Science.gov

Sample records for adaptive focusing techniques

  1. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    First ever Multi-Conjugate Adaptive Optics at the VLT Achieves First Light On the evening of 25 March 2007, the Multi-Conjugate Adaptive Optics Demonstrator (MAD) achieved First Light at the Visitor Focus of Melipal, the third Unit Telescope of the Very Large Telescope (VLT). MAD allowed the scientists to obtain images corrected for the blurring effect of atmospheric turbulence over the full 2x2 arcminute field of view. This world premiere shows the promises of a crucial technology for Extremely Large Telescopes. ESO PR Photo 19a/07 ESO PR Photo 19a/07 The MCAO Demonstrator Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., approaching space conditions. Adaptive Optics systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a 'wavefront sensor' (a special camera) at very high speed, many hundreds of times each second. The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON") was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program to serve the needs for its frontline VLT project. Today, the Paranal Observatory is without any doubt one of the most advanced of its kind with respect to AO with no less than 7 systems currently installed (NACO, SINFONI, CRIRES and

  2. Techniques For Focusing In Zone Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.

    1994-01-01

    In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.

  3. Tunable-focus lens for adaptive eyeglasses.

    PubMed

    Hasan, Nazmul; Banerjee, Aishwaryadev; Kim, Hanseup; Mastrangelo, Carlos H

    2017-01-23

    We demonstrate the implementation of a compact tunable-focus liquid lens suitable for adaptive eyeglass application. The lens has an aperture diameter of 32 mm, optical power range of 5.6 diopter, and electrical power consumption less than 20 mW. The lens inclusive of its piezoelectric actuation mechanism is 8.4 mm thick and weighs 14.4 gm. The measured lens RMS wavefront aberration error was between 0.73 µm and 0.956 µm.

  4. Focus on climate projections for adaptation strategies

    NASA Astrophysics Data System (ADS)

    Feijt, Arnout; Appenzeller, Christof; Siegmund, Peter; von Storch, Hans

    2016-01-01

    Most papers in this focus issue on ‘climate and climate impact projections for adaptation strategies’ are solicited by the guest editorial team and originate from a cluster of projects that were initiated 5 years ago. These projects aimed to provide climate change and climate change adaptation information for a wide range of societal areas for the lower parts of the deltas of the Rhine and Meuse rivers, and particularly for the Netherlands. The papers give an overview of our experiences, methods, approaches, results and surprises in the process to developing scientifically underpinned climate products and services for various clients. Although the literature on interactions between society and climate science has grown over the past decade both with respect to policy-science framing in post-normal science (Storch et al 2011 J. Environ. Law Policy 1 1-15, van der Sluijs 2012 Nature and Culture 7 174-195), user-science framing (Berkhout et al 2014 Regional Environ. Change 14 879-93) and joint knowledge production (Hegger et al 2014 Regional Environ. Change 14 1049-62), there is still a lot to gain. With this focus issue we want to contribute to best practices in this quickly moving field between science and society.

  5. Advanced Adaptive Optics Control Techniques

    DTIC Science & Technology

    1979-01-01

    Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.

  6. Enhanced adaptive focusing through semi-transparent media

    PubMed Central

    Di Battista, Diego; Zacharakis, Giannis; Leonetti, Marco

    2015-01-01

    Adaptive optics can focus light through opaque media by compensating the random phase delay acquired while crossing a scattering curtain. The technique is commonly exploited in many fields, including astrophysics, microscopy, biomedicine and biology. A turbid lens has the capability of producing foci with a resolution higher than conventional optics, however it has a fundamental limit: to obtain a sharp focus one has to introduce a strongly scattering medium in the optical path. Indeed a tight focusing needs strong scattering and, as a consequence, high resolution focusing is obtained only for weakly transmitting samples. Here we describe a novel method allowing to obtain highly concentrated optical spots even by introducing a minimum amount of scattering in the beam path with semi-transparent materials. By filtering the pseudo-ballistic components of the transmitted beam we are able to experimentally overcome the limits of the adaptive focus resolution, gathering light on a spot with a diameter which is one third of the original speckle correlation function. PMID:26620906

  7. Use of Adaptive Focused Acoustics™ ultrasound in controlling liposome formation.

    PubMed

    Shen, Katherine C; Kakumanu, Srikanth; Beckett, Carl D; Laugharn, James A

    2015-11-01

    Many techniques for producing large unilamellar vesicles (LUVs) or small unilamellar vesicles (SUVs) have drawbacks, including exposure of sensitive biological materials to harsh organic solvents or high temperatures. Here we describe the use of controlled focused ultrasound, Adaptive Focused Acoustics™ (AFA), to make LUV or SUV at low temperature without organic solvents and at a consistent, chosen size. We studied the effects of peak incident power (PIP), cycles per burst (CPB), duty factor (DF), temperature, and lipid composition (natural or synthetic), on liposome size distribution. We found that an increase in PIP, DF, CPB, or temperature decreased liposome size. When processed under the same conditions as the natural lipid composition [Phospholipon 90 G], the synthetic lipid composition [HSPC, DSPE-PEG-2000, Chol] generally produced larger liposomes, although extending processing time reduced liposomes to similar size. In combination with AFA, these trends can help pinpoint parameter values that achieve a desired liposome size distribution.

  8. A novel online adaptive time delay identification technique

    NASA Astrophysics Data System (ADS)

    Bayrak, Alper; Tatlicioglu, Enver

    2016-05-01

    Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.

  9. Vision Trainer Teaches Focusing Techniques at Home

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Based on work Stanford Research Institute did for Ames Research Center, Joseph Trachtman developed a vision trainer to treat visual focusing problems in the 1980s. In 2014, Trachtman, operating out of Seattle, released a home version of the device called the Zone-Trac. The inventor has found the biofeedback process used by the technology induces an alpha-wave brain state, causing increased hand-eye coordination and reaction times, among other effects

  10. Adaptable recursive binary entropy coding technique

    NASA Astrophysics Data System (ADS)

    Kiely, Aaron B.; Klimesh, Matthew A.

    2002-07-01

    We present a novel data compression technique, called recursive interleaved entropy coding, that is based on recursive interleaving of variable-to variable length binary source codes. A compression module implementing this technique has the same functionality as arithmetic coding and can be used as the engine in various data compression algorithms. The encoder compresses a bit sequence by recursively encoding groups of bits that have similar estimated statistics, ordering the output in a way that is suited to the decoder. As a result, the decoder has low complexity. The encoding process for our technique is adaptable in that each bit to be encoded has an associated probability-of-zero estimate that may depend on previously encoded bits; this adaptability allows more effective compression. Recursive interleaved entropy coding may have advantages over arithmetic coding, including most notably the admission of a simple and fast decoder. Much variation is possible in the choice of component codes and in the interleaving structure, yielding coder designs of varying complexity and compression efficiency; coder designs that achieve arbitrarily small redundancy can be produced. We discuss coder design and performance estimation methods. We present practical encoding and decoding algorithms, as well as measured performance results.

  11. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound

    PubMed Central

    Kaye, Elena A.; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts

    2012-01-01

    Purpose: To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. Methods: The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat , “MR-guided adaptive focusing of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734–1747 (2010)]10.1109/TUFFC.2010.1612 was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients’ phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Results: Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The

  12. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-06-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

  13. Adaptive projection method applied to three-dimensional ultrasonic focusing and steering through the ribs.

    PubMed

    Cochard, E; Aubry, J F; Tanter, M; Prada, C

    2011-08-01

    An adaptive projection method for ultrasonic focusing through the rib cage, with minimal energy deposition on the ribs, was evaluated experimentally in 3D geometry. Adaptive projection is based on decomposition of the time-reversal operator (DORT method) and projection on the "noise" subspace. It is shown that 3D implementation of this method is straightforward, and not more time-consuming than 2D. Comparisons are made between adaptive projection, spherical focusing, and a previously proposed time-reversal focusing method, by measuring pressure fields in the focal plane and rib region using the three methods. The ratio of the specific absorption rate at the focus over the one at the ribs was found to be increased by a factor of up to eight, versus spherical emission. Beam steering out of geometric focus was also investigated. For all configurations projecting steered emissions were found to deposit less energy on the ribs than steering time-reversed emissions: thus the non-invasive method presented here is more efficient than state-of-the-art invasive techniques. In fact, this method could be used for real-time treatment, because a single acquisition of back-scattered echoes from the ribs is enough to treat a large volume around the focus, thanks to real time projection of the steered beams.

  14. In-line-focus monitoring technique using lens aberration effect

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tomohiko; Sawano, Toshio; Yao, Teruyoshi; Kobayashi, Katsuyoshi; Asai, Satoru

    2005-05-01

    Process windows have become narrower as nano-processing technology has advanced. The semiconductor industry, faced with this situation, has had to impose extremely severe tool controls. Above all, with the advent of 90-nm device production, demand has arisen for strict levels of control that exceed the machine specifications of ArF exposure systems. Consequently, high-accuracy focus control and focus monitoring techniques for production wafers will be necessary in order for this to be achieved for practical use. Focus monitoring techniques that measure pattern placement errors and resist features using special reticle and mark have recently been proposed. Unfortunately, these techniques have several disadvantages. They are unable to identify the direction of a focus error, and there are limits on the illumination conditions. Furthermore, they require the use of a reticle that is more expensive than normal and they suffer from a low level of measurement accuracy. To solve these problems, the authors examined methods of focus control and focus error measurement for production wafers that utilize the lens aberration of the exposure tool system. The authors call this method FMLA (focus monitoring using lens aberration). In general, astigmatism causes a difference in the optimum focal point between the horizontal and vertical patterns in the same image plane. If a focus error occurs, regardless of the reason, a critical dimension (CD) difference arises between the sparse horizontal and vertical lines. In addition, this CD difference decreases or increases monotonously with the defocus value. That is to say, it is possible to estimate the focus errors to measure the vertical and horizontal line CD formed by exposure tool with astigmatism. In this paper, the authors examined the FMLA technique using astigmatism. First, focus monitoring accuracy was investigated. Using normal scholar type simulation, FMLA was able to detect a 32.3-nm focus error when 10-mλ astigmatism was

  15. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  16. Energy-Based Adaptive Focusing of waves: Application to Ultrasonic Transcranial Therapy

    NASA Astrophysics Data System (ADS)

    Herbert, E.; Pernot, M.; Montaldo, G.; Tanter, M.; Fink, M.

    2009-04-01

    We propose a general concept of adaptive focusing through complex media based on the estimation or measurement of the wave energy density at the desired focal spot. As it does not require the knowledge of phase information, this technique has many potential applications in acoustics and optics for light focusing through diffusive media. We present here the application of this technique to the problem of ultrasonic aberration correction for HIFU treatments. The estimation of wave energy density is based on the maximization of the ultrasound radiation force, using a multi-elements (64) array. A spatial coded excitation method is developed by using ad-hoc virtual transducers that include all the elements for each emission. The radiation force is maximized by optimizing the displacement of a small target at the focus. We measured the target displacement using ultrasound pulse echo on the same elements. A method using spatial coded excitation is developed in order to estimate the phase and amplitude aberration based on the target displacement. We validated this method using phase aberration up to 2π. The phase correction is achieved and the pressure field is measured using a needle hydrophone. The acoustic intensity at the focus is restored through very large aberrations. Basic experiments for brain HIFU treatment are presented. Optimal transcranial adaptive focusing is performed using a limited number of short ultrasonic radiation force pushes.

  17. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    SciTech Connect

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  18. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    NASA Astrophysics Data System (ADS)

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-01

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4-10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  19. Adaptive Control Techniques for Large Space Structures.

    DTIC Science & Technology

    1986-09-15

    Adaptive Systems: A Ji . Fixed-Point Analysis", submitted, IEEE Trans. on Circuits and Systems; Special Issue on Adaptive Systems, Sept. 1987. I.M.Y...Shaped Cost Functionals: Extensions of LQG Methods," *.. AIAA J. of Guidance and Control, pp. 529-535, Nov-Dec. 1980. [81 C.A. Desoer , R.W. Liu, J. Murray...for Parameter Conver- gence in Adaptive Control," Memo No. UCB/ERL M84/25, Univ. of California, Berke- ley, 1984. [19] C.A. Desoer and M. Vidyasagar

  20. Adaptive Control Techniques for Large Space Structures

    DTIC Science & Technology

    1989-01-06

    Point Analy- sis", submitted, IEEE Trans. on Circuits and Systems; Special Issue on Adaptive Systems, Sept. 1987. I.M.Y. Mareels, R.R. Bitmead, M. Gevers...adaptive system with unmodelled dynamics," Proc. IFAC Workshop on Adaptive Systems, San Francisco, CA. C.A. Desoer , R.W. Liu, J. Murray and R. Sacks...June 1980. C.A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press, * 1975. J.C. Doyle and G. Stein (1981

  1. Conformal Magnifier: A Focus+Context Technique with Minimal Distortion

    PubMed Central

    Zhao, Xin; Zeng, Wei; Gu, Xianfeng; Kaufman, Arie; Xu, Wei; Mueller, Klaus

    2010-01-01

    We present the conformal magnifier, a novel interactive Focus+Context visualization technique to magnify a region of interest (ROI) using conformal mapping. Our framework allows the user to design an arbitrary magnifier to enlarge the features of interest while deforming part of the remaining areas without any cropping. By using conformal mapping, the ROI is magnified with minimal distortion, while the transition region is a smooth and continuous deformation between the focus and context regions. An interactive interface is designed for the user to select important features, design focus models of arbitrary shape and set deformation constraints to satisfy his/her specified requirements. We demonstrate the effectiveness, robustness and efficiency of our method using several applications: texts, maps, geographic images, data structures and multi-media visualization. PMID:26279613

  2. Synthetic Aperture Focusing Technique 3D-CAD-SAFT

    NASA Astrophysics Data System (ADS)

    Schmitz, V.; Kröning, M.; Chakhlov, S.; Fischer, W.

    2000-05-01

    Till the 80's ultrasonic holography has been used as an analyzing technique, a procedure which has been replaced by the Synthetic Aperture Focusing Technique "SAFT." This technique has been applied on metallic components in different power plants, mostly on pipe systems on pressure vessels or on specimen made of composite or concrete material. SAFT exists in different versions, either in 2D or 3D, for plane or arbitrarily shaped surfaces, for pulse echo or pitch- and catch arrangements. The defect sizes ranged from 100 μm in turbine shafts till fractures of meters in research pressure vessels. The paper covers the lastest results of the SAFT-reconstruction technique under Windows NT which has been guided by the experience obtained in the field. It contributes to the currently discussed question of the possible benefit using TOFD—techniques versus pulse echo techniques; the target has been a fatigue crack in a pipe segment which was investigated by different insonification angles, wave modes and probe arrangements. The results are evaluated with respect to signal-to-noise ratio improvement; problems of TOFD are demonstrated using an animation procedure which allows to walk through the weld in three orthogonal directions. A special example will be shown from a bore hole inspection of water power station valves where the reconstruction procedure follows the radial axial insonification planes. The multi-line SAFT images can be cut according to the situation of the crack position and orientation.

  3. Recovering depth from focus using iterative image estimation techniques

    SciTech Connect

    Vitria, J.; Llacer, J.

    1993-09-01

    In this report we examine the possibility of using linear and nonlinear image estimation techniques to build a depth map of a three dimensional scene from a sequence of partially focused images. In particular, the techniques proposed to solve the problem of construction of a depth map are: (1) linear methods based on regularization procedures and (2) nonlinear methods based on statistical modeling. In the first case, we have implemented a matrix-oriented method to recover the point spread function (PSF) of a sequence of partially defocused images. In the second case, the chosen method has been a procedure based on image estimation by means of the EM algorithm, a well known technique in image reconstruction in medical applications. This method has been generalized to deal with optically defocused image sequences.

  4. Effortful Control and Adaptive Functioning of Homeless Children: Variable-Focused and Person-Focused Analyses

    ERIC Educational Resources Information Center

    Obradovic, Jelena

    2010-01-01

    Homeless children show significant developmental delays across major domains of adaptation, yet research on protective processes that may contribute to resilient adaptation in this highly disadvantaged group of children is extremely rare. This study examined the role of effortful control for adaption in 58 homeless children, ages 5-6, during their…

  5. Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers.

    PubMed

    Gómez Álvarez-Arenas, Tomás E; Camacho, Jorge; Fritsch, Carlos

    2016-04-01

    This paper proposes a novel passive focusing system for Air-Coupled Ultrasonic (ACU) piezoelectric transducers which is inspired by the Newtonian-Cassegrain (NC) telescope concept. It consist of a primary spherical mirror with an output hole and a flat secondary mirror, normal to the propagation axis, that is the transducer surface itself. The device is modeled and acoustic field is calculated showing a collimated beam with a symmetrical focus. A prototype according to this design is built and tested with an ACU piezoelectric transducer with center frequency at 400 kHz, high-sensitivity, wideband and 25 mm diameter flat aperture. The acoustic field is measured and compared with calculations. The presented prototype exhibit a 1.5 mm focus width and a collimated beam up to 15 mm off the output hole. In addition, the performance of this novel design is compared, both theoretically and experimentally, with two techniques used before for electrostatic transducers: the Fresnel Zone Plate - FZP and the off-axis parabolic or spherical mirror. The proposed NC arrangement has a coaxial design, which eases the transducers positioning and use in many applications, and is less bulky than off-axis mirrors. Unlike in off-axis mirrors, it is now possible to use a spherical primary mirror with minimum aberrations. FZP provides a more compact solution and is easy to build, but presents some background noise due to interference of waves diffracted at out of focus regions. By contrast, off-axis parabolic mirrors provide a well defined focus and are free from background noise, although they are bulky and more difficult to build. Spherical mirrors are more easily built, but this yields a non symmetric beam and a poorly defined focus.

  6. Adaptive Control Techniques for Large Space Structures

    DTIC Science & Technology

    1987-12-23

    2500 Mizssion. CoV~ege Boulevard Sar-ta Clara, Califorr-Iia 950541-1215 P--epared for: AFOSR, O irectcorate of Aerospace Sciences Bolling Air Force...formulated in late 1982 in re- sponse to the increasing concern that performance robustness of Air Force LSS type system would be inadequate to meet...Reducing the effects of on-board disturbance rejection) is particularly important for planned Air Force missions. For these cases, adaptive control

  7. A novel bit-wise adaptable entropy coding technique

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is adaptable in that each bit to be encoded may have an associated probability esitmate which depends on previously encoded bits. The technique may have advantages over arithmetic coding. The technique can achieve arbitrarily small redundancy and admits a simple and fast decoder.

  8. Technique for adapting a spacer for a custom impression tray.

    PubMed

    Kaur, Harsimran; Nanda, Aditi; Verma, Mahesh; Koli, Dheeraj

    2016-12-01

    A method of adapting a spacer for the custom trays used to make a definite impression for complete dentures is presented. The technique can be used under a variety of conditions and offers several advantages.

  9. Application of bacteriorhodopsin films in an adaptive-focusing schlieren system

    NASA Astrophysics Data System (ADS)

    Downie, John D.

    1995-09-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  10. Application of Bacteriorhodopsin Films in an Adaptive-Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  11. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields.

    PubMed

    Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael

    2009-11-01

    An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized noninvasively through direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows determination of the precise estimation of the phase and amplitude aberrations, and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2pi). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from sigma = 1.89 radian before correction to sigma = 0.53 radian following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be -7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of -0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus

  12. Speckle-adaptive VISAR fringe analysis technique

    NASA Astrophysics Data System (ADS)

    Erskine, David

    2017-01-01

    A line-VISAR (velocity interferometer) is an important diagnostic in shock physics, simultaneously measuring many fringe histories of adjacent portions of a target splayed along a line on a target, with fringes recorded vs time and space by a streak camera. Due to laser speckle the reflected intensity may be uneven spatially, and due to irregularities in the streak camera electron optics the phase along the slit may be slightly nonlinear. Conventional fringe analysis algorithms which do not properly model these variations can suffer from inferred velocity errors. A speckle-adaptive algorithm has been developed which senses the interferometer and illumination parameters for each individual row (spatial position Y) of the 2d interferogram, so that the interferogram can be compensated for Y-dependent nonfringing intensity, fringe visibility, and nonlinear phase distribution. In numerical simulations and on actual data we have found this individual row-by-row modeling improves the accuracy of the result, compared to a conventional column-by-column analysis approach.

  13. An adaptive block-based fusion method with LUE-SSIM for multi-focus images

    NASA Astrophysics Data System (ADS)

    Zheng, Jianing; Guo, Yongcai; Huang, Yukun

    2016-09-01

    Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.

  14. An implementation of synthetic aperture focusing technique in frequency domain.

    PubMed

    Stepinski, Tadeusz

    2007-07-01

    A new implementation of a synthetic aperture focusing technique (SAFT) based on concepts used in synthetic aperture radar and sonar is presented in the paper. The algorithm, based on the convolution model of the imaging system developed in frequency domain, accounts for the beam pattern of the finite-sized transducer used in the synthetic aperture. The 2D fast Fourier transform (FFT) is used for the calculation of a 2D spectrum of the ultrasonic data. The spectrum is then interpolated to convert the polar coordinate system used for the acquisition of ultrasonic signals to the rectangular coordinates used for the presentation of imaging results. After compensating the transducer lobe amplitude profile using a Wiener filter, the transformed spectrum is subjected to the 2D inverse Fourier transform to get the time-domain image again. The algorithm is computationally attractive due to the use of 2D FFT. The performance of the proposed frequency-domain algorithm and the classical time-domain SAFT are compared in the paper using simulated and real ultrasonic data.

  15. Experience Report Summary: Applying Adaptive Safety Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Lutz, R.; Shaw, H-Y.

    1999-01-01

    Current needs for high-reliability, reusable software; rapid, evolutionary development; and verification of innovative software architectures have focused attention on improving techniques for analyzing the safety and reliability of embedded software.

  16. Focus Groups: An Important Research Technique for Internal Evaluation Units.

    ERIC Educational Resources Information Center

    Duffy, Barbara Poitras

    1993-01-01

    The use of focus groups by the Federal Bureau of Investigation as a tool of internal evaluation is described. Focus groups are used in an environment where credibility is key to achieving meaningful cooperation. Issues for consideration by other evaluators interested in the approach are summarized. (SLD)

  17. Application of adaptive antenna techniques to future commercial satellite communication

    NASA Technical Reports Server (NTRS)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  18. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans

    NASA Astrophysics Data System (ADS)

    Aubry, J.-F.; Tanter, M.; Pernot, M.; Thomas, J.-L.; Fink, M.

    2003-01-01

    Developing minimally invasive brain surgery by high-intensity focused ultrasound beams is of great interest in cancer therapy. However, the skull induces strong aberrations both in phase and amplitude, resulting in a severe degradation of the beam shape. Thus, an efficient brain tumor therapy would require an adaptive focusing, taking into account the effects of the skull. In this paper, we will show that the acoustic properties of the skull can be deduced from high resolution CT scans and used to achieve a noninvasive adaptive focusing. Simulations have been performed with a full 3-D finite differences code, taking into account all the heterogeneities inside the skull. The set of signals to be emitted in order to focus through the skull can thus be computed. The complete adaptive focusing procedure based on prior CT scans has been experimentally validated. This could have promising applications in brain tumor hyperthermia but also in transcranial ultrasonic imaging.

  19. A Novel Monopulse Technique for Adaptive Phased Array Radar.

    PubMed

    Zhang, Xinyu; Li, Yang; Yang, Xiaopeng; Zheng, Le; Long, Teng; Baker, Christopher J

    2017-01-08

    The monopulse angle measuring technique is widely adopted in radar systems due to its simplicity and speed in accurately acquiring a target's angle. However, in a spatial adaptive array, beam distortion, due to adaptive beamforming, can result in serious deterioration of monopulse performance. In this paper, a novel constrained monopulse angle measuring algorithm is proposed for spatial adaptive arrays. This algorithm maintains the ability to suppress the unwanted signals without suffering from beam distortion. Compared with conventional adaptive monopulse methods, the proposed algorithm adopts a new form of constraint in forming the difference beam with the merit that it is more robust in most practical situations. At the same time, it also exhibits the simplicity of one-dimension monopulse, helping to make this algorithm even more appealing to use in adaptive planar arrays. The theoretical mean and variance of the proposed monopulse estimator is derived for theoretical analysis. Mathematical simulations are formulated to demonstrate the effectiveness and advantages of the proposed algorithm. Both theoretical analysis and simulation results show that the proposed algorithm can outperform the conventional adaptive monopulse methods in the presence of severe interference near the mainlobe.

  20. A Novel Monopulse Technique for Adaptive Phased Array Radar

    PubMed Central

    Zhang, Xinyu; Li, Yang; Yang, Xiaopeng; Zheng, Le; Long, Teng; Baker, Christopher J.

    2017-01-01

    The monopulse angle measuring technique is widely adopted in radar systems due to its simplicity and speed in accurately acquiring a target’s angle. However, in a spatial adaptive array, beam distortion, due to adaptive beamforming, can result in serious deterioration of monopulse performance. In this paper, a novel constrained monopulse angle measuring algorithm is proposed for spatial adaptive arrays. This algorithm maintains the ability to suppress the unwanted signals without suffering from beam distortion. Compared with conventional adaptive monopulse methods, the proposed algorithm adopts a new form of constraint in forming the difference beam with the merit that it is more robust in most practical situations. At the same time, it also exhibits the simplicity of one-dimension monopulse, helping to make this algorithm even more appealing to use in adaptive planar arrays. The theoretical mean and variance of the proposed monopulse estimator is derived for theoretical analysis. Mathematical simulations are formulated to demonstrate the effectiveness and advantages of the proposed algorithm. Both theoretical analysis and simulation results show that the proposed algorithm can outperform the conventional adaptive monopulse methods in the presence of severe interference near the mainlobe. PMID:28075348

  1. Adaptive optical beam shaping for compensating projection-induced focus deformation

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-02-01

    Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.

  2. Video-assisted thoracic surgery (VATS) lobectomy: focus on technique.

    PubMed

    Flores, Raja M

    2010-04-01

    BACKGROUND A clear definition of video-assisted thoracic surgery (VATS) lobectomy is lacking in the current peer-reviewed literature. Reported cases vary from four to six incisions in number, 4.0 to 10.0 cm in length, and with and without rib spreading; in addition, they include direct visualization through a utility incision. Described is a complete standardized three-incision thoracoscopic technique that maximizes the benefits of minimally invasive surgery without compromising oncologic principles. METHODS Patients with clinically suspected stage I non-small-cell lung cancer (NSCLC) were selected for VATS lobectomy on the basis of thoracic computed tomography. VATS lobectomies were performed using a standardized three-incision technique: a 2-cm camera port, a 2-cm posterior port, and a 4 cm utility incision without rib spreading. Hilar structures were individually ligated, fissures were completed, and lymph node dissection was performed entirely under thoracoscopic visualization. RESULTS From May 2002 to December 2009, VATS lobectomy was performed successfully in more than 600 patients at our institution. There were no operative deaths, and the median length of stay was 4 days. CONCLUSIONS Standardized VATS lobectomy is feasible, expeditious, and safe. This standardized three-incision technique utilizing a 4-cm utility incision without rib spreading may allow valid comparisons of conventional procedures in clinical trials.

  3. Adaptive remote sensing techniques implementing swarms of mobile agents

    NASA Astrophysics Data System (ADS)

    Cameron, Stewart M.; Loubriel, Guillermo M.; Robinett, Rush D., III; Stantz, Keith M.; Trahan, Michael W.; Wagner, John S.

    1999-07-01

    Measurement and signal intelligence of the battlespace has created new requirements in information management, communication and interoperability as they effect surveillance and situational awareness. In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical and difficult to characterize. An alternative approach is to implement adaptive remote-sensing techniques with swarms of mobile agents employing collective behavior for optimization of mapping signatures and positional orientation (registration). We have expanded intelligent control theory using physics-based collective behavior models and genetic algorithms to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and niter-operative global optimization for sensor fusion and mission oversight. By using a layered hierarchical control architecture to orchestrate adaptive reconfiguration of semi-autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecking.

  4. Marginal adaptation of composite resins under two adhesive techniques.

    PubMed

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p < .001), and in dentin-22.6% (p < .05). In the first technique, microretention was composed of adhesive and hybrid layers as well as resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied.

  5. Imaging In focus: Reflected light imaging: Techniques and applications.

    PubMed

    Guggenheim, Emily J; Lynch, Iseult; Rappoport, Joshua Z

    2017-02-01

    Reflectance imaging is a broad term that describes the formation of images by the detection of illumination light that is back-scattered from reflective features within a sample. Reflectance imaging can be performed in a variety of different configurations, such as confocal, oblique angle illumination, structured illumination, interferometry and total internal reflectance, permitting a plethora of biomedical applications. Reflectance imaging has proven indispensable for critical investigations into the safety and understanding of biomedically and environmentally relevant nano-materials, an area of high priority and investment. The non-destructive in vivo imaging ability of reflectance techniques permits alternative diagnostic strategies that may eventually facilitate the eradication of some invasive biopsy procedures. Reflectance can also provide additional structural information and clarity necessary in fluorescent based in vivo studies. Near-coverslip interrogation techniques, such as reflectance interferometry and total internal reflection, have provided a label free means to investigate cell-surface contacts, cell motility and vesicle trafficking in vivo and in vitro. Other key advances include the ability to acquire superresolution reflectance images providing increased spatial resolution.

  6. Analysis of adaptive laser scanning optical system with focus-tunable components

    NASA Astrophysics Data System (ADS)

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  7. Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques

    SciTech Connect

    Arellano, J.; Hernandez, J.M.; Brase, J.

    1993-05-01

    This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.

  8. Separation of turkey lactate dehydrogenase isoenzymes using isoelectric focusing technique.

    PubMed

    Heinová, Dagmar; Kostecká, Zuzana; Csank, Tomáš

    2016-01-01

    Native polyacrylamide gel electrophoresis at pH 8.8 did not allow to separate lactate dehydrogenase (LDH) isoenzymes of turkey origin. Five electrophoretically distinguishable forms of the enzyme were detected in serum and tissues of turkey using IEF technique in a pH range of 3-9. Generally, three different groups were seen: (i) those having an anodic domination (heart, kidney, pancreas, and erythrocytes) with mainly LDH-1 fraction, (ii) those having a cathodic domination (breast muscle and serum) with prevalence of LDH-5, and (iii) those with a more uniform distribution (liver, spleen, lung, and brain). The specific enzyme activity was the highest in the breast muscle, followed by heart muscle, and brain. Low activities were detected in serum, kidney, and liver.

  9. Acceptance and Mindfulness Techniques as Applied to Refugee and Ethnic Minority Populations with PTSD: Examples from "Culturally Adapted CBT"

    ERIC Educational Resources Information Center

    Hinton, Devon E.; Pich, Vuth; Hofmann, Stefan G.; Otto, Michael W.

    2013-01-01

    In this article we illustrate how we utilize acceptance and mindfulness techniques in our treatment (Culturally Adapted CBT, or CA-CBT) for traumatized refugees and ethnic minority populations. We present a Nodal Network Model (NNM) of Affect to explain the treatment's emphasis on body-centered mindfulness techniques and its focus on psychological…

  10. A successive overrelaxation iterative technique for an adaptive equalizer

    NASA Technical Reports Server (NTRS)

    Kosovych, O. S.

    1973-01-01

    An adaptive strategy for the equalization of pulse-amplitude-modulated signals in the presence of intersymbol interference and additive noise is reported. The successive overrelaxation iterative technique is used as the algorithm for the iterative adjustment of the equalizer coefficents during a training period for the minimization of the mean square error. With 2-cyclic and nonnegative Jacobi matrices substantial improvement is demonstrated in the rate of convergence over the commonly used gradient techniques. The Jacobi theorems are also extended to nonpositive Jacobi matrices. Numerical examples strongly indicate that the improvements obtained for the special cases are possible for general channel characteristics. The technique is analytically demonstrated to decrease the mean square error at each iteration for a large range of parameter values for light or moderate intersymbol interference and for small intervals for general channels. Analytically, convergence of the relaxation algorithm was proven in a noisy environment and the coefficient variance was demonstrated to be bounded.

  11. Adaptive resonator control techniques for high-power lasers

    SciTech Connect

    Freeman, R.H.; Spinhirne, J.M.; Anafi, D.

    1981-01-01

    Experimental results and interpretations for correcting tilt and astigmatism aberrations using intracavity adaptive optics versus extracavity adaptive optics are presented, along with control algorithm and resonator design considerations when utilizing a multidither COAT control system for astigmatism and tilt correction. It is shown that in a high-power device, PIB (Power-in-the-Bucket) optimization, with the possible added requirement of extracavity beam clean-up to achieve good beam quality, would be a more desirable control algorithm than BQ (beam quality) optimization. Zonal multidither hill-climbing servo COAT techniques applied to tilt correction fail to achieve good correction for large tilt amplitudes when the control loop is closed after tilt is introduced. Therefore, it is suggested that a separate tilt sensor be used to provide error signal for correction of tilt and let the multidither system COAT correct for higher order aberrations

  12. Digital control of high performance aircraft using adaptive estimation techniques

    NASA Technical Reports Server (NTRS)

    Van Landingham, H. F.; Moose, R. L.

    1977-01-01

    In this paper, an adaptive signal processing algorithm is joined with gain-scheduling for controlling the dynamics of high performance aircraft. A technique is presented for a reduced-order model (the longitudinal dynamics) of a high performance STOL aircraft. The actual controller views the nonlinear behavior of the aircraft as equivalent to a randomly switching sequence of linear models taken from a preliminary piecewise-linear fit of the system nonlinearities. The adaptive nature of the estimator is necessary to select the proper sequence of linear models along the flight trajectory. Nonlinear behavior is approximated by effective switching of the linear models at random times, with durations reflecting aircraft motion in response to pilot commands.

  13. Fixed gain and adaptive techniques for rotorcraft vibration control

    NASA Technical Reports Server (NTRS)

    Roy, R. H.; Saberi, H. A.; Walker, R. A.

    1985-01-01

    The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.

  14. Rapid Structured Volume Grid Smoothing and Adaption Technique

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2006-01-01

    A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.

  15. Rapid Structured Volume Grid Smoothing and Adaption Technique

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2004-01-01

    A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reduction in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.

  16. ASR Application in Climate Change Adaptation: The Need, Issues and Research Focus

    EPA Science Inventory

    This presentation will focus on four key points: (a) Aquifer storage and recovery: a long-held practice offering a potential tool for climate change adaptation, (b) The drivers: 1) hydrological perturbations related to climate change, 2) water imbalance in both Qand Vbetween wat...

  17. The Relationship between Experience, Education and Teachers' Use of Incidental Focus-on-Form Techniques

    ERIC Educational Resources Information Center

    Mackey, Alison; Polio, Charlene; McDonough, Kim

    2004-01-01

    This paper reports the findings of an empirical study that explored whether ESL teachers' use of incidental focus-on-form techniques was influenced by their level of experience. The results showed that experienced ESL teachers used more incidental focus-on-form techniques than inexperienced teachers. A follow-up study investigated whether…

  18. Focused suggestion with somatic anchoring technique: rapid self-hypnosis for pain management.

    PubMed

    Donatone, Brooke

    2013-04-01

    This article details a self-hypnosis technique designed to teach patients how to manage acute or chronic pain through directed focus. The focused suggestion with somatic anchoring technique has been used with various types of pain, including somatic pain (arthritis, post-injury pain from bone breaks, or muscle tears), visceral pain (related to irritable bowel disease), and neuropathic pain (related to multiple sclerosis). This technique combines cognitive restructuring and mindfulness meditation with indirect and direct suggestions during hypnosis. The case examples demonstrate how the focused suggestion with somatic anchoring technique is used with both acute and chronic pain conditions when use of long-term medication has been relatively ineffective.

  19. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media

    PubMed Central

    Ma, Cheng; Xu, Xiao; Liu, Yan; Wang, Lihong V.

    2014-01-01

    The ability to steer and focus light inside scattering media has long been sought for a multitude of applications. To form optical foci inside scattering media, the only feasible strategy at present is to guide photons by using either implanted1 or virtual2–4 guide stars, which can be inconvenient and limits potential applications. Here, we report a scheme for focusing light inside scattering media by employing intrinsic dynamics as guide stars. By time-reversing the perturbed component of the scattered light adaptively, we show that it is possible to focus light to the origin of the perturbation. Using the approach, we demonstrate non-invasive dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media. Anticipated applications include imaging and photoablation of angiogenic vessels in tumours as well as other biomedical uses. PMID:25530797

  20. Applying perceptual and adaptive learning techniques for teaching introductory histopathology

    PubMed Central

    Krasne, Sally; Hillman, Joseph D.; Kellman, Philip J.; Drake, Thomas A.

    2013-01-01

    Background: Medical students are expected to master the ability to interpret histopathologic images, a difficult and time-consuming process. A major problem is the issue of transferring information learned from one example of a particular pathology to a new example. Recent advances in cognitive science have identified new approaches to address this problem. Methods: We adapted a new approach for enhancing pattern recognition of basic pathologic processes in skin histopathology images that utilizes perceptual learning techniques, allowing learners to see relevant structure in novel cases along with adaptive learning algorithms that space and sequence different categories (e.g. diagnoses) that appear during a learning session based on each learner's accuracy and response time (RT). We developed a perceptual and adaptive learning module (PALM) that utilized 261 unique images of cell injury, inflammation, neoplasia, or normal histology at low and high magnification. Accuracy and RT were tracked and integrated into a “Score” that reflected students rapid recognition of the pathologies and pre- and post-tests were given to assess the effectiveness. Results: Accuracy, RT and Scores significantly improved from the pre- to post-test with Scores showing much greater improvement than accuracy alone. Delayed post-tests with previously unseen cases, given after 6-7 weeks, showed a decline in accuracy relative to the post-test for 1st-year students, but not significantly so for 2nd-year students. However, the delayed post-test scores maintained a significant and large improvement relative to those of the pre-test for both 1st and 2nd year students suggesting good retention of pattern recognition. Student evaluations were very favorable. Conclusion: A web-based learning module based on the principles of cognitive science showed an evidence for improved recognition of histopathology patterns by medical students. PMID:24524000

  1. A Solution Adaptive Technique Using Tetrahedral Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2000-01-01

    An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.

  2. A texture-analysis-based design method for self-adaptive focus criterion function.

    PubMed

    Liang, Q; Qu, Y F

    2012-05-01

    Autofocusing (AF) criterion functions are critical to the performance of a passive autofocusing system in automatic video microscopy. Most of the autofocusing criterion functions proposed are dependent on the imaging system and image captured by the objective being focused or ranged. This dependence destabilizes the performance of the system when the criterion functions are applied to objectives with different characteristics. In this paper, a new design method for autofocusing criterion functions is introduced. This method enables the system to have the ability to tell the texture directional information of the objective. Based on this information, the optimal focus criterion function specific to one texture direction is designed, voiding blindly using autofocusing functions which cannot perform well when applied to the certain surface and can even lead to failure of the whole process. In this way, we improved the self-adaptability, robustness, reliability and focusing accuracy of the algorithm. First, the grey-level co-occurrence matrices of real-time images are calculated in four directions. Next, the contrast values of the four matrices are computed and then compared. The result reflects the directional information of the measured objective surfaces. Finally, with the directional information, an adaptive criterion function is constructed. To demonstrate the effectiveness of the new focus algorithm, we conducted experiments on different texture surfaces and compared the results with those obtained by existing algorithms. The proposed algorithm excellently performs with different measured objectives.

  3. Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies

    NASA Technical Reports Server (NTRS)

    Talabac, Stephen J.

    2004-01-01

    Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.

  4. Numerical simulations on the focus-shift multiplexing technique for self-referential holographic data storage

    NASA Astrophysics Data System (ADS)

    Takabayashi, Masanori; Eto, Taisuke; Okamoto, Takashi

    2016-12-01

    For increasing the data density of holographic data storage (HDS), combining more than two multiplexing techniques is effective. This is also true in self-referential holographic data storage (SR-HDS) that enables holographic recording purely with a single beam. In this paper, a focus-shift multiplexing technique is applied to xy-shift multiplexed SR-HDS, the feasibility of which has been shown in our previous work. The focus-shift multiplexing technique enables the multiplexing of datapages by slightly changing the focal length of the objective lens. However, the required focus-shift distance for multiplexing and the implementation method of the focus-shift have not been clarified. First, the focus-shift selectivity is investigated by the numerical simulations. In the case where the focus-shift multiplexing technique is applied to xy-shift multiplexed SR-HDS, the inter-page crosstalk properties are clarified to decide the recording layout that can achieve a low-crosstalk readout. Second, the technique of displaying an additional phase pattern onto the spatial light modulator (SLM) is introduced, which is a focus-shift method without any special optical components, such as varifocal lenses. Finally, we investigate the relationship between the accuracy of the focus-shift and the parameters of SLM.

  5. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  6. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    PubMed

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  7. Aquifer Storage and Recovery as a Viable Climate Change Adaptation Technique: Sustainable Development under the Current Regulatory Framework

    EPA Science Inventory

    A holistic investigation of aquifer storage and recovery (ASR) technique and application in the U.S. is being conducted as a part of the USEPA Water Resources Adaptation Program (WRAP). The research focus is to evaluate the potential of ASR application as a practical climate chan...

  8. Comparison of a two-dimensional adaptive-wall technique with analytical wall interference correction techniques

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1992-01-01

    A two dimensional airfoil model was tested in the adaptive wall test section of the NASA Langley 0.3 meter Transonic Cryogenic Tunnel (TCT) and in the ventilated test section of the National Aeronautical Establishment Two Dimensional High Reynold Number Facility (HRNF). The primary goal of the tests was to compare different techniques (adaptive test section walls and classical, analytical corrections) to account for wall interference. Tests were conducted over a Mach number range from 0.3 to 0.8 at chord Reynolds numbers of 10 x 10(exp 6), 15 x 10(exp 6), and 20 x 10(exp 6). The angle of attack was varied from about 12 degrees up to stall. Movement of the top and bottom test section walls was used to account for the wall interference in the HRNF tests. The test results are in good agreement.

  9. Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3.

    PubMed

    Bolaños, Juan P

    2013-06-15

    Besides the necessary changes in the expression of cell cycle-related proteins, cancer cells undergo a profound series of metabolic adaptations focused to satisfy their excessive demand for biomass. An essential metabolic transformation of these cells is increased glycolysis, which is currently the focus of anticancer therapies. Several key players have been identified, so far, that adapt glycolysis to allow an increased proliferation in cancer. In this issue of the Biochemical Journal, Novellasdemunt and colleagues elegantly identify a novel mechanism by which MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2], a key component of the MAPK pathway, up-regulates glycolysis in response to stress in cancer cells. The authors found that, by phosphorylating specific substrate residues, MK2 promotes both increased the gene transcription and allosteric activation of PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), a key glycolysis-promoting enzyme. These results reveal a novel pathway through which MK2 co-ordinates metabolic adaptation to cell proliferation in cancer and highlight PFKFB3 as a potential therapeutic target in this devastating disease.

  10. Use of Culturally Focused Theoretical Frameworks for Adapting Diabetes Prevention Programs: A Qualitative Review

    PubMed Central

    Johnson-Jennings, Michelle; Baumann, Ana A.; Proctor, Enola

    2015-01-01

    Introduction Diabetes disproportionately affects underserved racial/ethnic groups in the United States. Diabetes prevention interventions positively influence health; however, further evaluation is necessary to determine what role culture plays in effective programming. We report on the status of research that examines cultural adaptations of diabetes prevention programs. Methods We conducted database searches in March and April 2014. We included studies that were conducted in the United States and that focused on diabetes prevention among African Americans, American Indians/Alaska Natives, Asian Americans/Pacific Islanders, and Latinos. Results A total of 58 studies were identified for review; 29 were excluded from evaluation. Few adaptations referenced or followed recommendations for cultural adaptation nor did they justify the content modifications by providing a rationale or evidence. Cultural elements unique to racial/ethnic populations were not assessed. Conclusion Future cultural adaptations should use recommended processes to ensure that culture’s role in diabetes prevention–related behavioral changes contributes to research. PMID:25950567

  11. Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis

    SciTech Connect

    Perkó, Zoltán Gilli, Luca Lathouwers, Danny Kloosterman, Jan Leen

    2014-03-01

    The demand for accurate and computationally affordable sensitivity and uncertainty techniques is constantly on the rise and has become especially pressing in the nuclear field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of nuclear installations. Besides traditional, already well developed methods – such as first order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE) has been given a growing emphasis in recent years due to its simple application and good performance. This paper presents new developments of the research done at TU Delft on such Polynomial Chaos (PC) techniques. Our work is focused on the Non-Intrusive Spectral Projection (NISP) approach and adaptive methods for building the PCE of responses of interest. Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating the PC coefficients. The algorithm is based on Gerstner's procedure for calculating multi-dimensional integrals but proves to be computationally significantly cheaper, while at the same it retains a similar accuracy as the original method. More importantly the issue of basis adaptivity has been investigated and two techniques have been implemented for constructing the sparse PCE of quantities of interest. Not using the traditional full PC basis set leads to further reduction in computational time since the high order grids necessary for accurately estimating the near zero expansion coefficients of polynomial basis vectors not needed in the PCE can be excluded from the calculation. Moreover the sparse PC representation of the response is easier to handle when used for sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors. The developed grid and basis adaptive methods have been implemented in Matlab as the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested on four analytical problems. These show consistent good performance both

  12. A novel adaptive multi-focus image fusion algorithm based on PCNN and sharpness

    NASA Astrophysics Data System (ADS)

    Miao, Qiguang; Wang, Baoshu

    2005-05-01

    A novel adaptive multi-focus image fusion algorithm is given in this paper, which is based on the improved pulse coupled neural network(PCNN) model, the fundamental characteristics of the multi-focus image and the properties of visual imaging. Compared with the traditional algorithm where the linking strength, βij, of each neuron in the PCNN model is the same and its value is chosen through experimentation, this algorithm uses the clarity of each pixel of the image as its value, so that the linking strength of each pixel can be chosen adaptively. A fused image is produced by processing through the compare-select operator the objects of each firing mapping image taking part in image fusion, deciding in which image the clear parts is and choosing the clear parts in the image fusion process. By this algorithm, other parameters, for example, Δ, the threshold adjusting constant, only have a slight effect on the new fused image. It therefore overcomes the difficulty in adjusting parameters in the PCNN. Experiments show that the proposed algorithm works better in preserving the edge and texture information than the wavelet transform method and the Laplacian pyramid method do in multi-focus image fusion.

  13. Adaptation and Implementation of a Trauma-Focused Cognitive Behavioral Intervention for Girls in Child Welfare.

    PubMed

    Auslander, Wendy; McGinnis, Hollee; Tlapek, Sarah; Smith, Penny; Foster, April; Edmond, Tonya; Dunn, Jerry

    2016-12-15

    This study describes the process of adapting and implementing Girls Aspiring toward Independence (GAIN), a trauma-focused, group-based therapy adapted from Cognitive Behavioral Intervention for Trauma in Schools (CBITS) for girls in child welfare. Descriptive data were examined on 3 outcomes: posttraumatic stress disorder (PTSD), depression, and social problem-solving skills among adolescent girls in the child welfare system. Qualitative and quantitative methods were utilized to inform the adaptation of the CBITS intervention, evaluate feasibility, treatment fidelity, and acceptability, and to test the effects of the intervention. Girls ages 12 to 18 (N = 27) were randomly assigned to the experimental and usual care conditions. Participants' symptoms of PTSD and depression and social problem-solving skills were evaluated at pre, post- (3 months), and follow-up (6 months) assessments. Adaptations for GAIN were primarily related to program structure. Data indicated that the program was receptive to girls in child welfare and that it was feasible to recruit, randomize, assess outcomes, and implement with adequate fidelity. Retention was more successful among younger girls. Descriptive initial data showed greater reductions in the percentage of girls with PTSD and depression, and modest increases in social problem-solving skills in the experimental versus usual care condition. Despite the growth of knowledge in dissemination and implementation research, the application of trauma-focused empirically supported treatment to child welfare populations lags behind. A large-scale RCT is needed to determine if GAIN is effective in reducing mental health problems and social problem-solving in the child welfare population. (PsycINFO Database Record

  14. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  15. Adaptive array technique for differential-phase reflectometry in QUEST

    SciTech Connect

    Idei, H. Hanada, K.; Zushi, H.; Nagata, K.; Mishra, K.; Itado, T.; Akimoto, R.; Yamamoto, M. K.

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.

  16. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water

    NASA Astrophysics Data System (ADS)

    Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.

    2015-03-01

    In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).

  17. PMN-PT single crystal focusing transducer fabricated using a mechanical dimpling technique.

    PubMed

    Lam, K H; Chen, Y; Cheung, K F; Dai, J Y

    2012-01-01

    A ∼5MHz focusing PMN-PT single crystal ultrasound transducer has been fabricated utilizing a mechanical dimpling technique, where the dimpled crystal wafer was used as an active element of the focusing transducer. For the dimpled focusing transducer, the effective electromechanical coupling coefficient was enhanced significantly from 0.42 to 0.56. The dimpled transducer also yields a -6dB bandwidth of 63.5% which is almost double the bandwidth of the plane transducer. An insertion loss of the dimpled transducer (-18.1dB) is much lower than that of the plane transducer. Finite element simulation also reveals specific focused beam from concave crystal surface. These promising results show that the dimpling technique can be used to develop high-resolution focusing single crystal transducers.

  18. High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique.

    PubMed

    Chen, Y; Lam, K H; Zhou, D; Cheng, W F; Dai, J Y; Luo, H S; Chan, H L W

    2013-02-01

    High frequency (∼30MHz and ∼80MHz) focusing ultrasound transducers were fabricated using a PMN-0.28PT single crystal by a mechanical dimpling technique. The dimpled single crystal was used as an active element for the focusing transducer. Compared with a plane transducer, the focusing transducer fabricated with a dimpled active element exhibits much broader bandwidth and higher sensitivity. Besides, a high quality image can be obtained by the 30MHz focusing transducer, in which the -6dB axial and lateral resolution is 27μm and 139μm, respectively. These results prove that the dimpling technique is capable to fabricate the high frequency focusing transducers with excellent performance for imaging applications.

  19. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system.

    PubMed

    Lee, Jaewon; Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young; Mattson, Mark P

    2014-07-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.

  20. Domain adaptation of statistical machine translation with domain-focused web crawling.

    PubMed

    Pecina, Pavel; Toral, Antonio; Papavassiliou, Vassilis; Prokopidis, Prokopis; Tamchyna, Aleš; Way, Andy; van Genabith, Josef

    In this paper, we tackle the problem of domain adaptation of statistical machine translation (SMT) by exploiting domain-specific data acquired by domain-focused crawling of text from the World Wide Web. We design and empirically evaluate a procedure for automatic acquisition of monolingual and parallel text and their exploitation for system training, tuning, and testing in a phrase-based SMT framework. We present a strategy for using such resources depending on their availability and quantity supported by results of a large-scale evaluation carried out for the domains of environment and labour legislation, two language pairs (English-French and English-Greek) and in both directions: into and from English. In general, machine translation systems trained and tuned on a general domain perform poorly on specific domains and we show that such systems can be adapted successfully by retuning model parameters using small amounts of parallel in-domain data, and may be further improved by using additional monolingual and parallel training data for adaptation of language and translation models. The average observed improvement in BLEU achieved is substantial at 15.30 points absolute.

  1. Adaptive Cellular Stress Pathways as Therapeutic Targets of Dietary Phytochemicals: Focus on the Nervous System

    PubMed Central

    Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young

    2014-01-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. PMID:24958636

  2. Cross-section adjustment techniques for BWR adaptive simulation

    NASA Astrophysics Data System (ADS)

    Jessee, Matthew Anderson

    Computational capability has been developed to adjust multi-group neutron cross-sections to improve the fidelity of boiling water reactor (BWR) modeling and simulation. The method involves propagating multi-group neutron cross-section uncertainties through BWR computational models to evaluate uncertainties in key core attributes such as core k-effective, nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multi-group cross-sections to minimize the disagreement between BWR modeling predictions and measured plant data. For this work, measured plant data were virtually simulated in the form of perturbed 3-D nodal power distributions with discrepancies with predictions of the same order of magnitude as expected from plant data. Using the simulated plant data, multi-group cross-section adjustment reduces the error in core k-effective to less than 0.2% and the RMS error in nodal power to 4% (i.e. the noise level of the in-core instrumentation). To ensure that the adapted BWR model predictions are robust, Tikhonov regularization is utilized to control the magnitude of the cross-section adjustment. In contrast to few-group cross-section adjustment, which was the focus of previous research on BWR adaptive simulation, multigroup cross-section adjustment allows for future fuel cycle design optimization to include the determination of optimal fresh fuel assembly designs using the adjusted multi-group cross-sections. The major focus of this work is to efficiently propagate multi-group neutron cross-section uncertainty through BWR lattice physics calculations. Basic neutron cross-section uncertainties are provided in the form of multi-group cross-section covariance matrices. For energy groups in the resolved resonance energy range, the cross-section uncertainties are computed using an infinitely-dilute approximation of the neutron flux. In order to accurately account for spatial and

  3. A simple focal-length measurement technique for adaptive microlenses using z-scan

    NASA Astrophysics Data System (ADS)

    Abdelaziez, Yasser; Banerjee, Partha P.

    2004-10-01

    A simple technique for focal length measurements of adaptive micro-lenses using z-scan is reported. Focal length is one of the most important parameters of any lens. The effective focal length is measured with reference to the principal points that are not easy to find especially for micro-lenses. In addition, variable focal length microlenses pose a different challenge that makes the process of determining their exact focal length a tedious and difficult process. Classical methods such as nodal slide and magnification have been used for focal length determination. Also, advanced Interference techniques such as Talbot, Moire, Digital Speckle, Zygo and Joint Fourier Transform were used for focal length measurements. These techniques require more elaborate setups and difficult to implement, especially for microlenses. Recently a power meter was used to find the focal length of an unknown lens. Most of the techniques mentioned above proof to be not simple for microlens characterization. The z-scan technique has been implemented, for quite sometimes, to characterize the third-order effects of a nonlinear optical material. The z-scan provides information on both the sign and magnitude of the non-linear refractive index and offer advantage of simplicity. We have used a regular lens to collimate and focus light unto the lens under test. By scanning the lens under test and measuring the on-axis intensity, one can find the focal length. This is because the on-axis intensity is proportional to the phase of the lens and therefore the focal length. In the case of an adaptive lens with its focal length is a function of the applied voltage, the scanning occurs for each voltage value that will correspond to the on-axis refractive index change and therefore the far field on-axis intensity. This described technique above is easy to implement and can achieve good accuracy due to the inherent sensitivity of the z-scan.

  4. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    PubMed Central

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Wetzstein, Gordon

    2017-01-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one. PMID:28193871

  5. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays.

    PubMed

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A; Wetzstein, Gordon

    2017-02-28

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  6. Subreflector Focusing Techniques Applied to New DSS-15 and DSS-45 34-meter Antennas

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.; Katow, M. S.

    1985-01-01

    An improved technique to determine the subreflector translations required to properly focus a Cassegrainian antenna, under gravity loading, at a full range of elevation angles, is presented. This technique is applied to the 34-m antenna configuration installed at stations DSS-15 (Goldstone, California) and DSS-45 (Australia). The subreflector lateral and axial translations, to be stored into the antenna-control systems, are computed and tabulated. The relationships that govern the main parameters are also presented for future subreflector focusing analysis under wind and thermal loadings.

  7. Visualization of the multiple supersonic jet oscillations by swept focused strobed schlieren technique

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Taghavi, Ray

    1994-01-01

    The natural flapping mode oscillations of a multiple rectangular supersonic jet is visualized by the newly developed strobed focusing schlieren technique. Four parallel underexpanded, converging rectangular jets, exhausting into ambient air at a fully expanded Mach number of 1.61 are visualized in this study. This technique clearly shows the oscillations at the natural screech frequency and offers tremendous flexibility in the study of these flow fields.

  8. A Space/Fast-Time Adaptive Monopulse Technique

    NASA Astrophysics Data System (ADS)

    Seliktar, Yaron; Williams, Douglas B.; Holder, E. Jeff

    2006-12-01

    Mainbeam jamming poses a particularly difficult challenge for conventional monopulse radars. In such cases spatially adaptive processing provides some interference suppression when the target and jammer are not exactly coaligned. However, as the target angle approaches that of the jammer, mitigation performance is increasingly hampered and distortions are introduced into the resulting beam pattern. Both of these factors limit the reliability of a spatially adaptive monopulse processor. The presence of coherent multipath in the form of terrain-scattered interference (TSI), although normally considered a nuisance, can be exploited to suppress mainbeam jamming with space/fast-time processing. A method is presented offering space/fast-time monopulse processing with distortionless spatial array patterns that can achieve improved angle estimation over spatially adaptive monopulse. Performance results for the monopulse processor are obtained for mountaintop data containing a jammer and TSI, which demonstrate a dramatic improvement in performance over conventional monopulse and spatially adaptive monopulse.

  9. Employment of Adaptive Learning Techniques for the Discrimination of Acoustic Emissions.

    DTIC Science & Technology

    1983-11-01

    8D-1Ai38 142 EMPLOYMENT OP ADAPTIVE LEARNING TECHNIQUES FOR THE I DISCRIMINATION OF ACOU..(U) GENERAL ELECTRIC CORPORATE U Ch, RESEARCH AND...OFSTNDRD-96- 1.5%. 111 11 :%____ 111. %I1~.~ 11 1 - 111 -- k. -Jr -. P. -L -. b. EMPLOYMENT OF ADAPTIVE LEARNING TECHNIQUESEli FOR THE DISCRIMINATION OF...8217Include Security Claaaaficatiano Employment of Adaptive * Learning Techniques for the Discrimination Of Acoustic Emissions (Unclassified) 12.’ PE SNAU.R S

  10. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  11. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    SciTech Connect

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.

    2004-03-01

    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  12. The Nominal Group Technique as an Evaluation Tool for Solution-Focused Coaching

    ERIC Educational Resources Information Center

    Roeden, John M.; Maaskant, Marian A.; Curfs, Leopold M. G.

    2012-01-01

    Background: Solution-focused coaching (SFC) helps individuals or groups to achieve their preferred outcomes by evoking and co-constructing solutions. SFC has been shown to be helpful for persons with ID as well as for teams coaching people with ID. Nominal Group Technique (NGT) helps to organize people's thoughts with regard to a single question.…

  13. Behavior Breakthroughs[TM]: Future Teachers Reflect on a Focused Game Designed to Teach ABA Techniques

    ERIC Educational Resources Information Center

    Lowdermilk, John; Martinez, Deborah; Pecina, Julie; Beccera, Lisa; Lowdermilk, Carey

    2012-01-01

    This article examines the use of a focused educational game. The game, "Behavior Breakthroughs"[TM], was created to teach people that work with children with autism, appropriate behavior management techniques. A group of undergraduate, teacher education students played the game and provided feedback on their experiences.

  14. Using Group Counseling Techniques to Clarify and Deepen the Focus of Supervision Groups

    ERIC Educational Resources Information Center

    Kees, Nathalie L.; Leech, Nancy L.

    2002-01-01

    Suggestions for using group counseling techniques for clarifying and deepening the focus within a supervision group are described. Examples are provided from a supervision group of advanced group counseling students. Each student facilitated an ongoing group in settings ranging from schools to residential treatment. Clarifying and deepening rounds…

  15. Use by gynecologists of a modified sensate focus technique to treat vaginismus causing infertility.

    PubMed

    Jindal, Umesh N; Jindal, Sheetal

    2010-11-01

    Of 5,341 infertile couples seen over an 8-year period, 76 (1.4%) had primary vaginismus, of whom 63 were treated with the use of a simplified sensate focus technique. There was complete symptomatic resolution of vaginismus in 60 women, and pregnancy was achieved in 33.

  16. New techniques of determining focus position in gamma knife operation using 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Xiong, Yingen; Wang, Dezong; Zhou, Quan

    1994-09-01

    In this paper, new techniques of determining the focus of a disease position in a gamma knife operation are presented. In these techniques, the transparent 3D color image of the human body organ is reconstructed using a new three-dimensional reconstruction method, and then the position, the area, and the volume of focus of a disease such as cancer or a tumor are calculated. They are used in the gamma knife operation. The CT pictures are input into a digital image processing system. The useful information is extracted and the original data are obtained. Then the transparent 3D color image is reconstructed using these original data. By using this transparent 3D color image, the positions of the human body organ and the focus of a disease are determined in a coordinate system. While the 3D image is reconstructed, the area and the volume of human body organ and focus of a disease can be calculated at the same time. It is expressed through actual application that the positions of human body organ and focus of a disease can be determined exactly by using the transparent 3D color image. It is very useful in gamma knife operation or other surgical operation. The techniques presented in this paper have great application value.

  17. Career Adapt-Abilities Scale--Netherlands Form: Psychometric Properties and Relationships to Ability, Personality, and Regulatory Focus

    ERIC Educational Resources Information Center

    van Vianen, Annelies E. M.; Klehe, Ute-Christine; Koen, Jessie; Dries, Nicky

    2012-01-01

    The Career Adapt-Abilities Scale (CAAS)--Netherlands Form consists of four scales, each with six items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. Internal consistency estimates for the subscale and total scores ranged from…

  18. Beaconless adaptive-optics technique for HEL beam control

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  19. Techniques for grid manipulation and adaptation. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.

    1992-01-01

    Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.

  20. Disability and Sunshine: Can Hedonic Predictions Be Improved by Drawing Attention to Focusing Illusions or Emotional Adaptation?

    ERIC Educational Resources Information Center

    Ubel, Peter A.; Loewenstein, George; Jepson, Christopher

    2005-01-01

    People frequently mispredict the long-term emotional impact of circumstances. The authors examine 2 causes of such mispredictions--a focusing illusion and underappreciation of adaptation. In Experiment 1, the authors found, in 852 adults, that quality of life estimates (for living with disability) were not increased by reducing focusing illusions.…

  1. Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms.

    PubMed

    Ferraro, P; Paturzo, M; Memmolo, P; Finizio, A

    2009-09-15

    We show here that through an adaptive deformation of digital holograms it is possible to manage the depth of focus in 3D imaging reconstruction. Deformation is applied to the original hologram with the aim to put simultaneously in focus, and in one reconstructed image plane, different objects lying at different distances from the hologram plane (i.e., CCD sensor). In the same way, by adapting the deformation it is possible to extend the depth of field having a tilted object entirely in focus. We demonstrate the method in both lensless as well as in microscope configuration.

  2. Micro-contacting of single and periodically arrayed columnar silicon structures by focused ion beam techniques

    SciTech Connect

    Friedrich, F. Herfurth, N.; Teodoreanu, A.-M.; Boit, C.

    2014-06-16

    Micron-sized, periodic crystalline Silicon columns on glass substrate were electrically contacted with a transparent conductive oxide front contact and a focused ion beam processed local back contact. Individual column contacts as well as arrays of >100 contacted columns were processed. Current-voltage characteristics of the devices were determined. By comparison with characteristics obtained from adapted device simulation, the absorber defect density was reconstructed. The contacting scheme allows the fabrication of testing devices in order to evaluate the electronic potential of promising semiconductor microstructures.

  3. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  4. Adaptive parameter blind source separation technique for wheel condition monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Gao, Hongli; Liu, Qiyue; Farzadpour, F.; Grebe, C.; Tian, Ying

    2017-06-01

    Wheel condition monitoring has played a key role in the safe operation of railway vehicles. Blind source separation (BSS) is an attractive tool due to its excellent performance in separating source signals from their mixtures when no detailed knowledge of defective sources and the mixing process is assumed. In this paper, we propose an adaptive parameter BSS approach based on the adaptive time-frequency distributions theory in order to deal with the non-stationary blind separation problem and apply it to wheel defect monitoring. Some classical time-frequency signal analysis and BSS methods are applied in comparison with the proposed approach through frequency-varying non-stationary and time-varying non-stationary simulations. Experiments of single and multi-fault wheels have been conducted using the wheel/rail simulation facility to illustrate the effectiveness of the proposed method in processing the non-stationary signals with varying fault complexity.

  5. Adaptive Techniques for Control of Large Space Structures.

    DTIC Science & Technology

    1984-12-01

    S1 a ) remais oiniall teruine the robt imss propertie% of adaptive stable. 1 hts. h\\ iheoi-cin 2. an) -regionl of local algorithms Ni oreose, . input...that Vg¢R ev + .[Hev(Jw)] 4 y and 1 He(iw) + Hey • ’I (4.8a) Then, bounds on lei 2 and 1o. can be obtained from: le-e~2 1 112*2 l~ 2 ’eo 12 [ie.* 2

  6. PDMS droplet formation and characterization by hydrodynamic flow focusing technique in a PDMS square microchannel

    NASA Astrophysics Data System (ADS)

    Carneiro, J.; Doutel, E.; Campos, J. B. L. M.; Miranda, J. M.

    2016-10-01

    This study reports the generation of polydimethylsiloxane (PDMS) droplets by hydrodynamic flow focusing technique in a PDMS square microchannel. The droplet generation was characterized and a flow regime map addressed by the capillary numbers of each phase was assembled. Different flow regimes were found—dripping, jetting, threading and viscous displacement and the respective boundaries were sketched. Droplet size, breakup distance and formation frequency were analysed and quantified for the jetting and dripping regimes. The dripping regime showed better results for droplet formation, leading to the highest throughput of monodisperse droplets: formation frequency of  ≈12 Hz and droplets almost uniform in size (2.8% the coefficient of variance). The qualitative analysis and quantitative measurement of the different variables and their correlation within a capillary dependent regime map proved to be an invaluable tool to study droplet formation by hydrodynamic flow focusing technique in a PDMS square microchannel.

  7. Adaptive Focused Acoustics (AFA) Improves the Performance of Microtiter Plate ELISAs.

    PubMed

    Green, David J; Rudd, Edwin A; Laugharn, James A

    2014-08-01

    We investigated the use of Adaptive Focused Acoustics (AFA) technology to improve the performance of microtiter plate enzyme-linked immunosorbent assays (ELISAs). Experiments were performed with commercially available AFA instrumentation and off-the-shelf 96-well microtiter plate sandwich ELISAs. AFA was applied over a range of acoustic energies, temperatures, and durations to the antigen/antibody binding step of an ELISA for measuring HIV-1 p24 in tissue culture samples. AFA-mediated antigen/antibody binding was enhanced up to 2-fold over passive binding at comparable temperatures and was superior or comparable at low temperature (8-10 °C) to passive binding at 37 °C. Lower nonspecific binding (NSB), lower inter- and intra-assay coefficients of variation (CVs), higher Z' factors, and lower limits of detection (LODs) were measured in AFA-mediated assays compared with conventional passive binding. In a more limited study, AFA enhancement of antigen/antibody binding and lower NSB was measured in an ELISA for measuring IGFBP-3 in human plasma. We conclude from this study that application of AFA to antigen/antibody binding steps in microtiter plate ELISAs can enhance key assay performance parameters, particularly Z' factors and LODs. These features render AFA-mediated binding assays potentially more useful in applications such as high-throughput screening and in vitro diagnostics than assays processed with conventional passive antigen/antibody binding steps.

  8. Type II Toxin-Antitoxin Distribution and Adaptive Aspects on Xanthomonas Genomes: Focus on Xanthomonas citri

    PubMed Central

    Martins, Paula M. M.; Machado, Marcos A.; Silva, Nicholas V.; Takita, Marco A.; de Souza, Alessandra A.

    2016-01-01

    Prokaryotic toxin-antitoxin (TA) systems were first described as being designed to prevent plasmid loss in bacteria. However, with the increase in prokaryotic genome sequencing, recently many TAs have been found in bacterial chromosomes, having other biological functions, such as environmental stress response. To date, only few studies have focused on TA systems in phytopathogens, and their possible impact on the bacterial fitness. This may be especially important for pathogens like Xanthomonas spp., which live epiphytically before entering the host. In this study, we looked for TA systems in the genomes of 10 Xanthomonas strains. We verified that citrus-infecting pathovars have, on average, 50% more TAs than other Xanthomonas spp. and no genome harbors classical toxins such as MqsR, RelB, and HicA. Only one TA system (PIN_VapC-FitB-like/SpoVT_AbrB) was conserved among the Xanthomonas genomes, suggesting adaptive aspects concerning its broad occurrence. We also detected a trend of toxin gene loss in this genus, while the antitoxin gene was preferably maintained. This study discovers the quantitative and qualitative differences among the type II TA systems present in Xanthomonas spp., especially concerning the citrus-infecting strains. In addition, the antitoxin retention in the genomes is possibly related with the resistance mechanism of further TA infections as an anti-addiction system or might also be involved in regulation of certain specific genes. PMID:27242687

  9. Adaptive Focusing For Ultrasonic Transcranial Brain Therapy: First In Vivo Investigation On 22 Sheep

    NASA Astrophysics Data System (ADS)

    Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickael; Boch, Anne Laure; Kujas, Michelle; Fink, Mathias

    2005-03-01

    A high power prototype dedicated to trans-skull therapy has been tested in vivo on 22 sheep. The array is made of 300 high power transducers working at 1MHz central frequency and is able to achieve 400 bars at focus in water during five seconds with a 50% percent duty cycle. In the first series of experiments, 10 sheep were treated and sacrificed immediately after treatment. A complete craniotomy was performed on half of the treated animal models in order to get a reference model. On the other half, minimally invasive surgery has been performed: a hydrophone was inserted at a given target location inside the brain through a craniotomy of a few mm2. A time reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. Thanks to the high power technology of the prototype, trans-skull adaptive treatment could be achieved. In a second series of experiments, 12 animals were divided into three groups and sacrificed respectively one, two or three weeks after treatment. Finally, Magnetic Resonance Imaging and histological examination were performed to confirm tissue damage.

  10. Scientific Motivational Techniques Adaptable to Social Studies Lessons

    ERIC Educational Resources Information Center

    Steiner, Robert L.

    1975-01-01

    Two science classroom techniques that can be used in the social studies classroom to motivate students involve puzzling phenomena and relating science to social issues such as over-population, energy, and pollution. (JR)

  11. pH fractionation and identification of proteins: comparing column isoelectric focusing vs liquid based focusing techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand how bacteria react and adapt to changes in the environment, it is necessary to identify the proteins the bacteria produces under different environmental conditions. However, the proteomes of even simple organisms like bacteria can contain a significant number of proteins, mak...

  12. SFM Technique and Focus Stacking for Digital Documentation of Archaeological Artifacts

    NASA Astrophysics Data System (ADS)

    Clini, P.; Frapiccini, N.; Mengoni, M.; Nespeca, R.; Ruggeri, L.

    2016-06-01

    Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres) it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.

  13. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review.

    PubMed

    Sheng, Juan-Juan; Jin, Jian-Ping

    2014-01-01

    Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.

  14. Generalized frequency-domain synthetic aperture focusing technique for ultrasonic imaging of irregularly layered objects.

    PubMed

    Qin, Kaihuai; Yang, Chun; Sun, Feng

    2014-01-01

    In ultrasonic nondestructive testing (NDT), the phase shift migration (PSM) technique, as a frequency-domain implementation of the synthetic aperture focusing technique (SAFT), can be adopted for imaging of regularly layered objects that are inhomogeneous only in depth but isotropic and homogeneous in the lateral direction. To deal with irregularly layered objects that are anisotropic and inhomogeneous in both the depth and lateral directions, a generalized frequency- domain SAFT, called generalized phase shift migration (GPSM), is proposed in this paper. Compared with PSM, the most significant innovation of GPSM is that the phase shift factor is generalized to handle anisotropic media with lateral velocity variations. The generalization is accomplished by computer programming techniques without modifying the PSM model. In addition, SRFFT (split-radix fast Fourier transform) input/output pruning algorithms are developed and employed in the GPSM algorithm to speed up the image reconstructions. The experiments show that the proposed imaging techniques are capable of reconstructing accurate shapes and interfaces of irregularly layered objects. The computing time of the GPSM algorithm is much less than the time-domain SAFT combined with the ray-tracing technique, which is, at present, the common method used in ultrasonic NDT industry for imaging layered objects. Furthermore, imaging regularly layered objects can be regarded as a special case of the presented technique.

  15. Writing Techniques and Adaptations for Home and Classroom.

    ERIC Educational Resources Information Center

    Dunaway, Avtar; Klein, Marsha Dunn

    In order to learn to write, physically disabled children often require special seating systems that align their bodies and improve their muscle tone. The writing paper must be placed in an appropriate position and must be stabilized. The writing tools should be as interesting as possible to keep the child's attention focused on writing, and can…

  16. Approaches to adaptive digital control focusing on the second order modal descriptions of large, flexible spacecraft dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.

    1979-01-01

    The widespread modal analysis of flexible spacecraft and recognition of the poor a priori parameterization possible of the modal descriptions of individual structures have prompted the consideration of adaptive modal control strategies for distributed parameter systems. The current major approaches to computationally efficient adaptive digital control useful in these endeavors are explained in an original, lucid manner using modal second order structure dynamics for algorithm explication. Difficulties in extending these lumped-parameter techniques to distributed-parameter system expansion control are cited.

  17. Multi-Attribute Utility Theory and Adaptive Techniques for Intelligent Web-Based Educational Software

    ERIC Educational Resources Information Center

    Kabassi, K.; Virvou, M.

    2006-01-01

    This paper describes how the Multi-Attribute Utility Theory can be combined with adaptive techniques to improve individualised teaching in an Intelligent Learning Environment (ILE). The ILE is called Web F-SMILE, it operates over the Web and is meant to help novice users learn basic skills of computer use. Tutoring is dynamically adapted to the…

  18. Swarm Intelligence: New Techniques for Adaptive Systems to Provide Learning Support

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2012-01-01

    The notion of a system adapting itself to provide support for learning has always been an important issue of research for technology-enabled learning. One approach to provide adaptivity is to use social navigation approaches and techniques which involve analysing data of what was previously selected by a cluster of users or what worked for…

  19. Monaural loudness adaptation for middle-intensity middle-frequency signals: the importance of measurement technique.

    PubMed

    Tannen, R S; Weiler, E M; Warm, J S; Dember, W N; Simon, J O

    2001-10-01

    Using the Simple Adaptation technique (SA) and the Ipsilateral Comparison Paradigm (ICP), the authors studied monaural loudness adaptation to a middle-intensity [60 dB(A)] tone at signal frequencies of 250, 1000, and 4000 Hz in the left and right ears. Adaptation effects were absent when the SA procedure was used. However, they were observed uniformly across all frequency values with the ICP, a result that challenges the assertion in the literature, on the basis of SA measures, that loudness adaptation for middle-intensity signals occurs only at frequencies above 4000 Hz. The ICP features periodic intensity modulations (+/-10 dB relative to the base signal) to accommodate listeners' needs for referents by which they can gauge subtle changes in the loudness of the adapting tone, a key component that is missing in the SA method. Adaptation effects in this investigation were similar in both ears, supporting the equal susceptibility assumption common in loudness adaptation studies.

  20. Adaptive Grid Techniques for Elliptic Fluid-Flow Problems,

    DTIC Science & Technology

    1985-12-01

    J . F . (1984), "Grid Generation Techniques in Computational Fluid Dynamics," AIAA Jnl., Vol. 22, No. 11, pp. 1505-1523. Thompson , J . F . (1983...Procedure," Ph.D. Thesis, Dept. of Computer Science, Stanford University, Calif. Tang, W. P., W. Skamarock, and J. Oliger (1985). To appear. Thompson

  1. Hybrid active focusing with adaptive dispersion for higher defect sensitivity in guided wave inspection of cylindrical structures

    NASA Astrophysics Data System (ADS)

    Lowe, P. S.; Sanderson, R.; Boulgouris, N. V.; Gan, T. H.

    2016-07-01

    Ultrasonic guided wave inspection is widely used for scanning prismatic structures such as pipes for metal loss. Recent research has investigated focusing the sound energy into predetermined regions of a pipe in order to enhance the defect sensitivity. This paper presents an active focusing technique which is based on a combination of numerical simulation and time reversal concept. The proposed technique is empirically validated using a 3D laser vibrometry measurement of the focal spot. The defect sensitivity of the proposed technique is compared with conventional active focusing, time reversal focusing and synthetic focusing through an empirically validated finite element parametric study. Based on the results, the proposed technique achieves approximately 10 dB improvement of signal-to-coherent-noise ratio compared to the conventional active focusing and time reversal focusing. It is also demonstrated that the proposed technique to have an amplitude gain of around 5 dB over synthetic focusing for defects <0.5λs. The proposed technique is shown to have the potential to improve the reliably detectable flaw size in guided wave inspection from 9% to less than 1% cross-sectional area loss.

  2. Composite-Grid Techniques and Adaptive Mesh Refinement in Computational Fluid Dynamics

    DTIC Science & Technology

    1990-01-01

    the equations govern- ing the flow. The patched adaptive mesh refinement technique, devised at Stanford by Oliger, et al ., copes with these sources of...patched adaptive mesh refinement technique, devised at Stanford by Oliger et al . [OL184], copes with these sources of error efficiently by refining...differential equation, as in the numerical grid generation methods proposed by Thompson et al . [THO85], or simply a list of pairs of points in

  3. Develop techniques for ion implantation of PLZT for adaptive optics

    NASA Astrophysics Data System (ADS)

    Craig, R. A.; Batishko, C. R.; Brimhall, J. L.; Pawlewicz, W. T.; Stahl, K. A.

    1989-11-01

    Battelle Pacific Northwest Laboratory (PNL) conducted research into the preparation and characterization of ion-implanted adaptive optic elements based on lead-lanthanum-zirconate-titanate (PLZT). Over the 4-yr effort beginning FY 1985, the ability to increase the photosensitivity of PLZT and extend it to longer wavelengths was developed. The emphasis during the last two years was to develop a model to provide a basis for choosing implantation species and parameters. Experiments which probe the electronic structure were performed on virgin and implanted PLZT samples. Also performed were experiments designed to connect the developing conceptual model with the experimental results. The emphasis in FY 1988 was to extend the photosensitivity out to diode laser wavelengths. The experiments and modelling effort indicate that manganese will form appropriate intermediate energy states to achieve the longer wavelength photosensitivity. Preliminary experiments were also conducted to deposit thin film PLZT.

  4. Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-guo; Wang, Ming-jia; Han, Guang-liang

    2011-08-01

    Being an efficient method of information fusion, image fusion has been used in many fields such as machine vision, medical diagnosis, military applications and remote sensing. In this paper, Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing, including segmentation, target recognition et al. and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First, the two original images are decomposed by wavelet transform. Then, based on the PCNN, a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength, so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So, the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment, the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range, which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore, by this algorithm, the threshold adjusting constant is estimated by appointed iteration number. Furthermore, In order to sufficient reflect order of the firing time, the threshold adjusting constant αΘ is estimated by appointed iteration number. So after the iteration achieved, each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules, the experiments upon Multi-focus image are done. Moreover

  5. System-focused environmental flow regime prescription, monitoring and adaptive management

    NASA Astrophysics Data System (ADS)

    Hetherington, David; Lexartza Artza, Irantzu

    2016-04-01

    that more peripheral influencing factors should be given serious consideration when developing environmental flow regimes. These factors could include the development of ice, non-fluvial geomorphic processes such as landslides, connectivity with groundwater and provision for local cottage industries. Even with a thorough appreciation of the holistic system, the value of detailed environmental monitoring and adaptive management plans cannot be underestimated as a means of further managing risk and uncertainty in complex systems. It is suggested that by taking a more holistic and system-focused approach to environmental flow definition, that environmental flow regimes can be tailored to the specificity and complexity of any given location. By improving the way that environmental flow regimes and associated physical mitigation are prescribed, monitored and managed it should be possible to develop more sustainable forms of energy production whilst minimising environmental harm as far as possible.

  6. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  7. Parallel adaptive mesh refinement techniques for plasticity problems

    SciTech Connect

    Barry, W.J.; Jones, M.T. |; Plassmann, P.E.

    1997-12-31

    The accurate modeling of the nonlinear properties of materials can be computationally expensive. Parallel computing offers an attractive way for solving such problems; however, the efficient use of these systems requires the vertical integration of a number of very different software components, we explore the solution of two- and three-dimensional, small-strain plasticity problems. We consider a finite-element formulation of the problem with adaptive refinement of an unstructured mesh to accurately model plastic transition zones. We present a framework for the parallel implementation of such complex algorithms. This framework, using libraries from the SUMAA3d project, allows a user to build a parallel finite-element application without writing any parallel code. To demonstrate the effectiveness of this approach on widely varying parallel architectures, we present experimental results from an IBM SP parallel computer and an ATM-connected network of Sun UltraSparc workstations. The results detail the parallel performance of the computational phases of the application during the process while the material is incrementally loaded.

  8. Parallel adaptive mesh refinement techniques for plasticity problems

    NASA Technical Reports Server (NTRS)

    Barry, W. J.; Jones, M. T.; Plassmann, P. E.

    1997-01-01

    The accurate modeling of the nonlinear properties of materials can be computationally expensive. Parallel computing offers an attractive way for solving such problems; however, the efficient use of these systems requires the vertical integration of a number of very different software components, we explore the solution of two- and three-dimensional, small-strain plasticity problems. We consider a finite-element formulation of the problem with adaptive refinement of an unstructured mesh to accurately model plastic transition zones. We present a framework for the parallel implementation of such complex algorithms. This framework, using libraries from the SUMAA3d project, allows a user to build a parallel finite-element application without writing any parallel code. To demonstrate the effectiveness of this approach on widely varying parallel architectures, we present experimental results from an IBM SP parallel computer and an ATM-connected network of Sun UltraSparc workstations. The results detail the parallel performance of the computational phases of the application during the process while the material is incrementally loaded.

  9. Three-dimensional adaptive grid-embedding Euler technique

    NASA Astrophysics Data System (ADS)

    Davis, Roger L.; Dannenhoffer, John F., III

    1994-06-01

    A new three-dimensional adaptive-grid Euler procedure is presented that automatically detects high-gradient regions in the flow and locally subdivides the computational grid in these regions to provide a uniform, high level of accuracy over the entire domain. A tunable, semistructured data system is utilized that provides global topological unstructured-grid flexibility along with the efficiency of a local, structured-grid system. In addition, this structure data allows for the flow solution algorithm to be executed on a wide variety of parallel/vector computing platforms. An explicit, time-marching, control volume procedure is used to integrate the Euler equations to a steady state. In addition, a multiple-grid procedure is used throughout the embedded-grid regions as well as on subgrids coarser than the initial grid to accelerate convergence and properly propagate disturbance waves through refined-grid regions. Upon convergence, high flow gradient regions, where it is assumed that large truncation errors in the solution exist, are detected using a combination of directional refinement vectors that have large components in areas of these gradients. The local computational grid is directionally subdivided in these regions and the flow solution is reinitiated. Overall convergence occurs when a prespecified level of accuracy is reached. Solutions are presented that demonstrate the efficiency and accuracy of the present procedure.

  10. Design techniques and analysis of high-resolution neural recording systems targeting epilepsy focus localization.

    PubMed

    Shoaran, Mahsa; Pollo, Claudio; Leblebici, Yusuf; Schmid, Alexandre

    2012-01-01

    The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.

  11. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    SciTech Connect

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  12. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  13. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  14. Experimental Evaluation of an Adaptive Focusing Algorithm for a Microwave Planar Phased-Array Hyperthermia System at UCSF

    DTIC Science & Technology

    1993-05-17

    ESC"--=AD-A267 004 DT1C Tecnical Report EECTESAL 13 1993 I Experimental Evaluation of an Adaptive Focusing Algorithim for a Microwave Planar Phased... surgery , chemo-, and x-ray therapy [15]. One particular method used by itself or in conjunction with another is "tissue heating" or hyperthermia [15-19], a

  15. Improved synthetic aperture focusing technique results of thick concrete specimens through frequency banding

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Barker, Alan; Albright, Austin; Santos-Villalobos, Hector

    2016-02-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply this enhanced SAFT technique to a 2.134 m × 2.134 m × 1.016 m concrete

  16. Archerfish use their shooting technique to produce adaptive underwater jets.

    PubMed

    Dewenter, Jana; Gerullis, Peggy; Hecker, Alexander; Schuster, Stefan

    2017-03-15

    Archerfish are renowned for dislodging aerial prey using well-aimed shots of water. Recently it has been shown that these fish can shape their aerial jets by adjusting the dynamics of their mouth opening and closing. This allows the fish to adjust their jet to target distance so that they can forcefully hit prey over considerable distances. Here, we suggest that archerfish use the same technique to also actively control jets under water. Fired from close range, the underwater jets are powerful enough to lift up buried food particles, which the fish then can pick up. We trained fish so that we could monitor their mouth opening and closing maneuvers during underwater shooting and compare them with those employed in aerial shooting. Our analysis suggests that the fish use the same dynamic mechanism to produce aerial and underwater jets and that they employ the same basic technique to adjust their jets in both conditions. When food is buried in substrate that consists of large particles, the fish use a brief pulse, but they use a longer one when the substrate is more fine-grained. These findings extend the notion that archerfish can flexibly shape their jets to be appropriate in different contexts and suggest that archerfish shooting might have been shaped both by constraints in aerial and underwater shooting.

  17. Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique

    PubMed Central

    Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep

    2015-01-01

    In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032

  18. [Comparison of conventional technique, Ligasure Precise and Harmonic Focus in total thyroidectomy].

    PubMed

    Di Rienzo, R M; Bove, A; Bongarzoni, G; Palone, G; Corradetti, L; Corbellini, L

    2010-01-01

    The aim of this study was to compare the results obtained using an electrothermal bipolar vessel sealing system (Ligasure Precise), a harmonic curved shears (Harmonic Focus) and traditional technique in total thyroidectomy. We have enrolled 93 patients and assigned randomly to three groups of 31 pt: groups L (Ligasure Precise), F (Harmonic Focus) and C (traditional thecnique). Recorded data were demographics, preoperative serum calcium levels, operation time, length of hospital stay, weight of exported gland and pathology, postoperative calcemia at one and two days and recurrent laryngeal nerve paralysis. The three groups did not present statistically significant differences in term of age, gender and pathology classification. No postoperative haemorrhages were observed. The overall incidence of hypocalcemia was 38.9% (36 pt) and the mean days of hospitalization were 2.3 days without statistically significant differences between the three groups. Only one patient (group F) presented temporary recurrent laryngeal nerve paralysis. Mean operation time (minutes) was significantly reduced by approximately 15% in group F (62.7+/-14.1) compared with group C (72.7+/-13.6; Kruskal-Wallis test: p<0.05). Both devices resulted safe and efficient. The only advantage observed was a significant reduction operation time when using Harmonic Foscus curved shears compared to the other techniques.

  19. An optical counting technique with vertical hydrodynamic focusing for biological cells.

    PubMed

    Chiavaroli, Stefano; Newport, David; Woulfe, Bernie

    2010-06-15

    A BARRIER IN SCALING LABORATORY PROCESSES INTO AUTOMATED MICROFLUIDIC DEVICES HAS BEEN THE TRANSFER OF LABORATORY BASED ASSAYS: Where engineering meets biological protocol. One basic requirement is to reliably and accurately know the distribution and number of biological cells being dispensed. In this study, a novel optical counting technique to efficiently quantify the number of cells flowing into a microtube is presented. REH, B-lymphoid precursor leukemia, are stained with a fluorescent dye and frames of moving cells are recorded using a charge coupled device (CCD) camera. The basic principle is to calculate the total fluorescence intensity of the image and to divide it by the average intensity of a single cell. This method allows counting the number of cells with an uncertainty +/-5%, which compares favorably to the standard biological methodology, based on the manual Trypan Blue assay, which is destructive to the cells and presents an uncertainty in the order of 20%. The use of a microdevice for vertical hydrodynamic focusing, which can reduce the background noise of out of focus cells by concentrating the cells in a thin layer, has further improved the technique. Computational fluid dynamics (CFD) simulation and confocal laser scanning microscopy images have shown an 82% reduction in the vertical displacement of the cells. For the flow rates imposed during this study, a throughput of 100-200 cellss is achieved.

  20. Improving synthetic aperture focusing technique for thick concrete specimens via frequency banding

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2016-04-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. While standard Synthetic Aperture Focusing Technique (SAFT) is adequate for many defects with shallow concrete cover, some defects located under deep concrete cover are not easily identified using the standard SAFT. For many defects, particularly defects under deep cover, the use of frequency banded SAFT improves the detectability over standard SAFT. In addition to the improved detectability, the frequency banded SAFT also provides improved scan depth resolution that can be important in determining the suitability of a particular structure to perform its designed safety function. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To validate the advantages of frequency banded SAFT on thick concrete, a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects was fabricated.

  1. Detection of sub-horizontal flaws in concrete using the synthetic aperture focusing technique

    NASA Astrophysics Data System (ADS)

    Hosseini, Zahra

    Concrete deteriorates over time due to environmental changes and/or poor construction processes which can eventually lead to partial or total failure of a structure. Deterioration in concrete manifests itself in different forms such as: freeze and thaw, chemical attack, surface and internal flaws. Concrete and shotcrete linings are widely used as support systems in underground excavations. Surprisingly, a fragmented, damaged shotcrete support system can actually create a less stable environment than the unsupported rock mass. Detection of internal flaws remains a difficult task as they are not always observable on the surface. Yet, the potential to expand and cause damage to the structure is omnipresent. The focus of this work is to locate and characterize two main and common features in concrete structures, (1) sub-horizontal cracks; (2) rock-concrete interfaces. Traditionally, this has been difficult to detect by currently available NDT methods. To obtain high resolution images of cracks in concrete, an extension of the ultrasonic nondestructive technique known as Synthetic Aperture Focusing Technique (SAFT) has been used. However, in order to achieve our research objective, we developed a modified SAFT code in this work. The results of this study demonstrate that the resolving power of our modified 3D SAFT algorithm can provide an accurate profile of both a rock-concrete interface and/or cracks with angles varying from 5 to 15 degrees within concrete slabs having thicknesses of up to twenty centimetres.

  2. Adaptive thresholding technique for retinal vessel segmentation based on GLCM-energy information.

    PubMed

    Mapayi, Temitope; Viriri, Serestina; Tapamo, Jules-Raymond

    2015-01-01

    Although retinal vessel segmentation has been extensively researched, a robust and time efficient segmentation method is highly needed. This paper presents a local adaptive thresholding technique based on gray level cooccurrence matrix- (GLCM-) energy information for retinal vessel segmentation. Different thresholds were computed using GLCM-energy information. An experimental evaluation on DRIVE database using the grayscale intensity and Green Channel of the retinal image demonstrates the high performance of the proposed local adaptive thresholding technique. The maximum average accuracy rates of 0.9511 and 0.9510 with maximum average sensitivity rates of 0.7650 and 0.7641 were achieved on DRIVE and STARE databases, respectively. When compared to the widely previously used techniques on the databases, the proposed adaptive thresholding technique is time efficient with a higher average sensitivity and average accuracy rates in the same range of very good specificity.

  3. Applied Focused Ion Beam Techniques for Sample Preparation of Astromaterials for Integrated Nano-Analysis

    SciTech Connect

    Graham, G A; Teslich, N E; Kearsley, A T; Stadermann, F J; Stroud, R M; Dai, Z R; Ishii, H A; Hutcheon, I D; Bajt, S; Snead, C J; Weber, P K; Bradley, J P

    2007-02-20

    Sample preparation is always a critical step in study of micrometer sized astromaterials available for study in the laboratory, whether their subsequent analysis is by electron microscopy or secondary ion mass spectrometry. A focused beam of gallium ions has been used to prepare electron transparent sections from an interplanetary dust particle, as part of an integrated analysis protocol to maximize the mineralogical, elemental, isotopic and spectroscopic information extracted from one individual particle. In addition, focused ion beam techniques have been employed to extract cometary residue preserved on the rims and walls of micro-craters in 1100 series aluminum foils that were wrapped around the sample tray assembly on the Stardust cometary sample collector. Non-ideal surface geometries and inconveniently located regions of interest required creative solutions. These include support pillar construction and relocation of a significant portion of sample to access a region of interest. Serial sectioning, in a manner similar to ultramicrotomy, is a significant development and further demonstrates the unique capabilities of focused ion beam microscopy for sample preparation of astromaterials.

  4. Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles.

    PubMed

    Kaegi, R; Gasser, Ph

    2006-11-01

    The focused ion beam technique was used to fabricate transmission electron microscope lamellas of selected, micrometre-sized airborne particles. Particles were sampled from ambient air on Nuclepore polycarbonate filters and analysed with an environmental scanning electron microscope. A large number of particles between 0.6 and 10 microm in diameter (projected optical equivalent diameter) were detected and analysed using computer-controlled scanning electron microscopy. From the resulting dataset, where the chemistry, morphology and position of each individual particle are stored, two particles were selected for a more detailed investigation. For that purpose, the particle-loaded filter was transferred from the environmental scanning electron microscope to the focused ion beam, where lamellas of the selected particles were fabricated. The definition of a custom coordinate system enabled the relocation of the particles after the transfer. The lamellas were finally analysed with an analytical transmission electron microscope. Internal structure and elemental distribution maps of the interior of the particles provided additional information about the particles, which helped to assign the particles to their sources. The combination of computer-controlled scanning electron microscopy, focused ion beam and transmission electron microscopy offers new possibilities for characterizing airborne particles in great detail, eventually enabling a detailed source apportionment of specific particles. The particle of interest can be selected from a large dataset (e.g. based on chemistry and/or morphology) and then investigated in more detail in the transmission electron microscope.

  5. The benefits of using time-frequency analysis with synthetic aperture focusing technique

    SciTech Connect

    Albright, Austin E-mail: claytonda@ornl.gov; Clayton, Dwight E-mail: claytonda@ornl.gov

    2015-03-31

    Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m × 2m × 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on

  6. The Benefits of Using Time-Frequency Analysis with Synthetic Aperture Focusing Technique

    SciTech Connect

    Albright, Austin P; Clayton, Dwight A

    2015-01-01

    Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band s interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m x 2m x 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on

  7. Use of imaged capillary isoelectric focusing technique in development of diphtheria toxin mutant CRM197.

    PubMed

    Rustandi, Richard R; Peklansky, Brian; Anderson, Carrie L

    2014-04-01

    Polysaccharide based-vaccines have been successful in providing protection in adults from bacterial infections, however they are not as effective in infants or young children. To enhance the immune response in these high risk groups, the polysaccharide is conjugated with a carrier protein such as cross-reacting material 197 (CRM197). The CRM197 protein has been well-characterized biochemically and biophysically using various analytical techniques however, none of these have been CE-based methods. Of the various CE techniques, imaged capillary isoelectric focusing (icIEF) is a method that has been used extensively in the field of protein-based drug development as a tool for product identification, stability monitoring, and characterization. Applications of icIEF technique using Convergent Bioscience icIEF instrumentation with whole-field imaging technology are presented and discussed in this paper. These applications include rapid method development to establish a CRM197 identity test for product release, a concentration assay for upstream and downstream in-process product development, and CRM197 stability with respect to its charge heterogeneity under accelerated temperature stress. The data presented demonstrates the utility of the icIEF method as a multifunctional assay because it can screen for better product candidates during early stage clonal selection as well as support in-process and final product characterization throughout CRM197 development.

  8. Density and composition analysis using focused MeV ion mubeam techniques

    NASA Astrophysics Data System (ADS)

    Antolak, A. J.; Bench, G. S.; Pontau, A. E.; Morse, D. H.; Heikkinen, D. W.; Weirup, D. L.

    1994-12-01

    Nuclear muscopy uses focused MeV ion mubeams to non-destructively characterize materials and components with mun scale spatial resolution. Although a number of accelerator-based mubeam methods are available for materials analysis, this paper centers on the techniques of Ion mutomography (IMT) and Particle-Induced X-ray Emission (PIXE). IMT provides quantitative three-dimensional density information with mun-scale spatial resolution and 1% density variation sensitivity. Recently, IMT has become more versatile because greater emphasis has been placed on understanding the effects of reconstruction artifacts, beam spatial broadening, and limited projection data sets. PIXE provides quantitative elemental information with detection sensitivities to 1 μg/g or below in some instances. By scanning the beam, two-dimensional maps of elemental concentration can also be recorded. However, since X-rays are produced along the entire path of the ion beam as it penetrates the sample, these measurements only give depth-averaged information in general. PIXE tomography (PIXET) is the natural extension from conventional PIXE analysis to the full three-dimensional measurement and forms the bridge linking the complementary techniques of PIXE and IMT. This paper presents recent developments and applications of these ion beam techniques in a diverse range of fields including characterizing metal-matrix composites, biological specimens and inertial confinement fusion targets.

  9. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our research in

  10. Adaptations of advanced safety and reliability techniques to petroleum and other industries

    NASA Technical Reports Server (NTRS)

    Purser, P. E.

    1974-01-01

    The underlying philosophy of the general approach to failure reduction and control is presented. Safety and reliability management techniques developed in the industries which have participated in the U.S. space and defense programs are described along with adaptations to nonaerospace activities. The examples given illustrate the scope of applicability of these techniques. It is indicated that any activity treated as a 'system' is a potential user of aerospace safety and reliability management techniques.

  11. Adaptability of laser diffraction measurement technique in soil physics methodology

    NASA Astrophysics Data System (ADS)

    Barna, Gyöngyi; Szabó, József; Rajkai, Kálmán; Bakacsi, Zsófia; Koós, Sándor; László, Péter; Hauk, Gabriella; Makó, András

    2016-04-01

    There are intentions all around the world to harmonize soils' particle size distribution (PSD) data by the laser diffractometer measurements (LDM) to that of the sedimentation techniques (pipette or hydrometer methods). Unfortunately, up to the applied methodology (e. g. type of pre-treatments, kind of dispersant etc.), PSDs of the sedimentation methods (due to different standards) are dissimilar and could be hardly harmonized with each other, as well. A need was arisen therefore to build up a database, containing PSD values measured by the pipette method according to the Hungarian standard (MSZ-08. 0205: 1978) and the LDM according to a widespread and widely used procedure. In our current publication the first results of statistical analysis of the new and growing PSD database are presented: 204 soil samples measured with pipette method and LDM (Malvern Mastersizer 2000, HydroG dispersion unit) were compared. Applying usual size limits at the LDM, clay fraction was highly under- and silt fraction was overestimated compared to the pipette method. Subsequently soil texture classes determined from the LDM measurements significantly differ from results of the pipette method. According to previous surveys and relating to each other the two dataset to optimizing, the clay/silt boundary at LDM was changed. Comparing the results of PSDs by pipette method to that of the LDM, in case of clay and silt fractions the modified size limits gave higher similarities. Extension of upper size limit of clay fraction from 0.002 to 0.0066 mm, and so change the lower size limit of silt fractions causes more easy comparability of pipette method and LDM. Higher correlations were found between clay content and water vapor adsorption, specific surface area in case of modified limit, as well. Texture classes were also found less dissimilar. The difference between the results of the two kind of PSD measurement methods could be further reduced knowing other routinely analyzed soil parameters

  12. A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems

    NASA Astrophysics Data System (ADS)

    Soghrati, Soheil; Xiao, Fei; Nagarajan, Anand

    2016-12-01

    A Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR) technique is introduced for the automated transformation of a structured grid into a conforming mesh with appropriate element aspect ratios. The CISAMR algorithm is composed of three main phases: (i) Structured Adaptive Mesh Refinement (SAMR) of the background grid; (ii) r-adaptivity of the nodes of elements cut by the crack; (iii) sub-triangulation of the elements deformed during the r-adaptivity process and those with hanging nodes generated during the SAMR process. The required considerations for the treatment of crack tips and branching cracks are also discussed in this manuscript. Regardless of the complexity of the problem geometry and without using iterative smoothing or optimization techniques, CISAMR ensures that aspect ratios of conforming elements are lower than three. Multiple numerical examples are presented to demonstrate the application of CISAMR for modeling linear elastic fracture problems with intricate morphologies.

  13. Domain adaptation problems: a DASVM classification technique and a circular validation strategy.

    PubMed

    Bruzzone, Lorenzo; Marconcini, Mattia

    2010-05-01

    This paper addresses pattern classification in the framework of domain adaptation by considering methods that solve problems in which training data are assumed to be available only for a source domain different (even if related) from the target domain of (unlabeled) test data. Two main novel contributions are proposed: 1) a domain adaptation support vector machine (DASVM) technique which extends the formulation of support vector machines (SVMs) to the domain adaptation framework and 2) a circular indirect accuracy assessment strategy for validating the learning of domain adaptation classifiers when no true labels for the target--domain instances are available. Experimental results, obtained on a series of two-dimensional toy problems and on two real data sets related to brain computer interface and remote sensing applications, confirmed the effectiveness and the reliability of both the DASVM technique and the proposed circular validation strategy.

  14. Application of Avco data analysis and prediction techniques (ADAPT) to prediction of sunspot activity

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.; Amato, R. A.

    1972-01-01

    The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.

  15. A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems

    NASA Astrophysics Data System (ADS)

    Soghrati, Soheil; Xiao, Fei; Nagarajan, Anand

    2017-04-01

    A Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR) technique is introduced for the automated transformation of a structured grid into a conforming mesh with appropriate element aspect ratios. The CISAMR algorithm is composed of three main phases: (i) Structured Adaptive Mesh Refinement (SAMR) of the background grid; (ii) r-adaptivity of the nodes of elements cut by the crack; (iii) sub-triangulation of the elements deformed during the r-adaptivity process and those with hanging nodes generated during the SAMR process. The required considerations for the treatment of crack tips and branching cracks are also discussed in this manuscript. Regardless of the complexity of the problem geometry and without using iterative smoothing or optimization techniques, CISAMR ensures that aspect ratios of conforming elements are lower than three. Multiple numerical examples are presented to demonstrate the application of CISAMR for modeling linear elastic fracture problems with intricate morphologies.

  16. Preionization Techniques in a kJ-Scale Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Shaw, Brian; Chapman, Steve; Podpaly, Yuri; Cooper, Christopher; Falabella, Steve; Prasad, Rahul; Schmidt, Andrea

    2016-10-01

    A dense plasma focus (DPF) is a type of z-pinch device that uses a high current, coaxial plasma gun with an implosion phase to generate dense plasmas. These devices can accelerate a beam of ions to MeV-scale energies through strong electric fields generated by instabilities during the implosion of the plasma sheath. The formation of these instabilities, however, relies strongly on the history of the plasma sheath in the device, including the evolution of the gas breakdown in the device. In an effort to reduce variability in the performance of the device, we attempt to control the initial gas breakdown in the device by seeding the system with free charges before the main power pulse arrives. We report on the effectiveness of two techniques developed for a kJ-scale DPF at LLNL, a miniature primer spark gap and pulsed, 255nm LED illumination. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. Analysis of higher order optical aberrations in the SLC final focus using Lie Algebra techniques

    SciTech Connect

    Walker, N.J.; Irwin, J.; Woodley, M.

    1993-04-01

    The SLC final focus system is designed to have an overall demagnification of 30:1, with a {beta} at the interaction point ({beta}*) of 5 mm, and an energy band pass of {approximately}0.4%. Strong sextupole pairs are used to cancel the large chromaticity which accrues primarily from the final triplet. Third-order aberrations limit the performance of the system, the dominating terms being U{sub 1266} and U{sub 3466} terms (in the notation of K. Brown). Using Lie Algebra techniques, it is possible to analytically calculate the soave of these terms in addition to understanding their origin. Analytical calculations (using Lie Algebra packages developed in the Mathematica language) are presented of the bandwidth and minimum spot size as a function of divergence at the interaction point (IP). Comparisons of the analytical results from the Lie Algebra maps and results from particle tracking (TURTLE) are also presented.

  18. pH fractionation and identification of proteins: comparing column chromatofocusing versus liquid isoelectric focusing techniques.

    PubMed

    Gunther, Nereus W; Paul, Moushumi; Nuñez, Alberto; Liu, Yanhong

    2012-06-01

    In proteomic investigations, a number of different separation techniques can be applied to fractionate whole cell proteomes into more manageable fractions for subsequent analysis. In this work, utilizing HPLC and mass spectrometry for protein identification, two different fractionation methods were compared and contrasted to determine the potential of each method for the simple and reproducible fractionation of a bacterial proteome. Column-based chromatofocusing and liquid-based isoelectric focusing both utilized pH gradients to produce similar results in terms of the numbers of proteins successfully identified (402 and 378 proteins) and the consistency of proteins identified from one experiment to the next (<10% change). However, there was limited overlap in the protein sets with <50% of the proteins identified as common between the sets of proteins identified by the different systems. In addition to the numbers of proteins identified and consistency of those identified, the reduced monetary costs of experimentation and increased assay flexibility produced by using isoelectric focusing was considered in order to adopt a system best suited for comparative proteomic projects.

  19. Development and Verification of Unstructured Adaptive Mesh Technique with Edge Compatibility

    NASA Astrophysics Data System (ADS)

    Ito, Kei; Kunugi, Tomoaki; Ohshima, Hiroyuki

    In the design study of the large-sized sodium-cooled fast reactor (JSFR), one key issue is suppression of gas entrainment (GE) phenomena at a gas-liquid interface. Therefore, the authors have been developed a high-precision CFD algorithm to evaluate the GE phenomena accurately. The CFD algorithm has been developed on unstructured meshes to establish an accurate modeling of JSFR system. For two-phase interfacial flow simulations, a high-precision volume-of-fluid algorithm is employed. It was confirmed that the developed CFD algorithm could reproduce the GE phenomena in a simple GE experiment. Recently, the authors have been developed an important technique for the simulation of the GE phenomena in JSFR. That is an unstructured adaptive mesh technique which can apply fine cells dynamically to the region where the GE occurs in JSFR. In this paper, as a part of the development, a two-dimensional unstructured adaptive mesh technique is discussed. In the two-dimensional adaptive mesh technique, each cell is refined isotropically to reduce distortions of the mesh. In addition, connection cells are formed to eliminate the edge incompatibility between refined and non-refined cells. The two-dimensional unstructured adaptive mesh technique is verified by solving well-known lid-driven cavity flow problem. As a result, the two-dimensional unstructured adaptive mesh technique succeeds in providing a high-precision solution, even though poor-quality distorted initial mesh is employed. In addition, the simulation error on the two-dimensional unstructured adaptive mesh is much less than the error on the structured mesh with a larger number of cells.

  20. Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications.

    PubMed

    Muñoz-Sánchez, B N; Silva, S F; Pinho, D; Vega, E J; Lima, R

    2016-01-01

    Polydimethylsiloxane (PDMS), due to its remarkable properties, is one of the most widely used polymers in many industrial and medical applications. In this work, a technique based on a flow focusing technique is used to produce PDMS spherical particles with sizes of a few microns. PDMS precursor is injected through a hypodermic needle to form a film/reservoir over the needle's outer surface. This film flows towards the needle tip until a liquid ligament is steadily ejected thanks to the action of a coflowing viscous liquid stream. The outcome is a capillary jet which breaks up into PDMS precursor droplets due to the growth of capillary waves producing a micrometer emulsion. The PDMS liquid droplets in the solution are thermally cured into solid microparticles. The size distribution of the particles is analyzed before and after curing, showing an acceptable degree of monodispersity. The PDMS liquid droplets suffer shrinkage while curing. These microparticles can be used in very varied technological fields, such as biomedicine, biotechnology, pharmacy, and industrial engineering.

  1. Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications

    PubMed Central

    Vega, E. J.; Lima, R.

    2016-01-01

    Polydimethylsiloxane (PDMS), due to its remarkable properties, is one of the most widely used polymers in many industrial and medical applications. In this work, a technique based on a flow focusing technique is used to produce PDMS spherical particles with sizes of a few microns. PDMS precursor is injected through a hypodermic needle to form a film/reservoir over the needle's outer surface. This film flows towards the needle tip until a liquid ligament is steadily ejected thanks to the action of a coflowing viscous liquid stream. The outcome is a capillary jet which breaks up into PDMS precursor droplets due to the growth of capillary waves producing a micrometer emulsion. The PDMS liquid droplets in the solution are thermally cured into solid microparticles. The size distribution of the particles is analyzed before and after curing, showing an acceptable degree of monodispersity. The PDMS liquid droplets suffer shrinkage while curing. These microparticles can be used in very varied technological fields, such as biomedicine, biotechnology, pharmacy, and industrial engineering. PMID:27042245

  2. Adaptive localization of focus point regions via random patch probabilistic density from whole-slide, Ki-67-stained brain tumor tissue.

    PubMed

    Alomari, Yazan M; Sheikh Abdullah, Siti Norul Huda; MdZin, Reena Rahayu; Omar, Khairuddin

    2015-01-01

    Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved.

  3. Adaptive Localization of Focus Point Regions via Random Patch Probabilistic Density from Whole-Slide, Ki-67-Stained Brain Tumor Tissue

    PubMed Central

    Alomari, Yazan M.; MdZin, Reena Rahayu

    2015-01-01

    Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved. PMID:25793010

  4. Summarizing components of U.S. Department of the Interior vulnerability assessments to focus climate adaptation planning

    USGS Publications Warehouse

    Thompson, Laura M.; Staudinger, Michelle D.; Carter, Shawn L.

    2015-09-29

    A secretarial order identified climate adaptation as a critical performance objective for future management of U.S. Department of the Interior (DOI) lands and resources in response to global change. Vulnerability assessments can inform climate adaptation planning by providing insight into what natural resources are most at risk and why. Three components of vulnerability—exposure, sensitivity, and adaptive capacity—were defined by the Intergovernmental Panel on Climate Change (IPCC) as necessary for identifying climate adaptation strategies and actions. In 2011, the DOI requested all internal bureaus report ongoing or completed vulnerability assessments about a defined range of assessment targets or climate-related threats. Assessment targets were defined as freshwater resources, landscapes and wildlife habitat, native and cultural resources, and ocean health. Climate-related threats were defined as invasive species, wildfire risk, sea-level rise, and melting ice and permafrost. Four hundred and three projects were reported, but the original DOI survey did not specify that information be provided on exposure, sensitivity, and adaptive capacity collectively as part of the request, and it was unclear which projects adhered to the framework recommended by the IPCC. Therefore, the U.S. Geological Survey National Climate Change and Wildlife Science Center conducted a supplemental survey to determine how frequently each of the three vulnerability components was assessed. Information was categorized for 124 of the 403 reported projects (30.8 percent) based on the three vulnerability components, and it was discovered that exposure was the most common component assessed (87.9 percent), followed by sensitivity (68.5 percent) and adaptive capacity (33.1 percent). The majority of projects did not fully assess vulnerability; projects focused on landscapes/wildlife habitats and sea-level rise were among the minority that simultaneously addressed all three vulnerability

  5. Program for field validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)

    NASA Astrophysics Data System (ADS)

    Hamlin, D. R.

    1985-11-01

    This final report describes work performed by Southwest Research Institute for the Nuclear Regulatory Commission (NRC) in fulfillment of NRC Contract No. NRC-04-77-145; "Program for Field Validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)." The purpose was to validate the effectiveness of SAFT UT as a nondestructive examination technique for nuclear power and other related industries. SAFT UT is an ultrasonic imaging method for accurate measurement of the spatial location and extent of acoustically reflective surfaces (flaws) contained in objects such as structural components and weldments in nuclear power reactor systems. The increased measurement accuracy offered by SAFT, when compared with that provided by measurement methods now in use, will improve the reliability of flaw severity assessment with resultant safety and economic benefits to the nuclear power industry. This report presents a comprehensive discussion of the work accomplished in evaluating the performance capabilities of the developed SAFT UT inspection system. Inspection results obtained using both 0-degree longitudinal and angle-beam operating modes are presented. These results include laboratory and nuclear power plant field site examinations on a variety of defect types contained within carbon and stainless steel flat plate and cylindrical test specimens or components. The SAFT UT processed data flaw images are evaluated by comparing them to results obtained from destructive sectioning or by using flaw fabrication data which predicted actual flaw depth, orientation and size. On the basis of these evaluations, conclusions are presented which summarize the performance capabilities of the SAFT UT inspection technique.

  6. A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Dejiang; Ding, Xu; Zhang, Tao; Kuang, Haipeng

    2013-02-01

    The key issue in automatic focus adjustment for long focal lens TDI CCD camera in remote sensing applications is to achieve the optimum focus position as fast as possible. Existing auto-focusing techniques consume too much time as the mechanical focusing parts of the camera move in steps during the searching procedure. In this paper, we demonstrate a fast auto-focusing technique, which employs the internal optical elements and the TDI CCD itself to directly sense the deviations in back focal distance of the lens and restore the imaging system to a best-available focus. It is particularly advantageous for determination of the focus, due to that the relative motion between the TDI CCD and the focusing element can proceed without interruption. Moreover, the theoretical formulas describing the effect of imaging motion on the focusing precision and the effective focusing range are also developed. Finally, an experimental setup is constructed to evaluate the performance of the proposed technique. The results of the experiment show a ±5 μm precision of auto-focusing in a range of ±500 μmdefocus, and the searching procedure could be accomplished within 0.125 s, which leads to remarkable improvement on the real-time imaging capability for high resolution TDI CCD camera in remote sensing applications.

  7. Modified Class II open sandwich restorations: evaluation of interfacial adaptation and influence of different restorative techniques.

    PubMed

    Andersson-Wenckert, Ingrid E; van Dijken, Jan W V; Hörstedt, Per

    2002-06-01

    The sandwich technique with resin-modified glass ionomer cement (RMGIC) has been proposed to relieve the contraction stresses of direct resin composite (RC) restorations. The aim of this study was to evaluate the interfacial adaptation to enamel and dentin of modified Class II open RMGIC/RC sandwich restorations and the influence of different light curing techniques and matrix bands. Forty box-shaped Class II fillings were placed in vivo in premolars scheduled for extraction after one month. In groups I and II, a metal matrix was used; RC was inserted with horizontal (group I) and diagonal (group II) increments and cured with indirect/direct light. Group III was performed as group II, but a transparent matrix was used. Group IV was as group II, but with a separating liner between RMGIC and RC. Group V was a closed sandwich restoration. Interfacial quality was studied using SEM replica technique. Gap-free interfacial adaptation to enamel was observed for RMGIC in 70%, for RC in 70% and to dentin for RMGIC in 81%, for RC in 56%. No significant differences were seen between the experimental groups. At the cervical margins, RMGIC showed significantly better adaptation to enamel than RC, 74% and 42%, respectively. In conclusion, the investigated restorations showed a high percentage of gap-free interfacial adaptation in vivo. Interfacial adaptation to dentin and to cervical enamel was significantly better for RMGIC than for RC.

  8. An adaptive technique for estimating the atmospheric density profile during the AE mission

    NASA Technical Reports Server (NTRS)

    Argentiero, P.

    1973-01-01

    A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.

  9. SWAT system performance predictions. Project report. [SWAT (Short-Wavelength Adaptive Techniques)

    SciTech Connect

    Parenti, R.R.; Sasiela, R.J.

    1993-03-10

    In the next phase of Lincoln Laboratory's SWAT (Short-Wavelength Adaptive Techniques) program, the performance of a 241-actuator adaptive-optics system will be measured using a variety of synthetic-beacon geometries. As an aid in this experimental investigation, a detailed set of theoretical predictions has also been assembled. The computational tools that have been applied in this study include a numerical approach in which Monte-Carlo ray-trace simulations of accumulated phase error are developed, and an analytical analysis of the expected system behavior. This report describes the basis of these two computational techniques and compares their estimates of overall system performance. Although their regions of applicability tend to be complementary rather than redundant, good agreement is usually obtained when both sets of results can be derived for the same engagement scenario.... Adaptive optics, Phase conjugation, Atmospheric turbulence Synthetic beacon, Laser guide star.

  10. Application of adaptive antenna techniques to future commercial satellite communications. Executive summary

    NASA Technical Reports Server (NTRS)

    Ersoy, L.; Lee, E. A.; Matthews, E. W.

    1987-01-01

    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.

  11. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  12. Adaptive Denoising Technique for Robust Analysis of Functional Magnetic Resonance Imaging Data

    DTIC Science & Technology

    2007-11-02

    or receive while t fMRI o versatil of epoc method ER-fM to the studies comes intra-su functioADAPTIVE DENOISING TECHNIQUE FOR ROBUST ANALYSIS OF...supported in part by the Center for Advanced Software and Biomedical Engineering Consultations (CASBEC), Cairo University, and IBE Technologies , Egypt

  13. Voice Therapy Techniques Adapted to Treatment of Habit Cough: A Pilot Study.

    ERIC Educational Resources Information Center

    Blager, Florence B.; And Others

    1988-01-01

    Individuals with long-standing habit cough having no organic basis can be successfully treated with a combination of psychotherapy and speech therapy. Techniques for speech therapy are adapted from those used with hyperfunctional voice disorders to fit this debilitating laryngeal disorder. (Author)

  14. An Approach for Automatic Generation of Adaptive Hypermedia in Education with Multilingual Knowledge Discovery Techniques

    ERIC Educational Resources Information Center

    Alfonseca, Enrique; Rodriguez, Pilar; Perez, Diana

    2007-01-01

    This work describes a framework that combines techniques from Adaptive Hypermedia and Natural Language processing in order to create, in a fully automated way, on-line information systems from linear texts in electronic format, such as textbooks. The process is divided into two steps: an "off-line" processing step, which analyses the source text,…

  15. A new adaptive light beam focusing principle for scanning light stimulation systems

    SciTech Connect

    Bitzer, L. A.; Meseth, M.; Benson, N.; Schmechel, R.

    2013-02-15

    In this article a novel principle to achieve optimal focusing conditions or rather the smallest possible beam diameter for scanning light stimulation systems is presented. It is based on the following methodology: First, a reference point on a camera sensor is introduced where optimal focusing conditions are adjusted and the distance between the light focusing optic and the reference point is determined using a laser displacement sensor. In a second step, this displacement sensor is used to map the topography of the sample under investigation. Finally, the actual measurement is conducted, using optimal focusing conditions in each measurement point at the sample surface, that are determined by the height difference between camera sensor and the sample topography. This principle is independent of the measurement values, the optical or electrical properties of the sample, the used light source, or the selected wavelength. Furthermore, the samples can be tilted, rough, bent, or of different surface materials. In the following the principle is implemented using an optical beam induced current system, but basically it can be applied to any other scanning light stimulation system. Measurements to demonstrate its operation are shown, using a polycrystalline silicon solar cell.

  16. In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques.

    PubMed

    Lukes, Petr; Zeman, Jan; Horak, Vratislav; Hoffer, Petr; Pouckova, Pavla; Holubova, Monika; Hosseini, S Hamid R; Akiyama, Hidenori; Sunka, Pavel; Benes, Jiri

    2015-06-01

    Shock waves can cause significant cytotoxic effects in tumor cells and tissues both in vitro and in vivo. However, understanding the mechanisms of shock wave interaction with tissues is limited. We have studied in vivo effects of focused shock waves induced in the syngeneic sarcoma tumor model using the TUNEL assay, immunohistochemical detection of caspase-3 and hematoxylin-eosin staining. Shock waves were produced by a multichannel pulsed-electrohydraulic discharge generator with a cylindrical ceramic-coated electrode. In tumors treated with shock waves, a large area of damaged tissue was detected which was clearly differentiated from intact tissue. Localization and a cone-shaped region of tissue damage visualized by TUNEL reaction apparently correlated with the conical shape and direction of shock wave propagation determined by high-speed shadowgraphy. A strong TUNEL reaction of nuclei and nucleus fragments in tissue exposed to shock waves suggested apoptosis in this destroyed tumor area. However, specificity of the TUNEL technique to apoptotic cells is ambiguous and other apoptotic markers (caspase-3) that we used in our study did not confirmed this observation. Thus, the generated fragments of nuclei gave rise to a false TUNEL reaction not associated with apoptosis. Mechanical stress from high overpressure shock wave was likely the dominant pathway of tumor damage.

  17. Effect of insulin-induced hypoglycaemia on the peripheral nervous system: focus on adaptive mechanisms, pathogenesis and histopathological changes.

    PubMed

    Jensen, V F H; Mølck, A-M; Bøgh, I B; Lykkesfeldt, J

    2014-08-01

    Insulin-induced hypoglycaemia (IIH) is a common acute side effect in type 1 and type 2 diabetic patients, especially during intensive insulin therapy. The peripheral nervous system (PNS) depends on glucose as its primary energy source during normoglycaemia and, consequently, it may be particularly susceptible to IIH damage. Possible mechanisms for adaption of the PNS to IIH include increased glucose uptake, utilisation of alternative energy substrates and the use of Schwann cell glycogen as a local glucose reserve. However, these potential adaptive mechanisms become insufficient when the hypoglycaemic state exceeds a certain level of severity and duration, resulting in a sensory-motor neuropathy with associated skeletal muscle atrophy. Large myelinated motor fibres appear to be particularly vulnerable. Thus, although the PNS is not an obligate glucose consumer, as is the brain, it appears to be more prone to IIH than the central nervous system when hypoglycaemia is not severe (blood glucose level ≤ 2 mm), possibly reflecting a preferential protection of the brain during periods of inadequate glucose availability. With a primary focus on evidence from experimental animal studies investigating nondiabetic IIH, the present review discusses the effect of IIH on the PNS with a focus on adaptive mechanisms, pathogenesis and histological changes.

  18. Auto-adaptive robot-aided therapy using machine learning techniques.

    PubMed

    Badesa, Francisco J; Morales, Ricardo; Garcia-Aracil, Nicolas; Sabater, J M; Casals, Alicia; Zollo, Loredana

    2014-09-01

    This paper presents an application of a classification method to adaptively and dynamically modify the therapy and real-time displays of a virtual reality system in accordance with the specific state of each patient using his/her physiological reactions. First, a theoretical background about several machine learning techniques for classification is presented. Then, nine machine learning techniques are compared in order to select the best candidate in terms of accuracy. Finally, first experimental results are presented to show that the therapy can be modulated in function of the patient state using machine learning classification techniques.

  19. Adaptive phase matching probe-injection technique for enhancement of Brillouin scattering signal

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Shi, Guangyao; Lv, Yuelan; Zhang, Hongying; Gao, Wei

    2017-08-01

    We report on a simple and efficient method for enhancing Brillouin scattering signal, i.e., adaptive phase matching (APM) probe-injection technique. In this technique, a low-polarization broad-spectrum probe wave is injected opposite to the pump, which can enhance any stokes signal in its APM range instantly by selective stimulated Brillouin amplification. With advantages of simple scheme, real-time multi-signal enhancement and sweep-free measurement, this technique has a great potential for improving the signal-to-noise ratio of Brillouin gain spectrum in the Brillouin scattering application systems.

  20. School Counselors' Use of Solution-Focused Tenets and Techniques in School-Based Site Supervision

    ERIC Educational Resources Information Center

    Cigrand, Dawnette L.; Wood, Susannah M.; Duys, David

    2014-01-01

    The tenets and techniques of solution-focused (SF) theory have potential for application to school counseling site supervision; however, research on the use of these practices in site supervision is needed. This study examined the extent to which school counseling site supervisors integrated SF tenets and techniques into their supervisory…

  1. Optimal Pid Tuning for Power System Stabilizers Using Adaptive Particle Swarm Optimization Technique

    NASA Astrophysics Data System (ADS)

    Oonsivilai, Anant; Marungsri, Boonruang

    2008-10-01

    An application of the intelligent search technique to find optimal parameters of power system stabilizer (PSS) considering proportional-integral-derivative controller (PID) for a single-machine infinite-bus system is presented. Also, an efficient intelligent search technique, adaptive particle swarm optimization (APSO), is engaged to express usefulness of the intelligent search techniques in tuning of the PID—PSS parameters. Improve damping frequency of system is optimized by minimizing an objective function with adaptive particle swarm optimization. At the same operating point, the PID—PSS parameters are also tuned by the Ziegler-Nichols method. The performance of proposed controller compared to the conventional Ziegler-Nichols PID tuning controller. The results reveal superior effectiveness of the proposed APSO based PID controller.

  2. An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chien, T. T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.

  3. Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1978-01-01

    The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.

  4. Computational efficiency and Amdahl’s law for the adaptive resolution simulation technique

    DOE PAGES

    Junghans, Christoph; Agarwal, Animesh; Delle Site, Luigi

    2017-06-01

    Here, we discuss the computational performance of the adaptive resolution technique in molecular simulation when it is compared with equivalent full coarse-grained and full atomistic simulations. We show that an estimate of its efficiency, within 10%–15% accuracy, is given by the Amdahl’s Law adapted to the specific quantities involved in the problem. The derivation of the predictive formula is general enough that it may be applied to the general case of molecular dynamics approaches where a reduction of degrees of freedom in a multi scale fashion occurs.

  5. Leaf Dimorphism Of Microgramma Squamulosa (Polypodiaceae): a qualitative and quantitative analysis focusing on adaptations to epiphytism.

    PubMed

    Rocha, Ledyane Dalgallo; Droste, Annette; Gehlen, Günther; Schmitt, Jairo Lizandro

    2013-03-01

    The epiphytic fern Microgramma squamulosa occurs in the Neotropics and shows dimorphic sterile and fertile leaves. The present study aimed to describe and compare qualitatively and quantitatively macroscopic and microscopic structural characteristics of the dimorphic leaves of M. squamulosa, to point more precisely those characteristics which may contribute to epiphytic adaptations. In June 2009, six isolated host trees covered by M squamulosa were selected close to the edge of a semi-deciduous seasonal forest fragment in the municipality of Novo Hamburgo, State of Rio Grande do Sul, Brazil. Macroscopic and microscopic analyzes were performed from 192 samples for each leaf type, and permanent and semi-permanent slides were prepared. Sections were observed under light microscopy using image capture software to produce illustrations and scales, as well as to perform quantitative analyses. Fertile and sterile leaves had no qualitative structural differences, being hypostomatous and presenting uniseriate epidermis, homogeneous chlorenchyma, amphicribal vascular bundle, and hypodermis. The presence of hypodermal tissue and the occurrence of stomata at the abaxial face are typical characteristics ofxeromorphic leaves. Sterile leaves showed significantly larger areas (14.80cm2), higher sclerophylly index (0.13g/cm2) and higher stomatal density (27.75stomata/mm2) than fertile leaves. The higher sclerophylly index and the higher stomatal density observed in sterile leaves are features that make these leaves more xeromorphic, enhancing their efficiency to deal with limited water availability in the epiphytic environment, compared to fertile leaves.

  6. Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique.

    PubMed

    Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng

    2013-07-01

    In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance.

  7. Adaptive remeshing method in 2D based on refinement and coarsening techniques

    NASA Astrophysics Data System (ADS)

    Giraud-Moreau, L.; Borouchaki, H.; Cherouat, A.

    2007-04-01

    The analysis of mechanical structures using the Finite Element Method, in the framework of large elastoplastic strains, needs frequent remeshing of the deformed domain during computation. Remeshing is necessary for two main reasons, the large geometric distortion of finite elements and the adaptation of the mesh size to the physical behavior of the solution. This paper presents an adaptive remeshing method to remesh a mechanical structure in two dimensions subjected to large elastoplastic deformations with damage. The proposed remeshing technique includes adaptive refinement and coarsening procedures, based on geometrical and physical criteria. The proposed method has been integrated in a computational environment using the ABAQUS solver. Numerical examples show the efficiency of the proposed approach.

  8. General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation.

    PubMed

    Vasile, Gabriel; Trouvé, Emmanuel; Ciuc, Mihai; Buzuloiu, Vasile

    2004-08-01

    A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.

  9. Workflow and intervention times of MR-guided focused ultrasound - Predicting the impact of new techniques.

    PubMed

    Loeve, Arjo J; Al-Issawi, Jumana; Fernandez-Gutiérrez, Fabiola; Langø, Thomas; Strehlow, Jan; Haase, Sabrina; Matzko, Matthias; Napoli, Alessandro; Melzer, Andreas; Dankelman, Jenny

    2016-04-01

    Magnetic resonance guided focused ultrasound surgery (MRgFUS) has become an attractive, non-invasive treatment for benign and malignant tumours, and offers specific benefits for poorly accessible locations in the liver. However, the presence of the ribcage and the occurrence of liver motion due to respiration limit the applicability MRgFUS. Several techniques are being developed to address these issues or to decrease treatment times in other ways. However, the potential benefit of such improvements has not been quantified. In this research, the detailed workflow of current MRgFUS procedures was determined qualitatively and quantitatively by using observation studies on uterine MRgFUS interventions, and the bottlenecks in MRgFUS were identified. A validated simulation model based on discrete events simulation was developed to quantitatively predict the effect of new technological developments on the intervention duration of MRgFUS on the liver. During the observation studies, the duration and occurrence frequencies of all actions and decisions in the MRgFUS workflow were registered, as were the occurrence frequencies of motion detections and intervention halts. The observation results show that current MRgFUS uterine interventions take on average 213min. Organ motion was detected on average 2.9 times per intervention, of which on average 1.0 actually caused a need for rework. Nevertheless, these motion occurrences and the actions required to continue after their detection consumed on average 11% and up to 29% of the total intervention duration. The simulation results suggest that, depending on the motion occurrence frequency, the addition of new technology to automate currently manual MRgFUS tasks and motion compensation could potentially reduce the intervention durations by 98.4% (from 256h 5min to 4h 4min) in the case of 90% motion occurrence, and with 24% (from 5h 19min to 4h 2min) in the case of no motion. In conclusion, new tools were developed to predict how

  10. Use of an inelastic bandage as an adaptation of the lymphatic drainage technique in lower limbs

    PubMed Central

    Fregonezi, Guilherme; Resqueti, Vanessa; Ferreira, Socorro; Lima, Ana Paula

    2009-01-01

    The inelastic bandage is an adaptation of the manual lymphatic drainage, which substitutes the circular movements of the fingers. A patient with lymphoedema underwent 20 sessions using the modified lymphatic drainage technique. Perimetric measurements were taken before and after each session, and volumetric measurements at the first, 10th, and 20th sessions. Limb circumference was significantly reduced at three points on the perimeter (10, 15 and 25 cm): 2.5 cm (7.3%), 2.5 cm (6.5%) and 1.5 cm (5%), respectively. Volumetry decrease of 26.4% from initial limb volume was observed. The use of the inelastic bandage proved to be an effective adaptation when compared with the results using other techniques described. PMID:21686946

  11. Adaptive data rate control TDMA systems as a rain attenuation compensation technique

    NASA Technical Reports Server (NTRS)

    Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru

    1993-01-01

    Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.

  12. Ultrasonic brain therapy: First trans-skull in vivo experiments on sheep using adaptive focusing

    NASA Astrophysics Data System (ADS)

    Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Michael; Fink, Mathias; Boch, Anne-Laure; Kujas, Michèle

    2004-05-01

    A high-power prototype dedicated to trans-skull therapy has been tested in vivo on 20 sheep. The array is made of 200 high-power transducers working at 1-MHz central and is able to reach 260 bars at focus in water. An echographic array connected to a Philips HDI 1000 system has been inserted in the therapeutic array in order to perform real-time monitoring of the treatment. A complete craniotomy has been performed on half of the treated animal models in order to get a reference model. On the other animals, a minimally invasive surgery has been performed thanks to a time-reversal experiment: a hydrophone was inserted at the target inside the brain thanks to a 1-mm2 craniotomy. A time-reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. For all the animals a specified region around the target was treated thanks to electronic beam steering. Animals were finally divided into three groups and sacrificed, respectively, 0, 1, and 2 weeks after treatment. Finally, histological examination confirmed tissue damage. These in vivo experiments highlight the strong potential of high-power time-reversal technology.

  13. Development of a clinical pathways analysis system with adaptive Bayesian nets and data mining techniques.

    PubMed

    Kopec, D; Shagas, G; Reinharth, D; Tamang, S

    2004-01-01

    The use and development of software in the medical field offers tremendous opportunities for making health care delivery more efficient, more effective, and less error-prone. We discuss and explore the use of clinical pathways analysis with Adaptive Bayesian Networks and Data Mining Techniques to perform such analyses. The computation of "lift" (a measure of completed pathways improvement potential) leads us to optimism regarding the potential for this approach.

  14. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  15. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.

    PubMed

    Hu, Jiwen; Qian, Shengyou; Ding, Yajun

    2010-05-01

    Temperature control of hyperthermia treatments is generally implemented with multipoint feedback system comprised of phased-array transducer, which is complicated and high cost. Our simulations to the acoustic field induced by a self-focused concave spherical transducer (0.5MHz, 9cm aperture width, 8.0cm focal length) show that the distribution of temperature can keep the same "cigar shape" in the focal region during ultrasound insonation. Based on the characteristic of the temperature change, a two-dimensional model of a "cigar shape" tumor is designed and tested through numerical simulation. One single-point on the border of the "cigar shape" tumor is selected as the control target and is controlled at the temperature of 43 degrees C by using a self-tuning regulator (STR). Considering the nonlinear effects of biological medium, an accurate state-space model obtained via the finite Fourier integral transformation to the bioheat equation is presented and used for calculating temperature. Computer simulations were performed with the perfusion rates of 2.0kg/(m(3)s) and 4.5kg/(m(3)s) to the different targets, it was found that the temperatures on the border of the "cigar shape" tumor can achieve the desired temperature of 43 degrees C by control of one single-point. A larger perfusion rate requires a higher power output to obtain the same temperature elevation under the same insonation time and needs a higher cost for compensating the energy loss carried away by blood flow after steady state. The power output increases with the controlled region while achieving the same temperature at the same time. Especially, there is no overshoot during temperature elevation and no oscillation after steady state. The simulation results demonstrate that the proposed approach may offers a way for obtaining a single-point, low-cost hyperthermia system.

  16. Comparison of online IGRT techniques for prostate IMRT treatment: Adaptive vs repositioning correction

    SciTech Connect

    Thongphiew, Danthai; Wu, Q. Jackie; Lee, W. Robert; Chankong, Vira; Yoo, Sua; McMahon, Ryan; Yin Fangfang

    2009-05-15

    This study compares three online image guidance techniques (IGRT) for prostate IMRT treatment: bony-anatomy matching, soft-tissue matching, and online replanning. Six prostate IMRT patients were studied. Five daily CBCT scans from the first week were acquired for each patient to provide representative ''snapshots'' of anatomical variations during the course of treatment. Initial IMRT plans were designed for each patient with seven coplanar 15 MV beams on a Eclipse treatment planning system. Two plans were created, one with a PTV margin of 10 mm and another with a 5 mm PTV margin. Based on these plans, the delivered dose distributions to each CBCT anatomy was evaluated to compare bony-anatomy matching, soft-tissue matching, and online replanning. Matching based on bony anatomy was evaluated using the 10 mm PTV margin (''bone10''). Soft-tissue matching was evaluated using both the 10 mm (''soft10'') and 5 mm (''soft5'') PTV margins. Online reoptimization was evaluated using the 5 mm PTV margin (''adapt''). The replanning process utilized the original dose distribution as the basis and linear goal programming techniques for reoptimization. The reoptimized plans were finished in less than 2 min for all cases. Using each IGRT technique, the delivered dose distribution was evaluated on all 30 CBCT scans (6 patientsx5CBCT/patient). The mean minimum dose (in percentage of prescription dose) to the CTV over five treatment fractions were in the ranges of 99%-100%(SD=0.1%-0.8%), 65%-98%(SD=0.4%-19.5%), 87%-99%(SD=0.7%-23.3%), and 95%-99%(SD=0.4%-10.4%) for the adapt, bone10, soft5, and soft10 techniques, respectively. Compared to patient position correction techniques, the online reoptimization technique also showed improvement in OAR sparing when organ motion/deformations were large. For bladder, the adapt technique had the best (minimum) D90, D50, and D30 values for 24, 17, and 15 fractions out of 30 total fractions, while it also had the best D90, D50, and D30 values for

  17. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  18. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks

    PubMed Central

    Abba, Sani; Lee, Jeong-A

    2015-01-01

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236

  19. Adaptive meshing technique applied to an orthopaedic finite element contact problem.

    PubMed

    Roarty, Colleen M; Grosland, Nicole M

    2004-01-01

    Finite element methods have been applied extensively and with much success in the analysis of orthopaedic implants. Recently a growing interest has developed, in the orthopaedic biomechanics community, in how numerical models can be constructed for the optimal solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of improved implants for orthopaedic surgery. Finite element and other computational techniques are widely applied in the analysis and design of hip and knee implants, with additional joints (ankle, shoulder, wrist) attracting increased attention. The objective of this investigation was to develop a simplified adaptive meshing scheme to facilitate the finite element analysis of a dual-curvature total wrist implant. Using currently available software, the analyst has great flexibility in mesh generation, but must prescribe element sizes and refinement schemes throughout the domain of interest. Unfortunately, it is often difficult to predict in advance a mesh spacing that will give acceptable results. Adaptive finite-element mesh capabilities operate to continuously refine the mesh to improve accuracy where it is required, with minimal intervention by the analyst. Such mesh adaptation generally means that in certain areas of the analysis domain, the size of the elements is decreased (or increased) and/or the order of the elements may be increased (or decreased). In concept, mesh adaptation is very appealing. Although there have been several previous applications of adaptive meshing for in-house FE codes, we have coupled an adaptive mesh formulation with the pre-existing commercial programs PATRAN (MacNeal-Schwendler Corp., USA) and ABAQUS (Hibbit Karlson and Sorensen, Pawtucket, RI). In doing so, we have retained several attributes of the commercial software, which are very attractive for orthopaedic implant applications.

  20. Determination of optimum voltages of ion focusing devices using computer techniques

    NASA Technical Reports Server (NTRS)

    Eckstein, B. A.

    1980-01-01

    Electric potentials for two dimensional cross sections of ion focusing devices used in a mass spectrometer are calculated via a series of computer programs designed to compute potentials between areas of fixed voltages. Ion trajectories within these devices may be determined by computer and a histogram obtained which plots ion density against ion position along a plate of the focusing device. For each lens system, a plate voltage may be changed, the electric potentials recalculated, and a new histogram calculated in order to determine if the new voltage configuration has increased the device's efficiency. This process may be repeated until the optimum voltage values have been found for maximum particle transmission in each focusing device.

  1. Restoring the interproximal zone using the proximal adaptation technique--Part 2.

    PubMed

    Terry, Douglas A

    2005-01-01

    In this era of modern adhesive dentistry, clinicians are still faced with challenges from microleakage, recurrent decay, and sensitivity. Many of the challenges are a result of using yesterday's restorative techniques and principles with the new formulations of biomaterials. Procedures such as the proximal adaptation and the oblique layering techniques offer modifications to the nonadhesive principles discussed in Part I (The Compendium, December 2004), while providing the patient and clinician with the 3 primary objectives of restorative dentistry: prevention, preservation, and conservation. Using stratification techniques and thorough adhesive protocol as illustrated in this article allows clinicians to provide restorations that have improved physical characteristics while reducing the effects of polymerization shrinkage. Other benefits of these adhesive procedures include enhanced chromatic integration, ideal anatomical form and function, optimal proximal contact, improved marginal integrity, and longer lasting directly placed composite restorations.

  2. A assessment of the plastic Thermafil obturation technique. Part 1. Radiographic evaluation of adaptation and placement.

    PubMed

    Gutmann, J L; Saunders, W P; Saunders, E M; Nguyen, L

    1993-05-01

    Adaptation and placement of alpha-phase gutta-percha delivered with a plastic core-carrier, Thermafil, was compared to the lateral condensation of gutta-percha in a specific tooth model. Fifty-one mandibular molar roots with separate canals, patent canal orifices and curvatures greater than 15 degrees were cleaned and shaped with K-files and 2.5% sodium hypochlorite to a size 30 at the apex, and flared with Hedstrom files to create a continuously tapering funnel preparation. Canals were randomly obturated with Sealapex root canal sealer and either alpha-phase gutta-percha on a plastic Thermafil carrier, or standard beta-phase gutta-percha with lateral condensation. Roots were radiographed from the proximal and evaluated by three examiners, based on established criteria for overall material adaptation, apical adaptation, and filling material extrusion. Thermafil provided a statistically significant better overall canal obturation (P < 0.001), while, in the apical third, both techniques were not significantly different (P > 0.05). When the apical orifice was patent there was a significant propensity for the extrusion of filling materials beyond the apex (P < 0.001) with the Thermafil technique.

  3. The FIGS (Focused Identification of Germplasm Strategy) Approach Identifies Traits Related to Drought Adaptation in Vicia faba Genetic Resources

    PubMed Central

    Khazaei, Hamid; Street, Kenneth; Bari, Abdallah; Mackay, Michael; Stoddard, Frederick L.

    2013-01-01

    Efficient methods to explore plant agro-biodiversity for climate change adaptive traits are urgently required. The focused identification of germplasm strategy (FIGS) is one such approach. FIGS works on the premise that germplasm is likely to reflect the selection pressures of the environment in which it developed. Environmental parameters describing plant germplasm collection sites are used as selection criteria to improve the probability of uncovering useful variation. This study was designed to test the effectiveness of FIGS to search a large faba bean (Vicia faba L.) collection for traits related to drought adaptation. Two sets of faba bean accessions were created, one from moisture-limited environments, and the other from wetter sites. The two sets were grown under well watered conditions and leaf morpho-physiological traits related to plant water use were measured. Machine-learning algorithms split the accessions into two groups based on the evaluation data and the groups created by this process were compared to the original climate-based FIGS sets. The sets defined by trait data were in almost perfect agreement to the FIGS sets, demonstrating that ecotypic differentiation driven by moisture availability has occurred within the faba bean genepool. Leaflet and canopy temperature as well as relative water content contributed more than other traits to the discrimination between sets, indicating that their utility as drought-tolerance selection criteria for faba bean germplasm. This study supports the assertion that FIGS could be an effective tool to enhance the discovery of new genes for abiotic stress adaptation. PMID:23667581

  4. Adaptation and Recommendation Techniques to Improve the Quality of Annotations and the Relevance of Resources in Web 2.0 and Semantic Web-Based Applications

    NASA Astrophysics Data System (ADS)

    Torre, Ilaria

    The Web 2.0 and the Semantic Web represent different forms of evolution of the first-generation Web, and both of them enrich Web resources with semantic annotations. Recommendation and personalization of Web resources is another trend that becomes more and more important with the growth of information, and both the Web 2.0 and the Semantic Web are deeply connected to it. The objective of this paper is to analyze the contribution of recommendation and adaptation techniques to these paradigms and to investigate if these techniques can be used as a bridge for their integration. More specifically, the paper will focus on the contribution of adaptation and recommendation techniques to improve the quality of annotations in the Web 2.0, Semantic Web, and mixed approaches and the relevance of annotated resources that are retrieved or filtered to users.

  5. Stress Management Apps With Regard to Emotion-Focused Coping and Behavior Change Techniques: A Content Analysis

    PubMed Central

    Hoffmann, Alexandra; Bleser, Gabriele

    2017-01-01

    Background Chronic stress has been shown to be associated with disease. This link is not only direct but also indirect through harmful health behavior such as smoking or changing eating habits. The recent mHealth trend offers a new and promising approach to support the adoption and maintenance of appropriate stress management techniques. However, only few studies have dealt with the inclusion of evidence-based content within stress management apps for mobile phones. Objective The aim of this study was to evaluate stress management apps on the basis of a new taxonomy of effective emotion-focused stress management techniques and an established taxonomy of behavior change techniques. Methods Two trained and independent raters evaluated 62 free apps found in Google Play with regard to 26 behavior change and 15 emotion-focused stress management techniques in October 2015. Results The apps included an average of 4.3 behavior change techniques (SD 4.2) and 2.8 emotion-focused stress management techniques (SD 2.6). The behavior change technique score and stress management technique score were highly correlated (r=.82, P=.01). Conclusions The broad variation of different stress management strategies found in this sample of apps goes in line with those found in conventional stress management interventions and self-help literature. Moreover, this study provided a first step toward more detailed and standardized taxonomies, which can be used to investigate evidence-based content in stress management interventions and enable greater comparability between different intervention types. PMID:28232299

  6. A cost-effective line-based light-balancing technique using adaptive processing.

    PubMed

    Hsia, Shih-Chang; Chen, Ming-Huei; Chen, Yu-Min

    2006-09-01

    The camera imaging system has been widely used; however, the displaying image appears to have an unequal light distribution. This paper presents novel light-balancing techniques to compensate uneven illumination based on adaptive signal processing. For text image processing, first, we estimate the background level and then process each pixel with nonuniform gain. This algorithm can balance the light distribution while keeping a high contrast in the image. For graph image processing, the adaptive section control using piecewise nonlinear gain is proposed to equalize the histogram. Simulations show that the performance of light balance is better than the other methods. Moreover, we employ line-based processing to efficiently reduce the memory requirement and the computational cost to make it applicable in real-time systems.

  7. Forward-Inverse Adaptive Techniques for Reservoir Characterization and Simulation: Theory and Applications

    SciTech Connect

    Doss, S D; Ezzedine, S; Gelinas, R; Chawathe, A

    2001-06-11

    A novel approach called Forward-Inverse Adaptive Techniques (FIAT) for reservoir characterization is developed and applied to three representative exploration cases. Inverse modeling refers to the determination of the entire reservoir permeability under steady state single-phase flow regime, given only field permeability, pressure and production well measurements. FIAT solves the forward and inverse partial differential equations (PDEs) simultaneously by adding a regularization term and filtering pressure gradients. An implicit adaptive-grid, Galerkin, numerical scheme is used to numerically solve the set of PDEs subject to pressure and permeability boundary conditions. Three examples are presented. Results from all three cases demonstrate attainable and reasonably accurate solutions and, more importantly, provide insights into the consequences of data undersampling.

  8. Focus on Young Film Makers: Student Film Making--Types and Techniques.

    ERIC Educational Resources Information Center

    Putsch, Henry E.

    1968-01-01

    Brief descriptions of 10 styles of student film making include references to specific films employing the techniques. The styles of film making listed are animation, pixillation animation, collage, draw-on, documentary, bio-documentary, story line, impressionistic, commercials, and the school film. Directions for submitting films to the Young Film…

  9. Robust Adaptive Beamforming Based on Low-Rank and Cross-Correlation Techniques

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; de Lamare, Rodrigo C.

    2016-08-01

    This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Firstly, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then, we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method. We also devise adaptive algorithms based on stochastic gradient (SG) and conjugate gradient (CG) techniques to update the beamforming weights with low complexity and avoid any costly matrix inversion. The main advantages of the proposed low-rank and mismatch estimation techniques are their cost-effectiveness when dealing with high dimension subspaces or large sensor arrays. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) of the beamformer among all the compared RAB methods.

  10. Comparison of adaptive radiotherapy techniques for external radiation therapy of canine bladder cancer.

    PubMed

    Nieset, Jessica R; Harmon, Joseph F; Johnson, Thomas E; Larue, Susan M

    2014-01-01

    Daily bladder variations make it difficult to utilize standard radiotherapy as a primary treatment option for muscle-invasive bladder cancer. Our purpose was to develop a model comparing dose distributions of image-guided and adaptive radiotherapy (ART) techniques for canine bladder cancer. Images were obtained retrospectively from cone-beam computed tomography (CBCT) scans used for daily positioning of four dogs undergoing fractionated image-guided radiotherapy (IGRT). Four different treatment plans were modeled for each dog, and dosimetric data were compared. Two plans were developed using planning target volumes based on planning computed tomography (CT) bladder volume. These plans then used bony anatomy or soft tissue anatomy for daily positioning and dosimetric modeling. The third plan type was a hybrid IGRT and ART technique utilizing a library of premade anisotropic planning target volumes using bladder wall motion data and selection of a "plan-of-the-day" determined from positioning CBCT bladder volumes. The fourth plan was an ART technique that constructed a new planning target volume each day based on daily bladder volume as determined by pretreatment CBCT. Dose volume histograms were generated for each plan type and dose distribution for the bladder and rectum were compared between plan types. Irradiated rectal volume decreased and irradiated bladder volume increased as plan conformality increased. ART provided the greatest rectal sparing, with lowest irradiated rectal volume (P < 0.001), and largest bladder volume receiving 95% of the prescription dose (P < 0.001). In our model, adaptive radiotherapy techniques for canine bladder cancer showed significant reduction in rectal volume irradiated when compared to nonadaptive techniques, while maintaining appropriate bladder coverage.

  11. Tracking stem cells for cardiovascular applications in vivo: focus on imaging techniques

    PubMed Central

    Fu, Yingli; Azene, Nicole; Xu, Yi; Kraitchman, Dara L

    2011-01-01

    Despite rapid translation of stem cell therapy into clinical practice, the treatment of cardiovascular disease using embryonic stem cells, adult stem and progenitor cells or induced pluripotent stem cells has not yielded satisfactory results to date. Noninvasive stem cell imaging techniques could provide greater insight into not only the therapeutic benefit, but also the fundamental mechanisms underlying stem cell fate, migration, survival and engraftment in vivo. This information could also assist in the appropriate choice of stem cell type(s), delivery routes and dosing regimes in clinical cardiovascular stem cell trials. Multiple imaging modalities, such as MRI, PET, SPECT and CT, have emerged, offering the ability to localize, monitor and track stem cells in vivo. This article discusses stem cell labeling approaches and highlights the latest cardiac stem cell imaging techniques that may help clinicians, research scientists or other healthcare professionals select the best cellular therapeutics for cardiovascular disease management. PMID:22287982

  12. Diagnostic procedures in tularaemia with special focus on molecular and immunological techniques.

    PubMed

    Splettstoesser, W D; Tomaso, H; Al Dahouk, S; Neubauer, H; Schuff-Werner, P

    2005-08-01

    Tularaemia is a severe bacterial zoonosis caused by the highly infectious agent Francisella tularensis. It is endemic in countries of the northern hemisphere ranging from North America to Europe, Asia and Japan. Very recently, Francisella-like strains causing disease in humans were described from tropical northern Australia. In the last decade, efforts have been made to develop sensitive and specific immunological and molecular techniques for the laboratory diagnosis of tularaemia and also for the definite identification of members of the species F. tularensis and its four subspecies. Screening for the keyword 'Francisella' a Medline search over the last decade was performed and articles describing diagnostic methods for tularaemia and its causative agent were selected. Besides classical microbiological techniques (cultivation, biochemical profiling, susceptibility testing) several new immunological and molecular approaches to identify F. tularensis have been introduced employing highly specific antibodies and various polymerase chain reaction (PCR)-based methods. Whereas direct antigen detection by enzyme-linked immunosorbent assay (ELISA) or immunofluorescence might allow early presumptive diagnosis of tularaemia, these methods--like all PCR techniques--still await further evaluation. Therefore, diagnosis of tularaemia still relies mainly on the demonstration of specific antibodies in the host. ELISA and immunoblot methods started to replace the standard tube or micro-agglutination assays. However, the diagnostic value of antibody detection in the very early clinical phase of tularaemia is limited. Francisella tularensis is regarded as a 'highest priority' biological agent (category 'A' according to the CDC, Atlanta, GA, USA), thus rapid and reliable diagnosis of tularaemia is required not only for a timely onset of therapy, the handling of outbreak investigations but also for the surveillance of endemic foci. Only very recently, evaluated test kits for

  13. Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique

    NASA Astrophysics Data System (ADS)

    Peters, J. H.; Klein, R.; Delle Site, L.

    2016-08-01

    We extend the application of the adaptive resolution technique (AdResS) to liquid systems composed of alkane chains of different lengths. The aim of the study is to develop and test the modifications of AdResS required in order to handle the change of representation of large molecules. The robustness of the approach is shown by calculating several relevant structural properties and comparing them with the results of full atomistic simulations. The extended scheme represents a robust prototype for the simulation of macromolecular systems of interest in several fields, from material science to biophysics.

  14. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    SciTech Connect

    Shen, Yujie; Voronine, Dmitri V.; Sokolov, Alexei V.; Scully, Marlan O.

    2015-08-15

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  15. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering.

    PubMed

    Shen, Yujie; Voronine, Dmitri V; Sokolov, Alexei V; Scully, Marlan O

    2015-08-01

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  16. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    The time-reversed ultrasonically encoded (TRUE) optical focusing technique is a method that is capable of focusing light deep within a scattering medium. This theoretical study aims to explore the depth limits of the TRUE technique for biological tissues in the context of two primary constraints – the safety limit of the incident light fluence and a limited TRUE’s recording time (assumed to be 1 ms), as dynamic scatterer movements in a living sample can break the time-reversal scattering symmetry. Our numerical simulation indicates that TRUE has the potential to render an optical focus with a peak-to-background ratio of ~2 at a depth of ~103 mm at wavelength of 800 nm in a phantom with tissue scattering characteristics. This study sheds light on the allocation of photon budget in each step of the TRUE technique, the impact of low signal on the phase measurement error, and the eventual impact of the phase measurement error on the strength of the TRUE optical focus. PMID:24663917

  17. Ultrasound-Guided Obturator Nerve Block: A Focused Review on Anatomy and Updated Techniques

    PubMed Central

    Nakamoto, Tatsuo; Kamibayashi, Takahiko

    2017-01-01

    This review outlines the anatomy of the obturator nerve and the indications for obturator nerve block (ONB). Ultrasound-guided ONB techniques and unresolved issues regarding these procedures are also discussed. An ONB is performed to prevent thigh adductor jerk during transurethral resection of bladder tumor, provide analgesia for knee surgery, treat hip pain, and improve persistent hip adductor spasticity. Various ultrasound-guided ONB techniques can be used and can be classified according to whether the approach is distal or proximal. In the distal approach, a transducer is placed at the inguinal crease; the anterior and posterior branches of the nerve are then blocked by two injections of local anesthetic directed toward the interfascial planes where each branch lies. The proximal approach comprises a single injection of local anesthetic into the interfascial plane between the pectineus and obturator externus muscles. Several proximal approaches involving different patient and transducer positions are reported. The proximal approach may be superior for reducing the dose of local anesthetic and providing successful blockade of the obturator nerve, including the hip articular branch, when compared with the distal approach. This hypothesis and any differences between the proximal ONB techniques need to be explored in future studies. PMID:28280738

  18. Adaptively Reevaluated Bayesian Localization (ARBL): A novel technique for radiological source localization

    NASA Astrophysics Data System (ADS)

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.; McCall, Jonathon D.; Prinke, Amanda M.; Webster, Jennifer B.; Seifert, Carolyn E.

    2015-06-01

    We present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. This technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry of response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search.

  19. Adaptively Reevaluated Bayesian Localization (ARBL). A Novel Technique for Radiological Source Localization

    SciTech Connect

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.; McCall, Jonathon D.; Prinke, Amanda M.; Webster, Jennifer B.; Seifert, Carolyn E.

    2015-01-19

    Here we present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. Furthermore, this technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry of response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Our results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search

  20. Imaging Techniques for Clinical Burn Assessment with a Focus on Multispectral Imaging

    PubMed Central

    Thatcher, Jeffrey E.; Squiers, John J.; Kanick, Stephen C.; King, Darlene R.; Lu, Yang; Wang, Yulin; Mohan, Rachit; Sellke, Eric W.; DiMaio, J. Michael

    2016-01-01

    Significance: Burn assessments, including extent and severity, are some of the most critical diagnoses in burn care, and many recently developed imaging techniques may have the potential to improve the accuracy of these evaluations. Recent Advances: Optical devices, telemedicine, and high-frequency ultrasound are among the highlights in recent burn imaging advancements. We present another promising technology, multispectral imaging (MSI), which also has the potential to impact current medical practice in burn care, among a variety of other specialties. Critical Issues: At this time, it is still a matter of debate as to why there is no consensus on the use of technology to assist burn assessments in the United States. Fortunately, the availability of techniques does not appear to be a limitation. However, the selection of appropriate imaging technology to augment the provision of burn care can be difficult for clinicians to navigate. There are many technologies available, but a comprehensive review summarizing the tissue characteristics measured by each technology in light of aiding clinicians in selecting the proper device is missing. This would be especially valuable for the nonburn specialists who encounter burn injuries. Future Directions: The questions of when burn assessment devices are useful to the burn team, how the various imaging devices work, and where the various burn imaging technologies fit into the spectrum of burn care will continue to be addressed. Technologies that can image a large surface area quickly, such as thermography or laser speckle imaging, may be suitable for initial burn assessment and triage. In the setting of presurgical planning, ultrasound or optical microscopy techniques, including optical coherence tomography, may prove useful. MSI, which actually has origins in burn care, may ultimately meet a high number of requirements for burn assessment in routine clinical use. PMID:27602255

  1. Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy

    SciTech Connect

    Rehault, Julien; Helbing, Jan; Zanirato, Vinicio; Olivucci, Massimo

    2011-03-28

    We demonstrate strong amplification of polarization-sensitive transient IR signals using a pseudo-null crossed polarizer technique first proposed by Keston and Lospalluto [Fed. Proc. 10, 207 (1951)] and applied for nanosecond flash photolysis in the visible by Che et al. [Chem. Phys. Lett. 224, 145 (1994)]. We adapted the technique to ultrafast pulsed laser spectroscopy in the infrared using photoelastic modulators, which allow us to measure amplified linear dichroism at kilohertz repetition rates. The method was applied to a photoswitch of the N-alkylated Schiff base family in order to demonstrate its potential of strongly enhancing sensitivity and signal to noise in ultrafast transient IR experiments, to simplify spectra and to determine intramolecular transition dipole orientations.

  2. Infrared image gray adaptive adjusting enhancement algorithm based on gray redundancy histogram-dealing technique

    NASA Astrophysics Data System (ADS)

    Hao, Zi-long; Liu, Yong; Chen, Ruo-wang

    2016-11-01

    In view of the histogram equalizing algorithm to enhance image in digital image processing, an Infrared Image Gray adaptive adjusting Enhancement Algorithm Based on Gray Redundancy Histogram-dealing Technique is proposed. The algorithm is based on the determination of the entire image gray value, enhanced or lowered the image's overall gray value by increasing appropriate gray points, and then use gray-level redundancy HE method to compress the gray-scale of the image. The algorithm can enhance image detail information. Through MATLAB simulation, this paper compares the algorithm with the histogram equalization method and the algorithm based on gray redundancy histogram-dealing technique , and verifies the effectiveness of the algorithm.

  3. State Space Composition Technique for Intelligent Wheel Chair Adapting to Environment.

    NASA Astrophysics Data System (ADS)

    Hamagami, Tomoki; Hirata, Hironori

    This paper describes a state space composition technique for the adaptation to environment in the autonomous behavior of intelligent wheel chair (IWC).In the product like IWC with actual sensors, composing state space is difficult problem since environmental information can not be observed sufficiently from restricted sensor inputs.A lot of states observed from same environment position raise the fail of the learning and adaptation with active learning approach.In order to compensate for the effects of the sensor configuration, that is sensor position, angle and precision, a normalization processing of position detector is introduced.In sensor normalization process, IWC scans present environment via range sensors with executing spot-turn, and prepare scan-patterns of each sensor.Then the normalization process adjusts the phase and dynamic range of each pattern to the reference sensor scan-pattern, analyzing phase differences and scale factors of each pattern against reference pattern.Using phase difference and scale factors, automated state space composition is possible.From the simulation experiment with both artificial and real-worlddraft, the automated state space construction is confirmed as a practical approach for pre-processing for environment learning and adaptation.

  4. Influence of restorative techniques on marginal adaptation and dye penetration around Class V restorations.

    PubMed

    Pereira, Adriana de Fatima Vasconcelos; Poiate, Isis Andrea Venturini Pola; Poiate, Edgar; Rodrigues, Flavia Pires; Turbino, Mirian Lacalle; Miranda, Walter Gomes

    2012-01-01

    The aim of this study was to observe the influence of restorative techniques on marginal adaptation and dye penetration around Class V restorations simulating abfraction lesions. Sixty mandibular premolars were divided into six groups (n = 10) using different restorative materials. Cavity preparation presented the gingival wall localized in dentin and the incisal wall in enamel. Replicas of abfraction lesions were obtained and viewed under a stereomicroscope for adaptation assessment. All teeth were subjected to thermocycling and mechanical load cycling and immersed in 0.5% methylene blue dye (pH 7.2) for four hours. The results were tabulated and submitted to Kruskal-Wallis tests, which were significant for the dentin margin with lower microleakage values for primer/Vitremer, followed by Clearfil SE Bond/Durafill VS and Clearfil SE Bond/Z100 in qualitative and quantitative methods (P < 0.05). The enamel margin had no significant difference for microleakage values for all groups. There was no statistically significant difference among the substrates for marginal adaptation. The Spearman coefficient illustrated a direct relation between enamel and dentin for microleakage evaluation (P < 0.0001). The data demonstrated no difference for marginal fit by chi-square test. It can be concluded that all groups had microleakage in different degrees, with the lowest values for resin-modified glass ionomer.

  5. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  6. Detecting discontinuities in time series of upper air data: Demonstration of an adaptive filter technique

    SciTech Connect

    Zurbenko, I.; Chen, J.; Rao, S.T.

    1997-11-01

    The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.

  7. Use of concurrent mixed methods combining concept mapping and focus groups to adapt a health equity tool in Canada.

    PubMed

    Guichard, Anne; Tardieu, Émilie; Dagenais, Christian; Nour, Kareen; Lafontaine, Ginette; Ridde, Valéry

    2017-04-01

    The aim of this project was to identify and prioritize a set of conditions to be considered for incorporating a health equity tool into public health practice. Concept mapping and focus groups were implemented as complementary methods to investigate the conditions of use of a health equity tool by public health organizations in Quebec. Using a hybrid integrated research design is a richer way to address the complexity of questions emerging from intervention and planning settings. This approach provides a deeper, operational, and contextualized understanding of research results involving different professional and organizational cultures, and thereby supports the decision-making process. Concept mapping served to identify and prioritize in a limited timeframe the conditions to be considered for incorporation into a health equity tool into public health practices. Focus groups then provided a more refined understanding of the barriers, issues, and facilitating factors surrounding the tools adoption, helped distinguish among participants' perspectives based on functional roles and organizational contexts, and clarified some apparently contradictory results from the concept map. The combined use of these two techniques brought the strengths of each approach to bear, thereby overcoming some of the respective limitations of concept mapping and focus groups. This design is appropriate for investigating targets with multiple levels of complexity.

  8. An adaptive technique to maximize lossless image data compression of satellite images

    NASA Technical Reports Server (NTRS)

    Stewart, Robert J.; Lure, Y. M. Fleming; Liou, C. S. Joe

    1994-01-01

    Data compression will pay an increasingly important role in the storage and transmission of image data within NASA science programs as the Earth Observing System comes into operation. It is important that the science data be preserved at the fidelity the instrument and the satellite communication systems were designed to produce. Lossless compression must therefore be applied, at least, to archive the processed instrument data. In this paper, we present an analysis of the performance of lossless compression techniques and develop an adaptive approach which applied image remapping, feature-based image segmentation to determine regions of similar entropy and high-order arithmetic coding to obtain significant improvements over the use of conventional compression techniques alone. Image remapping is used to transform the original image into a lower entropy state. Several techniques were tested on satellite images including differential pulse code modulation, bi-linear interpolation, and block-based linear predictive coding. The results of these experiments are discussed and trade-offs between computation requirements and entropy reductions are used to identify the optimum approach for a variety of satellite images. Further entropy reduction can be achieved by segmenting the image based on local entropy properties then applying a coding technique which maximizes compression for the region. Experimental results are presented showing the effect of different coding techniques for regions of different entropy. A rule-base is developed through which the technique giving the best compression is selected. The paper concludes that maximum compression can be achieved cost effectively and at acceptable performance rates with a combination of techniques which are selected based on image contextual information.

  9. Focused ion beam preparation techniques dedicated for the fabrication of TEM lamellae of fibre-reinforced composites.

    PubMed

    Mucha, Herbert; Kato, Takeharu; Arai, Shigeo; Saka, Hiroyasu; Kuroda, Kotaro; Wielage, Bernhard

    2005-01-01

    Two Focused Ion Beam based transmission electron microscopy (TEM) thin film preparation techniques are introduced. One is dedicated to the preparation of single fibres, the other to fibre/matrix interfaces of fibre reinforced composites. Due to their thin film quality, reliability and predictable processing times both techniques are suited for routine applications in material science like TEM studies of fibre microtextures and fibre/matrix interfaces. Exemplarily they are applied to Carbon Fibres and Carbon Fibre reinforced Carbon Matrix Composites (C/C). The achieved preparation standard in both cases is substantiated by TEM investigations.

  10. New analytical expressions of the Rossiter-McLaughlin effect adapted to different observation techniques

    NASA Astrophysics Data System (ADS)

    Boué, G.; Montalto, M.; Boisse, I.; Oshagh, M.; Santos, N. C.

    2013-02-01

    The Rossiter-McLaughlin (hereafter RM) effect is a key tool for measuring the projected spin-orbit angle between stellar spin axes and orbits of transiting planets. However, the measured radial velocity (RV) anomalies produced by this effect are not intrinsic and depend on both instrumental resolution and data reduction routines. Using inappropriate formulas to model the RM effect introduces biases, at least in the projected velocity Vsini⋆ compared to the spectroscopic value. Currently, only the iodine cell technique has been modeled, which corresponds to observations done by, e.g., the HIRES spectrograph of the Keck telescope. In this paper, we provide a simple expression of the RM effect specially designed to model observations done by the Gaussian fit of a cross-correlation function (CCF) as in the routines performed by the HARPS team. We derived a new analytical formulation of the RV anomaly associated to the iodine cell technique. For both formulas, we modeled the subplanet mean velocity vp and dispersion βp accurately taking the rotational broadening on the subplanet profile into account. We compare our formulas adapted to the CCF technique with simulated data generated with the numerical software SOAP-T and find good agreement up to Vsini⋆ ≲ 20 km s-1. In contrast, the analytical models simulating the two different observation techniques can disagree by about 10σ in Vsini⋆ for large spin-orbit misalignments. It is thus important to apply the adapted model when fitting data. A public code implementing the expressions derived in this paper is available at http://www.astro.up.pt/resources/arome. A copy of the code is also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A53

  11. Far-field focusing of laser beam based on digital image processing techniques

    NASA Astrophysics Data System (ADS)

    Zhang, He-yong; Zhao, Shuai; Guo, Jin; Liu, Li-sheng; Tian, Yu-zhen

    2010-11-01

    In order to lead the laser beam transmit in the atmosphere convergently, an experiment of laser focus at the distance of 450m and 300m has been operated in the outdoor place. The actual manipulations are as follows: Firstly, the laser was collimated by a beam expander, then the near-parallel laser beam was transmitted with a Galileo telescope system, and the distance between the concave lens and the convex lens can be tuned through a precise displacement platform, so the focus of the system changed due to the tiny displacement of the concave lens. Secondly, the average power of the laser spot can be measured using power meter, the power is 47.67mW and the standard deviation is 0.67mW while the focal length is 450m. Thirdly, the energy distribution was found through the laser beam analyzer. The spot images were saved using the beam analyzer, then the saved image can be processed with Matlab software afterwards. The function named EDGE and Sobel operator was used in the pre-processing of the saved image, then method of median filter was used in the course of image de-noising and 53H filter was adopted in the signal analysis. The diameter of laser spot was obtained by the method above, the diameter is 5.56mm and the standard deviation is 0.24mm. The spot center excursion is 0.56mm, it is 10.43% of the total diameter of the laser spot. At last, the key factors of the energy dissipation in the focusing system can be summarized as follows: restriction of the diffraction limit, attenuation in the atmosphere, geometrical aberration of optical system, and the diffraction limit and the geometrical aberration are significant in the three factors above, so we can reduce the impact of the both factors during the design of optical system. The reliable referenced data of the system design can be acquired through the primary experiment research.

  12. Digitally focused array ultrasonic testing technique for carbon fiber composite structures

    NASA Astrophysics Data System (ADS)

    Salchak, Y.; Zhvyrblya, V.; Sednev, D.; Lider, A.

    2016-06-01

    Composite fiber reinforced polymers are highly promising structures. At present, they are widely used in different areas such as aeronautics and nuclear industries. There is a great number of advantages of composite structures such as design flexibility, low cost per cubic inch, resistance to corrosion, lower material costs, lighter weight and improved productivity. However, composites degradation may be caused by different mechanisms such as overload, impact, overheating, creep and fatigue. Comparing to inspection of other materials some unique consideration is required for testing and analysis. Ultrasound testing is the most common method for inspection of composite structures. Digitally Focused Array Technology is considered as novel approach which enables fast and effective quantitative automatic testing. In this study new methodology of quality assurance of composite structure components based on DFA is performed.

  13. Focused impedance measurement (FIM). A new technique with improved zone localization.

    PubMed

    Rabbani, K S; Sarker, M; Akond, M H; Akter, T

    1999-04-20

    Conventional four-electrode impedance measurements (FEIM) cannot localize a zone of interest in a volume conductor. On the other hand, the recently developed electrical impedance tomography (EIT) system offers an image with reasonable resolution, but is complex and needs many electrodes. By placing two FEIM systems perpendicular to each other over a common zone at the center and combining the two results, it is possible to obtain enhanced sensitivity over this central zone. This is the basis of the proposed new method of focused impedance measurement (FIM). Sensitivity maps in both 2D and 3D show the desired improvement. A comparison of stomach-emptying studies also indicates the improvement achieved. This new method may be useful for impedance measurements of large organs like stomach, heart, and lungs. Being much simpler in comparison to EIT, multifrequency systems can be simply built for FIM. Besides, FIM may have utility in other fields like geology where impedance measurements are performed.

  14. Mode selection in InAs quantum dot microdisk lasers using focused ion beam technique.

    PubMed

    Bogdanov, A A; Mukhin, I S; Kryzhanovskaya, N V; Maximov, M V; Sadrieva, Z F; Kulagina, M M; Zadiranov, Yu M; Lipovskii, A A; Moiseev, E I; Kudashova, Yu V; Zhukov, A E

    2015-09-01

    Optically pumped InAs quantum dot microdisk lasers with grooves etched on their surface by a focused ion beam are studied. It is shown that the radial grooves, depending on their length, suppress the lasing of specific radial modes of the microdisk. Total suppression of all radial modes, except for the fundamental radial one, is also demonstrated. The comparison of laser spectra measured at 78 K before and after ion beam etching for a microdisk of 8 μm in diameter shows a sixfold increase of mode spacing, from 2.5 to 15.5 nm, without a significant decrease of the dominant mode quality factor. Numerical simulations are in good agreement with experimental results.

  15. Protein Secondary Structure Prediction Using Local Adaptive Techniques in Training Neural Networks

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Zainuddin, Zarita; Joseph, Annie

    2008-01-01

    One of the most significant problems in computer molecular biology today is how to predict a protein's three-dimensional structure from its one-dimensional amino acid sequence or generally call the protein folding problem and difficult to determine the corresponding protein functions. Thus, this paper involves protein secondary structure prediction using neural network in order to solve the protein folding problem. The neural network used for protein secondary structure prediction is multilayer perceptron (MLP) of the feed-forward variety. The training set are taken from the protein data bank which are 120 proteins while 60 testing set is the proteins which were chosen randomly from the protein data bank. Multiple sequence alignment (MSA) is used to get the protein similar sequence and Position Specific Scoring matrix (PSSM) is used for network input. The training process of the neural network involves local adaptive techniques. Local adaptive techniques used in this paper comprises Learning rate by sign changes, SuperSAB, Quickprop and RPROP. From the simulation, the performance for learning rate by Rprop and Quickprop are superior to all other algorithms with respect to the convergence time. However, the best result was obtained using Rprop algorithm.

  16. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Technical Reports Server (NTRS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  17. Adaptive technique for matching the spectral response in skin lesions' images

    NASA Astrophysics Data System (ADS)

    Pavlova, P.; Borisova, E.; Pavlova, E.; Avramov, L.

    2015-03-01

    The suggested technique is a subsequent stage for data obtaining from diffuse reflectance spectra and images of diseased tissue with a final aim of skin cancer diagnostics. Our previous work allows us to extract patterns for some types of skin cancer, as a ratio between spectra, obtained from healthy and diseased tissue in the range of 380 - 780 nm region. The authenticity of the patterns depends on the tested point into the area of lesion, and the resulting diagnose could also be fixed with some probability. In this work, two adaptations are implemented to localize pixels of the image lesion, where the reflectance spectrum corresponds to pattern. First adapts the standard to the personal patient and second - translates the spectrum white point basis to the relative white point of the image. Since the reflectance spectra and the image pixels are regarding to different white points, a correction of the compared colours is needed. The latest is done using a standard method for chromatic adaptation. The technique follows the steps below: -Calculation the colorimetric XYZ parameters for the initial white point, fixed by reflectance spectrum from healthy tissue; -Calculation the XYZ parameters for the distant white point on the base of image of nondiseased tissue; -Transformation the XYZ parameters for the test-spectrum by obtained matrix; -Finding the RGB values of the XYZ parameters for the test-spectrum according sRGB; Finally, the pixels of the lesion's image, corresponding to colour from the test-spectrum and particular diagnostic pattern are marked with a specific colour.

  18. Free focus radiography with miniaturized dental x-ray machines: a comparison of ''midline'' and ''lateral'' techniques

    SciTech Connect

    Jensen, T.W.

    1983-08-01

    The use of free focus radiography (FFR) employing miniaturized dental x-ray machines with radiation probes has never been generally accepted in dentistry despite its recognized radiographic potential. The present investigation studied ways to improve imaging and lower radiation burdens in dental free focus radiography. Relatively high air exposures ranging from 42,050 mR per film for high-resolution images to 3,214 mR per film for lower-resolution images using a current midline radiographic technique for panoramic FFR were found. In a proposed lateral FFR panoramic technique, reduced exposures ranged from 420 mR per film for high-resolution images to 14 mR per film for lower-resolution images. In each technique the lower exposure was obtained with a rare earth imaging system. A proposed modification of the current midline FFR technique using a rare earth imaging system and heavy added copper filtration was found to produce exposures in the range normally used in dentistry (207 mr), and the resultant image was high in contrast with relatively low detail. A comparison of essential characteristics of midline and lateral FFR techniques failed to identify specific advantages for the midline technique in current use. Lateral exposure modes in dental FFR should receive increased attention in the interest of good imaging and radiation control. It was noted that existing miniaturized dental x-ray machines may have been designed specifically for use of the midline FFR exposure technique, and modification of this equipment to support reliable lateral exposure modes was recommended.

  19. Value-Focused Thinking in the Presence of Weight Ambiguity: A Solution Technique Using Monte Carlo Simulation

    DTIC Science & Technology

    2004-03-01

    attribute utility model based on multi-attribute utility theory ( MAUT ) described by Keeney and Raiffa (Keeney and Raiffa, 1976: 436-472). The Lavelle et...addresses utility theory and value preferences, the use of weights, properties of decision makers, ambiguity, alternative selection, Monte Carlo...narrowed to discuss utility theory , value theory and Value-Focused Thinking (VFT) specifically. After reviewing these theories and techniques, the

  20. Structural break detection method based on the Adaptive Regression Splines technique

    NASA Astrophysics Data System (ADS)

    Kucharczyk, Daniel; Wyłomańska, Agnieszka; Zimroz, Radosław

    2017-04-01

    For many real data, long term observation consists of different processes that coexist or occur one after the other. Those processes very often exhibit different statistical properties and thus before the further analysis the observed data should be segmented. This problem one can find in different applications and therefore new segmentation techniques have been appeared in the literature during last years. In this paper we propose a new method of time series segmentation, i.e. extraction from the analysed vector of observations homogeneous parts with similar behaviour. This method is based on the absolute deviation about the median of the signal and is an extension of the previously proposed techniques also based on the simple statistics. In this paper we introduce the method of structural break point detection which is based on the Adaptive Regression Splines technique, one of the form of regression analysis. Moreover we propose also the statistical test which allows testing hypothesis of behaviour related to different regimes. First, the methodology we apply to the simulated signals with different distributions in order to show the effectiveness of the new technique. Next, in the application part we analyse the real data set that represents the vibration signal from a heavy duty crusher used in a mineral processing plant.

  1. Review and discussion of the development of synthetic aperture focusing technique for ultrasonic testing (SAFT-UT)

    SciTech Connect

    Busse, L J; Collins, H D; Doctor, S R

    1984-03-01

    The development and capabilities of synthetic aperture focusing techniques for ultrasonic testing (SAFT-UT) are presented. The purpose of SAFT-UT is to produce high-resolution images of the interior of opaque objects. The goal of this work is to develop and implement methods which can be used to detect and to quantify the extent of defects and cracks in critical components of nuclear reactors (pressure vessels, primary piping systems, and nozzles). This report places particular emphasis upon the practical experimental results that have been obtained using SAFT-UT as well as the theoretical background that underlies synthetic aperture focusing. A discussion regarding high-speed and real-time implementations of two- and three-dimensional synthetic aperture focusing is also presented.

  2. Neutron intensity modulation and time-focusing with integrated Larmor and resonant frequency techniques

    SciTech Connect

    Zhao, Jinkui Hamilton, William A.; Robertson, J. L.; Crow, Lowell; Lee, Sung-Woo; Kang, Yoon W.

    2015-09-14

    The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future.

  3. Cost-effectiveness analysis for imaging techniques with a focus on cardiovascular magnetic resonance

    PubMed Central

    2013-01-01

    With the need for healthcare cost-containment, increased scrutiny will be placed on new medical therapeutic or diagnostic technologies. Several challenges exist for a new diagnostic test to demonstrate cost-effectiveness. New diagnostic tests differ from therapeutic procedures due to the fact that diagnostic tests do not generally directly affect long-term patient outcomes. Instead, the results of diagnostic tests can influence management decisions for patients and by this route, diagnostic tests indirectly affect long-term outcomes. The benefits from a specific diagnostic technology depend therefore not only on its performance characteristics, but also on other factors such as prevalence of disease, and effectiveness of existing treatments for the disease of interest. We review the concepts and theories of cost-effectiveness analyses (CEA) as they apply to diagnostic tests in general. The limitations of CEA across different study designs and geographic regions are discussed, and we also examine the strengths and weakness of the existing publications where CMR was the focus of CEA compared to other diagnostic options. PMID:23767423

  4. Solar Ion Sputter Deposition in the Lunar Regolith: Experimental Simulation Using Focused-Ion Beam Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Rahman, Z.; Keller, L. P.

    2012-01-01

    As regions of the lunar regolith undergo space weathering, their component grains develop compositionally and microstructurally complex outer coatings or "rims" ranging in thickness from a few 10 s to a few 100's of nm. Rims on grains in the finest size fractions (e.g., <20 m) of mature lunar regoliths contain optically-active concentrations of nm size metallic Fe spherules, or "nanophase Fe(sup o)" that redden and attenuate optical reflectance spectral features important in lunar remote sensing. Understanding the mechanisms for rim formation is therefore a key part of connecting the drivers of mineralogical and chemical changes in the lunar regolith with how lunar terrains are observed to become space weathered from a remotely-sensed point of view. As interpreted based on analytical transmission electron microscope (TEM) studies, rims are produced from varying relative contributions from: 1) direct solar ion irradiation effects that amorphize or otherwise modify the outer surface of the original host grain, and 2) nanoscale, layer-like, deposition of extrinsic material processed from the surrounding soil. This extrinsic/deposited material is the dominant physical host for nanophase Fe(sup o) in the rims. An important lingering uncertainty is whether this deposited material condensed from regolith components locally vaporized in micrometeorite or larger impacts, or whether it formed as solar wind ions sputtered exposed soil and re-deposited the sputtered ions on less exposed areas. Deciding which of these mechanisms is dominant, or possibility exclusive, has been hampered because there is an insufficient library of chemical and microstructural "fingerprints" to distinguish deposits produced by the two processes. Experimental sputter deposition / characterization studies relevant to rim formation have particularly lagged since the early post-Apollo experiments of Hapke and others, especially with regard to application of TEM-based characterization techniques. Here

  5. A Coordinated Focused Ion Beam/Ultramicrotomy Technique for Serial Sectioning of Hayabusa Particles and Other Returned Samples

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Keller, L. P.

    2014-01-01

    Recent sample return missions, such as NASA's Stardust mission to comet 81P/Wild 2 and JAXA's Hayabusa mission to asteroid 25143 Itokawa, have returned particulate samples (typically 5-50 µm) that pose tremendous challenges to coordinated analysis using a variety of nano- and micro-beam techniques. The ability to glean maximal information from individual particles has become increasingly important and depends critically on how the samples are prepared for analysis. This also holds true for other extraterrestrial materials, including interplanetary dust particles, micrometeorites and lunar regolith grains. Traditionally, particulate samples have been prepared using microtomy techniques (e.g., [1]). However, for hard mineral particles ?20 µm, microtome thin sections are compromised by severe chatter and sample loss. For these difficult samples, we have developed a hybrid technique that combines traditional ultramicrotomy with focused ion beam (FIB) techniques, allowing for the in situ investigation of grain surfaces and interiors. Using this method, we have increased the number of FIB-SEM prepared sections that can be recovered from a particle with dimensions on the order of tens of µms. These sections can be subsequently analyzed using a variety of electron beam techniques. Here, we demonstrate this sample preparation technique on individual lunar regolith grains in order to study their space-weathered surfaces. We plan to extend these efforts to analyses of individual Hayabusa samples.

  6. Approaches to Adaptive Active Acoustic Noise Control at a Point Using Feedforward Techniques.

    NASA Astrophysics Data System (ADS)

    Zulch, Peter A.

    Active acoustic noise control systems have been of interest since their birth in the 1930's. The principle is to superimpose on an unwanted noise wave shape its inverse with the intention of destructive interference. This work presents two approaches to this idea. The first approach uses a direct design method to develop a controller using an auto-regressive moving-average (ARMA) model that will be used to condition the primary noise to produce the required anti-noise for cancellation. The development of this approach has shown that the stability of the controller relies heavily on a non-minimum phase model of the secondary noise path. For this reason, a second approach, using a controller consisting of two parts was developed. The first part of the controller is designed to cancel broadband noise and the second part is an adaptive controller designed to cancel periodic noise. A simple technique for identifying the parameters of the broadband controller is developed. An ARMA model is used, and it is shown that its stability is improved by prefiltering the test signal with a minimum-phase inverse of the secondary noise channel. The periodic controller uses an estimate of the fundamental frequency to cancel the first few harmonics of periodic noise. A computationally efficient adaptive technique based on least squares is developed for updating the harmonic controller gains at each time step. Experimental results are included for the broadband controller, the harmonic controller, and the combination of the two algorithms. The advantages of using both techniques in conjunction are shown using test cases involving both broadband noise and periodic noise.

  7. Hybrid nanocomposite coatings from metal (Mg alloy)-drug deposited onto medical implant by laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir; Serbezov, Svetlin

    2013-03-01

    Drug-eluting medical implants are active implants whose function is to create healing effects. The current requirements for active medical coatings for Drug-eluting medical implants are to be biocompatible, biodegradable, polymer free, mechanically stable and enable a controlled release of one or more drugs and defined degradation. This brings hybrid nanocomposite coatings into focus especially in the field of cardiovascular implants. We studied the properties of Metal (Mg alloy)-Paclitaxel coatings obtained by novel Laser Adaptive Ablation Deposition Technique (LAAD) onto cardiovascular stents from 316 LVM stainless steel material. The morphology and topology of coatings were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Comparative measurements were made of the morphology and topology of hybrid, polymer free nanocomposite coatings deposited by LAAD and polymerdrug coatings deposited by classical spray technique. The coatings obtained by LAAD are homogeneous without damages and cracks. Metal nanoparticles with sizes from 40 nm to 230 nm were obtained in drug matrixes. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of metal nanoparticles presence in hybrid nanocomposites coatings. The new technology opens up possibilities to obtain new hybrid nanocomposite coatings with applications in medicine, pharmacy and biochemistry.

  8. EPA Water Resources Adaptation Program (WRAP) Research and Development Activities Methods and Techniques

    EPA Science Inventory

    Adaptation to environmental change is not a new concept. Humans have shown throughout history a capacity for adapting to different climates and environmental changes. Farmers, foresters, civil engineers, have all been forced to adapt to numerous challenges to overcome adversity...

  9. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  10. Adaptive Phase Synchronization Techniques for Unbalanced and Distorted Three-Phase Voltage System

    NASA Astrophysics Data System (ADS)

    Woinowsky-Krieger, Alexis

    Interfacing and operating AC power electronic systems requires rapid and accurate estimation of the phase angle of the power source, and specifically of the positive sequence of the three-phase utility grid voltage. This is needed to ensure reliable operation of the power control devices and of the resulting power flow. However, the quality of this information is undermined by various distortions and unbalanced conditions of the three-phase grid voltage. Phase estimation and power control can both be performed in real time by a DSP, but a DSP typically has limited computational resources, especially in regards to speed and memory, which motivates the search for computationally efficient algorithms to accomplish these tasks. In contrast to conventional PLL techniques, recent approaches have used adaptive amplitude estimation to enhance the acquisition of the phase information, resulting in faster response and improved performance. This thesis presents a novel technique to estimate the phase of the positive sequence of a three-phase voltage in the presence of frequency variations and unbalanced conditions, referred to as hybrid negative sequence adaptive synchronous amplitude estimation with PLL, or H-NSASAE-PLL. The key feature consists of a feedback structure which embeds a positive sequence PLL and an adaptive synchronous negative sequence estimator to enhance the performance of the PLL. The resulting benefits include faster estimation of the phase of the positive sequence under unbalanced conditions with zero steady state error, simplified tuning of PLL parameters to address a wide range of application requirements, robust performance with respect to distortions and PLL parameters, a structure of minimal dynamical order (fifth) to estimate the main signal parameters of interest, simplified discretization, and reduced computational costs, making the proposed technique suitable for real time execution on a DSP. The H-NSASAE-PLL is developed in the Matlab

  11. Manipulating epileptiform bursting in the rat hippocampus using chaos control and adaptive techniques.

    PubMed

    Slutzky, Marc W; Cvitanovic, Predrag; Mogul, David J

    2003-05-01

    Epilepsy is a relatively common disease, afflicting 1%-2% of the population, yet many epileptic patients are not sufficiently helped by current pharmacological therapies. Recent reports have suggested that chaos control techniques may be useful for electrically manipulating epileptiform bursting behavior in vitro and could possibly lead to an alternative method for preventing seizures. We implemented chaos control of spontaneous bursting in the rat hippocampal slice using robust control techniques: stable manifold placement (SMP) and an adaptive tracking (AT) algorithm designed to overcome nonstationarity. We examined the effect of several factors, including control radius size and synaptic plasticity, on control efficacy. AT improved control efficacy over basic SMP control, but relatively frequent stimulation was still necessary and very tight control was only achieved for brief stretches. A novel technique was developed for validating period-1 orbit detection in noisy systems by forcing the system directly onto the period-1 orbit. This forcing analysis suggested that period-1 orbits were indeed present but that control would be difficult because of high noise levels and nonstationarity. Noise might actually be lower in vivo, where regulatory inputs to the hippocampus are still intact. Thus, it may still be feasible to use chaos control algorithms for preventing epileptic seizures.

  12. An adaptive ultrasonic backscattered signal processing technique for instantaneous characteristic frequency detection.

    PubMed

    Jin, Bo; Vai, Mang I

    2014-01-01

    Ultrasonic diagnosis that is convenient and nondestructive to the human body is widely used in medicine. In clinical, ultrasonic backscattered signals characteristics are utilized to acquire information of the human body tissues to perform diagnosis. In this paper, an adaptive ultrasonic backscattered signal processing technique for instantaneous characteristic frequency detection based on the marginal spectrum is presented. In the beginning, the ultrasonic backscattered signal is decomposed into a series of intrinsic mode functions (IMFs) by the Ensemble Empirical Mode Decomposition (EEMD) algorithm. Then the Hilbert spectrum is gained by the Hilbert transform on the IMFs decomposed and screened. Finally, the time-frequency information in the Hilbert spectrum is utilized to extract the instantaneous characteristic frequency based on the marginal spectrum features to detect the objective. With this technique, the spacing between tissues can be estimated for tissue characterization by processing multiple echoes even in the complicated environment. In the simulation study, comparing with the FFT, the technique presented shows its strong noise immunity and indicates its validity in instantaneous characteristic frequency detection.

  13. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  14. Optical Cluster-Finding with an Adaptive Matched-Filter Technique: Algorithm and Comparison with Simulations

    SciTech Connect

    Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.

    2007-10-29

    We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.

  15. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong

    2015-02-01

    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  16. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  17. Brain surgery in the bush: adapting techniques and technology to fit the developing world.

    PubMed

    Vargas, Jan; Mayegga, Emanuel; Nuwas, Emmanuel; Ellegala, Dilantha B; Kucia, Elisa J; Nicholas, Joyce

    2013-11-01

    The critical shortage of surgical services in many areas of the world has profound effects on local communities. Approximately 11% of global disease burden can be attributed to causes that are surgically treatable. Efforts have been made to recruit professionals from developed nations to compensate for the lack of such expertise. However, this practice has created a cycle of dependency on foreign-trained physicians and the medical tools they bring. Recognition of this problem calls for adaptation of a novel problem-solving approach. This article describes techniques and technology available in east Africa that have been adapted to allow basic and emergency neurosurgery to be performed in the absence of complex medical infrastructure and equipment. Commonplace items found in the local environment can be used to emulate more sophisticated instruments, and community-specific engineering programs can be developed to provide locally produced appropriate technology that promotes independence from Western sources. The local economy benefits from much-needed stimulation when these tools are created locally, and this allows for readily available replacement and repair. More studies are under way to identify problems and implement interventions that are realistic and appropriate for these populations.

  18. Automated object extraction from remote sensor image based on adaptive thresholding technique

    NASA Astrophysics Data System (ADS)

    Zhao, Tongzhou; Ma, Shuaijun; Li, Jin; Ming, Hui; Luo, Xiaobo

    2009-10-01

    Detection and extraction of the dim moving small objects in the infrared image sequences is an interesting research area. A system for detection of the dim moving small targets in the IR image sequences is presented, and a new algorithm having high performance for extracting moving small targets in infrared image sequences containing cloud clutter is proposed in the paper. This method can get the better detection precision than some other methods, and two independent units can realize the calculative process. The novelty of the algorithm is that it uses adaptive thresholding technique of the moving small targets in both the spatial domain and temporal domain. The results of experiment show that the algorithm we presented has high ratio of detection precision.

  19. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    NASA Astrophysics Data System (ADS)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  20. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    PubMed Central

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2017-01-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as −0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349

  1. Difficulties and Problematic Steps in Teaching the Onstep Technique for Inguinal Hernia Repair, Results from a Focus Group Interview

    PubMed Central

    Andresen, Kristoffer; Laursen, Jannie

    2016-01-01

    Background. When a new surgical technique is brought into a department, it is often experienced surgeons that learn it first and then pass it on to younger surgeons in training. This study seeks to clarify the problems and positive experiences when teaching and training surgeons in the Onstep technique for inguinal hernia repair, seen from the instructor's point of view. Methods. We designed a qualitative study using a focus group to allow participants to elaborate freely and facilitate a discussion. Participants were surgeons with extensive experience in performing the Onstep technique from Germany, UK, France, Belgium, Italy, Greece, and Sweden. Results. Four main themes were found, with one theme covering three subthemes: instruction of others (experience, patient selection, and tailored teaching), comfort, concerns/fear, and anatomy. Conclusion. Surgeons receiving a one-day training course should preferably have experience with other types of hernia repairs. If trainees are inexperienced, the training setup should be a traditional step-by-step programme. A training setup should consist of an explanation of the technique with emphasis on anatomy and difficult parts of the procedure and then a training day should follow. Surgeons teaching surgery can use these findings to improve their everyday practice. PMID:27144225

  2. Adaptive Photothermal Emission Analysis Techniques for Robust Thermal Property Measurements of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Valdes, Raymond

    The characterization of thermal barrier coating (TBC) systems is increasingly important because they enable gas turbine engines to operate at high temperatures and efficiency. Phase of photothermal emission analysis (PopTea) has been developed to analyze the thermal behavior of the ceramic top-coat of TBCs, as a nondestructive and noncontact method for measuring thermal diffusivity and thermal conductivity. Most TBC allocations are on actively-cooled high temperature turbine blades, which makes it difficult to precisely model heat transfer in the metallic subsystem. This reduces the ability of rote thermal modeling to reflect the actual physical conditions of the system and can lead to higher uncertainty in measured thermal properties. This dissertation investigates fundamental issues underpinning robust thermal property measurements that are adaptive to non-specific, complex, and evolving system characteristics using the PopTea method. A generic and adaptive subsystem PopTea thermal model was developed to account for complex geometry beyond a well-defined coating and substrate system. Without a priori knowledge of the subsystem characteristics, two different measurement techniques were implemented using the subsystem model. In the first technique, the properties of the subsystem were resolved as part of the PopTea parameter estimation algorithm; and, the second technique independently resolved the subsystem properties using a differential "bare" subsystem. The confidence in thermal properties measured using the generic subsystem model is similar to that from a standard PopTea measurement on a "well-defined" TBC system. Non-systematic bias-error on experimental observations in PopTea measurements due to generic thermal model discrepancies was also mitigated using a regression-based sensitivity analysis. The sensitivity analysis reported measurement uncertainty and was developed into a data reduction method to filter out these "erroneous" observations. It was found

  3. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION.

    PubMed

    Holst, Michael; McCammon, James Andrew; Yu, Zeyun; Zhou, Youngcheng; Zhu, Yunrong

    2012-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L(∞) estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  4. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    PubMed Central

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  5. Ultrasonic Defect Characterization in Heavy Rotor Forgings by Means of the Synthetic Aperture Focusing Technique and Optimization Methods.

    PubMed

    Fendt, Karl T; Mooshofer, Hubert; Rupitsch, Stefan J; Ermert, Helmut

    2016-06-01

    Ultrasonic nondestructive testing of steel forgings aims at the detection and classification of material inhomogeneities to ensure the components fitness for use. Due to the high price and safety critical nature of large forgings for turbomachinery, there is great interest in the application of imaging algorithms to inspection data. However, small flaw indications that cannot be sufficiently resolved have to be characterized using amplitude-based quantification. One such method is the distance gain size method, which converts the maximum echo amplitudes into the diameters of penny-shaped equivalent size reflectors. The approach presented in this contribution combines the synthetic aperture focusing technique (SAFT) with an iterative inversion scheme to locate and quantify small flaws in a more reliable way. Ultrasonic inspection data obtained in a pulse-echo configuration are reconstructed by means of an Synthetic Focusing Technique (SAFT). From the reconstructed data, the amount and approximate location of small flaws are extracted. These predetermined positions, along with the constrained defect model of a penny-shaped crack, provide the initial parametrization for an elastodynamic simulation based on the Kirchhoff approximation. The identification of the optimal parameter set is achieved through an iteratively regularized Gauss-Newton method. By testing the characterization method on a series of flat-bottom holes under laboratory conditions, we demonstrate that the procedure is applicable over a wide range of defect sizes. To show suitability for large forging inspection, we additionally evaluate the inspection data of a large generator shaft forging of 0.6-m diameter.

  6. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.

    PubMed

    Maleke, C; Konofagou, E E

    2008-03-21

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 degrees C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 microm degrees C(-1)(r=0.93, p<.005). After sustained heating, the tissue became irreversibly stiffer, followed by an associated decrease in the HMI displacement (-0.79 microm degrees C(-1), r=-0.92, p<0.001). Repeated

  7. Region-growing technique adapted to precise microcalcification characterization in mammography

    NASA Astrophysics Data System (ADS)

    Darboux, Michel; Dinten, Jean-Marc; Nicolas, Eric

    1996-11-01

    The early detection of breast cancer is essential for increasing the survival rate of the disease. Today, mammography is the only breast screening technique capable of detecting breast cancer at a very early stage. The presence of a breast tumor is indicated by some features on the mammogram. One sign of malignancy is the presence of clusters of fine, granular microcalcifications. We present here a three-step method for detecting and characterizing these microcalcifications. We begin with the detection of potential candidates. The aim of this first step is to detect all the pixels that could be a microcalcification. Then we focus on our specific region growing technique which provides an accurate extraction of the shape of the region corresponding to each detected growing technique which provides an accurate extraction of the shape of the region corresponding to each detected seed. This second step is essential because microcalcifications shape is a very important feature for the diagnosis. It is then possible to determine precise parameters to characterize these microcalcifications. This three-step method has been evaluated on a set of images form the mammographic image analysis society database.

  8. Flutter signal extracting technique based on FOG and self-adaptive sparse representation algorithm

    NASA Astrophysics Data System (ADS)

    Lei, Jian; Meng, Xiangtao; Xiang, Zheng

    2016-10-01

    Due to various moving parts inside, when a spacecraft runs in orbits, its structure could get a minor angular vibration, which results in vague image formation of space camera. Thus, image compensation technique is required to eliminate or alleviate the effect of movement on image formation and it is necessary to realize precise measuring of flutter angle. Due to the advantages such as high sensitivity, broad bandwidth, simple structure and no inner mechanical moving parts, FOG (fiber optical gyro) is adopted in this study to measure minor angular vibration. Then, movement leading to image degeneration is achieved by calculation. The idea of the movement information extracting algorithm based on self-adaptive sparse representation is to use arctangent function approximating L0 norm to construct unconstrained noisy-signal-aimed sparse reconstruction model and then solve the model by a method based on steepest descent algorithm and BFGS algorithm to estimate sparse signal. Then taking the advantage of the principle of random noises not able to be represented by linear combination of elements, useful signal and random noised are separated effectively. Because the main interference of minor angular vibration to image formation of space camera is random noises, sparse representation algorithm could extract useful information to a large extent and acts as a fitting pre-process method of image restoration. The self-adaptive sparse representation algorithm presented in this paper is used to process the measured minor-angle-vibration signal of FOG used by some certain spacecraft. By component analysis of the processing results, we can find out that the algorithm could extract micro angular vibration signal of FOG precisely and effectively, and can achieve the precision degree of 0.1".

  9. Preliminary Benchmarking of Plinian Eruption Simulations Using an Adaptive Grid Eulerian Technique

    NASA Astrophysics Data System (ADS)

    Peterson, A. H.; Ogden, D. E.; Wohletz, K. H.; Gisler, G.; Glatzmaier, G. A.

    2005-12-01

    The SAGE (SAIC Adaptive Grid Eulerian) code is an Eulerian hydrodynamics numerical technique employing adaptive mesh refinement at each cycle for every cell in 1-, 2-, and 3-D grids. It is primarily designed to solve high deformation flow of multiple materials and thus provides important capabilities for simulating volcanic eruption phenomena. Its multimaterial equation of state libraries includes a comprehensive coverage of water from solid ice through two-phase liquid and vapor to supercritical states approaching the Hugoniot, and extremely important aspect for simulating volcanic gases in general. In development are strength and failure rules that model non-Newtonian fluid/solid deformation. Because of the low effective sound speeds of eruptive mixtures, the facts that SAGE uses a piecewise, linear, multi-material, Gudonov numerical method to resolve shocks with second-order precision and exactly conserves mass, momentum, and energy, are a highly desirable attributes. Although this code has been previously used to simulate a volcanic eruption (i.e., eruption through a crater lake at Ruapehu volcano by Morrissey and Gisler), we are embarking in an effort to benchmark the code with CFDLib, a well-validated arbitrary Lagrangian-Eulerian code developed at Los Alamos National Laboratory. Through this effort we expect to better understand the strengths and weaknesses, the limitations, and provide direction for important enhancement of SAGE, and potentially provide the volcanological community with a powerful alternative to numerical codes currently available. At this point in our benchmarking, we demonstrate some results for fluid convection within a chamber and fluid jetting through a conduit.

  10. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  11. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  12. Application of reduced order modeling techniques to problems in heat conduction, isoelectric focusing and differential algebraic equations

    NASA Astrophysics Data System (ADS)

    Mathai, Pramod P.

    This thesis focuses on applying and augmenting 'Reduced Order Modeling' (ROM) techniques to large scale problems. ROM refers to the set of mathematical techniques that are used to reduce the computational expense of conventional modeling techniques, like finite element and finite difference methods, while minimizing the loss of accuracy that typically accompanies such a reduction. The first problem that we address pertains to the prediction of the level of heat dissipation in electronic and MEMS devices. With the ever decreasing feature sizes in electronic devices, and the accompanied rise in Joule heating, the electronics industry has, since the 1990s, identified a clear need for computationally cheap heat transfer modeling techniques that can be incorporated along with the electronic design process. We demonstrate how one can create reduced order models for simulating heat conduction in individual components that constitute an idealized electronic device. The reduced order models are created using Krylov Subspace Techniques (KST). We introduce a novel 'plug and play' approach, based on the small gain theorem in control theory, to interconnect these component reduced order models (according to the device architecture) to reliably and cheaply replicate whole device behavior. The final aim is to have this technique available commercially as a computationally cheap and reliable option that enables a designer to optimize for heat dissipation among competing VLSI architectures. Another place where model reduction is crucial to better design is Isoelectric Focusing (IEF) - the second problem in this thesis - which is a popular technique that is used to separate minute amounts of proteins from the other constituents that are present in a typical biological tissue sample. Fundamental questions about how to design IEF experiments still remain because of the high dimensional and highly nonlinear nature of the differential equations that describe the IEF process as well as

  13. A simple method used to evaluate phase-change materials based on focused-ion beam technique

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Wu, Liangcai; Rao, Feng; Song, Zhitang; Lv, Shilong; Zhou, Xilin; Du, Xiaofeng; Cheng, Yan; Yang, Pingxiong; Chu, Junhao

    2013-05-01

    A nanoscale phase-change line cell based on focused-ion beam (FIB) technique has been proposed to evaluate the electrical property of the phase-change material. Thanks to the FIB-deposited SiO2 hardmask, only one etching step has been used during the fabrication process of the cell. Reversible phase-change behaviors are observed in the line cells based on Al-Sb-Te and Ge-Sb-Te films. The low power consumption of the Al-Sb-Te based cell has been explained by theoretical calculation accompanying with thermal simulation. This line cell is considered to be a simple and reliable method in evaluating the application prospect of a certain phase-change material.

  14. Fabrication of high sensitivity 3D nanoSQUIDs based on a focused ion beam sculpting technique

    NASA Astrophysics Data System (ADS)

    De Leo, Natascia; Fretto, Matteo; Lacquaniti, Vincenzo; Granata, Carmine; Vettoliere, Antonio

    2016-09-01

    In this paper a nanofabrication process, based on a focused ion beam (FIB) nanosculpting technique, for high sensitivity three-dimensional nanoscale superconducting quantum interference devices (nanoSQUIDs) is reported. The crucial steps of the fabrication process are described, as are some peculiar features of the superconductor-normal metal-insulator-superconductor (SNIS) Josephson junctions, which may useful for applications in cryocooler systems. This fabrication procedure is employed to fabricate sandwich nanojunctions and high sensitivity nanoSQUIDs. Specifically, the superconductive nanosensors have a rectangular loop of 1 × 0.2-0.4 μm2 interrupted by two square Nb/Al-AlO x /Nb SNIS Josephson junctions with side lengths of 0.3 μm. The characterization of a typical nanoSQUID has been carried out and a spectral density of magnetic flux noise as low as 0.8 μΦ0 Hz-1/2 has been measured.

  15. Adapting content-based image retrieval techniques for the semantic annotation of medical images.

    PubMed

    Kumar, Ashnil; Dyer, Shane; Kim, Jinman; Li, Changyang; Leong, Philip H W; Fulham, Michael; Feng, Dagan

    2016-04-01

    The automatic annotation of medical images is a prerequisite for building comprehensive semantic archives that can be used to enhance evidence-based diagnosis, physician education, and biomedical research. Annotation also has important applications in the automatic generation of structured radiology reports. Much of the prior research work has focused on annotating images with properties such as the modality of the image, or the biological system or body region being imaged. However, many challenges remain for the annotation of high-level semantic content in medical images (e.g., presence of calcification, vessel obstruction, etc.) due to the difficulty in discovering relationships and associations between low-level image features and high-level semantic concepts. This difficulty is further compounded by the lack of labelled training data. In this paper, we present a method for the automatic semantic annotation of medical images that leverages techniques from content-based image retrieval (CBIR). CBIR is a well-established image search technology that uses quantifiable low-level image features to represent the high-level semantic content depicted in those images. Our method extends CBIR techniques to identify or retrieve a collection of labelled images that have similar low-level features and then uses this collection to determine the best high-level semantic annotations. We demonstrate our annotation method using retrieval via weighted nearest-neighbour retrieval and multi-class classification to show that our approach is viable regardless of the underlying retrieval strategy. We experimentally compared our method with several well-established baseline techniques (classification and regression) and showed that our method achieved the highest accuracy in the annotation of liver computed tomography (CT) images.

  16. Modeling gravitational instabilities in self-gravitating protoplanetary disks with adaptive mesh refinement techniques

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Schleicher, Dominik R. G.

    2015-07-01

    The astonishing diversity in the observed planetary population requires theoretical efforts and advances in planet formation theories. The use of numerical approaches provides a method to tackle the weaknesses of current models and is an important tool to close gaps in poorly constrained areas such as the rapid formation of giant planets in highly evolved systems. So far, most numerical approaches make use of Lagrangian-based smoothed-particle hydrodynamics techniques or grid-based 2D axisymmetric simulations. We present a new global disk setup to model the first stages of giant planet formation via gravitational instabilities (GI) in 3D with the block-structured adaptive mesh refinement (AMR) hydrodynamics code enzo. With this setup, we explore the potential impact of AMR techniques on the fragmentation and clumping due to large-scale instabilities using different AMR configurations. Additionally, we seek to derive general resolution criteria for global simulations of self-gravitating disks of variable extent. We run a grid of simulations with varying AMR settings, including runs with a static grid for comparison. Additionally, we study the effects of varying the disk radius. The physical settings involve disks with Rdisk = 10,100 and 300 AU, with a mass of Mdisk ≈ 0.05 M⊙ and a central object of subsolar mass (M⋆ = 0.646 M⊙). To validate our thermodynamical approach we include a set of simulations with a dynamically stable profile (Qinit = 3) and similar grid parameters. The development of fragmentation and the buildup of distinct clumps in the disk is strongly dependent on the chosen AMR grid settings. By combining our findings from the resolution and parameter studies we find a general lower limit criterion to be able to resolve GI induced fragmentation features and distinct clumps, which induce turbulence in the disk and seed giant planet formation. Irrespective of the physical extension of the disk, topologically disconnected clump features are only

  17. Measurement of geologic nitrogen using mass spectrometry, colorimetry, and a newly adapted fluorometry technique

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin W.; Drage, Natashia; Spence, Jody; Hanson, Nova; El-Sabaawi, Rana; Goldblatt, Colin

    2017-03-01

    Long viewed as a mostly noble, atmospheric species, recent work demonstrates that nitrogen in fact cycles throughout the Earth system, including the atmosphere, biosphere, oceans, and solid Earth. Despite this new-found behaviour, more thorough investigation of N in geologic materials is limited due to its low concentration (one to tens of parts per million) and difficulty in analysis. In addition, N can exist in multiple species (NO3-, NH4+, N2, organic N), and determining which species is actually quantified can be difficult. In rocks and minerals, NH4+ is the most stable form of N over geologic timescales. As such, techniques designed to measure NH4+ can be particularly useful.We measured a number of geochemical rock standards using three different techniques: elemental analyzer (EA) mass spectrometry, colorimetry, and fluorometry. The fluorometry approach is a novel adaptation of a technique commonly used in biologic science, applied herein to geologic NH4+. Briefly, NH4+ can be quantified by HF dissolution, neutralization, addition of a fluorescing reagent, and analysis on a standard fluorometer. We reproduce published values for several rock standards (BCR-2, BHVO-2, and G-2), especially if an additional distillation step is performed. While it is difficult to assess the quality of each method, due to lack of international geologic N standards, fluorometry appears better suited to analyzing mineral-bound NH4+ than EA mass spectrometry and is a simpler, quicker alternative to colorimetry.To demonstrate a potential application of fluorometry, we calculated a continental crust N budget based on new measurements. We used glacial tills as a proxy for upper crust and analyzed several poorly constrained rock types (volcanics, mid-crustal xenoliths) to determine that the continental crust contains ˜ 2 × 1018 kg N. This estimate is consistent with recent budget estimates and shows that fluorometry is appropriate for large-scale questions where high sample throughput

  18. Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data

    NASA Astrophysics Data System (ADS)

    Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted

    2013-01-01

    Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.

  19. Inspection of the Space Shuttle External Tank SOFI Using Near-Field and Focused Millimeter Wave Nondestructive Testing Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.

  20. Geoscientific Applications of Particle Detection and Imaging Techniques withSpecial Focus on the Monitoring Clay Mineral Reactions

    NASA Astrophysics Data System (ADS)

    Warr, Laurence N.; Grathoff, Georg H.

    The combined use of focused X-ray, electron, and ion beams offers a diverse range of analytical capabilities for characterizing nanoscale mineral reactions that occur in hydrous environments. Improved image and microanalytical techniques (e.g., electron diffraction and energy-dispersive X-ray spectroscopy), in combination with controlled sample environments, are currently leading to new advances in the understanding of fluid-mineral reactions in the Earth Sciences. One group of minerals playing a key role in the containment of radioactive waste and the underground storage of CO2 is the clay minerals: these small, expandable, and highly adsorbent hydrous phyllosilicates form important low-permeable geological barriers by which waste can be safely deposited. In this article we summarize some of the state-of-the-art particle and imaging techniques employed to predict the behavior of both engineered and natural clay mineral seals in proposed storage sites. Particular attention is given to two types of low-permeability geomaterials: engineered bentonite backfill and natural shale in the subsurface. These materials have contrasting swelling properties and degrees of chemical stability that require detailed analytical study for developing suitable disposal or storage solutions.

  1. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    PubMed Central

    Ghisaidoobe, Amar B. T.; Chung, Sang J.

    2014-01-01

    Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (λEX ∼ 280 nm, λEM ∼ 350 nm), in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the protein’s) local environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic Förster resonance energy transfer (iFRET), a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins. PMID:25490136

  2. Flight control design using a blend of modern nonlinear adaptive and robust techniques

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolong

    In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles

  3. Disentangling Stability, Variability and Adaptability in Human Performance: Focus on the Interplay between Local Variance and Serial Correlation

    ERIC Educational Resources Information Center

    Torre, Kjerstin; Balasubramaniam, Ramesh

    2011-01-01

    We address the complex relationship between the stability, variability, and adaptability of psychological systems by decomposing the global variance of serial performance into two independent parts: the local variance (LV) and the serial correlation structure. For two time series with equal LV, the presence of persistent long-range correlations…

  4. Measuring Tilt and Focus for Sodium Beacon Adaptive Optics on the Starfile 3.5 Meter Telescope -- Conference Proceedings (Preprint)

    DTIC Science & Technology

    2008-09-01

    in detail by Link and Foucault . [2] They show these approaches to focus control have comparable performance in the presence of atmospheric turbulence... Foucault B., Investigation of focus control for NGAS, Starfire Optical Range internal memo, 8 May 2007. 3. Goodman J., Introduction to Fourier Optics

  5. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    SciTech Connect

    Shibata, Koichi; Notohara, Daisuke; Sakai, Takihito

    2014-11-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the

  6. Laser pulse design using optimal control theory-based adaptive simulated annealing technique: vibrational transitions and photo-dissociation

    NASA Astrophysics Data System (ADS)

    Nath, Bikram; Mondal, Chandan Kumar

    2014-08-01

    We have designed and optimised a combined laser pulse using optimal control theory-based adaptive simulated annealing technique for selective vibrational excitations and photo-dissociation. Since proper choice of pulses for specific excitation and dissociation phenomena is very difficult, we have designed a linearly combined pulse for such processes and optimised the different parameters involved in those pulses so that we can get an efficient combined pulse. The technique makes us free from choosing any arbitrary type of pulses and makes a ground to check their suitability. We have also emphasised on how we can improve the performance of simulated annealing technique by introducing an adaptive step length of the different variables during the optimisation processes. We have also pointed out on how we can choose the initial temperature for the optimisation process by introducing heating/cooling step to reduce the annealing steps so that the method becomes cost effective.

  7. An innovations-based noise cancelling technique on inverse kepstrum whitening filter and adaptive FIR filter in beamforming structure.

    PubMed

    Jeong, Jinsoo

    2011-01-01

    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.

  8. Test techniques: A survey paper on cryogenic tunnels, adaptive wall test sections, and magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.

    1989-01-01

    The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.

  9. Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1997-01-01

    An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.

  10. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

    PubMed Central

    Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565

  11. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    SciTech Connect

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  12. Preliminary findings of an adapted evidence-based woman-focused HIV intervention on condom use and negotiation among at-risk women in Pretoria, South Africa.

    PubMed

    Wechsberg, Wendee M; Luseno, Winnie K; Kline, Tracy L; Browne, Felicia A; Zule, William A

    2010-01-01

    This article presents the results of a randomized trial in South Africa of an adapted evidence-based Woman-Focused intervention on condom use with primary sex partners. The preliminary findings show that regardless of HIV status, condom negotiation was significantly associated with condom use at the 3- and 6-month follow-ups. By intervention group, significant intervention effects were found at 6-month follow-up for HIV-positive and HIV-unknown status women in the Woman-Focused intervention who were more likely than women in the Standard intervention to report condom use with a primary male partner. Among HIV-positive women, those in the Woman-Focused group and those with greater sexual control were more likely to report condom use at the 6-month follow-up. The findings indicate that gender-based interventions for women may result in increased condom negotiation skills.

  13. Electrical hand tools and techniques: A compilation. [utilization of space technology for tools and adapters

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space technology utilization for developing tools, adapters, and fixtures and procedures for assembling, installing, and servicing electrical components and equipment are discussed. Some of the items considered are: (1) pivotal screwdriver, (2) termination locator tool for shielded cables, (3) solder application tools, (4) insulation and shield removing tool, and (5) torque wrench adapter for cable connector engaging ring. Diagrams of the various tools and devices are provided.

  14. ADAPTATION OF CRACK GROWTH DETECTION TECHNIQUES TO US MATERIAL TEST REACTORS

    SciTech Connect

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter; Joy L. Rempe

    2015-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some test reactors outside the United States, such as the Halden Boiling Water Reactor (HBWR), have developed techniques to measure crack growth propagation during irradiation. The basic approach is to use a custom-designed compact loading mechanism to stress the specimen during irradiation, while the crack in the specimen is monitored in-situ using the Direct Current Potential Drop (DCPD) method. In 2012 the US Department of Energy commissioned the Idaho National Laboratory and the MIT Nuclear Reactor Laboratory (MIT NRL) to take the basic concepts developed at the HBWR and adapt them to a test rig capable of conducting in-pile IASCC tests in US Material Test Reactors. The first two and half years of the project consisted of designing and testing the loader mechanism, testing individual components of the in-pile rig and electronic support equipment, and autoclave testing of the rig design prior to insertion in the MIT Reactor. The load was applied to the specimen by means of a scissor like mechanism, actuated by a miniature metal bellows driven by pneumatic pressure and sized to fit within the small in-core irradiation volume. In addition to the loader design, technical challenges included developing robust connections to the specimen for the applied current and voltage measurements, appropriate ceramic insulating materials that can endure the LWR environment, dealing with the high electromagnetic noise environment of a reactor core at full power, and accommodating material property changes in the specimen, due primarily to fast neutron damage, which change the specimen resistance without additional crack growth. The project culminated with an in

  15. Determination of Judo Endurance Performance Using the Uchi - Komi Technique and an Adapted Lactate Minimum Test

    PubMed Central

    Azevedo, Paulo H.S.M.; Drigo, Alexandre J.; Carvalho, Mauro C.G.A.; Oliveira, João C.; Nunes, João E.D.; Baldissera, Vilmar; Perez, Sérgio E.A.

    2007-01-01

    This study aimed to evaluate the viability to use Uchi-komi (UK) in the evaluation of the judo endurance performance and using lactate threshold the analysis of the blood lactate ([Lac]) and heart rate (HR) determined through a lactate minimum test. The subjects were a group of 6 male, volunteer judokas, from 25.17 ± 5.76 years old, weight 84.50 ± 23.78 kg and height 1.78 ± 0.10 m, competitors of different levels of performance (from regional to international competitions) and match experience of (11 ± 6) years old. Three tests were performed: a) 3000 m dash in track, b) the adapted test of lactate minimum for running and c) for UK, with execution of the blow ippon-seoi-nague. No significant difference was evident for the track tests and UK in relation to blood lactate and heart rate (p > 0.05) (3.87 ± 0.38 vs 4.17 ± 0.54 mmol·L-1 and 167 ± 2 vs 152 ± 7 b·min-1, respectively). In conclusion it is stressed that: 1) The specific test for lactate minimum in judo sport is a promising possibility of aerobic capacity evaluation and a instrument of intensity training control; 2) The metabolic profile in Vlm and UKlm is similar, because there are not differences in the [Lac] and in the HR at this intensity; 3) It is possible to estimate the training intensity through the determination of the lactate minimum intensity in running (Vlm) and the Heart Rate associated (HR) from the execution of ippon-seoi- nague (uchi-komi) in judo training; 4) The Vlm for judo athletes is approximately 88% of the V3000. Key points The specific test for lactate minimum in judo sport is a promising possibility of aerobic capacity evaluation; This is a instrument for intensity training control for judo players; The metabolic profile is similar between running and uki-komi (ippon-seoi-nague techniques) at lactate minimum intensity. PMID:24198697

  16. The Question as a Technique in Foreign-Language Teaching. ERIC Focus Reports on the Teaching of Foreign Languages, Number 26.

    ERIC Educational Resources Information Center

    Harrell, Dolly D.

    This report focuses on the nature and structure of the question and its use as an educational technique enabling the language teacher to involve his students in the use of the target language. Discussion concentrates on: (1) the question in the basic level class, (2) the question as a testing technique, (3) the question as a vocabulary activator…

  17. Measurements of Tilt and Focus for Sodium Beacon Adaptive Optics on the Starfire 3.5 Meter Telescope

    DTIC Science & Technology

    2010-09-01

    beacon and natural guide star operation. This approach, and a more complicated approach, are described in detail by Link and Foucault [3]. They show these...Astronomical Telescopes and Instrumentation Conference, Glasgow, Scotland, 21–25 June 2004. 3. Link D. and Foucault B., "Investigation of focus control

  18. Focused Training for Humanitarian Responders in Regional Anesthesia Techniques for a Planned Randomized Controlled Trial in a Disaster Setting

    PubMed Central

    Aluisio, Adam R.; Teicher, Carrei; Wiskel, Tess; Guy, Allysia; Levine, Adam

    2016-01-01

    Background:Lower extremity trauma during earthquakes accounts for the largest burden of geophysical disaster-related injuries. Insufficient pain management is common in disaster settings, and regional anesthesia (RA) has the potential to reduce pain in injured patients beyond current standards. To date, no prospective research has evaluated the use of RA in a disaster setting. This cross-sectional study assesses knowledge translation and skill acquisition outcomes for lower extremity RA performed with and without ultrasound guidance among a cohort of Médecins Sans Frontières (MSF) volunteers who will function as proceduralists in a planned randomized controlled trial evaluating the efficacy of RA for pain management in an earthquake setting. Methods:Generalist humanitarian healthcare responders, including both physicians and nurses, were trained in ultrasound guided femoral nerve block (USGFNB) and landmark guided fascia iliaca compartment block (LGFICB) techniques using didactic sessions and interactive simulations during a one-day focused course. Outcome measures evaluated interval knowledge attainment and technical proficiency in performing the RA procedures. Knowledge attainment was assessed via pre- and post-test evaluations and procedural proficiency was evaluated through monitored simulations, with performance of critical actions graded by two independent observers. Results:Twelve humanitarian response providers were enrolled and completed the trainings and assessments. Knowledge scores significantly increased from a mean pre-test score of 79% to post-test score of 88% (p<0.001). In practical evaluation of the LGFICB, participants correctly performed a median of 15.0 (Interquartile Range (IQR) 14.0-16.0) out of 16 critical actions. For the USGFNB, the median score was also 15.0 (IQR 14.0-16.0) out of 16 critical actions. Inter-rater reliability for completion of critical actions was excellent, with inter-rater agreement of 83.3% and 91.7% for the LGFICB

  19. Radiation treatment for the right naris in a pediatric anesthesia patient using an adaptive oral airway technique

    SciTech Connect

    Sponseller, Patricia Pelly, Nicole; Trister, Andrew; Ford, Eric; Ermoian, Ralph

    2015-10-01

    Radiation therapy for pediatric patients often includes the use of intravenous anesthesia with supplemental oxygen delivered via the nasal cannula. Here, we describe the use of an adaptive anesthesia technique for electron irradiation of the right naris in a preschool-aged patient treated under anesthesia. The need for an intranasal bolus plug precluded the use of standard oxygen supplementation. This novel technique required the multidisciplinary expertise of anesthesiologists, radiation therapists, medical dosimetrists, medical physicists, and radiation oncologists to ensure a safe and reproducible treatment course.

  20. Treadmill running and swimming imposes distinct cardiovascular physiological adaptations in the rat: focus on serotonergic and sympathetic nervous systems modulation.

    PubMed

    Baptista, S; Piloto, N; Reis, F; Teixeira-de-Lemos, E; Garrido, A P; Dias, A; Lourenço, M; Palmeiro, A; Ferrer-Antunes, C; Teixeira, F

    2008-12-01

    Physical exercise may improve the metabolic and haemodynamic responses, but the beneficial effects seem to depend on intensity, duration and muscular mass recruitment, which may vary between different types of protocols. This study was performed to evaluate the effects of two distinct moderate/long-term aerobic training protocols in the normal Wistar rat, the treadmill running and the swimming, on several important parameters related to cardiovascular (CV) physiological adaptations, namely: lipid profile, haemorheological measures, lipid peroxidation, peripheral serotonergic system (SS) modulation and sympathetic nervous system (SNS) activation. In both groups under training an HDL-c increment versus the sedentary control was demonstrated. There was a noticeable increase in ADP-induced platelet aggregation in the exercised rats, together with higher PDW and MPV values. The RBC patterns were altered in both groups under training; in the swimming one, however, significantly higher RBC and HCT and lower MCH and MCHC values were found, suggesting renovation of the RBCs. Plasma and platelet SS measures were generally higher in both groups under training, being noticeably relevant the 5-HT and 5-HIAA increment in the treadmill. In opposition, concerning the plasma and platelet NE and E concentrations, the rise was remarkably higher in the rats under a swimming protocol. In conclusion, this study demonstrates that, despite the similar beneficial effects on lipid profile, different aerobic exercise protocols may produce distinct CV physiological adaptations. Therefore, treadmill running was more influent than swimming concerning peripheral SS modulation while swimming was more important on SNS activation, thus recommending a judicious choice of the protocol to be tested in works which make use of rat models of exercise to study physiological or pathophysiological conditions.

  1. Data Selection for Fast Projection Techniques Applied to Adaptive Nulling: A Comparative Study of Performance

    DTIC Science & Technology

    1991-12-01

    point de vue d’annulation des brouilleurs, le dernier 6tant moins rapide mais donnant une meilleure annulation. En effet , ces algorithmes donnent un...techniques avec celui de la technique "sample matrix inversion ou SMI" pour trois scenarios diffdrents; ces trois derniers ddmontrent les effets du nombre de...eigenvector analysis, such as the MUSIC technique [2], are effective for both interference suppression and spectral estimation. These techniques yield

  2. Application of Physiological Self-Regulation and Adaptive Task Allocation Techniques for Controlling Operator Hazardous States of Awareness

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Pope, Alan T.; Freeman, Frederick G.

    2001-01-01

    Prinzel, Hadley, Freeman, and Mikulka found that adaptive task allocation significantly enhanced performance only when used at the endpoints of the task workload continuum (i.e., very low or high workload), but that the technique degraded performance if invoked during other levels of task demand. These researchers suggested that other techniques should be used in conjunction with adaptive automation to help minimize the onset of hazardous states of awareness (HSA) and keep the operator 'in-the-loop.' The paper reports on such a technique that uses psychophysiological self-regulation to modulate the level of task engagement. Eighteen participants were assigned to three groups (self-regulation, false feedback, and control) and performed a compensatory tracking task that was cycled between three levels of task difficulty on the basis of the electroencephalogram (EEG) record. Those participants who had received self-regulation training performed significantly better and reported lower NASA-TLX scores than participants in the false feedback and control groups. Furthermore, the false feedback and control groups had significantly more task allocations resulting in return-to-manual performance decrements and higher EEG difference scores. Theoretical and practical implications of these results for adaptive automation are discussed.

  3. A Rapid Model Adaptation Technique for Emotional Speech Recognition with Style Estimation Based on Multiple-Regression HMM

    NASA Astrophysics Data System (ADS)

    Ijima, Yusuke; Nose, Takashi; Tachibana, Makoto; Kobayashi, Takao

    In this paper, we propose a rapid model adaptation technique for emotional speech recognition which enables us to extract paralinguistic information as well as linguistic information contained in speech signals. This technique is based on style estimation and style adaptation using a multiple-regression HMM (MRHMM). In the MRHMM, the mean parameters of the output probability density function are controlled by a low-dimensional parameter vector, called a style vector, which corresponds to a set of the explanatory variables of the multiple regression. The recognition process consists of two stages. In the first stage, the style vector that represents the emotional expression category and the intensity of its expressiveness for the input speech is estimated on a sentence-by-sentence basis. Next, the acoustic models are adapted using the estimated style vector, and then standard HMM-based speech recognition is performed in the second stage. We assess the performance of the proposed technique in the recognition of simulated emotional speech uttered by both professional narrators and non-professional speakers.

  4. An Adaptive Pheromone Updation of the Ant-System using LMS Technique

    NASA Astrophysics Data System (ADS)

    Paul, Abhishek; Mukhopadhyay, Sumitra

    2010-10-01

    We propose a modified model of pheromone updation for Ant-System, entitled as Adaptive Ant System (AAS), using the properties of basic Adaptive Filters. Here, we have exploited the properties of Least Mean Square (LMS) algorithm for the pheromone updation to find out the best minimum tour for the Travelling Salesman Problem (TSP). TSP library has been used for the selection of benchmark problem and the proposed AAS determines the minimum tour length for the problems containing large number of cities. Our algorithm shows effective results and gives least tour length in most of the cases as compared to other existing approaches.

  5. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator with enhanced spatial resolution

    NASA Astrophysics Data System (ADS)

    Sy, Amy Vong

    The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrates such capabilities in the characterization of fissile material configurations and greatly benefits from improvements to existing neutron generator systems. Increased neutron yields and improved spatial resolution can enhance the capabilities of imaging methods utilizing the API technique. The work presented in this dissertation focused on the development of components for use within an API neutron generator with enhanced system spatial resolution. The major focus areas were the ion source development for plasma generation, and passive ion beam focusing techniques for the small ion beam widths necessary for the enhanced spatial resolution. The ion source development focused on exploring methods for improvement of Penning-type ion sources that are used in conventional API neutron generator systems, while the passive beam focusing techniques explored both ion beam collimation and ion guiding with tapered dielectric capillaries for reduced beam widths at the neutron production target.

  6. Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking

    DTIC Science & Technology

    2008-12-01

    Analysis ......................................................51 5. Standard Deviation of Beam Position Error ...................................51 6...Organization of Analysis ...................................................................51 B. FEEDFORWARD ADAPTIVE FILTERS USING MULTIPLE...actuator (loud speaker or CFSM) before its effect reaches the error sensor. In ANC lingo , y(t) must first pass through the secondary plant dynamics of the

  7. Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique.

    PubMed

    Engelhart, Denise; Schouten, Alfred C; Aarts, Ronald G K M; van der Kooij, Herman

    2015-11-01

    The ankles and hips play an important role in maintaining standing balance and the coordination between joints adapts with task and conditions, like the disturbance magnitude and type, and changes with age. Assessment of multi-joint coordination requires the application of multiple continuous and independent disturbances and closed loop system identification techniques (CLSIT). This paper presents a novel device, the double inverted pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and between the shoulder blades. In addition to the disturbances, the device can provide force fields to study adaptation of multi-joint coordination. The performance of the DIPP and a novel CLSIT was assessed by identifying a system with known mechanical properties and model simulations. A double inverted pendulum was successfully identified, while force fields were able to keep the pendulum upright. The estimated dynamics were similar as the theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-joint coordination dynamics. An experiment with human subjects where a stabilizing force field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their control actions around the ankles. The stiffness from upper and lower segment motion to ankle torque dropped with 30% and 48%, respectively. Our methods allow to study (pathological) changes in multi-joint coordination as well as adaptive capacity to maintain standing balance.

  8. An Example of a Hakomi Technique Adapted for Functional Analytic Psychotherapy

    ERIC Educational Resources Information Center

    Collis, Peter

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is a model of therapy that lends itself to integration with other therapy models. This paper aims to provide an example to assist others in assimilating techniques from other forms of therapy into FAP. A technique from the Hakomi Method is outlined and modified for FAP. As, on the whole, psychotherapy…

  9. Robust adaptive synchronization of Rossler and Chen chaotic systems via slide technique

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shi, Songjiao

    2003-05-01

    This Letter considers the robust adaptive synchronization problem of Rossler and Chen chaotic systems with different time-varying unknown parameters. When system's unknown parameters vary in bound intervals and the bounds of intervals are unknown, a robust adaptive controller is designed. In order to increase the robustness of the closed loop systems, the key idea is that a sliding mode type of controller is employed. Besides, instead of the estimate values of systems' unknown parameters being taken as updating object, a new updating object is introduced in constructing controller. The proposed controller can make the states of Rossler and Chen chaotic systems globally asymptotically robustly synchronized. Simulation results are given to show the effectiveness of the proposed method.

  10. Sealing ability and adaptation of root-end filling materials in cavities prepared with different techniques.

    PubMed

    Küçükkaya Eren, Selen; Görduysus, Mehmet Ömer; Şahin, Cem

    2017-03-08

    The aim of this study was to evaluate the sealing ability and marginal adaptation of calcium silicate-based cements (CSCs) in root-end cavities prepared by ultrasonic and laser tips. A total of 72 extracted human maxillary incisor teeth were randomly divided as 60 teeth in experimental groups and 6 teeth each for positive and negative control groups. Specimens in experimental groups were obturated, their root-end resections were performed and randomly divided into six groups (n = 10) as follows: G1: Ultrasonic retrotip + MTA, G2: Ultrasonic retrotip + Calcium Enriched Mixture (CEM), G3: Ultrasonic retrotip + Biodentine, G4: Er:YAG laser tip + MTA, G5: Er:YAG laser tip + CEM, G6: Er:YAG laser tip + Biodentine. The sealing ability was measured by fluid transport method. Six specimens from each experimental group were randomly selected to analyze marginal adaptation and prepared for scanning electron microscopy (SEM) analysis. Micrographs were scored and also analyzed using Image J software. Data were analyzed with; two-way ANOVA, Bonferroni, Kruskall-Wallis, Mann-Whitney-U, Siegel & Castellan, and Spearman correlation coefficient tests. No significant difference was found between materials regarding the sealing ability and marginal adaptation (p > 0.05). Significantly greater fluid movement and poor marginal adaptation were seen for materials placed in cavities prepared by laser tips (p < 0.05). Positive correlation was found between the results of scoring and Image J analysis of SEM images (r = 0.596, p < 0.001). Fluid transport method and SEM analysis gave similar results suggesting the use of ultrasonic-retrotips for preparing root-end cavities which are going to be filled with one of these CSCs.

  11. Dynamic Adaptive Binning: An Improved Quantification Technique for NMR Spectroscopic Data

    DTIC Science & Technology

    2010-01-01

    adaptive intelligent binning, which recursively identifies bin edges in existing bins (De Meyer et al. 2008). Another dynamic binning method is...43. Cancino-De-Greiff, H. F., Ramos-Garcia, R., & Lorenzo -Ginori, J. V. (2002). Signal de-noising in magnetic resonance spectroscopy using wavelet...for metabolomics data using the undecimated wavelet transform. Chemometrics and Intelligent Laboratory Systems, 85, 144–154. De Meyer , T., Sinnaeve, D

  12. Theory of axially symmetric cusped focusing: numerical evaluation of a Bessoid integral by an adaptive contour algorithm

    NASA Astrophysics Data System (ADS)

    Kirk, N. P.; Connor, J. N. L.; Curtis, P. R.; Hobbs, C. A.

    2000-07-01

    A numerical procedure for the evaluation of the Bessoid canonical integral J({x,y}) is described. J({x,y}) is defined, for x and y real, by eq1 where J0(·) is a Bessel function of order zero. J({x,y}) plays an important role in the description of cusped focusing when there is axial symmetry present. It arises in the diffraction theory of aberrations, in the design of optical instruments and of highly directional microwave antennas and in the theory of image formation for high-resolution electron microscopes. The numerical procedure replaces the integration path along the real t axis with a more convenient contour in the complex t plane, thereby rendering the oscillatory integrand more amenable to numerical quadrature. The computations use a modified version of the CUSPINT computer code (Kirk et al 2000 Comput. Phys. Commun. at press), which evaluates the cuspoid canonical integrals and their first-order partial derivatives. Plots and tables of J({x,y}) and its zeros are presented for the grid -8.0≤x≤8.0 and -8.0≤y≤8.0. Some useful series expansions of J({x,y}) are also derived.

  13. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    USGS Publications Warehouse

    Roseman, Edward F.; Kennedy, Gregory W.; Craig, Jaquelyn; Boase, James; Soper, Karen

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8 m) Detroit River using an anchor and buoy system.

  14. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Gao, Jian; Mei, Qing; Zhang, Guanjin; He, Yunbo; Chen, Xin

    2017-04-01

    Conventional methods based on analyses of the absolute gray levels of pixels in fringe pattern images are affected by the problems of image saturation, interreflection, and high sensitivity to noise when obtaining three-dimensional (3D) shape measurements of shiny surfaces. This study presents a robust, adaptive, and fast 3D shape measurement technique, which adaptively adjusts the pixel-wise intensity of the projected patterns, thus it avoids image saturation and has a high signal to noise ratio (SNR) during 3D shape measurement for shiny surfaces. Compared with previous time-consuming methods using multiple exposures and the projection of fringe patterns with multiple intensities, where a large number of fringe pattern images need to be captured, the proposed technique needs to capture far fewer pattern images for measurement. In addition, it can greatly reduce the time costs to obtain the optimal projection intensities by the fusion of uniform gray level patterns and coordinates mapping. Our experimental results demonstrate that the proposed technique can achieve highly accurate and efficient 3D shape measurement for shiny surfaces.

  15. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods.

    PubMed

    Kasetsirikul, Surasak; Buranapong, Jirayut; Srituravanich, Werayut; Kaewthamasorn, Morakot; Pimpin, Alongkorn

    2016-07-12

    The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article.

  16. Direct adaptive performance optimization of subsonic transports: A periodic perturbation technique

    NASA Technical Reports Server (NTRS)

    Espana, Martin D.; Gilyard, Glenn

    1995-01-01

    Aircraft performance can be optimized at the flight condition by using available redundancy among actuators. Effective use of this potential allows improved performance beyond limits imposed by design compromises. Optimization based on nominal models does not result in the best performance of the actual aircraft at the actual flight condition. An adaptive algorithm for optimizing performance parameters, such as speed or fuel flow, in flight based exclusively on flight data is proposed. The algorithm is inherently insensitive to model inaccuracies and measurement noise and biases and can optimize several decision variables at the same time. An adaptive constraint controller integrated into the algorithm regulates the optimization constraints, such as altitude or speed, without requiring and prior knowledge of the autopilot design. The algorithm has a modular structure which allows easy incorporation (or removal) of optimization constraints or decision variables to the optimization problem. An important part of the contribution is the development of analytical tools enabling convergence analysis of the algorithm and the establishment of simple design rules. The fuel-flow minimization and velocity maximization modes of the algorithm are demonstrated on the NASA Dryden B-720 nonlinear flight simulator for the single- and multi-effector optimization cases.

  17. The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis.

    PubMed

    Hachaj, Tomasz; Ogiela, Marek R

    2016-06-01

    The main novelty of this paper is presenting the adaptation of Gesture Description Language (GDL) methodology to sport and rehabilitation data analysis and classification. In this paper we showed that Lua language can be successfully used for adaptation of the GDL classifier to those tasks. The newly applied scripting language allows easily extension and integration of classifier with other software technologies and applications. The obtained execution speed allows using the methodology in the real-time motion capture data processing where capturing frequency differs from 100 Hz to even 500 Hz depending on number of features or classes to be calculated and recognized. Due to this fact the proposed methodology can be used to the high-end motion capture system. We anticipate that using novel, efficient and effective method will highly help both sport trainers and physiotherapist in they practice. The proposed approach can be directly applied to motion capture data kinematics analysis (evaluation of motion without regard to the forces that cause that motion). The ability to apply pattern recognition methods for GDL description can be utilized in virtual reality environment and used for sport training or rehabilitation treatment.

  18. Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungin; Liou, Meng-Sing

    2011-01-01

    In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems

  19. An adaptive threshold based image processing technique for improved glaucoma detection and classification.

    PubMed

    Issac, Ashish; Partha Sarathi, M; Dutta, Malay Kishore

    2015-11-01

    Glaucoma is an optic neuropathy which is one of the main causes of permanent blindness worldwide. This paper presents an automatic image processing based method for detection of glaucoma from the digital fundus images. In this proposed work, the discriminatory parameters of glaucoma infection, such as cup to disc ratio (CDR), neuro retinal rim (NRR) area and blood vessels in different regions of the optic disc has been used as features and fed as inputs to learning algorithms for glaucoma diagnosis. These features which have discriminatory changes with the occurrence of glaucoma are strategically used for training the classifiers to improve the accuracy of identification. The segmentation of optic disc and cup based on adaptive threshold of the pixel intensities lying in the optic nerve head region. Unlike existing methods the proposed algorithm is based on an adaptive threshold that uses local features from the fundus image for segmentation of optic cup and optic disc making it invariant to the quality of the image and noise content which may find wider acceptability. The experimental results indicate that such features are more significant in comparison to the statistical or textural features as considered in existing works. The proposed work achieves an accuracy of 94.11% with a sensitivity of 100%. A comparison of the proposed work with the existing methods indicates that the proposed approach has improved accuracy of classification glaucoma from a digital fundus which may be considered clinically significant.

  20. Continuous digital ECG analysis over accurate R-peak detection using adaptive wavelet technique.

    PubMed

    Gopalakrishnan Nair, T R; Geetha, A P; Asharani, M

    2013-10-01

    Worldwide, health care segment is under a severe challenge to achieve more accurate and intelligent biomedical systems in order to assist healthcare professionals with more accurate and consistent data as well as reliability. The role of ECG in healthcare is one of the paramount importances and it has got a multitude of abnormal relations and anomalies which characterizes intricate cardiovascular performance image. Until the recent past, ECG instruments and analysis played the role of providing the PQRST signal as raw observational output either on paper or on a console or in a file having many diagnostic clues embedded in the signal left to the expert cardiologist to look out for characteristic intervals and to detect the cardiovascular abnormality. Methods and practises are required more and more, to automate this process of cardiac expertise using knowledge engineering and an intelligent systems approach. This paper presents one of the challenging R-peak detections to classify diagnosis and estimate cardio disorders in a fully automated signal processing sequence. This study used an adaptive wavelet approach to generate an appropriate wavelet for R-signal identification under noise, baseband wandering and temporal variations of R-positions. This study designed an adaptive wavelet and successfully detected R- peak variations under various ECG signal conditions. The result and analysis of this method and the ways to use it for further purposes are presented here.

  1. Validation of a Bayesian Adaptive Estimation Technique in the Stop-Signal Task

    PubMed Central

    Livesey, Evan J.; Livesey, David J.

    2016-01-01

    The Stop Signal Task (SST), a commonly used measure of response inhibition, uses standard psychophysical methods to gain an estimate of the time needed to withhold a prepotent response. Under some circumstances, conventional forms of the SST are impractical to use because of the large number of trials necessary to gain a reliable estimate of the speed of inhibition. Here we applied to the SST an adaptive method for estimating psychometric parameters that can find reliable threshold estimates over a relatively small number of trials. The Ψ adaptive staircase, which uses a Bayesian algorithm to find the most likely parameters of a psychophysical function, was used to estimate the critical stop signal delay at which the probability of successful response inhibition equals 0.5. Using computational modeling and adult participants, estimates of stop signal reaction time (SSRT) based on the Ψ staircase were compared to estimates using the method of constant stimuli and a standard staircase method of adjustment. Results demonstrate that a reliable estimate of SSRT can be gained very quickly (20–30 stop trials), making the method very useful for testing populations that cannot maintain concentration for long periods or for rapidly obtaining multiple SSRT estimates from healthy adult participants. PMID:27880815

  2. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  3. The safety of the Harmonic® FOCUS in open thyroidectomy: a prospective, randomized study comparing the Harmonic® FOCUS and traditional suture ligation (knot and tie) technique.

    PubMed

    Zanghì, Antonio; Cavallaro, Andrea; Di Vita, Maria; Cardì, Francesco; Di Mattia, Paolo; Piccolo, Gaetano; Barbera, Giuseppina; Urso, Mario; Cappellani, Alessandro

    2014-01-01

    Since Kocher and Billroth refined an acceptable technique, the thyroidectomy has become one of the most frequent procedures in endocrine surgery and bilateral total thyroidectomy is performed in the majority of thyroid diseases. This work evaluated the use of the Harmonic(®) FOCUS and traditional suture ligation (knot and tie) technique in a prospective, randomized study of open thyroidectomy. Eighty two patients were randomized and divided into two similarly sized groups: the Harmonic(®) FOCUS group (F group) and traditional group (T group). The use of the harmonic FOCUS shows some statistically significant advantages limited to a few intraoperative parameters: surgical time and volume of blood loss. The surgical time was significantly shorter in F group than in the T group (105 ± 27 min vs 143 ± 32 respectively; p < 0.05). Intraoperative volume blood loss was significantly more in the T group than in the F group (36 ± 23 ml vs. 24 ± 18; p < 0.05). The postoperative parameters (volume of drainage fluid, serum calcium at 12 and 48 h, hypocalcemia, wound complication, RLN palsy, postoperative pain and length of hospital stay) showed no statistical difference. The Harmonic Focus may provide a cost-effective option only in high volume centers where reducing operative time may balance the number of daily procedures.

  4. Use of Activation Technique and MCNP Calculations for Measurement of Fast Neutron Spatial Distribution at the MJ Plasma Focus Device.

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Scholz, M.; Wincel, K.; Zaręba, B.

    2008-03-01

    In this paper Plasma-Focus (PF) neutron emission properties have been studied using Monte Carlo calculations for neutron and photon transport. A Thermal Neutron Scaling Factor as a function of angular position of silver activation detectors placed around MJ Plasma Focus (PF-1000) device has been calculated. Detector responses calculated for 2.5 MeV neutrons and neutrons produced by Am-Be calibration source have been obtained .The results have shown the detector response dependence on the kind of calibration neutron source and on local geometrical/structural characteristics of the PF-1000 devices. Thus the proper calibration procedure ought to be performed for correct measurement of neutron yield within Plasma-Focus devices.

  5. Adaptation of the staphylococcal coagglutination technique for detection of heat-labile enterotoxin of Escherichia coli.

    PubMed Central

    Brill, B M; Wasilauskas, B L; Richardson, S H

    1979-01-01

    Protein A-containing staphylococci coated with specific antiserum were tested for heat-labile enterotoxin of Escherichia coli. The immunological cross-reactivity of E. coli heat-labile enterotoxin with Vibrio cholerae toxin (choleragen) was the basis for sensitizing stabilized suspensions of the Cowan I strain of Staphylococcus aureus with anticholeragen. Unconcentrated culture supernatant fluid containing E. coli heat-labile enterotoxin produced macroscopic agglutination when mixed with sensitized staphylococci in capillary tubes. A total of 15 toxigenic and 61 nontoxigenic isolates were tested by the staphylococcal coagglutination technique in a coded fashion and found to be in agreement with previous results of the Chinese hamster ovary cell assay and the passive immune hemolysis test. The staphylococcal coagglutination technique is simple, relatively inexpensive to perform, and requires the immunoglobulin fraction of anticholeragen as the only specific reagent. The staphylococcal coagglutination technique appears to have potential for routine use in diagnostic microbiology laboratories. Images PMID:372214

  6. Passive auto-focus for digital still cameras and camera phones: Filter-switching and low-light techniques

    NASA Astrophysics Data System (ADS)

    Gamadia, Mark Noel

    In order to gain valuable market share in the growing consumer digital still camera and camera phone market, camera manufacturers have to continually add and improve existing features to their latest product offerings. Auto-focus (AF) is one such feature, whose aim is to enable consumers to quickly take sharply focused pictures with little or no manual intervention in adjusting the camera's focus lens. While AF has been a standard feature in digital still and cell-phone cameras, consumers often complain about their cameras' slow AF performance, which may lead to missed photographic opportunities, rendering valuable moments and events with undesired out-of-focus pictures. This dissertation addresses this critical issue to advance the state-of-the-art in the digital band-pass filter, passive AF method. This method is widely used to realize AF in the camera industry, where a focus actuator is adjusted via a search algorithm to locate the in-focus position by maximizing a sharpness measure extracted from a particular frequency band of the incoming image of the scene. There are no known systematic methods for automatically deriving the parameters such as the digital pass-bands or the search step-size increments used in existing passive AF schemes. Conventional methods require time consuming experimentation and tuning in order to arrive at a set of parameters which balance AF performance in terms of speed and accuracy ultimately causing a delay in product time-to-market. This dissertation presents a new framework for determining an optimal set of passive AF parameters, named Filter- Switching AF, providing an automatic approach to achieve superior AF performance, both in good and low lighting conditions based on the following performance measures (metrics): speed (total number of iterations), accuracy (offset from truth), power consumption (total distance moved), and user experience (in-focus position overrun). Performance results using three different prototype cameras

  7. Possibilities for focusing ultrasonic fields - A survey

    NASA Astrophysics Data System (ADS)

    Schlengermann, U.

    1986-05-01

    Focusing techniques for ultrasound devices used in NDE are examined in a review of recent experimental investigations and application reports. The advantages of focused sound fields are outlined (including increased sensitivity, lateral resolution, and S/N and improved reflector scanning); the characteristics of the focused field are reviewed; the fundamental principles of curved-crystal, lens, curved-reflector, zone-plate, and phase-plate focusing are explained; and their practical adaptation in NDE problems (by changing delay path, changing lenses, or switching annular arrays) is described. Consideration is given to geometric and technical limitations on focusing applicability and to the optimization of focusing. Diagrams and drawings are provided.

  8. Adaptation of the cellscan technique for the SCM test in breast cancer.

    PubMed

    Rahmani, H; Deutsch, M; Ron, I; Gerbat, S; Tirosh, R; Weinreb, A; Chaitchik, S; Lalchuk, S

    1996-09-01

    The value of the SCM (Structuredness of Cytoplasmic Matrix) cancer test, a procedure based on the detection of differences in lymphocyte activation in the presence and absence of cancer, has remained controversial, with inconsistent results having been reported among investigators. The Cellscan, a high-precision static cytometer system, has been designed to perform the SCM test; the apparatus facilitates the polarisation measurements and can examine cells which have been separated by simpler procedures than were originally described. In this study, using methods and diagnostic criteria adapted for the Cellscan system in a hospital environment, the SCM test correctly classified over 90% (76/80) of patients with breast cancer and differentiated over 90% (72/73) of individuals without cancer.

  9. Urban Infrastructure Monitoring with a Spatially Adaptive Multi-Looking InSAR Technique

    NASA Astrophysics Data System (ADS)

    Sharma, Jayanti; Eppler, Jayson; Busler, Jennifer

    2015-05-01

    Surface displacements for urban infrastructure monitoring are derived using Interferometric Synthetic Aperture Radar (InSAR). The analysis uses a novel InSAR method, Homogenous Distributed Scatterer (HDS)-InSAR, that exploits both persistent point and coherent distributed scatterers using adaptive multi-looking of statistically homogenous pixel neighbourhoods. An unwrapped phase model incorporating meteorological data enables separation of temperature-correlated displacement from potentially hazardous long-term trends. Results are presented over the Canadian cities of Regina, Winnipeg and Montreal using RADARSAT-2 and TerraSAR-X data. The new combination of HDS-InSAR and the extended phase model permits large areas of infrastructure to be remotely monitored on a regular basis and enables a more targeted monitoring process to help identify infrastructure at greatest risk for damage.

  10. Adaptive detection technique for optical wireless communication over strong turbulence channels

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Huang, Dexiu; Xiuhua, Yuan

    2007-11-01

    Optical wireless communication (OWC) systems use the atmosphere as a propagation medium, so the atmospheric turbulence effects lead to fading related with signal intensity. The received signal of OWC over strong turbulence channels is assumed to be a mixture of K-distributed fading and Gaussian distributed thermal noise. Second-order spectral analysis is unable to separately estimate the mixed signal. In order to mitigate the fading induced by turbulence, the decision threshold-updating algorithm based on second and higher order cumulants is proposed and is able to operate in an unknown turbulence environment. The performance of the adaptive processing scheme has been evaluated by means of Monte Carlo simulations. Simulation results show the improvement of the bit error rate (BER) performance.

  11. Automatic ultrasonic imaging system with adaptive-learning-network signal-processing techniques

    SciTech Connect

    O'Brien, L.J.; Aravanis, N.A.; Gouge, J.R. Jr.; Mucciardi, A.N.; Lemon, D.K.; Skorpik, J.R.

    1982-04-01

    A conventional pulse-echo imaging system has been modified to operate with a linear ultrasonic array and associated digital electronics to collect data from a series of defects fabricated in aircraft quality steel blocks. A thorough analysis of the defect responses recorded with this modified system has shown that considerable improvements over conventional imaging approaches can be obtained in the crucial areas of defect detection and characterization. A combination of advanced signal processing concepts with the Adaptive Learning Network (ALN) methodology forms the basis for these improvements. Use of established signal processing algorithms such as temporal and spatial beam-forming in concert with a sophisticated detector has provided a reliable defect detection scheme which can be implemented in a microprocessor-based system to operate in an automatic mode.

  12. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Adaptive focusing of high-intensity light beams over short paths

    NASA Astrophysics Data System (ADS)

    Kanev, Fedor Yu; Chesnokov, S. S.

    1987-10-01

    Numerical experiments were used to analyze the efficiency of adaptive control of the wavefronts of light beams traveling under conditions of steady-state wind refraction over paths amounting to 0.1 of the diffraction length. The equations describing the propagation of the light waves emitted and scattered by an object were solved in a lens system of coordinates, which made it possible to increase considerably the reliability of numerical prediction. The results were used to propose wavefront control by an algorithm for modified phase conjugation based on storage of a phase profile ensuring the best compensation of nonlinear distortions in all the preceding iterations. This algorithm was found to increase the concentration of the field on an object by 40-45% compared with nonadaptive focusing.

  13. A New Simulation Technique for Study of Collisionless Shocks: Self-Adaptive Simulations

    SciTech Connect

    Karimabadi, H.; Omelchenko, Y.; Driscoll, J.; Krauss-Varban, D.; Fujimoto, R.; Perumalla, K.

    2005-08-01

    The traditional technique for simulating physical systems modeled by partial differential equations is by means of time-stepping methodology where the state of the system is updated at regular discrete time intervals. This method has inherent inefficiencies. In contrast to this methodology, we have developed a new asynchronous type of simulation based on a discrete-event-driven (as opposed to time-driven) approach, where the simulation state is updated on a 'need-to-be-done-only' basis. Here we report on this new technique, show an example of particle acceleration in a fast magnetosonic shockwave, and briefly discuss additional issues that we are addressing concerning algorithm development and parallel execution.

  14. Developing Policy for Integrating Biomedicine and Traditional Chinese Medical Practice Using Focus Groups and the Delphi Technique

    PubMed Central

    Chung, Vincent C. H.; Ma, Polly H. X.; Lau, Chun Hong; Griffiths, Sian M.

    2012-01-01

    In Hong Kong, statutory regulation for traditional Chinese medicine (TCM) practitioners has been implemented in the past decade. Increasing use of TCM on top of biomedicine (BM) services by the population has been followed; but corresponding policy development to integrate their practices has not yet been discussed. Using focus group methodology, we explore policy ideas for integration by collating views from frontline BM (n = 50) and TCM clinicians (n = 50). Qualitative data were analyzed under the guidance of structuration model of collaboration, a theoretical model for understanding interprofessional collaboration. From focus group findings we generated 28 possible approaches, and subsequently their acceptability was assessed by a two round Delphi survey amongst BM and TCM policy stakeholders (n = 12). Consensus was reached only on 13 statements. Stakeholders agreed that clinicians from both paradigms should share common goals of providing patient-centered care, promoting the development of protocols for shared care and information exchange, as well as strengthening interprofessional connectivity and leadership for integration. On the other hand, attitudes amongst policy stakeholders were split on the possibility of fostering trust and mutual learning, as well as on enhancing innovation and governmental support. Future policy initiatives should focus on these controversial areas. PMID:22649469

  15. A framework for automated contour quality assurance in radiation therapy including adaptive techniques

    NASA Astrophysics Data System (ADS)

    Altman, M. B.; Kavanaugh, J. A.; Wooten, H. O.; Green, O. L.; DeWees, T. A.; Gay, H.; Thorstad, W. L.; Li, H.; Mutic, S.

    2015-07-01

    Contouring of targets and normal tissues is one of the largest sources of variability in radiation therapy treatment plans. Contours thus require a time intensive and error-prone quality assurance (QA) evaluation, limitations which also impair the facilitation of adaptive radiotherapy (ART). Here, an automated system for contour QA is developed using historical data (the ‘knowledge base’). A pilot study was performed with a knowledge base derived from 9 contours each from 29 head-and-neck treatment plans. Size, shape, relative position, and other clinically-relevant metrics and heuristically derived rules are determined. Metrics are extracted from input patient data and compared against rules determined from the knowledge base; a computer-learning component allows metrics to evolve with more input data, including patient specific data for ART. Nine additional plans containing 42 unique contouring errors were analyzed. 40/42 errors were detected as were 9 false positives. The results of this study imply knowledge-based contour QA could potentially enhance the safety and effectiveness of RT treatment plans as well as increase the efficiency of the treatment planning process, reducing labor and the cost of therapy for patients.

  16. Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2017-03-01

    In this paper, some nonlinear space-fractional order reaction-diffusion equations (SFORDE) on a finite but large spatial domain x ∈ [0, L], x = x(x , y , z) and t ∈ [0, T] are considered. Also in this work, the standard reaction-diffusion system with boundary conditions is generalized by replacing the second-order spatial derivatives with Riemann-Liouville space-fractional derivatives of order α, for 0 < α < 2. Fourier spectral method is introduced as a better alternative to existing low order schemes for the integration of fractional in space reaction-diffusion problems in conjunction with an adaptive exponential time differencing method, and solve a range of one-, two- and three-components SFORDE numerically to obtain patterns in one- and two-dimensions with a straight forward extension to three spatial dimensions in a sub-diffusive (0 < α < 1) and super-diffusive (1 < α < 2) scenarios. It is observed that computer simulations of SFORDE give enough evidence that pattern formation in fractional medium at certain parameter value is practically the same as in the standard reaction-diffusion case. With application to models in biology and physics, different spatiotemporal dynamics are observed and displayed.

  17. Quantitative evaluation of ASiR image quality: an adaptive statistical iterative reconstruction technique

    NASA Astrophysics Data System (ADS)

    Van de Casteele, Elke; Parizel, Paul; Sijbers, Jan

    2012-03-01

    Adaptive statistical iterative reconstruction (ASiR) is a new reconstruction algorithm used in the field of medical X-ray imaging. This new reconstruction method combines the idealized system representation, as we know it from the standard Filtered Back Projection (FBP) algorithm, and the strength of iterative reconstruction by including a noise model in the reconstruction scheme. It studies how noise propagates through the reconstruction steps, feeds this model back into the loop and iteratively reduces noise in the reconstructed image without affecting spatial resolution. In this paper the effect of ASiR on the contrast to noise ratio is studied using the low contrast module of the Catphan phantom. The experiments were done on a GE LightSpeed VCT system at different voltages and currents. The results show reduced noise and increased contrast for the ASiR reconstructions compared to the standard FBP method. For the same contrast to noise ratio the images from ASiR can be obtained using 60% less current, leading to a reduction in dose of the same amount.

  18. Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique.

    PubMed

    Fakhari, Abbas; Lee, Taehun

    2014-03-01

    An adaptive-mesh-refinement (AMR) algorithm for the finite-difference lattice Boltzmann method (FDLBM) is presented in this study. The idea behind the proposed AMR is to remove the need for a tree-type data structure. Instead, pointer attributes are used to determine the neighbors of a certain block via appropriate adjustment of its children identifications. As a result, the memory and time required for tree traversal are completely eliminated, leaving us with an efficient algorithm that is easier to implement and use on parallel machines. To allow different mesh sizes at separate parts of the computational domain, the Eulerian formulation of the streaming process is invoked. As a result, there is no need for rescaling the distribution functions or using a temporal interpolation at the fine-coarse grid boundaries. The accuracy and efficiency of the proposed FDLBM AMR are extensively assessed by investigating a variety of vorticity-dominated flow fields, including Taylor-Green vortex flow, lid-driven cavity flow, thin shear layer flow, and the flow past a square cylinder.

  19. Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Lee, Taehun

    2014-03-01

    An adaptive-mesh-refinement (AMR) algorithm for the finite-difference lattice Boltzmann method (FDLBM) is presented in this study. The idea behind the proposed AMR is to remove the need for a tree-type data structure. Instead, pointer attributes are used to determine the neighbors of a certain block via appropriate adjustment of its children identifications. As a result, the memory and time required for tree traversal are completely eliminated, leaving us with an efficient algorithm that is easier to implement and use on parallel machines. To allow different mesh sizes at separate parts of the computational domain, the Eulerian formulation of the streaming process is invoked. As a result, there is no need for rescaling the distribution functions or using a temporal interpolation at the fine-coarse grid boundaries. The accuracy and efficiency of the proposed FDLBM AMR are extensively assessed by investigating a variety of vorticity-dominated flow fields, including Taylor-Green vortex flow, lid-driven cavity flow, thin shear layer flow, and the flow past a square cylinder.

  20. The pursuit of balance: An overview of covariate-adaptive randomization techniques in clinical trials.

    PubMed

    Lin, Yunzhi; Zhu, Ming; Su, Zheng

    2015-11-01

    Randomization is fundamental to the design and conduct of clinical trials. Simple randomization ensures independence among subject treatment assignments and prevents potential selection biases, yet it does not guarantee balance in covariate distributions across treatment groups. Ensuring balance in important prognostic covariates across treatment groups is desirable for many reasons. A broad class of randomization methods for achieving balance are reviewed in this paper; these include block randomization, stratified randomization, minimization, and dynamic hierarchical randomization. Practical considerations arising from experience with using the techniques are described. A review of randomization methods used in practice in recent randomized clinical trials is also provided.

  1. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  2. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    SciTech Connect

    Agarwal, Animesh Delle Site, Luigi

    2015-09-07

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  3. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    NASA Astrophysics Data System (ADS)

    Agarwal, Animesh; Delle Site, Luigi

    2015-09-01

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  4. One-step synthesis of hybrid inorganic-organic nanocomposite coatings by novel laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir

    2013-03-01

    A novel approach for one-step synthesis of hybrid inorganic-organic nanocomposite coatings by new modification of Pulsed Laser Deposition technology called Laser Adaptive Ablation Deposition (LAAD) is presented. Hybrid nanocomposite coatings including Mg- Rapamycin and Mg- Desoximetasone were produced by UV TEA N2 laser under low vacuum (0.1 Pa) and room temperature onto substrates from SS 316L, KCl and NaCl. The laser fluence for Mg alloy was 1, 8 J/cm2 and for Desoximetasone 0,176 J/cm2 and for Rapamycin 0,118 J/cm2 were respectively. The threedimensional two-segmented single target was used to adapt the interaction of focused laser beam with inorganic and organic material. Magnesium alloy nanoparticles with sizes from 50 nm to 250 nm were obtained in organic matrices. The morphology of nanocomposites films were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Fourier Transform Infrared (FTIR) spectroscopy measurements were applied in order to study the functional properties of organic component before and after the LAAD process. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of Mg alloy presence in hybrid nanocomposites coatings. The precise control of process parameters and particularly of the laser fluence adjustment enables transfer on materials with different physical chemical properties and one-step synthesis of complex inorganic- organic nanocomposites coatings.

  5. Many-Group Cross-Section Adjustment Techniques for Boiling Water Reactor Adaptive Simulation

    SciTech Connect

    Jessee, Matthew Anderson

    2011-01-01

    Computational capability has been developed to adjust multigroup neutron cross sections, including self-shielding correction factors, to improve the fidelity of boiling water reactor (BWR) core modeling and simulation. The method involves propagating multigroup neutron cross-section uncertainties through various BWR computational models to evaluate uncertainties in key core attributes such as core k{sub eff}, nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multigroup cross sections to minimize the disagreement between BWR core modeling predictions and observed (i.e., measured) plant data. For this paper, observed plant data are virtually simulated in the form of perturbed three-dimensional nodal power distributions with the perturbations sized to represent actual discrepancies between predictions and real plant data. The major focus of this work is to efficiently propagate multigroup neutron cross-section uncertainty through BWR lattice physics and core simulator calculations. The data adjustment equations are developed using a subspace approach that exploits the ill-conditioning of the multigroup cross-section covariance matrix to minimize computation and storage burden. Tikhonov regularization is also employed to improve the conditioning of the data adjustment equations. Expressions are also provided for posterior covariance matrices of both the multigroup cross-section and core attributes uncertainties.

  6. An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations

    SciTech Connect

    Ma Xiang; Zabaras, Nicholas

    2010-05-20

    A computational methodology is developed to address the solution of high-dimensional stochastic problems. It utilizes high-dimensional model representation (HDMR) technique in the stochastic space to represent the model output as a finite hierarchical correlated function expansion in terms of the stochastic inputs starting from lower-order to higher-order component functions. HDMR is efficient at capturing the high-dimensional input-output relationship such that the behavior for many physical systems can be modeled to good accuracy only by the first few lower-order terms. An adaptive version of HDMR is also developed to automatically detect the important dimensions and construct higher-order terms using only the important dimensions. The newly developed adaptive sparse grid collocation (ASGC) method is incorporated into HDMR to solve the resulting sub-problems. By integrating HDMR and ASGC, it is computationally possible to construct a low-dimensional stochastic reduced-order model of the high-dimensional stochastic problem and easily perform various statistic analysis on the output. Several numerical examples involving elementary mathematical functions and fluid mechanics problems are considered to illustrate the proposed method. The cases examined show that the method provides accurate results for stochastic dimensionality as high as 500 even with large-input variability. The efficiency of the proposed method is examined by comparing with Monte Carlo (MC) simulation.

  7. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    USGS Publications Warehouse

    Roseman, E.F.; Boase, J.; Kennedy, G.; Craig, J.; Soper, K.

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8m) Detroit River using an anchor and buoy system. ?? 2011 Blackwell Verlag, Berlin.

  8. Adaptable Design Improvements for Electromagnetic Shock Wave Lithotripters and Techniques for Controlling Cavitation

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Birchard

    In this dissertation work, the aim was to garner better mechanistic understanding of how shock wave lithotripsy (SWL) breaks stones in order to guide design improvements to modern electromagnetic (EM) shock wave lithotripters. To accomplish this goal, experimental studies were carefully designed to isolate mechanisms of fragmentation, and models for wave propagation, fragmentation, and stone motion were developed. In the initial study, a representative EM lithotripter was characterized and tested for in vitro stone comminution efficiency at a variety of field positions and doses using phantom kidney stones of variable physical properties, and in different fluid mediums to isolate the contribution of cavitation. Through parametric analysis of the acoustic field measurements alongside comminution results, a logarithmic correlation was determined between average peak pressure incident on the stone surface and comminution efficiency. It was also noted that for a given stone type, the correlations converged to an average peak pressure threshold for fragmentation, independent of fluid medium in use. The correlation of average peak pressure to efficacy supports the rationale for the acoustic lens modifications, which were pursued to simultaneously enhance beam width and optimize the pulse profile of the lithotripter shock wave (LSW) via in situ pulse superposition for improved stone fragmentation by stress waves and cavitation, respectively. In parallel, a numerical model for wave propagation was used to investigate the variations of critical parameters with changes in lens geometry. A consensus was reached on a new lens design based on high-speed imaging and stone comminution experiments against the original lens at a fixed acoustic energy setting. The results have demonstrated that the new lens has improved efficacy away from the focus, where stones may move due to respiration, fragmentation, acoustic radiation forces, or voluntary

  9. Lung volume assessment for a cross-comparison of two breathing-adapted techniques in radiotherapy

    SciTech Connect

    Simon, Luc . E-mail: luc.simon@curie.net; Giraud, Philippe; Servois, Vincent; Rosenwald, Jean-Claude

    2005-10-01

    Purpose: To assess the validity of gated radiotherapy of lung by using a cross-check methodology based on four-dimensional (4D)-computed tomography (CT) exams. Variations of volume of a breathing phantom was used as an indicator. Methods and Materials: A balloon was periodically inflated and deflated by a medical ventilator. The volume variation ({delta}V) of the balloon was measured simultaneously by a spirometer, taken as reference, and by contouring 4D-CT series (10 phases) acquired by the real-time position management system (RPM). Similar cross-comparison was performed for 2 lung patients, 1 with free breathing (FB), the other with deep-inspiration breath-hold (DIBH) technique. Results: During FB, {delta}V measured by the spirometer and from 4D-CT were in good agreement: the mean differences for all phases were 8.1 mL for the balloon and 10.5 mL for a patient-test. End-inspiration lung volume has been shown to be slightly underestimated by the 4D-CT. The discrepancy for {delta}V between DIBH and end-expiration, measured from CT and from spirometer, respectively, was less than 3%. Conclusions: Provided that each slice series is correctly associated with the proper breathing phase, 4D-CT allows an accurate assessment of lung volume during the whole breathing cycle ({delta}V error <3% compared with the spirometer signal). Taking the lung volume variation into account is a central issue in the evaluation and control of the toxicity for lung radiation treatments.

  10. (A new time of flight) Acoustic flow meter using wide band signals and adaptive beamforming techniques

    NASA Astrophysics Data System (ADS)

    Murgan, I.; Ioana, C.; Candel, I.; Anghel, A.; Ballester, J. L.; Reeb, B.; Combes, G.

    2016-11-01

    facility showed an increase in acoustic time of flight estimation, accuracy of 50% with respect to the existing measurements techniques based only on signal correlation.

  11. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures.

    PubMed

    Chen, Ruei-San; Tang, Chih-Che; Shen, Wei-Chu; Huang, Ying-Sheng

    2015-12-05

    Layer semiconductors with easily processed two-dimensional (2D) structures exhibit indirect-to-direct bandgap transitions and superior transistor performance, which suggest a new direction for the development of next-generation ultrathin and flexible photonic and electronic devices. Enhanced luminescence quantum efficiency has been widely observed in these atomically thin 2D crystals. However, dimension effects beyond quantum confinement thicknesses or even at the micrometer scale are not expected and have rarely been observed. In this study, molybdenum diselenide (MoSe2) layer crystals with a thickness range of 6-2,700 nm were fabricated as two- or four-terminal devices. Ohmic contact formation was successfully achieved by the focused-ion beam (FIB) deposition method using platinum (Pt) as a contact metal. Layer crystals with various thicknesses were prepared through simple mechanical exfoliation by using dicing tape. Current-voltage curve measurements were performed to determine the conductivity value of the layer nanocrystals. In addition, high-resolution transmission electron microscopy, selected-area electron diffractometry, and energy-dispersive X-ray spectroscopy were used to characterize the interface of the metal-semiconductor contact of the FIB-fabricated MoSe2 devices. After applying the approaches, the substantial thickness-dependent electrical conductivity in a wide thickness range for the MoSe2-layer semiconductor was observed. The conductivity increased by over two orders of magnitude from 4.6 to 1,500 Ω(-) (1) cm(-) (1), with a decrease in the thickness from 2,700 to 6 nm. In addition, the temperature-dependent conductivity indicated that the thin MoSe2 multilayers exhibited considerably weak semiconducting behavior with activation energies of 3.5-8.5 meV, which are considerably smaller than those (36-38 meV) of the bulk. Probable surface-dominant transport properties and the presence of a high surface electron concentration in MoSe2 are proposed

  12. Generation of a miniaturized free-flow electrophoresis chip based on a multi-lamination technique--isoelectric focusing of proteins and a single-stranded DNA fragment.

    PubMed

    Walowski, Britta; Hüttner, Wilhelm; Wackerbarth, Hainer

    2011-11-01

    Free-flow electrophoresis techniques have been applied for separations in various areas of chemistry and biochemistry. Here we focus on the generation of a free-flow electrophoresis chip and direct monitoring of the separation of different molecules in the separation bed of the miniaturized chip. We demonstrate a fast and efficient way to generate a low-cost micro-free-flow electrophoresis (μFFE) chip with a filling capacity of 9.5 μL based on a multi-lamination technique. Separating webs realized by two transfer-adhesive tapes avoid the problem of gas bubbles entering the separation area. The chip is characterized by isoelectric focusing markers (IEF markers). The functionality of the chip is demonstrated by free-flow isoelectric focusing (FFIEF) of the proteins BSA (bovine serum albumin) and avidin and a single-stranded DNA (ssDNA) fragment in the pH range 3 to 10. The separation voltage ranges between 167 V cm(-1) and 422 V cm(-1), depending on the application.

  13. A simple technique to overcome self-focusing, filamentation, supercontinuum generation, aberrations, depth dependence and waveguide interface roughness using fs laser processing.

    PubMed

    Lapointe, Jerome; Kashyap, Raman

    2017-03-29

    Several detrimental effects limit the use of ultrafast lasers in multi-photon processing and the direct manufacture of integrated photonics devices, not least, dispersion, aberrations, depth dependence, undesirable ablation at a surface, limited depth of writing, nonlinear optical effects such as supercontinuum generation and filamentation due to Kerr self-focusing. We show that all these effects can be significantly reduced if not eliminated using two coherent, ultrafast laser-beams through a single lens - which we call the Dual-Beam technique. Simulations and experimental measurements at the focus are used to understand how the Dual-Beam technique can mitigate these problems. The high peak laser intensity is only formed at the aberration-free tightly localised focal spot, simultaneously, suppressing unwanted nonlinear side effects for any intensity or processing depth. Therefore, we believe this simple and innovative technique makes the fs laser capable of much more at even higher intensities than previously possible, allowing applications in multi-photon processing, bio-medical imaging, laser surgery of cells, tissue and in ophthalmology, along with laser writing of waveguides.

  14. Lost in Translation: Assessing Effectiveness of Focus Group Questioning Techniques to Develop Improved Translation of Terminology Used in HIV Prevention Clinical Trials

    PubMed Central

    Mack, Natasha; Ramirez, Catalina B.; Friedland, Barbara; Nnko, Soori

    2013-01-01

    Introduction Achieving participant comprehension has proven to be one of the most difficult, practical, and ethical challenges of HIV prevention clinical trials. It becomes even more challenging when local languages do not have equivalent scientific and technical vocabularies, rendering communication of scientific concepts in translated documents extremely difficult. Even when bilingual lexicons are developed, there is no guarantee that participants understand the terminology as translated. Methods We conducted twelve focus groups with women of reproductive age in Mwanza, Tanzania to explore the effectiveness of four questioning techniques for: (1) assessing participants' familiarity with existing technical terms and concepts, (2) generating a list of acceptable technical and non-technical terms, (3) testing our definitions of technical terms, and (4) verifying participants' preferences for terms. Focus groups were transcribed, translated, and qualitatively analyzed. Results and Discussion A translation process that uses all four questioning techniques in a step-wise approach is an effective way to establish a baseline understanding of participants' familiarity with research terms, to develop and test translatable definitions, and to identify participants' preferred terminology for international HIV clinical research. This may help to ensure that important concepts are not “lost in translation.” The results emphasize the importance of using a variety of techniques depending on the level of participant familiarity with research concepts, the existence of colloquial or technical terms in the target language, and the inherent complexity of the terms. PMID:24040075

  15. Appraisal of adaptive neuro-fuzzy computing technique for estimating anti-obesity properties of a medicinal plant.

    PubMed

    Kazemipoor, Mahnaz; Hajifaraji, Majid; Radzi, Che Wan Jasimah Bt Wan Mohamed; Shamshirband, Shahaboddin; Petković, Dalibor; Mat Kiah, Miss Laiha

    2015-01-01

    This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes.

  16. Direct observation of CD4 T cell morphologies and their cross-sectional traction force derivation on quartz nanopillar substrates using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Won-Yong; Hong, Chang-Hee; Lee, Sang-Kwon

    2013-07-01

    Direct observations of the primary mouse CD4 T cell morphologies, e.g., cell adhesion and cell spreading by culturing CD4 T cells in a short period of incubation (e.g., 20 min) on streptavidin-functionalized quartz nanopillar arrays (QNPA) using a high-content scanning electron microscopy method were reported. Furthermore, we first demonstrated cross-sectional cell traction force distribution of surface-bound CD4 T cells on QNPA substrates by culturing the cells on top of the QNPA and further analysis in deflection of underlying QNPA via focused ion beam-assisted technique.

  17. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.

    PubMed

    Caballero, David; Villanueva, Guillermo; Plaza, Jose Antonio; Mills, Christopher A; Samitier, Josep; Errachid, Abdelhamid

    2010-01-01

    The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 degrees or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

  18. Adaptive Cancellation Techniques.

    DTIC Science & Technology

    1983-11-21

    8217 . . " ’ =r ’ ,. R " I -, -- gg° XMIT MANT TAPPED. L N POOP DELAY LINE REEIEt)Xt ’ANT ,°op FIGURE A-i. "-𔃽 -rA-- 9- 9.--.~ i. . . The basic idea of...the transmitted pulse were delayed to match the received pulse with a single delay, the difference between the pulses would contain " dog ears". Figure C...20 DIFF ER.EtCE These " dog ears" will degrade the null somewhat, and might produce unwanted video noise, depending on the system. C-8 J". 4o

  19. A flexible mouse-on-mouse immunohistochemical staining technique adaptable to biotin-free reagents, immunofluorescence, and multiple antibody staining.

    PubMed

    Goodpaster, Tracy; Randolph-Habecker, Julie

    2014-03-01

    Immunohistochemistry on mouse tissue utilizing mouse monoclonal antibodies presents a challenge. Secondary antibodies directed against the mouse monoclonal primary antibody of interest will also detect endogenous mouse immunoglobulin in the tissue. This can lead to significant spurious staining. Therefore, a "mouse-on-mouse" staining strategy is needed to yield credible data. This paper presents a method that is easy to use and highly flexible to accommodate both an avidin-biotin detection system as well as a biotin-free polymer detection system. The mouse primary antibody is first combined with an Fab fragment of an anti-mouse antibody in a tube and allowed sufficient time to form an antibody complex. Any non-complexed secondary antibody is bound up with mouse serum. The mixture is then applied to the tissue. The flexibility of this method is confirmed with the use of different anti-mouse antibodies followed by a variety of detection reagents. These techniques can be used for immunohistochemistry (IHC), immunofluorescence (IF), as well as staining with multiple primary antibodies. This method has also been adapted to other models, such as using human antibodies on human tissue and using multiple rabbit antibodies in dual immunofluorescence.

  20. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    SciTech Connect

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  1. A Block-Structured Adaptive Mesh Refinement Technique with a Finite-Difference-Based Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Lee, Taehun

    2013-11-01

    A novel adaptive mesh refinement (AMR) algorithm for the numerical solution of fluid flow problems is presented in this study. The proposed AMR algorithm can be used to solve partial differential equations including, but not limited to, the Navier-Stokes equations using an AMR technique. Here, the lattice Boltzmann method (LBM) is employed as a substitute of the nearly incompressible Navier-Stokes equations. Besides its simplicity, the proposed AMR algorithm is straightforward and yet efficient. The idea is to remove the need for a tree-type data structure by using the pointer attributes in a unique way, along with an appropriate adjustment of the child block's IDs, to determine the neighbors of a certain block. Thanks to the unique way of invoking pointers, there is no need to construct a quad-tree (in 2D) or oct-tree (in 3D) data structure for maintaining the connectivity data between different blocks. As a result, the memory and time required for tree traversal are completely eliminated, leaving us with a clean and efficient algorithm that is easier to implement and use on parallel machines. Several benchmark studies are carried out to assess the accuracy and efficiency of the proposed AMR-LBM, including lid-driven cavity flow, vortex shedding past a square cylinder, and Kelvin-Helmholtz instability for single-phase and multiphase fluids.

  2. A meta-analysis comparing the outcomes of LigaSure Small Jaw versus clamp-and-tie technique or Harmonic Focus Scalpel in thyroidectomy

    PubMed Central

    Zhang, Lei; Li, Namei; Yang, Xuemei; Chen, Jie

    2017-01-01

    Abstract Background: LigaSure (LS) Small Jaw is a surgical hemostasis equipment that is newly introduced in thyroid surgery. The objective of this study is to assess the short-term efficacy and safety outcomes of LS Small Jaw compared with clamp-and-tie technique or Harmonic Focus Scalpel in thyroidectomy. Methods: A literature search was performed in the PubMed and Embase databases (until June 12, 2016) that reported the comparisons between LS Small Jaw and other techniques in thyroidectomy. Quality assessments were performed according to The Cochrane Collaboration's risk of bias tool and a modification of the Newcastle-Ottawa Scale in randomized controlled trials (RCTs) and non-RCTs, respectively. All statistical analyses were conducted using RevMan 5.3. Results: Finally, 7 studies with 813 patients were included into the meta-analysis, and all included studies were comparable with moderate-to-high quality. There was significant reduced operative time in LS Small Jaw, compared with clamp-and-tie (mean difference [MD] = −17.49, 95% confidence interval [CI]: −22.20 to 12.77, P < 0.00001) or Harmonic Focus Scalpel (MD = −2.29, 95% CI: −3.19 to 1.39, P < 0.00001). Besides, other perioperative outcomes including intraoperative blood loss and postoperative blood loss favored LS Small Jaw compared with clamp-and-tie. In terms of complications, less-temporary hypocalcemia rate was observed in LS Small Jaw compared with clamp-and-tie (odds ratio [OR] = 0.49, 95% CI: 0.27–0.90, P = 0.02), although no significant difference was detected compared with Harmonic Focus Scalpel (OR = 0.47, 95% CI: 0.14–1.56, P = 0.22). Other complications such as length of hospital stay, permanent hypocalcemia, temporary or permanent recurrent laryngeal nerve palsy, and hematomas were not significant. Conclusion: In conclusion, LS Small Jaw is more favorable than clamp-and-tie technique or Harmonic Focus Scalpel in thyroidectomy. PMID:28296728

  3. Vane's blood-bathed organ technique adapted to examine the endothelial effects of cardiovascular drugs in vivo.

    PubMed

    Gryglewski, Ryszard J; Mackiewicz, Zygmunt

    2010-01-01

    This study describes a modification of Vane's blood-bathed organ technique (BBOT). This new technique consisted of replacing the cascade of contractile smooth muscle organs within the traditional BBOT by a single collagen strip cut from a rabbit's hind leg tendon. Utilizing the extracorporeal circulation of an anesthetized heparinized mongrel cat or Wistar rat, arterial blood was dripped (1-3 ml min(-1)) over a collagen strip. This resulted in a gain in weight of the strip, which was due to the deposition of platelet aggregates and a few blood cells trapped over the strip. Arterial blood that had been used for the superfusion was pumped back into the animal's venous system. However, when this technique is adapted to human volunteers, the superfusing blood should be discarded. In animal experiments, intravenous injections of a variety of classic fibrinolytic agents (e.g., streptokinase) promoted the formation of platelet thrombi. Nitric oxide donors (e.g., SIN-1) at non-hypotensive doses hardly affected the mass of platelet thrombi deposited over the collagen strip, whereas endogenous prostacyclin (e.g., released from vascular endothelium by bradykinin) or exogenous prostacyclin and its stable analogues (e.g., iloprost) dissipated platelet thrombi as measured by a loss in the weight of the blood superfused collagen strip. This model allowed us to assay numerous drugs for their releasing properties of endogenous prostacyclin from vascular endothelium. These drugs included lipophilic angiotensin converting enzyme inhibitors (ACE-Is), which act in vivo as bradykinin potentiating factors (BPF). Other PGI(2)-releasers included statins (e.g., atorvastatin and simvastatin), thienopyridines (e.g., ticlopidine and clopidogrel), a number of thromboxane synthase inhibitors, flavonoids, bradykinin itself, cholinergic M receptor agonists and nicotinic acid derivatives. The thrombolytic actions of lipophilic ACE-Is (e.g., quinapril and perindopril) were prevented by pretreatment

  4. Visual Adaptation

    PubMed Central

    Webster, Michael A.

    2015-01-01

    Sensory systems continuously mold themselves to the widely varying contexts in which they must operate. Studies of these adaptations have played a long and central role in vision science. In part this is because the specific adaptations remain a powerful tool for dissecting vision, by exposing the mechanisms that are adapting. That is, “if it adapts, it's there.” Many insights about vision have come from using adaptation in this way, as a method. A second important trend has been the realization that the processes of adaptation are themselves essential to how vision works, and thus are likely to operate at all levels. That is, “if it's there, it adapts.” This has focused interest on the mechanisms of adaptation as the target rather than the probe. Together both approaches have led to an emerging insight of adaptation as a fundamental and ubiquitous coding strategy impacting all aspects of how we see. PMID:26858985

  5. Evaluations of an adaptive planning technique incorporating dose feedback in image-guided radiotherapy of prostate cancer

    SciTech Connect

    Liu Han; Wu Qiuwen

    2011-12-15

    Purpose: Online image guidance (IG) has been used to effectively correct the setup error and inter-fraction rigid organ motion for prostate cancer. However, planning margins are still necessary to account for uncertainties such as deformation and intra-fraction motion. The purpose of this study is to investigate the effectiveness of an adaptive planning technique incorporating offline dose feedback to manage inter-fraction motion and residuals from online correction. Methods: Repeated helical CT scans from 28 patients were included in the study. The contours of prostate and organs-at-risk (OARs) were delineated on each CT, and online IG was simulated by matching center-of-mass of prostate between treatment CTs and planning CT. A seven beam intensity modulated radiation therapy (IMRT) plan was designed for each patient on planning CT for a total of 15 fractions. Dose distribution at each fraction was evaluated based on actual contours of the target and OARs from that fraction. Cumulative dose up to each fraction was calculated by tracking each voxel based on a deformable registration algorithm. The cumulative dose was compared with the dose from initial plan. If the deviation exceeded the pre-defined threshold, such as 2% of the D{sub 99} to the prostate, an adaptive planning technique called dose compensation was invoked, in which the cumulative dose distribution was fed back to the treatment planning system and the dose deficit was made up through boost radiation in future treatment fractions. The dose compensation was achieved by IMRT inverse planning. Two weekly compensation delivery strategies were simulated: one intended to deliver the boost dose in all future fractions (schedule A) and the other in the following week only (schedule B). The D{sub 99} to prostate and generalized equivalent uniform dose (gEUD) to rectal wall and bladder were computed and compared with those without the dose compensation. Results: If only 2% underdose is allowed at the end of the

  6. Development of new source diagnostic methods and variance reduction techniques for Monte Carlo eigenvalue problems with a focus on high dominance ratio problems

    NASA Astrophysics Data System (ADS)

    Wenner, Michael T.

    Obtaining the solution to the linear Boltzmann equation is often is often a daunting task. The time-independent form is an equation of six independent variables which cannot be solved analytically in all but some special problems. Instead, numerical approaches have been devised. This work focuses on improving Monte Carlo methods for its solution in eigenvalue form. First, a statistical method of stationarity detection called the KPSS test adapted as a Monte Carlo eigenvalue source convergence test. The KPSS test analyzes the source center of mass series which was chosen since it should be indicative of overall source behavior, and is physically easy to understand. A source center of mass plot alone serves as a good visual source convergence diagnostic. The KPSS test and three different information theoretic diagnostics were implemented into the well known KENOV.a code inside of the SCALE (version 5) code package from Oak Ridge National Laboratory and compared through analysis of a simple problem and several difficult source convergence benchmarks. Results showed that the KPSS test can add to the overall confidence by identifying more problematic simulations than without its usage. Not only this, the source center of mass information on hand visually aids in the understanding of the problem physics. The second major focus of this dissertation concerned variance reduction methodologies for Monte Carlo eigenvalue problems. The CADIS methodology, based on importance sampling, was adapted to the eigenvalue problems. It was shown that the straight adaption of importance sampling can provide a significant variance reduction in determination of keff (in cases studied up to 30%?). A modified version of this methodology was developed which utilizes independent deterministic importance simulations. In this new methodology, each particle is simulated multiple times, once to every other discretized source region utilizing the importance for that region only. Since each particle

  7. Adaptive image guided brachytherapy for cervical cancer: A combined MRI-/CT-planning technique with MRI only at first fraction

    PubMed Central

    Nesvacil, Nicole; Pötter, Richard; Sturdza, Alina; Hegazy, Neamat; Federico, Mario; Kirisits, Christian

    2013-01-01

    Purpose To investigate and test the feasibility of adaptive 3D image based BT planning for cervix cancer patients in settings with limited access to MRI, using a combination of MRI for the first BT fraction and planning of subsequent fractions on CT. Material and methods For 20 patients treated with EBRT and HDR BT with tandem/ring applicators two sets of treatment plans were compared. Scenario one is based on the “gold standard” with individual MRI-based treatment plans (applicator reconstruction, target contouring and dose optimization) for two BT applications with two fractions each. Scenario two is based on one initial MRI acquisition with an applicator in place for the planning of the two fractions of the first BT application and reuse of the target contour delineated on MRI for subsequent planning of the second application on CT. Transfer of the target from MRI of the first application to the CT of the second one was accomplished by use of an automatic applicator-based image registration procedure. Individual dose optimization of the second BT application was based on the transferred MRI target volume and OAR structures delineated on CT. DVH parameters were calculated for transferred target structures (virtual dose from MRI/CT plan) and CT-based OAR. The quality of the MRI/CT combination method was investigated by evaluating the CT-based dose distributions on MRI-based target and OAR contours of the same application (real dose from MRI/CT plan). Results The mean difference between the MRI based target volumes (HR CTVMRI2) and the structures transferred from MRI to CT (HR CTVCT2) was −1.7 ± 6.6 cm3 (−2.9 ± 20.4%) with a median of −0.7 cm3. The mean difference between the virtual and the real total D90, based on the MRI/CT combination technique was −1.5 ± 4.3 Gy EQD2. This indicates a small systematic underestimation of the real D90. Conclusions A combination of MRI for first fraction and subsequent CT based planning is feasible and easy

  8. Usefulness of modified BRB technique in treatment to ablate uterine fibroids with magnetic resonance image-guided high-intensity focused ultrasound

    PubMed Central

    Jeong, Jae-Heok; Hong, Kil-Pyo; Kim, Yu-Ri; Ha, Jae-Eun

    2017-01-01

    Objective If bowels and other structures are in the pathway of high-intensity focused ultrasound (HIFU) beam during magnetic resonance image-guided HIFU (MRgFUS) therapy, filling to the bladder and the rectum and then emptying the bladder (i.e., the BRB technique) is used to avoid them. A modified BRB technique might be useful method to using a uterine elevator method or by inducing uterus downward traction to lower the position of the uterus. Methods A total of 156 patients who had undergone MRgFUS surgery treatment for uterine fibroids from March 2015 to February 2016 were included in this retrospective study. Of the 156 patients, 40 were treated using a uterine elevator while 29 were treated using downward traction of uterus. HIFU was performed using Philips Achieva 1.5 Tesla MR and Sonalleve HIFU system. Results MRgFUS surgery was feasible with modified BRB technique in 69 cases. Using uterine elevator method, the intensity of HIFU for group with antefletxio uteri was significantly lower than that for the group without antefletxio uteri (105.37±17.62 vs. 118.71±26.88 W). The group with downward traction of uterus induced was found to have significantly lower intensity of HIFU compared to the group without downward traction of uterus induced (110.26±22.60 vs. 130.51±27.81 W). Conclusion Modified BRB technique was useful in avoiding bowels and other structures located in HIFU beam pathway during MRgFUS treatment to ablate uterine fibroids. PMID:28217678

  9. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Astrophysics Data System (ADS)

    Case, J. T.; Robbins, J.; Kharkovsky, S.; Hepburn, F.; Zoughi, R.

    2006-03-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  10. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) using Synthetic Aperture Focusing Techniques (SAFT}

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  11. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    PubMed

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy.

  12. Inclusive and Individually Adapted Education in Norway Results from a Survey Study in Two Municipalities Focusing the Roles of Headteachers, Teachers and Curriculum Planning

    ERIC Educational Resources Information Center

    Buli-Holmberg, Jorun; Nilsen, Sven; Skogen, Kjell

    2014-01-01

    This article aims to throw light on how the intentions behind inclusive and individually adapted education in Norwegian compulsory schools are followed up in practice with regard to central aspects of the roles of headteachers, teachers and curriculum planning. The study was carried out as a postal survey of compulsory school teachers in two…

  13. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    PubMed

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  14. Adaptation of CHO cells in serum-free conditions for erythropoietin production: Application of EVOP technique for process optimization.

    PubMed

    Jukić, Suzana; Bubenik, Dijana; Pavlović, Nediljko; Tušek, Ana Jurinjak; Srček, Višnja Gaurina

    2016-09-01

    Mammalian cell cultures are the preferred expression systems for the production of biopharmaceuticals requiring posttranslational processing. Usually, cell cultures are cultivated in medium supplemented with serum, which supports cell proliferation, viability, and productivity. However, due to scientific and regulatory concerns, serum-free conditions are required in recombinant protein production. Cell lines that are intended for commercial recombinant protein production have to adapt to serum- or protein-free conditions early in their development. This is a labor- and time-consuming process because of the specific cell requirements related to their adaptation in new microenvironment. In the present study, a Chinese hamster ovary (CHO) cell line producing glycosylated recombinant human erythropoietin (rhEPO) was adapted for growth and rhEPO production in serum- and protein-free conditions. The physiology, growth parameters, and morphology of the CHO cells and rhEPO biosynthesis and structure were closely monitored during the adaptation process to avoid unwanted selection of cell subpopulations. The results showed that the CHO cells were successfully adapted to suspension growth and rhEPO production in the protein-free conditions and that the structure of rhEPO remained nearly unchanged. In addition, during rhEPO production in the protein-free suspension conditions, the agitation rate seem to be significant for optimal process performance in contrast to the initial cell concentration, evaluated through evolutionary operation method.

  15. Microstructural investigation of the oxidation behavior of Cu in Ag-coated Cu films using a focused ion beam transmission electron microscopy technique

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hwan; Lee, Jong-Hyun

    2016-06-01

    With the aim of elucidating a detailed mechanism for the oxidation behavior in submicron Cu particles coated with a thin Ag layer, the dewetting of Ag and the oxidation behavior of Cu in Ag-coated Cu films upon heating were investigated with a focused ion beam transmission electron microscopy technique. A slight dewetting of the Ag layer began at approximately 200 °C and aggregates of Cu2O particles were formed on the Ag layer, indicating that the initial Cu2O phase was formed on the thin Ag layer. Voids were formed in the Cu layer because of Cu atoms diffusing through the thin Ag layer to be oxidized in the upper Cu2O aggregates. After being heated to 250 °C, the Ag layer became more irregular, and in some regions, it disappeared because of intensive dewetting. The number and average size of the voids also increased. At 300 °C, a hollow structure with a Cu2O shell was formed. Pillar-like structures of unoxidized Cu and large voids were found under the Cu2O layer.

  16. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.

  17. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    NASA Astrophysics Data System (ADS)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  18. Electrophoretic Focusing

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    2001-01-01

    Electrophoretic focusing is a new method of continuous flow electrophoresis that introduces precision flow control to achieve high resolution separations. The electric field is applied perpendicular to an incoming sample lamina and buffer but also perpendicular to the broad faces of the thin rectangular chamber. A uniform fluid cross-flow then enters and exits the separation chamber through the same broad faces which are porous. A balance is achieved by adjusting either the electric field or the cross-flow so the desired sample fraction with its specific migration velocity encounters an opposing flow of the same velocity. Applying an electric field transverse to the incoming sample lamina and opposing this field with a carefully configured buffer flow, a sample constituent can be selected and focused into a narrow stream for subsequent analysis. Monotonically changing either electric field or buffer cross-flow will yield a scan of all constituents of the sample. Stopping the scan increases the collection time for minor constituents to improve their analysis. Using the high voltage gradients and/or cross-flow to rapidly deflect extraneous sample through the porous screens and into either of the side (purge) chambers, the selected sample is focused in the center plane of the separation chamber and collected without contact or interaction with the separation chamber walls. Results will be presented on the separation of a range of materials including dyes, proteins, and monodisperse polystyrene latexes. Sources of sample dispersion inherent in other electrokinetic techniques will be shown to be negligible for a variety of sample concentrations, buffer properties and operating conditions.

  19. Scientific Objectives and Design Study of an Adaptive Optics Visual Echelle Spectrograph and Imager Coronograph (AVES-IMCO) for the NAOS Visitor Focus at the VLT

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Zerbi, Filippo; Beuzit, Jean-Luc; Bonanno, Giovanni; Bonifacio, Piercarlo; Comari, Maurizio; Conconi, Paolo; Delabre, Bernard; Franchini, Mariagrazia; Marcantonio, Paolo Di; Lagrange, Anne-Marie; Mazzoleni, Ruben; Molaro, Paolo; Pasquini, Luca; Santin, Paolo

    We present the scientific case for an Adaptive Optics Visual Echelle Spectrograph and Imager Coronograph (AVES-IMCO) that we propose as a visitor instrument for the secondary port of NAOS at the VLT. We show that such an instrument would be ideal for intermediate resolution (R=16,000) spectroscopy of faint sky-limited objects down to a magnitude of V=24.0 and will complement very effectively the near-IR imaging capabilities of CONICA. We present examples of science programmes that could be carried out with such an instrument and which cannot be addressed with existing VLT instruments. We also report on the result of a two-year design study of the instrument, with specific reference to its use as parallel instrument of NAOS.

  20. Contouring Of Tooth Imprints By Means Of A Fluorescence Technique Adapted To A Spatially Filtered Moire Illumination

    NASA Astrophysics Data System (ADS)

    Jongsma, Frans H. M.; Lambrechts, Paul; Vanherle, Guido

    1983-07-01

    A technique has been developed to produce plane equidistant contouring surfaces on tooth-imprints. This technique consists of spatially filtering a negative obtained by photographing the imprint under a Moire illumination. Unfortunately this technique turned out to be very sensitive for a non-uniform surface reflectivity. To obtain an object-brightness depending only upon the contouring mechanism, the imprint has been coated with a fluorescent dye. A HeCd-laser (λ=422 nm) served as a lightsource for the projection of the Moire-interference pattern on the imprint. The radiation of the fluorescent coating (λ=530 nm) is used to form an image on the negative. In this way the surface with specular reflection properties is transformed into a Labertian surface. The spatial filtering technique allows multiple exposures of the final negative enabling an increased depth of field. Contour mappings with a resolution in depth of less than 10 μm have been obtained.

  1. Cognitive User Profile and Its Involvement into Adaptive Interface.

    ERIC Educational Resources Information Center

    Halima, Habieb Mammar

    An adaptation technique of multimodal interfaces based on a cognitive modeling of users is presented in this paper. The adaptation process tries to select a combination of modalities that best fits the cognitive profile of each user. This profile contains indicators of cognitive abilities and styles. This paper focuses on output modalities and…

  2. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  3. Laser Patterning Pretreatment before Thermal Spraying: A Technique to Adapt and Control the Surface Topography to Thermomechanical Loading and Materials

    NASA Astrophysics Data System (ADS)

    Kromer, Robin; Costil, Sophie; Cormier, Jonathan; Berthe, Laurent; Peyre, Patrice; Courapied, Damien

    2016-02-01

    Coating characteristics are highly dependent on substrate preparation and spray parameters. Hence, the surface must be adapted mechanically and physicochemically to favor coating-substrate adhesion. Conventional surface preparation methods such as grit blasting are limited by surface embrittlement and produce large plastic deformations throughout the surface, resulting in compressive stress and potential cracks. Among all such methods, laser patterning is suitable to prepare the surface of sensitive materials. No embedded grit particles can be observed, and high-quality coatings are obtained. Finally, laser surface patterning adapts the impacted surface, creating large anchoring area. Optimized surface topographies can then be elaborated according to the material as well as the application. The objective of this study is to compare the adhesive bond strength between two surface preparation methods, namely grit blasting and laser surface patterning, for two material couples used in aerospace applications: 2017 aluminum alloy and AISI 304L stainless steel coated with NiAl and YSZ, respectively. Laser patterning significantly increases adherence values for similar contact area due to mixed-mode (cohesive and adhesive) failure. The coating is locked in the pattern.

  4. Use of adaptive signal-processing techniques to discriminate between coal cutting and rock cutting. Information Circular/1991

    SciTech Connect

    Pazuchanics, M.J.; Mowrey, G.L.

    1991-01-01

    The report presents results from an ongoing investigation of the use of adaptive signal discriminating methods to distinguish between cutting coal and cutting mine rock. Cutting bit forces and tool vibration were measured in the laboratory as a linear cutting apparatus made constant-depth cuts in coal, sandstone, and shale test specimens. A portion of the collected data has been analyzed and some preliminary results are given here. The influence of data bandwidth, data window size, number of signal features, and voting among classifiers on classification performance are noted. Results to date based on ideal cutting conditions and simple geologic materials indicate that of the four classifiers tested there appears to be no single best classifier. In most cases, classification accuracy showed slight improvement as the number of features considered for classification increased. The highest classification accuracies were achieved when voting was conducted among classifiers followed by voting among force components.

  5. Assessment of adaptability of zebu cattle ( Bos indicus) breeds in two different climatic conditions: using cytogenetic techniques on genome integrity

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Waiz, Syma Ashraf; Sridhar Goud, T.; Tonk, R. K.; Grewal, Anita; Singh, S. V.; Yadav, B. R.; Upadhyay, R. C.

    2016-06-01

    The aim of this study was to evaluate the genome integrity so as to assess the adaptability of three breeds of indigenous cattle reared under arid and semi-arid regions of Rajasthan (Bikaner) and Haryana (Karnal) India. The cattle were of homogenous group (same age and sex) of indigenous breeds viz. Sahiwal, Tharparkar and Kankrej. A total of 100 animals were selected for this study from both climatic conditions. The sister chromatid exchanges (SCE's), chromosomal gaps and chromatid breaks were observed in metaphase plates of chromosome preparations obtained from in vitro culture of peripheral blood lymphocytes. The mean number of breaks and gaps in Sahiwal and Tharparkar of semi-arid zone were 8.56 ± 3.16, 6.4 ± 3.39 and 8.72 ± 2.04, 3.52 ± 6.29, respectively. Similarly, the mean number of breaks and gaps in Tharparkar and Kankrej cattle of arid zone were 5.26 ± 1.76, 2.74 ± 1.76 and 5.24 ± 1.84, 2.5 ± 1.26, respectively. The frequency of SCEs in chromosomes was found significantly higher ( P < 0.05) in Tharparkar of semi-arid region (4.72 ± 1.55) compared to arid region (2.83 ± 1.01). Similarly, the frequency of SCEs was found to be 4.0 ± 1.41 in the Sahiwal of semi-arid region and 2.69 ± 1.12 in Kankrej of arid zone. Statistical analysis revealed significant differences ( P < 0.05) amongst the different zones, i.e. arid and semi-arid, whereas no significant difference ( P > 0.05) was observed in the same zone. The analysis of frequency of CAs and SCEs revealed significant effects of environmental conditions on the genome integrity of animals, thereby indicating an association with their adaptability.

  6. In vitro measurement of nucleus pulposus swelling pressure: A new technique for studies of spinal adaptation to gravity

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Glover, M. G.; Mahmood, M. M.; Gott, S.; Garfin, S. R.; Ballard, R.; Murthy, G.; Brown, M. D.

    1992-01-01

    Swelling of the intervertebral disc nucleus pulposus is altered by posture and gravity. We have designed and tested a new osmometer for in vitro determination of nucleus pulposus swelling pressure. The functional principle of the osmometer involves compressing a sample of nucleus pulposus with nitrogen gas until saline pressure gradients across a 0.45 microns Millipore filter are eliminated. Swelling pressure of both pooled dog and pooled pig lumbar disc nucleus pulposus were measured on the new osmometer and compared to swelling pressures determined using the equilibrium dialysis technique. The osmometer measured swelling pressures comparable to those obtained by the dialysis technique. This osmometer provides a rapid, direct, and accurate measurement of swelling pressure of the nucleus pulposus.

  7. Assessment of adaptability of zebu cattle (Bos indicus) breeds in two different climatic conditions: using cytogenetic techniques on genome integrity.

    PubMed

    Kumar, Anil; Waiz, Syma Ashraf; Sridhar Goud, T; Tonk, R K; Grewal, Anita; Singh, S V; Yadav, B R; Upadhyay, R C

    2016-06-01

    The aim of this study was to evaluate the genome integrity so as to assess the adaptability of three breeds of indigenous cattle reared under arid and semi-arid regions of Rajasthan (Bikaner) and Haryana (Karnal) India. The cattle were of homogenous group (same age and sex) of indigenous breeds viz. Sahiwal, Tharparkar and Kankrej. A total of 100 animals were selected for this study from both climatic conditions. The sister chromatid exchanges (SCE's), chromosomal gaps and chromatid breaks were observed in metaphase plates of chromosome preparations obtained from in vitro culture of peripheral blood lymphocytes. The mean number of breaks and gaps in Sahiwal and Tharparkar of semi-arid zone were 8.56 ± 3.16, 6.4 ± 3.39 and 8.72 ± 2.04, 3.52 ± 6.29, respectively. Similarly, the mean number of breaks and gaps in Tharparkar and Kankrej cattle of arid zone were 5.26 ± 1.76, 2.74 ± 1.76 and 5.24 ± 1.84, 2.5 ± 1.26, respectively. The frequency of SCEs in chromosomes was found significantly higher (P < 0.05) in Tharparkar of semi-arid region (4.72 ± 1.55) compared to arid region (2.83 ± 1.01). Similarly, the frequency of SCEs was found to be 4.0 ± 1.41 in the Sahiwal of semi-arid region and 2.69 ± 1.12 in Kankrej of arid zone. Statistical analysis revealed significant differences (P < 0.05) amongst the different zones, i.e. arid and semi-arid, whereas no significant difference (P > 0.05) was observed in the same zone. The analysis of frequency of CAs and SCEs revealed significant effects of environmental conditions on the genome integrity of animals, thereby indicating an association with their adaptability.

  8. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    NASA Astrophysics Data System (ADS)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  9. Optimizing electrostatic field calculations with the adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces. I. Sampling and focusing.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2013-10-03

    Continuum electrostatics methods are commonly used to calculate electrostatic potentials in proteins and at protein-protein interfaces to aid many types of biophysical studies. Despite their ubiquity throughout the biophysical literature, these calculations are difficult to test against experimental data to determine their accuracy and validity. To address this, we have calculated the Boltzmann-weighted electrostatic field at the midpoint of a nitrile bond placed at a variety of locations on the surface of the protein RalGDS, both in its monomeric form as well as when docked to four different constructs of the protein Rap, and compared the computation results to vibrational absorption energy measurements of the nitrile oscillator. This was done by generating a statistical ensemble of protein structures using enhanced molecular dynamics sampling with the Amber03 force field, followed by solving the linear Poisson-Boltzmann equation for each structure using the Applied Poisson-Boltzmann Solver (APBS) software package. Using a two-stage focusing strategy, we examined numerous second stage box dimensions, grid point densities, box locations, and compared the numerical result to the result obtained from the sum of the numeric reaction field and the analytic Coulomb field. It was found that the reaction field method yielded higher correlation with experiment for the absolute calculation of fields, while the numeric solutions yielded higher correlation with experiment for the relative field calculations. Finer grid spacing typically improved the calculation, although this effect was less pronounced in the reaction field method. These sorts of calculations were also very sensitive to the box location, particularly for the numeric calculations of absolute fields using a 10(3) Å(3) box.

  10. The artificial and natural isotopes distribution in sedge (Carex L.) biomass from the Yenisei River flood-plain: Adaptation of the sequential elution technique.

    PubMed

    Kropacheva, Marya; Melgunov, Mikhail; Makarova, Irina

    2017-02-01

    The study of migration pathways of artificial isotopes in the flood-plain biogeocoenoses, impacted by the nuclear fuel cycle plants, requires determination of isotope speciations in the biomass of higher terrestrial plants. The optimal method for their determination is the sequential elution technique (SET). The technique was originally developed to study atmospheric pollution by metals and has been applied to lichens, terrestrial and aquatic bryophytes. Due to morphological and physiological differences, it was necessary to adapt SET for new objects: coastal macrophytes growing on the banks of the Yenisei flood-plain islands in the near impact zone of Krasnoyarsk Mining and Chemical Combine (KMCC). In the first version of SET, 20 mM Na2EDTA was used as a reagent at the first stage; in the second version of SET, it was 1 M CH3COONH4. Four fractions were extracted. Fraction I included elements from the intercellular space and those connected with the outer side of the cell wall. Fraction II contained intracellular elements; fraction III contained elements firmly bound in the cell wall and associated structures; fraction IV contained insoluble residue. Adaptation of SET has shown that the first stage should be performed immediately after sampling. Separation of fractions III and IV can be neglected, since the output of isotopes into the IV fraction is at the level of error detection. The most adequate version of SET for terrestrial vascular plants is the version using 20 mM Na2EDTA at the first stage. Isotope (90)Sr is most sensitive to the technique changes. Its distribution depends strongly on both the extractant used at stage 1 and duration of the first stage. Distribution of artificial radionuclides in the biomass of terrestrial vascular plants can vary from year to year and depends significantly on the age of the plant.

  11. Flow velocity profiling using acoustic time of flight flow metering based on wide band signals and adaptive beam-forming techniques

    NASA Astrophysics Data System (ADS)

    Murgan, I.; Candel, I.; Ioana, C.; Digulescu, A.; Bunea, F.; Ciocan, G. D.; Anghel, A.; Vasile, G.

    2016-11-01

    In this paper, we present a novel approach to non-intrusive flow velocity profiling technique using multi-element sensor array and wide-band signal's processing methods. Conventional techniques for the measurements of the flow velocity profiles are usually based on intrusive instruments (current meters, acoustic Doppler profilers, Pitot tubes, etc.) that take punctual velocity readings. Although very efficient, these choices are limited in terms of practical cases of applications especially when non-intrusive measurements techniques are required and/or a spatial accuracy of the velocity profiling is required This is due to factors related to hydraulic machinery down time, the often long time duration needed to explore the entire section area, the frequent cumbersome number of devices that needs to be handled simultaneously, or the impossibility to perform intrusive tests. In the case of non-intrusive flow profiling methods based on acoustic techniques, previous methods concentrated on using a large number of acoustic transducers placed around the measured section. Although feasible, this approach presents several major drawbacks such as a complicated signal timing, transmission, acquisition and recording system, resulting in a relative high cost of operation. In addition, because of the geometrical constraints, a desired number of sensors may not be installed. Recent results in acoustic flow metering based on wide band signals and adaptive beamforming proved that it is possible to achieve flow velocity profiles using less acoustic transducers. In a normal acoustic time of flight path the transducers are both emitters and receivers, sequentially changing their roles. In the new configuration, proposed in this paper, two new receivers are added on each side. Since the beam angles of each acoustic transducer are wide enough the newly added transducers can receive the transmitted signals and additional time of flight estimation can be done. Thus, several flow

  12. Validity of the Italian adaptation of the Tinnitus Handicap Inventory; focus on quality of life and psychological distress in tinnitus-sufferers.

    PubMed

    Monzani, D; Genovese, E; Marrara, A; Gherpelli, C; Pingani, L; Forghieri, M; Rigatelli, M; Guadagnin, T; Arslan, E

    2008-06-01

    ) and the Hospital Anxiety and Depression Scale scores indicating a good construct validity. Moreover, these statistically significant correlations (p < 0.005) confirmed that the self-report tinnitus handicap is largely related to psychological distress and a deterioration in the quality of life. On the other hand, it was confirmed that the tinnitus perceived handicap is totally independent (p > 0.05) from its audiometrically-derived measures of loudness and pitch thus supporting previous studies that focused on the importance of non-auditory factors, namely somatic attention, psychological distress and coping strategies, in the generation of tinnitus annoyance. Finally the results of the present study suggest that the THI-I maintains its original validity and should be incorporated, together with other adequate psychometric questionnaires, in the audiological examination of patients suffering from tinnitus and that psychiatric counselling should be recommended for the suspected co-morbidity between tinnitus annoyance and psychological distress.

  13. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  14. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised. PMID:26353971

  15. Improving mouse controlling and movement for people with Parkinson's disease and involuntary tremor using adaptive path smoothing technique via B-spline.

    PubMed

    Hashem, Seyed Yashar Bani; Zin, Nor Azan Mat; Yatim, Noor Faezah Mohd; Ibrahim, Norlinah Mohamed

    2014-01-01

    Many input devices are available for interacting with computers, but the computer mouse is still the most popular device for interaction. People who suffer from involuntary tremor have difficulty using the mouse in the normal way. The target participants of this research were individuals who suffer from Parkinson's disease. Tremor in limbs makes accurate mouse movements impossible or difficult without any assistive technologies to help. This study explores a new assistive technique-adaptive path smoothing via B-spline (APSS)-to enhance mouse controlling based on user's tremor level and type. APSS uses Mean filtering and B-spline to provide a smoothed mouse trajectory. Seven participants who have unwanted tremor evaluated APSS. Results show that APSS is very promising and greatly increases their control of the computer mouse. Result of user acceptance test also shows that user perceived APSS as easy to use. They also believe it to be a useful tool and intend to use it once it is available. Future studies could explore the possibility of integrating APSS with one assistive pointing technique, such as the Bubble cursor or the Sticky target technique, to provide an all in one solution for motor disabled users.

  16. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2015-09-10

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised.

  17. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    NASA Astrophysics Data System (ADS)

    Brown, Philip S.; Bhushan, Bharat

    2015-09-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles <5°, whilst the superhydrophobic coatings display water contact angles >160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised.

  18. New Tools, New Times: Strategic Planning. A Seminar Focusing on Proactive Management Techniques (Chapel Hill, North Carolina, June 17-19, 1991).

    ERIC Educational Resources Information Center

    Morrison, James L.; Ashley, William C.

    This handbook was designed to accompany a three-day workshop for senior administrators in higher education on proactive management techniques in higher education. Proactive management allows for anticipating change and managing uncertainty in place of crisis management or reactive actions. The workshop covered: (1) strategic thinking; (2)…

  19. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  20. Adaptation of soil physical measurement techniques for the delineation of mud and lakebed sediments at Neusiedler See.

    PubMed

    Kogelbauer, Ilse; Heine, Erwin; D'Amboise, Christopher; Müllebner, Christoph; Sokol, Wolfgang; Loiskandl, Willibald

    2013-12-12

    For many water management issues of shallow lakes with non-consolidated sediments hydrographic surveys of the open water area and reed belt areas are required. In the frame of water management strategy for the steppe lake Neusiedler See, located between Austria and Hungary, a hydrographic survey was conducted. In the open water area (water depth ≥1 m) a sediment echosounder was used. To validate these measurements and to distinguish between water, mud, and sediment layers in the shallow lake and reed belt area additional measurements were needed. As no common standard methods are available yet, we developed a measurement system based on two commonly applied soil physical measurement techniques providing reproducible physical values: a capacitive sensor and a cone penetrometer combined with GNSS-positioning enable dynamic measurements of georeferenced vertical water-mud-bedsediments profiles. The system bases on site-specific calibrated sensors and allows instantaneous, in situ measurements. The measurements manifest a sharp water-mud interface by a sudden decline to smaller water content which is a function of the dielectric permittivity. A second decline indicates the transition to compacted mud. That is concurrently the density where the penetrometer starts registering significant penetration resistance. The penetrometer detects shallow lakebed-sediment layers. Within the lake survey this measurement system was successfully tested.

  1. Adaptation of Soil Physical Measurement Techniques for the Delineation of Mud and Lakebed Sediments at Neusiedler See

    PubMed Central

    Kogelbauer, Ilse; Heine, Erwin; D'Amboise, Christopher; Müllebner, Christoph; Sokol, Wolfgang; Loiskandl, Willibald

    2013-01-01

    For many water management issues of shallow lakes with non-consolidated sediments hydrographic surveys of the open water area and reed belt areas are required. In the frame of water management strategy for the steppe lake Neusiedler See, located between Austria and Hungary, a hydrographic survey was conducted. In the open water area (water depth ≥1 m) a sediment echosounder was used. To validate these measurements and to distinguish between water, mud, and sediment layers in the shallow lake and reed belt area additional measurements were needed. As no common standard methods are available yet, we developed a measurement system based on two commonly applied soil physical measurement techniques providing reproducible physical values: a capacitive sensor and a cone penetrometer combined with GNSS-positioning enable dynamic measurements of georeferenced vertical water-mud-bedsediments profiles. The system bases on site-specific calibrated sensors and allows instantaneous, in situ measurements. The measurements manifest a sharp water-mud interface by a sudden decline to smaller water content which is a function of the dielectric permittivity. A second decline indicates the transition to compacted mud. That is concurrently the density where the penetrometer starts registering significant penetration resistance. The penetrometer detects shallow lakebed-sediment layers. Within the lake survey this measurement system was successfully tested. PMID:24351626

  2. Improvement of lateral resolution of spectral domain optical coherence tomography images in out-of-focus regions with holographic data processing techniques

    SciTech Connect

    Moiseev, A A; Gelikonov, G V; Terpelov, D A; Shilyagin, P A; Gelikonov, V M

    2014-08-31

    An analogy between spectral-domain optical coherence tomography (SD OCT) data and broadband digital holography data is considered. Based on this analogy, a method for processing SD OCT data, which makes it possible to construct images with a lateral resolution in the whole investigated volume equal to the resolution in the in-focus region, is developed. Several issues concerning practical application of the proposed method are discussed. (laser biophotonics)

  3. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation

    NASA Astrophysics Data System (ADS)

    Entchev, Evgueniy; Yang, Libing

    This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW el SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy.

  4. Teaching Basic Adaptive Skills to Young Children with Disabilities.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara

    1996-01-01

    Focuses on methods of teaching toileting and independent eating skills to children with disabilities. Methods for teaching toileting skills include timed toileting, scheduled toileting, and the rapid technique. Methods for teaching self-feeding include systematic instruction, positioning techniques, and adaptive modifications. Notes that both…

  5. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  6. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  7. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  8. Adaptive Visualization for Focused Personalized Information Retrieval

    ERIC Educational Resources Information Center

    Ahn, Jae-wook

    2010-01-01

    The new trend on the Web has totally changed today's information access environment. The traditional information overload problem has evolved into the qualitative level beyond the quantitative growth. The mode of producing and consuming information is changing and we need a new paradigm for accessing information. Personalized search is one of…

  9. Effects of moisture content in cigar tobacco on nicotine extraction. Similarity between soxhlet and focused open-vessel microwave-assisted techniques.

    PubMed

    Ng, Lay-Keow; Hupé, Michel

    2003-09-05

    The effects of tobacco moisture on nicotine yield were investigated in this study. Soxhlet and microwave-assisted techniques were used to extract nicotine from cigar fillers of varying moisture contents (5-20%), using a polar (methanol) and a non-polar (isooctane) solvent. The extracts were analyzed by a gas chromatograph equipped with a flame-ionization detector. For both extraction techniques, higher nicotine yields were consistently obtained with methanol than with isooctane from the same samples. Solubility of nicotine salts in methanol but not in isooctane is the major cause of this observation. Moreover, pronounced effects of the tobacco moisture content on extraction efficiency were observed with isooctane but not with methanol. For microwave assisted extraction (MAE) with isooctane, nicotine yield increased from 3 to 70% as the moisture level in tobacco was raised from 3 to 13%, and leveled off thereafter. Similar observations were made with Soxhlet extraction. While MAE results were rationalized by the known cell-rupture process, a mechanism based on the interaction between the solvents and the structural components of the plant cells has been proposed to account for the observations made with Soxhlet extraction.

  10. Prostate Focused Ultrasound Therapy.

    PubMed

    Chapelon, Jean-Yves; Rouvière, Olivier; Crouzet, Sébastien; Gelet, Albert

    2016-01-01

    The tremendous progress in engineering and computing power coupled with ultrasound transducer technology and imaging modalities over the past 20 years have encouraged a revival of clinical interest in ultrasound therapy, mainly in High-Intensity Focused Ultrasound (HIFU). So far, the most extensive results from HIFU obtained in urology involve transrectal prostate ablation, which appears to be an effective therapeutic alternative for patients with malignant prostate tumors. Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men. Several treatment options with different therapeutic approaches exist, including HIFU for localized PCa that has been in use for over 15 years. Since the early 2000s, two systems have been marketed for this application, and other devices are currently in clinical trials. HIFU treatment can be used either alone or in combination with (before- or after-) external beam radiotherapy (EBRT) (before or after HIFU) and can be repeated multiple times. HIFU treatment is performed under real-time monitoring with ultrasound or guided by MRI. Two indications are validated today: Primary care treatment and EBRT failure. The results of HIFU for primary care treatment are similar to standard conformal EBRT, even though no randomized comparative studies have been performed and no 10-year follow up data is yet available for HIFU. Salvage HIFU after EBRT failure is increasing with oncological outcomes, similar to those achieved with surgery but with the advantage of fewer adverse effects. HIFU is an evolving technology perfectly adapted for focal treatment. Thus, HIFU focal therapy is another pathway that must be explored when considering the accuracy and reliability for PCa mapping techniques. HIFU would be particularly suited for such a therapy since it is clear that HIFU outcomes and toxicity are relative to the volume of prostate treated.

  11. Overview of High-Resolution Nondestructive Inspection of the Space Shuttle External Tank (ET) Spray-on-Foam Insulation (SOFI) and Acreage Heat tiles using Focused, Synthetic and Holographical Millimeter Wave Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, Frank L.

    2006-01-01

    Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the recent Space Shuttle Discovery's flight. From immediately after the Columbia accident, microwave and millimeter wave nondestructive testing methods were considered as potential effective inspection tools for evaluating the integrity of the SOFI. To this end and as a result of these efforts, both real-focused, synthetic focusing and holographical techniques, at a wide range of frequencies covering 24 GHz to 150 GHz, have been developed for this purpose. Images of various complex SOFI panels with a wide range of embedded anomalies (representing real potential defects) have been produced using these techniques, including relatively small anomalies located near complex structural features representative of the external tank. These real-focused and 3D holographical images have effectively demonstrated the utility of these methods for SOFI inspection as being viable, robust, repeatable, simple, portable and relatively inexpensive (tens of $K as opposed to hundreds of $K). In addition, the potential viability of these methods for inspecting acreage heat tiles have has been demonstrated. This paper presents an overview of these activities, representative images of these panels using all of the imaging techniques used and a discussion of the practical attributes of these inspection methods.

  12. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  13. Synergistic potential of papaya and strawberry nectar blends focused on specific nutrients and antioxidants using alternative thermal and non-thermal processing techniques.

    PubMed

    Swada, Jeffrey G; Keeley, Christopher J; Ghane, Mohammad A; Engeseth, Nicki J

    2016-05-15

    Traditional processing has detrimental effects on nutrient value of fruit nectars; however, combining fruit nectars prior to processing can result in synergistic outcomes, e.g., a combination of nutrients providing a greater effect than they would individually, thus offsetting these losses. To examine this food synergism, papaya and strawberry nectars and their respective blends (25P:75S, 50P:50S, 75P:25S) were processed using ultra high temperature (UHT) and irradiation and examined for ascorbic acid concentration, carotenoid concentration, and antioxidant capacity. Ascorbic acid concentration was best retained after UHT processing, with synergistic relationships in all blends. Synergistic relationships were observed for β-cryptoxanthin concentration after irradiation. β-Carotene experienced both antagonistic and additive relationships whereas lycopene concentration encountered synergistic relationships in the 25P:75S blend for both techniques. All blends exhibited synergistic relationships for antioxidant capacity after UHT processing. These findings demonstrate the benefits of blending fruit nectars; producing a superior product than either fruit processed individually.

  14. Coherent Optical Adaptive Techniques (COAT)

    DTIC Science & Technology

    1975-01-01

    two probes which use 3 W tungsten light bulbs with their glass envelopes removed. Each of these probes is connected to one arm of a bridge...best candidates for a buffer gas are sulfur hexafluoride (SF,), xenon, CO,, argon, and nitrogen (N?), in that jrder. Table XII lists the...important properties of these gases and of NO- along with the figure of merit M, computed for a total pressure of 1 atm. Sulfur hexafluoride is the

  15. Research on Adaptive Antenna Techniques

    DTIC Science & Technology

    1977-01-01

    and Independently. Usually the user would desire to have these parameters remain constant. To allow alteration of the threshold level without...canceller (denoted AKEWAIN ♦ NC) performs very »fell with narrowband inputs. n SSBBSi^iiKBBMfiiS V. Experiments Results To demonstrate the...performance of the ALEWAIN + MC conffguratfon. It was simulated on an HP 2II6B minicomputer. An experiment was designed to test the ability of the

  16. Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies - Development of particle design method.

    PubMed

    Niwa, Toshiyuki; Miura, Satoru; Danjo, Kazumi

    2011-02-28

    Simple and easy methods to prepare oral nanosuspension of a poorly water-soluble pharmaceutical candidate compound, called a candidate, have been developed to support the discovery and preclinical studies using animals. The different wet-milling processes in miniature, middle and large preparation scales have been established in order to cover the various types of studies with wide scale. The powder of phenytoin, a poorly water-soluble model drug candidate, was suspended in the aqueous medium, in which the appropriate dispersing agents were dissolved, and milled by agitating together with small hard beads made of zirconia. Three general-purpose equipments with stirring, oscillating and turbulent motions were applied instead of the specific milling machine with high power to avoid much investment at such early development stage. The operational condition and dispersing agents were optimized to obtain finer particles using the middle-scaled oscillating beads-milling apparatus in particular. It was found that the nanosuspension, which whole particle distribution was in the submicron range, was successfully produced within the running time around 10min. By applying the newly developed dispersing medium, the nanoparticles with identical size distribution were also prepared using the stirring and turbulent methods on miniature and large scales, respectively; indicating only 50mg to 30g or more amount of candidate could be milled to nanosuspension using three equipments. The crystalline analysis indicated that the both crystal form and crystallinity of the original bulk drug completely remained after wet-milling process. The results demonstrated that the wet-milling methods developed in this research would be a fundamental technique to produce nanosuspension for poorly water-soluble and oral absorbable drug candidates.

  17. Adaptation of the 3H-leucine incorporation technique to measure heterotrophic activity associated with biofilm on the blades of the seaweed Sargassum spp.

    PubMed

    Coelho-Souza, Sergio A; Miranda, Marcio R; Salgado, Leonardo T; Coutinho, Ricardo; Guimaraes, Jean R D

    2013-02-01

    The ecological interaction between microorganisms and seaweeds depends on the production of secondary compounds that can influence microbial diversity in the water column and the composition of reef environments. We adapted the (3)H-leucine incorporation technique to measure bacterial activity in biofilms associated with the blades of the macroalgae Sargassum spp. We evaluated (1) if the epiphytic bacteria on the blades were more active in detritus or in the biofilm, (2) substrate saturation and linearity of (3)H-leucine incorporation, (3) the influence of specific metabolic inhibitors during (3)H-leucine incorporation under the presence or absence of natural and artificial light, and (4) the efficiency of radiolabeled protein extraction. Scanning electron microscopy showed heterogeneous distribution of bacteria, diatoms, and polymeric extracellular secretions. Active bacteria were present in both biofilm and detritus on the blades. The highest (3)H-leucine incorporation was obtained when incubating blades not colonized by macroepibionts. Incubations done under field conditions reported higher (3)H-leucine incorporation than in the laboratory. Light quality and sampling manipulation seemed to be the main factors behind this difference. The use of specific metabolic inhibitors confirmed that bacteria are the main group incorporating (3)H-leucine but their association with primary production suggested a symbiotic relationship between bacteria, diatoms, and the seaweed.

  18. Design and Testing of a C/C-SiC Nozzle Extension Manufactured via Filament Winding Technique and Adapted Liquid Silicon Infiltration

    NASA Astrophysics Data System (ADS)

    Breede, F.; Koch, D.; Frieß, M.

    2014-06-01

    Nozzle extensions made of ceramic matrix composites (CMC) have the potential to improve the performance of liquid fueled rocket engines. Gas permeability and delamination have been reported to be still critical aspects in the manufacture of CMC nozzle structures. This work shows the development and manufacture of a radiation cooled C/C-SiC nozzle for a full ceramic thrust chamber. The green body was produced via advanced wet filament winding technique using multi-angle fiber architectures which were adapted to reduce the affinity of delamination during subsequent high temperature processing steps. In order to improve the final gas-tightness additional efforts were made to adjust the carbon matrix by re-infiltration for complete conversion to a dense SiC matrix with reduced amount of residual silicon after liquid silicon infiltration process. Microstructural characterization and flaw detection were performed by CT and REM analysis. Prototype nozzle extensions were manufactured and preliminary results of the structural characterization before the hot firing tests are presented.

  19. Improving knowledge navigation with adaptive hypermedia.

    PubMed

    Pagesy, R; Soula, G; Fieschi, M

    2000-01-01

    Web applications provide access to a tremendous amount of information: hypertext, hypermedia and on-line databases. However, since users' knowledge, motivation and goals are different, they cannot find the relevant information in the data being diffused. Giving the users applications or environments that will take their differences into account is one way of improving their access to knowledge. The authors' objective is to improve knowledge navigation by adapting users' navigation. Adaptive hypermedia is one way of returning information adapted to the user. This paper presents an adaptive hypermedia system based on user representation with the stereotype model. Both adaptive presentation and navigation techniques are also implemented. This paper focuses on the architecture of the general adaptive hypermedia system as well as adaptivity management. A-TOP, a medical adaptive hypermedia prototype implemented in a hospital intranet system, is described. Adaptive hypermedia is a preliminary approach to the vast problem of user access to knowledge. In conclusion, we hope to extend our reflections to the problems involved in access to knowledge on the World Wide Web (Web).

  20. Habituation of visual adaptation

    PubMed Central

    Dong, Xue; Gao, Yi; Lv, Lili; Bao, Min

    2016-01-01

    Our sensory system adjusts its function driven by both shorter-term (e.g. adaptation) and longer-term (e.g. learning) experiences. Most past adaptation literature focuses on short-term adaptation. Only recently researchers have begun to investigate how adaptation changes over a span of days. This question is important, since in real life many environmental changes stretch over multiple days or longer. However, the answer to the question remains largely unclear. Here we addressed this issue by tracking perceptual bias (also known as aftereffect) induced by motion or contrast adaptation across multiple daily adaptation sessions. Aftereffects were measured every day after adaptation, which corresponded to the degree of adaptation on each day. For passively viewed adapters, repeated adaptation attenuated aftereffects. Once adapters were presented with an attentional task, aftereffects could either reduce for easy tasks, or initially show an increase followed by a later decrease for demanding tasks. Quantitative analysis of the decay rates in contrast adaptation showed that repeated exposure of the adapter appeared to be equivalent to adaptation to a weaker stimulus. These results suggest that both attention and a non-attentional habituation-like mechanism jointly determine how adaptation develops across multiple daily sessions. PMID:26739917

  1. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions

    NASA Astrophysics Data System (ADS)

    Hohenstein, Edward G.; Parrish, Robert M.; Sherrill, C. David; Turney, Justin M.; Schaefer, Henry F.

    2011-11-01

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  2. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions.

    PubMed

    Hohenstein, Edward G; Parrish, Robert M; Sherrill, C David; Turney, Justin M; Schaefer, Henry F

    2011-11-07

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  3. Modular Sequence: English as a Second Language, Methods and Techniques. TTP 001.13 Evaluating and Adapting Materials. Teacher Corps Bilingual Project.

    ERIC Educational Resources Information Center

    Hernandez, Alberto; Melnick, Susan L.

    The purpose of this unit of work is to provide the teacher participant with some useful guidelines for evaluating and adapting written materials for specific English as a second language (ESL) classes. There is pre- and post-assessment of specific learning tasks relevant to evaluating and adapting materials as well as learning activities, which…

  4. Adaptive Control of Flexible Structures Using Residual Mode Filters

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2010-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.

  5. Fostering a culture of engagement: a pilot study of the outcomes of training mental health nurses working in two UK acute admission units in brief solution-focused therapy techniques.

    PubMed

    Hosany, Z; Wellman, N; Lowe, T

    2007-10-01

    It is widely acknowledged that there are major concerns about quality of care, ward atmosphere, the nature of nurse-patient interactions and patient outcomes in UK psychiatric acute admission units. Brief solution-focused therapy (SFT) is an approach which aims to shift the focus of interactions in professional care away from the traditional concentration on an individual's problems and weaknesses towards a more proactive identification of their strengths and positive coping mechanisms. This approach relies on a collaborative engagement with patients, in which the nurse or therapist using simple language aims to help the patient construct a plan to ensure their immediate safety while working to identify, focus on and reinforce their strengths and coping mechanisms in the achievement of identified future goals. This paper reports on a pilot study whose principal objective was to determine whether a short training in brief SFT for psychiatric nurses can produce measurable improvements in nurse-patient interactions in two psychiatric acute admission wards. In this study, 36 nurses undertook a 2-day training course in SFT and were followed up 3 months after training. Positive results were obtained on a number of measures indicating that nurses had acquired knowledge and skills and were applying SFT techniques in their clinical work.

  6. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  7. Adaptive equalization

    NASA Astrophysics Data System (ADS)

    Qureshi, S. U. H.

    1985-09-01

    Theoretical work which has been effective in improving data transmission by telephone and radio links using adaptive equalization (AE) techniques is reviewed. AE has been applied to reducing the temporal dispersion effects, such as intersymbol interference, caused by the channel accessed. Attention is given to the Nyquist telegraph transmission theory, least mean square error adaptive filtering and the theory and structure of linear receive and transmit filters for reducing error. Optimum nonlinear receiver structures are discussed in terms of optimality criteria as a function of error probability. A suboptimum receiver structure is explored in the form of a decision-feedback equalizer. Consideration is also given to quadrature amplitude modulation and transversal equalization for receivers.

  8. Electrolysis and isoelectric focusing

    NASA Astrophysics Data System (ADS)

    Choi, Y. S.; Lui, Roger; Yu, Xun

    1994-01-01

    This paper consists of two parts. In the first part, the authors prove the existence of steady-state solutions for a three-species electrolyte. The species are subject to both dissociation-association reactions inside the electrolyte and electrochemical reactions at the boundary electrodes. This is a common occurrence in electrolysis. In the second part, the authors investigate how to use this model to describe isoelectric focusing, which is a common technique used to separate large protein molecules. In particular, the isoelectric focusing point for a particular type of protein molecule is calculated using formal perturbation analysis.

  9. Sound focusing in rooms: the time-reversal approach.

    PubMed

    Yon, Sylvain; Tanter, Mickael; Fink, Mathias

    2003-03-01

    New perspectives in audible range acoustics, such as virtual sound space creation and active noise control, rely on the ability of the rendering system to recreate precisely a desired sound field. This ability to control sound in a given volume of a room is directly linked to the capacity to focus acoustical energy both in space and time. However, sound focusing in rooms remains a complicated problem, essentially because of the multiple reflections on obstacles and walls occurring during propagation. In this paper, the technique of time-reversal focusing, well known in ultrasound, is experimentally applied to audible range acoustics. Compared to classical focusing techniques such as delay law focusing, time reversal appears to considerably improve quality of both temporal and spatial focusing. This so-called super-resolution phenomenon is due to the ability of time reversal to take into account all of the different sound paths between the emitting antenna and the focal point, thus creating an adaptive spatial and temporal matched filter for the considered propagation medium. Experiments emphasize the strong robustness of time-reversal focusing towards small modifications in the medium, such as people in motion or temperature variations. Sound focusing through walls using the time-reversal approach is also experimentally demonstrated.

  10. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies.

    PubMed

    Castro, Nadia P; Merchant, Anand S; Saylor, Karen L; Anver, Miriam R; Salomon, David S; Golubeva, Yelena G

    2016-01-01

    Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM.

  11. Adaptive antennas

    NASA Astrophysics Data System (ADS)

    Barton, P.

    1987-04-01

    The basic principles of adaptive antennas are outlined in terms of the Wiener-Hopf expression for maximizing signal to noise ratio in an arbitrary noise environment; the analogy with generalized matched filter theory provides a useful aid to understanding. For many applications, there is insufficient information to achieve the above solution and thus non-optimum constrained null steering algorithms are also described, together with a summary of methods for preventing wanted signals being nulled by the adaptive system. The three generic approaches to adaptive weight control are discussed; correlation steepest descent, weight perturbation and direct solutions based on sample matrix conversion. The tradeoffs between hardware complexity and performance in terms of null depth and convergence rate are outlined. The sidelobe cancellor technique is described. Performance variation with jammer power and angular distribution is summarized and the key performance limitations identified. The configuration and performance characteristics of both multiple beam and phase scan array antennas are covered, with a brief discussion of performance factors.

  12. Block-structured adaptive mesh refinement - theory, implementation and application

    SciTech Connect

    Deiterding, Ralf

    2011-01-01

    Structured adaptive mesh refinement (SAMR) techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations for gas dynamics is included and typical benchmarks to quantify accuracy and performance of the dynamically adaptive code are discussed. Large-scale simulations of shock-induced realistic combustion in non-Cartesian geometry and shock-driven fluid-structure interaction with fully coupled dynamic boundary motion demonstrate the applicability of the discussed techniques for complex scenarios.

  13. Adaptive control of linearizable systems

    NASA Technical Reports Server (NTRS)

    Sastry, S. Shankar; Isidori, Alberto

    1989-01-01

    Initial results are reported regarding the adaptive control of minimum-phase nonlinear systems which are exactly input-output linearizable by state feedback. Parameter adaptation is used as a technique to make robust the exact cancellation of nonlinear terms, which is called for in the linearization technique. The application of the adaptive technique to control of robot manipulators is discussed. Only the continuous-time case is considered; extensions to the discrete-time and sampled-data cases are not obvious.

  14. Parameter Estimation for a Hybrid Adaptive Flight Controller

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje

    2009-01-01

    This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.

  15. Adaptive Management as an Effective Strategy: Interdisciplinary Perceptions for Natural Resources Management

    NASA Astrophysics Data System (ADS)

    Dreiss, Lindsay M.; Hessenauer, Jan-Michael; Nathan, Lucas R.; O'Connor, Kelly M.; Liberati, Marjorie R.; Kloster, Danielle P.; Barclay, Janet R.; Vokoun, Jason C.; Morzillo, Anita T.

    2017-02-01

    Adaptive management is a well-established approach to managing natural resources, but there is little evidence demonstrating effectiveness of adaptive management over traditional management techniques. Peer-reviewed literature attempts to draw conclusions about adaptive management effectiveness using social perceptions, but those studies are largely restricted to employees of US federal organizations. To gain a more comprehensive insight into perceived adaptive management effectiveness, this study aimed to broaden the suite of disciplines, professional affiliations, and geographic backgrounds represented by both practitioners and scholars. A questionnaire contained a series of questions concerning factors that lead to or inhibit effective management, followed by another set of questions focused on adaptive management. Using a continuum representing strategies of both adaptive management and traditional management, respondents selected those strategies that they perceived as being effective. Overall, characteristics (i.e., strategies, stakeholders, and barriers) identified by respondents as contributing to effective management closely aligned with adaptive management. Responses were correlated to the type of adaptive management experience rather than an individual's discipline, occupational, or regional affiliation. In particular, perceptions of characteristics contributing to adaptive management effectiveness varied between respondents who identified as adaptive management scholars (i.e., no implementation experience) and adaptive management practitioners. Together, these results supported two concepts that make adaptive management effective: practitioners emphasized adaptive management's value as a long-term approach and scholars noted the importance of stakeholder involvement. Even so, more communication between practitioners and scholars regarding adaptive management effectiveness could promote interdisciplinary learning and problem solving for improved

  16. Dynamic modeling of breast tissue with application of model reference adaptive system identification technique based on clinical robot-assisted palpation.

    PubMed

    Keshavarz, M; Mojra, A

    2015-11-01

    Accurate identification of breast tissue's dynamic behavior in physical examination is critical to successful diagnosis and treatment. In this study a model reference adaptive system identification (MRAS) algorithm is utilized to estimate the dynamic behavior of breast tissue from mechanical stress-strain datasets. A robot-assisted device (Robo-Tac-BMI) is going to mimic physical palpation on a 45 year old woman having a benign mass in the left breast. Stress-strain datasets will be collected over 14 regions of both breasts in a specific period of time. Then, a 2nd order linear model is adapted to the experimental datasets. It was confirmed that a unique dynamic model with maximum error about 0.89% is descriptive of the breast tissue behavior meanwhile mass detection may be achieved by 56.1% difference from the normal tissue.

  17. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies

    PubMed Central

    Saylor, Karen L.; Anver, Miriam R.; Salomon, David S.; Golubeva, Yelena G.

    2016-01-01

    Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM. PMID:27077656

  18. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  19. [The process of the acceptance of modern medical techniques in Japan at the beginning of the Meiji Era: with a focus on the surgical instruments, "écraseur" and "galvanic cautery"].

    PubMed

    Tsukisawa, Miyoko

    2009-09-01

    In this paper, I focus on the historical analysis of the process of the introduction and acceptance of modem medical techniques in Japan from the standpoints of medical assessments by Japanese doctors at that time. The "écraseur" and "galvanic cautery" are surgical instruments which were introduced into Japan from Prussia in 1873-74. These two surgical instruments have almost the same utility, such as the removal of tumors, polypi, and other growths without the effusion of the blood. At the beginning of the Meiji era, many social facilities, for example, European style hospitals and medical schools, academic journals, industrial expositions and catalog sales of medical devices, were introduced in Japan. These social facilities were related to the transfer of the medical practices in which these surgical instruments were used. Although this transfer was achieved in a short time, it involved technology assessments by Japanese doctors from many practical standpoints, including economic viewpoints. In particular, the "galvanic cautery" served as a medical device that had significant mutual effects in the surrounding areas.

  20. Capillary Isoelectric Focusing

    NASA Astrophysics Data System (ADS)

    Markuszewski, Michał J.; Bujak, Renata; Daghir, Emilia

    Capillary isoelectric focusing (CIEF) is a widespread technique for the analysis of peptides and proteins in biological samples. CIEF is used to separate mixtures of compounds on the basis of differences in their isoelectric point. Aspects of sample preparation, capillary selection, zone mobilization procedures as well as various detection modes used have been described and discussed. Moreover CIEF, coupled to various types of detection techniques (MALDI or LIF), has increasingly been applied to the analysis of variety different high-molecular compounds. CIEF is considered as a highly specific analytical method which may be routinely used in the separation of rare hemoglobin variants. In addition, the application of CIEF in proteomic field have been discussed on the examples of analyses of glycoproteins and immunoglobins due to the meaning in clinical diagnostic.

  1. Focus vernier for optical lithography

    NASA Astrophysics Data System (ADS)

    Arnold, William H.; Barouch, Eytan; Hollerbach, Uwe; Orszag, Steven A.

    1993-08-01

    As the depth of focus of optical steppers grows smaller, it becomes more important to determine the position of best focus accurately and quickly. This paper describes the use of phase-shifted mask technology to form a focus vernier: a phase pattern on the stepper reticle which, when imaged in resist, can give both the magnitude and the direction of the focus error. In this, the focus vernier structure is analogous to 3overlay verniers. Thus the determination of focus error can be treated as an alignment problem in the z-axis. This technique is an improvement on previous schemes for the determination of best focus from resist images as it can indicate both the magnitude of the error and its direction in a single exposure.

  2. Adaptation to blur

    NASA Astrophysics Data System (ADS)

    Webster, Michael A.; Webster, Shernaaz M.; MacDonald, Jennifer; Bahradwadj, Shrikant R.

    2001-06-01

    Blur is an intrinsic property of the retinal image that can vary substantially in natural viewing. We examined how processes of contrast adaptation might adjust the visual system to regulate the perception of blur. Observers viewed a blurred or sharpened image for 2-5 minutes, and then judged the apparent focus of a series of 0.5-sec test images interleaved with 6-sec of readaptation. A 2AFC staircase procedure was used to vary the amplitude spectrum of successive test to find the image that appeared in focus. Adapting to a blurred image causes a physically focused image to appear too sharp. Opposite after-effects occur for sharpened adapting images. Pronounced biases were observed over a wide range of magnitudes of adapting blur, and were similar for different types of blur. After-effects were also similar for different classes of images but were generally weaker when the adapting and test stimuli were different images, showing that the adaptation is not adjusting simply to blur per se. These adaptive adjustments may strongly influence the perception of blur in normal vision and how it changes with refractive errors.

  3. Application of Bayesian techniques to model the burden of human salmonellosis attributable to U.S. food commodities at the point of processing: adaptation of a Danish model.

    PubMed

    Guo, Chuanfa; Hoekstra, Robert M; Schroeder, Carl M; Pires, Sara Monteiro; Ong, Kanyin Liane; Hartnett, Emma; Naugle, Alecia; Harman, Jane; Bennett, Patricia; Cieslak, Paul; Scallan, Elaine; Rose, Bonnie; Holt, Kristin G; Kissler, Bonnie; Mbandi, Evelyne; Roodsari, Reza; Angulo, Frederick J; Cole, Dana

    2011-04-01

    Mathematical models that estimate the proportion of foodborne illnesses attributable to food commodities at specific points in the food chain may be useful to risk managers and policy makers to formulate public health goals, prioritize interventions, and document the effectiveness of mitigations aimed at reducing illness. Using human surveillance data on laboratory-confirmed Salmonella infections from the Centers for Disease Control and Prevention and Salmonella testing data from U.S. Department of Agriculture Food Safety and Inspection Service's regulatory programs, we developed a point-of-processing foodborne illness attribution model by adapting the Hald Salmonella Bayesian source attribution model. Key model outputs include estimates of the relative proportions of domestically acquired sporadic human Salmonella infections resulting from contamination of raw meat, poultry, and egg products processed in the United States from 1998 through 2003. The current model estimates the relative contribution of chicken (48%), ground beef (28%), turkey (17%), egg products (6%), intact beef (1%), and pork (<1%) across 109 Salmonella serotypes found in food commodities at point of processing. While interpretation of the attribution estimates is constrained by data inputs, the adapted model shows promise and may serve as a basis for a common approach to attribution of human salmonellosis and food safety decision-making in more than one country.

  4. Isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.; Egen, N. B.; Mosher, R. A.; Twitty, G. E.

    1982-01-01

    The potential of space electrophoresis is conditioned by the fact that all electrophoretic techniques require the suppression of gravity-caused convection. Isoelectric focusing (IEF) is a powerful variant of electrophoresis, in which amphoteric substances are separated in a pH gradient according to their isoelectric points. A new apparatus for large scale IEF, utilizing a recycling principle, has been developed. In the ground-based prototype, laminar flow is provided by a series of parallel filter elements. The operation of the apparatus is monitored by an automated array of pH and ultraviolet absorption sensors under control of a desk-top computer. The apparatus has proven to be useful for the purification of a variety of enzymes, snake venom proteins, peptide hormones, and other biologicals, including interferon produced by genetic engineering techniques. In planning for a possible space apparatus, a crucial question regarding electroosmosis needs to be addressed To solve this problem, simple focusing test modules are planned for inclusion in an early Shuttle flight.

  5. Human heat adaptation.

    PubMed

    Taylor, Nigel A S

    2014-01-01

    In this overview, human morphological and functional adaptations during naturally and artificially induced heat adaptation are explored. Through discussions of adaptation theory and practice, a theoretical basis is constructed for evaluating heat adaptation. It will be argued that some adaptations are specific to the treatment used, while others are generalized. Regarding ethnic differences in heat tolerance, the case is put that reported differences in heat tolerance are not due to natural selection, but can be explained on the basis of variations in adaptation opportunity. These concepts are expanded to illustrate how traditional heat adaptation and acclimatization represent forms of habituation, and thermal clamping (controlled hyperthermia) is proposed as a superior model for mechanistic research. Indeed, this technique has led to questioning the perceived wisdom of body-fluid changes, such as the expansion and subsequent decay of plasma volume, and sudomotor function, including sweat habituation and redistribution. Throughout, this contribution was aimed at taking another step toward understanding the phenomenon of heat adaptation and stimulating future research. In this regard, research questions are posed concerning the influence that variations in morphological configuration may exert upon adaptation, the determinants of postexercise plasma volume recovery, and the physiological mechanisms that modify the cholinergic sensitivity of sweat glands, and changes in basal metabolic rate and body core temperature following adaptation.

  6. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be

  7. A New Diagnostic Mechanism of Instruction: A Dynamic, Real-Time and Non-Interference Quantitative Measurement Technique for Adaptive E-Learning

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan; Chang, Te-Jeng; Wu, Ming-Hsiung

    2009-01-01

    The level of learners' expertise has been used as a metric and diagnostic mechanism of instruction. This metric influences mental effort directly according to the applications of cognitive load theory. Cognitive efficiency, an optimal measurement technique of expertise, was developed by Kalyuga and Sweller to replace instructional efficiency in…

  8. Estimation of the most influential factors on the laser cutting process heat affected zone (HAZ) by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Nikolić, Vlastimir; Milovančević, Miloš; Lazov, Lyubomir

    2016-07-01

    Heat affected zone (HAZ) of the laser cutting process may be developed on the basis on combination of different factors. In this investigation was analyzed the HAZ forecasting based on the different laser cutting parameters. The main aim in this article was to analyze the influence of three inputs on the HAZ of the laser cutting process. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for HAZ forecasting. Three inputs are considered: laser power, cutting speed and gas pressure. According the results the cutting speed has the highest influence on the HAZ forecasting (RMSE: 0.0553). Gas pressure has the smallest influence on the HAZ forecasting (RMSE: 0.0801). The results can be used in order to simplify HAZ prediction and analyzing.

  9. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    NASA Astrophysics Data System (ADS)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  10. Adaptation of the pseudo-metal-oxide-semiconductor field effect transistor technique to ultrathin silicon-on-insulator wafers characterization: Improved set-up, measurement procedure, parameter extraction, and modeling

    NASA Astrophysics Data System (ADS)

    Van Den Daele, W.; Malaquin, C.; Baumel, N.; Kononchuk, O.; Cristoloveanu, S.

    2013-10-01

    This paper revisits and adapts of the pseudo-MOSFET (Ψ-MOSFET) characterization technique for advanced fully depleted silicon on insulator (FDSOI) wafers. We review the current challenges for standard Ψ-MOSFET set-up on ultra-thin body (12 nm) over ultra-thin buried oxide (25 nm BOX) and propose a novel set-up enabling the technique on FDSOI structures. This novel configuration embeds 4 probes with large tip radius (100-200 μm) and low pressure to avoid oxide damage. Compared with previous 4-point probe measurements, we introduce a simplified and faster methodology together with an adapted Y-function. The models for parameters extraction are revisited and calibrated through systematic measurements of SOI wafers with variable film thickness. We propose an in-depth analysis of the FDSOI structure through comparison of experimental data, TCAD (Technology Computed Aided Design) simulations, and analytical modeling. TCAD simulations are used to unify previously reported thickness-dependent analytical models by analyzing the BOX/substrate potential and the electrical field in ultrathin films. Our updated analytical models are used to explain the results and to extract correct electrical parameters such as low-field electron and hole mobility, subthreshold slope, and film/BOX interface traps density.

  11. Adaptive spectral doppler estimation.

    PubMed

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-04-01

    In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window is very short. The 2 adaptive techniques are tested and compared with the averaged periodogram (Welch's method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out. Simulations in Field II for pulsating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior performance for short observation windows compared with the averaged periodogram. Computational costs and implementation details are also discussed.

  12. Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš

    2016-07-01

    Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.

  13. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous 99mTc/201Tl SPECT imaging: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Heidary, Saeed; Setayeshi, Saeed

    2015-01-01

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  14. Alliance-focused training.

    PubMed

    Eubanks-Carter, Catherine; Muran, J Christopher; Safran, Jeremy D

    2015-06-01

    Alliance-focused training (AFT) aims to increase therapists' ability to recognize, tolerate, and negotiate alliance ruptures by increasing the therapeutic skills of self-awareness, affect regulation, and interpersonal sensitivity. In AFT, therapists are encouraged to draw on these skills when metacommunicating about ruptures with patients. In this article, we present the 3 main supervisory tasks of AFT: videotape analysis of rupture moments, awareness-oriented role-plays, and mindfulness training. We describe the theoretical and empirical support for each supervisory task, provide examples based on actual supervision sessions, and present feedback about the usefulness of the techniques from trainees in our program. We also note some of the challenges involved in conducting AFT and the importance of maintaining a strong supervisory alliance when using this training approach.

  15. Geometric focusing of internal waves: Experimental study

    NASA Astrophysics Data System (ADS)

    Shmakova, Natalia; Ermanyuk, Evgeny; Voisin, Bruno; Flór, Jan-Bert

    2015-11-01

    Mixing of the abyssal ocean plays a decisive role in large-scale ocean circulation and is believed to be caused by the nonlinear breaking of internal tides. Previous studies of two- and three-dimensional cases considered the generation of diverging waves by simple oscillating bodies such as a cylinder (e.g. Mowbray and Rarity 1967) or a sphere (e.g. King et al. 2009, Ermanyuk et al. 2011). We here consider converging waves as generated by a horizontally oscillating torus. The energy focuses and therefore the waves are more susceptible to overturning and breaking. LIF and PIV techniques are used to measure respectively the isopycnal displacement and the velocity. We have considered linear and nonlinear wave generation as a function of the Keulegan-Carpenter number, here adapted to the focusing waves. For small oscillation amplitude strong velocity amplification is observed in the focal zone, consistent with linear theory. Increasing the oscillation amplitude causes nonlinear effects and in particular the generation of higher harmonics and overturning in the focal zone. In addition, the focal zone acts as a wave source. Increase of the Stokes and Reynolds numbers leads to wave turbulence in the focal zone. Supported by LabEx Osug@2020 (Investissements d'avenir - ANR10LABX56).

  16. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  17. Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban

    2017-01-01

    Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is

  18. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  19. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  20. Making Accurate Topographic Maps of the Schoolyard Using Ideas and Techniques Learned and Adapted from Multi-beam Sonar Mapping of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fuerst, S. I.; Roberts, J. D.

    2010-12-01

    Having participated in a University of Rhode Island Project Armada expedition to join the University of New Hampshire Center for Coastal and Oceanographic Studies in making multi-beam sonar contour maps of the Arctic Ocean floor, I was able to bring the principles learned from this trip to my earth science high school students and create a project in our "mapping the earth" unit. Students learn basic surveying techniques and create authentic, accurately detailed topographic maps of the schoolyard. Models of their maps are then constructed of either Styrofoam or wood which enables them to make the transition from a 2-dimensional map to a 3-dimensional representation. Even though our maps are created using sticks, line levels, compasses and GPS, the scientific concepts of using location and elevation data to draw contour lines are identical to those used in underwater mapping. Once the students understand the science in mapping and creating contour maps to scale on graph paper by hand, they are able to easily relate this knowledge to what I was doing onboard ship using multi-beam sonar and computer mapping programs. We would like to share with you the lab and techniques that we have developed to make this activity possible with minimal materials and simple technology. As a background extension, it is also possible to replicate sonar measurements using an aquarium, food coloring, and a surface grid to map the topography of a teacher created landscape on the aquarium bottom. Earth Science students using simple tools to accurately map the topography of the school grounds

  1. "Only" and Focus.

    ERIC Educational Resources Information Center

    Vallduvi, Enric

    The relationship of the word "only," one of a class of words known as scalar particles, focus adverbs, focus inducers, or focus-sensitive particles, with the "focus" of the sentence is examined. It is suggested, based on analysis of discourse structure, that this "association with focus" is not an inherent property of…

  2. Transformational adaptation when incremental adaptations to climate change are insufficient.

    PubMed

    Kates, Robert W; Travis, William R; Wilbanks, Thomas J

    2012-05-08

    All human-environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations.

  3. Transformational adaptation when incremental adaptations to climate change are insufficient

    PubMed Central

    Kates, Robert W.; Travis, William R.; Wilbanks, Thomas J.

    2012-01-01

    All human–environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations. PMID:22509036

  4. An adaptive computer vision technique for estimating the biomass and density of loblolly pine plantations using digital orthophotography and LiDAR imagery

    NASA Astrophysics Data System (ADS)

    Bortolot, Zachary J.

    Forests have been proposed as a means of reducing atmospheric carbon dioxide levels due to their ability to store carbon as biomass. To quantify the amount of atmospheric carbon sequestered by forests, biomass and density estimates are oven needed. This study develops, implements, and tests an individual tree-based algorithm for obtaining forest density and biomass using orthophotographs and small footprint LiDAR imagery. It was designed to work with a range of forests and image types without modification, which is accomplished by using generic properties of trees found in many types of images. Multiple parameters are employed to determine how these generic properties are used. To set these parameters, training data is used in conjunction with an optimization algorithm (a modified Nelder-Mead simplex algorithm or a genetic algorithm). The training data consist of small images in which density and biomass are known. A first test of this technique was performed using 25 circular plots (radius = 15 m) placed in young pine plantations in central Virginia, together with false color orthophotograph (spatial resolution = 0.5 m) or small footprint LiDAR (interpolated to 0.5 m) imagery. The highest density prediction accuracies (r2 up to 0.88, RMSE as low as 83 trees/ha) were found for runs where photointerpreted densities were used for training and testing. For tests run using density measurements made on the ground, accuracies were consistency higher for orthophotograph-based results than for LiDAR-based results, and were higher for trees with DBH ≥10cm than for trees with DBH ≥7 cm. Biomass estimates obtained by the algorithm using LiDAR imagery had a lower RMSE (as low as 15.6 t/ha) than most comparable studies. The correlations between the actual and predicted values (r2 up to 0.64) were lower than comparable studies, but were generally highly significant (p ≤ 0.05 or 0.01). In all runs there was no obvious sensitive to which training and testing data were

  5. Framework for Adaptable Operating and Runtime Systems: Final Project Report

    SciTech Connect

    Patrick G. Bridges

    2012-02-01

    In this grant, we examined a wide range of techniques for constructing high-performance con gurable system software for HPC systems and its application to DOE-relevant problems. Overall, research and development on this project focused in three specifc areas: (1) software frameworks for constructing and deploying con gurable system software, (2) applcation of these frameworks to HPC-oriented adaptable networking software, (3) performance analysis of HPC system software to understand opportunities for performance optimization.

  6. Focused force angioplasty Theory and application

    SciTech Connect

    Solar, Ronald J.; Ischinger, Thomas A

    2003-03-01

    Focused force angioplasty is a technique in which the forces resulting from inflating an angioplasty balloon in a stenosis are concentrated and focused at one or more locations within the stenosis. While the technique has been shown to be useful in resolving resistant stenoses, its real value may be in minimizing the vascular trauma associated with balloon angioplasty and subsequently improving the outcome.

  7. 3D motion adapted gating (3D MAG): a new navigator technique for accelerated acquisition of free breathing navigator gated 3D coronary MR-angiography.

    PubMed

    Hackenbroch, M; Nehrke, K; Gieseke, J; Meyer, C; Tiemann, K; Litt, H; Dewald, O; Naehle, C P; Schild, H; Sommer, T

    2005-08-01

    This study aimed to evaluate the influence of a new navigator technique (3D MAG) on navigator efficiency, total acquisition time, image quality and diagnostic accuracy. Fifty-six patients with suspected coronary artery disease underwent free breathing navigator gated coronary MRA (Intera, Philips Medical Systems, 1.5 T, spatial resolution 0.9x0.9x3 mm3) with and without 3D MAG. Evaluation of both sequences included: 1) navigator scan efficiency, 2) total acquisition time, 3) assessment of image quality and 4) detection of stenoses >50%. Average navigator efficiencies of the LCA and RCA were 43+/-12% and 42+/-12% with and 36+/-16% and 35+/-16% without 3D MAG (P<0.01). Scan time was reduced from 12 min 7 s without to 8 min 55 s with 3D MAG for the LCA and from 12 min 19 s to 9 min 7 s with 3D MAG for the RCA (P<0.01). The average scores of image quality of the coronary MRAs with and without 3D MAG were 3.5+/-0.79 and 3.46+/-0.84 (P>0.05). There was no significant difference in the sensitivity and specificity in the detection of coronary artery stenoses between coronary MRAs with and without 3D MAG (P>0.05). 3D MAG provides accelerated acquisition of navigator gated coronary MRA by about 19% while maintaining image quality and diagnostic accuracy.

  8. An adaptive technique for multiscale approximate entropy (MAEbin) threshold (r) selection: application to heart rate variability (HRV) and systolic blood pressure variability (SBPV) under postural stress.

    PubMed

    Singh, Amritpal; Saini, Barjinder Singh; Singh, Dilbag

    2016-06-01

    Multiscale approximate entropy (MAE) is used to quantify the complexity of a time series as a function of time scale τ. Approximate entropy (ApEn) tolerance threshold selection 'r' is based on either: (1) arbitrary selection in the recommended range (0.1-0.25) times standard deviation of time series (2) or finding maximum ApEn (ApEnmax) i.e., the point where self-matches start to prevail over other matches and choosing the corresponding 'r' (rmax) as threshold (3) or computing rchon by empirically finding the relation between rmax, SD1/SD2 ratio and N using curve fitting, where, SD1 and SD2 are short-term and long-term variability of a time series respectively. None of these methods is gold standard for selection of 'r'. In our previous study [1], an adaptive procedure for selection of 'r' is proposed for approximate entropy (ApEn). In this paper, this is extended to multiple time scales using MAEbin and multiscale cross-MAEbin (XMAEbin). We applied this to simulations i.e. 50 realizations (n = 50) of random number series, fractional Brownian motion (fBm) and MIX (P) [1] series of data length of N = 300 and short term recordings of HRV and SBPV performed under postural stress from supine to standing. MAEbin and XMAEbin analysis was performed on laboratory recorded data of 50 healthy young subjects experiencing postural stress from supine to upright. The study showed that (i) ApEnbin of HRV is more than SBPV in supine position but is lower than SBPV in upright position (ii) ApEnbin of HRV decreases from supine i.e. 1.7324 ± 0.112 (mean ± SD) to upright 1.4916 ± 0.108 due to vagal inhibition (iii) ApEnbin of SBPV increases from supine i.e. 1.5535 ± 0.098 to upright i.e. 1.6241 ± 0.101 due sympathetic activation (iv) individual and cross complexities of RRi and systolic blood pressure (SBP) series depend on time scale under consideration (v) XMAEbin calculated using ApEnmax is correlated with cross-MAE calculated using ApEn (0.1-0.26) in steps of 0

  9. Hormone Purification by Isoelectric Focusing

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1985-01-01

    Various ground-based research approaches are being applied to a more definitive evaluation of the natures and degrees of electroosmosis effects on the separation capabilities of the Isoelectric Focusing (IEF) process. A primary instrumental system for this work involves rotationally stabilized, horizontal electrophoretic columns specially adapted for the IEF process. Representative adaptations include segmentation, baffles/screens, and surface coatings. Comparative performance and development testing are pursued against the type of column or cell established as an engineering model. Previously developed computer simulation capabilities are used to predict low-gravity behavior patterns and performance for IEF apparatus geometries of direct project interest. Three existing mathematical models plus potential new routines for particular aspects of simulating instrument fluid patterns with varied wall electroosmosis influences are being exercised.

  10. IIR algorithms for adaptive line enhancement

    SciTech Connect

    David, R.A.; Stearns, S.D.; Elliott, G.R.; Etter, D.M.

    1983-01-01

    We introduce a simple IIR structure for the adaptive line enhancer. Two algorithms based on gradient-search techniques are presented for adapting the structure. Results from experiments which utilized real data as well as computer simulations are provided.

  11. Focusing on customer service.

    PubMed

    1996-01-01

    This booklet is devoted to a consideration of how good customer service in family planning programs can generate demand for products and services, bring customers back, and reduce costs. Customer service is defined as increasing client satisfaction through continuous concern for client preferences, staff accountability to clients, and respect for the rights of clients. Issues discussed include the introduction of a customer service approach and gaining staff commitment. The experience of PROSALUD in Bolivia in recruiting appropriate staff, supervising staff, soliciting client feedback, and marketing services is offered as an example of a successful customer service approach. The key customer service functions are described as 1) establishing a welcoming atmosphere, 2) streamlining client flow, 3) personalizing client services, and 4) organizing and providing clear information to clients. The role of the manager in developing procedures is explored, and the COPE (Client-Oriented Provider-Efficient) process is presented as a good way to begin to make improvements. Techniques in staff training in customer service include brainstorming, role playing, using case studies (examples of which are provided), and engaging in practice sessions. Training also leads to the development of effective customer service attitudes, and the differences between these and organizational/staff-focused attitudes are illustrated in a chart. The use of communication skills (asking open-ended questions, helping clients express their concerns, engaging in active listening, and handling difficult situations) is considered. Good recovery skills are important when things go wrong. Gathering and using client feedback is the next topic considered. This involves identifying, recording, and discussing customer service issues as well as taking action on these issues and evaluating the results. The booklet ends by providing a sample of customer service indicators, considering the maintenance of a

  12. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  13. Isoelectric focusing in a drop.

    PubMed

    Weiss, Noah G; Hayes, Mark A; Garcia, Antonio A; Ansari, Rafat R

    2011-01-04

    A novel approach to molecular separations is investigated using a technique termed droplet-based isoelectric focusing. Drops are manipulated discretely on a superhydrophobic surface, subjected to low voltages for isoelectric focusing, and split-resulting in a preparative separation. A universal indicator dye demonstrates the generation of stable, reversible pH gradients (3-10) in ampholyte buffers, and these gradients lead to protein focusing within the drop length. Focusing was visually characterized, spectroscopically verified, and assessed quantitatively by noninvasive light scattering measurements. It was found to correlate with a quantitative model based on 1D steady-state theory. This work illustrates that molecular separations can be deployed within a single open drop, and the differential fractions can be separated into new discrete liquid elements.

  14. Wolter Optics for Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Mildner, D. F. R.; Gubarev, M. V.

    2010-01-01

    Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics

  15. Adaptive Cartography and Geographical Education

    ERIC Educational Resources Information Center

    Konecny, Milan; Stanek, Karel

    2010-01-01

    The article focuses on adaptive cartography and its potential for geographical education. After briefly describing the wider context of adaptive cartography, it is suggested that this new cartographic approach establishes new demands and benefits for geographical education, especially in offering the possibility for broader individual…

  16. Adaptive Assessments Using Open Specifications

    ERIC Educational Resources Information Center

    Leon, Hector Barbosa; Garcia-Penalvo, Francisco J.; Rodriguez-Conde, Maria Jose; Morales, Erla M.; de Pablos, Patricia Ordonez

    2012-01-01

    Evaluation is a key element in formal education processes; it must be constructed in a way that the item questions within help students understand by adapting them to the learning style as well. The focus of the present research work specifically in the convenience to adapt an associated multimedia material in each single question besides the…

  17. Adapted Aquatics and Inclusion.

    ERIC Educational Resources Information Center

    Block, Martin E.; Conatser, Phillip

    2002-01-01

    Presents strategies and techniques to help instructors and directors promote successful inclusive aquatics programs for students with disabilities, discussing the importance of considering issues related to: teaching style, collaborative planning, goal determination, appropriate inclusive placement, personnel preparation, curriculum adaptation,…

  18. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  19. Adaptive Staircase Measurement of Hand Proprioception.

    PubMed

    Hoseini, Najmeh; Sexton, Brandon M; Kurtz, Karl; Liu, Yang; Block, Hannah J

    2015-01-01

    Clinicians and researchers often need to measure proprioception (position sense), for example to monitor the progress of disease, to identify the cause of movement or balance problems, or to ascertain the effects of an intervention. While researchers can use sophisticated equipment to estimate proprioceptive acuity with good precision, clinicians lack this option and must rely on the subjective and imprecise methods currently available in the clinic. Here we describe a novel technique that applies psychometric adaptive staircase procedures to hand proprioception with a simple tablet-style apparatus that could easily be adapted for the clinic. We report test-retest reliability, inter-rater reliability, and construct validity of the adaptive staircase method vs. two other methods that are commonly used in clinical settings: passive motion direction discrimination (PMDD) and matching. As a first step, we focus on healthy adults. Subjects ages 18-82 had their proprioception measured with each of the three techniques, at the metacarpophalangeal joint in the second finger of the right hand. A subset completed a second session in which the measures were repeated, to assess test-retest reliability. Another subset had the measurements done by two different testers to assess inter-rater reliability. Construct validity was assessed using stepwise regression on age and activity level, and correlations calculated across the three methods. Results suggest that of the three methods, the adaptive staircase method yields the best test-retest reliability, inter-rater reliability, and construct validity. The adaptive staircase method may prove to be a valuable clinical tool where more accurate assessment of proprioception is needed.

  20. Adaptive Staircase Measurement of Hand Proprioception

    PubMed Central

    Hoseini, Najmeh; Sexton, Brandon M.; Kurtz, Karl; Liu, Yang; Block, Hannah J.

    2015-01-01

    Clinicians and researchers often need to measure proprioception (position sense), for example to monitor the progress of disease, to identify the cause of movement or balance problems, or to ascertain the effects of an intervention. While researchers can use sophisticated equipment to estimate proprioceptive acuity with good precision, clinicians lack this option and must rely on the subjective and imprecise methods currently available in the clinic. Here we describe a novel technique that applies psychometric adaptive staircase procedures to hand proprioception with a simple tablet-style apparatus that could easily be adapted for the clinic. We report test-retest reliability, inter-rater reliability, and construct validity of the adaptive staircase method vs. two other methods that are commonly used in clinical settings: passive motion direction discrimination (PMDD) and matching. As a first step, we focus on healthy adults. Subjects ages 18–82 had their proprioception measured with each of the three techniques, at the metacarpophalangeal joint in the second finger of the right hand. A subset completed a second session in which the measures were repeated, to assess test-retest reliability. Another subset had the measurements done by two different testers to assess inter-rater reliability. Construct validity was assessed using stepwise regression on age and activity level, and correlations calculated across the three methods. Results suggest that of the three methods, the adaptive staircase method yields the best test-retest reliability, inter-rater reliability, and construct validity. The adaptive staircase method may prove to be a valuable clinical tool where more accurate assessment of proprioception is needed. PMID:26274824

  1. Elliptic Solvers for Adaptive Mesh Refinement Grids

    SciTech Connect

    Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.

    1999-06-03

    We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.

  2. Measurement of refractive index distribution of biotissues by scanning focused refractive index microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Tengqian; Ye, Qing; Wang, Xiao-Wan; Wang, Jin; Deng, Zhi-Chao; Mei, Jian-Chun; Zhou, Wen-Yuan; Zhang, Chun-Ping; Tian, Jian-Guo

    2014-11-01

    We adapt the improved scanning focused refractive-index microscopy (SFRIM) technique to the quantitative study of biological tissues. Delicate refractive index (RI) imaging of a porcine muscle tissue is obtained in a reflection mode. Some modifications are made to the SFRIM for better two dimension (2-D) observation of the tissues. The RI accuracy is 0.002. The central spatial resolution of SFRIM achieves 1μm, smaller than the size of the focal spot. Our method is free from signal distortion. The experimental result demonstrates that SFRIM is a potential technique in a wide field of biomedical research.

  3. Adaptive arrays for satellite communications

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Ksienski, A. A.

    1984-01-01

    The suppression of interfering signals in a satellite communication system was studied. Adaptive arrays are used to suppress interference at the reception site. It is required that the interference be suppressed to very low levels and a modified adaptive circuit is used which accomplishes the desired objective. Techniques for the modification of the transmit patterns to minimize interference with neighboring communication links are explored.

  4. Matched filter based iterative adaptive approach

    NASA Astrophysics Data System (ADS)

    Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William

    2016-05-01

    Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.

  5. Climate adaptation

    NASA Astrophysics Data System (ADS)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  6. Adaptive Control: Actual Status and Trends

    NASA Technical Reports Server (NTRS)

    Landau, I. D.

    1985-01-01

    Important progress in research and application of Adaptive Control Systems has been achieved in the last ten years. The techniques which are currently used in applications will be reviewed. Theoretical aspects currently under investigation and which are related to the application of adaptive control techniques in various fields will be briefly discussed. Applications in various areas will be briefly reviewed. The use of adaptive techniques for vibrations monitoring and active vibration control will be emphasized.

  7. Adaptive passive fathometer processing.

    PubMed

    Siderius, Martin; Song, Heechun; Gerstoft, Peter; Hodgkiss, William S; Hursky, Paul; Harrison, Chris

    2010-04-01

    Recently, a technique has been developed to image seabed layers using the ocean ambient noise field as the sound source. This so called passive fathometer technique exploits the naturally occurring acoustic sounds generated on the sea-surface, primarily from breaking waves. The method is based on the cross-correlation of noise from the ocean surface with its echo from the seabed, which recovers travel times to significant seabed reflectors. To limit averaging time and make this practical, beamforming is used with a vertical array of hydrophones to reduce interference from horizontally propagating noise. The initial development used conventional beamforming, but significant improvements have been realized using adaptive techniques. In this paper, adaptive methods for this process are described and applied to several data sets to demonstrate improvements possible as compared to conventional processing.

  8. Focus Curriculum Manual; A Focus Dissemination Project.

    ERIC Educational Resources Information Center

    Human Resource Associates, Inc., Hastings, Minn.

    This training manual is for use in preparing staff members to use the Focus Model, which is a "school within a school" for disaffected high school students. The material is designed to be used as a resource aid following participation in an in-service workshop. Information is presented to help implement a contracting system to establish…

  9. Adaptation and perceptual norms

    NASA Astrophysics Data System (ADS)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  10. Adaptation through proportion

    NASA Astrophysics Data System (ADS)

    Xiong, Liyang; Shi, Wenjia; Tang, Chao

    2016-08-01

    Adaptation is a ubiquitous feature in biological sensory and signaling networks. It has been suggested that adaptive systems may follow certain simple design principles across diverse organisms, cells and pathways. One class of networks that can achieve adaptation utilizes an incoherent feedforward control, in which two parallel signaling branches exert opposite but proportional effects on the output at steady state. In this paper, we generalize this adaptation mechanism by establishing a steady-state proportionality relationship among a subset of nodes in a network. Adaptation can be achieved by using any two nodes in the sub-network to respectively regulate the output node positively and negatively. We focus on enzyme networks and first identify basic regulation motifs consisting of two and three nodes that can be used to build small networks with proportional relationships. Larger proportional networks can then be constructed modularly similar to LEGOs. Our method provides a general framework to construct and analyze a class of proportional and/or adaptation networks with arbitrary size, flexibility and versatile functional features.

  11. Adaptive Flight Control for Aircraft Safety Enhancements

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.

    2008-01-01

    This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.

  12. Focus Intonation in Bengali

    ERIC Educational Resources Information Center

    Hasan, Md. Kamrul

    2015-01-01

    This work attempts to investigate the role of prosody in the syntax of focus in Bangla. The aim of this study is to show the intonation pattern of Bangla in emphasis and focus. In order to do that, the author has looked at the pattern of focus without-i/o as well as with the same. Do they really pose any different focus intonation pattern from…

  13. A study on the flip angle for an optimal T1-weighted image based on the 3D-THRIVE MRI technique: Focusing on the detection of a hepatocellular carcinoma (HCC)

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan; Kim, Young-Jae

    2014-04-01

    This study examined the optimal flip angle (FA) for a T1-weighted image in the detection of a hepatocellular carcinoma (HCC). A 3D-T1-weighted high-resolution isotropic volume examination (THRIVE) technique was used to determine the dependence of the signal to noise ratio (SNR) and the contrast-to-noise ratio (CNR) on the change in FA. This study targeted 40 liver cancer patients (25 men and 15 women aged 50 to 70 years with a mean age of 60.32 ± 6.2 years) who visited this hospital to undergo an abdominal MRI examination from January to June 2013. A 3.0 Tesla MRI machine (Philips, Medical System, Achieva) and a MRI receiver coil for data reception with a 16-channel multicoil were used in this study. The THRIVE (repetition time (TR): 8.1 ms, echo time (TE): 3.7 ms, matrix: 172 × 172, slice thickness: 4 mm, gap: 2 mm, field of view (FOV): 350 mm, and band width (BW): 380.1 Hz) technique was applied as a pulse sequence. The time required for the examination was 19 seconds, and the breath-hold technique was used. Axial images were obtained at five FAs: 5, 10, 15, 20 and 25°. The signal intensities of the liver, the lesion and the background noise were measured based on the acquired images before the SNR and the CNR were calculated. To evaluate the image at the FA, we used SPSS for Windows ver. 17.0 to conduct a one-way ANOVA test. A Bonferroni test was conducted as a post-hoc test. The SNRs of the hemorrhagic HCC in the 3D-THRIVE technique were 35.50 ± 4.12, 97.00 ± 10.24, 66.09 ± 7.29, 53.84 ± 5.43, and 42.92 ± 5.11 for FAs of 5, 10, 15, 20, and 25°, respectively (p = 0.0430), whereas the corresponding CNRs were 30.50 ± 3.84, 43.00 ± 5.42, 36.54 ± 4.09, 32.30 ± 2.79, and 31.69 ± 3.21 (p = 0.0003). At a small FA of 10, the SNR and the CNR showed the highest values. As the FA was increased, the SNR and the CNR values showed a decreasing tendency. In conclusion, the optimal T1-weighted image FA should be set to 10° to detect a HCC by using the 3D

  14. Adaptive image segmentation applied to plant reproduction by tissue culture

    NASA Astrophysics Data System (ADS)

    Vazquez Rueda, Martin G.; Hahn, Federico; Zapata, Jose L.

    1997-04-01

    This paper presents that experimental results obtained on indoor tissue culture using the adaptive image segmentation system. The performance of the adaptive technique is contrasted with different non-adaptive techniques commonly used in the computer vision field to demonstrate the improvement provided by the adaptive image segmentation system.

  15. Alternating phase focused linacs

    DOEpatents

    Swenson, Donald A.

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  16. Adaptive Techniques for Large Space Apertures.

    DTIC Science & Technology

    1980-03-01

    GP Anitern, 200l de or,~,’rn, receiner/ proceso 1"’ - requires enternal !titude deter- minationr such as a star tracker Increased mechanizatio’ Sensor...control systems into one unit; namely, a fine pointing control using the gimbal rates as the control variables while maintaining constant rotor speeds...CMG mode), and a coarse control for large maneuvers using the rotor speeds as the control variables and locking the gimbals (RW mode). The simultaneous

  17. Infrared sensing techniques for adaptive robotic welding

    SciTech Connect

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

  18. A Study of Adaptive Image Compression Techniques.

    DTIC Science & Technology

    1980-02-01

    402 4074 4343 0.117 𔄁 0 337 i_______ !=_s~i 303 _3 244 X -22 1N -Zi Nit JI3Fs V o 1, 0 100460 0.04" 6 00 00 0.08604 So -o -oS g 2 0 3 4P01 02M2 0 273...Karhumen-Loeve transform," SPIE, vol. 66, pp. 144-158, 1975 . [10] C. C. Cutler, "Differential PCM," U.S. Patent 2 605 361, July 29, 1952. [11] N. Ahmed, T...34Interframe Transform Coding and predictive coding methods," in 1975 Proc. ICC, ., IEEE Catalog 75 CH 0971-2GSCB, pp. 23.17-23.21. [14] T. S. Huang

  19. Adaptation in Collaborative Governance Regimes

    NASA Astrophysics Data System (ADS)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  20. Adaptation in collaborative governance regimes.

    PubMed

    Emerson, Kirk; Gerlak, Andrea K

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.