient. The performance of the adaptive filter is compared (qualitatively and quantitatively) with several standard filters using real and simulated radar images.
Efficient implementation of the adaptive scale pixel decomposition algorithm
NASA Astrophysics Data System (ADS)
Zhang, L.; Bhatnagar, S.; Rau, U.; Zhang, M.
2016-08-01
Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used to image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims: However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computational cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods: As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results: The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.
A crack extraction algorithm based on improved median filter and Hessian matrix
NASA Astrophysics Data System (ADS)
Zhao, Yafeng; Zhao, Qiancheng; He, Yongbiao; Lu, Guofeng
2016-01-01
Aiming at the problems of existing crack extraction algorithms which are difficult to achieve fast and accurate crack extraction of image, an algorithm of crack detection based on Median Filter and Hessian Matrix is proposed. Firstly, median filter of crack gray image in 4 directions, Level, 45 degree, vertical and -45 degree, is conducted, by which noises are removed and roughly extracted crack is obtained. Then according to the Hessian matrix feature of extracting image linear feature, convolution of Differential operation of the Hessian matrix is adopted, and crack is further extracted through eigenvalues response and changing standard deviation of Gaussian function. The proposed algorithm validity is verified by comparison with other crack extraction algorithm. The results show that this algorithm has obvious accuracy rate in crack extraction.
PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. I. ALGORITHM
Maron, Jason L.; McNally, Colin P.; Mac Low, Mordecai-Mark E-mail: cmcnally@amnh.org
2012-05-01
We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and test problem results.
Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices
ERIC Educational Resources Information Center
Hsu, Ching-Kun
2015-01-01
The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…
Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description
Schmidt, Gail; Jenkerson, Calli; Masek, Jeffrey; Vermote, Eric; Gao, Feng
2013-01-01
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.
Self-adaptive incremental Newton-Raphson algorithms
NASA Technical Reports Server (NTRS)
Padovan, J.
1980-01-01
Multilevel self-adaptive Newton-Raphson type strategies are developed to improve the solution efficiency of nonlinear finite element simulations of statically loaded structures. The overall strategy involves three basic levels. The first level involves preliminary solution tunneling via primative operators. Secondly, the solution is constantly monitored via quality/convergence/nonlinearity tests. Lastly, the third level involves self-adaptive algorithmic update procedures aimed at improving the convergence characteristics of the Newton-Raphson strategy. Numerical experiments are included to illustrate the results of the procedure.
NASA Astrophysics Data System (ADS)
Amian, M.; Setarehdan, S. Kamaledin; Yousefi, H.
2014-09-01
Functional Near infrared spectroscopy (fNIRS) is a newly noninvasive way to measure oxy hemoglobin and deoxy hemoglobin concentration changes of human brain. Relatively safe and affordable than other functional imaging techniques such as fMRI, it is widely used for some special applications such as infant examinations and pilot's brain monitoring. In such applications, fNIRS data sometimes suffer from undesirable movements of subject's head which called motion artifact and lead to a signal corruption. Motion artifact in fNIRS data may result in fallacy of concluding or diagnosis. In this work we try to reduce these artifacts by a novel Kalman filtering algorithm that is based on an autoregressive moving average (ARMA) model for fNIRS system. Our proposed method does not require to any additional hardware and sensor and also it does not need to whole data together that once were of ineluctable necessities in older algorithms such as adaptive filter and Wiener filtering. Results show that our approach is successful in cleaning contaminated fNIRS data.
Fast Algorithm and Application of Wavelet Multiple-scale Edge Detection Filter
NASA Astrophysics Data System (ADS)
Liang, Likai; Yang, Min; Tong, Qiang; Zhang, Yue
This paper focuses on the algorithm theory of the two-dimensional wavelet transform which is used for image edge detection. To simplify the algorithm, the author propounds to turn the two-dimensional dyadic wavelet to one dimensional dyadic wavelet that can be divided into product. We can use the filter to achieve the wavelet multiple scale edge detection quickly. Simultaneously, the process that the wavelet transform used for the multiple-scale edge detection is discussed in detail. Finally, the algorithm can be applied to vehicle license image detection and. Compared with the results of the Sobel, Canny and the others, this algorithm shows great feasibility and the effectiveness.
Zhu, Wu; Fang, Jian-an; Tang, Yang; Zhang, Wenbing; Du, Wei
2012-01-01
Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive. PMID:22808191
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
Xiu, Dongbin
2016-06-21
The focus of the project is the development of mathematical methods and high-performance com- putational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly e cient and scalable numer- ical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.
Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm
2017-03-17
All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1(-) zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.The ISME Journal advance online publication, 17 March 2017; doi:10.1038/ismej.2017.28.
Adaptive primal-dual genetic algorithms in dynamic environments.
Wang, Hongfeng; Yang, Shengxiang; Ip, W H; Wang, Dingwei
2009-12-01
Recently, there has been an increasing interest in applying genetic algorithms (GAs) in dynamic environments. Inspired by the complementary and dominance mechanisms in nature, a primal-dual GA (PDGA) has been proposed for dynamic optimization problems (DOPs). In this paper, an important operator in PDGA, i.e., the primal-dual mapping (PDM) scheme, is further investigated to improve the robustness and adaptability of PDGA in dynamic environments. In the improved scheme, two different probability-based PDM operators, where the mapping probability of each allele in the chromosome string is calculated through the statistical information of the distribution of alleles in the corresponding gene locus over the population, are effectively combined according to an adaptive Lamarckian learning mechanism. In addition, an adaptive dominant replacement scheme, which can probabilistically accept inferior chromosomes, is also introduced into the proposed algorithm to enhance the diversity level of the population. Experimental results on a series of dynamic problems generated from several stationary benchmark problems show that the proposed algorithm is a good optimizer for DOPs.
Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter
NASA Astrophysics Data System (ADS)
Jiang, Yuhao; Zachary, Josey
2016-03-01
Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.
Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.
An adaptive gyroscope-based algorithm for temporal gait analysis.
Greene, Barry R; McGrath, Denise; O'Neill, Ross; O'Donovan, Karol J; Burns, Adrian; Caulfield, Brian
2010-12-01
Body-worn kinematic sensors have been widely proposed as the optimal solution for portable, low cost, ambulatory monitoring of gait. This study aims to evaluate an adaptive gyroscope-based algorithm for automated temporal gait analysis using body-worn wireless gyroscopes. Gyroscope data from nine healthy adult subjects performing four walks at four different speeds were then compared against data acquired simultaneously using two force plates and an optical motion capture system. Data from a poliomyelitis patient, exhibiting pathological gait walking with and without the aid of a crutch, were also compared to the force plate. Results show that the mean true error between the adaptive gyroscope algorithm and force plate was -4.5 ± 14.4 ms and 43.4 ± 6.0 ms for IC and TC points, respectively, in healthy subjects. Similarly, the mean true error when data from the polio patient were compared against the force plate was -75.61 ± 27.53 ms and 99.20 ± 46.00 ms for IC and TC points, respectively. A comparison of the present algorithm against temporal gait parameters derived from an optical motion analysis system showed good agreement for nine healthy subjects at four speeds. These results show that the algorithm reported here could constitute the basis of a robust, portable, low-cost system for ambulatory monitoring of gait.
Adaptive Firefly Algorithm: Parameter Analysis and its Application
Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm — adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812
Adaptive firefly algorithm: parameter analysis and its application.
Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.
NASA Astrophysics Data System (ADS)
Lu, Lu; Zhao, Haiquan
2016-03-01
The filtered-x least mean lp-norm (FxLMP) algorithm is proven to be useful for nonlinear active noise control (NANC) systems. However, its performance deteriorates when the impulsive noises are presented in NANC systems. To surmount this shortcoming, a new nonlinear adaptive algorithm based on Volterra expansion model (VFxlogLMP) is developed in this paper, which is derived by minimizing the lp-norm of logarithmic cost. It is found that the FxLMP and VFxlogLMP require to select an appropriate value of p according to the prior information on noise characteristics, which prohibit their practical applications. Based on VFxlogLMP algorithm, we proposed a continuous lp-norm algorithm with logarithmic cost (VFxlogCLMP), which does not need the parameter selection and thresholds estimation. Benefiting from the various error norms for 1≤p≤2, it remains the robustness of VFxlogLMP. Moreover, the convergence behavior of VFxlogCLMP for moving average secondary paths and stochastic input signals is performed. Compared to the existing algorithms, two versions of the proposed algorithms have much better convergence and stability in impulsive noise environments.
Improvement of wavelet threshold filtered back-projection image reconstruction algorithm
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-11-01
Image reconstruction technique has been applied into many fields including some medical imaging, such as X ray computer tomography (X-CT), positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) etc, but the reconstructed effects are still not satisfied because original projection data are inevitably polluted by noises in process of image reconstruction. Although some traditional filters e.g., Shepp-Logan (SL) and Ram-Lak (RL) filter have the ability to filter some noises, Gibbs oscillation phenomenon are generated and artifacts leaded by back-projection are not greatly improved. Wavelet threshold denoising can overcome the noises interference to image reconstruction. Since some inherent defects exist in the traditional soft and hard threshold functions, an improved wavelet threshold function combined with filtered back-projection (FBP) algorithm was proposed in this paper. Four different reconstruction algorithms were compared in simulated experiments. Experimental results demonstrated that this improved algorithm greatly eliminated the shortcomings of un-continuity and large distortion of traditional threshold functions and the Gibbs oscillation. Finally, the availability of this improved algorithm was verified from the comparison of two evaluation criterions, i.e. mean square error (MSE), peak signal to noise ratio (PSNR) among four different algorithms, and the optimum dual threshold values of improved wavelet threshold function was gotten.
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm.
Chang, Wei-Der
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter.
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
Chang, Wei-Der
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
Compensating algorithm of nonlinear phase errors using scan filter in SAIL
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Lu, Wei
2009-08-01
The phase errors due to the nonlinear chirp of tunable laser reduce the range resolution in synthetic aperture imaging ladar(SAIL). The compensating algorithms establishing matched and nonmatched reference paths were developed, and the phase errors were compensated in the whole echo pulse. In this paper a compensating algorithm by scan filtering is proposed. Compared to the compensation in the whole echo pulse, this compensating algorithm promotes precision and range resolution. Every echo pulse includes different echo components from all target points in footprint. The heterodyne signals of these different echoes are scan filtered from the heterodyne signal of one whole echo pulse in the spectrum. The phase errors of these heterodyne signals are measured by phase shifting algorithm in nonmatched reference path and compensated separately. Then the compensated signals are combined into whole heterodyne pulse and compressed in range. After all echo pulses are compressed in range the azimuth compensation and compression is followed. The mathematical flow of this algorithm is established. The simulation of the airborne SAIL model validates the feasibility, and the BW of range compression decreases obviously. The effects of width of the scan filter and nonlinear chirp are discussed. The conclusion of adequate width of the scan filter is given finally.
Generalized pattern search algorithms with adaptive precision function evaluations
Polak, Elijah; Wetter, Michael
2003-05-14
In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.
Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes
Parsons, I D; Solberg, J M
2006-02-03
This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.
A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT.
Li, Liang; Xing, Yuxiang; Chen, Zhiqiang; Zhang, Li; Kang, Kejun
2011-01-01
Circular cone-beam CT is one of the most popular configurations in both medical and industrial applications. The FDK algorithm is the most popular method for circular cone-beam CT. However, with increasing cone-angle the cone-beam artifacts associated with the FDK algorithm deteriorate because the circular trajectory does not satisfy the data sufficiency condition. Along with an experimental evaluation and verification, this paper proposed a curve-filtered FDK (C-FDK) algorithm. First, cone-parallel projections are rebinned from the native cone-beam geometry in two separate directions. C-FDK rebins and filters projections along different curves from T-FDK in the centrally virtual detector plane. Then, numerical experiments are done to validate the effectiveness of the proposed algorithm by comparing with both FDK and T-FDK reconstruction. Without any other extra trajectories supplemental to the circular orbit, C-FDK has a visible image quality improvement.
Riaz, Nadeem; Shanker, Piyush; Wiersma, Rodney; Gudmundsson, Olafur; Mao, Weihua; Widrow, Bernard; Xing, Lei
2009-10-07
Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
An adaptive prediction and detection algorithm for multistream syndromic surveillance
Najmi, Amir-Homayoon; Magruder, Steve F
2005-01-01
Background Surveillance of Over-the-Counter pharmaceutical (OTC) sales as a potential early indicator of developing public health conditions, in particular in cases of interest to biosurvellance, has been suggested in the literature. This paper is a continuation of a previous study in which we formulated the problem of estimating clinical data from OTC sales in terms of optimal LMS linear and Finite Impulse Response (FIR) filters. In this paper we extend our results to predict clinical data multiple steps ahead using OTC sales as well as the clinical data itself. Methods The OTC data are grouped into a few categories and we predict the clinical data using a multichannel filter that encompasses all the past OTC categories as well as the past clinical data itself. The prediction is performed using FIR (Finite Impulse Response) filters and the recursive least squares method in order to adapt rapidly to nonstationary behaviour. In addition, we inject simulated events in both clinical and OTC data streams to evaluate the predictions by computing the Receiver Operating Characteristic curves of a threshold detector based on predicted outputs. Results We present all prediction results showing the effectiveness of the combined filtering operation. In addition, we compute and present the performance of a detector using the prediction output. Conclusion Multichannel adaptive FIR least squares filtering provides a viable method of predicting public health conditions, as represented by clinical data, from OTC sales, and/or the clinical data. The potential value to a biosurveillance system cannot, however, be determined without studying this approach in the presence of transient events (nonstationary events of relatively short duration and fast rise times). Our simulated events superimposed on actual OTC and clinical data allow us to provide an upper bound on that potential value under some restricted conditions. Based on our ROC curves we argue that a biosurveillance system can
An improved filter-u least mean square vibration control algorithm for aircraft framework.
Huang, Quanzhen; Luo, Jun; Gao, Zhiyuan; Zhu, Xiaojin; Li, Hengyu
2014-09-01
Active vibration control of aerospace vehicle structures is very a hot spot and in which filter-u least mean square (FULMS) algorithm is one of the key methods. But for practical reasons and technical limitations, vibration reference signal extraction is always a difficult problem for FULMS algorithm. To solve the vibration reference signal extraction problem, an improved FULMS vibration control algorithm is proposed in this paper. Reference signal is constructed based on the controller structure and the data in the algorithm process, using a vibration response residual signal extracted directly from the vibration structure. To test the proposed algorithm, an aircraft frame model is built and an experimental platform is constructed. The simulation and experimental results show that the proposed algorithm is more practical with a good vibration suppression performance.
Comparison of adaptive filtering techniques for land surface data assimilation
Technology Transfer Automated Retrieval System (TEKTRAN)
The accurate specification of modeling and observational error information required by data assimilation algorithms is a major obstacle to the successful application of a land surface data assimilation system. The source and statistical structure of these errors are often unknown and poor assumptio...
Modified Particle Filtering Algorithm for Single Acoustic Vector Sensor DOA Tracking
Li, Xinbo; Sun, Haixin; Jiang, Liangxu; Shi, Yaowu; Wu, Yue
2015-01-01
The conventional direction of arrival (DOA) estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF) algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF) algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle) cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the “likehood” function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC) algorithm is proposed to improve the root mean square error (RMSE) and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms. PMID:26501280
Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering
Gao, Jianbo; Hu, Jing; Tung, Wen-wen
2011-01-01
Background Chaos and random fractal theories are among the most important for fully characterizing nonlinear dynamics of complicated multiscale biosignals. Chaos analysis requires that signals be relatively noise-free and stationary, while fractal analysis demands signals to be non-rhythmic and scale-free. Methodology/Principal Findings To facilitate joint chaos and fractal analysis of biosignals, we present an adaptive algorithm, which: (1) can readily remove nonstationarities from the signal, (2) can more effectively reduce noise in the signals than linear filters, wavelet denoising, and chaos-based noise reduction techniques; (3) can readily decompose a multiscale biosignal into a series of intrinsically bandlimited functions; and (4) offers a new formulation of fractal and multifractal analysis that is better than existing methods when a biosignal contains a strong oscillatory component. Conclusions The presented approach is a valuable, versatile tool for the analysis of various types of biological signals. Its effectiveness is demonstrated by offering new important insights into brainwave dynamics and the very high accuracy in automatically detecting epileptic seizures from EEG signals. PMID:21915312
Novel algorithm by low complexity filter on retinal vessel segmentation
NASA Astrophysics Data System (ADS)
Rostampour, Samad
2011-10-01
This article shows a new method to detect blood vessels in the retina by digital images. Retinal vessel segmentation is important for detection of side effect of diabetic disease, because diabetes can form new capillaries which are very brittle. The research has been done in two phases: preprocessing and processing. Preprocessing phase consists to apply a new filter that produces a suitable output. It shows vessels in dark color on white background and make a good difference between vessels and background. The complexity is very low and extra images are eliminated. The second phase is processing and used the method is called Bayesian. It is a built-in in supervision classification method. This method uses of mean and variance of intensity of pixels for calculate of probability. Finally Pixels of image are divided into two classes: vessels and background. Used images are related to the DRIVE database. After performing this operation, the calculation gives 95 percent of efficiency average. The method also was performed from an external sample DRIVE database which has retinopathy, and perfect result was obtained
An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.
Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei
2016-01-01
This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-11-11
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-01-01
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted “useful” data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency. PMID:26569247
NASA Technical Reports Server (NTRS)
Ioup, G. E.
1985-01-01
Appendix 5 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer includes a resume of the professional background of the Principal Investigator on the project, lists of this publications and research papers, graduate thesis supervised, and grants received.
An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.
Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W
2015-01-01
Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance.
NASA Astrophysics Data System (ADS)
Mejia, Yuri H.; Arguello, Henry
2016-05-01
Compressive sensing state-of-the-art proposes random Gaussian and Bernoulli as measurement matrices. Nev- ertheless, often the design of the measurement matrix is subject to physical constraints, and therefore it is frequently not possible that the matrix follows a Gaussian or Bernoulli distribution. Examples of these lim- itations are the structured and sparse matrices of the compressive X-Ray, and compressive spectral imaging systems. A standard algorithm for recovering sparse signals consists in minimizing an objective function that includes a quadratic error term combined with a sparsity-inducing regularization term. This problem can be solved using the iterative algorithms for solving linear inverse problems. This class of methods, which can be viewed as an extension of the classical gradient algorithm, is attractive due to its simplicity. However, current algorithms are slow for getting a high quality image reconstruction because they do not exploit the structured and sparsity characteristics of the compressive measurement matrices. This paper proposes the development of a gradient-based algorithm for compressive sensing reconstruction by including a filtering step that yields improved quality using less iterations. This algorithm modifies the iterative solution such that it forces to converge to a filtered version of the residual AT y, where y is the measurement vector and A is the compressive measurement matrix. We show that the algorithm including the filtering step converges faster than the unfiltered version. We design various filters that are motivated by the structure of AT y. Extensive simulation results using various sparse and structured matrices highlight the relative performance gain over the existing iterative process.
Analysis of adaptive algorithms for an integrated communication network
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim
1985-01-01
Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.
Steganalysis of content-adaptive JPEG steganography based on Gauss partial derivative filter bank
NASA Astrophysics Data System (ADS)
Zhang, Yi; Liu, Fenlin; Yang, Chunfang; Luo, Xiangyang; Song, Xiaofeng; Lu, Jicang
2017-01-01
A steganalysis feature extraction method based on Gauss partial derivative filter bank is proposed in this paper to improve the detection performance for content-adaptive JPEG steganography. Considering that the embedding changes of content-adaptive steganographic schemes are performed in the texture and edge regions, the proposed method generates filtered images comprising rich texture and edge information using Gauss partial derivative filter bank, and histograms of absolute values of filtered subimages are extracted as steganalysis features. Gauss partial derivative filter bank can represent texture and edge information in multiple orientations with less computation load than conventional methods and prevent redundancy in different filtered images. These two properties are beneficial in the extraction of low-complexity sensitive features. The results of experiments conducted on three selected modern JPEG steganographic schemes-uniform embedding distortion, JPEG universal wavelet relative distortion, and side-informed UNIWARD-indicate that the proposed feature set is superior to the prior art feature sets-discrete cosine transform residual, phase aware rich model, and Gabor filter residual.
Adaptive Kalman filtering for histogram-based appearance learning in infrared imagery.
Venkataraman, Vijay; Fan, Guoliang; Havlicek, Joseph P; Fan, Xin; Zhai, Yan; Yeary, Mark B
2012-11-01
Targets of interest in video acquired from imaging infrared sensors often exhibit profound appearance variations due to a variety of factors, including complex target maneuvers, ego-motion of the sensor platform, background clutter, etc., making it difficult to maintain a reliable detection process and track lock over extended time periods. Two key issues in overcoming this problem are how to represent the target and how to learn its appearance online. In this paper, we adopt a recent appearance model that estimates the pixel intensity histograms as well as the distribution of local standard deviations in both the foreground and background regions for robust target representation. Appearance learning is then cast as an adaptive Kalman filtering problem where the process and measurement noise variances are both unknown. We formulate this problem using both covariance matching and, for the first time in a visual tracking application, the recent autocovariance least-squares (ALS) method. Although convergence of the ALS algorithm is guaranteed only for the case of globally wide sense stationary process and measurement noises, we demonstrate for the first time that the technique can often be applied with great effectiveness under the much weaker assumption of piecewise stationarity. The performance advantages of the ALS method relative to the classical covariance matching are illustrated by means of simulated stationary and nonstationary systems. Against real data, our results show that the ALS-based algorithm outperforms the covariance matching as well as the traditional histogram similarity-based methods, achieving sub-pixel tracking accuracy against the well-known AMCOM closure sequences and the recent SENSIAC automatic target recognition dataset.
Adaptive identification and control of structural dynamics systems using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.; Williams, J. P.
1985-01-01
A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.
Yang, Feng; Wang, Yongqi; Chen, Hao; Zhang, Pengyan; Liang, Yan
2016-10-11
In this paper, an adaptive collaborative Gaussian Mixture Probability Hypothesis Density (ACo-GMPHD) filter is proposed for multi-target tracking with automatic track extraction. Based on the evolutionary difference between the persistent targets and the birth targets, the measurements are adaptively partitioned into two parts, persistent and birth measurement sets, for updating the persistent and birth target Probability Hypothesis Density, respectively. Furthermore, the collaboration mechanism of multiple probability hypothesis density (PHDs) is established, where tracks can be automatically extracted. Simulation results reveal that the proposed filter yields considerable computational savings in processing requirements and significant improvement in tracking accuracy.
Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms
NASA Technical Reports Server (NTRS)
Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin
2013-01-01
Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.
Optimal fractional delay-IIR filter design using cuckoo search algorithm.
Kumar, Manjeet; Rawat, Tarun Kumar
2015-11-01
This paper applied a novel global meta-heuristic optimization algorithm, cuckoo search algorithm (CSA) to determine optimal coefficients of a fractional delay-infinite impulse response (FD-IIR) filter and trying to meet the ideal frequency response characteristics. Since fractional delay-IIR filter design is a multi-modal optimization problem, it cannot be computed efficiently using conventional gradient based optimization techniques. A weighted least square (WLS) based fitness function is used to improve the performance to a great extent. FD-IIR filters of different orders have been designed using the CSA. The simulation results of the proposed CSA based approach have been compared to those of well accepted evolutionary algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The performance of the CSA based FD-IIR filter is superior to those obtained by GA and PSO. The simulation and statistical results affirm that the proposed approach using CSA outperforms GA and PSO, not only in the convergence rate but also in optimal performance of the designed FD-IIR filter (i.e., smaller magnitude error, smaller phase error, higher percentage improvement in magnitude and phase error, fast convergence rate). The absolute magnitude and phase error obtained for the designed 5th order FD-IIR filter are as low as 0.0037 and 0.0046, respectively. The percentage improvement in magnitude error for CSA based 5th order FD-IIR design with respect to GA and PSO are 80.93% and 74.83% respectively, and phase error are 76.04% and 71.25%, respectively.
EMMA: an efficient massive mapping algorithm using improved approximate mapping filtering.
Zhang, Xin; Cao, Zhi-Wei; Lin, Zhi-Xin; Wang, Qing-Kang; Li, Yi-Xue
2006-12-01
Efficient massive mapping algorithm (EMMA), an algorithm on efficiently mapping massive cDNAs onto genomic sequences, has recently been developed. The process of mapping massive cDNAs onto genomic sequences has been improved using more approximate mapping filtering based on an enhanced suffix array coupled with a pruned fast hash table, algorithms of block alignment extensions, and k-longest paths. When compared with the classical BLAT software in this field, the computing of EMMA ranges from two to forty-one times faster under similar prediction precisions.
NASA Astrophysics Data System (ADS)
Zielinski, B.; Patorski, K.
2008-12-01
The aim of this paper is to analyze the accuracy of 2D fringe pattern denoising performed by two chosen methods using quasi-1D two-arm spin filter and 2D Discrete Wavelet Transform (DWT) signal decomposition and thresholding. The ultimate aim of this comparison is to estimate which algorithm is better suited for high-accuracy interferometric measurements. In spite of the fact that both algorithms are designed to minimize possible fringe blur and distortion, the evaluation of errors introduced by each algorithm is essential for proper estimation of their performance.
Wang, Baofeng; Qi, Zhiquan; Chen, Sizhong; Liu, Zhaodu; Ma, Guocheng
2017-01-01
Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF) with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN) algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness.
Wang, Baofeng; Qi, Zhiquan; Chen, Sizhong; Liu, Zhaodu; Ma, Guocheng
2017-01-01
Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF) with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN) algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness. PMID:28296902
iDensity: an automatic Gabor filter-based algorithm for breast density assessment
NASA Astrophysics Data System (ADS)
Gamdonkar, Ziba; Tay, Kevin; Ryder, Will; Brennan, Patrick C.; Mello-Thoms, Claudia
2015-03-01
Abstract Although many semi-automated and automated algorithms for breast density assessment have been recently proposed, none of these have been widely accepted. In this study a novel automated algorithm, named iDensity, inspired by the human visual system is proposed for classifying mammograms into four breast density categories corresponding to the Breast Imaging Reporting and Data System (BI-RADS). For each BI-RADS category 80 cases were taken from the normal volumes of the Digital Database for Screening Mammography (DDSM). For each case only the left medio-lateral oblique was utilized. After image calibration using the provided tables of each scanner in the DDSM, the pectoral muscle and background were removed. Images were filtered by a median filter and down sampled. Images were then filtered by a filter bank consisting of Gabor filters in six orientations and 3 scales, as well as a Gaussian filter. Three gray level histogram-based features and three second order statistics features were extracted from each filtered image. Using the extracted features, mammograms were separated initially separated into two groups, low or high density, then in a second stage, the low density group was subdivided into BI-RADS I or II, and the high density group into BI-RADS III or IV. The algorithm achieved a sensitivity of 95% and specificity of 94% in the first stage, sensitivity of 89% and specificity of 95% when classifying BIRADS I and II cases, and a sensitivity of 88% and 91% specificity when classifying BI-RADS III and IV.
Gharieb, R R; Cichocki, A
2001-03-01
An adaptive filtering approach for the segmentation and tracking of electro-encephalogram (EEG) signal waves is described. In this approach, an adaptive recursive bandpass filter is employed for estimating and tracking the centre frequency associated with each EEG wave. The main advantage inherent in the approach is that the employed adaptive filter has only one unknown coefficient to be updated. This coefficient, having an absolute value less than 1, represents an efficient distinct feature for each EEG specific wave, and its time function reflects the non-stationarity behaviour of the EEG signal. Therefore the proposed approach is simple and accurate in comparison with existing multivariate adaptive approaches. The approach is examined using extensive computer simulations. It is applied to computer-generated EEG signals composed of different waves. The adaptive filter coefficient (i.e. the segmentation parameter) is -0.492 for the delta wave, -0.360 for the theta wave, -0.191 for the alpha wave, -0.027 for the sigma wave, 0.138 for the beta wave and 0.605 for the gamma wave. This implies that the segmentation parameter increases with the increase in the centre frequency of the EEG waves, which provides fast on-line information about the behaviour of the EEG signal. The approach is also applied to real-world EEG data for the detection of sleep spindles.
Statistical behaviour of adaptive multilevel splitting algorithms in simple models
NASA Astrophysics Data System (ADS)
Rolland, Joran; Simonnet, Eric
2015-02-01
Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection-mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations.
Statistical behaviour of adaptive multilevel splitting algorithms in simple models
Rolland, Joran Simonnet, Eric
2015-02-15
Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations.
A new dehazing algorithm based on overlapped sub-block homomorphic filtering
NASA Astrophysics Data System (ADS)
Yu, Lu; Liu, Xuebin; Liu, Guizhong
2015-12-01
Considering the images captured under hazy weather conditions are blurred, a new dehazing algorithm based on overlapped sub-block homomorphic filtering in HSV color space is proposed. Firstly, the hazy image is transformed from RGB to HSV color space. Secondly, the luminance component V is dealt with the overlapped sub-block homomorphic filtering. Finally, the processed image is converted from HSV to RGB color space once again. Then the dehazing images will be obtained. According to the established algorithm model, the dehazing images could be evaluated by six objective evaluation parameters including average value, standard deviation, entropy, average gradient, edge intensity and contrast. The experimental results show that this algorithm has good dehazing effect. It can not only improve degradation of the image, but also amplify the image details and enhance the contrast of the image effectively.
Collaborative filtering algorithm based on Forgetting Curve and Long Tail theory
NASA Astrophysics Data System (ADS)
Qi, Shen; Li, Shiwei; Zhou, Hao
2017-03-01
The traditional collaborative filtering algorithm only pays attention to the rating by users. In reality, however, user and item information is always changing with time flying. Therefore, recommendation systems need to take time-varying changes into consideration. The collaborative filtering algorithm which is based on Forgetting Curve and Long Tail theory (FCLT) is introduced for the above problems. The following two points are discussed depending on the problem: First, the user-item rating matrix can update in real time by forgetting curve; secondly, according to the Long Tail theory and item popularity, a further similarity calculation method is obtained. The experimental results demonstrated that the proposed algorithm can effectively improve the recommendation accuracy and alleviate the Long Tail effect.
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-26
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991
ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.
Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L
2011-08-01
In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.
An adaptive penalty method for DIRECT algorithm in engineering optimization
NASA Astrophysics Data System (ADS)
Vilaça, Rita; Rocha, Ana Maria A. C.
2012-09-01
The most common approach for solving constrained optimization problems is based on penalty functions, where the constrained problem is transformed into a sequence of unconstrained problem by penalizing the objective function when constraints are violated. In this paper, we analyze the implementation of an adaptive penalty method, within the DIRECT algorithm, in which the constraints that are more difficult to be satisfied will have relatively higher penalty values. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.
Noise filtering algorithm for the MFTF-B computer based control system
Minor, E.G.
1983-11-30
An algorithm to reduce the message traffic in the MFTF-B computer based control system is described. The algorithm filters analog inputs to the control system. Its purpose is to distinguish between changes in the inputs due to noise and changes due to significant variations in the quantity being monitored. Noise is rejected while significant changes are reported to the control system data base, thus keeping the data base updated with a minimum number of messages. The algorithm is memory efficient, requiring only four bytes of storage per analog channel, and computationally simple, requiring only subtraction and comparison. Quantitative analysis of the algorithm is presented for the case of additive Gaussian noise. It is shown that the algorithm is stable and tends toward the mean value of the monitored variable over a wide variety of additive noise distributions.
Wagner-Menghin, Michaela M; Masters, Geoff N
2013-01-01
Although the principles of adaptive testing were established in the psychometric literature many years ago (e.g., Weiss, 1977), and practice of adaptive testing is established in educational assessment, it not yet widespread in psychological assessment. One obstacle to adaptive psychological testing is a lack of clarity about the necessary number of items to run an adaptive algorithm. The study explores the relationship between item bank size, test length and measurement precision. Simulated adaptive test runs (allowing a maximum of 30 items per person) out of an item bank with 10 items per ability level (covering .5 logits, 150 items total) yield a standard error of measurement (SEM) of .47 (.39) after an average of 20 (29) items for 85-93% (64-82%) of the simulated rectangular sample. Expanding the bank to 20 items per level (300 items total) did not improve the algorithm's performance significantly. With a small item bank (5 items per ability level, 75 items total) it is possible to reach the same SEM as with a conventional test, but with fewer items or a better SEM with the same number of items.
Tuna, E. Erdem; Franke, Timothy J.; Bebek, Özkan; Shiose, Akira; Fukamachi, Kiyotaka; Çavuşoğlu, M. Cenk
2013-01-01
Robotic assisted beating heart surgery aims to allow surgeons to operate on a beating heart without stabilizers as if the heart is stationary. The robot actively cancels heart motion by closely following a point of interest (POI) on the heart surface—a process called Active Relative Motion Canceling (ARMC). Due to the high bandwidth of the POI motion, it is necessary to supply the controller with an estimate of the immediate future of the POI motion over a prediction horizon in order to achieve sufficient tracking accuracy. In this paper, two least-square based prediction algorithms, using an adaptive filter to generate future position estimates, are implemented and studied. The first method assumes a linear system relation between the consecutive samples in the prediction horizon. On the contrary, the second method performs this parametrization independently for each point over the whole the horizon. The effects of predictor parameters and variations in heart rate on tracking performance are studied with constant and varying heart rate data. The predictors are evaluated using a 3 degrees of freedom test-bed and prerecorded in-vivo motion data. Then, the one-step prediction and tracking performances of the presented approaches are compared with an Extended Kalman Filter predictor. Finally, the essential features of the proposed prediction algorithms are summarized. PMID:23976889
Zurbenko, I.; Chen, J.; Rao, S.T.
1997-11-01
The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.
Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P
2013-01-01
In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.
Thakur, A; Anand, R S
2007-01-01
This article discusses an adaptive filtering technique for reducing speckle using second order statistics of the speckle pattern in ultrasound medical images. Several region-based adaptive filter techniques have been developed for speckle noise suppression, but there are no specific criteria for selecting the region growing size in the post processing of the filter. The size appropriate for one local region may not be appropriate for other regions. Selection of the correct region size involves a trade-off between speckle reduction and edge preservation. Generally, a large region size is used to smooth speckle and a small size to preserve the edges into an image. In this paper, a smoothing procedure combines the first order statistics of speckle for the homogeneity test and second order statistics for selection of filters and desired region growth. Grey level co-occurrence matrix (GLCM) is calculated for every region during the region contraction and region growing for second order statistics. Further, these GLCM features determine the appropriate filter for the region smoothing. The performance of this approach is compared with the aggressive region-growing filter (ARGF) using edge preservation and speckle reduction tests. The processed image results show that the proposed method effectively reduces speckle noise and preserves edge details.
Development of an adaptive bilateral filter for evaluating color image difference
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Hardeberg, Jon Yngve
2012-04-01
Spatial filtering, which aims to mimic the contrast sensitivity function (CSF) of the human visual system (HVS), has previously been combined with color difference formulae for measuring color image reproduction errors. These spatial filters attenuate imperceptible information in images, unfortunately including high frequency edges, which are believed to be crucial in the process of scene analysis by the HVS. The adaptive bilateral filter represents a novel approach, which avoids the undesirable loss of edge information introduced by CSF-based filtering. The bilateral filter employs two Gaussian smoothing filters in different domains, i.e., spatial domain and intensity domain. We propose a method to decide the parameters, which are designed to be adaptive to the corresponding viewing conditions, and the quantity and homogeneity of information contained in an image. Experiments and discussions are given to support the proposal. A series of perceptual experiments were conducted to evaluate the performance of our approach. The experimental sample images were reproduced with variations in six image attributes: lightness, chroma, hue, compression, noise, and sharpness/blurriness. The Pearson's correlation values between the model-predicted image difference and the observed difference were employed to evaluate the performance, and compare it with that of spatial CIELAB and image appearance model.
An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data.
Wei, Dai-Yu; Yin, Chang-Cheng
2010-12-01
Cryo-electron microscopy (cryo-EM) now plays an important role in structural analysis of macromolecular complexes, organelles and cells. However, the cryo-EM images obtained close to focus and under low dose conditions have a very high level of noise and a very low contrast, which hinders high-resolution structural analysis. Here, an optimized locally adaptive non-local (LANL) means filter, which can preserve signal details and simultaneously significantly suppress noise for cryo-EM data, is presented. This filter takes advantage of a wide range of pixels to estimate the denoised pixel values instead of the traditional filter that only uses pixels in the local neighborhood. The filter performed well on simulated data and showed promising results on raw cryo-EM images and tomograms. The predominant advantage of this optimized LANL-means filter is the structural signal and the background are clearly distinguishable. This locally adaptive non-local means filter may become a useful tool in the analysis of cryo-EM data, such as automatic particle picking, extracting structural features and segmentation of tomograms.
NASA Technical Reports Server (NTRS)
Balas, Mark; Frost, Susan
2012-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.
NASA Astrophysics Data System (ADS)
Wang, Ke; Huang, Zhi; Zhong, Zhihua
2014-11-01
Due to the large variations of environment with ever-changing background and vehicles with different shapes, colors and appearances, to implement a real-time on-board vehicle recognition system with high adaptability, efficiency and robustness in complicated environments, remains challenging. This paper introduces a simultaneous detection and tracking framework for robust on-board vehicle recognition based on monocular vision technology. The framework utilizes a novel layered machine learning and particle filter to build a multi-vehicle detection and tracking system. In the vehicle detection stage, a layered machine learning method is presented, which combines coarse-search and fine-search to obtain the target using the AdaBoost-based training algorithm. The pavement segmentation method based on characteristic similarity is proposed to estimate the most likely pavement area. Efficiency and accuracy are enhanced by restricting vehicle detection within the downsized area of pavement. In vehicle tracking stage, a multi-objective tracking algorithm based on target state management and particle filter is proposed. The proposed system is evaluated by roadway video captured in a variety of traffics, illumination, and weather conditions. The evaluating results show that, under conditions of proper illumination and clear vehicle appearance, the proposed system achieves 91.2% detection rate and 2.6% false detection rate. Experiments compared to typical algorithms show that, the presented algorithm reduces the false detection rate nearly by half at the cost of decreasing 2.7%-8.6% detection rate. This paper proposes a multi-vehicle detection and tracking system, which is promising for implementation in an on-board vehicle recognition system with high precision, strong robustness and low computational cost.
Path Planning Algorithms for the Adaptive Sensor Fleet
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hosler, Jeff
2005-01-01
The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.
Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking
2008-12-01
Analysis ......................................................51 5. Standard Deviation of Beam Position Error ...................................51 6...Organization of Analysis ...................................................................51 B. FEEDFORWARD ADAPTIVE FILTERS USING MULTIPLE...actuator (loud speaker or CFSM) before its effect reaches the error sensor. In ANC lingo , y(t) must first pass through the secondary plant dynamics of the
Design of adaptive filter amplifier in UV communication based on DSP
NASA Astrophysics Data System (ADS)
Lv, Zhaoshun; Wu, Hanping; Li, Junyu
2016-10-01
According to the problem of the weak signal at receiving end in UV communication, we design a high gain, continuously adjustable adaptive filter amplifier. Based on proposing overall technical indicators and analyzing its working principle of the signal amplifier, we use chip LMH6629MF and two chips of AD797BN to achieve three-level cascade amplification. And apply hardware of DSP TMS320VC5509A to implement digital filtering. Design and verification by Multisim, Protel 99SE and CCS, the results show that: the amplifier can realize continuously adjustable amplification from 1000 to 10000 times without distortion. Magnification error is <=%4@1000 10000. And equivalent input noise voltage of amplification circuit is <=6 nV/ √Hz @30KHz 45KHz, and realizing function of adaptive filtering. The design provides theoretical reference and technical support for the UV weak signal processing.
NASA Astrophysics Data System (ADS)
Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.
2016-05-01
This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.
Continuous Glucose Monitoring: Real-Time Algorithms for Calibration, Filtering, and Alarms
Bequette, B. Wayne
2010-01-01
Algorithms for real-time use in continuous glucose monitors are reviewed, including calibration, filtering of noisy signals, glucose predictions for hypoglycemic and hyperglycemic alarms, compensation for capillary blood glucose to sensor time lags, and fault detection for sensor degradation and dropouts. A tutorial on Kalman filtering for real-time estimation, prediction, and lag compensation is presented and demonstrated via simulation examples. A limited number of fault detection methods for signal degradation and dropout have been published, making that an important area for future work. PMID:20307402
Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences
Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong
2016-01-01
Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514
Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences.
Li, Hui; Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong
2016-01-01
Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results.
Noise adaptive fading Kalman filter for free-space laser communication beacon tracking.
Li, Lixing; Huang, Yongmei; Wang, Qiang; Yang, Fasheng
2016-10-20
We proposed a prediction algorithm for laser communication pointing, acquisition, and tracking (PAT) subsystems in order to further improve PAT accuracy and reduce the effect of processing delay. In terms of this prediction algorithm, a fading Kalman filter is employed, with the observation noise obtained by the gray value distribution of the laser images. Moreover, to better fit the dynamics of a laser target, the two-stage dynamic model has been chosen as the state transition model for Kalman filtering. In addition, the two-stage dynamic model has been modified by accommodating its form to a change of time lag, thereby compensating the effect of time delay. A series of horizontal path (17 km) experiments under different atmospheric conditions were conducted in the fields. According to the experimental results, the algorithm we proposed could effectively reduce the tracking error and improve pointing accuracy.
Impact of Rician adapted Non-Local Means filtering on HARDI.
Descoteaux, Maxime; Wiest-Daesslé, Nicolas; Prima, Sylvain; Barillot, Christian; Deriche, Rachid
2008-01-01
In this paper we study the impact of denoising the raw high angular resolution diffusion imaging (HARDI) data with the Non-Local Means filter adapted to Rician noise (NLMr). We first show that NLMr filtering improves robustness of apparent diffusion coefficient (ADC) and orientation distribution function (ODF) reconstructions from synthetic HARDI datasets. Our results suggest that the NLMr filtering improve the quality of anisotropy maps computed from ADC and ODF and improve the coherence of q-ball ODFs with the underlying anatomy while not degrading angular resolution. These results are shown on a biological phantom with known ground truth and on a real human brain dataset. Most importantly, we show that multiple measurements of diffusion-weighted (DW) images and averaging these images along each direction can be avoided because NLMr filtering of the individual DW images produces better quality generalized fractional anisotropy maps and more accurate ODF fields than when computed from the averaged DW datasets.
NASA Astrophysics Data System (ADS)
Patnaik, Rohit; Casasent, David
2005-03-01
A face recognition system that functions in the presence of illumination variations is presented. It is based on the minimum noise and correlation energy (MINACE) filter. A separate MINACE filter is synthesized for each person using an automated filter-synthesis algorithm that uses a training set of illumination differences of that person and a validation set of a few faces of other persons to select the MINACE filter parameter c. The MINACE filter for each person is a combination of training images of only that person; no false-class training is done. Different formulations of the MINACE filter and the use of two different correlation plane metrics: correlation peak value and peak-to-correlation plane energy ratio (PCER), are examined. Performance results for face verification and identification are presented using images from the CMU Pose, Illumination, and Expression (PIE) database. All training and test set images are registered to remove tilt bias and scale variations. To evaluate the face verification and identification systems, a set of impostor images (non-database faces) is used to obtain false alarm scores (PFA).
Sannelli, Claudia; Vidaurre, Carmen; Muller, Klaus-Robert; Blankertz, Benjamin
2010-01-01
Laplacian filters are commonly used in Brain Computer Interfacing (BCI). When only data from few channels are available, or when, like at the beginning of an experiment, no previous data from the same user is available complex features cannot be used. In this case band power features calculated from Laplacian filtered channels represents an easy, robust and general feature to control a BCI, since its calculation does not involve any class information. For the same reason, the performance obtained with Laplacian features is poor in comparison to subject-specific optimized spatial filters, such as Common Spatial Patterns (CSP) analysis, which, on the other hand, can be used just in a later phase of the experiment, since they require a considerable amount of training data in order to enroll a stable and good performance. This drawback is particularly evident in case of poor performing BCI users, whose data is highly non-stationary and contains little class relevant information. Therefore, Laplacian filtering is preferred to CSP, e.g., in the initial period of co-adaptive calibration, a novel BCI paradigm designed to alleviate the problem of BCI illiteracy. In fact, in the co-adaptive calibration design the experiment starts with a subject-independent classifier and simple features are needed in order to obtain a fast adaptation of the classifier to the newly acquired user's data. Here, the use of an ensemble of local CSP patches (CSPP) is proposed, which can be considered as a compromise between Laplacians and CSP: CSPP needs less data and channels than CSP, while being superior to Laplacian filtering. This property is shown to be particularly useful for the co-adaptive calibration design and is demonstrated on off-line data from a previous co-adaptive BCI study.
A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning
ERIC Educational Resources Information Center
Hsu, Wei-Chih; Li, Cheng-Hsiu
2015-01-01
This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm.
Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Herbordt, Wolfgang
2007-07-01
The acoustic theory for multichannel sound reproduction systems usually assumes free-field conditions for the listening environment. However, their performance in real-world listening environments may be impaired by reflections at the walls. This impairment can be reduced by suitable compensation measures. For systems with many channels, active compensation is an option, since the compensating waves can be created by the reproduction loudspeakers. Due to the time-varying nature of room acoustics, the compensation signals have to be determined by an adaptive system. The problems associated with the successful operation of multichannel adaptive systems are addressed in this contribution. First, a method for decoupling the adaptation problem is introduced. It is based on a generalized singular value decomposition and is called eigenspace adaptive filtering. Unfortunately, it cannot be implemented in its pure form, since the continuous adaptation of the generalized singular value decomposition matrices to the variable room acoustics is numerically very demanding. However, a combination of this mathematical technique with the physical description of wave propagation yields a realizable multichannel adaptation method with good decoupling properties. It is called wave domain adaptive filtering and is discussed here in the context of wave field synthesis.
Duplication-remove algorithm of image based on EZW-based matrix bloom filter
NASA Astrophysics Data System (ADS)
Che, Yujing; Fei, Xiangdong; Hu, Bo
2011-10-01
Transmission efficiency is seriously hindered by a huge amount of data which is largely redundant during the image transmission on the network. To solver this problem, a new algorithm is put forward here. It firstly uses EZW coding algorithm to compress, code and transform data and then uses Matrix Bloom filter on account of the characters of EZW to remove the redundant data according to the strictly defined ranks. This new algorithm attains its goal of reducing the data being transmitted on the network and improving the transmission efficiency by making real-time judgment that whether the data should be transmitted again in order to cease redundant data transmission as early as possible. Finally, the effectiveness and practicability of this new algorithm has been demonstrated by the simulation experiments.
NASA Technical Reports Server (NTRS)
Alag, Gurbux S.; Gilyard, Glenn B.
1990-01-01
To develop advanced control systems for optimizing aircraft engine performance, unmeasurable output variables must be estimated. The estimation has to be done in an uncertain environment and be adaptable to varying degrees of modeling errors and other variations in engine behavior over its operational life cycle. This paper represented an approach to estimate unmeasured output variables by explicitly modeling the effects of off-nominal engine behavior as biases on the measurable output variables. A state variable model accommodating off-nominal behavior is developed for the engine, and Kalman filter concepts are used to estimate the required variables. Results are presented from nonlinear engine simulation studies as well as the application of the estimation algorithm on actual flight data. The formulation presented has a wide range of application since it is not restricted or tailored to the particular application described.
Insect-Inspired Self-Motion Estimation with Dense Flow Fields--An Adaptive Matched Filter Approach.
Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin
2015-01-01
The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.
Insect-Inspired Self-Motion Estimation with Dense Flow Fields—An Adaptive Matched Filter Approach
Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin
2015-01-01
The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion. PMID:26308839
NASA Astrophysics Data System (ADS)
Zhang, Weige; Shi, Wei; Ma, Zeyu
2015-09-01
Accurate estimations of battery energy and available power capability are of great of importance for realizing an efficient and reliable operation of electric vehicles. To improve the estimation accuracy and reliability for battery state of energy and power capability, a novel model-based joint estimation approach has been proposed against uncertain external operating conditions and internal degradation status of battery cells. Firstly, it proposes a three-dimensional response surface open circuit voltage model to calibrate the estimation inaccuracies of battery state of energy. Secondly, the adaptive unscented Kalman filter (AUKF) is employed to develop a novel model-based joint state estimator for battery state of energy and power capability. The AUKF algorithm utilizes the well-known features of the Kalman filter but employs the method of unscented transform (UT) and adaptive error covariance matching technology to improve the state estimation accuracy. Thirdly, the proposed joint estimator has been verified by a LiFePO4 lithium-ion battery cell under different operating temperatures and aging levels. The result indicates that the estimation errors of battery voltage and state-of-energy are less than 2% even if given a large erroneous initial value, which makes the state of available power capability predict more accurate and reliable for the electric vehicles application.
Wang, Tianyang; Chu, Fulei; Han, Qinkai
2017-03-01
Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result.
NASA Astrophysics Data System (ADS)
Sajeeb, R.; Manohar, C. S.; Roy, D.
2007-09-01
The problem of active control of nonlinear structural dynamical systems, in the presence of both process and measurement noises, is considered. The focus of the study is on the use of particle filters for state estimation in feedback control algorithms for nonlinear structures, when a limited number of noisy output measurements are available. The control design is done using the state-dependent Riccati equation (SDRE) method. The stochastic differential equations (SDEs) governing the dynamical systems are discretized using explicit forms of Ito-Taylor expansions. The Bayesian bootstrap filter and that based on sequential important sampling (SIS) are employed for state estimation. The simulation results show the feasibility of using particle filters and SDRE techniques in control of nonlinear structural dynamical systems.
NASA Technical Reports Server (NTRS)
Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.
1989-01-01
The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.
Czaplewski, Raymond L
2015-09-17
Wall-to-wall remotely sensed data are increasingly available to monitor landscape dynamics over large geographic areas. However, statistical monitoring programs that use post-stratification cannot fully utilize those sensor data. The Kalman filter (KF) is an alternative statistical estimator. I develop a new KF algorithm that is numerically robust with large numbers of study variables and auxiliary sensor variables. A National Forest Inventory (NFI) illustrates application within an official statistics program. Practical recommendations regarding remote sensing and statistical issues are offered. This algorithm has the potential to increase the value of synoptic sensor data for statistical monitoring of large geographic areas.
A class of least-squares filtering and identification algorithms with systolic array architectures
NASA Technical Reports Server (NTRS)
Kalson, Seth Z.; Yao, Kung
1991-01-01
A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.
NASA Astrophysics Data System (ADS)
Zielinski, B.; Patorski, K.
2010-06-01
The aim of this paper is to analyze 2D fringe pattern denoising performed by two chosen methods based on quasi-1D two-arm spin filter and 2D discrete wavelet transform (DWT) signal decomposition and thresholding. The ultimate aim of this comparison is to estimate which algorithm is better suited for high-accuracy measurements by phase shifting interferometry (PSI) with the phase step evaluation using the lattice site approach. The spin filtering method proposed by Yu et al. (1994) was designed to minimize possible fringe blur and distortion. The 2D DWT also presents such features due to a lossless nature of the signal wavelet decomposition. To compare both methods, a special 2D histogram introduced by Gutman and Weber (1998) is used to evaluate intensity errors introduced by each of the presented algorithms.
Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, G
2016-05-01
With the advent of miniaturized inertial sensors many systems have been developed within the last decade to study and analyze human motion and posture, specially in the medical field. Data measured by the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the orientation of the body parts under study. These filters traditionally include fixed parameters, such as the process and observation noise variances, whose value has large influence in the overall performance. It has been demonstrated that the optimal value of these parameters differs considerably for different motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of orientation estimation algorithms can be improved, therefore providing physicians with reliable objective data they can use in their daily practice.
Ahirwal, M K; Kumar, Anil; Singh, G K
2013-01-01
This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
Tsui, Po-Hsiang; Wan, Yung-Liang; Huang, Chih-Chung; Wang, Ming-Chen
2010-10-01
The Nakagami parameter is associated with the Nakagami distribution estimated from ultrasonic backscattered signals and closely reflects the scatterer concentrations in tissues. There is an interest in exploring the possibility of enhancing the ability of the Nakagami parameter to characterize tissues. In this paper, we explore the effect of adaptive thresholdfiltering based on the noise-assisted empirical mode decomposition of the ultrasonic backscattered signals on the Nakagami parameter as a function of scatterer concentration for improving the Nakagami parameter performance. We carried out phantom experiments using 5 MHz focused and nonfocused transducers. Before filtering, the dynamic ranges of the Nakagami parameter, estimated using focused and nonfocused transducers between the scatterer concentrations of 2 and 32 scatterers/mm3, were 0.44 and 0.1, respectively. After filtering, the dynamic ranges of the Nakagami parameter, using the focused and nonfocused transducers, were 0.71 and 0.79, respectively. The experimental results showed that the adaptive threshold filter makes the Nakagami parameter measured by a focused transducer more sensitive to the variation in the scatterer concentration. The proposed method also endows the Nakagami parameter measured by a nonfocused transducer with the ability to differentiate various scatterer concentrations. However, the Nakagami parameters estimated by focused and nonfocused transducers after adaptive threshold filtering have different physical meanings: the former represents the statistics of signals backscattered from unresolvable scatterers while the latter is associated with stronger resolvable scatterers or local inhomogeneity due to scatterer aggregation.
Reducing the effect of respiration in baroreflex sensitivity estimation with adaptive filtering.
Tiinanen, Suvi; Tulppo, Mikko; Seppänen, Tapio
2008-01-01
Cardiac baroreflex is described by baroreflex sensitivity (BRS) from blood pressure and heart rate interval (RRi) fluctuations. However, respiration affects both blood pressure and RRi via mechanisms that are not necessarily of baroreflex origin. To separate the effects of baroreflex and respiration, metronome-guided breathing in a high frequency band (HF, 0.25-0.4 Hz) and a low frequency spectral band (LF, 0.04-0.15 Hz) have therefore been commonly used for BRS estimation. The controlled breathing may, however, change the natural functioning of the autonomic system and interfere BRS estimates. To enable usage of spontaneous breathing, we propose an adaptive LMS-based filter for removing the respiration effect from the BRS estimates. ECG, continuous blood pressure and respiration were measured during 5 min spontaneous and 5 min controlled breathing at 0.25 Hz in healthy males (n = 24, 33+/-7 years). BRS was calculated with spectral methods from the LF band with and without filtering. In those subjects whose spontaneous breathing rate was <0.15 Hz, the BRS(LF) values were overestimated, whereas the adaptive filtering reduced the bias significantly. As a conclusion, the adaptive filter reduces the distorting effect of respiration on BRS values, which enables more accurate estimation of BRS and the usage of spontaneous breathing as a measurement protocol.
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; Law, K. J. H.
2016-02-23
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recover the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2012-11-01
The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.
Application of the Trend Filtering Algorithm for Photometric Time Series Data
NASA Astrophysics Data System (ADS)
Gopalan, Giri; Plavchan, Peter; van Eyken, Julian; Ciardi, David; von Braun, Kaspar; Kane, Stephen R.
2016-08-01
Detecting transient light curves (e.g., transiting planets) requires high-precision data, and thus it is important to effectively filter systematic trends affecting ground-based wide-field surveys. We apply an implementation of the Trend Filtering Algorithm (TFA) to the 2MASS calibration catalog and select Palomar Transient Factory (PTF) photometric time series data. TFA is successful at reducing the overall dispersion of light curves, however, it may over-filter intrinsic variables and increase “instantaneous” dispersion when a template set is not judiciously chosen. In an attempt to rectify these issues we modify the original TFA from the literature by including measurement uncertainties in its computation, including ancillary data correlated with noise, and algorithmically selecting a template set using clustering algorithms as suggested by various authors. This approach may be particularly useful for appropriately accounting for variable photometric precision surveys and/or combined data sets. In summary, our contributions are to provide a MATLAB software implementation of TFA and a number of modifications tested on synthetics and real data, summarize the performance of TFA and various modifications on real ground-based data sets (2MASS and PTF), and assess the efficacy of TFA and modifications using synthetic light curve tests consisting of transiting and sinusoidal variables. While the transiting variables test indicates that these modifications confer no advantage to transit detection, the sinusoidal variables test indicates potential improvements in detection accuracy.
Algorithms and data structures for adaptive multigrid elliptic solvers
NASA Technical Reports Server (NTRS)
Vanrosendale, J.
1983-01-01
Adaptive refinement and the complicated data structures required to support it are discussed. These data structures must be carefully tuned, especially in three dimensions where the time and storage requirements of algorithms are crucial. Another major issue is grid generation. The options available seem to be curvilinear fitted grids, constructed on iterative graphics systems, and unfitted Cartesian grids, which can be constructed automatically. On several grounds, including storage requirements, the second option seems preferrable for the well behaved scalar elliptic problems considered here. A variety of techniques for treatment of boundary conditions on such grids are reviewed. A new approach, which may overcome some of the difficulties encountered with previous approaches, is also presented.
Adaptive filtering and feed-forward control for suppression of vibration and jitter
NASA Astrophysics Data System (ADS)
Anderson, Eric H.; Blankinship, Ross L.; Fowler, Leslie P.; Glaese, Roger M.; Janzen, Paul C.
2007-04-01
This paper describes the use of adaptive filtering to control vibration and optical jitter. Adaptive filtering is a class of signal processing techniques developed over the last several decades and applied since to applications ranging from communications to image processing. Basic concepts in adaptive filtering and feedforward control are reviewed. A series of examples in vibration, motion and jitter control, including cryocoolers, ground-based active optics systems, flight motion simulators, wind turbines and airborne optical beam control systems, illustrates the effectiveness of the adaptive methods. These applications make use of information and signals that originate from system disturbances and minimize the correlations between disturbance information and error and performance measures. The examples incorporate a variety of disturbance types including periodic, multi-tonal, broadband stationary and non-stationary. Control effectiveness with slowly-varying narrowband disturbances originating from cryocoolers can be extraordinary, reaching 60 dB of reduction or rejection. In other cases, performance improvements are only 30-50%, but such reductions effectively complement feedback servo performance in many applications.
Stasiunas, Antanas; Verikas, Antanas; Bacauskiene, Marija; Miliauskas, Rimvydas
2012-03-01
Outer hair cells in the cochlea of the ear, together with the local structures of the basilar membrane, reticular lamina and tectorial membrane constitute the adaptive primary filters (PF) of the second order. We used them for designing a serial-parallel signal filtering system. We determined a rational number of the PF included in Gaussian channels of the system, summation weights of the output signals, and distribution of the PF along the basilar membrane. A Gaussian panoramic filter bank each channel of which consists of five PF is presented as an example. The properties of the PF, the channel and the filter bank operating in the linear and nonlinear modes are determined during adaptation and under efferent control. The results suggest that application of biological filtering principles can be useful for designing cochlear implants with new speech encoding strategies.
Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms
NASA Technical Reports Server (NTRS)
Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin
2014-01-01
This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.
Zheng, Dongliang; Da, Feipeng; Kemao, Qian; Seah, Hock Soon
2017-03-06
Phase-shifting profilometry combined with Gray-code patterns projection has been widely used for 3D measurement. In this technique, a phase-shifting algorithm is used to calculate the wrapped phase, and a set of Gray-code binary patterns is used to determine the unwrapped phase. In the real measurement, the captured Gray-code patterns are no longer binary, resulting in phase unwrapping errors at a large number of erroneous pixels. Although this problem has been attended and well resolved by a few methods, it remains challenging when a measured object has step-heights and the captured patterns contain invalid pixels. To effectively remove unwrapping errors and simultaneously preserve step-heights, in this paper, an effective method using an adaptive median filter is proposed. Both simulations and experiments can demonstrate its effectiveness.
An adaptive /N-body algorithm of optimal order
NASA Astrophysics Data System (ADS)
Pruett, C. David; Rudmin, Joseph W.; Lacy, Justin M.
2003-05-01
Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a practical numerical method for a certain class of ODEs, based upon modified Picard iteration, that generates the Maclaurin series of the solution to arbitrarily high order. The applicable class of ODEs consists of first-order, autonomous systems whose right-hand side functions (generators) are projectively polynomial; that is, they can be written as polynomials in the unknowns. The class is wider than might be expected. The method is ideally suited to the classical N-body problem, which is projectively polynomial. Here, we recast the N-body problem in polynomial form and develop a Picard-based algorithm for its solution. The algorithm is highly accurate, parameter-free, and simultaneously adaptive in time and order. Test cases for both benign and chaotic N-body systems reveal that optimal order is dynamic. That is, in addition to dependency upon N and the desired accuracy, optimal order depends upon the configuration of the bodies at any instant.
Design of infrasound-detection system via adaptive LMSTDE algorithm
NASA Technical Reports Server (NTRS)
Khalaf, C. S.; Stoughton, J. W.
1984-01-01
A proposed solution to an aviation safety problem is based on passive detection of turbulent weather phenomena through their infrasonic emission. This thesis describes a system design that is adequate for detection and bearing evaluation of infrasounds. An array of four sensors, with the appropriate hardware, is used for the detection part. Bearing evaluation is based on estimates of time delays between sensor outputs. The generalized cross correlation (GCC), as the conventional time-delay estimation (TDE) method, is first reviewed. An adaptive TDE approach, using the least mean square (LMS) algorithm, is then discussed. A comparison between the two techniques is made and the advantages of the adaptive approach are listed. The behavior of the GCC, as a Roth processor, is examined for the anticipated signals. It is shown that the Roth processor has the desired effect of sharpening the peak of the correlation function. It is also shown that the LMSTDE technique is an equivalent implementation of the Roth processor in the time domain. A LMSTDE lead-lag model, with a variable stability coefficient and a convergence criterion, is designed.
The Adaptive Analysis of Visual Cognition using Genetic Algorithms
Cook, Robert G.; Qadri, Muhammad A. J.
2014-01-01
Two experiments used a novel, open-ended, and adaptive test procedure to examine visual cognition in animals. Using a genetic algorithm, a pigeon was tested repeatedly from a variety of different initial conditions for its solution to an intermediate brightness search task. On each trial, the animal had to accurately locate and peck a target element of intermediate brightness from among a variable number of surrounding darker and lighter distractor elements. Displays were generated from six parametric variables, or genes (distractor number, element size, shape, spacing, target brightness, distractor brightness). Display composition changed over time, or evolved, as a function of the bird’s differential accuracy within the population of values for each gene. Testing three randomized initial conditions and one set of controlled initial conditions, element size and number of distractors were identified as the most important factors controlling search accuracy, with distractor brightness, element shape, and spacing making secondary contributions. The resulting changes in this multidimensional stimulus space suggested the existence of a set of conditions that the bird repeatedly converged upon regardless of initial conditions. This psychological “attractor” represents the cumulative action of the cognitive operations used by the pigeon in solving and performing this search task. The results are discussed regarding their implications for visual cognition in pigeons and the usefulness of adaptive, subject-driven experimentation for investigating human and animal cognition more generally. PMID:24000905
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.
2013-02-01
Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
Aumeier, S. E.; Forsmann, J. H.; Engineering Division
1998-04-01
The ability to nondestructively determine the presence and quantity of fissile/fertile nuclei in various matrices is important in several areas of nuclear applications, including international and domestic safeguards, radioactive waste characterization, and nuclear facility operations. An analysis was performed to determine the feasibility of identifying the masses of individual fissionable isotopes from a cumulative delayed-neutron signal resulting from the neutron irradiation of several uranium and plutonium isotopes. The feasibility of two separate data-processing techniques was studied: Kalman filtering and genetic algorithms. The basis of each technique is reviewed, and the structure of the algorithms as applied to the delayed-neutron analysis problem is presented. The results of parametric studies performed using several variants of the algorithms are presented. The effect of including additional constraining information such as additional measurements and known relative isotopic concentration is discussed. The parametric studies were conducted using simulated delayed-neutron data representative of the cumulative delayed-neutron response following irradiation of a sample containing {sup 238}U, {sup 235}U, {sup 239}Pu, and {sup 240}Pu. The results show that by processing delayed-neutron data representative of two significantly different fissile/fertile fission ratios, both Kalman filters and genetic algorithms are capable of yielding reasonably accurate estimates of the mass of individual isotopes contained in a given assay sample.
Aumeier, S.E.; Forsmann, J.H.
1998-04-01
The ability to nondestructively determine the presence and quantity of fissile/fertile nuclei in various matrices is important in several areas of nuclear applications, including international and domestic safeguards, radioactive waste characterization, and nuclear facility operations. An analysis was performed to determine the feasibility of identifying the masses of individual fissionable isotopes from a cumulative delayed-neutron signal resulting form the neutron irradiation of several uranium and plutonium isotopes. The feasibility of two separate data-processing techniques was studied: Kalman filtering and genetic algorithms. The basis of each technique is reviewed, and the structure of the algorithms as applied to the delayed-neutron analysis problem is presented. The results of parametric studies performed using several variants of the algorithms are presented. The effect of including additional constraining information such as additional measurements and known relative isotopic concentration is discussed. The parametric studies were conducted using simulated delayed-neutron data representative of the cumulative delayed-neutron response following irradiation of a sample containing {sup 238}U, {sup 235}U, {sup 239}Pu, and {sup 240}Pu. The results show that by processing delayed-neutron data representative of two significantly different fissile/fertile fission ratios, both Kalman filters and genetic algorithms are capable of yielding reasonably accurate estimates of the mass of individual isotopes contained in a given assay sample.
Adapting a truly nonlinear filter to the ocean acoustic inverse problem
NASA Astrophysics Data System (ADS)
Ganse, Andrew A.; Odom, Robert I.
2005-04-01
Nonlinear inverse problems including the ocean acoustic problem have been solved by Monte Carlo, locally-linear, and filter based techniques such as the Extended Kalman Filter (EKF). While these techniques do provide statistical information about the solution (e.g., mean and variance), each suffers from inherent limitations in their approach to nonlinear problems. Monte Carlo techniques are expensive to compute and do not contribute to intuitive interpretation of a problem, and locally-linear techniques (including the EKF) are limited by the multimodal objective landscape of nonlinear problems. A truly nonlinear filter, based on recent work in nonlinear tracking, estimates state information for a nonlinear problem in continual measurement updates and is adapted to solving nonlinear inverse problems. Additional terms derived from the system's state PDF are added to the mean and covariance of the solution to address the nonlinearities of the problem, and overall the technique offers improved performance in nonlinear inversion. [Work supported by ONR.
NASA Technical Reports Server (NTRS)
Smith, J. W.; Edwards, J. W.
1980-01-01
Analysis of a longitudinal pilot-induced oscillation (PIO) experienced just prior to touchdown on the final flight of the space shuttle's approach landing tests indicated that the source of the problem was a combination of poor basic handling qualities aggravated by time delays through the digital flight control computer and rate limiting of the elevator actuators due to high pilot gain. A nonlinear PIO suppression (PIOS) filter was designed and developed to alleviate the vehicle's PIO tendencies by reducing the gain in the command path. From analytical and simulator studies it was shown that the PIOS filter, in an adaptive fashion, can attenuate the command path gain without adding phase lag to the system. With the pitch attitude loop of a simulated shuttle model closed, the PIOS filter increased the gain margin by a factor of about two.
Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images.
Bamber, J C; Daft, C
1986-01-01
Current medical ultrasonic scanning instrumentation permits the display of fine image detail (speckle) which does not transfer useful information but degrades the apparent low contrast resolution in the image. An adaptive two-dimensional filter has been developed which uses local features of image texture to recognize and maximally low-pass filter those parts of the image which correspond to fully developed speckle, while substantially preserving information associated with resolved-object structure. A first implementation of the filter is described which uses the ratio of the local variance and the local mean as the speckle recognition feature. Preliminary results of applying this form of display processing to medical ultrasound images are very encouraging; it appears that the visual perception of features such as small discrete structures, subtle fluctuations in mean echo level and changes in image texture may be enhanced relative to that for unprocessed images.
Low-cost attitude determination system using an extended Kalman filter (EKF) algorithm
NASA Astrophysics Data System (ADS)
Esteves, Fernando M.; Nehmetallah, Georges; Abot, Jandro L.
2016-05-01
Attitude determination is one of the most important subsystems in spacecraft, satellite, or scientific balloon mission s, since it can be combined with actuators to provide rate stabilization and pointing accuracy for payloads. In this paper, a low-cost attitude determination system with a precision in the order of arc-seconds that uses low-cost commercial sensors is presented including a set of uncorrelated MEMS gyroscopes, two clinometers, and a magnetometer in a hierarchical manner. The faster and less precise sensors are updated by the slower, but more precise ones through an Extended Kalman Filter (EKF)-based data fusion algorithm. A revision of the EKF algorithm fundamentals and its implementation to the current application, are presented along with an analysis of sensors noise. Finally, the results from the data fusion algorithm implementation are discussed in detail.
Adaptive motion artifact reducing algorithm for wrist photoplethysmography application
NASA Astrophysics Data System (ADS)
Zhao, Jingwei; Wang, Guijin; Shi, Chenbo
2016-04-01
Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.
Ensembles of adaptive spatial filters increase BCI performance: an online evaluation
NASA Astrophysics Data System (ADS)
Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin
2016-08-01
Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI
NASA Technical Reports Server (NTRS)
Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.
1991-01-01
The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.
Adaptive control of a flexible beam using least square lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.
1983-01-01
This paper presents an indirect adaptive control scheme for the control of flexible structures using recursive least square lattice filters. The identification scheme uses lattice filters which provide an on-line estimate of the number of modes, mode shapes and modal amplitudes. These modes are coupled and a transformation to decouple them in order to obtain the natural modes is presented. The decoupled modal amplitude time series are then used in an equation error identification scheme to identify the model parameters in an autoregressive moving average (ARMA) form. The control is based on modal pole placement scheme with the objective of vibration suppression. The control gains are calculated based on the identified ARMA parameters. Before using the identified parameters for control, detailed testing and validation procedures are carried out on the identified parameters. The full adaptive control scheme is demonstrated using the simulation for the 12 foot free-free beam apparatus at NASA Langley Research Center.
Performance characteristics of an adaptive controller based on least-mean-square filters
NASA Technical Reports Server (NTRS)
Mehta, R. S.; Merhav, S. J.
1986-01-01
A closed-loop, adaptive-control scheme that uses a least-mean-square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.
Performance characteristics of an adaptive controller based on least-mean-square filters
NASA Technical Reports Server (NTRS)
Mehta, Rajiv S.; Merhav, Shmuel J.
1986-01-01
A closed loop, adaptive control scheme that uses a least mean square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.
A phantom study on the behavior of Acuros XB algorithm in flattening filter free photon beams.
Muralidhar, K R; Pangam, Suresh; Srinivas, P; Athar Ali, Mirza; Priya, V Sujana; Komanduri, Krishna
2015-01-01
To study the behavior of Acuros XB algorithm for flattening filter free (FFF) photon beams in comparison with the anisotropic analytical algorithm (AAA) when applied to homogeneous and heterogeneous phantoms in conventional and RapidArc techniques. Acuros XB (Eclipse version 10.0, Varian Medical Systems, CA, USA) and AAA algorithms were used to calculate dose distributions for both 6X FFF and 10X FFF energies. RapidArc plans were created on Catphan phantom 504 and conventional plans on virtual homogeneous water phantom 30 × 30 × 30 cm(3), virtual heterogeneous phantom with various inserts and on solid water phantom with air cavity. Dose at various inserts with different densities were measured in both AAA and Acuros algorithms. The maximum % variation in dose was observed in (-944 HU) air insert and minimum in (85 HU) acrylic insert in both 6X FFF and 10X FFF photons. Less than 1% variation observed between -149 HU and 282 HU for both energies. At -40 HU and 765 HU Acuros behaved quite contrarily with 10X FFF. Maximum % variation in dose was observed in less HU values and minimum variation in higher HU values for both FFF energies. Global maximum dose observed at higher depths for Acuros for both energies compared with AAA. Increase in dose was observed with Acuros algorithm in almost all densities and decrease at few densities ranging from 282 to 643 HU values. Field size, depth, beam energy, and material density influenced the dose difference between two algorithms.
Adaptive filtering of biodynamic stick feedthrough in manipulation tasks on board moving platforms
NASA Technical Reports Server (NTRS)
Velger, M.; Grunwald, A.; Merhav, S.
1986-01-01
A novel approach to suppress the effects of biodynamic interference is presented. An adaptive noise canceling technique is employed for substracting the platform motion correlated components from the control stick output. The effects of biodynamic interference and its suppression by adaptive noise cancellation has been evaluated in a series of tracking tasks performed in a moving base simulator. Simulator motions were in pitch, roll and combined pitch and roll. Human operator performance was assessed from the mean square values of the tracking error and the control activity. The tracking error and the total stick output signal were found to increase significantly with motion and to diminish substantially with adaptive noise cancellation, thus providing a considerable improvement in tracking performance under conditions in which platform motion were present. The adaptive filter was found to cause a significant increase in the cross-over frequency and decrease in the phase margin. Moreover, the adaptive filter was found to significantly improve the human operator visual motor response. This improvement is manifested as an increased human operator gain, a smaller time delay and lower pilot workload.
A Fuzzy Genetic Algorithm Approach to an Adaptive Information Retrieval Agent.
ERIC Educational Resources Information Center
Martin-Bautista, Maria J.; Vila, Maria-Amparo; Larsen, Henrik Legind
1999-01-01
Presents an approach to a Genetic Information Retrieval Agent Filter (GIRAF) that filters and ranks documents retrieved from the Internet according to users' preferences by using a Genetic Algorithm and fuzzy set theory to handle the imprecision of users' preferences and users' evaluation of the retrieved documents. (Author/LRW)
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.