Science.gov

Sample records for adaptive fir filter

  1. Frequency domain FIR and IIR adaptive filters

    NASA Technical Reports Server (NTRS)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  2. Fault-tolerant adaptive FIR filters using variable detection threshold

    NASA Astrophysics Data System (ADS)

    Lin, L. K.; Redinbo, G. R.

    1994-10-01

    Adaptive filters are widely used in many digital signal processing applications, where tap weight of the filters are adjusted by stochastic gradient search methods. Block adaptive filtering techniques, such as block least mean square and block conjugate gradient algorithm, were developed to speed up the convergence as well as improve the tracking capability which are two important factors in designing real-time adaptive filter systems. Even though algorithm-based fault tolerance can be used as a low-cost high level fault-tolerant technique to protect the aforementioned systems from hardware failures with minimal hardware overhead, the issue of choosing a good detection threshold remains a challenging problem. First of all, the systems usually only have limited computational resources, i.e., concurrent error detection and correction is not feasible. Secondly, any prior knowledge of input data is very difficult to get in practical settings. We propose a checksum-based fault detection scheme using two-level variable detection thresholds that is dynamically dependent on the past syndromes. Simulations show that the proposed scheme reduces the possibility of false alarms and has a high degree of fault coverage in adaptive filter systems.

  3. System Verilog modelling of FIR filters

    NASA Astrophysics Data System (ADS)

    Pawlus, Łukasz; Wegrzyn, Marek

    2006-02-01

    In the paper modelling of FIR filters by means of Verilog and SystemVerilog is presented. Hardware/software co-design approach for such systems is applied in the presented design. As a final technology for a FIR filters system implementation, a FPSLIC device is considered. Filters system demonstrates example methods of communication between FPGA and AVR microcontroller in a FPSLIC structure, i.e. the communication through SRAM memory, addressing lines, data bus, interrupts. It also demonstrates how to serve peripheral elements in FPSLIC device by means of DPI interface. FIR filters model contains also interface which implements a FPSLIC cache logic and gives opportunity to a dynamical reconfiguration of FPGA in a FPSLIC structure.

  4. FIR Filter of DS-CDMA UWB Modem Transmitter

    NASA Astrophysics Data System (ADS)

    Kang, Kyu-Min; Cho, Sang-In; Won, Hui-Chul; Choi, Sang-Sung

    This letter presents low-complexity digital pulse shaping filter structures of a direct sequence code division multiple access (DS-CDMA) ultra wide-band (UWB) modem transmitter with a ternary spreading code. The proposed finite impulse response (FIR) filter structures using a look-up table (LUT) have the effect of saving the amount of memory by about 50% to 80% in comparison to the conventional FIR filter structures, and consequently are suitable for a high-speed parallel data process.

  5. An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Fraenkel, E. D.; Glas, Dariusz; Legumina, Remigiusz

    2013-12-01

    The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages.

  6. FIR digital filter-based ZCDPLL for carrier recovery

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2016-04-01

    The objective of this work is to analyse the performance of the newly proposed two-tap FIR digital filter-based first-order zero-crossing digital phase-locked loop (ZCDPLL) in the absence or presence of additive white Gaussian noise (AWGN). The introduction of the two-tap FIR digital filter widens the lock range of a ZCDPLL and improves the loop's operation in the presence of AWGN. The FIR digital filter tap coefficients affect the loop convergence behaviour and appropriate selection of those gains should be taken into consideration. The new proposed loop has wider locking range and faster acquisition time and reduces the phase error variations in the presence of noise.

  7. Synthesis of Band Filters and Equalizers Using Microwav FIR Techniques

    SciTech Connect

    Deibele, C.; /Fermilab

    2000-01-01

    It is desired to design a passive bandpass filter with both a linear phase and flat magnitude response within the band and also has steep skirts. Using the properties of both coupled lines and elementary FIR (Finite Impulse Response) signal processing techniques can produce a filter of adequate phase response and magnitude control. The design procedure will first be described and then a sample filter will then be synthesized and results shown.

  8. Least squares approximation of two-dimensional FIR digital filters

    NASA Astrophysics Data System (ADS)

    Alliney, S.; Sgallari, F.

    1980-02-01

    In this paper, a new method for the synthesis of two-dimensional FIR digital filters is presented. The method is based on a least-squares approximation of the ideal frequency response; an orthogonality property of certain functions, related to the frequency sampling design, improves the computational efficiency.

  9. Modelling Subsea Coaxial Cable as FIR Filter on MATLAB

    NASA Astrophysics Data System (ADS)

    Kanisin, D.; Nordin, M. S.; Hazrul, M. H.; Kumar, E. A.

    2011-05-01

    The paper presents the modelling of subsea coaxial cable as a FIR filter on MATLAB. The subsea coaxial cables are commonly used in telecommunication industry and, oil and gas industry. Furthermore, this cable is unlike a filter circuit, which is a "lumped network" as individual components appear as discrete items. Therefore, a subsea coaxial network can be represented as a digital filter. In overall, the study has been conducted using MATLAB to model the subsea coaxial channel model base on primary and secondary parameters of subsea coaxial cable.

  10. Minimum complexity FIR filters and sparse systolic arrays

    SciTech Connect

    Ferrari, L.A.; Sankar, P.V.

    1988-06-01

    The properties of BETA-spline approximation and the integral/derivative properties of convolution lead to efficient algorithms for the implementation of multidimensional FIR filters. The implementations are of minimum time complexity under the Nyquist criterion. The algorithm can easily be implemented using a sparse systolic array architecture. The resulting BETA-spline convolvers have much lower circuit complexity than systolic architectures based on conventional convolution algorithms. A two-dimensional hardware implementation based on simplifications of current architectures is presented.

  11. Adaptive Mallow's optimization for weighted median filters

    NASA Astrophysics Data System (ADS)

    Rachuri, Raghu; Rao, Sathyanarayana S.

    2002-05-01

    This work extends the idea of spectral optimization for the design of Weighted Median filters and employ adaptive filtering that updates the coefficients of the FIR filter from which the weights of the median filters are derived. Mallows' theory of non-linear smoothers [1] has proven to be of great theoretical significance providing simple design guidelines for non-linear smoothers. It allows us to find a set of positive weights for a WM filter whose sample selection probabilities (SSP's) are as close as possible to a SSP set predetermined by Mallow's. Sample selection probabilities have been used as a basis for designing stack smoothers as they give a measure of the filter's detail preserving ability and give non-negative filter weights. We will extend this idea to design weighted median filters admitting negative weights. The new method first finds the linear FIR filter coefficients adaptively, which are then used to determine the weights of the median filter. WM filters can be designed to have band-pass, high-pass as well as low-pass frequency characteristics. Unlike the linear filters, however, the weighted median filters are robust in the presence of impulsive noise, as shown by the simulation results.

  12. Adaptive filtering image preprocessing for smart FPA technology

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey W.

    1995-05-01

    This paper discusses two applications of adaptive filters for image processing on parallel architectures. The first, based on the results of previously accomplished work, summarizes the analyses of various adaptive filters implemented for pixel-level image prediction. FIR filters, fixed and adaptive IIR filters, and various variable step size algorithms were compared with a focus on algorithm complexity against the ability to predict future pixel values. A gaussian smoothing operation with varying spatial and temporal constants were also applied for comparisons of random noise reductions. The second application is a suggestion to use memory-adaptive IIR filters for detecting and tracking motion within an image. Objects within an image are made of edges, or segments, with varying degrees of motion. An application has been previously published that describes FIR filters connecting pixels and using correlations to determine motion and direction. This implementation seems limited to detecting motion coinciding with FIR filter operation rate and the associated harmonics. Upgrading the FIR structures with adaptive IIR structures can eliminate these limitations. These and any other pixel-level adaptive filtering application require data memory for filter parameters and some basic computational capability. Tradeoffs have to be made between chip real estate and these desired features. System tradeoffs will also have to be made as to where it makes the most sense to do which level of processing. Although smart pixels may not be ready to implement adaptive filters, applications such as these should give the smart pixel designer some long range goals.

  13. Active Cancellation of Acoustical Resonances with an FPGA FIR Filter

    NASA Astrophysics Data System (ADS)

    Ryou, Albert; Simon, Jonathan

    2016-05-01

    We demonstrate a novel approach to enhancing the closed-loop bandwidth of a feedback-controlled mechanical system by digitally cancelling its acoustical resonances and antiresonances with an FPGA FIR filter. By performing a real-time convolution of the feedback error signal with an arbitrary filter, we can suppress arbitrarily many poles and zeros below 100 kHz, each with a linewidth as small as 10 Hz. We demonstrate the efficacy of this technique by cancelling the six largest resonances and antiresonances of a high-finesse optical resonator piezomechanical transfer function, thereby enhancing the unity gain frequency by more than an order of magnitude. More broadly, this approach is applicable to stabilization of optical resonators, external cavity diode lasers, and scanning tunneling microscopes.

  14. Fast Adaptive Blind MMSE Equalizer for Multichannel FIR Systems

    NASA Astrophysics Data System (ADS)

    Kacha, Ibrahim; Abed-Meraim, Karim; Belouchrani, Adel

    2006-12-01

    We propose a new blind minimum mean square error (MMSE) equalization algorithm of noisy multichannel finite impulse response (FIR) systems, that relies only on second-order statistics. The proposed algorithm offers two important advantages: a low computational complexity and a relative robustness against channel order overestimation errors. Exploiting the fact that the columns of the equalizer matrix filter belong both to the signal subspace and to the kernel of truncated data covariance matrix, the proposed algorithm achieves blindly a direct estimation of the zero-delay MMSE equalizer parameters. We develop a two-step procedure to further improve the performance gain and control the equalization delay. An efficient fast adaptive implementation of our equalizer, based on the projection approximation and the shift invariance property of temporal data covariance matrix, is proposed for reducing the computational complexity from[InlineEquation not available: see fulltext.] to[InlineEquation not available: see fulltext.], where[InlineEquation not available: see fulltext.] is the number of emitted signals,[InlineEquation not available: see fulltext.] the data vector length, and[InlineEquation not available: see fulltext.] the dimension of the signal subspace. We then derive a statistical performance analysis to compare the equalization performance with that of the optimal MMSE equalizer. Finally, simulation results are provided to illustrate the effectiveness of the proposed blind equalization algorithm.

  15. Boundary implications for frequency response of interval FIR and IIR filters

    NASA Technical Reports Server (NTRS)

    Bose, N. K.; Kim, K. D.

    1991-01-01

    It is shown that vertex implication results in parameter space apply to interval trigonometric polynomials. Subsequently, it is shown that the frequency responses of both interval FIR and IIR filters are bounded by the frequency responses of certain extreme filters. The results apply directly in the evaluation of properties of designed filters, especially because it is more realistic to bound the filter coefficients from above and below instead of determining those with infinite precision because of finite arithmetic effects. Illustrative examples are provided to show how the extreme filters might be easily derived in any specific interval FIR or IIR filter design problem.

  16. 1D linear-phase band-pass multiplierless FIR Hilbert transformers and filters

    NASA Astrophysics Data System (ADS)

    Pavlović, Vlastimir D.; Dončov, Nebojša S.; Ćirić, Dejan G.

    2016-06-01

    An original analytical method, based on modified Christoffel-Darboux formula, is used in the paper in order to synthesise a linear-phase band-pass finite impulse response (FIR) filter function that can have an effect of Hilbert transformer. New structure of the band-pass FIR filter in recursive realisation, together with the corresponding difference equation, is presented providing the efficient filter solution without multipliers. Several examples of filter types for different parity of two real free integer parameters, including a particular solution of Hilbert transformer, are considered in terms of required number of adders and values of cut-off frequencies of the pass and stop bands. A comparison of the proposed band-pass filter characteristics with those of a classical filter solution is provided in the paper.

  17. Optimization of FIR Digital Filters Using a Real Parameter Parallel Genetic Algorithm and Implementations.

    NASA Astrophysics Data System (ADS)

    Xu, Dexiang

    This dissertation presents a novel method of designing finite word length Finite Impulse Response (FIR) digital filters using a Real Parameter Parallel Genetic Algorithm (RPPGA). This algorithm is derived from basic Genetic Algorithms which are inspired by natural genetics principles. Both experimental results and theoretical studies in this work reveal that the RPPGA is a suitable method for determining the optimal or near optimal discrete coefficients of finite word length FIR digital filters. Performance of RPPGA is evaluated by comparing specifications of filters designed by other methods with filters designed by RPPGA. The parallel and spatial structures of the algorithm result in faster and more robust optimization than basic genetic algorithms. A filter designed by RPPGA is implemented in hardware to attenuate high frequency noise in a data acquisition system for collecting seismic signals. These studies may lead to more applications of the Real Parameter Parallel Genetic Algorithms in Electrical Engineering.

  18. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  19. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography.

    PubMed

    Kim, Sangmin; Raphael, Patrick D; Oghalai, John S; Applegate, Brian E

    2016-04-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  20. Optimization of high speed pipelining in FPGA-based FIR filter design using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe; Botella, Guillermo; Romero, David E. T.; Kumm, Martin

    2012-06-01

    This paper compares FPGA-based full pipelined multiplierless FIR filter design options. Comparison of Distributed Arithmetic (DA), Common Sub-Expression (CSE) sharing and n-dimensional Reduced Adder Graph (RAG-n) multiplierless filter design methods in term of size, speed, and A*T product are provided. Since DA designs are table-based and CSE/RAG-n designs are adder-based, FPGA synthesis design data are used for a realistic comparison. Superior results of a genetic algorithm based optimization of pipeline registers and non-output fundamental coefficients are shown. FIR filters (posted as open source by Kastner et al.) for filters in the length from 6 to 151 coefficients are used.

  1. Hybrid method for designing digital FIR filters based on fractional derivative constraints.

    PubMed

    Baderia, Kuldeep; Kumar, Anil; Kumar Singh, Girish

    2015-09-01

    In this manuscript, a hybrid approach based on Lagrange multiplier method and cuckoo search (CS) optimization technique is proposed for the design of linear phase finite impulse response (FIR) filters using fractional derivative constraints. In the proposed method, FIR filter is designed by optimizing the integral squares in passband and stopband from ideal response such that the fractional derivatives of designed filter response become zero at a given frequency point. Lagrange multiplier method is exploited for finding the optimized filter coefficients. Optimal value of fractional derivative constraints for optimized filter coefficients are determined by minimizing the objective function constructed using a sum of maximum passband ripple and maximum stopband ripple in frequency domain using CS algorithm. Performance of the proposed method is evaluated by passband error (ϕ(p)), stopband error (ϕ(s)), stopband attenuation (A(s)), maximum passband ripple (MPR), maximum stopband ripple (MSR) and CPU time. A comparative study of the performance of particle swarm optimization (PSO) and artificial bee colony (ABC) for designing FIR filters using the proposed method is also made. PMID:26142984

  2. Optimized FIR filters for digital pulse compression of biphase codes with low sidelobes

    NASA Astrophysics Data System (ADS)

    Sanal, M.; Kuloor, R.; Sagayaraj, M. J.

    In miniaturized radars where power, real estate, speed and low cost are tight constraints and Doppler tolerance is not a major concern biphase codes are popular and FIR filter is used for digital pulse compression (DPC) implementation to achieve required range resolution. Disadvantage of low peak to sidelobe ratio (PSR) of biphase codes can be overcome by linear programming for either single stage mismatched filter or two stage approach i.e. matched filter followed by sidelobe suppression filter (SSF) filter. Linear programming (LP) calls for longer filter lengths to obtain desirable PSR. Longer the filter length greater will be the number of multipliers, hence more will be the requirement of logic resources used in the FPGAs and many time becomes design challenge for system on chip (SoC) requirement. This requirement of multipliers can be brought down by clustering the tap weights of the filter by kmeans clustering algorithm at the cost of few dB deterioration in PSR. The cluster centroid as tap weight reduces logic used in FPGA for FIR filters to a great extent by reducing number of weight multipliers. Since k-means clustering is an iterative algorithm, centroid for weights cluster is different in different iterations and causes different clusters. This causes difference in clustering of weights and sometimes even it may happen that lesser number of multiplier and lesser length of filter provide better PSR.

  3. Design optimisation of powers-of-two FIR filter using self-organising random immigrants GA

    NASA Astrophysics Data System (ADS)

    Chandra, Abhijit; Chattopadhyay, Sudipta

    2015-01-01

    In this communication, we propose a novel design strategy of multiplier-less low-pass finite impulse response (FIR) filter with the aid of a recent evolutionary optimisation technique, known as the self-organising random immigrants genetic algorithm. Individual impulse response coefficients of the proposed filter have been encoded as sum of signed powers-of-two. During the formulation of the cost function for the optimisation algorithm, both the frequency response characteristic and the hardware cost of the discrete coefficient FIR filter have been considered. The role of crossover probability of the optimisation technique has been evaluated on the overall performance of the proposed strategy. For this purpose, the convergence characteristic of the optimisation technique has been included in the simulation results. In our analysis, two design examples of different specifications have been taken into account. In order to substantiate the efficiency of our proposed structure, a number of state-of-the-art design strategies of multiplier-less FIR filter have also been included in this article for the purpose of comparison. Critical analysis of the result unambiguously establishes the usefulness of our proposed approach for the hardware efficient design of digital filter.

  4. Adaptive particle filtering

    NASA Astrophysics Data System (ADS)

    Stevens, Mark R.; Gutchess, Dan; Checka, Neal; Snorrason, Magnús

    2006-05-01

    Image exploitation algorithms for Intelligence, Surveillance and Reconnaissance (ISR) and weapon systems are extremely sensitive to differences between the operating conditions (OCs) under which they are trained and the extended operating conditions (EOCs) in which the fielded algorithms are tested. As an example, terrain type is an important OC for the problem of tracking hostile vehicles from an airborne camera. A system designed to track cars driving on highways and on major city streets would probably not do well in the EOC of parking lots because of the very different dynamics. In this paper, we present a system we call ALPS for Adaptive Learning in Particle Systems. ALPS takes as input a sequence of video images and produces labeled tracks. The system detects moving targets and tracks those targets across multiple frames using a multiple hypothesis tracker (MHT) tightly coupled with a particle filter. This tracker exploits the strengths of traditional MHT based tracking algorithms by directly incorporating tree-based hypothesis considerations into the particle filter update and resampling steps. We demonstrate results in a parking lot domain tracking objects through occlusions and object interactions.

  5. FIR filters for hardware-based real-time multi-band image blending

    NASA Astrophysics Data System (ADS)

    Popovic, Vladan; Leblebici, Yusuf

    2015-02-01

    Creating panoramic images has become a popular feature in modern smart phones, tablets, and digital cameras. A user can create a 360 degree field-of-view photograph from only several images. Quality of the resulting image is related to the number of source images, their brightness, and the used algorithm for their stitching and blending. One of the algorithms that provides excellent results in terms of background color uniformity and reduction of ghosting artifacts is the multi-band blending. The algorithm relies on decomposition of image into multiple frequency bands using dyadic filter bank. Hence, the results are also highly dependant on the used filter bank. In this paper we analyze performance of the FIR filters used for multi-band blending. We present a set of five filters that showed the best results in both literature and our experiments. The set includes Gaussian filter, biorthogonal wavelets, and custom-designed maximally flat and equiripple FIR filters. The presented results of filter comparison are based on several no-reference metrics for image quality. We conclude that 5/3 biorthogonal wavelet produces the best result in average, especially when its short length is considered. Furthermore, we propose a real-time FPGA implementation of the blending algorithm, using 2D non-separable systolic filtering scheme. Its pipeline architecture does not require hardware multipliers and it is able to achieve very high operating frequencies. The implemented system is able to process 91 fps for 1080p (1920×1080) image resolution.

  6. Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition

    NASA Technical Reports Server (NTRS)

    Zheng, Jason Xin; Nguyen, Kayla; He, Yutao

    2010-01-01

    Multirate (decimation/interpolation) filters are among the essential signal processing components in spaceborne instruments where Finite Impulse Response (FIR) filters are often used to minimize nonlinear group delay and finite-precision effects. Cascaded (multi-stage) designs of Multi-Rate FIR (MRFIR) filters are further used for large rate change ratio, in order to lower the required throughput while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this paper, an alternative representation and implementation technique, called TD-MRFIR (Thread Decomposition MRFIR), is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. Each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. The technical details of TD-MRFIR will be explained, first showing its applicability to the implementation of downsampling, upsampling, and resampling FIR filters, and then describing a general strategy to optimally allocate the number of filter taps. A particular FPGA design of multi-stage TD-MRFIR for the L-band radar of NASA's SMAP (Soil Moisture Active Passive) instrument is demonstrated; and its implementation results in several targeted FPGA devices are summarized in terms of the functional (bit width, fixed-point error) and performance (time closure, resource usage, and power estimation) parameters.

  7. Embedded FIR filter design for real-time refocusing using a standard plenoptic video camera

    NASA Astrophysics Data System (ADS)

    Hahne, Christopher; Aggoun, Amar

    2014-03-01

    A novel and low-cost embedded hardware architecture for real-time refocusing based on a standard plenoptic camera is presented in this study. The proposed layout design synthesizes refocusing slices directly from micro images by omitting the process for the commonly used sub-aperture extraction. Therefore, intellectual property cores, containing switch controlled Finite Impulse Response (FIR) filters, are developed and applied to the Field Programmable Gate Array (FPGA) XC6SLX45 from Xilinx. Enabling the hardware design to work economically, the FIR filters are composed of stored product as well as upsampling and interpolation techniques in order to achieve an ideal relation between image resolution, delay time, power consumption and the demand of logic gates. The video output is transmitted via High-Definition Multimedia Interface (HDMI) with a resolution of 720p at a frame rate of 60 fps conforming to the HD ready standard. Examples of the synthesized refocusing slices are presented.

  8. Effect of embedded unbiasedness on discrete-time optimal FIR filtering estimates

    NASA Astrophysics Data System (ADS)

    Zhao, Shunyi; Shmaliy, Yuriy S.; Liu, Fei; Ibarra-Manzano, Oscar; Khan, Sanowar H.

    2015-12-01

    Unbiased estimation is an efficient alternative to optimal estimation when the noise statistics are not fully known and/or the model undergoes temporary uncertainties. In this paper, we investigate the effect of embedded unbiasedness (EU) on optimal finite impulse response (OFIR) filtering estimates of linear discrete time-invariant state-space models. A new OFIR-EU filter is derived by minimizing the mean square error (MSE) subject to the unbiasedness constraint. We show that the OFIR-UE filter is equivalent to the minimum variance unbiased FIR (UFIR) filter. Unlike the OFIR filter, the OFIR-EU filter does not require the initial conditions. In terms of accuracy, the OFIR-EU filter occupies an intermediate place between the UFIR and OFIR filters. Contrary to the UFIR filter which MSE is minimized by the optimal horizon of N opt points, the MSEs in the OFIR-EU and OFIR filters diminish with N and these filters are thus full-horizon. Based upon several examples, we show that the OFIR-UE filter has higher immunity against errors in the noise statistics and better robustness against temporary model uncertainties than the OFIR and Kalman filters.

  9. Design of efficient circularly symmetric two-dimensional variable digital FIR filters

    PubMed Central

    Bindima, Thayyil; Elias, Elizabeth

    2016-01-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739

  10. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    PubMed

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739

  11. Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition

    NASA Technical Reports Server (NTRS)

    Kobayashi, Kayla N.; He, Yutao; Zheng, Jason X.

    2011-01-01

    Multi-rate finite impulse response (MRFIR) filters are among the essential signal-processing components in spaceborne instruments where finite impulse response filters are often used to minimize nonlinear group delay and finite precision effects. Cascaded (multistage) designs of MRFIR filters are further used for large rate change ratio in order to lower the required throughput, while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this innovation, an alternative representation and implementation technique called TD-MRFIR (Thread Decomposition MRFIR) is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. A naive implementation of a decimation filter consisting of a full FIR followed by a downsampling stage is very inefficient, as most of the computations performed by the FIR state are discarded through downsampling. In fact, only 1/M of the total computations are useful (M being the decimation factor). Polyphase decomposition provides an alternative view of decimation filters, where the downsampling occurs before the FIR stage, and the outputs are viewed as the sum of M sub-filters with length of N/M taps. Although this approach leads to more efficient filter designs, in general the implementation is not straightforward if the numbers of multipliers need to be minimized. In TD-MRFIR, each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. Each of the threads completes when a convolution result (filter output value) is computed, and activated when the first

  12. Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers.

    PubMed

    Kikuchi, Kazuro

    2011-03-14

    We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error rate performance independent of the initial sampling phase. Even if the clock frequency is not synchronized between them, the clock-frequency misalignment can be adjusted within an appropriate block interval; thus, we can achieve an asynchronous clock mode of operation of digital coherent receivers with block processing of the symbol sequence. PMID:21445201

  13. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  14. Adaptive WMMR filters for edge enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Longbotham, Harold G.

    1993-05-01

    In this paper, an adaptive WMMR filter is introduced, which adaptively changes its window size to accommodate edge width variations. We prove that for any given one dimensional input signal convergence is to fixed points, which are PICO (piecewise constant), by iterative application of the adaptive WMMR filter. An application of the filters to one-D data (non- PICO) and images of printed circuit boards are then provided. Application to images in general is discussed.

  15. Frequency-shift low-pass filtering and least mean square adaptive filtering for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Li, Chunyu; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    Ultrasound image quality enhancement is a problem of considerable interest in medical imaging modality and an ongoing challenge to date. This paper investigates a method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for ultrasound image quality enhancement. FSLF is used for processing the ultrasound signal in the frequency domain, while LMSAPF in the time domain. Firstly, FSLF shifts the center frequency of the focused signal to zero. Then the real and imaginary part of the complex data are filtered respectively by finite impulse response (FIR) low-pass filter. Thus the information around the center frequency are retained while the undesired ones, especially background noises are filtered. Secondly, LMSAF multiplies the signals with an automatically adjusted weight vector to further eliminate the noises and artifacts. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts and higher resolution, and contrast. The proposed method was verified with the RF data of the CIRS phantom 055A captured by SonixTouch DAQ system. Experimental results show that the background noises and artifacts can be efficiently restrained, the wire object has a higher resolution and the contrast ratio (CR) can be enhanced for about 12dB to 15dB at different image depth comparing to delay-and-sum (DAS).

  16. Objects tracking with adaptive correlation filters and Kalman filtering

    NASA Astrophysics Data System (ADS)

    Ontiveros-Gallardo, Sergio E.; Kober, Vitaly

    2015-09-01

    Object tracking is commonly used for applications such as video surveillance, motion based recognition, and vehicle navigation. In this work, a tracking system using adaptive correlation filters and robust Kalman prediction of target locations is proposed. Tracking is performed by means of multiple object detections in reduced frame areas. A bank of filters is designed from multiple views of a target using synthetic discriminant functions. An adaptive approach is used to improve discrimination capability of the synthesized filters adapting them to multiple types of backgrounds. With the help of computer simulation, the performance of the proposed algorithm is evaluated in terms of detection efficiency and accuracy of object tracking.

  17. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed. PMID:2180633

  18. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  19. Enhancement of Electrolaryngeal Speech by Adaptive Filtering.

    ERIC Educational Resources Information Center

    Espy-Wilson, Carol Y.; Chari, Venkatesh R.; MacAuslan, Joel M.; Huang, Caroline B.; Walsh, Michael J.

    1998-01-01

    A study tested the quality and intelligibility, as judged by several listeners, of four users' electrolaryngeal speech, with and without filtering to compensate for perceptually objectionable acoustic characteristics. Results indicated that an adaptive filtering technique produced a noticeable improvement in the quality of the Transcutaneous…

  20. Recursive total-least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Dowling, Eric M.; DeGroat, Ronald D.

    1991-12-01

    In this paper a recursive total least squares (RTLS) adaptive filter is introduced and studied. The TLS approach is more appropriate and provides more accurate results than the LS approach when there is error on both sides of the adaptive filter equation; for example, linear prediction, AR modeling, and direction finding. The RTLS filter weights are updated in time O(mr) where m is the filter order and r is the dimension of the tracked subspace. In conventional adaptive filtering problems, r equals 1, so that updates can be performed with complexity O(m). The updates are performed by tracking an orthonormal basis for the smaller of the signal or noise subspaces using a computationally efficient subspace tracking algorithm. The filter is shown to outperform both LMS and RLS in terms of tracking and steady state tap weight error norms. It is also more versatile in that it can adapt its weight in the absence of persistent excitation, i.e., when the input data correlation matrix is near rank deficient. Through simulation, the convergence and tracking properties of the filter are presented and compared with LMS and RLS.

  1. Canonical Signed Digit Study. Part 2; FIR Digital Filter Simulation Results

    NASA Technical Reports Server (NTRS)

    Kim, Heechul

    1996-01-01

    Finite Impulse Response digital filter using Canonical Signed-Digit (CSD) number representation for the coefficients has been studied and its computer simulation results are presented here. Minimum Mean Square Error (MMSE) criterion is employed to optimize filter coefficients into the corresponding CSD numbers. To further improve coefficients optimization process, an extra non-zero bit is added for any filter coefficients exceeding 1/2. This technique improves frequency response of filter without increasing filter complexity almost at all. The simulation results show outstanding performance in bit-error-rate (BER) curve for all CSD implemented digital filters included in this presentation material.

  2. An adaptive filter bank for motor imagery based Brain Computer Interface.

    PubMed

    Thomas, Kavitha P; Guan, Cuntai; Tong, Lau Chiew; Prasad, Vinod A

    2008-01-01

    Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system. PMID:19162856

  3. VSP wave separation by adaptive masking filters

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2016-06-01

    In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.

  4. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  5. Adaptive Filtering Using Recurrent Neural Networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  6. Filtering Algebraic Multigrid and Adaptive Strategies

    SciTech Connect

    Nagel, A; Falgout, R D; Wittum, G

    2006-01-31

    Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.

  7. Musical noise reduction using an adaptive filter

    NASA Astrophysics Data System (ADS)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  8. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Teh, V; Nia, M E

    2016-01-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. PMID:26235517

  9. Comparison of advanced DSP techniques for spectrally efficient Nyquist-WDM signal generation using digital FIR filters at transmitters based on higher-order modulation formats

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Junyi; Pan, Zhongqi

    2016-02-01

    To support the ever-increasing demand for high-speed optical communications, Nyquist spectral shaping serves as a promising technique to improve spectral efficiency (SE) by generating near-rectangular spectra with negligible crosstalk and inter-symbol interference in wavelength-division-multiplexed (WDM) systems. Compared with specially-designed optical methods, DSP-based electrical filters are more flexible as they can generate different filter shapes and modulation formats. However, such transmitter-side pre-filtering approach is sensitive to the limited taps of finite-impulse-response (FIR) filter, for the complexity of the required DSP and digital-to-analog converter (DAC) is limited by the cost and power consumption of optical transponder. In this paper, we investigate the performance and complexity of transmitter-side FIR-based DSP with polarization-division-multiplexing (PDM) high-order quadrature-amplitude-modulation (QAM) formats. Our results show that Nyquist 64-QAM, 16-QAM and QPSK WDM signals can be sufficiently generated by digital FIR filters with 57, 37, and 17 taps respectively. Then we explore the effects of the required spectral pre-emphasis, bandwidth and resolution on the performance of Nyquist-WDM systems. To obtain negligible OSNR penalty with a roll-off factor of 0.1, two-channel-interleaved DAC requires a Gaussian electrical filter with the bandwidth of 0.4-0.6 times of the symbol rate for PDM-64QAM, 0.35-0.65 times for PDM-16QAM, and 0.3-0.8 times for PDM-QPSK, with required DAC resolutions as 8, 7, 6 bits correspondingly. As a tradeoff, PDM-64QAM can be a promising candidate for SE improvement in next-generation optical metro networks.

  10. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors.

    PubMed

    Pickles, Brian J; Twieg, Brendan D; O'Neill, Gregory A; Mohn, William W; Simard, Suzanne W

    2015-08-01

    Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate. PMID:25757098

  11. Adaptive filters for detection of gravitational waves from coalescing binaries

    SciTech Connect

    Eleuteri, Antonio; Milano, Leopoldo; De Rosa, Rosario; Garufi, Fabio; Acernese, Fausto; Barone, Fabrizio; Giordano, Lara; Pardi, Silvio

    2006-06-15

    In this work we propose use of infinite impulse response adaptive line enhancer (IIR ALE) filters for detection of gravitational waves from coalescing binaries. We extend our previous work and define an adaptive matched filter structure. Filter performance is analyzed in terms of the tracking capability and determination of filter parameters. Furthermore, following the Neyman-Pearson strategy, receiver operating characteristics are derived, with closedform expressions for detection threshold, false alarm, and detection probability. Extensive tests demonstrate the effectiveness of adaptive filters both in terms of small computational cost and robustness.

  12. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  13. Reduction of MPEG ringing artifacts using adaptive sigma filter

    NASA Astrophysics Data System (ADS)

    Pan, Hao

    2006-01-01

    In this paper, we propose a novel computationally efficient post-processing algorithm to reduce ringing artifacts in the decoded DCT-coded video without using coding information. While the proposed algorithm is based on edge information as most filtering-based de-ringing algorithms do, this algorithm solely uses one single computationally efficient nonlinear filter, namely sigma filter, for both edge detection and smoothing. Specifically, the sigma filter, which was originally designed for nonlinear filtering, is extended to generate edge proximity information. Different from other adaptive filtering-based methods, whose filters typically use a fixed small window but flexible weights, this sigma filter adaptively switches between small and large windows. The adaptation is designed for removing ringing artifacts only, so the algorithm cannot be used for de-blocking. Overall, the proposed algorithm achieves a good balance among removing ringing artifacts, preserving edges and details, and computational complexity.

  14. Search strategy for relevant parasitic elements and reduction of their influence on the operation of SC FIR filters realized in CMOS technology

    NASA Astrophysics Data System (ADS)

    Dlugosz, Rafal

    2005-06-01

    Parasitic capacities pose a serious problem in switched capacitor finite impulse response (SC FIR) filters realized as VLSI systems in CMOS submicron technologies. The influence of these parasitic elements is especially visible in the stopband of the filter frequency response. To design mixed digital-analog SC FIR filters is a difficult task. Filters of this class have to be designed using full-custom method. SC FIR filters of high orders N are very complex systems with thousands of transistors, capacitors, which, in turn, make the basis for many active elements, switches, delay elements, memories and other circuitry. One of the most important stages during the design process is post-layout HSPICE verification. However, the simulation of separated blocks does not suffice to have enough knowledge of the operation of the whole system. Optimization requires netlist simulations of the entire system, with presence of typically between 5000-30000 of parasitic capacities, where only about hundred of them are critical ones. Analysis which aims at finding these elements, in practice, is not possible because of the complexity of the entire system. The heuristic method of searching for relevant parasitic elements presented in this paper is based on the assumption that all parasitic elements create a set. The main task is to divide this set into subareas. In order to do this particular groups of nets in the layout must be labeled using unique names. Then particular groups of parasitic elements are filtered out from the netlist. Each filtering stage generates two netlists with separate areas of parasitic elements. After the analysis of the simulation results has been done there remains to make the decision concerning subsequent filtering operations. The iteration method is very quick, convenient, efficient and does not require deep knowledge of the simulated system. Many stages of this method can be easy implemented with CAD tools. In realized projects, after no more than 15

  15. Turbo LMS algorithm: supercharger meets adaptive filter

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe

    2006-04-01

    Adaptive digital filters (ADFs) are, in general, the most sophisticated and resource intensive components of modern digital signal processing (DSP) and communication systems. Improvements in performance or the complexity of ADFs can have a significant impact on the overall size, speed, and power properties of a complete system. The least mean square (LMS) algorithm is a popular algorithm for coefficient adaptation in ADF because it is robust, easy to implement, and a close approximation to the optimal Wiener-Hopf least mean square solution. The main weakness of the LMS algorithm is the slow convergence, especially for non Markov-1 colored noise input signals with high eigenvalue ratios (EVRs). Since its introduction in 1993, the turbo (supercharge) principle has been successfully applied in error correction decoding and has become very popular because it reaches the theoretical limits of communication capacity predicted 5 decades ago by Shannon. The turbo principle applied to LMS ADF is analogous to the turbo principle used for error correction decoders: First, an "interleaver" is used to minimize crosscorrelation, secondly, an iterative improvement which uses the same data set several times is implemented using the standard LMS algorithm. Results for 6 different interleaver schemes for EVR in the range 1-100 are presented.

  16. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.

    PubMed

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-01-01

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587

  17. Local Adaptation in European Firs Assessed through Extensive Sampling across Altitudinal Gradients in Southern Europe

    PubMed Central

    Postolache, Dragos; Lascoux, Martin; Drouzas, Andreas D.; Källman, Thomas; Leonarduzzi, Cristina; Liepelt, Sascha; Piotti, Andrea; Popescu, Flaviu; Roschanski, Anna M.; Zhelev, Peter; Fady, Bruno; Vendramin, Giovanni Giuseppe

    2016-01-01

    Background Local adaptation is a key driver of phenotypic and genetic divergence at loci responsible for adaptive traits variations in forest tree populations. Its experimental assessment requires rigorous sampling strategies such as those involving population pairs replicated across broad spatial scales. Methods A hierarchical Bayesian model of selection (HBM) that explicitly considers both the replication of the environmental contrast and the hierarchical genetic structure among replicated study sites is introduced. Its power was assessed through simulations and compared to classical ‘within-site’ approaches (FDIST, BAYESCAN) and a simplified, within-site, version of the model introduced here (SBM). Results HBM demonstrates that hierarchical approaches are very powerful to detect replicated patterns of adaptive divergence with low false-discovery (FDR) and false-non-discovery (FNR) rates compared to the analysis of different sites separately through within-site approaches. The hypothesis of local adaptation to altitude was further addressed by analyzing replicated Abies alba population pairs (low and high elevations) across the species’ southern distribution range, where the effects of climatic selection are expected to be the strongest. For comparison, a single population pair from the closely related species A. cephalonica was also analyzed. The hierarchical model did not detect any pattern of adaptive divergence to altitude replicated in the different study sites. Instead, idiosyncratic patterns of local adaptation among sites were detected by within-site approaches. Conclusion Hierarchical approaches may miss idiosyncratic patterns of adaptation among sites, and we strongly recommend the use of both hierarchical (multi-site) and classical (within-site) approaches when addressing the question of adaptation across broad spatial scales. PMID:27392065

  18. Superresolution restoration of an image sequence: adaptive filtering approach.

    PubMed

    Elad, M; Feuer, A

    1999-01-01

    This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented. PMID:18262881

  19. Filter. Remix. Make.: Cultivating Adaptability through Multimodality

    ERIC Educational Resources Information Center

    Dusenberry, Lisa; Hutter, Liz; Robinson, Joy

    2015-01-01

    This article establishes traits of adaptable communicators in the 21st century, explains why adaptability should be a goal of technical communication educators, and shows how multimodal pedagogy supports adaptability. Three examples of scalable, multimodal assignments (infographics, research interviews, and software demonstrations) that evidence…

  20. Real time adaptive filtering for digital X-ray applications.

    PubMed

    Bockenbach, Olivier; Mangin, Michel; Schuberth, Sebastian

    2006-01-01

    Over the last decade, many methods for adaptively filtering a data stream have been proposed. Those methods have applications in two dimensional imaging as well as in three dimensional image reconstruction. Although the primary objective of this filtering technique is to reduce the noise while avoiding to blur the edges, diagnostic, automated segmentation and surgery show a growing interest in enhancing the features contained in the image flow. Most of the methods proposed so far emerged from thorough studies of the physics of the considered modality and therefore show only a marginal capability to be extended across modalities. Moreover, adaptive filtering belongs to the family of processing intensive algorithms. Existing technology has often driven to simplifications and modality specific optimization to sustain the expected performances. In the specific case of real time digital X-ray as used surgery, the system has to sustain a throughput of 30 frames per second. In this study, we take a generalized approach for adaptive filtering based on multiple oriented filters. Mapping the filtering part to the embedded real time image processing while a user/application defined adaptive recombination of the filter outputs allow to change the smoothing and edge enhancement properties of the filter without changing the oriented filter parameters. We have implemented the filtering on a Cell Broadband Engine processor and the adaptive recombination on an off-the-shelf PC, connected via Gigabit Ethernet. This implementation is capable of filtering images of 5122 pixels at a throughput in excess of 40 frames per second while allowing to change the parameters in real time. PMID:17354937

  1. Adaptive Control of Flexible Structures Using Residual Mode Filters

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2010-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.

  2. Adaptive median filtering for preprocessing of time series measurements

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.

  3. A Windowing Frequency Domain Adaptive Filter for Acoustic Echo Cancellation

    NASA Astrophysics Data System (ADS)

    Wu, Sheng; Qiu, Xiaojun

    This letter proposes a windowing frequency domain adaptive algorithm, which reuses the filtering error to apply window function in the filter updating symmetrically. By using a proper window function to reduce the negative influence of the spectral leakage, the proposed algorithm can significantly improve the performance of the acoustic echo cancellation for speech signals.

  4. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  5. A hybrid method for optimization of the adaptive Goldstein filter

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue

    2014-12-01

    The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.

  6. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  7. Lossless compression of weight vectors from an adaptive filter

    SciTech Connect

    Bredemann, M.V.; Elliott, G.R.; Stearns, S.D.

    1994-08-01

    Techniques for lossless waveform compression can be applied to the transmission of weight vectors from an orbiting satellite. The vectors, which are a part of a hybrid analog/digital adaptive filter, are a representation of the radio frequency background seen by the satellite. An approach is used which treats each adaptive weight as a time-varying waveform.

  8. Analysis on Influence Factors of Adaptive Filter Acting on ANC

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuqun; Zou, Liang; Ni, Guangkui; Wang, Xiaojun; Han, Tao; Zhao, Quanfu

    The noise problem has become more and more serious in recent years. The adaptive filter theory which is applied in ANC [1] (active noise control) has also attracted more and more attention. In this article, the basic principle and algorithm of adaptive theory are both researched. And then the influence factor that affects its covergence rate and noise reduction is also simulated.

  9. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  10. Improving nonlinear modeling capabilities of functional link adaptive filters.

    PubMed

    Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio

    2015-09-01

    The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown. PMID:26057613

  11. Dynamic analysis of neural encoding by point process adaptive filtering.

    PubMed

    Eden, Uri T; Frank, Loren M; Barbieri, Riccardo; Solo, Victor; Brown, Emery N

    2004-05-01

    Neural receptive fields are dynamic in that with experience, neurons change their spiking responses to relevant stimuli. To understand how neural systems adapt their representations of biological information, analyses of receptive field plasticity from experimental measurements are crucial. Adaptive signal processing, the well-established engineering discipline for characterizing the temporal evolution of system parameters, suggests a framework for studying the plasticity of receptive fields. We use the Bayes' rule Chapman-Kolmogorov paradigm with a linear state equation and point process observation models to derive adaptive filters appropriate for estimation from neural spike trains. We derive point process filter analogues of the Kalman filter, recursive least squares, and steepest-descent algorithms and describe the properties of these new filters. We illustrate our algorithms in two simulated data examples. The first is a study of slow and rapid evolution of spatial receptive fields in hippocampal neurons. The second is an adaptive decoding study in which a signal is decoded from ensemble neural spiking activity as the receptive fields of the neurons in the ensemble evolve. Our results provide a paradigm for adaptive estimation for point process observations and suggest a practical approach for constructing filtering algorithms to track neural receptive field dynamics on a millisecond timescale. PMID:15070506

  12. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  13. Local adaptive filtering of images corrupted by nonstationary noise

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Pogrebnyak, Oleksiy B.; Egiazarian, Karen O.; Astola, Jaakko T.

    2009-02-01

    In various practical situations of remote sensing image processing it is assumed that noise is nonstationary and no a priory information on noise dependence on local mean or about local properties of noise statistics is available. It is shown that in such situations it is difficult to find a proper filter for effective image processing, i.e., for noise removal with simultaneous edge/detail preservation. To deal with such images, a local adaptive filter based on discrete cosine transform in overlapping blocks is proposed. A threshold is set locally based on a noise standard deviation estimate obtained for each block. Several other operations to improve performance of the locally adaptive filter are proposed and studied. The designed filter effectiveness is demonstrated for simulated data as well as for real life radar remote sensing and marine polarimetric radar images.

  14. Acoustic Echo Cancellation Using Sub-Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Ohta, Satoshi; Kajikawa, Yoshinobu; Nomura, Yasuo

    In the acoustic echo canceller (AEC), the step-size parameter of the adaptive filter must be varied according to the situation if double talk occurs and/or the echo path changes. We propose an AEC that uses a sub-adaptive filter. The proposed AEC can control the step-size parameter according to the situation. Moreover, it offers superior convergence compared to the conventional AEC even when the double talk and the echo path change occur simultaneously. Simulations demonstrate that the proposed AEC can achieve higher ERLE and faster convergence than the conventional AEC. The computational complexity of the proposed AEC can be reduced by reducing the number of taps of the sub-adaptive filter.

  15. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  16. An information theoretic approach of designing sparse kernel adaptive filters.

    PubMed

    Liu, Weifeng; Park, Il; Principe, José C

    2009-12-01

    This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented. PMID:19923047

  17. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation

  18. Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...

  19. An improved adaptive deblocking filter for MPEG video decoder

    NASA Astrophysics Data System (ADS)

    Kwon, Do-Kyoung; Shen, Mei-Yin; Kuo, C.-C. Jay

    2005-03-01

    A highly adaptive deblocking algorithm is proposed for MPEG video in this research. In comparison with previous work in this area, the proposed deblocking filter improves in three aspects. First, the proposed algorithm is adaptive to the change of the quantization parameter (QP). Since blocking artifacts between two blocks encoded with different QPs tend to be more visible due to quality difference, filters should be able to adapt dynamically to the QP change between blocks. Second, the proposed algorithm classifies the block boundary into three different region modes based on local region characteristics. The three modes are active, smooth and dormant regions. The active region represents a complex region with details and high activities while the smooth and the dormant regions refer to moderately flat and extremely flat regions, respectively. By applying different filters of different strengths to each region mode, the proposed algorithm can minimize the undesirable blur so that both subjective and objective qualities improve for various types of sequences at a wide range of bitrates. Finally, the proposed algorithm also provides a way to determine the threshold values. The proposed adaptive deblocking algorithms require several thresholds in determining proper region modes and filters. Since the quality of image sequences after filtering depends largely on the threshold values, they have to be determined carefully. In the proposed algorithm, thresholds are determined adaptively to the strength of the blocking artifact and, as a result, to various encoding parameters such as QP, absolute difference between QPs, the coding type, and motion vectors. It is shown by experimental results that the proposed algorithm can achieve 0.2-0.4 dB gains for I- and P-frames, and 0.1-0.3 dB gains for the B-frame when bit streams are encoded using the TM5 rate control algorithm.

  20. Extended adaptive filtering for wide-angle SAR image formation

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Roberts, William; Li, Jian

    2005-05-01

    For two-dimensional (2-D) spectral analysis, the adaptive filtering based technologies, such as CAPON and APES (Amplitude and Phase EStimation), are developed under the implicit assumption that the data sets are rectangular. However, in real SAR applications, especially for the wide-angle cases, the collected data sets are always non-rectangular. This raises the problem of how to extend the original adaptive filtering based algorithms for such kind of scenarios. In this paper, we propose an extended adaptive filtering (EAF) approach, which includes Extended APES (E-APES) and Extended CAPON (E-CAPON), for arbitrarily shaped 2-D data. The EAF algorithms adopt a missing-data approach where the unavailable data samples close to the collected data set are assumed missing. Using a group of filter-banks with varying sizes, these algorithms are non-iterative and do not require the estimation of the unavailable samples. The improved imaging results of the proposed algorithms are demonstrated by applying them to two different SAR data sets.

  1. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  2. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  3. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-04-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only need to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  4. Fuel-flow filter for internal combustion engine, adaptable for use with a by-pass filter

    SciTech Connect

    Schmidt, R.

    1987-06-16

    This patent describes a filter apparatus for an internal combustion engine to replace a spin-on, full-flow oil filter threadably connected to an oil filter bushing. The engine has an oil system with an oil pump, an oil pan, and an oil cap at a low pressure side of the oil system. The apparatus comprises: a full-flow filter to be connected to the oil filter bushing to permit oil within the oil system to flow into the full-flow filter. The full-flow filter is of such density and filtering capacity that the oil flows from the oil pump through the full-flow filter with a minimum pressure drop; adapter means to permit use of the full-flow filter either with or without a by-pass filter. The adapter means is a nut located at the forward end of the full-flow filter opposite the oil filter bushing and extending outwardly. The nut defines an area that can be either left intact, permitting all of the oil flow outward from the full-flow filter after filtering, or punctured, permitting most of the oil to flow outward from the full-flow filter after filtering. A small portion of the oil to flows outward therefrom prior to filtering. The nut is within a specific range of depth and circumference so as to provide a means for controlling the size of the hole. The nut is inwardly threaded.

  5. Adaptive gain and filtering circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1998-01-01

    Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.

  6. Kalman filtering to suppress spurious signals in Adaptive Optics control

    SciTech Connect

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  7. Infinite impulse response modal filtering in visible adaptive optics

    NASA Astrophysics Data System (ADS)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  8. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  9. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.

  10. Model Adaptation for Prognostics in a Particle Filtering Framework

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  11. Image super-resolution via adaptive filtering and regularization

    NASA Astrophysics Data System (ADS)

    Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming

    2014-11-01

    Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.

  12. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    PubMed

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389

  13. A New Adaptive Framework for Collaborative Filtering Prediction.

    PubMed

    Almosallam, Ibrahim A; Shang, Yi

    2008-06-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system. PMID:21572924

  14. Switched Band-Pass Filters for Adaptive Transceivers

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2007-01-01

    Switched band-pass filters are key components of proposed adaptive, software- defined radio transceivers that would be parts of envisioned digital-data-communication networks that would enable real-time acquisition and monitoring of data from geographically distributed sensors. Examples of sensors to be connected to such networks include security cameras, radio-frequency identification units, and geolocation units based on the Global Positioning System. Through suitable software configuration and without changing hardware, these transceivers could be made to operate according to any of a number of complex wireless-communication standards that could be characterized by diverse modulation schemes, bandwidths, and data-handling protocols. The adaptive transceivers would include field-programmable gate arrays (FPGAs) and digital signal-processing hardware. In the receiving path of a transceiver, the incoming signal would be amplified by a low-noise amplifier (LNA). The output spectrum of the LNA would be processed by a band-pass filter operating in the frequency range between 900 MHz and 2.4 GHz. Then a down-converter would translate the signal to a lower frequency range to facilitate analog-to-digital conversion, which would be followed by baseband processing by one or more FPGAs. In the transmitting path, a digital stream would first be converted to an analog signal, which would then be up-converted to a selected frequency band before being applied to a transmitting power amplifier. The aforementioned band-pass filter in the receiving path would be a combination of resonant inductor-and-capacitor filters and switched band-pass filters. The overall combination would implement a switch function designed mathematically to exhibit desired frequency responses and to switch the signal in each frequency band to an analog-to-digital converter appropriate for that band to produce a digital intermediate-frequency signal for digital signal processing.

  15. Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration

    NASA Astrophysics Data System (ADS)

    Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar

    2016-03-01

    The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.

  16. Statistical-uncertainty-based adaptive filtering of lidar signals

    SciTech Connect

    Fuehrer, P. L.; Friehe, C. A.; Hristov, T. S.; Cooper, D. I.; Eichinger, W. E.

    2000-02-10

    An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometerological humidity data were used to calibrate the ratio of the lidar gains of the H{sub 2}O and the N{sub 2} photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem. (c) 2000 Optical Society of America.

  17. Fast Source Camera Identification Using Content Adaptive Guided Image Filter.

    PubMed

    Zeng, Hui; Kang, Xiangui

    2016-03-01

    Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy. PMID:27404627

  18. An adaptive filter method for spacecraft using gravity assist

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam

    2015-04-01

    Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.

  19. Attitude determination using an adaptive multiple model filtering Scheme

    NASA Technical Reports Server (NTRS)

    Lam, Quang; Ray, Surendra N.

    1995-01-01

    Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown

  20. Attitude determination using an adaptive multiple model filtering Scheme

    NASA Astrophysics Data System (ADS)

    Lam, Quang; Ray, Surendra N.

    1995-05-01

    Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown

  1. Study of adaptive correlation filter synthesis guided by the peak and shape of the correlation output

    NASA Astrophysics Data System (ADS)

    Campos Trujillo, Oliver G.; Díaz Blancas, Gerardo

    2014-09-01

    In recent years, many proposals that consider an adaptive perspective had been developed to solve some drawbacks, such as geometric distortions, background noise and target discrimination. The metrics are based only in the correlation peak output for the filter synthesis. In this paper, the correlation shape is studied to implement adaptive correlation filters guided by the peak and shape of the correlation output. Furthermore, the shape of correlation output is studied to improve the search in the filters bank. In addition, parallel algorithms are developed for accelerated the search in the filters bank. Some results are shown, such as time of synthesis, filter performance and comparisons with other adaptive correlation filter proposals.

  2. Residual mode filters and adaptive control in large space structures

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1989-01-01

    One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.

  3. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494

  4. On application of adaptive decorrelation filtering to assistive listening

    NASA Astrophysics Data System (ADS)

    Zhao, Yunxin; Yen, Kuan-Chieh; Soli, Sig; Gao, Shawn; Vermiglio, Andy

    2002-02-01

    This paper describes an application of the multichannel signal processing technique of adaptive decorrelation filtering to the design of an assistive listening system. A simulated ``dinner table'' scenario was studied. The speech signal of a desired talker was corrupted by three simultaneous speech jammers and by a speech-shaped diffusive noise. The technique of adaptive decorrelation filtering processing was used to extract the desired speech from the interference speech and noise. The effectiveness of the assistive listening system was evaluated by observing improvements in A-weighted signal-to-noise ratio (SNR) and in sentence intelligibility, where the latter was evaluated in a listening test with eight normal hearing subjects and three subjects with hearing impairments. Significant improvements in SNR and sentence intelligibility were achieved with the use of the assistive listening system. For subjects with normal hearing, the speech reception threshold was improved by 3 to 5 dBA, and for subjects with hearing impairments, the threshold was improved by 4 to 8 dBA.

  5. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.

    PubMed

    Gur, M Berke; Niezrecki, Christopher

    2011-04-01

    Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661

  6. An adaptive filtered back-projection for photoacoustic image reconstruction

    PubMed Central

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong

    2015-01-01

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  7. An adaptive filtered back-projection for photoacoustic image reconstruction

    SciTech Connect

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong

    2015-05-15

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  8. Controller-structure interaction compensation using adaptive residual mode filters

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1990-01-01

    It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.

  9. Reduced-Rank Adaptive Filtering Using Krylov Subspace

    NASA Astrophysics Data System (ADS)

    Burykh, Sergueï; Abed-Meraim, Karim

    2003-12-01

    A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.

  10. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth

    PubMed Central

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  11. Adaptive data filtering of inertial sensors with variable bandwidth.

    PubMed

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  12. Adaptive noise cancellation based on beehive pattern evolutionary digital filter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaojun; Shao, Yimin

    2014-01-01

    Evolutionary digital filtering (EDF) exhibits the advantage of avoiding the local optimum problem by using cloning and mating searching rules in an adaptive noise cancellation system. However, convergence performance is restricted by the large population of individuals and the low level of information communication among them. The special beehive structure enables the individuals on neighbour beehive nodes to communicate with each other and thus enhance the information spread and random search ability of the algorithm. By introducing the beehive pattern evolutionary rules into the original EDF, this paper proposes an improved beehive pattern evolutionary digital filter (BP-EDF) to overcome the defects of the original EDF. In the proposed algorithm, a new evolutionary rule which combines competing cloning, complete cloning and assistance mating methods is constructed to enable the individuals distributed on the beehive to communicate with their neighbours. Simulation results are used to demonstrate the improved performance of the proposed algorithm in terms of convergence speed to the global optimum compared with the original methods. Experimental results also verify the effectiveness of the proposed algorithm in extracting feature signals that are contaminated by significant amounts of noise during the fault diagnosis task.

  13. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.

    PubMed

    Zhang, Zhen; Ma, Yaopeng

    2016-01-01

    A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349

  14. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter

    PubMed Central

    Zhang, Zhen; Ma, Yaopeng

    2016-01-01

    A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349

  15. Subsurface characterization with localized ensemble Kalman filter employing adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Delijani, Ebrahim Biniaz; Pishvaie, Mahmoud Reza; Boozarjomehry, Ramin Bozorgmehry

    2014-07-01

    Ensemble Kalman filter, EnKF, as a Monte Carlo sequential data assimilation method has emerged promisingly for subsurface media characterization during past decade. Due to high computational cost of large ensemble size, EnKF is limited to small ensemble set in practice. This results in appearance of spurious correlation in covariance structure leading to incorrect or probable divergence of updated realizations. In this paper, a universal/adaptive thresholding method is presented to remove and/or mitigate spurious correlation problem in the forecast covariance matrix. This method is, then, extended to regularize Kalman gain directly. Four different thresholding functions have been considered to threshold forecast covariance and gain matrices. These include hard, soft, lasso and Smoothly Clipped Absolute Deviation (SCAD) functions. Three benchmarks are used to evaluate the performances of these methods. These benchmarks include a small 1D linear model and two 2D water flooding (in petroleum reservoirs) cases whose levels of heterogeneity/nonlinearity are different. It should be noted that beside the adaptive thresholding, the standard distance dependant localization and bootstrap Kalman gain are also implemented for comparison purposes. We assessed each setup with different ensemble sets to investigate the sensitivity of each method on ensemble size. The results indicate that thresholding of forecast covariance yields more reliable performance than Kalman gain. Among thresholding function, SCAD is more robust for both covariance and gain estimation. Our analyses emphasize that not all assimilation cycles do require thresholding and it should be performed wisely during the early assimilation cycles. The proposed scheme of adaptive thresholding outperforms other methods for subsurface characterization of underlying benchmarks.

  16. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data. PMID:23938797

  17. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  18. Unscented fuzzy-controlled current statistic model and adaptive filtering for tracking maneuvering targets

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Jing, Zhongliang; Hu, Shiqiang

    2006-12-01

    A novel adaptive algorithm for tracking maneuvering targets is proposed. The algorithm is implemented with fuzzy-controlled current statistic model adaptive filtering and unscented transformation. A fuzzy system allows the filter to tune the magnitude of maximum accelerations to adapt to different target maneuvers, and unscented transformation can effectively handle nonlinear system. A bearing-only tracking scenario simulation results show the proposed algorithm has a robust advantage over a wide range of maneuvers and overcomes the shortcoming of the traditional current statistic model and adaptive filtering algorithm.

  19. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  20. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation

    PubMed Central

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  1. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    PubMed

    Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V

    2015-01-01

    Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares. PMID:25983690

  2. An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers

    SciTech Connect

    Gelb, Anne; Archibald, Richard K

    2015-01-01

    Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.

  3. An online novel adaptive filter for denoising time series measurements.

    PubMed

    Willis, Andrew J

    2006-04-01

    A nonstationary form of the Wiener filter based on a principal components analysis is described for filtering time series data possibly derived from noisy instrumentation. The theory of the filter is developed, implementation details are presented and two examples are given. The filter operates online, approximating the maximum a posteriori optimal Bayes reconstruction of a signal with arbitrarily distributed and non stationary statistics. PMID:16649562

  4. Burst noise reduction of image by decimation and adaptive weighted median filter

    NASA Astrophysics Data System (ADS)

    Nakayama, Fumitaka; Meguro, Mitsuhiko; Hamada, Nozomu

    2000-12-01

    The removal of noise in image is one of the important issues, and useful as a preprocessing for edge detection, motion estimation and so on. Recently, many studies on the nonlinear digital filter for impulsive noise reduction have been reported. The median filter, the representative of the nonlinear filters, is very effective for removing impulsive noise and preserving sharp edge. In some cases, burst (i.e., successive) impulsive noise is added to image, and this type of noise is difficult to remove by using the median filter. In this paper, we propose an Adaptive Weighted Median (AWM) filter with Decimation (AWM-D filter) for burst noise reduction. This method can also be applied to recover large destructive regions, such as blotch and scratch. The proposed filter is an extension of the Decimated Median (DM) filter, which is useful for reducing successive impulsive noise. The DM filter can split long impulsive noise sequences into short ones, and remove burst noise in spite of the short filter window. Nevertheless, the DM filter also has two disadvantages. One is that the signals without added noise is unnecessary filtered. The other is that the position information in the window is not considered in the weight determinative process, as common in the median type filter. To improve detail-preserving property of the DM filter, we use the noise detection procedure and the AWM-D filter, which can be tuned by Least Mean Absolute (LMA) algorithm. The AWM-D filter preserves details more precisely than the median-type filter, because the AWM-D filter has the weights that can control the filter output. Through some simulations, the higher performance of the proposed filter is shown compared with the simple median, the WM filter, and the DM filter.

  5. Adaptive RSOV filter using the FELMS algorithm for nonlinear active noise control systems

    NASA Astrophysics Data System (ADS)

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou; Li, Tianrui

    2013-01-01

    This paper presents a recursive second-order Volterra (RSOV) filter to solve the problems of signal saturation and other nonlinear distortions that occur in nonlinear active noise control systems (NANC) used for actual applications. Since this nonlinear filter based on an infinite impulse response (IIR) filter structure can model higher than second-order and third-order nonlinearities for systems where the nonlinearities are harmonically related, the RSOV filter is more effective in NANC systems with either a linear secondary path (LSP) or a nonlinear secondary path (NSP). Simulation results clearly show that the RSOV adaptive filter using the multichannel structure filtered-error least mean square (FELMS) algorithm can further greatly reduce the computational burdens and is more suitable to eliminate nonlinear distortions in NANC systems than a SOV filter, a bilinear filter and a third-order Volterra (TOV) filter.

  6. Discrete cosine transform-based local adaptive filtering of images corrupted by nonstationary noise

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Abramov, Sergey K.; Pogrebnyak, Oleksiy; Egiazarian, Karen O.; Astola, Jaakko T.

    2010-04-01

    In many image-processing applications, observed images are contaminated by a nonstationary noise and no a priori information on noise dependence on local mean or about local properties of noise statistics is available. In order to remove such a noise, a locally adaptive filter has to be applied. We study a locally adaptive filter based on evaluation of image local activity in a ``blind'' manner and on discrete cosine transform computed in overlapping blocks. Two mechanisms of local adaptation are proposed and applied. The first mechanism takes into account local estimates of noise standard deviation while the second one exploits discrimination of homogeneous and heterogeneous image regions by adaptive threshold setting. The designed filter performance is tested for simulated data as well as for real-life remote-sensing and maritime radar images. Recommendations concerning filter parameter setting are provided. An area of applicability of the proposed filter is defined.

  7. Geometric-Algebra LMS Adaptive Filter and Its Application to Rotation Estimation

    NASA Astrophysics Data System (ADS)

    Lopes, Wilder B.; Al-Nuaimi, Anas; Lopes, Cassio G.

    2016-06-01

    This paper exploits Geometric (Clifford) Algebra (GA) theory in order to devise and introduce a new adaptive filtering strategy. From a least-squares cost function, the gradient is calculated following results from Geometric Calculus (GC), the extension of GA to handle differential and integral calculus. The novel GA least-mean-squares (GA-LMS) adaptive filter, which inherits properties from standard adaptive filters and from GA, is developed to recursively estimate a rotor (multivector), a hypercomplex quantity able to describe rotations in any dimension. The adaptive filter (AF) performance is assessed via a 3D point-clouds registration problem, which contains a rotation estimation step. Calculating the AF computational complexity suggests that it can contribute to reduce the cost of a full-blown 3D registration algorithm, especially when the number of points to be processed grows. Moreover, the employed GA/GC framework allows for easily applying the resulting filter to estimating rotors in higher dimensions.

  8. Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.

    2012-01-01

    A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.

  9. Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

    SciTech Connect

    Hilts, Michelle; Jirasek, Andrew

    2008-01-15

    X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

  10. Analysis of dynamic deformation processes with adaptive KALMAN-filtering

    NASA Astrophysics Data System (ADS)

    Eichhorn, Andreas

    2007-05-01

    In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (r.m.s.) smaller than 10 mgon. These results show that the deformation model is a precise predictor and suitable for realistic simulations of thermal deformations. Experiments with modified heat sources will be necessary to verify the model in further frequency spectra of dynamic thermal loads.

  11. FPGA architectures for electronically scanned wide-band RF beams using 3-D FIR/IIR digital filters for rectangular array aperture receivers

    NASA Astrophysics Data System (ADS)

    Wijayaratna, Sewwandi; Madanayake, Arjuna; Beall, Brandon D.; Bruton, Len T.

    2014-05-01

    Real-time digital implementation of three-dimensional (3-D) infinite impulse response (IIR) beam filters are discussed. The 3-D IIR filter building blocks have filter coefficients, which are defined using algebraic closed-form expressions that are functions of desired beam personalities, such as the look-direction of the aperture, the bandwidth and sampling frequency of interest, inter antenna spacing, and 3dB beam size. Real-time steering of such 3-D beam filters are obtained by proposed calculation of filter coefficients. Application specific computing units for rapidly calculating the 3-D IIR filter coefficients at nanosecond speed potentially allows fast real-time tracking of low radar cross section (RCS) objects at close range. Proposed design consists of 3-D IIR beam filter with 4 4 antenna grid and the filter coefficient generation block in separate FPGAs. The hardware is designed and co-simulated using a Xilinx Virtex-6 XC6VLX240T FPGA. The 3-D filter operates over 90 MHz and filter coefficient computing structure can operate at up to 145 MHz.

  12. An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors

    PubMed Central

    2014-01-01

    Background Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. Methods We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Results Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min −1 (0.3 min −1) and -0.7 bpm (1.7 bpm) (compared to -0.2 min −1 (0.4 min −1) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average

  13. Nonlinear filtering for robust signal processing

    SciTech Connect

    Palmieri, F.

    1987-01-01

    A generalized framework for the description and design of a large class of nonlinear filters is proposed. Such a family includes, among others, the newly defined Ll-estimators, that generalize the order statistic filters (L-filters) and the nonrecursive linear filters (FIR). Such estimators are particularly efficient in filtering signals that do not follow gaussian distributions. They can be designed to restore signals and images corrupted by noise of impulsive type. Such filters are very appealing since they are suitable for being made robust against perturbations on the assumed model, or insensitive to the presence of spurious outliers in the data. The linear part of the filter is used to characterize their essential spectral behavior. It can be constrained to a given shape to obtain nonlinear filters that combine given frequency characteristics and noise immunity. The generalized nonlinear filters can also be used adaptively with the coefficients computed dynamically via LMS or RLS algorithms.

  14. An Efficient Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise

    NASA Astrophysics Data System (ADS)

    Nair, Madhu S.; Ameera Mol, P. M.

    2014-09-01

    Restoration of images corrupted by impulse noise is a very active research area in image processing. In this paper, an Efficient Adaptive Weighted Switching Median filter for restoration of images that are corrupted by high density impulse noise is proposed. The filtering is performed as a two phase process—a detection phase followed by a filtering phase. In the proposed method, noise detection is done by HEIND algorithm proposed by Duan et al. The filtering algorithm is then applied to the pixels which are detected as noisy by the detection algorithm. All uncorrupted pixels in the image are left unchanged. The filtering window size is chosen adaptively depending on the local noise distribution around each corrupted pixels. Noisy pixels are replaced by a weighted median value of uncorrupted pixels in the filtering window. The weight value assigned to each uncorrupted pixels depends on its closeness to the central pixel.

  15. Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.

    PubMed

    Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin

    2016-08-01

    In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter. PMID:27505376

  16. Adaptive Filtering for Large Space Structures: A Closed-Form Solution

    NASA Technical Reports Server (NTRS)

    Rauch, H. E.; Schaechter, D. B.

    1985-01-01

    In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.

  17. Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques

    SciTech Connect

    Arellano, J.; Hernandez, J.M.; Brase, J.

    1993-05-01

    This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.

  18. Applying well flow adapted filtering to transient pumping tests

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Attinger, Sabine

    2014-05-01

    Transient pumping tests are often used to estimate porous medium characteristics like hydraulic conductivity and storativity. The interpretation of pumping test drawdowns is based on methods which are normally developed under the assumption of homogeneous porous media. However aquifer heterogeneity strongly impacts on well flow pattern, in particular in the vicinity of the pumping well. The purpose of this work is to present a method to interpret drawdowns of transient pumping tests in heterogeneous porous media. With this method we are able to describe the effects that statistical quantities like variance and correlation length have on pumping test drawdowns. Furthermore it allows inferring on the statistical parameters of aquifer heterogeneity from drawdown data by invers estimation, which is not possible using methods for homogeneous media like Theis' solution. The method is based on a representative description of hydraulic conductivity for radial flow regimes. It is derived from a well flow adapted filtering procedure (Coarse Graining), where the heterogeneity of hydraulic conductivity is assumed to be log-normal distributed with a Gaussian correlation structure. applying the up scaled hydraulic conductivity to the groundwater flow equation results in a hydraulic head which depends on the statistical parameters of the porous medium. It describes the drawdown of a transient pumping test in heterogeneous media. We used an ensemble of transient pumping test simulations to verify the up scaled drawdown solution. We generated transient pumping tests in heterogeneous media for various values of the statistical parameters variance and correlation length and evaluated their impact on the drawdown behavior as well as on the temporal evolution. We further examined the impact of several aspects like the location of an observation well or the local conductivity at the pumping well on the drawdown behavior. This work can be understood as an expansion of the work of Zech et

  19. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    NASA Astrophysics Data System (ADS)

    Chang, John

    Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic

  20. Adaptive box filters for removal of random noise from digital images

    USGS Publications Warehouse

    Eliason, E.M.; McEwen, A.S.

    1990-01-01

    We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors

  1. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  2. Improving the response of accelerometers for automotive applications by using LMS adaptive filters: Part II.

    PubMed

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y; Fernández, Eduardo

    2010-01-01

    In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579

  3. Adaptive Spatial Filtering with Principal Component Analysis for Biomedical Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Yamazaki, Rena; Saijo, Yoshifumi

    Photoacoustic (PA) signal is very sensitive to noise generated by peripheral equipment such as power supply, stepping motor or semiconductor laser. Band-pass filter is not effective because the frequency bandwidth of the PA signal also covers the noise frequency. The objective of the present study is to reduce the noise by using an adaptive spatial filter with principal component analysis (PCA).

  4. Adaptive high temperature superconducting filters for interference rejection

    SciTech Connect

    Raihn, K.F.; Fenzi, N.O.; Hey-Shipton, G.L.; Saito, E.R.; Loung, P.V.; Aidnik, D.L.

    1996-07-01

    An optically switched high temperature superconducting (HTS) band-reject filter bank is presented. Fast low loss switching of high quality (Q) factor HTS filter elements enables digital selection of arbitrary pass-bands and stop-bands. Patterned pieces of GaAs and silicon are used in the manufacture of the photosensitive switches. Fiber optic cabling is used to transfer the optical energy from an LED to the switch. The fiber optic cable minimizes the thermal loading of the filter package and de-couples the switch`s power source from the RF circuit. This paper will discuss the development of a computer-controlled HTS bank of optically switchable, narrow band, high Q bandstop filters which incorporates a cryocooler to maintain the 77 K operating temperature of the HTS microwave circuit.

  5. Signal quality improvement of holographic data storage using adaptive two-dimensional filter

    NASA Astrophysics Data System (ADS)

    Takahata, Yosuke; Kondo, Yo; Yoshida, Shuhei; Yamamoto, Manabu

    2010-05-01

    Holographic data storage is being widely studied for the purpose of developing next-generation large optical memories. A prospective use of this type of memory is in building image archives in large-scale data centers. In particular, demand for energy conservation at data centers, and therefore for holographic data storage, is growing. In holographic data storage, interference between bits occurs owing to wave aberration in the optical system, shrinkage of the medium, and crosstalk noise from neighboring holograms during multiplex recording; as a result of the interference, the reproduced image deteriorates and the bit error rate (BER) increases. In this study, to reduce the BER in both off-axis-type recording and coaxial-type recording, a two-dimensional finite impulse response (FIR) filter is applied to a reproduced image that has been recorded by angle multiplex recording and shift multiplex recording. First, for the optimization of the FIR filter coefficients, the linear minimum mean square error (LMMSE) method is applied; this method optimizes the coefficients by reducing the BER. Furthermore, for evaluating the optimization performance of the LMMSE method, the optimization performance is compared with that of the real-coded genetic algorithm (RCGA), which has the capability to search a wide range of coefficients. The optimization by the LMMSE method has been found to be excellent for off-axis-type recording but not for coaxial-type recording. It is speculated that this is because of the brightness irregularity in the reproduced image, resulting from crosstalk. On the other hand, a marked reduction in the BER is observed using the RCGA, despite the brightness irregularity. In this study, the effectiveness of the LMMSE method for signals recorded by coaxial-type recording, in which large brightness irregularity is expected, is examined using automatic gain control (AGC). It is found that the application of AGC reduces the BER even in the case of coaxial

  6. Adaptive iterated function systems filter for images highly corrupted with fixed - Value impulse noise

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.

    2014-06-01

    The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.

  7. PAH FIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mattioda, Andrew; Ricca, A.; Tucker, J.; Bauschlicher, C., Jr.; Allamandola, L.

    2009-01-01

    The mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 µm. These features, formerly referred to as the Unidentified Infrared (UIR) Bands, are now generally thought to originate in free polycyclic aromatic hydrocarbon (PAH) molecules and closely related species. In addition to dominating the 3-20 µm region of the spectrum, they carry some 20-40% of the total IR luminosity from most of these objects. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (20 to 1000 mm) and these FIR features should be present in astronomical sources. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview of the FIR spectroscopy of PAHs.

  8. Adaptive filtering of radar images for autofocus applications

    NASA Technical Reports Server (NTRS)

    Stiles, J. A.; Frost, V. S.; Gardner, J. S.; Eland, D. R.; Shanmugam, K. S.; Holtzman, J. C.

    1981-01-01

    Autofocus techniques are being designed at the Jet Propulsion Laboratory to automatically choose the filter parameters (i.e., the focus) for the digital synthetic aperture radar correlator; currently, processing relies upon interaction with a human operator who uses his subjective assessment of the quality of the processed SAR data. Algorithms were devised applying image cross-correlation to aid in the choice of filter parameters, but this method also has its drawbacks in that the cross-correlation result may not be readily interpretable. Enhanced performance of the cross-correlation techniques of JPL was hypothesized given that the images to be cross-correlated were first filtered to improve the signal-to-noise ratio for the pair of scenes. The results of experiments are described and images are shown.

  9. Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun

    2015-01-01

    The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…

  10. Low-Complexity Lossless Compression of Hyperspectral Imagery Via Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew A.

    2005-01-01

    A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.

  11. Low-Complexity Lossless Compression of Hyperspectral Imagery via Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Klimesh, M.

    2005-01-01

    A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.

  12. Block-adaptive filtering and its application to seismic-event detection

    SciTech Connect

    Clark, G.A.

    1981-04-01

    Block digital filtering involves the calculation of a block or finite set of filter output samples from a block of input samples. The motivation for block processing arises from computational advantages of the technique. Block filters take good advantage of parallel processing architectures, which are becoming more and more attractive with the advent of very large scale integrated (VLSI) circuits. This thesis extends the block technique to Wiener and adaptive filters, both of which are statistical filters. The key ingredient to this extension turns out to be the definition of a new performance index, block mean square error (BMSE), which combines the well known sum square error (SSE) and mean square error (MSE). A block adaptive filtering procedure is derived in which the filter coefficients are adjusted once per each output block in accordance with a generalized block least mean-square (BLMS) algorithm. Convergence properties of the BLMS algorithm are studied, including conditions for guaranteed convergence, convergence speed, and convergence accuracy. Simulation examples are given for clarity. Convergence properties of the BLMS and LMS algorithms are analyzed and compared. They are shown to be analogous, and under the proper circumstances, equivalent. The block adaptive filter was applied to the problem of detecting small seismic events in microseismic background noise. The predictor outperformed the world-wide standardized seismograph network (WWSSN) seismometers in improving signal-to-noise ratio (SNR).

  13. Theory and experimental study on low-light-level images by adaptive mode filter

    NASA Astrophysics Data System (ADS)

    Bai, Lianfa; Zhang, Baomin; Liu, Yunfen; Chen, Qian

    1996-09-01

    Real-time low light level (LLL) image processing technology is the important developmental subject in the area of LLL night vision. But there is an essential distinction between the LLL TV image and ordinary TV image, so the conventional digital image processing technique aren't suitable for LLL image. In this paper, the noise theoretical model of LLL imaging system is described and the LLL image processing system is set up. With regard to the characteristics of LLL image and its noise, a novel noise suppression method, adaptive mode filter, is presented. The experimental results show that the adaptive mode filter can suppress the sharp noise of LLL image effectively, and as for the protection of the image edge, the property of adaptive mode filter is better that of median filter. Finally, the processing results and the conclusions are given.

  14. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  15. Adaptive box filters for removal of random noise from digital images

    NASA Technical Reports Server (NTRS)

    Eliason, Eric M.; Mcewen, Alfred S.

    1990-01-01

    Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.

  16. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  17. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  18. New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji

    Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.

  19. Prototype adaptive bow-tie filter based on spatial exposure time modulation

    NASA Astrophysics Data System (ADS)

    Badal, Andreu

    2016-03-01

    In recent years, there has been an increased interest in the development of dynamic bow-tie filters that are able to provide patient-specific x-ray beam shaping. We introduce the first physical prototype of a new adaptive bow-tie filter design based on the concept of "spatial exposure time modulation." While most existing bow-tie filters operate by attenuating the radiation beam differently in different locations using partially attenuating objects, the presented filter shapes the radiation field using two movable completely radio-opaque collimators. The aperture and speed of the collimators is modulated in synchrony with the x-ray exposure to selectively block the radiation emitted to different parts of the object. This mode of operation does not allow the reproduction of every possible attenuation profile, but it can reproduce the profile of any object with an attenuation profile monotonically decreasing from the center to the periphery, such as an object with an elliptical cross section. Therefore, the new adaptive filter provides the same advantages as the currently existing static bow-tie filters, which are typically designed to work for a pre-determined cylindrical object at a fixed distance from the source, and provides the additional capability to adapt its performance at image acquisition time to better compensate for the actual diameter and location of the imaged object. A detailed description of the prototype filter, the implemented control methods, and a preliminary experimental validation of its performance are presented.

  20. Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter

    NASA Astrophysics Data System (ADS)

    Jiang, Yuhao; Zachary, Josey

    2016-03-01

    Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.

  1. Independent motion detection with a rival penalized adaptive particle filter

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Hübner, Wolfgang; Arens, Michael

    2014-10-01

    Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic

  2. Orthonormal filters for identification in active control systems

    NASA Astrophysics Data System (ADS)

    Mayer, Dirk

    2015-12-01

    Many active noise and vibration control systems require models of the control paths. When the controlled system changes slightly over time, adaptive digital filters for the identification of the models are useful. This paper aims at the investigation of a special class of adaptive digital filters: orthonormal filter banks possess the robust and simple adaptation of the widely applied finite impulse response (FIR) filters, but at a lower model order, which is important when considering implementation on embedded systems. However, the filter banks require prior knowledge about the resonance frequencies and damping of the structure. This knowledge can be supposed to be of limited precision, since in many practical systems, uncertainties in the structural parameters exist. In this work, a procedure using a number of training systems to find the fixed parameters for the filter banks is applied. The effect of uncertainties in the prior knowledge on the model error is examined both with a basic example and in an experiment. Furthermore, the possibilities to compensate for the imprecise prior knowledge by a higher filter order are investigated. Also comparisons with FIR filters are implemented in order to assess the possible advantages of the orthonormal filter banks. Numerical and experimental investigations show that significantly lower computational effort can be reached by the filter banks under certain conditions.

  3. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  4. Adaptive filtering and prediction of the Southern Oscillation index

    NASA Astrophysics Data System (ADS)

    Keppenne, Christian L.; Ghil, Michael

    1992-12-01

    Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Niño cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregressive models has useful skill for 30-36 months. A 1993-1994 La Niña event is predicted based on data through February 1992.

  5. Adaptive filtering and prediction of the Southern Oscillation index

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Ghil, Michael

    1992-01-01

    Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Nino cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregresive models has useful skill for 30-36 months. A 1993-1994 La Nina event is predicted based on data through February 1992.

  6. Adaptive filtering and prediction of the Southern Oscillation index

    SciTech Connect

    Keppenne, C.L. California Inst. of Technology, Pasadena ); Ghil, M. )

    1992-12-20

    Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Nino cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregressive models has useful skill for 30-36 months. A 1993-1994 La Nina event is predicted based on data through February 1992. 52 refs., 4 figs.

  7. Predicting Hyper-Chaotic Time Series Using Adaptive Higher-Order Nonlinear Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Shu; Xiao, Xian-Ci

    2001-03-01

    A newly proposed method, i.e. the adaptive higher-order nonlinear finite impulse response (HONFIR) filter based on higher-order sparse Volterra series expansions, is introduced to predict hyper-chaotic time series. The effectiveness of using the adaptive HONFIR filter for making one-step and multi-step predictions is tested based on very few data points by computer-generated hyper-chaotic time series including the Mackey-Glass equation and four-dimensional nonlinear dynamical system. A comparison is made with some neural networks for predicting the Mackey-Glass hyper-chaotic time series. Numerical simulation results show that the adaptive HONFIR filter proposed here is a very powerful tool for making prediction of hyper-chaotic time series.

  8. Adaptive filters for suppressing irregular hostile jamming in direct sequence spread-spectrum system

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hoon; Lee, Choong Woong

    A stable and high-performance adaptive filter for suppressing irregular hostile jamming in direct-sequence (DS) spread-spectrum systems is designed. A gradient-search fast converging algorithm (GFC) is suggested. For the case of a sudden parameter jump or incoming of an interference, the transient behaviors of the receiver using a GFC adaptive filter are investigated and compared with those of the receiver using a least-mean-square (LMS) or a lattice adaptive filter. The results are shown in the response graphs of the simulated receiver during the short period when the characteristic of a jammer is suddenly changed. Steady-state performances of those receivers are also evaluated in the sense of the excess mean-square error over that of an optimum receiver for suppressing stationary interferences.

  9. A study of infrared spectroscopy de-noising based on LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao

    2015-12-01

    Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.

  10. ROI extraction of chest CT images using adaptive opening filter

    NASA Astrophysics Data System (ADS)

    Yamada, Nobuhiro; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Omatsu, Hironobu; Kakinuma, Ryutaro; Kaneko, Masahiro; Kusumoto, Masahiko; Nishiyama, Hiroyuki; Moriyama, Noriyuki

    2003-05-01

    We have already developed a prototype of computer-aided diagnosis (CAD) system that can automatically detect suspicious shadows from Chest CT images. But the CAD system cannot detect Ground-Grass-Attenuation perfectly. In many cases, this reason depends on the inaccurate extraction of the region of interests (ROI) that CAD system analyzes, so we need to improve it. In this paper, we propose a method of an accurate extraction of the ROI, and compare proposed method to ordinary method that have used in CAD system. Proposed Method is performed by application of the three steps. Firstly we extract lung area using threshold. Secondly we remove the slowly varying bias field using flexible Opening Filter. This Opening Filter is calculated by the combination of the ordinary opening value and the distribution which CT value and contrast follow. Finally we extract Region of Interest using fuzzy clustering. When we applied proposal method to Chest CT images, we got a good result in which ordinary method cannot achieve. In this study we used the Helical CT images that are obtained under the following measurement: 10mm beam width; 20mm/sec table speed; 120kV tube voltage; 50mA tube current; 10mm reconstruction interval.

  11. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    PubMed

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications. PMID:25474814

  12. Seasonal signal capturing in time series of up coordinates by means of adaptive filters

    NASA Astrophysics Data System (ADS)

    Yalvac, S.; Ustun, A.

    2013-12-01

    Digital filters, is a system that performs mathematical operations on a sampled or discrete time signals. Adaptive filters designed for noise canceling are capable tools of decomposing correlated parts of data sets. This kind of filters which optimize itself using Least Mean Square (LMS) algorithm is a powerful tool for understand the truth hidden into the complex data sets like time series in Geosciences. The complex data sets such as CGPS (Continuously operating reference station) station's time series can be understood better with adaptive noise canceling by means of decompose coherent (seasonal effect, tectonic plate motion) and incoherent (noise; site-specific effects) parts of data. In this study, it is aimed to model the subsidence caused by groundwater withdrawal based on the seasonal correlation between consecutive years of CGPS time series. For this purpose, two stations where located into subsidence area of 3 year time series have analyzed with adaptive noise canceling filter. According to the results, the annual movement of these two stations have strong relationship. Also, subsidence behavior are correlated with annual rainfall data. BELD station one year filtered movement KAMN station one year filtered movements

  13. Using adaptive genetic algorithms in the design of morphological filters in textural image processing

    NASA Astrophysics Data System (ADS)

    Li, Wei; Haese-Coat, Veronique; Ronsin, Joseph

    1996-03-01

    An adaptive GA scheme is adopted for the optimal morphological filter design problem. The adaptive crossover and mutation rate which make the GA avoid premature and at the same time assure convergence of the program are successfully used in optimal morphological filter design procedure. In the string coding step, each string (chromosome) is composed of a structuring element coding chain concatenated with a filter sequence coding chain. In decoding step, each string is divided into 3 chains which then are decoded respectively into one structuring element with a size inferior to 5 by 5 and two concatenating morphological filter operators. The fitness function in GA is based on the mean-square-error (MSE) criterion. In string selection step, a stochastic tournament procedure is used to replace the simple roulette wheel program in order to accelerate the convergence. The final convergence of our algorithm is reached by a two step converging strategy. In presented applications of noise removal from texture images, it is found that with the optimized morphological filter sequences, the obtained MSE values are smaller than those using corresponding non-adaptive morphological filters, and the optimized shapes and orientations of structuring elements take approximately the same shapes and orientations as those of the image textons.

  14. New cardiac MRI gating method using event-synchronous adaptive digital filter.

    PubMed

    Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung

    2009-11-01

    When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach. PMID:19644754

  15. An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.

    PubMed

    Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W

    2015-01-01

    Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance. PMID:26451817

  16. Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering.

    PubMed

    Sudeep, P V; Issac Niwas, S; Palanisamy, P; Rajan, Jeny; Xiaojun, Yu; Wang, Xianghong; Luo, Yuemei; Liu, Linbo

    2016-04-01

    Optical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data. Gamma noise model is assumed for the observed OCT image. First, the adaptive version of the conventional bilateral filter is applied to enhance the multiframe OCT data and then the bias due to noise is reduced from each of the filtered frames. These unbiased filtered frames are then refined using an iterative approach. Finally, these refined frames are averaged to produce the denoised OCT image. Experimental results on phantom images and real OCT retinal images demonstrate the effectiveness of the proposed filter. PMID:26907572

  17. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  18. Stent enhancement using a locally adaptive unsharp masking filter in digital x-ray fluoroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Yuhao; Ekanayake, Eranda

    2014-03-01

    Low exposure X-ray fluoroscopy is used to guide some complicate interventional procedures. Due to the inherent high levels of noise, improving the visibility of some interventional devices such as stent will greatly benefit those interventional procedures. Stent, which is made up of tiny steel wires, is also suffered from contrast dilutions of large flat panel detector pixels. A novel adaptive unsharp masking filter has been developed to improve stent contrast in real-time applications. In unsharp masking processing, the background is estimated and subtracted from the original input image to create a foreground image containing objects of interest. A background estimator is therefore critical in the unsharp masking processing. In this specific study, orientation filter kernels are used as the background estimator. To make the process simple and fast, the kernels average along a line of pixels. A high orientation resolution of 18° is used. A nonlinear operator is then used to combine the information from the images generated from convolving the original background and noise only images with orientation filters. A computerized Monte Carlo simulation followed by ROC study is used to identify the best nonlinear operator. We then apply the unsharp masking filter to the images with stents present. It is shown that the locally adaptive unsharp making filter is an effective filter for improving stent visibility in the interventional fluoroscopy. We also apply a spatio-temporal channelized human observer model to quantitatively optimize and evaluate the filter.

  19. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  20. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  1. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  2. Adaptive Control of Linear Modal Systems Using Residual Mode Filters and a Simple Disturbance Estimator

    NASA Technical Reports Server (NTRS)

    Balas, Mark; Frost, Susan

    2012-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.

  3. Detecting discontinuities in time series of upper air data: Demonstration of an adaptive filter technique

    SciTech Connect

    Zurbenko, I.; Chen, J.; Rao, S.T.

    1997-11-01

    The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.

  4. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  5. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    PubMed Central

    Maier, Andreas; Wigström, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8

  6. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    SciTech Connect

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  7. Improved electromagnetic induction processing with novel adaptive matched filter and matched subspace detection

    NASA Astrophysics Data System (ADS)

    Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.

    2016-05-01

    This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.

  8. A multi-stage noise adaptive switching filter for extremely corrupted images

    NASA Astrophysics Data System (ADS)

    Dinh, Hai; Adhami, Reza; Wang, Yi

    2015-07-01

    A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.

  9. Moving target detection by nonlinear adaptive filtering on temporal profiles in infrared image sequences

    NASA Astrophysics Data System (ADS)

    Liu, Delian; Li, Zhaohui; Wang, Xiaorui; Zhang, Jianqi

    2015-11-01

    Target detection is of great importance both in civil and military fields. Here a new moving target detection approach is proposed, which employs a nonlinear adaptive filter to remove large fluctuations on temporal profiles that are produced by evolving clutters. Initially, this paper discusses the temporal behaviors of different pixels in infrared sequences. Then, the new nonlinear adaptive filter that is a variation of the median-modified Wiener filter is given to extract pulse signals on temporal profiles that relate to moving targets. Next, the variance of each temporal profile is estimated by segmenting each temporal profile into several segments to normalize the amplitude of the pulse signals. Finally, the proposed approach is tested via two infrared image sequences and compared with several conventional target detection algorithms. The results show our approach has a high effectiveness in extracting target temporal profiles amidst heavy and slowly evolving clutters.

  10. Revisiting the relationship between adaptive smoothing and anisotropic diffusion with modified filters.

    PubMed

    Ham, Bumsub; Min, Dongbo; Sohn, Kwanghoon

    2013-03-01

    Anisotropic diffusion has been known to be closely related to adaptive smoothing and discretized in a similar manner. This paper revisits a fundamental relationship between two approaches. It is shown that adaptive smoothing and anisotropic diffusion have different theoretical backgrounds by exploring their characteristics with the perspective of normalization, evolution step size, and energy flow. Based on this principle, adaptive smoothing is derived from a second order partial differential equation (PDE), not a conventional anisotropic diffusion, via the coupling of Fick's law with a generalized continuity equation where a "source" or "sink" exists, which has not been extensively exploited. We show that the source or sink is closely related to the asymmetry of energy flow as well as the normalization term of adaptive smoothing. It enables us to analyze behaviors of adaptive smoothing, such as the maximum principle and stability with a perspective of a PDE. Ultimately, this relationship provides new insights into application-specific filtering algorithm design. By modeling the source or sink in the PDE, we introduce two specific diffusion filters, the robust anisotropic diffusion and the robust coherence enhancing diffusion, as novel instantiations which are more robust against the outliers than the conventional filters. PMID:23193236

  11. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter.

    PubMed

    Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2016-05-01

    Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086

  12. Neural Network Aided Adaptive Extended Kalman Filtering Approach for DGPS Positioning

    NASA Astrophysics Data System (ADS)

    Jwo, Dah-Jing; Huang, Hung-Chih

    2004-09-01

    The extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.

  13. A unified set-based test with adaptive filtering for gene-environment interaction analyses.

    PubMed

    Liu, Qianying; Chen, Lin S; Nicolae, Dan L; Pierce, Brandon L

    2016-06-01

    In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate P-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228

  14. A unified set-based test with adaptive filtering for gene-environment interaction analyses

    PubMed Central

    Liu, Qianying; Chen, Lin S.; Nicolae, Dan L.; Pierce, Brandon L.

    2015-01-01

    Summary In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate p-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228

  15. Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators

    NASA Astrophysics Data System (ADS)

    Law, K. J. H.; Sanz-Alonso, D.; Shukla, A.; Stuart, A. M.

    2016-06-01

    In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz '96 model is used to exemplify our findings. We consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recover the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.

  16. Parameter estimation with an iterative version of the adaptive Gaussian mixture filter

    NASA Astrophysics Data System (ADS)

    Stordal, A.; Lorentzen, R.

    2012-04-01

    The adaptive Gaussian mixture filter (AGM) was introduced in Stordal et. al. (ECMOR 2010) as a robust filter technique for large scale applications and an alternative to the well known ensemble Kalman filter (EnKF). It consists of two analysis steps, one linear update and one weighting/resampling step. The bias of AGM is determined by two parameters, one adaptive weight parameter (forcing the weights to be more uniform to avoid filter collapse) and one pre-determined bandwidth parameter which decides the size of the linear update. It has been shown that if the adaptive parameter approaches one and the bandwidth parameter decrease with increasing sample size, the filter can achieve asymptotic optimality. For large scale applications with a limited sample size the filter solution may be far from optimal as the adaptive parameter gets close to zero depending on how well the samples from the prior distribution match the data. The bandwidth parameter must often be selected significantly different from zero in order to make large enough linear updates to match the data, at the expense of bias in the estimates. In the iterative AGM we take advantage of the fact that the history matching problem is usually estimation of parameters and initial conditions. If the prior distribution of initial conditions and parameters is close to the posterior distribution, it is possible to match the historical data with a small bandwidth parameter and an adaptive weight parameter that gets close to one. Hence the bias of the filter solution is small. In order to obtain this scenario we iteratively run the AGM throughout the data history with a very small bandwidth to create a new prior distribution from the updated samples after each iteration. After a few iterations, nearly all samples from the previous iteration match the data and the above scenario is achieved. A simple toy problem shows that it is possible to reconstruct the true posterior distribution using the iterative version of

  17. Adaptive switching filter for noise removal in highly corrupted depth maps from Time-of-Flight image sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seunghee; Bae, Kwanghyuk; Kyung, Kyu-min; Kim, Tae-Chan

    2012-03-01

    In this work, we present an adaptive switching filter for noise reduction and sharpness preservation in depth maps provided by Time-of-Flight (ToF) image sensors. Median filter and bilateral filter are commonly used in cost-sensitive applications where low computational complexity is needed. However, median filter blurs fine details and edges in depth map while bilateral filter works poorly with impulse noise present in the image. Since the variance of depth is inversely proportional to amplitude, we suggest an adaptive filter that switches between median filter and bilateral filter based on the level of amplitude. If a region of interest has low amplitude indicating low confidence level of measured depth data, then median filter is applied on the depth at the position while regions with high level of amplitude is processed with bilateral filter using Gaussian kernel with adaptive weights. Results show that the suggested algorithm performs surface smoothing and detail preservation as well as median filter and bilateral filter, respectively. By using the suggested algorithm, significant gain in visual quality is obtained in depth maps while low computational cost is maintained.

  18. Adaptive nonlocal means filtering based on local noise level for CT denoising

    SciTech Connect

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  19. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  20. A 3D approach for object recognition in illuminated scenes with adaptive correlation filters

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Díaz-Ramírez, Víctor H.

    2015-09-01

    In this paper we solve the problem of pose recognition of a 3D object in non-uniformly illuminated and noisy scenes. The recognition system employs a bank of space-variant correlation filters constructed with an adaptive approach based on local statistical parameters of the input scene. The position and orientation of the target are estimated with the help of the filter bank. For an observed input frame, the algorithm computes the correlation process between the observed image and the bank of filters using a combination of data and task parallelism by taking advantage of a graphics processing unit (GPU) architecture. The pose of the target is estimated by finding the template that better matches the current view of target within the scene. The performance of the proposed system is evaluated in terms of recognition accuracy, location and orientation errors, and computational performance.

  1. Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images.

    PubMed

    Bamber, J C; Daft, C

    1986-01-01

    Current medical ultrasonic scanning instrumentation permits the display of fine image detail (speckle) which does not transfer useful information but degrades the apparent low contrast resolution in the image. An adaptive two-dimensional filter has been developed which uses local features of image texture to recognize and maximally low-pass filter those parts of the image which correspond to fully developed speckle, while substantially preserving information associated with resolved-object structure. A first implementation of the filter is described which uses the ratio of the local variance and the local mean as the speckle recognition feature. Preliminary results of applying this form of display processing to medical ultrasound images are very encouraging; it appears that the visual perception of features such as small discrete structures, subtle fluctuations in mean echo level and changes in image texture may be enhanced relative to that for unprocessed images. PMID:3510500

  2. Design of a nonlinear adaptive filter for suppression of shuttle pilot-induced oscillation tendencies

    NASA Technical Reports Server (NTRS)

    Smith, J. W.; Edwards, J. W.

    1980-01-01

    Analysis of a longitudinal pilot-induced oscillation (PIO) experienced just prior to touchdown on the final flight of the space shuttle's approach landing tests indicated that the source of the problem was a combination of poor basic handling qualities aggravated by time delays through the digital flight control computer and rate limiting of the elevator actuators due to high pilot gain. A nonlinear PIO suppression (PIOS) filter was designed and developed to alleviate the vehicle's PIO tendencies by reducing the gain in the command path. From analytical and simulator studies it was shown that the PIOS filter, in an adaptive fashion, can attenuate the command path gain without adding phase lag to the system. With the pitch attitude loop of a simulated shuttle model closed, the PIOS filter increased the gain margin by a factor of about two.

  3. Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum

    PubMed Central

    Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John

    2015-01-01

    The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks. PMID:26257638

  4. Sensorless control of salient PMSM with adaptive integrator and resistance online identification using strong tracking filter

    NASA Astrophysics Data System (ADS)

    Ma, Shaokang; Wu, Peijun; Ji, Jinhu; Li, Xuchun

    2016-02-01

    This article presents a sensorless control approach of salient PMSM with an online parameter identifier. Adaptive Integrator is proposed and utilised for the estimation of active flux and rotor position. As a result, integrator overflow caused by DC offset is avoided. Meanwhile, an online stator resistance identification algorithm using strong tracking filter is employed, and the identified stator resistance is fed back to the estimating algorithm. Thus, the estimating algorithm can calculate the rotor position correctly. Simulations and experimental results validate the feasibility of both adaptive integrator and the parameter identification method.

  5. Particle filter based visual tracking with multi-cue adaptive fusion

    NASA Astrophysics Data System (ADS)

    Li, Anping; Jing, Zhongliang; Hu, Shiqiang

    2005-06-01

    To improve the robustness of visual tracking in complex environments such as: cluttered backgrounds, partial occlusions, similar distraction and pose variations, a novel tracking method based on adaptive fusion and particle filter is proposed in this paper. In this method, the image color and shape cues are adaptively fused to represent the target observation; fuzzy logic is applied to dynamically adjust each cue weight according to its associated reliability in the past frame; particle filter is adopted to deal with non-linear and non-Gaussian problems in visual tracking. The method is demonstrated to be robust to illumination changes, pose variations, partial occlusions, cluttered backgrounds and camera motion for a test image sequence.

  6. Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.

    PubMed

    Navarro, X; Porée, F; Beuchée, A; Carrault, G

    2015-03-01

    Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs. PMID:25659233

  7. Signal subspace analysis for decoherent processes during interferometric fiber-optic gyroscopes using synchronous adaptive filters.

    PubMed

    Li, Yongxiao; Wang, Zinan; Peng, Chao; Li, Zhengbin

    2014-10-10

    Conventional signal processing methods for improving the random walk coefficient and the bias stability of interferometric fiber-optic gyroscopes are usually implemented in one-dimension sequence. In this paper, as a comparison, we allocated synchronous adaptive filters with the calculations of correlations of multidimensional signals in the perspective of the signal subspace. First, two synchronous independent channels are obtained through quadrature demodulation. Next, synchronous adaptive filters were carried out in order to project the original channels to the high related error channels and the approximation channels. The error channel signals were then processed by principal component analysis for suppressing coherent noises. Finally, an optimal state estimation of these error channels and approximation channels based on the Kalman gain coefficient was operated. Experimental results show that this signal processing method improved the raw measurements' variance from 0.0630 [(°/h)2] to 0.0103 [(°/h)2]. PMID:25322393

  8. Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.

    1991-01-01

    The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.

  9. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation

    NASA Astrophysics Data System (ADS)

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain–computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI

  10. Blended particle methods with adaptive subspaces for filtering turbulent dynamical systems

    NASA Astrophysics Data System (ADS)

    Qi, Di; Majda, Andrew J.

    2015-04-01

    It is a major challenge throughout science and engineering to improve uncertain model predictions by utilizing noisy data sets from nature. Hybrid methods combining the advantages of traditional particle filters and the Kalman filter offer a promising direction for filtering or data assimilation in high dimensional turbulent dynamical systems. In this paper, blended particle filtering methods that exploit the physical structure of turbulent dynamical systems are developed. Non-Gaussian features of the dynamical system are captured adaptively in an evolving-in-time low dimensional subspace through particle methods, while at the same time statistics in the remaining portion of the phase space are amended by conditional Gaussian mixtures interacting with the particles. The importance of both using the adaptively evolving subspace and introducing conditional Gaussian statistics in the orthogonal part is illustrated here by simple examples. For practical implementation of the algorithms, finding the most probable distributions that characterize the statistics in the phase space as well as effective resampling strategies is discussed to handle realizability and stability issues. To test the performance of the blended algorithms, the forty dimensional Lorenz 96 system is utilized with a five dimensional subspace to run particles. The filters are tested extensively in various turbulent regimes with distinct statistics and with changing observation time frequency and both dense and sparse spatial observations. In real applications perfect dynamical models are always inaccessible considering the complexities in both modeling and computation of high dimensional turbulent system. The effects of model errors from imperfect modeling of the systems are also checked for these methods. The blended methods show uniformly high skill in both capturing non-Gaussian statistics and achieving accurate filtering results in various dynamical regimes with and without model errors.

  11. Gas image enhancement based on adaptive time-domain filtering and morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Changxing; Wang, Lingxue; Li, Jiakun; Long, Yunting; Zhang, Bei

    2011-05-01

    The fingerprint region of most gases is within 3 to 14μm. A mid-wave or long-wave infrared thermal imager is therefore commonly applied in gas detection. With further influence of low gas concentration and heterogeneity of infrared focal plane arrays, the image has numerous drawbacks. These include loud noise, weak gas signal, gridding, and dead points, all of which are particularly evident in sequential images. In order to solve these problems, we take into account the characteristics of the leaking gas image and propose an enhancement method based on adaptive time-domain filtering with morphology. The adaptive time-domain filtering which operates on time sequence images is a hybrid method combining the recursive filtering and mean filtering. It segments gas and background according to a selected threshold; removes speckle noise according to the median; and removes background domain using weighted difference image. The morphology method can not only dilate the gas region along the direction of gas diffusion to greatly enhance the visibility of the leakage area, but also effectively remove the noise, and smooth the contour. Finally, the false color is added to the gas domain. Results show that the gas infrared region is effectively enhanced.

  12. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194

  13. Removal of Cardiopulmonary Resuscitation Artifacts with an Enhanced Adaptive Filtering Method: An Experimental Trial

    PubMed Central

    Gong, Yushun; Yu, Tao; Chen, Bihua; He, Mi; Li, Yongqin

    2014-01-01

    Current automated external defibrillators mandate interruptions of chest compression to avoid the effect of artifacts produced by CPR for reliable rhythm analyses. But even seconds of interruption of chest compression during CPR adversely affects the rate of restoration of spontaneous circulation and survival. Numerous digital signal processing techniques have been developed to remove the artifacts or interpret the corrupted ECG with promising result, but the performance is still inadequate, especially for nonshockable rhythms. In the present study, we suppressed the CPR artifacts with an enhanced adaptive filtering method. The performance of the method was evaluated by comparing the sensitivity and specificity for shockable rhythm detection before and after filtering the CPR corrupted ECG signals. The dataset comprised 283 segments of shockable and 280 segments of nonshockable ECG signals during CPR recorded from 22 adult pigs that experienced prolonged cardiac arrest. For the unfiltered signals, the sensitivity and specificity were 99.3% and 46.8%, respectively. After filtering, a sensitivity of 93.3% and a specificity of 96.0% were achieved. This animal trial demonstrated that the enhanced adaptive filtering method could significantly improve the detection of nonshockable rhythms without compromising the ability to detect a shockable rhythm during uninterrupted CPR. PMID:24795878

  14. Adaptive non-local means filtering based on local noise level for CT denoising

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando

    2012-03-01

    Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.

  15. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    NASA Astrophysics Data System (ADS)

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called "curse of dimensionality". Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the "restart" scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.

  16. Ship detection for high resolution optical imagery with adaptive target filter

    NASA Astrophysics Data System (ADS)

    Ju, Hongbin

    2015-10-01

    Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.

  17. Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators

    DOE PAGESBeta

    Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; Law, K. J. H.

    2016-02-23

    In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recovermore » the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.« less

  18. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks.

    PubMed

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-01-01

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002

  19. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks

    PubMed Central

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-01-01

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback–Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002

  20. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  1. Adaptive Spatial Filtering of Interferometric Data Stack Oriented to Distributed Scatterers

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xie, C.; Shao, Y.; Yuan, M.

    2013-07-01

    Standard interferometry poses a challenge in non-urban areas due to temporal and spatial decorrelation of the radar signal, where there is high signal noise. Techniques such as Small Baseline Subset Algorithm (SBAS) have been proposed to make use of multiple interferometric combinations to alleviate the problem. However, the interferograms used in SBAS are multilooked with a boxcar (rectangle) filter to reduce phase noise, resulting in a loss of resolution and signal superstition from different objects. In this paper, we proposed a modified adaptive spatial filtering algorithm for accurate estimation of interferogram and coherence without resolution loss even in rural areas, to better support the deformation monitoring with time series interferometric synthetic aperture radar (InSAR) technique. The implemented method identifies the statistically homogenous pixels in a neighbourhood based on the goodness-of-fit test, and then applies an adaptive spatial filtering of interferograms. Three statistical tests for the identification of distributed targets will be presented, applied to real data. PALSAR data of the yellow river delta in China is used for demonstrating the effectiveness of this algorithm in rural areas.

  2. Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters

    PubMed Central

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo

    2010-01-01

    In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s2) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory. PMID:22315542

  3. Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi

    2013-03-01

    Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.

  4. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  5. Performance Enhancement for a GPS Vector-Tracking Loop Utilizing an Adaptive Iterated Extended Kalman Filter

    PubMed Central

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-01-01

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124

  6. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  7. A novel spatially adaptive guide-filter total variation (SAGFTV) regularization for image restoration

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Li, Qian; Huang, Zhenghua

    2015-12-01

    Denoising algorithms based on gradient dependent energy functionals, such as Perona-Malik, total variation and adaptive total variation denoising, modify images towards piecewise constant functions. Although edge sharpness and location is well preserved, important information, encoded in image features like textures or certain details, is often compromised in the process of denoising. In this paper, We propose a novel Spatially Adaptive Guide-Filtering Total Variation (SAGFTV) regularization with image restoration algorithm for denoising images. The guide-filter is extended to the variational formulations of imaging problem, and the spatially adaptive operator can easily distinguish flat areas from texture areas. Our simulating experiments show the improvement of peak signal noise ratio (PSNR), root mean square error (RMSE) and structure similarity increment measurement (SSIM) over other prior algorithms. The results of both simulating and practical experiments are more appealing visually. This type of processing can be used for a variety of tasks in PDE-based image processing and computer vision, and is stable and meaningful from a mathematical viewpoint.

  8. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles.

    PubMed

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF. PMID:27475606

  9. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles

    NASA Astrophysics Data System (ADS)

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

  10. Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering.

    PubMed

    Mancini, Matteo; Pellicciari, Maria Concetta; Brignani, Debora; Mauri, Piercarlo; De Marchis, Cristiano; Miniussi, Carlo; Conforto, Silvia

    2015-08-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that can be used in cognitive and clinical protocols in order to modulate neural activity. Although some macro effects are known, the underlying mechanisms are still not clear. tDCS in combination with electroencephalography (EEG) could help to understand these mechanisms from a neural point of view. However, simultaneous tDCS-EEG still remains challenging because of the artifacts that affect the recorded signals. In this paper, an automated artifact cancellation method based on adaptive filtering is proposed. Using independent component analysis (ICA), the artifacts were characterized using data from both a phantom and a group of healthy subjects. The resulting filter can successfully remove tDCS-related artifacts during anodal and cathodal stimulations. PMID:26736856

  11. A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering

    SciTech Connect

    J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford

    2001-06-01

    The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems.

  12. Cardiac fiber tracking using adaptive particle filtering based on tensor rotation invariant in MRI

    NASA Astrophysics Data System (ADS)

    Kong, Fanhui; Liu, Wanyu; Magnin, Isabelle E.; Zhu, Yuemin

    2016-03-01

    Diffusion magnetic resonance imaging (dMRI) is a non-invasive method currently available for cardiac fiber tracking. However, accurate and efficient cardiac fiber tracking is still a challenge. This paper presents a probabilistic cardiac fiber tracking method based on particle filtering. In this framework, an adaptive sampling technique is presented to describe the posterior distribution of fiber orientations by adjusting the number and status of particles according to the fractional anisotropy of diffusion. An observation model is then proposed to update the weight of particles by rotating diffusion tensor from the primary eigenvector to a given fiber orientation while keeping the shape of the tensor invariant. The results on human cardiac dMRI show that the proposed method is robust to noise and outperforms conventional streamline and particle filtering techniques.

  13. Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation

    NASA Astrophysics Data System (ADS)

    Xu, Xiangbo; Chen, Shao; Zhang, Yanan

    2016-07-01

    To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.

  14. A 2-D orientation-adaptive prediction filter in lifting structures for image coding.

    PubMed

    Gerek, Omer N; Cetin, A Enis

    2006-01-01

    Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541

  15. Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current

    NASA Astrophysics Data System (ADS)

    Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin

    2005-04-01

    We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.

  16. Impulse noise removal using 1-D switching median filter with adaptive scanning order based on structural context of image

    NASA Astrophysics Data System (ADS)

    Koga, Takanori; Suetake, Noriaki

    2015-02-01

    This paper describes the detail-preserving impulse noise removal performance of a one-dimensional (1-D) switching median filter (SMF) applied along an adaptive space-filling curve. Usually, a SMF with a two-dimensional (2-D) filter window is widely used for impulse noise removal while still preserving detailed parts in an input image. However, the noise detector of the 2-D filter does not always distinguish between the original pixels and the noise-corrupted ones perfectly. In particular, pixels constituting thin lines in an input image tend to be incorrectly detected as noise-corrupted pixels, and such pixels are filtered regardless of the necessity of the filtering. To cope with this problem, we propose a new impulse noise removal method based on a 1-D SMF and a space-filling curve which is adaptively drawn using a minimum spanning tree reflecting structural context of an input image.

  17. Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter

    NASA Astrophysics Data System (ADS)

    Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.

    2008-06-01

    This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.

  18. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    PubMed

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  19. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal

    PubMed Central

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  20. Adaptive Bloom Filter: A Space-Efficient Counting Algorithm for Unpredictable Network Traffic

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshihide; Hazeyama, Hiroaki; Kadobayashi, Youki

    The Bloom Filter (BF), a space-and-time-efficient hashcoding method, is used as one of the fundamental modules in several network processing algorithms and applications such as route lookups, cache hits, packet classification, per-flow state management or network monitoring. BF is a simple space-efficient randomized data structure used to represent a data set in order to support membership queries. However, BF generates false positives, and cannot count the number of distinct elements. A counting Bloom Filter (CBF) can count the number of distinct elements, but CBF needs more space than BF. We propose an alternative data structure of CBF, and we called this structure an Adaptive Bloom Filter (ABF). Although ABF uses the same-sized bit-vector used in BF, the number of hash functions employed by ABF is dynamically changed to record the number of appearances of a each key element. Considering the hash collisions, the multiplicity of a each key element on ABF can be estimated from the number of hash functions used to decode the membership of the each key element. Although ABF can realize the same functionality as CBF, ABF requires the same memory size as BF. We describe the construction of ABF and IABF (Improved ABF), and provide a mathematical analysis and simulation using Zipf's distribution. Finally, we show that ABF can be used for an unpredictable data set such as real network traffic.

  1. A characterization of a single-trial adaptive filter and its implementation in the frequency domain.

    PubMed

    Arpaia, J P; Isenhart, R; Sandman, C A

    1989-10-01

    A single-trial adaptive filter (SAF) was implemented in the frequency domain (FDAF) by using the Fast Fourier Transform. The FDAF is significantly more efficient than the SAF. In the data presented the FDAF ran approximately 2 times faster than the SAF. For time series containing larger numbers of data points (n) the efficiency of the calculation will increase on the order of N/Ln(N). The FDAF was tested under a variety of conditions to determine the limits of its usefulness. Pre-filtering the data was found to be necessary to prevent the FDAF from lining up on high frequency activity not related to the signal. The importance of minimizing the amount of low frequency noise was emphasized since it adversely affected the performance of the FDAF and was difficult to filter. The single-trial latencies predicted by the FDAF were much more sensitive to increasing noise than the final wave form. In the absence of excessive low frequency noise a negative exponential relationship was found between the mean error in latency prediction and the SNR estimate. Since the SAF technique is also used to determine signal latency in single sweep data the SNR estimate can be a useful test to determine if the FDAF is locating the signal correctly or merely amplifying chance regularities in noisy data. PMID:2477222

  2. Echo motion imaging with adaptive clutter filter for assessment of cardiac blood flow

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2015-07-01

    Visualization of the vortex blood flow in the cardiac chamber is a potential diagnostic tool for the evaluation of cardiac function. In the present study, a method for automatic selection of the desirable cutoff frequency of a moving target indicator filter, namely, a clutter filter, was proposed in order to visualize complex blood flows by the ultrahigh-frame-rate imaging of echoes from blood particles while suppressing clutter echoes. In this method, the cutoff frequency was adaptively changed as a function of the velocity of the heart wall (clutter source) in each frame. The feasibility of the proposed method was examined through the measurement of a healthy volunteer using parallel receive beamforming with a single transmission of a non-steered diverging beam. Using the moving target indicator filter as above with the cutoff frequency determined by the proposed method, the vortex-like blood flow in the cardiac chamber was visualized as movements of echoes from blood particles at a very high frame rate of 6024 Hz while suppressing clutter echoes.

  3. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2014-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150-170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  4. Array model interpolation and subband iterative adaptive filters applied to beamforming-based acoustic echo cancellation.

    PubMed

    Bai, Mingsian R; Chi, Li-Wen; Liang, Li-Huang; Lo, Yi-Yang

    2016-02-01

    In this paper, an evolutionary exposition is given in regard to the enhancing strategies for acoustic echo cancellers (AECs). A fixed beamformer (FBF) is utilized to focus on the near-end speaker while suppressing the echo from the far end. In reality, the array steering vector could differ considerably from the ideal freefield plane wave model. Therefore, an experimental procedure is developed to interpolate a practical array model from the measured frequency responses. Subband (SB) filtering with polyphase implementation is exploited to accelerate the cancellation process. Generalized sidelobe canceller (GSC) composed of an FBF and an adaptive blocking module is combined with AEC to maximize cancellation performance. Another enhancement is an internal iteration (IIT) procedure that enables efficient convergence in the adaptive SB filters within a sample time. Objective tests in terms of echo return loss enhancement (ERLE), perceptual evaluation of speech quality (PESQ), word recognition rate for automatic speech recognition (ASR), and subjective listening tests are conducted to validate the proposed AEC approaches. The results show that the GSC-SB-AEC-IIT approach has attained the highest ERLE without speech quality degradation, even in double-talk scenarios. PMID:26936567

  5. Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zheng, Hong; Liu, Xu; Wei, Min

    2015-09-01

    In order to improve the accuracy of the battery state of charge (SOC) estimation, in this paper we take a lithium-ion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate. Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. Project supported by the National Natural Science Foundation of China (Grant Nos. 61004048 and 61201010).

  6. Reduction of EEG artifacts in simultaneous EEG-fMRI: Reference layer adaptive filtering (RLAF).

    PubMed

    Steyrl, David; Patz, Franz; Krausz, Gunther; Edlinger, Günter; Müller-Putz, Gernot R

    2015-08-01

    Although simultaneous measurement of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is one of the most valuable methods for studying human brain activity non-invasively, it remains challenging to measure high quality EEG inside the MRI scanner. Recently, a new approach for minimizing residual MRI scanner artifacts in the EEG was presented: reference layer artifact subtraction (RLAS). Here, reference electrodes capture only the artifacts, which are subsequently subtracted from the measurement electrodes. With the present work we demonstrate that replacing the subtraction by adaptive filtering statistically significantly outperforms RLAS. Reference layer adaptive filtering (RLAF) attenuates the average artifact root-mean-square (RMS) voltage of the passive MRI scanner to 0.7 μV (-14.4 dB). RLAS achieves 0.78 μV (-13.5 dB). The combination of average artifact subtraction (AAS) and RLAF reduces the residual average gradient artifact RMS voltage to 2.3 μV (-49.2 dB). AAS alone achieves 5.7 μV (-39.0 dB). All measurements were conducted with an MRI phantom, as the reference layer cap available to us was a prototype. PMID:26737122

  7. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  8. Small Sample Properties of an Adaptive Filter with Application to Low Volume Statistical Process Control

    SciTech Connect

    CROWDER, STEPHEN V.

    1999-09-01

    In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards while building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper we address the issue of low volume statistical process control. We investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. We develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, we study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. We show that far fewer data values are needed than is typically recommended for process control applications. We also demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.

  9. Small sample properties of an adaptive filter with application to low volume statistical process control

    SciTech Connect

    Crowder, S.V.; Eshleman, L.

    1998-08-01

    In many manufacturing environments such as the nuclear weapons complex, emphasis has shifted from the regular production and delivery of large orders to infrequent small orders. However, the challenge to maintain the same high quality and reliability standards white building much smaller lot sizes remains. To meet this challenge, specific areas need more attention, including fast and on-target process start-up, low volume statistical process control, process characterization with small experiments, and estimating reliability given few actual performance tests of the product. In this paper the authors address the issue of low volume statistical process control. They investigate an adaptive filtering approach to process monitoring with a relatively short time series of autocorrelated data. The emphasis is on estimation and minimization of mean squared error rather than the traditional hypothesis testing and run length analyses associated with process control charting. The authors develop an adaptive filtering technique that assumes initial process parameters are unknown, and updates the parameters as more data become available. Using simulation techniques, they study the data requirements (the length of a time series of autocorrelated data) necessary to adequately estimate process parameters. They show that far fewer data values are needed than is typically recommended for process control applications. And they demonstrate the techniques with a case study from the nuclear weapons manufacturing complex.

  10. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to

  11. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M

    2016-04-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter

  12. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators

    PubMed Central

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391

  13. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators.

    PubMed

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391

  14. Adaptive anisotropic gaussian filtering to reduce acquisition time in cardiac diffusion tensor imaging.

    PubMed

    Mazumder, Ria; Clymer, Bradley D; Mo, Xiaokui; White, Richard D; Kolipaka, Arunark

    2016-06-01

    Diffusion tensor imaging (DTI) is used to quantify myocardial fiber orientation based on helical angles (HA). Accurate HA measurements require multiple excitations (NEX) and/or several diffusion encoding directions (DED). However, increasing NEX and/or DED increases acquisition time (TA). Therefore, in this study, we propose to reduce TA by implementing a 3D adaptive anisotropic Gaussian filter (AAGF) on the DTI data acquired from ex-vivo healthy and infarcted porcine hearts. DTI was performed on ex-vivo hearts [9-healthy, 3-myocardial infarction (MI)] with several combinations of DED and NEX. AAGF, mean (AVF) and median filters (MF) were applied on the primary eigenvectors of the diffusion tensor prior to HA estimation. The performance of AAGF was compared against AVF and MF. Root mean square error (RMSE), concordance correlation-coefficients and Bland-Altman's technique was used to determine optimal combination of DED and NEX that generated the best HA maps in the least possible TA. Lastly, the effect of implementing AAGF on the infarcted porcine hearts was also investigated. RMSE in HA estimation for AAGF was lower compared to AVF or MF. Post-filtering (AAGF) fewer DED and NEX were required to achieve HA maps with similar integrity as those obtained from higher NEX and/or DED. Pathological alterations caused in HA orientation in the MI model were preserved post-filtering (AAGF). Our results demonstrate that AAGF reduces TA without affecting the integrity of the myocardial microstructure. PMID:26843150

  15. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-05-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  16. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-06-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  17. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  18. Design and application of finite impulse response digital filters.

    PubMed

    Miller, T R; Sampathkumaran, K S

    1982-01-01

    The finite impulse response (FIR) digital filter is a spatial domain filter with a frequency domain representation. The theory of the FIR filter is presented and techniques are described for designing FIR filters with known frequency response characteristics. Rational design principles are emphasized based on characterization of the imaging system using the modulation transfer function and physical properties of the imaged objects. Bandpass, Wiener, and low-pass filters were designed and applied to 201Tl myocardial images. The bandpass filter eliminates low-frequency image components that represent background activity and high-frequency components due to noise. The Wiener, or minimum mean square error filter 'sharpens' the image while also reducing noise. The Wiener filter illustrates the power of the FIR technique to design filters with any desired frequency response. The low-pass filter, while of relative limited use, is presented to compare it with a popular elementary 'smoothing' filter. PMID:7060600

  19. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    PubMed

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods. PMID:25412942

  20. Adaptation of Gabor filters for simulation of human preattentive mechanism for a mobile robot

    NASA Astrophysics Data System (ADS)

    Kulkarni, Naren; Naghdy, Golshah A.

    1993-08-01

    Vision guided mobile robot navigation is complex and requires analysis of tremendous amounts of information in real time. In order to simplify the task and reduce the amount of information, human preattentive mechanism can be adapted [Nag90]. During the preattentive search the scene is analyzed rapidly but in sufficient detail for the attention to be focused on the `area of interest.' The `area of interest' can further be scrutinized in more detail for recognition purposes. This `area of interest' can be a text message to facilitate navigation. Gabor filters and an automated turning mechanism are used to isolate the `area of interest.' These regions are subsequently processed with optimal spatial resolution for perception tasks. This method has clear advantages over the global operators in that, after an initial search, it scans each region of interest with optimum resolution. This reduces the volume of information for recognition stages and ensures that no region is over or under estimated.

  1. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  2. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit.

    PubMed

    Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J

    2015-08-01

    This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers. PMID:26736389

  3. An adaptive Kalman filter technique for context-aware heart rate monitoring.

    PubMed

    Xu, Min; Goldfain, Albert; Dellostritto, Jim; Iyengar, Satish

    2012-01-01

    Traditional physiological monitoring systems convert a person's vital sign waveforms, such as heart rate, respiration rate and blood pressure, into meaningful information by comparing the instant reading with a preset threshold or a baseline without considering the contextual information of the person. It would be beneficial to incorporate the contextual data such as activity status of the person to the physiological data in order to obtain a more accurate representation of a person's physiological status. In this paper, we proposed an algorithm based on adaptive Kalman filter that describes the heart rate response with respect to different activity levels. It is towards our final goal of intelligent detection of any abnormality in the person's vital signs. Experimental results are provided to demonstrate the feasibility of the algorithm. PMID:23367423

  4. Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.

    PubMed

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  5. Motion artifact reduction in electrocardiogram using adaptive filtering based on half cell potential monitoring.

    PubMed

    Ko, Byung-hoon; Lee, Takhyung; Choi, Changmok; Kim, Youn-ho; Park, Gunguk; Kang, KyoungHo; Bae, Sang Kon; Shin, Kunsoo

    2012-01-01

    The electrocardiogram (ECG) is the main measurement parameter for effectively diagnosing chronic disease and guiding cardio-fitness therapy. ECGs contaminated by noise or artifacts disrupt the normal functioning of the automatic analysis algorithm. The objective of this study is to evaluate a method of measuring the HCP variation in motion artifacts through direct monitoring. The proposed wearable sensing device has two channels. One channel is used to measure the ECG through a differential amplifier. The other is for monitoring motion artifacts using the modified electrode and the same differential amplifier. Noise reduction was performed using adaptive filtering, based on a reference signal highly correlated with it. Direct measurement of HCP variations can eliminate the need for additional sensors. PMID:23366209

  6. Adaptive filters for monitoring localized brain activity from surface potential time series

    SciTech Connect

    Spencer, M.E. |; Leahy, R.M.; Mosher, J.C. |; Lewis, P.S.

    1992-12-01

    We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.

  7. Adaptive filters for monitoring localized brain activity from surface potential time series

    SciTech Connect

    Spencer, M.E. . Signal and Image Processing Inst. TRW, Inc., Redondo Beach, CA ); Leahy, R.M. . Signal and Image Processing Inst.); Mosher, J.C. . Signal and Image Processing Inst. Lo

    1992-01-01

    We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.

  8. Color filter array demosaicing: an adaptive progressive interpolation based on the edge type

    NASA Astrophysics Data System (ADS)

    Dong, Qiqi; Liu, Zhaohui

    2015-10-01

    Color filter array (CFA) is one of the key points for single-sensor digital cameras to produce color images. Bayer CFA is the most commonly used pattern. In this array structure, the sampling frequency of green is two times of red or blue, which is consistent with the sensitivity of human eyes to colors. However, each sensor pixel only samples one of three primary color values. To render a full-color image, an interpolation process, commonly referred to CFA demosaicing, is required to estimate the other two missing color values at each pixel. In this paper, we explore an adaptive progressive interpolation based on the edge type algorithm. The proposed demosaicing method consists of two successive steps: an interpolation step that estimates missing color values according to various edges and a post-processing step by iterative interpolation.

  9. Adaptive Kalman filtering for real-time mapping of the visual field

    PubMed Central

    Ward, B. Douglas; Janik, John; Mazaheri, Yousef; Ma, Yan; DeYoe, Edgar A.

    2013-01-01

    This paper demonstrates the feasibility of real-time mapping of the visual field for clinical applications. Specifically, three aspects of this problem were considered: (1) experimental design, (2) statistical analysis, and (3) display of results. Proper experimental design is essential to achieving a successful outcome, particularly for real-time applications. A random-block experimental design was shown to have less sensitivity to measurement noise, as well as greater robustness to error in modeling of the hemodynamic impulse response function (IRF) and greater flexibility than common alternatives. In addition, random encoding of the visual field allows for the detection of voxels that are responsive to multiple, not necessarily contiguous, regions of the visual field. Due to its recursive nature, the Kalman filter is ideally suited for real-time statistical analysis of visual field mapping data. An important feature of the Kalman filter is that it can be used for nonstationary time series analysis. The capability of the Kalman filter to adapt, in real time, to abrupt changes in the baseline arising from subject motion inside the scanner and other external system disturbances is important for the success of clinical applications. The clinician needs real-time information to evaluate the success or failure of the imaging run and to decide whether to extend, modify, or terminate the run. Accordingly, the analytical software provides real-time displays of (1) brain activation maps for each stimulus segment, (2) voxel-wise spatial tuning profiles, (3) time plots of the variability of response parameters, and (4) time plots of activated volume. PMID:22100663

  10. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module. PMID:19523787

  11. Bilateral filtering and adaptive tone-mapping for qualified edge and image enhancement

    NASA Astrophysics Data System (ADS)

    Hu, Kuo-Jui; Chang, Ting-Ting; Lu, Min-Yao; Li, Wu-Jeng; Huang, Jih-Fon

    2009-01-01

    Most of high-contrast images are common with dark and bright area. It is difficult to present the detail on both dark and high light areas on display devices. In order to resolve this problem, we proposed a method of image enhancement to improve this image quality and used bilateral filter to keep the detail. In paper, we applied an appropriate algorithm to process images. At first, we use bilateral filter to separate image. One is large scale image and the other is detail image. Second, we made large scale image which was translated into histogram. In order to make the images divided into three stairs, such as lightness, middle-tone and darkness region. We decided two optimal threshold parameters. Finally, according to three images we use different tone-mapping method to process each stair. The tone-mapping method includes adaptive s-curve and gamma curve algorithms. The experiment results of this study revealed image detail and enhancement. To avoid contour phenomenon is in lightness region.

  12. Use of adaptive hybrid filtering process in Crohn's disease lesion detection from real capsule endoscopy videos.

    PubMed

    Charisis, Vasileios S; Hadjileontiadis, Leontios J

    2016-03-01

    The aim of this Letter is to present a new capsule endoscopy (CE) image analysis scheme for the detection of small bowel ulcers that relate to Crohn's disease. More specifically, this scheme is based on: (i) a hybrid adaptive filtering (HAF) process, that utilises genetic algorithms to the curvelet-based representation of images for efficient extraction of the lesion-related morphological characteristics, (ii) differential lacunarity (DL) analysis for texture feature extraction from the HAF-filtered images and (iii) support vector machines for robust classification performance. For the training of the proposed scheme, namely HAF-DL, an 800-image database was used and the evaluation was based on ten 30-second long endoscopic videos. Experimental results, along with comparison with other related efforts, have shown that the HAF-DL approach evidently outperforms the latter in the field of CE image analysis for automated lesion detection, providing higher classification results. The promising performance of HAF-DL paves the way for a complete computer-aided diagnosis system that could support the physicians' clinical practice. PMID:27222730

  13. Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data

    NASA Astrophysics Data System (ADS)

    Stoica, Petre; Larsson, Erik G.; Li, Jian

    2000-10-01

    The main topic of this paper is the nonparametric estimation of complex (both amplitude and phase) spectra from gapped data, as well as the restoration of such data. The focus is on the extension of the APES (amplitude and phase estimation) approach to data sequences with gaps. APES, which is one of the most successful existing nonparametric approaches to the spectral analysis of full data sequences, uses a bank of narrowband adaptive (both frequency and data dependent) filters to estimate the spectrum. A recent interpretation of this approach showed that the filterbank used by APES and the resulting spectrum minimize a least-squares (LS) fitting criterion between the filtered sequence and its spectral decomposition. The extended approach, which is called GAPES for somewhat obvious reasons, capitalizes on the aforementioned interpretation: it minimizes the APES-LS fitting criterion with respect to the missing data as well. This should be a sensible thing to do whenever the full data sequence is stationary, and hence the missing data have the same spectral content as the available data. We use both simulated and real data examples to show that GAPES estimated spectra and interpolated data sequences have excellent accuracy. We also show the performance gain achieved by GAPES over two of the most commonly used approaches for gapped-data spectral analysis, viz., the periodogram and the parametric CLEAN method. This work was partly supported by the Swedish Foundation for Strategic Research.

  14. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    NASA Astrophysics Data System (ADS)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  15. Local stimulus disambiguation with global motion filters predicts adaptive surround modulation.

    PubMed

    Dellen, Babette; Torras, Carme

    2013-10-01

    Humans have no problem segmenting different motion stimuli despite the ambiguity of local motion signals. Adaptive surround modulation, i.e., the apparent switching between integrative and antagonistic modes, is assumed to play a crucial role in this process. However, so far motion processing models based on local integration have not been able to provide a unifying explanation for this phenomenon. This motivated us to investigate the problem of local stimulus disambiguation in an alternative and fundamentally distinct motion-processing model which uses global motion filters for velocity computation. Local information is reconstructed at the end of the processing stream through the constructive interference of global signals, i.e., inverse transformations. We show that in this model local stimulus disambiguation can be achieved by means of a novel filter embedded in this architecture. This gives rise to both integrative and antagonistic effects which are in agreement with those observed in psychophysical experiments with humans, providing a functional explanation for effects of motion repulsion. PMID:23685285

  16. Growing corkbark fir and subalpine fir for nursery production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This bulletin is largely based on research conducted at the University of Idaho during 2000-2009. Corkbark and subalpine fir have desirable characteristics for Christmas tree and landscape use, including soft, fragrant foliage that ranges from dark green to silvery or bluish-green. Depending on seed...

  17. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus.

    PubMed

    Fontaine, Bertrand; MacLeod, Katrina M; Lubejko, Susan T; Steinberg, Louisa J; Köppl, Christine; Peña, Jose L

    2014-07-15

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  18. Iterative version of the QRD for adaptive recursive least squares (RLS) filtering

    NASA Astrophysics Data System (ADS)

    Goetze, Juergen

    1994-10-01

    A modified version of the QR-decomposition (QRD) is presented. It uses approximate Givens rotations instead of exact Givens rotations, i.e., a matrix entry usually annihilated with an exact rotation by an angle (sigma) is only reduced by using an approximate rotation by an angle (sigma) . The approximation of the rotations is based on the idea of CORDIC. Evaluating a CORDIC-based approximate rotation is to determine the angle (sigma) equals (sigma) t equals arctan 2-t, which is closest to the exact rotation angle (sigma) . This angle (sigma) t is applied instead of (sigma) . Using approximate rotations for computing the QRD results in an iterative version of the original QRD. A recursive version of this QRD using CORDIC-based approximate rotations is applied to adaptive RLS filtering. Only a few angles of the CORDIC sequence, r say (r << b, where b is the word length), work as well as using exact rotations (r equals b, original CORDIC). The misadjustment error decreases as r increases. The convergence of the QRD-RLS algorithm, however, is insensitive to the value of r. Adapting the approximation accuracy during the course of the QRD-RLS algorithm is also discussed. Simulations (channel equalization) confirm the results.

  19. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus

    PubMed Central

    MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.

    2014-01-01

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  20. Performance Enhancement of Pharmacokinetic Diffuse Fluorescence Tomography by Use of Adaptive Extended Kalman Filtering.

    PubMed

    Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Yanqi; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2015-01-01

    Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore. Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on a digital mouse model validate the efficacy of the method as applied in realistic biological systems. PMID:26089975

  1. Multiframe adaptive Wiener filter super-resolution with JPEG2000-compressed images

    NASA Astrophysics Data System (ADS)

    Narayanan, Barath Narayanan; Hardie, Russell C.; Balster, Eric J.

    2014-12-01

    Historically, Joint Photographic Experts Group 2000 (JPEG2000) image compression and multiframe super-resolution (SR) image processing techniques have evolved separately. In this paper, we propose and compare novel processing architectures for applying multiframe SR with JPEG2000 compression. We propose a modified adaptive Wiener filter (AWF) SR method and study its performance as JPEG2000 is incorporated in different ways. In particular, we perform compression prior to SR and compare this to compression after SR. We also compare both independent-frame compression and difference-frame compression approaches. We find that some of the SR artifacts that result from compression can be reduced by decreasing the assumed global signal-to-noise ratio (SNR) for the AWF SR method. We also propose a novel spatially adaptive SNR estimate for the AWF designed to compensate for the spatially varying compression artifacts in the input frames. The experimental results include the use of simulated imagery for quantitative analysis. We also include real-video results for subjective analysis.

  2. Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System

    NASA Astrophysics Data System (ADS)

    Hwang, Soon Sik

    This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the

  3. Low Power Adder Based Auditory Filter Architecture

    PubMed Central

    Jayanthi, V. S.

    2014-01-01

    Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT) based auditory filter is implemented. Power aware adder architectures are utilized to add the output samples of the LUT, available at every clock cycle. The design is developed and modeled using Verilog HDL, simulated using Mentor Graphics Model-Sim Simulator, and synthesized using Synopsys Design Compiler tool. The design was mapped to TSMC 65 nm technological node. The standard ASIC design methodology has been adapted to carry out the power analysis. The proposed FIR filter architecture has reduced the leakage power by 15% and increased its performance by 2.76%. PMID:25506073

  4. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    SciTech Connect

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih; Wu, Jay; Chang, Shu-Jun

    2014-08-15

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.

  5. Gearbox fault diagnosis using adaptive zero phase time-varying filter based on multi-scale chirplet sparse signal decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Chunyan; Liu, Jian; Peng, Fuqiang; Yu, Dejie; Li, Rong

    2013-07-01

    When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.

  6. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  7. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image. PMID:24211911

  8. Simulation of mid-infrared clutter rejection. 1: One-dimensional LMS spatial filter and adaptive threshold algorithms.

    PubMed

    Longmire, M S; Milton, A F; Takken, E H

    1982-11-01

    Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions. PMID:20396326

  9. Some adaptive filtering techniques applied to the passive remote sensing problem. [for Tiros-N and Nimbus 6 experiments

    NASA Technical Reports Server (NTRS)

    Toldalagi, P. M.

    1980-01-01

    A review is made of recursive statistical regression techniques incorporating past or past and future observations through smoothing and Kalman filtering, respectively; with results for the cases of the Tiros-N/MSU and Nimbus-6/Scams remote sensing satellite experiments. In response to the lack of a satisfactory model for the medium sounded, which is presently a major limitation on retrieval technique performance, a novel, global approach is proposed which casts the retrieval problem into the framework of adaptive filtering. A numerical implementation of such an adaptive system is presented, with a multilayer, semi-spectral general circulation model for the atmosphere being used to fine-tune the sensor as well as the dynamical equations of a Kalman filter. It is shown that the assimilation of radiometric data becomes a straightforward subproblem.

  10. Conductivity image enhancement in MREIT using adaptively weighted spatial averaging filter

    PubMed Central

    2014-01-01

    Background In magnetic resonance electrical impedance tomography (MREIT), we reconstruct conductivity images using magnetic flux density data induced by externally injected currents. Since we extract magnetic flux density data from acquired MR phase images, the amount of measurement noise increases in regions of weak MR signals. Especially for local regions of MR signal void, there may occur excessive amounts of noise to deteriorate the quality of reconstructed conductivity images. In this paper, we propose a new conductivity image enhancement method as a postprocessing technique to improve the image quality. Methods Within a magnetic flux density image, the amount of noise varies depending on the position-dependent MR signal intensity. Using the MR magnitude image which is always available in MREIT, we estimate noise levels of measured magnetic flux density data in local regions. Based on the noise estimates, we adjust the window size and weights of a spatial averaging filter, which is applied to reconstructed conductivity images. Without relying on a partial differential equation, the new method is fast and can be easily implemented. Results Applying the novel conductivity image enhancement method to experimental data, we could improve the image quality to better distinguish local regions with different conductivity contrasts. From phantom experiments, the estimated conductivity values had 80% less variations inside regions of homogeneous objects. Reconstructed conductivity images from upper and lower abdominal regions of animals showed much less artifacts in local regions of weak MR signals. Conclusion We developed the fast and simple method to enhance the conductivity image quality by adaptively adjusting the weights and window size of the spatial averaging filter using MR magnitude images. Since the new method is implemented as a postprocessing step, we suggest adopting it without or with other preprocessing methods for application studies where conductivity

  11. Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering

    NASA Astrophysics Data System (ADS)

    Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier

    2014-10-01

    Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.

  12. The generalized frequency-domain adaptive filtering algorithm as an approximation of the block recursive least-squares algorithm

    NASA Astrophysics Data System (ADS)

    Schneider, Martin; Kellermann, Walter

    2016-01-01

    Acoustic echo cancellation (AEC) is a well-known application of adaptive filters in communication acoustics. To implement AEC for multichannel reproduction systems, powerful adaptation algorithms like the generalized frequency-domain adaptive filtering (GFDAF) algorithm are required for satisfactory convergence behavior. In this paper, the GFDAF algorithm is rigorously derived as an approximation of the block recursive least-squares (RLS) algorithm. Thereby, the original formulation of the GFDAF algorithm is generalized while avoiding an error that has been in the original derivation. The presented algorithm formulation is applied to pruned transform-domain loudspeaker-enclosure-microphone models in a mathematically consistent manner. Such pruned models have recently been proposed to cope with the tremendous computational demands of massive multichannel AEC. Beyond its generalization, a regularization of the GFDAF is shown to have a close relation to the well-known block least-mean-squares algorithm.

  13. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  14. Adaptive Square-Root Cubature-Quadrature Kalman Particle Filter for satellite attitude determination using vector observations

    NASA Astrophysics Data System (ADS)

    Kiani, Maryam; Pourtakdoust, Seid H.

    2014-12-01

    A novel algorithm is presented in this study for estimation of spacecraft's attitudes and angular rates from vector observations. In this regard, a new cubature-quadrature particle filter (CQPF) is initially developed that uses the Square-Root Cubature-Quadrature Kalman Filter (SR-CQKF) to generate the importance proposal distribution. The developed CQPF scheme avoids the basic limitation of particle filter (PF) with regards to counting the new measurements. Subsequently, CQPF is enhanced to adjust the sample size at every time step utilizing the idea of confidence intervals, thus improving the efficiency and accuracy of the newly proposed adaptive CQPF (ACQPF). In addition, application of the q-method for filter initialization has intensified the computation burden as well. The current study also applies ACQPF to the problem of attitude estimation of a low Earth orbit (LEO) satellite. For this purpose, the undertaken satellite is equipped with a three-axis magnetometer (TAM) as well as a sun sensor pack that provide noisy geomagnetic field data and Sun direction measurements, respectively. The results and performance of the proposed filter are investigated and compared with those of the extended Kalman filter (EKF) and the standard particle filter (PF) utilizing a Monte Carlo simulation. The comparison demonstrates the viability and the accuracy of the proposed nonlinear estimator.

  15. A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography

    NASA Astrophysics Data System (ADS)

    Rodríguez-Caballero, E.; Afana, A.; Chamizo, S.; Solé-Benet, A.; Canton, Y.

    2016-07-01

    Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by ∼30% under dense canopy plants and over ∼40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies.

  16. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  17. Flexible Riser Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive Filtering

    NASA Astrophysics Data System (ADS)

    Pipa, Daniel; Morikawa, Sérgio; Pires, Gustavo; Camerini, Claudio; Santos, JoãoMárcio

    2010-12-01

    Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit) and SS (semisubmersible) platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs) adaptive filter.

  18. Seismic random noise attenuation based on adaptive time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Deng, Xinhuan; Ma, Haitao; Li, Yue; Zeng, Qian

    2015-02-01

    Time-frequency peak filtering (TFPF) method uses a specific window with fixed length to recover band-limited signal in stationary random noise. However, the derivatives of signal such as seismic wavelets may change rapidly in some short time intervals. In this case, TFPF equipped with fixed window length will not provide an optimal solution. In this letter, we present an adaptive version of TFPF for seismic random noise attenuation. In our version, the improved intersection of confidence intervals combined with short-time energy criterion is used to preprocess the noisy signal. And then, we choose an appropriate threshold to divide the noisy signal into signal, buffer and noise. Different optimal window lengths are used in each type of segments. We test the proposed method on both synthetic and field seismic data. The experimental results illustrate that the proposed method makes the degree of amplitude preservation raise more than 10% and signal-to-noise (SNR) improve 2-4 dB compared with the original algorithm.

  19. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  20. Adaptive-weighted bilateral filtering and other pre-processing techniques for optical coherence tomography.

    PubMed

    Anantrasirichai, N; Nicholson, Lindsay; Morgan, James E; Erchova, Irina; Mortlock, Katie; North, Rachel V; Albon, Julie; Achim, Alin

    2014-09-01

    This paper presents novel pre-processing image enhancement algorithms for retinal optical coherence tomography (OCT). These images contain a large amount of speckle causing them to be grainy and of very low contrast. To make these images valuable for clinical interpretation, we propose a novel method to remove speckle, while preserving useful information contained in each retinal layer. The process starts with multi-scale despeckling based on a dual-tree complex wavelet transform (DT-CWT). We further enhance the OCT image through a smoothing process that uses a novel adaptive-weighted bilateral filter (AWBF). This offers the desirable property of preserving texture within the OCT image layers. The enhanced OCT image is then segmented to extract inner retinal layers that contain useful information for eye research. Our layer segmentation technique is also performed in the DT-CWT domain. Finally we describe an OCT/fundus image registration algorithm which is helpful when two modalities are used together for diagnosis and for information fusion. PMID:25034317

  1. Exploring the Role of Mechanotransduction Activation and Adaptation Kinetics in Hair Cell Filtering Using a Hodgkin-Huxley Approach

    NASA Astrophysics Data System (ADS)

    Wells, Gregg B.; Ricci, Anthony J.

    2011-11-01

    In the auditory system, mechanotransduction occurs in the hair cell sensory hair bundle and is the first major step in the translation of mechanical energy into electrical. Tonotopic variations in the activation kinetics of this process are posited to provide a low pass filter to the input. An adaptation process, also associated with mechanotransduction, is postulated to provide a high pass filter to the input in a tonotopic manner. Together a bandpass filter is created at the hair cell input. Corresponding mechanical components to both activation and adaptation are also suggested to be involved in generating cochlear amplification. A paradox to this story is that hair cells where the mechanotransduction properties are most robust possess an intrinsic electrical resonance mechanism proposed to account for all required tuning and amplification. A simple Hodgkin-Huxley type model is presented to attempt to determine the role of the activation and adaptation kinetics in further tuning hair cells that exhibit electrical resonance. Results further support that steady state mechanotransduction properties are critical for setting the resting potential of the hair cell while the kinetics of activation and adaptation are important for sharpening tuning around the characteristic frequency of the hair cell.

  2. A matched filter algorithm for acoustic signal detection

    NASA Astrophysics Data System (ADS)

    Jordan, D. W.

    1985-06-01

    This thesis is a presentation of several alternative acoustic filter designs which allow Space Shuttle payload experiment initiation prior to launch. This initiation is accomplished independently of any spacecraft services by means of a matched band-pass filter tuned to the acoustic signal characteristic of the Auxiliary Power Unit (APU) which is brought up to operating RPM's approximately five minutes prior to launch. These alternative designs include an analog filter built around operational amplifiers, a digital IIR design implemented with an INTEL 2920 Signal Processor, and an Adaptive FIR Weiner design. Working prototypes of the first two filters are developed and a discussion of the advantage of the 2920 digital design is presented.

  3. Design of adaptive reconfigurable control systems using extended-Kalman-filter-based system identification and eigenstructure assignments

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Syrmos, Vassilis L.

    2004-07-01

    In this paper, an adaptive reconfigurable control system based on extended Kalman filter approach and eigenstructure assignments is proposed. System identification is carried out using an extended Kalman filter (EKF) approach. An eigenstructure assignment (EA) technique is applied for reconfigurable feedback control law design to recover the system dynamic performance. The reconfigurable feedforward controllers are designed to achieve the steady-state tracking using input weighting approach. The proposed scheme can identify not only actuator and sensor variations, but also changes in the system structures using the extended Kalman filtering method. The overall design is robust with respect to uncertainties in the state-space matrices of the reconfigured system. To illustrate the effectiveness of the proposed reconfigurable control system design technique, an aircraft longitudinal vertical takeoff and landing (VTOL) control system is used to demonstrate the reconfiguration procedure.

  4. A robust data fusion scheme for integrated navigation systems employing fault detection methodology augmented with fuzzy adaptive filtering

    NASA Astrophysics Data System (ADS)

    Ushaq, Muhammad; Fang, Jiancheng

    2013-10-01

    Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be

  5. High-performance RC bandpass filter is adapted to miniaturized construction

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Miniaturized bandpass filter with RC networks is suitable for use in integrated circuits. The circuit consists of three stages of amplification with additional resistive and capacitive components to obtain the desired characteristics. The advantages of the active RC filter network are the reduction in size and weight and elimination of magnetic materials.

  6. Estimating diffusion properties in complex fiber configurations based on structure-adaptive multi-valued tensor-field filtering

    NASA Astrophysics Data System (ADS)

    Yang, Jianfei; Poot, Dirk H. J.; Arkesteijn, Georgius A. M.; Caan, Matthan W.; van Vliet, Lucas J.; Vos, Frans M.

    2015-03-01

    Conventionally, a single rank-2 tensor is used to assess the white matter integrity in diffusion imaging of the human brain. However, a single tensor fails to describe the diffusion in fiber crossings. Although a dual tensor model is able to do so, the low signal-to-noise ratio hampers reliable parameter estimation as the number of parameters is doubled. We present a framework for structure-adaptive tensor field filtering to enhance the statistical analysis in complex fiber structures. In our framework, a tensor model will be fitted based on an automated relevance determination method. Particularly, a single tensor model is applied to voxels in which the data seems to represent a single fiber and a dualtensor model to voxels appearing to contain crossing fibers. To improve the estimation of the model parameters we propose a structure-adaptive tensor filter that is applied to tensors belonging to the same fiber compartment only. It is demonstrated that the structure-adaptive tensor-field filter improves the continuity and regularity of the estimated tensor field. It outperforms an existing denoising approach called LMMSE, which is applied to the diffusion-weighted images. Track-based spatial statistics analysis of fiber-specific FA maps show that the method sustains the detection of more subtle changes in white matter tracts than the classical single-tensor-based analysis. Thus, the filter enhances the applicability of the dual-tensor model in diffusion imaging research. Specifically, the reliable estimation of two tensor diffusion properties facilitates fiber-specific extraction of diffusion features.

  7. Radiation dose reduction with application of non-linear adaptive filters for abdominal CT

    PubMed Central

    Singh, Sarabjeet; Kalra, Mannudeep K; Sung, Mi Kim; Back, Anni; Blake, Michael A

    2012-01-01

    AIM: To evaluate the effect of non-linear adaptive filters (NLAF) on abdominal computed tomography (CT) images acquired at different radiation dose levels. METHODS: Nineteen patients (mean age 61.6 ± 7.9 years, M:F = 8:11) gave informed consent for an Institutional Review Board approved prospective study involving acquisition of 4 additional image series (200, 150, 100, 50 mAs and 120 kVp) on a 64 slice multidetector row CT scanner over an identical 10 cm length in the abdomen. The CT images acquired at 150, 100 and 50 mAs were processed with the NLAF. Two radiologists reviewed unprocessed and processed images for image quality in a blinded randomized manner. CT dose index volume, dose length product, patient weight, transverse diameters, objective noise and CT numbers were recorded. Data were analyzed using Analysis of Variance and Wilcoxon signed rank test. RESULTS: Of the 31 lesions detected in abdominal CT images, 28 lesions were less than 1 cm in size. Subjective image noise was graded as unacceptable in unprocessed images at 50 and 100 mAs, and in NLAF processed images at 50 mAs only. In NLAF processed images, objective image noise was decreased by 21% (14.4 ± 4/18.2 ± 4.9) at 150 mAs, 28.3% (15.7 ± 5.6/21.9 ± 4) at 100 mAs and by 39.4% (18.8 ± 9/30.4 ± 9.2) at 50 mAs compared to unprocessed images acquired at respective radiation dose levels. At 100 mAs the visibility of smaller structures improved from suboptimal in unprocessed images to excellent in NLAF processed images, whereas diagnostic confidence was respectively improved from probably confident to fully confident. CONCLUSION: NLAF lowers image noise, improves the visibility of small structures and maintains lesion conspicuity at down to 100 mAs for abdominal CT. PMID:22328968

  8. A new family of Gaussian filters with adaptive lobe location and smoothing strength for efficient image restoration

    NASA Astrophysics Data System (ADS)

    Seddik, Hassene

    2014-12-01

    Noise can occur during image capture, transmission, or processing phases. Image de-noising is a very important step in image processing, and many approaches are developed in order to achieve this goal such as the Gaussian filter which is efficient in noise removal. Its smoothing efficiency depends on the value of its standard deviation. The mask representing the filter presents generally static weights with invariant lobe. In this paper, an adaptive de-noising approach is proposed. The proposed approach uses a Gaussian kernel with variable width and direction called adaptive Gaussian kernel (AGK). In each processed window of the image, the smoothing strength changes according to the image content, noise kind, and intensity. In addition, the location of its lobe changes in eight different directions over the processed window. This directional variability avoids averaging details by the highest mask weights in order to preserve the edges and the borders. The recovered data is de-noised efficiently without introducing blur or losing details. A comparative study with the static Gaussian filter and other recent techniques is presented to prove the efficiency of the proposed approach.

  9. FOG Random Drift Signal Denoising Based on the Improved AR Model and Modified Sage-Husa Adaptive Kalman Filter.

    PubMed

    Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao

    2016-01-01

    In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved. PMID:27420062

  10. FOG Random Drift Signal Denoising Based on the Improved AR Model and Modified Sage-Husa Adaptive Kalman Filter

    PubMed Central

    Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao

    2016-01-01

    In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved. PMID:27420062

  11. Adaptive filtering in spatial vision: evidence from feature marking in plaids.

    PubMed

    Georgeson, M A; Meese, T S

    1999-01-01

    Much evidence shows that early vision employs an array of spatial filters tuned for different spatial frequencies and orientations. We suggest that for moderately low spatial frequencies these preliminary filters are not treated independently, but are used to perform grouping and segmentation in the patchwise Fourier domain. For example, consider a stationary plaid made from two superimposed sinusoidal gratings of the same contrast and spatial frequency oriented +/- 45 degrees from vertical. Most of the energy in a wavelet-like (e.g. simple-cell) transform of this stimulus is in the oblique orientations, but typically it looks like a compound structure containing blurred vertical and horizontal edges. This checkerboard structure corresponds with the locations of zero crossings in the output of an isotropic (circular) filter, synthesised from the linear sum of a set of oriented basis-filters (Georgeson, 1992 Proceedings of the Royal Society of London, Series B 249 235-245). However, the addition of a third harmonic in square-wave phase causes almost complete perceptual segmentation of the plaid into two overlapping oblique gratings. Here we confirm this result psychophysically using a feature-marking technique, and argue that this perceptual segmentation cannot be understood in terms of the zero crossings marked in the output of any static linear filter that is sensitive to all of the plaid's components. If it is assumed that zero crossings or similar are an appropriate feature-primitive in human vision, our results require a flexible process that combines and segments early basis-filters according to prevailing image conditions. Thus, we suggest that combination and segmentation of spatial filters in the patchwise Fourier domain underpins the perceptual segmentation observed in our experiments. Under this kind of image-processing scheme, registration across spatial scales occurs at the level of spatial filters, before features are extracted. This contrasts with

  12. Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyounggun; Lee, Taewoong; Lee, Wonho

    2016-05-01

    For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.

  13. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  14. Wireless rake-receiver using adaptive filter with a family of partial update algorithms in noise cancellation applications

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani

    2015-05-01

    For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.

  15. Local Ensemble Transform Kalman Filter: a non stationary control law for complex adaptive optics systems on ELTs

    NASA Astrophysics Data System (ADS)

    Gray, Morgan; Petit, Cyril; Rodionov, Sergey; Bertino, Laurent; Bocquet, Marc; Fusco, Thierry

    2013-12-01

    We propose a new algorithm for an AO control law which allows to reduce the computation burden in the case of an Extremely Large Telescope and to deal with a non stationary behavior of the atmospheric turbulence. This approach uses Ensemble Transform Kalman Filter (ETKF) and localizations by domains decomposition: the assimilation is split into local domains on the pupil of the telescope and each of the update data assimilation for each domain is performed independently. This kind of assimilation enables parallel computation of much less data during the update stage. This is a Kalman Filter adaptation for large scale systems with a non stationary turbulence when the explicit storage and manipulation of extremely large covariance matrices are impossible. This distributed parallel environment implementation is highlighted and studied in the context of an ELT application. First simulation results are proposed to assess our theoretical analysis and to demonstrate the potentiality of this new approach for an AO control law on ELTs.

  16. Development of Tremor Suppression Control System Using Adaptive Filter and Its Application to Meal-assist Robot

    NASA Astrophysics Data System (ADS)

    Yano, Ken'ichi; Ohara, Eiichi; Horihata, Satoshi; Aoki, Takaaki; Nishimoto, Yutaka

    A robot that supports independent living by assisting with eating and other activities which use the operator's own hand would be helpful for people suffering from tremors of the hand or any other body part. The proposed system using adaptive filter estimates tremor frequencies with a time-varying property and individual differences online. In this study, the estimated frequency is used to adjusting the tremor suppression filter which insulates the voluntary motion signal from the sensor signal containing tremor components. These system are integrated into the control system of the Meal-Assist Robot. As a result, the developed system makes it possible for the person with a tremor to manipulate the supporting robot without causing operability to deteriorate and without hazards due to improper operation.

  17. The impact of head movements on EEG and contact impedance: an adaptive filtering solution for motion artifact reduction.

    PubMed

    Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard

    2014-01-01

    Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements. PMID:25571131

  18. Linear adaptive noise-reduction filters for tomographic imaging: Optimizing for minimum mean square error

    SciTech Connect

    Sun, W Y

    1993-04-01

    This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.

  19. Optimal-adaptive filters for modelling spectral shape, site amplification, and source scaling

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    This paper introduces some applications of optimal filtering techniques to earthquake engineering by using the so-called ARMAX models. Three applications are presented: (a) spectral modelling of ground accelerations, (b) site amplification (i.e., the relationship between two records obtained at different sites during an earthquake), and (c) source scaling (i.e., the relationship between two records obtained at a site during two different earthquakes). A numerical example for each application is presented by using recorded ground motions. The results show that the optimal filtering techniques provide elegant solutions to above problems, and can be a useful tool in earthquake engineering.

  20. Setup for FIR scattering on plasma crystals

    SciTech Connect

    Raensch, Jens; Aschinger, Andreas; Winter, Joerg

    2008-09-07

    We propose a new method for the investigation of plasma crystals. It is equivalent to the X-ray scattering methods of solid state physics but using far infrared (FIR) laser beams with wavelengths comparable to the Debye length of the system. This method could provide information about structure and dynamics of large 3D plasma crystals. Such crystals with up to 1 million particles have been realised in CCP discharges using micron sized Melamin-Formaledhyd (MF) particles. We present the setup of the FIR laser system, scattering arrangement, and plasma chamber. Results are discussed including video analysis of plasma crystals and FIR scattering on test samples.

  1. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore of Costa Rica

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2015-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore of Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane migrating through the sediments of cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at the Quepos Slide site, a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5 % of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed sediment-flow-through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within ca. 170 d. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  2. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries

    NASA Astrophysics Data System (ADS)

    Dai, Haifeng; Zhu, Letao; Zhu, Jiangong; Wei, Xuezhe; Sun, Zechang

    2015-10-01

    The accurate monitoring of battery cell temperature is indispensible to the design of battery thermal management system. To obtain the internal temperature of a battery cell online, an adaptive temperature estimation method based on Kalman filtering and an equivalent time-variant electrical network thermal (EENT) model is proposed. The EENT model uses electrical components to simulate the battery thermodynamics, and the model parameters are obtained with a least square algorithm. With a discrete state-space description of the EENT model, a Kalman filtering (KF) based internal temperature estimator is developed. Moreover, considering the possible time-varying external heat exchange coefficient, a joint Kalman filtering (JKF) based estimator is designed to simultaneously estimate the internal temperature and the external thermal resistance. Several experiments using the hard-cased LiFePO4 cells with embedded temperature sensors have been conducted to validate the proposed method. Validation results show that, the EENT model expresses the battery thermodynamics well, the KF based temperature estimator tracks the real central temperature accurately even with a poor initialization, and the JKF based estimator can simultaneously estimate both central temperature and external thermal resistance precisely. The maximum estimation errors of the KF- and JKF-based estimators are less than 1.8 °C and 1 °C respectively.

  3. Acceleration amplitude-phase regulation for electro-hydraulic servo shaking table based on LMS adaptive filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jianjun; Di, Duotao; Jiang, Guilin; Gao, Shuang

    2012-10-01

    Electro-hydraulic servo shaking table usually requires good control performance for acceleration replication. The poles of the electro-hydraulic servo shaking table are placed by three-variable control method using pole placement theory. The system frequency band is thus extended and the system stability is also enhanced. The phase delay and amplitude attenuation phenomenon occurs in electro-hydraulic servo shaking table corresponding to an acceleration sinusoidal input. The method for phase delay and amplitude attenuation elimination based on LMS adaptive filtering algorithm is proposed here. The task is accomplished by adjusting the weights using LMS adaptive filtering algorithm when there exits phase delay and amplitude attenuation between the input and its corresponding acceleration response. The reference input is weighted in such a way that it makes the system output track the input efficiently. The weighted input signal is inputted to the control system such that the output phase delay and amplitude attenuation are all cancelled. The above concept is used as a basis for the development of amplitude-phase regulation (APR) algorithm. The method does not need to estimate the system model and has good real-time performance. Experimental results demonstrate the efficiency and validity of the proposed APR control scheme.

  4. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Weige; Shi, Wei; Ma, Zeyu

    2015-09-01

    Accurate estimations of battery energy and available power capability are of great of importance for realizing an efficient and reliable operation of electric vehicles. To improve the estimation accuracy and reliability for battery state of energy and power capability, a novel model-based joint estimation approach has been proposed against uncertain external operating conditions and internal degradation status of battery cells. Firstly, it proposes a three-dimensional response surface open circuit voltage model to calibrate the estimation inaccuracies of battery state of energy. Secondly, the adaptive unscented Kalman filter (AUKF) is employed to develop a novel model-based joint state estimator for battery state of energy and power capability. The AUKF algorithm utilizes the well-known features of the Kalman filter but employs the method of unscented transform (UT) and adaptive error covariance matching technology to improve the state estimation accuracy. Thirdly, the proposed joint estimator has been verified by a LiFePO4 lithium-ion battery cell under different operating temperatures and aging levels. The result indicates that the estimation errors of battery voltage and state-of-energy are less than 2% even if given a large erroneous initial value, which makes the state of available power capability predict more accurate and reliable for the electric vehicles application.

  5. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter

    NASA Astrophysics Data System (ADS)

    Zheng, Shiqiang; Feng, Rui

    2016-03-01

    This paper introduces a feedforward control strategy combined with a novel adaptive notch filter to solve the problem of rotor imbalance in high-speed Magnetically Suspended Centrifugal Compressors (MSCCs). Unbalance vibration force of rotor in MSCC is mainly composed of current stiffness force and displacement stiffness force. In this paper, the mathematical model of the unbalance vibration with the proportional-integral-derivative (PID) control laws is presented. In order to reduce the unbalance vibration, a novel adaptive notch filter is proposed to identify the synchronous frequency displacement of the rotor as a compensation signal to eliminate the current stiffness force. In addition, a feedforward channel from position component to control output is introduced to compensate displacement stiffness force to achieve a better performance. A simplified inverse model of power amplifier is included in the feedforward channel to reject the degrade performance caused by its low-pass characteristic. Simulation and experimental results on a MSCC demonstrate a significant effect on the synchronous vibration suppression of the magnetically suspended rotor at a high speed.

  6. Integrated adaptive filtering and design for control experiments of flexible structures

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang

    1991-01-01

    A novel method is presented of identifying a state space model and a state estimator for linear stochastic systems from input and output data. The method is primarily based on the relations between the state space model and the finite difference model for linear stochastic systems derived through projection filters. It is proven that least squares identification of a finite difference model converges to the model derived from the projection filters. System pulse response samples are computed from the coefficients of the finite difference model. In estimating the corresponding state estimator gain, a z-domain method is used. First the deterministic component of the output is subtracted out, and then the state estimator gain is obtained by whitening the remaining signal. Experimental example is used to illustrate the feasibility of the method.

  7. Adaptive Kalman filter implementation by a neural network scheme for tracking maneuvering targets

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid; Sundareshan, Malur K.

    1995-07-01

    Conventional target tracking algorithms based on linear estimation techniques perform quite efficiently when the target motion does not involve maneuvers. Target maneuvers involving short term accelerations, however, cause a bias (e.g. jump) in the measurement sequence, which unless compensated, results in divergence of the Kalman filter that provides estimates of target position and velocity, in turn leading to a loss of track. Accurate compensation for the bias requires processing more samples of the input signals which adds to the computational complexity. The waiting time for more samples can also result in a total loss of track since the target can begin a new maneuver and if the target begins a new maneuver before the first one is compensated for, the filter would never converge. Most of the proposed algorithms in the current literature hence have the disadvantage of losing the target in short term accelerations, i.e., when the duration of acceleration is comparable to the time period between the measurements. The time lag for maneuver modelings, which have been based on Bayesian probability calculations and linear estimation shall propose a neural network scheme for the modeling of target maneuvers. The primary motivation for employing compensation. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates and hence can take the burden off the primary Kalman filter which still provides the target position and velocity estimates.

  8. Adaptive DCT-based filtering of images corrupted by spatially correlated noise

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Zelensky, Aleksandr A.; Astola, Jaakko T.; Egiazarian, Karen O.

    2008-02-01

    Majority of image filtering techniques are designed under assumption that noise is of special, a priori known type and it is i.i.d., i.e. spatially uncorrelated. However, in many practical situations the latter assumption is not true due to several reasons. Moreover, spatial correlation properties of noise might be rather different and a priori unknown. Then the assumption that noise is i.i.d. under real conditions of spatially correlated noise commonly leads to considerable decrease of a used filter effectiveness in comparison to a case if this spatial correlation is taken into account. Our paper deals with two basic aspects. The first one is how to modify a denoising algorithm, in particular, a discrete cosine transform (DCT) based filter in order to incorporate a priori or preliminarily obtained knowledge of spatial correlation characteristics of noise. The second aspect is how to estimate spatial correlation characteristics of noise for a given image with appropriate accuracy and robustness under condition that there is some a priori information about, at least, noise type and statistics like variance (for additive noise case) or relative variance (for multiplicative noise). We also present simulation results showing the effectiveness (the benefit) of taking into consideration noise correlation properties.

  9. An adaptive extended Kalman filter for fluorescence diffuse optical tomography of tumor pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Limin; Gao, Feng; Zhao, Huijuan

    2014-03-01

    According to the morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic-rate images of fluorophore can provide diagnostic information for tumor differentiation, and especially have the potential for staging of tumors. In this paper, fluorescence diffuse optical tomography method is firstly used to acquire metabolism-related time-course images of the fluorophore concentration. Based on a two-compartment model comprised of plasma and extracelluar-extravascular space, we next propose an adaptive-EKF framework to estimate the pharmacokinetic-rate images. With the aid of a forgetting factor, the adaptive-EKF compensate the inaccuracy initial values and emphasize the effect of the current data in order to realize a better online estimation compared with the conventional EKF. We use simulate data to evaluate the performance of the proposed methodology. The results suggest that the adaptive-EKF can obtain preferable pharmacokinetic-rate images than the conventional EKF with higher quantitativeness and noise robustness.

  10. High-Pass Filtering at Vestibular Frequencies by Transducer Adaptation in Mammalian Saccular Hair Cells

    NASA Astrophysics Data System (ADS)

    Songer, Jocelyn E.; Eatock, Ruth Anne

    2011-11-01

    The mammalian saccule detects head tilt and low-frequency head accelerations as well as higher-frequency bone vibrations and sounds. It has two different hair cell types, I and II, dispersed throughout two morphologically distinct regions, the striola and extrastriola. Afferents from the two zones have distinct response dynamics which may arise partly from zonal differences in hair cell properties. We find that type II hair cells in the rat saccular epithelium adapt with a time course appropriate for influencing afferent responses to head motions. Moreover, striolar type II hair cells adapted by a greater extent than extrastriolar type II hair cells and had greater phase leads in the mid-frequency range (5-50 Hz). These differences suggest that hair cell transduction may contribute to zonal differences in the adaptation of vestibular afferents to head motions.

  11. Automatic identification and removal of ocular artifacts in EEG--improved adaptive predictor filtering for portable applications.

    PubMed

    Zhao, Qinglin; Hu, Bin; Shi, Yujun; Li, Yang; Moore, Philip; Sun, Minghou; Peng, Hong

    2014-06-01

    Electroencephalogram (EEG) signals have a long history of use as a noninvasive approach to measure brain function. An essential component in EEG-based applications is the removal of Ocular Artifacts (OA) from the EEG signals. In this paper we propose a hybrid de-noising method combining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor Filter (APF). A particularly novel feature of the proposed method is the use of the APF based on an adaptive autoregressive model for prediction of the waveform of signals in the ocular artifact zones. In our test, based on simulated data, the accuracy of noise removal in the proposed model was significantly increased when compared to existing methods including: Wavelet Packet Transform (WPT) and Independent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and Adaptive Noise Cancellation (ANC). The results demonstrate that the proposed method achieved a lower mean square error and higher correlation between the original and corrected EEG. The proposed method has also been evaluated using data from calibration trials for the Online Predictive Tools for Intervention in Mental Illness (OPTIMI) project. The results of this evaluation indicate an improvement in performance in terms of the recovery of true EEG signals with EEG tracking and computational speed in the analysis. The proposed method is well suited to applications in portable environments where the constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices. PMID:24802943

  12. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  13. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter

    PubMed Central

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-01-01

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation. PMID:25985165

  14. Adaptive-filtering of trisomy 21: risk of Down syndrome depends on family size and age of previous child

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Markus; Krackow, Sven

    2007-02-01

    The neonatal incidence rate of Down syndrome (DS) is well-known to accelerate strongly with maternal age. This non-linearity renders mere accumulation of defects at recombination during prolonged first meiotic prophase implausible as an explanation for DS rate increase with maternal age, but might be anticipated from chromosomal drive (CD) for trisomy 21. Alternatively, as there is selection against genetically disadvantaged embryos, the screening system that eliminates embryos with trisomy 21 might decay with maternal age. In this paper, we provide the first evidence for relaxed filtering stringency (RFS) to represent an adaptive maternal response that could explain accelerating DS rates with maternal age. Using historical data, we show that the proportion of aberrant live births decrease with increased family size in older mothers, that inter-birth intervals are longer before affected neonates than before normal ones, and that primiparae exhibit elevated levels of DS incidence at higher age. These findings are predicted by adaptive RFS but cannot be explained by the currently available alternative non-adaptive hypotheses, including CD. The identification of the relaxation control mechanism and therapeutic restoration of a stringent screen may have considerable medical implications.

  15. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    SciTech Connect

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea; Sweatt, William C.; Verley, Jason C.; Heller, Edwin J.; Yelton, William Graham

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set

  16. Multiple Model Adaptive Two-Step Filter and Motion Tracking Sliding-Mode Guidance for Missiles with Time Lag in Acceleration

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Yong-An; Duan, Guang-Ren

    The two-step filter has been combined with a modified Sage-Husa time-varying measurement noise statistical estimator, which is able to estimate the covariance of measurement noise on line, to generate an adaptive two-step filter. In many practical applications such as the bearings-only guidance, some model parameters and the process noise covariance are also unknown a priori. Based on the adaptive two-step filter, we utilize multiple models in the first-step filtering as well as in the time update of the second-step filtering to handle the uncertainties of model parameters and process noise covariance. In each timestep of the multiple model filtering, probabilistic weights punishing the estimates of first-step state from different models, and their associated covariance matrices are acquired according to Bayes’ rule. The weighted sum of the estimates of first-step state and that of the associated covariance matrices are extracted as the ultimate estimate and covariance of the first-step state, and are used as measurement information for the measurement update of the second-step state. Thus there is still only one iteration process and no apparent enhancement of computation burden. A motion tracking sliding-mode guidance law is presented for missiles with non-negligible delays in actual acceleration. This guidance law guarantees guidance accuracy and is able to enhance observability in bearings-only tracking. In bearings-only cases, the multiple model adaptive two-step filter is applied to the motion tracking sliding-mode guidance law, supplying relative range, relative velocity, and target acceleration information. In simulation experiments satisfactory filtering and guidance results are obtained, even if the filter runs into unknown target maneuvers and unknown time-varying measurement noise covariance, and the guidance law has to deal with a large time lag in acceleration.

  17. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering

    PubMed Central

    Hu, Ruiyang; Wu, Bo; Zheng, Huiquan; Hu, Dehuo; Wang, Xinjie; Duan, Hongjing; Sun, Yuhan; Wang, Jinxing; Zhang, Yue; Li, Yun

    2015-01-01

    Chinese fir (Cunninghamia lanceolata), an evergreen conifer, is the most commonly grown afforestation species in southeast China due to its rapid growth and good wood qualities. To gain a better understanding of the drought-signalling pathway and the molecular metabolic reactions involved in the drought response, we performed a genome-wide transcription analysis using RNA sequence data. In this study, Chinese fir plantlets were subjected to progressively prolonged drought stress, up to 15 d, followed by rewatering under controlled environmental conditions. Based on observed morphological changes, plantlets experienced mild, moderate, or severe water stress before rehydration. Transcriptome analysis of plantlets, representing control and mild, moderate, and severe drought-stress treatments, and the rewatered plantlets, identified several thousand genes whose expression was altered in response to drought stress. Many genes whose expression was tightly coupled to the levels of drought stress were identified, suggesting involvement in Chinese fir drought adaptation responses. These genes were associated with transcription factors, signal transport, stress kinases, phytohormone signalling, and defence/stress response. The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of Chinese fir under drought stress. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in Chinese fir. PMID:26154763

  18. A reevaluation of achromatic spatio-temporal vision: Nonoriented filters are monocular, they adapt, and can be used for decision making at high flicker speeds

    PubMed Central

    Meese, Tim S; Baker, Daniel H

    2011-01-01

    Masking, adaptation, and summation paradigms have been used to investigate the characteristics of early spatio-temporal vision. Each has been taken to provide evidence for (i) oriented and (ii) nonoriented spatial-filtering mechanisms. However, subsequent findings suggest that the evidence for nonoriented mechanisms has been misinterpreted: those experiments might have revealed the characteristics of suppression (eg, gain control), not excitation, or merely the isotropic subunits of the oriented detecting mechanisms. To shed light on this, we used all three paradigms to focus on the ‘high-speed’ corner of spatio-temporal vision (low spatial frequency, high temporal frequency), where cross-oriented achromatic effects are greatest. We used flickering Gabor patches as targets and a 2IFC procedure for monocular, binocular, and dichoptic stimulus presentations. To account for our results, we devised a simple model involving an isotropic monocular filter-stage feeding orientation-tuned binocular filters. Both filter stages are adaptable, and their outputs are available to the decision stage following nonlinear contrast transduction. However, the monocular isotropic filters (i) adapt only to high-speed stimuli—consistent with a magnocellular subcortical substrate—and (ii) benefit decision making only for high-speed stimuli (ie, isotropic monocular outputs are available only for high-speed stimuli). According to this model, the visual processes revealed by masking, adaptation, and summation are related but not identical. PMID:23145234

  19. An Adaptive Particle Filtering Approach to Tracking Modes in a Varying Shallow Ocean Environment

    SciTech Connect

    Candy, J V

    2011-03-22

    The shallow ocean environment is ever changing mostly due to temperature variations in its upper layers (< 100m) directly affecting sound propagation throughout. The need to develop processors that are capable of tracking these changes implies a stochastic as well as an 'adaptive' design. The stochastic requirement follows directly from the multitude of variations created by uncertain parameters and noise. Some work has been accomplished in this area, but the stochastic nature was constrained to Gaussian uncertainties. It has been clear for a long time that this constraint was not particularly realistic leading a Bayesian approach that enables the representation of any uncertainty distribution. Sequential Bayesian techniques enable a class of processors capable of performing in an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean. In this paper adaptive processors providing enhanced signals for acoustic hydrophonemeasurements on a vertical array as well as enhanced modal function estimates are developed. Synthetic data is provided to demonstrate that this approach is viable.

  20. Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method

    NASA Astrophysics Data System (ADS)

    Flad, David; Beck, Andrea; Munz, Claus-Dieter

    2016-05-01

    Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.

  1. An optimized DSP implementation of adaptive filtering and ICA for motion artifact reduction in ambulatory ECG monitoring.

    PubMed

    Berset, Torfinn; Geng, Di; Romero, Iñaki

    2012-01-01

    Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption. PMID:23367417

  2. Computationally Efficient Locally Adaptive Demosaicing of Color Filter Array Images Using the Dual-Tree Complex Wavelet Packet Transform

    PubMed Central

    Aelterman, Jan; Goossens, Bart; De Vylder, Jonas; Pižurica, Aleksandra; Philips, Wilfried

    2013-01-01

    Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches. PMID:23671575

  3. Distributed parameter system coupled ARMA expansion identification and adaptive parallel IIR filtering - A unified problem statement. [Auto Regressive Moving-Average

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Balas, M. J.

    1980-01-01

    A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.

  4. Mie Light-Scattering Granulometer with an Adaptive Numerical Filtering Method. II. Experiments.

    PubMed

    Hespel, L; Delfour, A; Guillame, B

    2001-02-20

    A nephelometer is presented that theoretically requires no absolute calibration. This instrument is used for determining the particle-size distribution of various scattering media (aerosols, fogs, rocket exhausts, engine plumes, and the like) from angular static light-scattering measurements. An inverse procedure is used, which consists of a least-squares method and a regularization scheme based on numerical filtering. To retrieve the distribution function one matches the experimental data with theoretical patterns derived from Mie theory. The main principles of the inverse method are briefly presented, and the nephelometer is then described with the associated partial calibration procedure. Finally, the whole granulometer system (inverse method and nephelometer) is validated by comparison of measurements of scattering media with calibrated monodisperse or known size distribution functions. PMID:18357082

  5. FIR galaxies with compact radio cores

    NASA Astrophysics Data System (ADS)

    Chini, R.; Biermann, P. L.; Kreysa, E.; Kuhr, H.; Mezger, P. G.; Schmidt, J.; Witzel, A.; Zensus, J. A.

    1987-07-01

    Comparing the IRAS point-source catalog (1985) with sources detected in a VLBI extragalactic radio source survey (Zensus et al., 1984), five FIR sources are found which all show compact radio cores. These objects have been observed with the 30-m MRT at Pico Veleta (Spain) at 1.2-mm wavelength to provide spectral coverage between IRAS and radio bands. The two galaxies among the five sources have luminosities of order 10 to the 12th solar luminosities in the FIR and thus may be super star bursters similar to Arp 220. On the other hand, all five objects have active galactic nuclei, and so the FIR luminosities may be powered by the nuclear activity. Since flat-spectrum radio sources have compact nuclear components, the 1-Jy catalog and its extension to lower flux densities (Kuehr et al., 1979 and 1981) are compared with the IRAS catalog, and a small number of additional active nuclei with strong emission in the FIR are identified. These objects can serve to study the competition between starbursts and nuclear activity to explain high FIR luminosities.

  6. Local ensemble transform Kalman filter, a fast non-stationary control law for adaptive optics on ELTs: theoretical aspects and first simulation results.

    PubMed

    Gray, Morgan; Petit, Cyril; Rodionov, Sergey; Bocquet, Marc; Bertino, Laurent; Ferrari, Marc; Fusco, Thierry

    2014-08-25

    We propose a new algorithm for an adaptive optics system control law, based on the Linear Quadratic Gaussian approach and a Kalman Filter adaptation with localizations. It allows to handle non-stationary behaviors, to obtain performance close to the optimality defined with the residual phase variance minimization criterion, and to reduce the computational burden with an intrinsically parallel implementation on the Extremely Large Telescopes (ELTs). PMID:25321291

  7. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  8. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images.

    PubMed

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  9. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  10. ASICs Approach for the Implementation of a Symmetric Triangular Fuzzy Coprocessor and Its Application to Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Starks, Scott; Abdel-Hafeez, Saleh; Usevitch, Bryan

    1997-01-01

    This paper discusses the implementation of a fuzzy logic system using an ASICs design approach. The approach is based upon combining the inherent advantages of symmetric triangular membership functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points of the triangular membership functions. This provides advantages over other approaches in which all sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure implements the fuzzification and defuzzification processes through a two-stage parallel pipeline architecture which is capable of executing complex fuzzy computations in less than 0.55us with an accuracy of more than 95%, thus making it suitable for a wide range of applications. Using the approach presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an onchip rule-base memory with a size of 64 words. The fuzzy coprocessor's design supports up to 49 rules for seven fuzzy membership functions associated with each of the chip's two input variables. This feature allows designers to create fuzzy logic systems without the need for additional on-board memory. Finally, the paper reports on simulation studies that were conducted for several adaptive filter applications using the least mean squared adaptive algorithm for adjusting the knowledge rule-base.

  11. Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering.

    PubMed

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A; Fox, Cynthia; Ramig, Lorraine O; Clifford, Gari D

    2014-05-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required. PMID:24815269

  12. Background noise cancellation of manatee vocalizations using an adaptive line enhancer.

    PubMed

    Yan, Zheng; Niezrecki, Christopher; Cattafesta, Louis N; Beusse, Diedrich O

    2006-07-01

    The West Indian manatee (Trichechus manatus latirostris) has become an endangered species partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees is desired. Previous research has shown that background noise limits the manatee vocalization detection range (which is critical for practical implementation). By improving the signal-to-noise ratio of the measured manatee vocalization signal, it is possible to extend the detection range. The finite impulse response (FIR) structure of the adaptive line enhancer (ALE) can detect and track narrow-band signals buried in broadband noise. In this paper, a constrained infinite impulse response (IIR) ALE, called a feedback ALE (FALE), is implemented to reduce the background noise. In addition, a bandpass filter is used as a baseline for comparison. A library consisting of 100 manatee calls spanning ten different signal categories is used to evaluate the performance of the bandpass filter, FIR-ALE, and FALE. The results show that the FALE is capable of reducing background noise by about 6.0 and 21.4 dB better than that of the FIR-ALE and bandpass filter, respectively, when the signal-to-noise ratio (SNR) of the original manatee call is -5 dB. PMID:16875212

  13. Group Lifting Structures For Multirate Filter Banks, I: Uniqueness Of Lifting Factorizations

    SciTech Connect

    Brislawn, Christopher M

    2008-01-01

    This paper studies two-channel finite impulse response (FIR) perfect reconstruction filter banks. The connection between filter banks and wavelet transforms is well-known and will not be treated here. Figure 1 depicts the polyphase-with-advance representation of a filter bank [6]. A lifting factorization, is a factorization of polyphase matrices into upper and lower triangular lifting matrices. The existence of such decompositions via the Euclidean algorithm was shown for general FIR perfect reconstruction filter banks in [9] and was subsequently refined for linear phase filter banks in [10], [6]. These latter works were motivated by the ISO JPEG 2000 image coding standard [11], [12], [10], which specifies whole-sample symmetric (WS, or FIR type 1 linear phase) filter banks, as in Figure 2(a), in terms of half-sample symmetric (RS, or FIR type 2) lifting filters.

  14. A multiresolution approach to image enhancement via histogram shaping and adaptive Wiener filtering

    NASA Astrophysics Data System (ADS)

    Pace, T.; Manville, D.; Lee, H.; Cloud, G.; Puritz, J.

    2008-04-01

    It is critical in military applications to be able to extract features in imagery that may be of interest to the viewer at any time of the day or night. Infrared (IR) imagery is ideally suited for producing these types of images. However, even under the best of circumstances, the traditional approach of applying a global automatic gain control (AGC) to the digital image may not provide the user with local area details that may be of interest. Processing the imagery locally can enhance additional features and characteristics in the image which provide the viewer with an improved understanding of the scene being observed. This paper describes a multi-resolution pyramid approach for decomposing an image, enhancing its contrast by remapping the histograms to desired pdfs, filtering them and recombining them to create an output image with much more visible detail than the input image. The technique improves the local area image contrast in light and dark areas providing the warfighter with significantly improved situational awareness.

  15. Background adaptive division filtering for hand-held ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Anderson, Derek T.; Ball, John E.; White, Julie L.

    2016-05-01

    The challenge in detecting explosive hazards is that there are multiple types of targets buried at different depths in a highlycluttered environment. A wide array of target and clutter signatures exist, which makes detection algorithm design difficult. Such explosive hazards are typically deployed in past and present war zones and they pose a grave threat to the safety of civilians and soldiers alike. This paper focuses on a new image enhancement technique for hand-held ground penetrating radar (GPR). Advantages of the proposed technique is it runs in real-time and it does not require the radar to remain at a constant distance from the ground. Herein, we evaluate the performance of the proposed technique using data collected from a U.S. Army test site, which includes targets with varying amounts of metal content, placement depths, clutter and times of day. Receiver operating characteristic (ROC) curve-based results are presented for the detection of shallow, medium and deeply buried targets. Preliminary results are very encouraging and they demonstrate the usefulness of the proposed filtering technique.

  16. The algorithm analysis on non-uniformity correction based on LMS adaptive filtering

    NASA Astrophysics Data System (ADS)

    Zhan, Dongjun; Wang, Qun; Wang, Chensheng; Chen, Huawang

    2010-11-01

    The traditional least mean square (LMS) algorithm has the performance of good adaptivity to noise, but there are several disadvantages in the traditional LMS algorithm, such as the defect in desired value of pending pixels, undetermined original coefficients, which result in slow convergence speed and long convergence period. Method to solve the desired value of pending pixel has improved based on these problems, also, the correction gain and offset coefficients worked out by the method of two-point temperature non-uniformity correction (NUC) as the original coefficients, which has improved the convergence speed. The simulation with real infrared images has proved that the new LMS algorithm has the advantages of better correction effect. Finally, the algorithm is implemented on the hardware structure of FPGA+DSP.

  17. Adaptive Iterated Extended Kalman Filter and Its Application to Autonomous Integrated Navigation for Indoor Robot

    PubMed Central

    Chen, Xiyuan; Li, Qinghua

    2014-01-01

    As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF) which used the noise statistics estimator in the iterated extended Kalman (IEKF), and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS)/wireless sensors networks (WSNs)-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE) of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF. PMID:24693225

  18. Adaptive iterated extended Kalman filter and its application to autonomous integrated navigation for indoor robot.

    PubMed

    Xu, Yuan; Chen, Xiyuan; Li, Qinghua

    2014-01-01

    As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF) which used the noise statistics estimator in the iterated extended Kalman (IEKF), and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS)/wireless sensors networks (WSNs)-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE) of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF. PMID:24693225

  19. Optimization of exposure in panoramic radiography while maintaining image quality using adaptive filtering.

    PubMed

    Svenson, Björn; Larsson, Lars; Båth, Magnus

    2016-01-01

    Objective The purpose of the present study was to investigate the potential of using advanced external adaptive image processing for maintaining image quality while reducing exposure in dental panoramic storage phosphor plate (SPP) radiography. Materials and methods Thirty-seven SPP radiographs of a skull phantom were acquired using a Scanora panoramic X-ray machine with various tube load, tube voltage, SPP sensitivity and filtration settings. The radiographs were processed using General Operator Processor (GOP) technology. Fifteen dentists, all within the dental radiology field, compared the structural image quality of each radiograph with a reference image on a 5-point rating scale in a visual grading characteristics (VGC) study. The reference image was acquired with the acquisition parameters commonly used in daily operation (70 kVp, 150 mAs and sensitivity class 200) and processed using the standard process parameters supplied by the modality vendor. Results All GOP-processed images with similar (or higher) dose as the reference image resulted in higher image quality than the reference. All GOP-processed images with similar image quality as the reference image were acquired at a lower dose than the reference. This indicates that the external image processing improved the image quality compared with the standard processing. Regarding acquisition parameters, no strong dependency of the image quality on the radiation quality was seen and the image quality was mainly affected by the dose. Conclusions The present study indicates that advanced external adaptive image processing may be beneficial in panoramic radiography for increasing the image quality of SPP radiographs or for reducing the exposure while maintaining image quality. PMID:26478956

  20. Design of Microwave Band Pass Filters for the Debuncher Stochastic Cooling System

    SciTech Connect

    Deibele, C.

    2001-01-01

    The FIR filters designed for the debuncher stochastic cooling system needed improvement. Its bandwidth was too wide, its magnitude was not flat, its phase ripple was too great, and it was difficult to control the characteristics of the filter. A simple microwave technique was employed to have a short time delay, simple robust layout, and small board size. A significant savings was seen over the FIR technique and these filters were installed in the Antiproton Source Debuncher while the FIR filters were removed from the debuncher stochastic cooling entirely.

  1. Skylab communications carrier 16536G and filter bypass adapter assembly 12535G. [development of communications equipment for use with Skylab spacecraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Communications equipment for use with the Skylab project is examined to show compliance with contract requirements. The items of equipment considered are: (1) communications carrier assemblies, (2) filter bypass adapter assemblies, and (3) sub-assemblies, parts, and repairs. Additional information is provided concerning contract requirements, test requirements, and failure investigation actions.

  2. Zero-phase FIR filters: Blessing or curse?

    NASA Astrophysics Data System (ADS)

    Scherbaum, Frank

    These are exciting times for observational seismology. State-of-the-art broadband seismometers now easily cover a frequency band of more than one hundred seconds to several tens of Hertz in a single sensor. Commonly available data loggers provide a dynamic range exceeding 120 dB. Ground motion amplitudes differing by more than 6 orders of magnitude can be simultaneously recorded without distortion.

  3. Aortic pressure wave reconstruction during exercise is improved by adaptive filtering: a pilot study.

    PubMed

    Stok, Wim J; Westerhof, Berend E; Guelen, Ilja; Karemaker, John M

    2011-08-01

    Reconstruction of central aortic pressure from a peripheral measurement by a generalized transfer function (genTF) works well at rest and mild exercise at lower heart rates, but becomes less accurate during heavy exercise. Particularly, systolic and pulse pressure estimations deteriorate, thereby underestimating central pressure. We tested individualization of the TF (indTF) by adapting its resonance frequency at the various levels of exercise. In seven males (age 44-57) with coronary artery disease, central and peripheral pressures were measured simultaneously. The optimal resonance frequency was predicted from regression formulas using variables derived from the individual's peripheral pressure pulse, including a pulse contour estimation of cardiac output (pcCO). In addition, reconstructed pressures were calibrated to central mean and diastolic pressure at each exercise level. Using a genTF and without calibration, the error in estimated aortic pulse pressure was -7.5 ± 6.4 mmHg, which was reduced to 0.2 ± 5.7 mmHg with the indTFs using pcCO for prediction. Calibration resulted in less scatter at the cost of a small bias (2.7 mmHg). In exercise, the indTFs predict systolic and pulse pressure better than the genTF. This pilot study shows that it is possible to individualize the peripheral to aortic pressure transfer function, thereby improving accuracy in central blood pressure assessment during exercise. PMID:21720842

  4. Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals.

    PubMed

    Dadashi, Farzin; Crettenand, Florent; Millet, Grégoire P; Seifert, Ludovic; Komar, John; Aminian, Kamiar

    2013-01-01

    This study introduces a novel approach for automatic temporal phase detection and inter-arm coordination estimation in front-crawl swimming using inertial measurement units (IMUs). We examined the validity of our method by comparison against a video-based system. Three waterproofed IMUs (composed of 3D accelerometer, 3D gyroscope) were placed on both forearms and the sacrum of the swimmer. We used two underwater video cameras in side and frontal views as our reference system. Two independent operators performed the video analysis. To test our methodology, seven well-trained swimmers performed three 300 m trials in a 50 m indoor pool. Each trial was in a different coordination mode quantified by the index of coordination. We detected different phases of the arm stroke by employing orientation estimation techniques and a new adaptive change detection algorithm on inertial signals. The difference of 0.2 ± 3.9% between our estimation and video-based system in assessment of the index of coordination was comparable to experienced operators' difference (1.1 ± 3.6%). The 95% limits of agreement of the difference between the two systems in estimation of the temporal phases were always less than 7.9% of the cycle duration. The inertial system offers an automatic easy-to-use system with timely feedback for the study of swimming. PMID:23560703

  5. Insect-Inspired Self-Motion Estimation with Dense Flow Fields—An Adaptive Matched Filter Approach

    PubMed Central

    Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin

    2015-01-01

    The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion. PMID:26308839

  6. Assembly Processes under Severe Abiotic Filtering: Adaptation Mechanisms of Weed Vegetation to the Gradient of Soil Constraints

    PubMed Central

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations

  7. A Simplified Baseband Prefilter Model with Adaptive Kalman Filter for Ultra-Tight COMPASS/INS Integration

    PubMed Central

    Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing

    2012-01-01

    COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564

  8. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Xiong, Rui; Gong, Xianzhi; Mi, Chunting Chris; Sun, Fengchun

    2013-12-01

    This paper presents a novel data-driven based approach for the estimation of the state of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter (AEKF). A modified second-order RC network based battery model is employed for the state estimation. Based on the battery model and experimental data, the SoC variation per mV voltage for different types of battery chemistry is analyzed and the parameters are identified. The AEKF algorithm is then employed to achieve accurate data-driven based SoC estimation, and the multi-parameter, closed loop feedback system is used to achieve robustness. The accuracy and convergence of the proposed approach is analyzed for different types of LiB cells, including convergence behavior of the model with a large initial SoC error. The results show that the proposed approach has good accuracy for different types of LiB cells, especially for C/LFP LiB cell that has a flat open circuit voltage (OCV) curve. The experimental results show good agreement with the estimation results with maximum error being less than 3%.

  9. Higher-order ambulatory electrocardiogram identification and motion artifact suppression with adaptive second- and third-order Volterra filters

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; El-Khafif, Sahar; Carson, Ewart; Grattan, Kenneth T. V.

    1998-10-01

    The objective of this paper is to demonstrate how, in a few seconds, a relatively simple ECG monitor, PC and advanced signal processing algorithms could pinpoint microvolts - late potentials - result from an infarct zone in the heart and is used as an indicator in identifying patients prone to ventricular tachycardia which, if left untreated, leads to ventricular fibrillation. We will characterize recorded ECG data obtained from the standard three vector electrodes during exercise in terms of their higher-order statistical features. Essentially we use adaptive LMS- and Kalman-based second- and third-order Volterra filters to model the non- linear low-frequency P and T waves and motion artifacts which might overlap with the QRS complex and lead to false positive QRS detection. We will illustrate the effectiveness of this new approach by mapping out bispectral regions with a strong bicoherence manifestation and showing their corresponding temporal/spatial origins. Furthermore, we will present a few examples of our own application of these non-invasive techniques to illustrate what we see as their promise for analysis of heart abnormality.

  10. Adaptive Volterra filter with continuous lp-norm using a logarithmic cost for nonlinear active noise control

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2016-03-01

    The filtered-x least mean lp-norm (FxLMP) algorithm is proven to be useful for nonlinear active noise control (NANC) systems. However, its performance deteriorates when the impulsive noises are presented in NANC systems. To surmount this shortcoming, a new nonlinear adaptive algorithm based on Volterra expansion model (VFxlogLMP) is developed in this paper, which is derived by minimizing the lp-norm of logarithmic cost. It is found that the FxLMP and VFxlogLMP require to select an appropriate value of p according to the prior information on noise characteristics, which prohibit their practical applications. Based on VFxlogLMP algorithm, we proposed a continuous lp-norm algorithm with logarithmic cost (VFxlogCLMP), which does not need the parameter selection and thresholds estimation. Benefiting from the various error norms for 1≤p≤2, it remains the robustness of VFxlogLMP. Moreover, the convergence behavior of VFxlogCLMP for moving average secondary paths and stochastic input signals is performed. Compared to the existing algorithms, two versions of the proposed algorithms have much better convergence and stability in impulsive noise environments.

  11. Adaptive match filter based method for time vs. amplitude characterization of microvolt ECG T-wave alternans.

    PubMed

    Burattini, Laura; Zareba, Wojciech; Burattini, Roberto

    2008-09-01

    To develop a new method for non-invasive identification of patients prone to ventricular tachyarrhythmia and sudden cardiac death, an adaptive match-filter (AMF) was applied to detect and characterize T-wave alternans (TWA) in 200 coronary artery diseased (CAD) patients compared with 176 healthy (H) subjects. TWA was characterized in terms of duration (TWAD), amplitude (TWAA), and magnitude (TWAM, defined as the product of TWAD times TWAA). A criterion derived from these parameters, estimated over the H-population, allowed discrimination between a risk (TWA+) and a normality (NO TWA) zone in the TWAD-TWAA plane. To gain further ability to discriminate among different risk levels, the TWA+ zone was divided into four sub-zones respectively characterized by low duration and low amplitude (LDLA), low duration and high amplitude (LDHA), high duration and low amplitude (HDLA), and high duration and high amplitude (HDHA). With our methodology, 21 CAD-patients (10.5%) were identified as TWA+, 9 falling in the LDLA zone, 4 in the HDLA, 7 in the LDHA, and 1 in the HDHA. These results are in agreement with clinical expectations and pave the way to further clinical follow-up studies finalized to analyze pathophysiological implications and risk factors associated to each TWA+ zone. PMID:18618261

  12. Adaptive Identification and Control of Flow-Induced Cavity Oscillations

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cattafesta, L. N.; Ha, C.

    2002-01-01

    Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.

  13. Douglas-Fir Seedlings Exhibit Metabolic Responses to Increased Temperature and Atmospheric Drought

    PubMed Central

    Jansen, Kirstin; Du, Baoguo; Kayler, Zachary; Siegwolf, Rolf; Ensminger, Ingo; Rennenberg, Heinz; Kammerer, Bernd; Jaeger, Carsten; Schaub, Marcus; Kreuzwieser, Jürgen; Gessler, Arthur

    2014-01-01

    In the future, periods of strongly increased temperature in concert with drought (heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions. PMID:25436455

  14. Remote sensing of balsam fir forest vigor

    NASA Astrophysics Data System (ADS)

    Luther, Joan E.; Carroll, Allen L.

    1997-12-01

    The potential of remote sensing to monitor indices of forest health was tested by examining the spectral separability of plots with different balsam fir, Abies balsamea (L.) Mill, vigor. Four levels of vigor were achieved with controlled experimental manipulations of forest stands. In order of increasing vigor, the treatments were root pruning, control, thinning and thinning in combination with fertilization. Spectral reflectance of branchlets from each plot were measured under laboratory conditions using a field portable spectroradiometer with a spectral range from 350 - 2500 nm. Branchlets were discriminated using combinations of factor and discriminant analyses techniques with classification accuracies of 91% and 83% for early and late season analyses, respectively. Relationships between spectral reflectance measurements at canopy levels, stand vigor, and foliage quality for an insect herbivore will be analyzed further in support of future large scale monitoring of balsam fir vulnerability to insect disturbance.

  15. Adaptive optical filter

    DOEpatents

    Whittemore, Stephen Richard

    2013-09-10

    Imaging systems include a detector and a spatial light modulator (SLM) that is coupled so as to control image intensity at the detector based on predetermined detector limits. By iteratively adjusting SLM element values, image intensity at one or all detector elements or portions of an imaging detector can be controlled to be within limits. The SLM can be secured to the detector at a spacing such that the SLM is effectively at an image focal plane. In some applications, the SLM can be adjusted to impart visible or hidden watermarks to images or to reduce image intensity at one or a selected set of detector elements so as to reduce detector blooming

  16. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  17. Vibration control of a flexible beam driven by a ball-screw stage with adaptive notch filters and a line enhancer

    NASA Astrophysics Data System (ADS)

    Wu, Shang-Teh; Lian, Sing-Han; Chen, Sheng-Han

    2015-07-01

    For a low-stiffness beam driven by a ball-screw stage, the lateral vibrations cannot be adequately controlled by a collocated compensator based on rotary-encoder feedback alone. Acceleration signals at the tip of the flexible beam are measured for active vibration control in addition to the collocated compensator. A second-order bandpass filter (a line enhancer) and two notch filters are included in the acceleration-feedback loop to raise modal dampings for the first and the second flexible modes without exciting higher-frequency resonances. A novel adaptation algorithm is devised to tune the center frequencies of the notch filters in real time. It consists of a second-order low-pass filter, a second-order bandpass filter and a phase detector. Improvement of the control system is elaborated progressively with the root-locus and bode-plot analyses, along with a physical interpretation. Extensive testings are conducted on an experimental device to verify the effectiveness of the control method.

  18. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place. PMID:25606767

  19. A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB

    SciTech Connect

    Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

    2012-07-01

    We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIR region with over 100 W/cm-1 output.

  20. Exact reconstruction analysis/synthesis filter banks with time-varying filters

    NASA Technical Reports Server (NTRS)

    Arrowood, J. L., Jr.; Smith, M. J. T.

    1993-01-01

    This paper examines some of the analysis/synthesis issues associated with FIR time-varying filter banks where the filter bank coefficients are allowed to change in response to the input signal. Several issues are identified as being important in order to realize performance gains from time-varying filter banks in image coding applications. These issues relate to the behavior of the filters as transition from one set of filter banks to another occurs. Lattice structure formulations for the time varying filter bank problem are introduced and discussed in terms of their properties and transition characteristics.

  1. African Swine Fever Diagnosis Adapted to Tropical Conditions by the Use of Dried-blood Filter Papers.

    PubMed

    Randriamparany, T; Kouakou, K V; Michaud, V; Fernández-Pinero, J; Gallardo, C; Le Potier, M-F; Rabenarivahiny, R; Couacy-Hymann, E; Raherimandimby, M; Albina, E

    2016-08-01

    The performance of Whatman 3-MM filter papers for the collection, drying, shipment and long-term storage of blood at ambient temperature, and for the detection of African swine fever virus and antibodies was assessed. Conventional and real-time PCR, viral isolation and antibody detection by ELISA were performed on paired samples (blood/tissue versus dried-blood 3-MM filter papers) collected from experimentally infected pigs and from farm pigs in Madagascar and Côte d'Ivoire. 3-MM filter papers were used directly in the conventional and real-time PCR without previous extraction of nucleic acids. Tests that performed better with 3-MM filter papers were in descending order: virus isolation, real-time UPL PCR and conventional PCR. The analytical sensitivity of real-time UPL PCR on filter papers was similar to conventional testing (virus isolation or conventional PCR) on organs or blood. In addition, blood-dried filter papers were tested in ELISA for antibody detection and the observed sensitivity was very close to conventional detection on serum samples and gave comparable results. Filter papers were stored up to 9 months at 20-25°C and for 2 months at 37°C without significant loss of sensitivity for virus genome detection. All tests on 3-MM filter papers had 100% specificity compared to the gold standards. Whatman 3-MM filter papers have the advantage of being cheap and of preserving virus viability for future virus isolation and characterization. In this study, Whatman 3-MM filter papers proved to be a suitable support for the collection, storage and use of blood in remote areas of tropical countries without the need for a cold chain and thus provide new possibilities for antibody testing and virus isolation. PMID:25430732

  2. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  3. FIR: An Effective Scheme for Extracting Useful Metadata from Social Media.

    PubMed

    Chen, Long-Sheng; Lin, Zue-Cheng; Chang, Jing-Rong

    2015-11-01

    Recently, the use of social media for health information exchange is expanding among patients, physicians, and other health care professionals. In medical areas, social media allows non-experts to access, interpret, and generate medical information for their own care and the care of others. Researchers paid much attention on social media in medical educations, patient-pharmacist communications, adverse drug reactions detection, impacts of social media on medicine and healthcare, and so on. However, relatively few papers discuss how to extract useful knowledge from a huge amount of textual comments in social media effectively. Therefore, this study aims to propose a Fuzzy adaptive resonance theory network based Information Retrieval (FIR) scheme by combining Fuzzy adaptive resonance theory (ART) network, Latent Semantic Indexing (LSI), and association rules (AR) discovery to extract knowledge from social media. In our FIR scheme, Fuzzy ART network firstly has been employed to segment comments. Next, for each customer segment, we use LSI technique to retrieve important keywords. Then, in order to make the extracted keywords understandable, association rules mining is presented to organize these extracted keywords to build metadata. These extracted useful voices of customers will be transformed into design needs by using Quality Function Deployment (QFD) for further decision making. Unlike conventional information retrieval techniques which acquire too many keywords to get key points, our FIR scheme can extract understandable metadata from social media. PMID:26330225

  4. Study of the algorithm of backtracking decoupling and adaptive extended Kalman filter based on the quaternion expanded to the state variable for underwater glider navigation.

    PubMed

    Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping

    2014-01-01

    High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331

  5. Study of the Algorithm of Backtracking Decoupling and Adaptive Extended Kalman Filter Based on the Quaternion Expanded to the State Variable for Underwater Glider Navigation

    PubMed Central

    Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping

    2014-01-01

    High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331

  6. Peripheral adaptive filtering in human olfaction? Three studies on prevalence and effects of olfactory training in specific anosmia in more than 1600 participants.

    PubMed

    Croy, Ilona; Olgun, Selda; Mueller, Laura; Schmidt, Anna; Muench, Marcus; Hummel, Cornelia; Gisselmann, Guenter; Hatt, Hanns; Hummel, Thomas

    2015-12-01

    Selective processing of environmental stimuli improves processing capacity and allows adaptive modulation of behavior. The thalamus provides an effective filter of central sensory information processing. As olfactory projections, however, largely bypass the thalamus, other filter mechanisms must consequently have evolved for the sense of smell. We investigated whether specific anosmia - the inability to perceive a specific odor whereas detection of other substances is unaffected - represents an effective peripheral filter of olfactory information processing. In contrast to previous studies, we showed in a sample of 1600 normosmic subjects, that specific anosmia is by no means a rare phenomenon. Instead, while the affected odor is highly individual, the general probability of occurrence of specific anosmia is close to 1. In addition, 25 subjects performed daily olfactory training sessions with enhanced exposure to their particular "missing" smells for the duration of three months. This resulted in a significant improvement of sensitivity towards the respective specific odors. We propose specific anosmia to occur as a rule, rather than an exception, in the sense of smell. The lack of perception of certain odors may constitute a flexible peripheral filter mechanism, which can be altered by exposure. PMID:26457822

  7. CHARACTERIZATION OF EASTERN U.S. SPRUCE-FIR SOILS

    EPA Science Inventory

    he spruce-fir forest of the eastern United States encompasses a diverse range of edaphic conditions due to differences in surficial geology, mineralogy, elevation, and climate. his chapter will describe the characteristics of soils supporting eastern spruce-fir ecosystems, includ...

  8. Characterization of eastern US spruce-fir soils. Book chapter

    SciTech Connect

    Fernandez, I.J.

    1992-01-01

    The spruce-fir forest of the eastern United States encompasses a diverse range of edaphic conditions due to differences in surficial geology, mineralogy, elevation, and climate. This chapter describes the characteristics of soils supporting eastern spruce-fir ecosystems, including soil properties that are important in understanding forest function and the consequences of atmospheric deposition to forested ecosystems. Chapter 1 describes the silvical characteristics of the spruce-fir forest. The Spruce-Fir Research Cooperative included six intensive study sites; five were high-elevation research sites located from western North Carolina to New Hampshire, with one low-elevation site in Maine. Information gained from research at these sites, and other relevant research from these regions, provides the basis for this description of eastern U. S. spruce-fir soils.

  9. Far infrared radiation (FIR): its biological effects and medical applications

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2013-01-01

    Far infrared (FIR) radiation (λ = 3–100 μm) is a subdivision of the electromagnetic spectrum that has been investigated for biological effects. The goal of this review is to cover the use of a further sub-division (3– 12 μm) of this waveband, that has been observed in both in vitro and in vivo studies, to stimulate cells and tissue, and is considered a promising treatment modality for certain medical conditions. Technological advances have provided new techniques for delivering FIR radiation to the human body. Specialty lamps and saunas, delivering pure FIR radiation (eliminating completely the near and mid infrared bands), have became safe, effective, and widely used sources to generate therapeutic effects. Fibers impregnated with FIR emitting ceramic nanoparticles and woven into fabrics, are being used as garments and wraps to generate FIR radiation, and attain health benefits from its effects. PMID:23833705

  10. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  11. Development of adaptive noise reduction filter algorithm for pediatric body images in a multi-detector CT

    NASA Astrophysics Data System (ADS)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki

    2008-03-01

    Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.

  12. Multidimensional filter bank signal reconstruction from multichannel acquisition.

    PubMed

    Law, Ka Lung; Do, Minh N

    2011-02-01

    We study the theory and algorithms of an optimal use of multidimensional signal reconstruction from multichannel acquisition by using a filter bank setup. Suppose that we have an N-channel convolution system, referred to as N analysis filters, in M dimensions. Instead of taking all the data and applying multichannel deconvolution, we first reduce the collected data set by an integer M×M uniform sampling matrix [Formula: see text], and then search for a synthesis polyphase matrix which could perfectly reconstruct any input discrete signal. First, we determine the existence of perfect reconstruction (PR) systems for a given set of finite-impulse response (FIR) analysis filters. Second, we present an efficient algorithm to find a sampling matrix with maximum sampling rate and to find a FIR PR synthesis polyphase matrix for a given set of FIR analysis filters. Finally, once a particular FIR PR synthesis polyphase matrix is found, we can characterize all FIR PR synthesis matrices, and then find an optimal one according to design criteria including robust reconstruction in the presence of noise. PMID:20729172

  13. Improvement in Accuracy of Ultrasonic Measurement of Transient Change in Viscoelasticity of Radial Arterial Wall Due to Flow-Mediated Dilation by Adaptive Low-Pass Filtering

    NASA Astrophysics Data System (ADS)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2012-07-01

    In our previous study, the stress-strain relationship of the radial arterial wall was measured and the viscoelasticity of the intima-media region was estimated from the stress-strain relationship. Furthermore, the transient change in viscoelasticity due to flow-mediated dilation (FMD) was estimated by the automated detection of wall boundaries. In the present study, the strain rate was adaptively filtered to improve the accuracy of viscoelasticity estimation by decreasing the high-frequency noise. Additionally, in a basic experiment, this method was validated using a silicone tube (simulating artery). In the basic experiment, the elasticity was estimated with a mean error of 1.2%. The elasticity measured at each beam position was highly reproducible among measurements, whereas there was a slight variation in measured elasticity among beams. Consequently, in in vivo measurements, the normalized mean square error (MSE) was clearly decreased. Additionally, the stress-strain relationship of the radial arterial wall was obtained and the viscoelasticity was estimated accurately. The inner small loop, which corresponds to the negative pressure wave caused by the closure of the aortic valve, can be observed using the adaptive low-pass filtering (LPF). Moreover, the transient changes in these parameters were similar to those in the previous study. These results show the potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  14. Status of the spruce; Fir cooperative research program

    SciTech Connect

    Hertel, G.D.; Zarnoch, S.J.; Arre, T. ); Eager, C. ); Mohnen, V. ); MedLarz, S. )

    1987-01-01

    Aside from the mixed conifer forest in the San Bernadino National Forest near the Los Angeles Basin, the only significant visible decline and mortality of a U.S. forest possibly caused by regional air pollution is found in the high elevation spruce/fir forests of the Appalachians (VA, NC, TN, W VA), Adirondacks (NY), Green Mountains (VT), and the White Mountains (NH). In January, most of the scientists that have or are currently studying Spruce-Fir conditions met in Philadelphia. They came to a consensus on the regional condition of the Spruce-Fir forests. The results of that meeting are summarized.

  15. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled. PMID:19333263

  16. Understanding the Physiology of Postharvest Needle Abscission in Balsam Fir

    PubMed Central

    Lada, Rajasekaran R.; MacDonald, Mason T.

    2015-01-01

    Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general. Our paper describes the dynamics of needle abscission in balsam fir while identifying key factors that modify abscission patterns. Concepts such as genotypic abscission resistance, nutrition, environmental factors, and postharvest changes in water conductance and hormone evolution are discussed as they relate to our understanding of the balsam fir abscission physiology. Our paper ultimately proposes a pathway for needle abscission via ethylene and also suggests other potential alternative pathways based on our current understanding. PMID:26635863

  17. NEEDLE ANATOMY CHANGES WITH INCREASING TREE AGE IN DOUGLAS FIR

    EPA Science Inventory

    Morphological differences between old growth and sapling (Pseudotsuga menziesii, (Mirb.) Franco) Douglas fir trees may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross-sections of previous year...

  18. A continuous-time adaptive particle filter for estimations under measurement time uncertainties with an application to a plasma-leucine mixed effects model

    PubMed Central

    2013-01-01

    Background When mathematical modelling is applied to many different application areas, a common task is the estimation of states and parameters based on measurements. With this kind of inference making, uncertainties in the time when the measurements have been taken are often neglected, but especially in applications taken from the life sciences, this kind of errors can considerably influence the estimation results. As an example in the context of personalized medicine, the model-based assessment of the effectiveness of drugs is becoming to play an important role. Systems biology may help here by providing good pharmacokinetic and pharmacodynamic (PK/PD) models. Inference on these systems based on data gained from clinical studies with several patient groups becomes a major challenge. Particle filters are a promising approach to tackle these difficulties but are by itself not ready to handle uncertainties in measurement times. Results In this article, we describe a variant of the standard particle filter (PF) algorithm which allows state and parameter estimation with the inclusion of measurement time uncertainties (MTU). The modified particle filter, which we call MTU-PF, also allows the application of an adaptive stepsize choice in the time-continuous case to avoid degeneracy problems. The modification is based on the model assumption of uncertain measurement times. While the assumption of randomness in the measurements themselves is common, the corresponding measurement times are generally taken as deterministic and exactly known. Especially in cases where the data are gained from measurements on blood or tissue samples, a relatively high uncertainty in the true measurement time seems to be a natural assumption. Our method is appropriate in cases where relatively few data are used from a relatively large number of groups or individuals, which introduce mixed effects in the model. This is a typical setting of clinical studies. We demonstrate the method on a small

  19. The Zigbee wireless ECG measurement system design with a motion artifact remove algorithm by using adaptive filter and moving weighted factor

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2012-04-01

    , a filter including a moving weighted factor, peak to peak detection, and interpolation techniques. In addition, this paper introduces an adaptive filter in order to extract clear ECG signal by using extracted baseline noise signal and measured signal from sensor.

  20. Remotely serviced filter and housing

    DOEpatents

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  1. Sensor-fault tolerant control of a powered lower limb prosthesis by mixing mode-specific adaptive Kalman filters.

    PubMed

    Dutta, Anirban; Koerding, Konrad; Perreault, Eric; Hargrove, Levi

    2011-01-01

    Machine learning methods for interfacing humans with machines is an emerging area. Here we propose a novel algorithm for interfacing humans with powered lower limb prostheses for restoring control of naturalistic gait following amputation. Unlike most previous neural machine interfaces, our approach fuses control information from the user with sensor information from the prosthesis to approximate the closed loop behavior of the unimpaired sensorimotor system. We present a Bayesian framework to control an artificial knee by probabilistically mixing of process state estimates from different Kalman filters, each addressing separate regimes of locomotion such as level ground walking, walking up a ramp, and walking down a ramp. We show its utility as a mode classifier that is tolerant to temporary sensor faults which are frequently experienced in practical applications. PMID:22255142

  2. A new adaptive classifier using iterative filtering. [classification of remotely sensed data in visible and near infrared bands

    NASA Technical Reports Server (NTRS)

    Actkinson, A. L.

    1974-01-01

    To cope with signature variability, an algorithm has been defined which will adaptively classify remotely sensed data in the visible and near infrared band. The signal is divided into a space-dependent component and a target-dependent component. The target-dependent component is assumed fixed across the image for each target type. The space-dependent component is estimated iteratively by a weighted, least-squares algorithm. Included are the derivations of the sensor model and the two-dimensional, estimation algorithm.

  3. Identification of a scaled-model riser dynamics through a combined computer vision and adaptive Kalman filter approach

    NASA Astrophysics Data System (ADS)

    Trigo, F. C.; Martins, F. P. R.; Fleury, A. T.; Silva, H. C.

    2014-02-01

    Aiming at overcoming the difficulties derived from the traditional camera calibration methods to record the underwater environment of a towing tank where experiments of scaled-model risers are carried on, a computer vision method, combining traditional image processing algorithms and a self-calibration technique was implemented. This method was used to identify the coordinates of control-points viewed on a scaled-model riser submitted to a periodic force applied to its fairlead attachment point. To study the observed motion, the riser was represented as a pseudo-rigid body model (PRBM) and the hypotheses of compliant mechanisms theory were assumed in order to cope with its elastic behavior. The derived Lagrangian equations of motion were linearized and expressed as a state-space model in which the state variables include the generalized coordinates and the unknown generalized forces. The state-vector thus assembled is estimated through a Kalman Filter. The estimation procedure allows the determination of both the generalized forces and the tension along the cable, with statistically proven convergence.

  4. Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images.

    PubMed

    Lazareva, Anfisa; Liatsis, Panos; Rauscher, Franziska G

    2016-01-01

    Automated analysis of retinal images plays a vital role in the examination, diagnosis, and prognosis of healthy and pathological retinas. Retinal disorders and the associated visual loss can be interpreted via quantitative correlations, based on measurements of photoreceptor loss. Therefore, it is important to develop reliable tools for identification of photoreceptor cells. In this paper, an automated algorithm is proposed, based on the use of the Hessian-Laplacian of Gaussian filter, which allows enhancement and detection of photoreceptor cells. The performance of the proposed technique is evaluated on both synthetic and high-resolution retinal images, in terms of packing density. The results on the synthetic data were compared against ground truth as well as cone counts obtained by the Li and Roorda algorithm. For the synthetic datasets, our method showed an average detection accuracy of 98.8%, compared to 93.9% for the Li and Roorda approach. The packing density estimates calculated on the retinal datasets were validated against manual counts and the results obtained by a proprietary software from Imagine Eyes and the Li and Roorda algorithm. Among the tested methods, the proposed approach showed the closest agreement with manual counting. PMID:26831589

  5. Remotely serviced filter and housing

    DOEpatents

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  6. A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction

    NASA Astrophysics Data System (ADS)

    Ma, Yaping; Xiao, Yegui; Wei, Guo; Sun, Jinwei

    2016-01-01

    In this paper, a multichannel nonlinear adaptive noise canceller (ANC) based on the generalized functional link artificial neural network (FLANN, GFLANN) is proposed for fetal electrocardiogram (FECG) extraction. A FIR filter and a GFLANN are equipped in parallel in each reference channel to respectively approximate the linearity and nonlinearity between the maternal ECG (MECG) and the composite abdominal ECG (AECG). A fast scheme is also introduced to reduce the computational cost of the FLANN and the GFLANN. Two (2) sets of ECG time sequences, one synthetic and one real, are utilized to demonstrate the improved effectiveness of the proposed nonlinear ANC. The real dataset is derived from the Physionet non-invasive FECG database (PNIFECGDB) including 55 multichannel recordings taken from a pregnant woman. It contains two subdatasets that consist of 14 and 8 recordings, respectively, with each recording being 90 s long. Simulation results based on these two datasets reveal, on the whole, that the proposed ANC does enjoy higher capability to deal with nonlinearity between MECG and AECG as compared with previous ANCs in terms of fetal QRS (FQRS)-related statistics and morphology of the extracted FECG waveforms. In particular, for the second real subdataset, the F1-measure results produced by the PCA-based template subtraction (TSpca) technique and six (6) single-reference channel ANCs using LMS- and RLS-based FIR filters, Volterra filter, FLANN, GFLANN, and adaptive echo state neural network (ESN a ) are 92.47%, 93.70%, 94.07%, 94.22%, 94.90%, 94.90%, and 95.46%, respectively. The same F1-measure statistical results from five (5) multi-reference channel ANCs (LMS- and RLS-based FIR filters, Volterra filter, FLANN, and GFLANN) for the second real subdataset turn out to be 94.08%, 94.29%, 94.68%, 94.91%, and 94.96%, respectively. These results indicate that the ESN a and GFLANN perform best, with the ESN a being slightly better than the GFLANN but about four times more

  7. Study of Interpolated Timing Recovery Phase-Locked Loop with Linearly Constrained Adaptive Prefilter for Higher-Density Optical Disc

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yoshiyuki; Shiraishi, Junya; Kobayashi, Shoei; Yamagami, Tamotsu

    2009-03-01

    A digital phase-locked loop (PLL) with a linearly constrained adaptive filter (LCAF) has been studied for higher-linear-density optical discs. LCAF has been implemented before an interpolated timing recovery (ITR) PLL unit in order to improve the quality of phase error calculation by using an adaptively equalized partial response (PR) signal. Coefficient update of an asynchronous sampled adaptive FIR filter with a least-mean-square (LMS) algorithm has been constrained by a projection matrix in order to suppress the phase shift of the tap coefficients of the adaptive filter. We have developed projection matrices that are suitable for Blu-ray disc (BD) drive systems by numerical simulation. Results have shown the properties of the projection matrices. Then, we have designed the read channel system of the ITR PLL with an LCAF model on the FPGA board for experiments. Results have shown that the LCAF improves the tilt margins of 30 gigabytes (GB) recordable BD (BD-R) and 33 GB BD read-only memory (BD-ROM) with a sufficient LMS adaptation stability.

  8. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating. PMID:19044527

  9. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation

    NASA Astrophysics Data System (ADS)

    Bertschinger, G.; Endres, C. P.; Lewen, F.; Oosterbeek, J. W.

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  10. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation

    SciTech Connect

    Bertschinger, G.; Oosterbeek, J. W.; Endres, C. P.; Lewen, F.

    2008-10-15

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  11. Corrosion resistant filter unit

    SciTech Connect

    Gentry, J.M.

    1992-02-18

    This patent describes a fluid filter assembly adapted for the filtration of corrosive fluid to be injected into a well bore at pressure levels which may exceed 10,000 pounds per square. It comprises: a frame assembly for the mounting of a portion of the fluid filter assembly therein, the frame assembly; filter pods, the plurality of filter pods forming at least two banks of filter pods, each bank having at least two filter pods therein, each bank of the filter pods being supported by one or more the supports of the plurality of supports secured to selected struts of the frame assembly; an inlet manifold to direct the corrosive fluid to the plurality of filter pods, the inlet manifold being interconnected to the banks of filter pods formed by the filter pods whereby flow of the corrosive fluid can be directed to each bank of the filter pods; an outlet manifold to direct the corrosive fluid from the filter pods, the outlet manifold being interconnected to the banks of filter pods formed by the filter pods; a first valve means to control the flow of the corrosive fluid between banks of filter pods formed by the filter pods whereby the flow of the corrosive fluid can be selectively directed to each bank of the filter pods; a second valve means to selectively control the flow of the corrosive fluid between the inlet manifold and the outlet manifold; and union means for interconnecting the filter pods, inlet manifold and outlet manifold, each of the union means including mechanical connection means and internal seal means for isolating the corrosive fluids from the mechanical connection means.

  12. Frontiers in Reproduction (FIR): An Assessment of Success.

    PubMed

    Ascoli, Mario; Mebane, Dorianne; Fazleabas, Asgerally T

    2016-07-01

    The Frontiers in Reproduction (FIR) course has been held annually since 1998 at the Marine Biological Laboratories in Woods Hole, MA. The primary purpose of the course is to train young reproductive biologists in cutting-edge techniques that would strengthen their career opportunities. An initial evaluation of the FIR course was conducted by surveying the participants who took the course between 1998 and 2002. The findings of this survey were published in Biology of Reproduction in 2006, which highlighted the overall positive impact the course had on the training and upward career trajectory of the participants during the first 5 yr. The current study was designed to access the continued impact of FIR at the 10-yr mark by evaluating the participants who took the course between 1998 and 2008 using two different survey mechanisms. Based on these evaluations and feedback from the participants, it was evident that 1) FIR continues to have a significant positive impact on the careers of the participants, 2) the majority of the participants continue to be involved in research or administration related to the reproductive sciences, 3) nearly 90% of the attendees have been successful in obtaining funding for their research, and 4) most alumni have published at least five manuscripts in higher impact journals since they took the course. Therefore, it is evident that FIR participants are highly successful and continue to significantly impact the advances in the reproductive sciences worldwide. PMID:27335071

  13. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  14. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter

    PubMed Central

    Han, Houzeng; Xu, Tianhe; Wang, Jian

    2016-01-01

    Precise Point Positioning (PPP) makes use of the undifferenced pseudorange and carrier phase measurements with ionospheric-free (IF) combinations to achieve centimeter-level positioning accuracy. Conventionally, the IF ambiguities are estimated as float values. To improve the PPP positioning accuracy and shorten the convergence time, the integer phase clock model with between-satellites single-difference (BSSD) operation is used to recover the integer property. However, the continuity and availability of stand-alone PPP is largely restricted by the observation environment. The positioning performance will be significantly degraded when GPS operates under challenging environments, if less than five satellites are present. A commonly used approach is integrating a low cost inertial sensor to improve the positioning performance and robustness. In this study, a tightly coupled (TC) algorithm is implemented by integrating PPP with inertial navigation system (INS) using an Extended Kalman filter (EKF). The navigation states, inertial sensor errors and GPS error states are estimated together. The troposphere constrained approach, which utilizes external tropospheric delay as virtual observation, is applied to further improve the ambiguity-fixed height positioning accuracy, and an improved adaptive filtering strategy is implemented to improve the covariance modelling considering the realistic noise effect. A field vehicular test with a geodetic GPS receiver and a low cost inertial sensor was conducted to validate the improvement on positioning performance with the proposed approach. The results show that the positioning accuracy has been improved with inertial aiding. Centimeter-level positioning accuracy is achievable during the test, and the PPP/INS TC integration achieves a fast re-convergence after signal outages. For troposphere constrained solutions, a significant improvement for the height component has been obtained. The overall positioning accuracies of the height

  15. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter.

    PubMed

    Han, Houzeng; Xu, Tianhe; Wang, Jian

    2016-01-01

    Precise Point Positioning (PPP) makes use of the undifferenced pseudorange and carrier phase measurements with ionospheric-free (IF) combinations to achieve centimeter-level positioning accuracy. Conventionally, the IF ambiguities are estimated as float values. To improve the PPP positioning accuracy and shorten the convergence time, the integer phase clock model with between-satellites single-difference (BSSD) operation is used to recover the integer property. However, the continuity and availability of stand-alone PPP is largely restricted by the observation environment. The positioning performance will be significantly degraded when GPS operates under challenging environments, if less than five satellites are present. A commonly used approach is integrating a low cost inertial sensor to improve the positioning performance and robustness. In this study, a tightly coupled (TC) algorithm is implemented by integrating PPP with inertial navigation system (INS) using an Extended Kalman filter (EKF). The navigation states, inertial sensor errors and GPS error states are estimated together. The troposphere constrained approach, which utilizes external tropospheric delay as virtual observation, is applied to further improve the ambiguity-fixed height positioning accuracy, and an improved adaptive filtering strategy is implemented to improve the covariance modelling considering the realistic noise effect. A field vehicular test with a geodetic GPS receiver and a low cost inertial sensor was conducted to validate the improvement on positioning performance with the proposed approach. The results show that the positioning accuracy has been improved with inertial aiding. Centimeter-level positioning accuracy is achievable during the test, and the PPP/INS TC integration achieves a fast re-convergence after signal outages. For troposphere constrained solutions, a significant improvement for the height component has been obtained. The overall positioning accuracies of the height

  16. Nonlinear Attitude Filtering Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Crassidis, John L.; Cheng, Yang

    2005-01-01

    This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.

  17. Simulations of a FIR Oscillator with Large Slippage parameter at Jefferson Lab for FIR/UV pump-probe experiments

    SciTech Connect

    Benson, Stephen V.; Campbell, L. T.; McNeil, B.W.T.; Neil, George R.; Shinn, Michelle D.; Williams, Gwyn P.

    2014-03-01

    We previously proposed a dual FEL configuration on the UV Demo FEL at Jefferson Lab that would allow simultaneous lasing at FIR and UV wavelengths. The FIR source would be an FEL oscillator with a short wiggler providing diffraction-limited pulses with pulse energy exceeding 50 microJoules, using the exhaust beam from a UVFEL as the input electron beam. Since the UV FEL requires very short pulses, the input to the FIR FEL is extremely short compared to a slippage length and the usual Slowly Varying Envelope Approximation (SVEA) does not apply. We use a non-SVEA code to simulate this system both with a small energy spread (UV laser off) and with large energy spread (UV laser on).

  18. GROWTH-TREND DECLINES OF SPRUCE AND FIR IN MID-APPALACHIAN SUBALPINE FORESTS

    EPA Science Inventory

    Dendroecological analysis of 258 increment growth cores collected from red spruce, balsam fir, and Fraser fir in central West Virginia and western Virginia indicates marked declines in growth-trend during the past 20 years similar to that reported for spruce and fir in high-eleva...

  19. Determination of the Earth's pole tide Love number k2 from observations of polar motion using an adaptive Kalman filter approach

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Kirschner, S.; Neubersch, D.

    2012-09-01

    The geophysical interpretation of observed time series of Earth rotation parameters (ERP) is commonly based on numerical models that describe and balance variations of angular momentum in various subsystems of the Earth. Naturally, models are dependent on geometrical, rheological and physical parameters. Many of these are weakly determined from other models or observations. In our study we present an adaptive Kalman filter approach for the improvement of parameters of the dynamic Earth system model DyMEG which acts as a simulator of ERP. In particular we focus on the improvement of the pole tide Love number k2. In the frame of a sensitivity analysis k2 has been identified as one of the most crucial parameters of DyMEG since it directly influences the modeled Chandler oscillation. At the same time k2 is one of the most uncertain parameters in the model. Our simulations with DyMEG cover a period of 60 years after which a steady state of k2 is reached. The estimate for k2, accounting for the anelastic response of the Earth's mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the application of the improved parameter k2 in DyMEG leads to significantly better results for polar motion than the original value taken from the Conventions of the International Earth Rotation and Reference Systems Service (IERS).

  20. Image-based ATR utilizing adaptive clutter filter detection, LLRT classification, and Volterra fusion with application to side-looking sonar

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2010-04-01

    An improved automatic target recognition (ATR) processing string has been developed. The overall processing string consists of pre-processing, subimage adaptive clutter filtering, detection, feature extraction, optimal subset feature selection, feature orthogonalization and classification processing blocks. The objects that are classified by three distinct ATR strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. These three ATR processing strings were individually developed and tuned by researchers from different companies. The utility of the overall processing strings and their fusion was demonstrated with an extensive side-looking sonar dataset. In this paper we describe a new processing improvement: six additional classification features are extracted, using primarily target shadow information and a feature extraction window whose length is now made variable as a function of range. This new ATR processing improvement resulted in a 3:1 reduction in false alarms. Two advanced fusion algorithms are subsequently applied: First, a nonlinear Volterra expansion (2nd order) feature-LLRT fusion algorithm is employed. Second, a repeated application of a subset Volterra feature selection / feature orthogonalization / LLRT fusion block is utilized. It is shown that cascaded Volterra feature- LLRT fusion of the ATR processing strings outperforms baseline "summing" and single-stage Volterra feature-LLRT fusion algorithms, yielding significant improvements over the best single ATR processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate.

  1. Polar motion as boundary condition in an adaptive Kalman filter approach for the determination of period and damping of the Chandler oscillation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Kirschner, S.; Neubersch, D.

    2012-12-01

    Earth rotation has been monitored using space geodetic techniques since many decades. The geophysical interpretation of observed time series of Earth rotation parameters (ERP) polar motion and length-of-day is commonly based on numerical models that describe and balance variations of angular momentum in various subsystems of the Earth. Naturally, models are dependent on geometrical, rheological and physical parameters. Many of these are weakly determined from other models or observations. In our study we present an adaptive Kalman filter approach for the improvement of parameters of the dynamic Earth system model DyMEG which acts as a simulator of ERP. In particular we focus on the improvement of the pole tide Love number k2. In the frame of a sensitivity analysis k2 has been identified as one of the most crucial parameters of DyMEG since it directly influences the modeled Chandler oscillation. At the same time k2 is one of the most uncertain parameters in the model. Our simulations with DyMEG cover a period of 60 years after which a steady state of k2 is reached. The estimate for k2, accounting for the anelastic response of the Earth's mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the application of the improved parameter k2 in DyMEG leads to significantly better results for polar motion than the original value taken from the Conventions of the International Earth Rotation and Reference Systems Service (IERS).

  2. Damage localization for multi-story buildings focusing on shift in the center of rigidity using an adaptive extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Takeuchi, Tsubasa; Mita, Akira

    2015-04-01

    Recently damage detection methods based on measured vibration data for structural health monitoring (SHM) have been intensively studied. In order to decrease the number of required sensors, however, most of their methods focus only on single dimensional systems, in spite that there are some cases that torsional vibration greatly affect for structural damage. Although some studies consider multiple dimensional systems using frame structures, usually they need lots of sensors and calculation is time-consuming. Therefore, the balance between the cost and the particularity is very important for SHM system. In this paper, a method to localize the damaged area of multi-story buildings considering torsional components is proposed to detect the damage simply and particularly. This method focuses on shift in the center of rigidity caused by induced damage. The damaged quadrant of a certain story is identified comparing story eccentric distances of before and after damage-inducing seismic events. An adaptive extended Kalman filter (AEKF) is utilized to identify unknown structural parameters. Using a model which has four columns in each floor, several cases are considered in the verification study to disclose the capability of our proposed method.

  3. Tolerance to multiple climate stressors: a case study of Douglas-fir drought and cold hardiness.

    PubMed

    Bansal, Sheel; Harrington, Constance A; St Clair, John Bradley

    2016-04-01

    Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations.We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range.Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms.Our findings highlight the necessity to look beyond bivariate trait-climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species. PMID:27099710

  4. Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness

    USGS Publications Warehouse

    Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley

    2016-01-01

    Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.

  5. Fermentability of the hemicellulose-derived sugars from steam-exploded softwood (Douglas fir)

    SciTech Connect

    Boussaid, A.; Robinson, J.; Cai, Y.J.; Gregg, D.J.; Saddler, J.N. . Faculty of Forestry)

    1999-08-05

    Steam explosion of Douglas fir wood chips under low-severity conditions resulted in the recovery of around 87% of the original hemicellulose component in the water-soluble stream. More than 80% of the recovered hemicellulose was in a monomeric form. As the pretreatment severity increased from 3.08 to 3.76, hemicellulose recovery dropped to 43% of the original hemicellulose found in Douglas fir chips while the concentration of glucose originating from cellulose hydrolysis increased along with the concentration of sugar degradation products such as furfural and hydroxymethylfurfural. Despite containing a higher concentration of hexose monomers (mainly glucose originating from cellulose degradation), the water-soluble fraction prepared under high-severity conditions was not readily fermented. Only the two hydrolyzates obtained at low and medium severities were fermented to ethanol using a spent sulfur liquor adapted strain of Saccharomyces cerevisiae. High ethanol yields were obtained for these two hydrolyzates with 0.44 g of ethanol produced per gram of hexose utilized (86% of theoretical). However, the best results of hemicellulose recovery and fermentability were obtained for the low-severity water-soluble fraction which was fermented significantly faster than the fraction obtained after medium-severity treatment probably because it contained higher amounts of fermentation inhibitors.

  6. Observer performance for adaptive, image-based denoising and filtered back projection compared to scanner-based iterative reconstruction for lower dose CT enterography

    PubMed Central

    Fletcher, Joel G.; Hara, Amy K.; Fidler, Jeff L.; Silva, Alvin C.; Barlow, John M.; Carter, Rickey E.; Bartley, Adam; Shiung, Maria; Holmes, David R.; Weber, Nicolas K.; Bruining, David H.; Yu, Lifeng; McCollough, Cynthia H.

    2015-01-01

    Purpose The purpose of this study was to compare observer performance for detection of intestinal inflammation for low-dose CT enterography (LD-CTE) using scanner-based iterative reconstruction (IR) vs. vendor-independent, adaptive image-based noise reduction (ANLM) or filtered back projection (FBP). Methods Sixty-two LD-CTE exams were performed. LD-CTE images were reconstructed using IR, ANLM, and FBP. Three readers, blinded to image type, marked intestinal inflammation directly on patient images using a specialized workstation over three sessions, interpreting one image type/patient/session. Reference standard was created by a gastroenterologist and radiologist, who reviewed all available data including dismissal Gastroenterology records, and who marked all inflamed bowel segments on the same workstation. Reader and reference localizations were then compared. Non-inferiority was tested using Jackknife free-response ROC (JAFROC) figures of merit (FOM) for ANLM and FBP compared to IR. Patient-level analyses for the presence or absence of inflammation were also conducted. Results There were 46 inflamed bowel segments in 24/62 patients (CTDIvol interquartile range 6.9–10.1 mGy). JAFROC FOM for ANLM and FBP were 0.84 (95% CI 0.75–0.92) and 0.84 (95% CI 0.75–0.92), and were statistically non-inferior to IR (FOM 0.84; 95% CI 0.76–0.93). Patient-level pooled confidence intervals for sensitivity widely overlapped, as did specificities. Image quality was rated as better with IR and AMLM compared to FBP (p < 0.0001), with no difference in reading times (p = 0.89). Conclusions Vendor-independent adaptive image-based noise reduction and FBP provided observer performance that was non-inferior to scanner-based IR methods. Adaptive image-based noise reduction maintained or improved upon image quality ratings compared to FBP when performing CTE at lower dose levels. PMID:25725794

  7. Nitrogen Availability in Fresh and Aged Douglas Fir Bark

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine if there are growth differences in geranium (Pelargonium ×hortorum Bailey 'Maverick Red') produced in either fresh or aged Douglas fir [Pseudotsuga menziesii (Mirbel) Franco] bark (DFB). A second objective was to document nitrogen immobilization and deco...

  8. Anomalous dispersion and the pumping of far infrared (FIR) lasers

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1978-01-01

    It is shown that the anomalous dispersion at the pump transition in molecular far-infrared lasers (FIR) can lead to sizable focusing and defocusing effects. Criteria for beam spreading and trapping are considered with CH2F as an example.

  9. The Wolf, the Moose, and the Fir Tree.

    ERIC Educational Resources Information Center

    Fortier, Gary

    2000-01-01

    Introduces a case study for upper grade levels and undergraduate students that is designed to increase students' ability to read and comprehend scientific information. Discusses ecological parameters and evaluates trophic level interactions. Questions the fluctuations in the moose and wolf populations and the growth rates of balsam firs. Includes…

  10. Inhibition of the growth of Alexandrium tamarense by algicidal substances in Chinese fir (Cunninghamia lanceolata).

    PubMed

    Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye; Zhang, Xin-Lian; Qi, Yu-Zao

    2009-10-01

    The wood sawdust from Chinese fir (Cunninghamia lanceolata) exhibited stronger inhibition on the growth of Alexandrium tamarense than those from alder (Alnus cremastogyne), pine (Pinus massoniana), birch (Betula alnoides) and sapele (Entandrophragma cylindricum). The water extract, acetone-water extract and essential oil from fir sawdust were all shown to inhibit the growth of A. tamarense. The inhibition of fir essential oil was the strongest among all the above wood sources while the half effective concentration was only 0.65 mg/L. These results suggested that the fir essential oil may play an important role in the algicidal effect of Chinese fir. PMID:19634014

  11. Natural regeneration in two central Idaho grand fir habitat types. Forest Service research paper

    SciTech Connect

    Geier-Hayes, K.

    1994-03-01

    Natural regeneration of five conifer species was surveyed in two central Idaho grand fir habitat types. The habitat types range from warm, dry (grand fir/white spirea) to mesic (Grand fir/Mountain Maple). Four harvest-regeneration methods and four site preparation techniques were sampled. Recommendations for obtaining natural regeneration vary primarily by habitat type. Conifer seedlings in the warm, dry grand fir white spirea habitat type require site protection for establishment. In the mesic grand fir/mountain maple habitat type, tall shrub potential can reduce the opportunity to establish early seral conifer species.

  12. Stack filters

    NASA Astrophysics Data System (ADS)

    Wendt, P. D.; Coyle, E. J.; Gallagher, N. C., Jr.

    1986-08-01

    A large class of easily implemented nonlinear filters called stack filters are discussed which includes the rank order operators in addition to the compositions of morphological operators. Techniques similar to those used to determine the root signal behavior of median filters are employed to study the convergence properties of the filters, and necessary conditions for a stack filter to preserve monotone regions or edges in signals, and the output distribution of the filters, are obtained. Among the stack filters of window width three are found asymmetric median filters in which one removes only positive going edges, the other removes only negative going edges, while the median filter removes impulses of both signs.

  13. Investigation of microwave photonic filter based on multiple longitudinal modes fiber laser source

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Li, Feng; Feng, Xinhuan; Lu, Chao; Guan, Bai-ou; Wai, P. K. A.

    2015-06-01

    We theoretically study the transfer function of a finite impulse response microwave photonic filter (FIR-MPF) system using a multi-wavelength fiber laser source by considering multiple longitudinal modes in each wavelength. The full response function with the response from longitudinal mode taps is obtained. We also discussed the influence of the longitudinal mode envelope and mode spacing on the performance of FIR-MPF. The response function of the longitudinal mode taps is fully discussed and the contribution is compared with the response of the carrier suppression factor for double sideband (DSB) modulation. The multiple longitudinal modes structure in the wavelength taps can be utilized to engineer the response of the FIR-MPF such that desirable features such as high side lode suppression ratio can be realized. The analysis provides a guideline for designing incoherent FIR-MPF systems.

  14. Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum).

    PubMed

    Benucci, Gian Maria Niccolò; Lefevre, Charles; Bonito, Gregory

    2016-07-01

    Many truffle species in the genus Tuber are endemic to North America. Some of these have commercial value such as Tuber oregonense and Tuber gibbosum, commonly known as Oregon white truffles. Most of what is known about the ecology of these truffles comes from observational data. These truffle species form ectomycorrhizas with Douglas-fir (Pseudotsuga menziesii) and sometimes fruit abundantly in early successional forest regrowth. The goal of this study was to characterize fungal communities and soils associated with truffle-producing Douglas-fir sites. We extracted DNA from roots of five trees at four different truffle-producing Douglas-fir sites (n = 20). We amplified the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) and sequenced amplicons with 454 pyrosequencing. After quality filtering, we assembled 15,713 sequences into 150 fungal operational taxonomic units (OTUs). Pezizomycetes (Tuber and Pyronemataceae) were the most abundant taxa detected followed by Helotiales. Agaricomycetes represented most by Thelephoraceae, Russulaceae, and Inocybaceae were also abundant. A total of five Tuber species were detected. T. oregonense was the most abundant OTU, followed by T. gibbosum and Wilcoxina mikolae. Fungal root endophytes were also detected and well represented by Chalara and Phialocephala spp. Fungal community structure and soil chemistry differed between sites. This study represents the first characterization of the fungal communities in Douglas-fir stands producing Oregon white truffles. We found that Tuber species can be dominant ectomycorrhizal symbionts of Douglas-fir. Truffle fungi are also important in forest health, food webs, and as a non-timber forest resource that can contribute to rural economies. PMID:26743427

  15. Low-complexity wavelet filter design for image compression

    NASA Technical Reports Server (NTRS)

    Majani, E.

    1994-01-01

    Image compression algorithms based on the wavelet transform are an increasingly attractive and flexible alternative to other algorithms based on block orthogonal transforms. While the design of orthogonal wavelet filters has been studied in significant depth, the design of nonorthogonal wavelet filters, such as linear-phase (LP) filters, has not yet reached that point. Of particular interest are wavelet transforms with low complexity at the encoder. In this article, we present known and new parameterizations of the two families of LP perfect reconstruction (PR) filters. The first family is that of all PR LP filters with finite impulse response (FIR), with equal complexity at the encoder and decoder. The second family is one of LP PR filters, which are FIR at the encoder and infinite impulse response (IIR) at the decoder, i.e., with controllable encoder complexity. These parameterizations are used to optimize the subband/wavelet transform coding gain, as defined for nonorthogonal wavelet transforms. Optimal LP wavelet filters are given for low levels of encoder complexity, as well as their corresponding integer approximations, to allow for applications limited to using integer arithmetic. These optimal LP filters yield larger coding gains than orthogonal filters with an equivalent complexity. The parameterizations described in this article can be used for the optimization of any other appropriate objective function.

  16. Improving suppression ratio of microwave photonic filters using high-precision spectral shaping

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Li, Shangyuan; Liao, Jinxin; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun

    2015-05-01

    The main-to-sidelobe suppression ratio (MSSR) is significant to filters. The tap weight errors worsen the MSSR of the finite impulse response (FIR) microwave photonic filters (MPFs). The MSSR can be improved by shaping the multicarrier optical source spectra with high precision. By compensating the errors with an iteration method, the sidelobes of the amplitude response can be optimized to increase the MSSR. Such a method is simple, effective, and compatible with all FIR MPF approaches. In the experiment, optical spectra of Gaussian profiles were taken as an example, and an MSSR improvement from 50 to 63 dB was demonstrated.

  17. The ISS Fluids Integrated Rack (FIR): a Summary of Capabilities

    NASA Astrophysics Data System (ADS)

    Gati, F.; Hill, M. E.

    2002-01-01

    The Fluids Integrated Rack (FIR) is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The FIR will be one of the two racks that will make up the Fluids and Combustion Facility (FCF) - the other being the Combustion Integrated Rack (CIR). The ISS will provide the FCF with the necessary resources, such as power and cooling. While the ISS crew will be available for experiment operations, their time will be limited. The FCF is, therefore, being designed for autonomous operations and remote control operations. Control of the FCF will be primarily through the Telescience Support Center (TSC) at the Glenn Research Center. The FCF is being designed to accommodate a wide range of combustion and fluids physics experiments within the ISS resources and constraints. The primary mission of the FIR, however, is to accommodate experiments from four major fluids physics disciplines: Complex Fluids; Multiphase Flow and Heat Transfer; Interfacial Phenomena; and Dynamics and Stability. The design of the FIR is flexible enough to accommodate experiments from other science disciplines such as Biotechnology. The FIR flexibility is a result of the large volume dedicated for experimental hardware, easily re-configurable diagnostics that allow for unique experiment configurations, and it's customizable software. The FIR will utilize six major subsystems to accommodate this broad scope of fluids physics experiments. The major subsystems are: structural, environmental, electrical, gaseous, command and data management, and imagers and illumination. Within the rack, the FIR's structural subsystem provides an optics bench type mechanical interface for the precise mounting of experimental hardware; including optical components. The back of the bench is populated with FIR avionics packages and light sources. The interior of the rack is isolated from the cabin through two rack doors that are hinged near

  18. Optical to FIR SED of Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Bongiovanni, A.; Pérez García, A. M.; Cepa, J.; Ederoclite, A.; Sánchez-Portal, M.; Pep Team

    2011-10-01

    We present an optical and FIR analysis of a sample of 65 Lyα emitters at 2.0˜FIR counterparts and are (U)LIRGs candidates, being, therefore, dusty objects despite that they show Lyα in emission and with large equivalent widths.

  19. AmeriFlux US-MRf Mary's River (Fir) site

    DOE Data Explorer

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-MRf Mary's River (Fir) site. Site Description - The Marys River Fir site is part of the "Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon and Northern California (ORCA)". Located in the western region of Oregon the Marys River site represents the western extent of the climate gradient that spans eastward into the semi-arid basin of central Oregon. The sites that make up the eastern extent of the ORCA climate gradient is the Metolius site network (US-Me1, US-ME2, US-ME4, US-Me5) all of which are part of the TERRA PNW project at Oregon State University.

  20. Prediction and assignment of the FIR spectrum of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Helminger, P.; Messer, J. K.; De Lucia, F. C.; Bowman, W. C.

    1984-01-01

    Millimeter and submillimeter microwave studies are used to predict and assign the FIR rotational-torsional spectrum of hydrogen peroxide. Special attention is given to the strong Q-branch features that have recently been used by Traub and Chance to place an upper limit on the atmospheric abundance of hydrogen peroxide. In addition, 67 new transitions are reported in the 400-1000 GHz region.

  1. Image quality of CT angiography with model-based iterative reconstruction in young children with congenital heart disease: comparison with filtered back projection and adaptive statistical iterative reconstruction.

    PubMed

    Son, Sung Sil; Choo, Ki Seok; Jeon, Ung Bae; Jeon, Gye Rok; Nam, Kyung Jin; Kim, Tae Un; Yeom, Jeong A; Hwang, Jae Yeon; Jeong, Dong Wook; Lim, Soo Jin

    2015-06-01

    To retrospectively evaluate the image quality of CT angiography (CTA) reconstructed by model-based iterative reconstruction (MBIR) and to compare this with images obtained by filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) in newborns and infants with congenital heart disease (CHD). Thirty-seven children (age 4.8 ± 3.7 months; weight 4.79 ± 0.47 kg) with suspected CHD underwent CTA on a 64detector MDCT without ECG gating (80 kVp, 40 mA using tube current modulation). Total dose length product was recorded in all patients. Images were reconstructed using FBP, ASIR, and MBIR. Objective image qualities (density, noise) were measured in the great vessels and heart chambers. The contrast-to-noise ratio (CNR) was calculated by measuring the density and noise of myocardial walls. Two radiologists evaluated images for subjective noise, diagnostic confidence, and sharpness at the level prior to the first branch of the main pulmonary artery. Images were compared with respect to reconstruction method, and reconstruction times were measured. Images from all patients were diagnostic, and the effective dose was 0.22 mSv. The objective image noise of MBIR was significantly lower than those of FBP and ASIR in the great vessels and heart chambers (P < 0.05); however, with respect to attenuations in the four chambers, ascending aorta, descending aorta, and pulmonary trunk, no statistically significant difference was observed among the three methods (P > 0.05). Mean CNR values were 8.73 for FBP, 14.54 for ASIR, and 22.95 for MBIR. In addition, the subjective image noise of MBIR was significantly lower than those of the others (P < 0.01). Furthermore, while FBP had the highest score for image sharpness, ASIR had the highest score for diagnostic confidence (P < 0.05), and mean reconstruction times were 5.1 ± 2.3 s for FBP and ASIR and 15.1 ± 2.4 min for MBIR. While CTA with MBIR in newborns and infants with CHD can reduce image noise and

  2. Changes in the relationships between climate and silver fir (Abies alba Mill.) growth during the 20th century in the Tuscan Apennine Alps (Middle Italy)

    NASA Astrophysics Data System (ADS)

    D'Aprile, F.; Tapper, N.; Baker, P.; Bartolozzi, L.; Bottacci, A.

    2012-04-01

    In the Tuscan Apennine Alps, recent research has shown that similarity in trends of monthly climate variables (i.e., temperature and rainfall) is non-stationary amongst sites during the 20th century even between sites that differ little in elevation and at a relatively short distance from each other (D'Aprile et al., 2010; D'Aprile et al., 2011). Moreover, the level of correlation between series of monthly climate variables varies irregularly from highly positive to negative over time. We hypothesised that those changing climate conditions, even at the local level, could cause different tree-ring growth responses in silver fir amongst sites. The hypothesis was tested by dendroclimatological analysis, which was applied to study stands in silver fir forests close to the meteorological stations where climate analysis has been made. Results show that the influences of both monthly mean temperature and monthly rainfall on silver fir growth vary greatly during the 20th century in the Tuscan Apennine Alps, and the ways that they change differ with month and amongst sites. Within sites, differences in the relationships between climate variables and silver fir tree-ring growth appear small in spite of different elevation of the study stands. These results contribute a changing point in forest planning and management especially in consideration of the need to adapt forest management and interventions to changing climate conditions and mitigate the impacts on silver fir forests. Moreover, they introduce climate variability as a key parameter in sustainable forest management for biodiversity conservation, socially responsible uses, nature conservation, and survival of the only conifer tree species typical of mountain mixed forest ecosystems in the Apennine Alps.

  3. [Community stability for spruce-fir forest at different succession stages in Changbai Mountains, Northeast China].

    PubMed

    Zhang, Meng-tao; Zhang, Qing; Kang, Xin-gang; Yang, Ying-jun; Xu, Guang; Zhang, Li-xin

    2015-06-01

    Based on the analysis of three forest communities (polar-birch secondary forest, spruce-fir mixed forest, spruce-fir near pristine forest) in Changbai Mountains, a total of 22 factors of 5 indices, including the population regeneration, soil fertility (soil moisture and soli nutrient), woodland productivity and species diversity that reflected community characteristics were used to evaluate the stability of forest community succession at different stages by calculating subordinate function values of a model based on fuzzy mathematics. The results that the indices of population regeneration, soli nutrient, woodland productivity and species diversity were the highest in the spruce-fir mixed forest, and the indices of soil moisture were the highest in the spruce-fir near-pristine forest. The stability of three forest communities was in order of natural spruce-fir mixed forest > spruce-fir near pristine forest > polar-birch secondary forest. PMID:26572010

  4. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  5. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  6. Growth phenology of coast Douglas-fir seed sources planted in diverse environments.

    PubMed

    Gould, Peter J; Harrington, Constance A; St Clair, J Bradley

    2012-12-01

    The timing of periodic life cycle events in plants (phenology) is an important factor determining how species and populations will react to climate change. We evaluated annual patterns of basal-area and height growth of coast Douglas-fir (Pseudotusga menziesii var. menziesii (Mirb.) Franco) seedlings from four seed sources that were planted in four diverse environments as part of the Douglas-fir Seed-Source Movement Trial. Stem diameters and heights were measured periodically during the 2010 growing season on 16 open-pollinated families at each study installation. Stem diameters were measured on a subset of trees with electronic dendrometers during the 2010 and 2011 growing seasons. Trees from the four seed sources differed in phenology metrics that described the timing of basal-area and height-growth initiation, growth cessation and growth rates. Differences in the height-growth metrics were generally larger than differences in the basal-area growth metrics and differences among installations were larger than differences among seed sources, highlighting the importance of environmental signals on growth phenology. Variations in the height- and basal-area growth metrics were correlated with different aspects of the seed-source environments: precipitation in the case of height growth and minimum temperature in the case of basal-area growth. The detailed dendrometer measurements revealed differences in growth patterns between seed sources during distinct periods in the growing season. Our results indicate that multiple aspects of growth phenology should be considered along with other traits when evaluating adaptation of populations to future climates. PMID:23135739

  7. User's guide to the douglas-fir beetle impact model. Forest Service general technical report

    SciTech Connect

    Marsden, M.A.; Eav, B.B.; Thompson, M.K.

    1994-09-01

    Douglas-fir beetle occurs throughout the range of its principal host, Douglas-fir. At epidemic levels, the beetle causes considerable mortality in large-diameter Douglas-fir trees. Wind storms, drought, fire, and other factors have been reported as precendent conditions for epidemics of Douglas-fir beetle. An impact model has been developed to simulate tree mortality during such epidemics. The model has been linked to the Stand Prognosis Model (Forest Vegetation Simulator). This is a guide for using the model.

  8. Real-time multi-signal frequency tracking with a bank of notch filters to estimate the respiratory rate from the ECG.

    PubMed

    Mirmohamadsadeghi, Leila; Vesin, Jean-Marc

    2016-09-01

    Measuring the instantaneous frequency of a signal rapidly and accurately is essential in many applications. However, the instantaneous frequency by definition is a parameter difficult to determine. Fourier-based methods introduce estimation delays as computations are performed in a time-window. Instantaneous methods based on the Hilbert transform lack robustness. State-of-the-art adaptive filters yield accurate estimates, however, with an adaptation delay. In this study we propose an algorithm based on short length-3 FIR notch filters to estimate the instantaneous frequency of a signal at each sample, in a real-time manner and with very low delay. The output powers of a bank of the above-mentioned filters are used in a recursive weighting scheme to estimate the dominant frequency of the input. This scheme has been extended to process multiple inputs containing a common frequency by introducing an additional weighting scheme upon the inputs. The algorithm was tested on synthetic data and then evaluated on real biomedical data, i.e. the estimation of the respiratory rate from the electrocardiogram. It was shown that the proposed method provided more accurate estimates with less delay than those of state-of-the-art methods. By virtue of its simplicity and good performance, the proposed method is a worthy candidate to be used in biomedical applications, for example in health monitoring developments based on portable and automatic devices. PMID:27510318

  9. Water Filters

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aquaspace H2OME Guardian Water Filter, available through Western Water International, Inc., reduces lead in water supplies. The filter is mounted on the faucet and the filter cartridge is placed in the "dead space" between sink and wall. This filter is one of several new filtration devices using the Aquaspace compound filter media, which combines company developed and NASA technology. Aquaspace filters are used in industrial, commercial, residential, and recreational environments as well as by developing nations where water is highly contaminated.

  10. A review of metal mesh filters

    NASA Astrophysics Data System (ADS)

    Ade, Peter A. R.; Pisano, Giampaolo; Tucker, Carole; Weaver, Samuel

    2006-06-01

    The Astronomical Instrumentation Group at Cardiff University has been developing metal mesh optical filters for more than 30 years, which are currently in use in many ground-, balloon- and space-based instruments. Here we review the current state of the art with respect to these quasi-optical components (low-pass, high-pass and band-pass filters, dichroics and beam-dividers) as developed for the FIR and sub-millimetre wavelength region. We compare performance data with various modelling tools (HFSS, transmission line theory or Floquet mode analysis). These models assist with our understanding of the behaviour of these filters when used at non-normal incidence or in the diffraction region of the grid structures. Interesting artefacts, such as the Wood anomalies and behaviour with S and P polarisations, which dictate the usage of these components in polarisation sensitive instruments, will be discussed.

  11. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor); Zheng, Baohua (Inventor)

    1991-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a filtered signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the filtered signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems, and methods of operating them are also disclosed.

  12. Protocol for fir tree sampling for provenance studies

    NASA Astrophysics Data System (ADS)

    Meisel, Thomas; Bandoniene, Donata; Zettl, Daniela

    2014-05-01

    Isotopic (stable and radiogenic) as well as trace element fingerprinting methods used for tracing the geographical origin, rely on databases, that need to contain data sets representative of the measurands of the individual samples for a specific geographic entity. Through this work, we want to assess different sampling strategies for obtaining representative sample of fir trees (Abies sp.). Motivation for this work is the protection of the local Austrian Christmas tree market from wrongly tagged trees of non-Austrian origin. In particular, we studied three typical Christmas trees the most common species sold as Christmas tree, namely Abies nordmanniana (Nordmann Fir), from the same locality in lower Austria. For the initial tests we applied the elemental fingerprinting method, to study the suitability of the different parts of the tree applying ICP-MS analysis after complete acid digestion in a high pressure asher system (HPA-S).Needle samples from each year of life of the tree and stem wood from three different heights were analyzed for their trace element content to prove the repeatability and to find the best sampling protocol. For the analysis of the needles, the natural wax coating had to be removed in order to get reproducible results. For the analysis of stem wood only the bark was removed. As expected the data of all three trees allowed the differentiation of the individual needle ages, but interestingly enough also between the three sampling heights of the needs. Both needles and wood proved to be suitable for successful fingerprinting, but importantly, provided that sample of the same type and ages are compared. The same samples for the three trees will also be used for isotopic analysis studies to better understand the influence of age and sampling height on the representativeness of fir tree samples. Based on elemental fingerprinting alone, a successful discrimination between local (Austrian) and foreign (Danish, Irish) Christmas trees was possible.

  13. An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter.

    PubMed

    Jiang, Fan; Wong, Jia Haur; Lam, Huy Quoc; Zhou, Junqiang; Aditya, Sheel; Lim, Peng Huei; Lee, Kenneth Eng Kian; Shum, Perry Ping; Zhang, Xinliang

    2013-07-15

    An optoelectronic oscillator (OEO) with wideband frequency tunability and stable output based on a bandpass microwave photonic filter (MPF) has been proposed and experimentally demonstrated. Realized by cascading a finite impulse response (FIR) filter and an infinite impulse response (IIR) filter together, the tunable bandpass MPF successfully replaces the narrowband electrical bandpass filter in a conventional single-loop OEO and serves as the oscillating frequency selector. The FIR filter is based on a tunable multi-wavelength laser and dispersion compensation fiber (DCF) while the IIR filter is simply based on an optical loop. Utilizing a long length of DCF as the dispersion medium for the FIR filter also provides a long delay line for the OEO feedback cavity and as a result, optical tuning over a wide frequency range can be achieved without sacrificing the quality of the generated signal. By tuning the wavelength spacing of the multi-wavelength laser, the oscillation frequency can be tuned from 6.88 GHz to 12.79 GHz with an average step-size of 0.128 GHz. The maximum frequency drift of the generated 10 GHz signal is observed to be 1.923 kHz over 1 hour and its phase noise reaches the -112 dBc/Hz limit of our measuring equipment at 10 kHz offset frequency. PMID:23938489

  14. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  15. Metallic Filters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Filtration technology originated in a mid 1960's NASA study. The results were distributed to the filter industry, an HR Textron responded, using the study as a departure for the development of 421 Filter Media. The HR system is composed of ultrafine steel fibers metallurgically bonded and compressed so that the pore structure is locked in place. The filters are used to filter polyesters, plastics, to remove hydrocarbon streams, etc. Several major companies use the product in chemical applications, pollution control, etc.

  16. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  17. FILTER TREATMENT

    DOEpatents

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  18. Simulated Performance of an FIR-Based Feedback System to Control the Electron Cloud Single-Bunch Transverse Instabilities in the CERN SPS

    SciTech Connect

    Secondo, R.; Vay, J. L.; Venturini, M.; Fox, J. D.; Rivetta, C. H.; Hofle, W.

    2011-03-28

    The operation at high current of high-energy proton machines like the SPS at CERN is affected by transverse single-bunch instabilities due to the Electron Cloud effect [1]. As a first step toward modeling a realistic feedback control system to stabilize the bunch dynamics, we investigate the use of a Finite Impulse Response (FIR) filter to represent the processing channel. The effect of the processing channel on the bunch dynamics is analyzed using the macro-particle simulation package Wart-Posinst. We discuss the basic features of the feedback model, report on simulation results, and present our plans for further development of the numerical model.

  19. Multidimensional orthogonal filter bank characterization and design using the Cayley transform.

    PubMed

    Zhou, Jianping; Do, Minh N; Kovacević, Jelena

    2005-06-01

    We present a complete characterization and design of orthogonal infinite impulse response (IIR) and finite impulse response (FIR) filter banks in any dimension using the Cayley transform (CT). Traditional design methods for one-dimensional orthogonal filter banks cannot be extended to higher dimensions directly due to the lack of a multidimensional (MD) spectral factorization theorem. In the polyphase domain, orthogonal filter banks are equivalent to paraunitary matrices and lead to solving a set of nonlinear equations. The CT establishes a one-to-one mapping between paraunitary matrices and para-skew-Hermitian matrices. In contrast to the paraunitary condition, the para-skew-Hermitian condition amounts to linear constraints on the matrix entries which are much easier to solve. Based on this characterization, we propose efficient methods to design MD orthogonal filter banks and present new design results for both IIR and FIR cases. PMID:15971775

  20. Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrol...

  1. Conversion of SPORL pretreated Douglas-fir forest residues into microbial lipids with oleaginous yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrol...

  2. Nutrient Availability from Douglas Fir Bark in Response to Substrate pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two studies were conducted to determine the influence of substrate pH on nutrient availability in douglas fir bark (DFB). Douglas fir bark was amended with either calcium carbonate (CaCO3) or calcium hydroxide [Ca(OH)2] at 13 rates to generate substrates with low to high pH. A non-amended control ...

  3. Quick-change filter cartridge

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Ortiz, Carlos A.

    1995-01-01

    A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

  4. Structural properties of laminated Douglas fir/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Spera, David A.; Esgar, Jack B.; Gougeon, Meade; Zuteck, Michael D.

    1990-01-01

    This publication contains a compilation of static and fatigue strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 by 24 in. in cross section and approximately 30 ft. long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications.

  5. Structural properties of laminated Douglas fir/epoxy composite material

    SciTech Connect

    Spera, D.A. . Lewis Research Center); Esgar, J.B. ); Gougeon, M.; Zuteck, M.D. )

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  6. Hormonal control of second flushing in Douglas-fir shoots.

    PubMed

    Cline, Morris; Yoders, Mark; Desai, Dipti; Harrington, Constance; Carlson, William

    2006-10-01

    Spring-flushing, over-wintered buds of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) produce new buds that may follow various developmental pathways. These include second flushing in early summer or dormancy before flushing during the following spring. Second flushing usually entails an initial release of apical dominance as some of the current-season upper lateral buds grow out. Four hypotheses concerning control of current bud outgrowth in spring-flushing shoots were tested: (1) apically derived auxin in the terminal spring-flushing shoot suppresses lateral bud outgrowth (second flushing); (2) cytokinin (0.5 mM benzyladenine) spray treatments given midway through the spring flush period induce bud formation; (3) similar cytokinin spray treatments induce the outgrowth of existing current lateral buds; and (4) defoliation of the terminal spring-flushing shoot promotes second flushing. Hypothesis 1 was supported by data demonstrating that decapitation-released apical dominance was completely restored by treatment with exogenous auxin (22.5 or 45 mM naphthalene acetic acid) (Thimann-Skoog test). Hypothesis 2 was marginally supported by a small, but significant increase in bud number; and Hypothesis 3 was strongly supported by a large increase in the number of outgrowing buds following cytokinin applications. Defoliation produced similar results to cytokinin application. We conclude that auxin and cytokinin play important repressive and promotive roles, respectively, in the control of second flushing in the terminal spring-flushing Douglas-fir shoot. PMID:16815839

  7. Secondary dispersal of bigcone Douglas-fir ( Pseudotsuga macrocarpa ) seeds

    NASA Astrophysics Data System (ADS)

    Vander Wall, Stephen B.; Borchert, Mark I.; Gworek, Jennifer R.

    2006-07-01

    Large-seeded pines ( Pinus spp.) are known to be dispersed by seed-caching corvids (i.e. jays and nutcrackers) and rodents (e.g. chipmunks and mice), with a concomitant decrease in seed dispersability by wind. We tested the idea that seeds of bigcone Douglas-fir ( Pseudotsuga macrocarpa), which are winged but larger than the seeds of other members of Pseudotsuga, are dispersed by a combination of wind and seed-caching rodents. We compared characteristics of seeds from P. macrocarpa in southern California (mean seed mass 132.6 mg) to seeds of a population of Pseudotsuga menziesii (Douglas-fir) in northern California (24.8 mg). We also tested whether rodents would cache seeds of P. macrocarpa. Seeds of P. macrocarpa had greater wing loadings (1.37 mg/mm 2) and descent velocities (2.47 m/s) than those of P. menziesii (0.52 mg/mm 2 and 1.28 m/s, respectively). These data indicate that the wind dispersability of P. macrocarpa is likely to be less than that of P. menziesii, but this loss of wind dispersability is partially compensated for by secondary dispersal of seeds by rodents, which readily gathered and cached the larger seeds of P. macrocarpa up to 34 m from source trees. Large seed size confers several advantages to P. macrocarpa, most importantly attracting seed-caching animals that effectively bury seeds.

  8. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    SciTech Connect

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-03

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  9. Evaluating the perceived voice quality on VoIP network using interpolated FIR filter algorithm

    NASA Astrophysics Data System (ADS)

    Pal Singh, Harjit; Singh, Sarabjeet; Sarin, R. K.; Singh, Jasvir

    2012-10-01

    Voice over Internet Protocol (VoIP) is a popular communication service nowadays. VoIP reduces the cost of call transmission by passing voice and video packets through the available bandwidth for data packets through Internet protocol. The quality of the VoIP signal is degraded due to the various network impairments. The proposed scheme, interpolated finite impulse response, is implemented as post-processor after decoding the signal in VoIP system. The performance of the proposed scheme is evaluated for various network conditions. The results of the proposed scheme are measured with the objective measurement methods for signal quality evaluation. The performance of the proposed system is compared with the existing techniques for quality improvement in VoIP system. The results show much improvement in speech quality with the proposed scheme in comparison to other similar schemes.

  10. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii).

    PubMed

    Bansal, Sheel; Harrington, Constance A; Gould, Peter J; St Clair, J Bradley

    2015-02-01

    There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought-resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space-for-time substitution, common garden experiment with 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as 'cool/moist', 'moderate', or 'warm/dry') to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought-resistance, (ii) the patterns of genetic variation are related to the native source-climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought-resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpiration(min)), water deficit (% below turgid saturation), and specific leaf area (SLA, cm(2) g(-1)) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought-resistance (i.e., lower transpiration(min), water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought-resistance across all test sites. Multiple regression analysis indicated

  11. Impact of alternative regeneration methods on genetic diversity in coastal Douglas-fir

    USGS Publications Warehouse

    Adams, W.T.; Zuo, J.; Shimizu, J.Y.; Tappeiner, J.C.

    1998-01-01

    Genetic implications of natural and artificial regeneration following three regeneration methods (group selection, shelterwood, and clearcut) were investigated in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) using genetic markers (17 allozyme loci). In general, harvesting followed by either natural or artificial regeneration resulted in offspring populations little altered from those in the previous generation. Cutting the smallest trees to form shelterwoods, however, resulted in the removal of rare, presumably deleterious, alleles, such that slightly fewer alleles per locus were observed among residual trees (2.76) and natural regeneration (2.75) than found in uncut (control) stands (2.86). Thus, although the shelterwood regime appears quite compatible with gene conservation, it would be best to leave parent trees of a range of sizes in shelterwoods designated as gene conservation reserves, in order to maximize the number of alleles (regardless of current adaptive value) in naturally regenerated offspring. Seedling stocks used for artificial regeneration in clearcut, shelterwood, and group selection stands (7 total) had significantly greater levels of genetic diversity, on average, than found in natural regeneration. This is probably because the seeds used in artificial seedling stocks came from many wild stands and thus, sampled more diversity than found in single populations.Genetic implications of natural and artificial regeneration following three regeneration methods (group selection, shelterwood, and clearcut) were investigated in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) using genetic markers (17 allozyme loci). In general, harvesting followed by either natural or artificial regeneration resulted in offspring populations little altered from those in the previous generation. Cutting the smallest trees to form shelterwoods, however, resulted in the removal of rare, presumably deleterious, alleles

  12. Filtering apparatus

    DOEpatents

    Haldipur, Gaurang B.; Dilmore, William J.

    1992-01-01

    A vertical vessel having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas.

  13. Filtering apparatus

    DOEpatents

    Haldipur, G.B.; Dilmore, W.J.

    1992-09-01

    A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.

  14. Global systems for mobile position tracking using Kalman and Lainiotis filters.

    PubMed

    Assimakis, Nicholas; Adam, Maria

    2014-01-01

    We present two time invariant models for Global Systems for Mobile (GSM) position tracking, which describe the movement in x-axis and y-axis simultaneously or separately. We present the time invariant filters as well as the steady state filters: the classical Kalman filter and Lainiotis Filter and the Join Kalman Lainiotis Filter, which consists of the parallel usage of the two classical filters. Various implementations are proposed and compared with respect to their behavior and to their computational burden: all time invariant and steady state filters have the same behavior using both proposed models but have different computational burden. Finally, we propose a Finite Impulse Response (FIR) implementation of the Steady State Kalman, and Lainiotis filters, which does not require previous estimations but requires a well-defined set of previous measurements. PMID:24883349

  15. Fast fringe pattern phase demodulation using FIR Hilbert transformers

    NASA Astrophysics Data System (ADS)

    Gdeisat, Munther; Burton, David; Lilley, Francis; Arevalillo-Herráez, Miguel

    2016-01-01

    This paper suggests the use of FIR Hilbert transformers to extract the phase of fringe patterns. This method is computationally faster than any known spatial method that produces wrapped phase maps. Also, the algorithm does not require any parameters to be adjusted which are dependent upon the specific fringe pattern that is being processed, or upon the particular setup of the optical fringe projection system that is being used. It is therefore particularly suitable for full algorithmic automation. The accuracy and validity of the suggested method has been tested using both computer-generated and real fringe patterns. This novel algorithm has been proposed for its advantages in terms of computational processing speed as it is the fastest available method to extract the wrapped phase information from a fringe pattern.

  16. C-band microwave scattering from small balsam fir

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Saatchi, Sasan S.

    1992-01-01

    An experiment to examine the C-band backscattering characteristics of conifer trees was conducted using a truck-mounted scatterometer. Small (1 m tall) balsam fir (Abies balsamea) were arranged at various equidistant spacings on a platform to present canopies of varying density to the radar. C-band backscattering measurements of a range of canopy densities were acquired under different polarizations and incidence angles. The measured backscattering coefficient from the tree canopies increased with increasing biomass, but approached a maximum at a LAI of 2.5 and fresh biomass of 3.3 kg/sq m. A backscatter model was implemented using measured canopy attributes and showed close agreement with scatterometer measurements over the range of canopy densities. Model results indicated that branches were the prime scatterers of the radar while needles were found to only slightly attenuate the radar signal.

  17. A HIRES analysis of the FIR emission of supernova remnants

    NASA Technical Reports Server (NTRS)

    Wang, Zhong

    1994-01-01

    The high resolution (HiRes) algorithm has been used to analyze the far infrared emission of shocked gas and dust in supernova remnants. In the case of supernova remnant IC 443, we find a very good match between the resolved features in the deconvolved images and the emissions of shocked gas mapped in other wavelengths (lines of H2, CO, HCO+, and HI). Dust emission is also found to be surrounding hot bubbles of supernova remnants which are seen in soft X-ray maps. Optical spectroscopy on the emission of the shocked gas suggests a close correlation between the FIR color and local shock speed, which is a strong function of the ambient (preshock) gas density. These provide a potentially effective way to identify regions of strong shock interaction, and thus facilitate studies of kinematics and energetics in the interstellar medium.

  18. High Resolution Thz and FIR Spectroscopy of SOCl_2

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  19. Simulating cumulative fire effects in ponderosa pine/Douglas-fir forests

    SciTech Connect

    Keane, R.E.; Arno, S.F.; Brown, J.K. )

    1990-02-01

    A successional process model has been adapted for use with species from ponderosa pine/Douglas-fir (Pinus ponderosa var. ponderosa)/(Pseudotsuga menziesii var. glacua) forests of the inland Northwest. Its design allows modification for application to other forest types. This model, FIRESUM, simulates tree establishment, growth, and mortality, along with live and dead fuel accumulation, fire behavior, and fuel reduction on a 400-m{sup 2} plot. The modeling contains algorithms for influences on tree establishment and growth including temperature, water stress, light tolerance, and site quality. The model was used to predict 200 yr of forest succession for five different disturbance regimes. This allowed comparison of patterns of basal area by species, of duff and fuel accumulation, and of fire intensities among the following scenarios: (1) no fires (fire suppression), (2) consistent fire intervals of 10, 20, and 50 yr, and (3) a natural fire regime of variable intervals reconstructed from fire scarred trees. These five scenarios resulted in a differential survival of species determining dominance in the understory and eventually in the overstory. A test of the model showed predictions to be within 19% of field observations, and a sensitivity analysis of FIRESUM showed parameters associated with the growth algorithm to be most critical for predicting successional trends.

  20. Digital filtering for data compression in telemetry systems

    SciTech Connect

    Bell, R.M.

    1994-08-01

    There are many obstacles to using data compression in a telemetry system. Non-linear quantization is often too lossy, and the data is too highly structured to make variable-length entropy codes practical. This paper describes a lossless telemetry data compression system that was built using digital FIR filters. The method of compression takes advantage of the fact that the optimal Nyquist sampling rate is rarely achievable due to two factors: (1) Sensor/transducers are not bandlimited to the frequencies of interest, and (2) Accurate, high-order analog filters are not available to perform effective band limiting and prevent aliasing. Real-time digital filtering can enhance the performance of a typical sampling system so that it approaches Nyquist sampling rates, effectively compressing the amount of data and reducing transmission bandwidth. The system that was built reduced the sampling rate of 14 high-frequency vibration channels by a factor of two, and reduced the bandwidth of the-data link from 1.8 Mbps to 1.28 Mbps. The entire circuit uses seven function-specific, digital-filter DSP`s operating in parallel (two 128-tap FIR filters can be implemented on each Motorola DSP56200), one EPROM and a Programmable Logic Device as the controller.

  1. Adaptive sampler

    DOEpatents

    Watson, Bobby L.; Aeby, Ian

    1982-01-01

    An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  2. Adaptive sampler

    DOEpatents

    Watson, B.L.; Aeby, I.

    1980-08-26

    An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  3. Decline of sacred fir (Abies religiosa) in a forest park south of Mexico City.

    PubMed

    Alvarado R, D; De Bauer, L I; Galindo A, J

    1993-01-01

    Decline of sacred fir (Abies religiosa) trees in the high elevation forest park, Desierto de los Leones, located south of Mexico City, is described. Trees located in the windward zone (exposed to air masses from Mexico City) were the most severely affected, especially trees at the distal ends of ravines. Examination of tree growth rings indicated decreases in ring widths for the past 30 years. Polluted air from Mexico City may be an important causal factor in fir decline. Drought, due to excessive removal of soil water, insects, mites and pathogens, and poor forest management are possible contributing and interactive factors in fir decline. PMID:15091853

  4. Space-time adaptive decision feedback neural receivers with data selection for high-data-rate users in DS-CDMA systems.

    PubMed

    de Lamare, Rodrigo C; Sampaio-Neto, Raimundo

    2008-11-01

    A space-time adaptive decision feedback (DF) receiver using recurrent neural networks (RNNs) is proposed for joint equalization and interference suppression in direct-sequence code-division multiple-access (DS-CDMA) systems equipped with antenna arrays. The proposed receiver structure employs dynamically driven RNNs in the feedforward section for equalization and multiaccess interference (MAI) suppression and a finite impulse response (FIR) linear filter in the feedback section for performing interference cancellation. A data selective gradient algorithm, based upon the set-membership (SM) design framework, is proposed for the estimation of the coefficients of RNN structures and is applied to the estimation of the parameters of the proposed neural receiver structure. Simulation results show that the proposed techniques achieve significant performance gains over existing schemes. PMID:18990643

  5. Frequency weighting filter design for automotive ride comfort evaluation

    NASA Astrophysics Data System (ADS)

    Du, Feng

    2016-04-01

    Few study gives guidance to design weighting filters according to the frequency weighting factors, and the additional evaluation method of automotive ride comfort is not made good use of in some countries. Based on the regularities of the weighting factors, a method is proposed and the vertical and horizontal weighting filters are developed. The whole frequency range is divided several times into two parts with respective regularity. For each division, a parallel filter constituted by a low- and a high-pass filter with the same cutoff frequency and the quality factor is utilized to achieve section factors. The cascading of these parallel filters obtains entire factors. These filters own a high order. But, low order filters are preferred in some applications. The bilinear transformation method and the least P-norm optimal infinite impulse response(IIR) filter design method are employed to develop low order filters to approximate the weightings in the standard. In addition, with the window method, the linear phase finite impulse response(FIR) filter is designed to keep the signal from distorting and to obtain the staircase weighting. For the same case, the traditional method produces 0.330 7 m • s-2 weighted root mean square(r.m.s.) acceleration and the filtering method gives 0.311 9 m • s-2 r.m.s. The fourth order filter for approximation of vertical weighting obtains 0.313 9 m • s-2 r.m.s. Crest factors of the acceleration signal weighted by the weighting filter and the fourth order filter are 3.002 7 and 3.011 1, respectively. This paper proposes several methods to design frequency weighting filters for automotive ride comfort evaluation, and these developed weighting filters are effective.

  6. A new method for fabrication of diamond-dust blocking filters

    NASA Technical Reports Server (NTRS)

    Collard, H. R.; Hogan, R. C.

    1986-01-01

    Thermal embedding of diamond dust onto a polyethylene-coated Al plate has been used to make a blocking filter for FIR applications. The Al plate is sandwiched between two Mylar 'blankets' and the air between the layers is removed by means of a small vacuum pump. After the polyethylene is heated and softened, the diamond dust is applied to the polyethylene coating using a brush. The optimum diamond dust grain sizes corresponding to polyethylene layer thicknesses of 9-12 microns are given in a table, and the application of the blocking filter to spectrometric measurements in the FIR is described. An exploded view diagram of the layered structure of the blocking filter is provided.

  7. [Effects of Chinese fir litter on soil organic carbon decomposition and microbial biomass carbon].

    PubMed

    Wang, Xiao-Feng; Wang, Si-Long; Zhang, Wei-Dong

    2013-09-01

    By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon. Turning over the subsoil to the surface of the woodland could accelerate the soil carbon loss in Chinese fir plantation due to the priming effect induced by the litters. PMID:24417093

  8. 76 FR 16236 - Prohibition Against Certain Flights Within the Tripoli (HLLL) Flight Information Region (FIR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Federal Aviation Administration 14 CFR Part 91 RIN 2120-AJ93 Prohibition Against Certain Flights Within the Tripoli (HLLL) Flight Information Region (FIR) AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Final rule. SUMMARY: This action prohibits flight...

  9. EuroFIR quality approach for managing food composition data; where are we in 2014?

    PubMed

    Westenbrink, Susanne; Roe, Mark; Oseredczuk, Marine; Castanheira, Isabel; Finglas, Paul

    2016-02-15

    A EuroFIR quality management framework was developed to assure data quality of food composition data, incorporating several recommendations developed or improved during the EuroFIR projects. A flow chart of the compilation process with standard operating procedures to assure critical steps was the starting point. Recommendations for food description, component identification, value documentation, recipe calculation, quality evaluation of values, guidelines to assess analytical methods, document and data repositories and training opportunities were harmonized as elements of the quality framework. European food composition database organizations reached consensus on the EuroFIR quality framework and started implementation. Peer reviews of the European compiler organizations were organized to evaluate the quality framework, focusing on what was achieved and on improvements needed. The reviews demonstrated that European food database compilers have made good use of standards and guidelines produced by EuroFIR, as well as a common understanding that a quality framework is essential to assure food composition data quality. PMID:26433289

  10. Laboratory and field ecophysiological studies on the impact of air pollution on red spruce and Fraser fir

    SciTech Connect

    Tyszko, P.B.

    1991-01-01

    In the first study, red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh.) Poir.) seedlings were submitted to long-term multiple growing cycle intermittent ozone fumigations. No effect of ozone exposure on growth and gas exchange of the seedlings was found. Net photosynthesis at saturating light intensity was reduced in both species and the light compensation point was shifted upwards in spruce when exposed to ozone. Fraser fir seedlings showed inconsistent responses of CO{sub 2} curve parameters to ozone exposure. In the second study, the impact of summer exposure to ambient pollutants on winter hardiness in red spruce seedlings was examined. The seedlings were subjected to the following summertime treatments while kept in exclusion chambers on the top of Whitetop Mountain (Virginia): ambient air and clouds, ambient air with clouds excluded, charcoal filtered air, and chamberless control treatment. During the following winter the seedlings were placed in Blacksburg (Virginia), in two locations: in the open and in a shadehouse. A number of conducted tests indicated that there were significant differences in winter damage between the chamber treatments and chamberless control, as well as between the winter exposure locations. Among the summer chamber exposure regimes, the treatment excluding clouds seemed to perform the best. In the third study, the physiology of red spruce trees of various sizes growing on two sites on the top of Whitetop Mtn., was compared and related to ambient ozone concentration. Some seedlings were treated with an antioxidant EDU, to help evaluate the impact of ozone on their physiology.

  11. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Romme, William H; Turner, Monica G

    2013-11-01

    Understanding how disturbances interact to shape ecosystems is a key challenge in ecology. In forests of western North America, the degree to which recent bark beetle outbreaks and subsequent fires may be linked (e.g., outbreak severity affects fire severity) and/ or whether these two disturbances produce compound effects on postfire succession is of widespread interest. These interactions remain unresolved, largely because field data from actual wildfires following beetle outbreaks are lacking. We studied the 2008 Gunbarrel Fire, which burned 27 200 ha in Douglas-fir (Pseudotsuga menziesii) forests that experienced a bark beetle outbreak 4-13 years prefire ("gray stage," after trees have died and needles have dropped), to determine whether outbreak severity influenced subsequent fire severity and postfire tree regeneration. In 85 sample plots we recorded prefire stand structure and outbreak severity; multiple measures of canopy and forest-floor fire severity; and postfire tree seedling density. Prefire outbreak severity was not related to any measure of fire severity except for mean bole scorch, which declined slightly with increasing outbreak severity. Instead, fire severity varied with topography and burning conditions (proxy for weather at time of fire). Postfire Douglas-fir regeneration was low, with tree seedlings absent in 65% of plots. Tree seedlings were abundant in plots of low fire severity that also had experienced low outbreak severity (mean = 1690 seedlings/ha), suggesting a dual filter on tree regeneration. Although bark beetles and fire collectively reduced live basal area to < 5% and increased snag density to > 2000% of pre-outbreak levels, the lack of relationship between beetle outbreak and fire severity suggests that these disturbances were not linked. Nonetheless, effects on postfire tree regeneration suggest compound disturbance interactions that contribute to the structural heterogeneity characteristic of mid/lower montane forests. PMID

  12. Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel

    2011-01-01

    The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.

  13. Random filtering structure-based compressive sensing radar

    NASA Astrophysics Data System (ADS)

    Zhang, Jindong; Ban, YangYang; Zhu, Daiyin; Zhang, Gong

    2014-12-01

    Recently with an emerging theory of `compressive sensing' (CS), a radically new concept of compressive sensing radar (CSR) has been proposed in which the time-frequency plane is discretized into a grid. Random filtering is an interesting technique for efficiently acquiring signals in CS theory and can be seen as a linear time-invariant filter followed by decimation. In this paper, random filtering structure-based CSR system is investigated. Note that the sparse representation and sensing matrices are required to be as incoherent as possible; the methods for optimizing the transmit waveform and the FIR filter in the sensing matrix separately and simultaneously are presented to decrease the coherence between different target responses. Simulation results show that our optimized results lead to smaller coherence, with higher sparsity and better recovery accuracy observed in the CSR system than the nonoptimized transmit waveform and sensing matrix.

  14. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor)

    1995-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electrical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a first signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the first signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems and methods of operating them are also disclosed.

  15. Dimerization of FIR Upon FUSE DNA Binding Suggests Mechanism of c-myc Inhibition

    SciTech Connect

    Crichlow,G.; Zhou, H.; Hsiao, H.; Frederick, K.; Debrosse, M.; Yang, Y.; Folta-Stogniew, E.; Chung, H.; Fan, C.; et al

    2008-01-01

    c-myc is essential for cell homeostasis and growth but lethal if improperly regulated. Transcription of this oncogene is governed by the counterbalancing forces of two proteins on TFIIH--the FUSE binding protein (FBP) and the FBP-interacting repressor (FIR). FBP and FIR recognize single-stranded DNA upstream of the P1 promoter, known as FUSE, and influence transcription by oppositely regulating TFIIH at the promoter site. Size exclusion chromatography coupled with light scattering reveals that an FIR dimer binds one molecule of single-stranded DNA. The crystal structure confirms that FIR binds FUSE as a dimer, and only the N-terminal RRM domain participates in nucleic acid recognition. Site-directed mutations of conserved residues in the first RRM domain reduce FIR's affinity for FUSE, while analogous mutations in the second RRM domain either destabilize the protein or have no effect on DNA binding. Oppositely oriented DNA on parallel binding sites of the FIR dimer results in spooling of a single strand of bound DNA, and suggests a mechanism for c-myc transcriptional control.

  16. Automated Sensing of Douglas Fir Bud-Burst

    NASA Astrophysics Data System (ADS)

    Lintz, H. E.; Kruger, A.; Wagner, D. A.; Tenney, I. J.

    2011-12-01

    The timing of plant biological events such as budburst in the spring can have major impacts on plant productivity and ecosystem carbon balance. While research efforts that address the timing of events is gaining considerable momentum, the technology available for sensing and recording the timing of events is limited, especially for trees. Thus, researchers often perform manual measurements, which can be time-consuming and labor-intensive. This has resulted in efforts such as Project BudBurst, a network of professional and volunteer observers across the United States that monitor plants as seasons change. Access to forest trees can be difficult during periods of greatest interest, such as when buds open in the spring. For example, high elevation, snow, and melting snow during the spring hamper access to trees in alpine regions. Researchers at Oregon State University and The University of Iowa are developing instrumentation for automating sensing of budburst in Douglas firs. While the instrumentation targets Douglas firs, it can find application in studying budburst in other species. We present an initial bud-burst sensor that uses optical techniques to sense bud opening. An optical fiber illuminates a target bud with modulated light, a second fiber detects, and guides reflect light to a photodetector and signal processing electronics. Changes in the reflected light indicate the budburst. The instrumentation exploits advances in microelectronics, particularly miniaturization and low power consumption, and uses advanced signal processing techniques such as lock-in detection. The instrumentation records the reflected light every 15 minutes on high-capacity, non-volatile Flash media. Power consumption is very low and sensors have an extrapolated, continuous operating time more than 9 months, suggesting their deployment in the fall, and retrieval in the following spring. We believe the sensor will enable a caliber of research not yet achievable owing to the difficulty of

  17. A test setup for the characterization of far-infrared filters under cryogenic conditions

    NASA Astrophysics Data System (ADS)

    Birkmann, Stephan M.; Grözinger, Ulrich; Stegmaier, Jutta; Krause, Oliver; Pitz, Eckhard; Lemke, Dietrich

    2006-06-01

    The characterization and calibration of far-infrared (FIR) detectors is a delicate task that requires good knowledge of the incident flux and its spectral composition. In many test setups the FIR flux to the detectors is provided by means of an external or internal black body and a set of cold attenuation, band pass, and blocking filters. For scientific instruments (e.g. PACS aboard ESA's Herschel satellite) band pass and blocking filters are used to achieve the desired spectral throughput either as order sorting filters in spectrometers or for selecting a wavelength range in imaging cameras. In all cases a detailed knowledge of the spectral transmittance of the used filters is mandatory for an accurate calibration of the system. We have build a test platform that allows to measure the transmission of cold (T ~ 4K) filters in the far-infrared. The setup uses a dual grating monochromator with excellent spectral purity and a resolution up to 800, which is operated under a dry nitrogen atmosphere to eliminate water vapor absorption bands. An Si-bolometer is used as detector and is read out by a cryogenic low noise trans-impedance amplifier circuit with common mode rejection and a warm electronics using a lock-in amplifier and a 22 bit analog-to-digital converter. A cryogenic filter slider in the setup allows for differential measurements between filters and the use of cold order sorting filters. We present initial results for FIR cut-on and attenuation filters, demonstrating that our setup is suited to measure transmissions as low as 10 -4 over the covered wavelength range.

  18. FIR line profiles as probes of warm gas dynamics

    NASA Astrophysics Data System (ADS)

    Betz, A. L.; Boreiko, R. T.

    Measurements of the shapes, velocities, and intensities of FIR lines all help to probe the dynamics, physical associations, and excitation conditions of warm gas in molecular clouds. With this in mind, we have observed the J=9-8, 12-11,14-13, and 16-15 lines of (12)CO and the 158 micron line of C II in a number of positions in 4 selected clouds. The data were obtained with a laser heterodyne spectrometer aboard NASA's Kuiper Airborne Observatory. Line measurements at 0.6 km/s resolution allow us to resolve the profiles completely, and thereby to distinguish between UV-and shock-heating mechanisms for the high-excitation gas. For CO, the high-J linewidths lie in the range of 4-20 km/s (FWHM), similar to those observed for low-J (J less than 4) transitions in these sources. This correspondence suggests that the hotter gas (T = 200-600 K) is dynamically linked to the quiescent gas component, perhaps by association with the UV-heated peripheries of the numerous cloud clumps. Much of the C II emission is thought to emanate from these cloud peripheries, but the line profiles generally do not match those seen in CO. None of the observed sources show any evidence in high-J (12)CO emission for shock-excitation (i.e., linewidths greater than 30 km/s).

  19. Nitrogen leaching from Douglas-fir forests after urea fertilization.

    PubMed

    Flint, Cynthia M; Harrison, Rob B; Strahm, Brian D; Adams, A B

    2008-01-01

    Leaching of nitrogen (N) after forest fertilization has the potential to pollute ground and surface water. The purpose of this study was to quantify N leaching through the primary rooting zone of N-limited Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests the year after fertilization (224 kg N ha(-1) as urea) and to calculate changes in the N pools of the overstory trees, understory vegetation, and soil. At six sites on production forests in the Hood Canal watershed, Washington, tension lysimeters and estimates of the soil water flux were used to quantify the mobilization and leaching of NO(3)-N, NH(4)-N, and dissolved organic nitrogen below the observed rooting depth. Soil and vegetation samples were collected before fertilization and 1 and 6 mo after fertilization. In the year after fertilization, the total leaching beyond the primary rooting zone in excess of control plots was 4.2 kg N ha(-1) (p = 0.03), which was equal to 2% of the total N applied. The peak NO(3)-N concentration that leached beyond the rooting zone of fertilized plots was 0.2 mg NO(3)-N L(-1). Six months after fertilization, 26% of the applied N was accounted for in the overstory, and 27% was accounted for in the O+A horizon of the soil. The results of this study indicate that forest fertilization can lead to small N leaching fluxes out of the primary rooting zone during the first year after urea application. PMID:18689739

  20. Herschel FIR Spectroscopic Observations of L1448-MM

    NASA Astrophysics Data System (ADS)

    Lee, Jinhee; Lee, J.; DIGIT Team

    2012-01-01

    We present the FIR (continuum and line) maps and spectra of L1448-MM at 55 to 210 micron observed with the range scan mode of PACS on the Herschel Space Observatory, as part of the DIGIT key program. L1448-MM was previously known as an embedded Class 0 and prominent outflow source, and a secondary YSO was claimed by the Spitzer images and confirmed by submm interferometric observations. The PACS detected various CO, OH, H2O, and OI lines. The PACS line and continuum maps show that the emission at shorter wavelengths peaks at the central spatial pixel (the primary YSO position) although the line emission of low energy levels distributes along the outflow direction. According to our excitation analysis, the CO gas has two temperature components (warm and hot) that are tentatively attributed to PDR and shock, respectively. However, the H2O gas with the rotational temperature of 200 K seems to trace the shock. Interestingly, the relative strength of OH transitions suggests the IR pumping process dominates in L1448-MM. The gas along the outflow cavities in L1448-MM seems to be heated mainly by shock and UV photons, and relative line luminosities indicate that H2O and CO are the main coolants of this gas, although cooling by OI and OH cannot be ignored.