The multidimensional Self-Adaptive Grid code, SAGE, version 2
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1995-01-01
This new report on Version 2 of the SAGE code includes all the information in the original publication plus all upgrades and changes to the SAGE code since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that Version 1.1 be used for single-grid applications. This document contains all the information required to run both versions of SAGE. The formulation of the adaption method is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code. The third section provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching multiple grid flow problems.
SAGE: The Self-Adaptive Grid Code. 3
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1999-01-01
The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.
The multidimensional self-adaptive grid code, SAGE
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1992-01-01
This report describes the multidimensional self-adaptive grid code SAGE. A two-dimensional version of this code was described in an earlier report by the authors. The formulation of the multidimensional version is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code and provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simplified input options make this a flexible and user-friendly code. The new SAGE code can accommodate both two-dimensional and three-dimensional flow problems.
FLAG: A multi-dimensional adaptive free-Lagrange code for fully unstructured grids
Burton, D.E.; Miller, D.S.; Palmer, T.
1995-07-01
The authors describe FLAG, a 3D adaptive free-Lagrange method for unstructured grids. The grid elements were 3D polygons, which move with the flow, and are refined or reconnected as necessary to achieve uniform accuracy. The authors stressed that they were able to construct a 3D hydro version of this code in 3 months, using an object-oriented FORTRAN approach.
An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Erickson, Larry L.
1994-01-01
A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.
The development and application of the self-adaptive grid code, SAGE
NASA Technical Reports Server (NTRS)
Davies, Carol B.
1993-01-01
The multidimensional self-adaptive grid code, SAGE, has proven to be a flexible and useful tool in the solution of complex flow problems. Both 2- and 3-D examples given in this report show the code to be reliable and to substantially improve flowfield solutions. Since the adaptive procedure is a marching scheme the code is extremely fast and uses insignificant CPU time compared to the corresponding flow solver. The SAGE program is also machine and flow solver independent. Significant effort was made to simplify user interaction, though some parameters still need to be chosen with care. It is also difficult to tell when the adaption process has provided its best possible solution. This is particularly true if no experimental data are available or if there is a lack of theoretical understanding of the flow. Another difficulty occurs if local features are important but missing in the original grid; the adaption to this solution will not result in any improvement, and only grid refinement can result in an improved solution. These are complex issues that need to be explored within the context of each specific problem.
Adaptive EAGLE dynamic solution adaptation and grid quality enhancement
NASA Technical Reports Server (NTRS)
Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.
1992-01-01
In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.
Near-Body Grid Adaption for Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Pulliam, Thomas H.
2016-01-01
A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.
Computer Code Generates Homotopic Grids
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1992-01-01
HOMAR is computer code using homotopic procedure to produce two-dimensional grids in cross-sectional planes, which grids then stacked to produce quasi-three-dimensional grid systems for aerospace configurations. Program produces grids for use in both Euler and Navier-Stokes computation of flows. Written in FORTRAN 77.
NASA Technical Reports Server (NTRS)
Banks, D. W.; Hafez, M. M.
1996-01-01
Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.
Webster, Michael A.
2011-01-01
Visual coding is a highly dynamic process and continuously adapting to the current viewing context. The perceptual changes that result from adaptation to recently viewed stimuli remain a powerful and popular tool for analyzing sensory mechanisms and plasticity. Over the last decade, the footprints of this adaptation have been tracked to both higher and lower levels of the visual pathway and over a wider range of timescales, revealing that visual processing is much more adaptable than previously thought. This work has also revealed that the pattern of aftereffects is similar across many stimulus dimensions, pointing to common coding principles in which adaptation plays a central role. However, why visual coding adapts has yet to be fully answered. PMID:21602298
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.
LAPS Grid generation and adaptation
NASA Astrophysics Data System (ADS)
Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis
2011-10-01
LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.
AEST: Adaptive Eigenvalue Stability Code
NASA Astrophysics Data System (ADS)
Zheng, L.-J.; Kotschenreuther, M.; Waelbroeck, F.; van Dam, J. W.; Berk, H.
2002-11-01
An adaptive eigenvalue linear stability code is developed. The aim is on one hand to include the non-ideal MHD effects into the global MHD stability calculation for both low and high n modes and on the other hand to resolve the numerical difficulty involving MHD singularity on the rational surfaces at the marginal stability. Our code follows some parts of philosophy of DCON by abandoning relaxation methods based on radial finite element expansion in favor of an efficient shooting procedure with adaptive gridding. The δ W criterion is replaced by the shooting procedure and subsequent matrix eigenvalue problem. Since the technique of expanding a general solution into a summation of the independent solutions employed, the rank of the matrices involved is just a few hundreds. This makes easier to solve the eigenvalue problem with non-ideal MHD effects, such as FLR or even full kinetic effects, as well as plasma rotation effect, taken into account. To include kinetic effects, the approach of solving for the distribution function as a local eigenvalue ω problem as in the GS2 code will be employed in the future. Comparison of the ideal MHD version of the code with DCON, PEST, and GATO will be discussed. The non-ideal MHD version of the code will be employed to study as an application the transport barrier physics in tokamak discharges.
Workshop on adaptive grid methods for fusion plasmas
Wiley, J.C.
1995-07-01
The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.
Interactive solution-adaptive grid generation
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Henderson, Todd L.
1992-01-01
TURBO-AD is an interactive solution-adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution-adaptive grid generation technique into a single interactive solution-adaptive grid generation package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties that had been encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on a unit square in the parametric domain, and the new adapted grid in the parametric domain is then mapped back to the physical domain. The grid adaptation is achieved by first adapting the control points to a numerical solution in the parametric domain using control sources obtained from flow properties. Then a new modified grid is generated from the adapted control net. This solution-adaptive grid generation process is efficient because the number of control points is much less than the number of grid points and the generation of a new grid from the adapted control net is an efficient algebraic process. TURBO-AD provides the user with both local and global grid controls.
Telescope Adaptive Optics Code
2005-07-28
The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less
Interactive solution-adaptive grid generation procedure
NASA Technical Reports Server (NTRS)
Henderson, Todd L.; Choo, Yung K.; Lee, Ki D.
1992-01-01
TURBO-AD is an interactive solution adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution adaptive grid generation technique into a single interactive package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on the unit square in the parametric domain, and the new adapted grid is then mapped back to the physical domain. The grid adaption is achieved by adapting the control points to a numerical solution in the parametric domain using control sources obtained from the flow properties. Then a new modified grid is generated from the adapted control net. This process is efficient because the number of control points is much less than the number of grid points and the generation of the grid is an efficient algebraic process. TURBO-AD provides the user with both local and global controls.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
An adaptive grid with directional control
NASA Technical Reports Server (NTRS)
Brackbill, J. U.
1993-01-01
An adaptive grid generator for adaptive node movement is here derived by combining a variational formulation of Winslow's (1981) variable-diffusion method with a directional control functional. By applying harmonic-function theory, it becomes possible to define conditions under which there exist unique solutions of the resulting elliptic equations. The results obtained for the grid generator's application to the complex problem posed by the fluid instability-driven magnetic field reconnection demonstrate one-tenth the computational cost of either a Eulerian grid or an adaptive grid without directional control.
The fundamentals of adaptive grid movement
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1990-01-01
Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.
Rapid Structured Volume Grid Smoothing and Adaption Technique
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2006-01-01
A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.
2008-01-01
This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.
Structured adaptive grid generation using algebraic methods
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.
1993-01-01
The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration
Grid adaptation using chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1994-01-01
The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.
Grid adaptation using Chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
Grid adaption using Chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
Adaptive Dynamic Event Tree in RAVEN code
Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Cogliati, Joshua Joseph; Kinoshita, Robert Arthur
2014-11-01
RAVEN is a software tool that is focused on performing statistical analysis of stochastic dynamic systems. RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other applications (system codes). Among the several capabilities currently present in RAVEN, there are five different sampling strategies: Monte Carlo, Latin Hyper Cube, Grid, Adaptive and Dynamic Event Tree (DET) sampling methodologies. The scope of this paper is to present a new sampling approach, currently under definition and implementation: an evolution of the DET me
Driver Code for Adaptive Optics
NASA Technical Reports Server (NTRS)
Rao, Shanti
2007-01-01
A special-purpose computer code for a deformable-mirror adaptive-optics control system transmits pixel-registered control from (1) a personal computer running software that generates the control data to (2) a circuit board with 128 digital-to-analog converters (DACs) that generate voltages to drive the deformable-mirror actuators. This program reads control-voltage codes from a text file, then sends them, via the computer s parallel port, to a circuit board with four AD5535 (or equivalent) chips. Whereas a similar prior computer program was capable of transmitting data to only one chip at a time, this program can send data to four chips simultaneously. This program is in the form of C-language code that can be compiled and linked into an adaptive-optics software system. The program as supplied includes source code for integration into the adaptive-optics software, documentation, and a component that provides a demonstration of loading DAC codes from a text file. On a standard Windows desktop computer, the software can update 128 channels in 10 ms. On Real-Time Linux with a digital I/O card, the software can update 1024 channels (8 boards in parallel) every 8 ms.
A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Deere, Karen A.
2008-01-01
NASA created the Supersonics Project as part of the NASA Fundamental Aeronautics Program to advance technology that will make a supersonic flight over land viable. Computational flow solvers have lacked the ability to accurately predict sonic boom from the near to far field. The focus of this investigation was to establish gridding and adaptation techniques to predict near-to-mid-field (<10 body lengths below the aircraft) boom signatures at supersonic speeds using the USM3D unstructured grid flow solver. The study began by examining sources along the body the aircraft, far field sourcing and far field boundaries. The study then examined several techniques for grid adaptation. During the course of the study, volume sourcing was introduced as a new way to source grids using the grid generation code VGRID. Two different methods of using the volume sources were examined. The first method, based on manual insertion of the numerous volume sources, made great improvements in the prediction capability of USM3D for boom signatures. The second method (SSGRID), which uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid and pressure waves, showed similar results with a more automated approach. Due to SSGRID s results and ease of use, the rest of the study focused on developing a best practice using SSGRID. The best practice created by this study for boom predictions using the CFD code USM3D involved: 1) creating a small cylindrical outer boundary either 1 or 2 body lengths in diameter (depending on how far below the aircraft the boom prediction is required), 2) using a single volume source under the aircraft, and 3) using SSGRID to stretch and shear the grid to the desired length.
Adaptive refinement tools for tetrahedral unstructured grids
NASA Technical Reports Server (NTRS)
Pao, S. Paul (Inventor); Abdol-Hamid, Khaled S. (Inventor)
2011-01-01
An exemplary embodiment providing one or more improvements includes software which is robust, efficient, and has a very fast run time for user directed grid enrichment and flow solution adaptive grid refinement. All user selectable options (e.g., the choice of functions, the choice of thresholds, etc.), other than a pre-marked cell list, can be entered on the command line. The ease of application is an asset for flow physics research and preliminary design CFD analysis where fast grid modification is often needed to deal with unanticipated development of flow details.
Dynamic Load Balancing for Adaptive Unstructured Grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Saini, Subhash (Technical Monitor)
1998-01-01
Dynamic mesh adaptation on unstructured grids is a powerful tool for computing unsteady three-dimensional problems that require grid modifications to efficiently resolve solution features. By locally refining and coarsening the mesh to capture phenomena of interest, such procedures make standard computational methods more cost effective. Highly refined meshes are required to accurately capture shock waves, contact discontinuities, vortices, and shear layers in fluid flow problems. Adaptive meshes have also proved to be useful in several other areas of computational science and engineering like computer vision and graphics, semiconductor device modeling, and structural mechanics. Local mesh adaptation provides the opportunity to obtain solutions that are comparable to those obtained on globally-refined grids but at a much lower cost. Additional information is contained in the original extended abstract.
Elliptic Solvers for Adaptive Mesh Refinement Grids
Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.
1999-06-03
We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.
Adaptive differential pulse-code modulation with adaptive bit allocation
NASA Astrophysics Data System (ADS)
Frangoulis, E. D.; Yoshida, K.; Turner, L. F.
1984-08-01
Studies have been conducted regarding the possibility to obtain good quality speech at data rates in the range from 16 kbit/s to 32 kbit/s. The techniques considered are related to adaptive predictive coding (APC) and adaptive differential pulse-code modulation (ADPCM). At 16 kbit/s adaptive transform coding (ATC) has also been used. The present investigation is concerned with a new method of speech coding. The described method employs adaptive bit allocation, similar to that used in adaptive transform coding, together with adaptive differential pulse-code modulation, employing first-order prediction. The new method has the objective to improve the quality of the speech over that which can be obtained with conventional ADPCM employing a fourth-order predictor. Attention is given to the ADPCM-AB system, the design of a subjective test, and the application of switched preemphasis to ADPCM.
OMEGA: The operational multiscale environment model with grid adaptivity
Bacon, D.P.
1995-07-01
This review talk describes the OMEGA code, used for weather simulation and the modeling of aerosol transport through the atmosphere. Omega employs a 3D mesh of wedge shaped elements (triangles when viewed from above) that adapt with time. Because wedges are laid out in layers of triangular elements, the scheme can utilize structured storage and differencing techniques along the elevation coordinate, and is thus a hybrid of structured and unstructured methods. The utility of adaptive gridding in this moded, near geographic features such as coastlines, where material properties change discontinuously, is illustrated. Temporal adaptivity was used additionally to track moving internal fronts, such as clouds of aerosol contaminants. The author also discusses limitations specific to this problem, including manipulation of huge data bases and fixed turn-around times. In practice, the latter requires a carefully tuned optimization between accuracy and computation speed.
Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Pulliam, Thomas H.
2011-01-01
An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
A multi-grid code for 3-D transonic potential flow about axisymmetric inlets at angle of attack
NASA Technical Reports Server (NTRS)
Mccarthy, D. R.; Reyhner, T. A.
1980-01-01
In the present work, an existing transonic potential code is adapted to utilize the Multiple Level Adaptive technique proposed by A. Brandt. It is shown that order of magnitude improvements in speed and greatly improved accuracy over the unmodified code are achieved. Consideration is given to the difficulties of multi-grid programming, and possible future applications are surveyed.
High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint
Basso, T. S.
2008-05-01
This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.
Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockhard, David P.
2013-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.
FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.
2010-01-01
This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.
Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.
2012-02-01
Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed of light. Significant progress in its numerical modeling emerged in the last two decades, and we highlight specifically the need for grid-adaptive, shock-capturing treatments found in several contemporary codes in active use and development. Our discussion highlights one such code, MPI-AMRVAC (Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code), but includes generic strategies for allowing massively parallel, block-tree adaptive simulations in any dimensionality. We provide implementation details reflecting the underlying data structures as used in MPI-AMRVAC. Parallelization strategies and scaling efficiencies are discussed for representative applications, along with guidelines for data formats suitable for parallel I/O. Refinement strategies available in MPI-AMRVAC are presented, which cover error estimators in use in many modern AMR frameworks. A test suite for relativistic hydro and magnetohydrodynamics is provided, chosen to cover all aspects encountered in high-resolution, shock-governed astrophysical applications. This test suite provides ample examples highlighting the advantages of AMR in relativistic flow problems.
Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement
Anninos, P; Fragile, P C; Salmonson, J D
2005-05-06
A new code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. it provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threated oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. A number of tests are presented to demonstrate robustness of the numerical algorithms and adaptive mesh framework over a wide spectrum of problems, boosts, and astrophysical applications, including relativistic shock tubes, shock collisions, magnetosonic shocks, Alfven wave propagation, blast waves, magnetized Bondi flow, and the magneto-rotational instability in Kerr black hole spacetimes.
Techniques for grid manipulation and adaptation. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.
1992-01-01
Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.
An adaptive grid method for computing time accurate solutions on structured grids
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Smith, Robert E.; Eiseman, Peter R.
1991-01-01
The solution method consists of three parts: a grid movement scheme; an unsteady Euler equation solver; and a temporal coupling routine that links the dynamic grid to the Euler solver. The grid movement scheme is an algebraic method containing grid controls that generate a smooth grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling is performed with a grid prediction correction procedure that is simple to implement and provides a grid that does not lag the solution in time. The adaptive solution method is tested by computing the unsteady inviscid solutions for a one dimensional shock tube and a two dimensional shock vortex iteraction.
Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition
NASA Technical Reports Server (NTRS)
Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd
2015-01-01
Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.
Adapting Grids For Computing Two-Dimensional Flows
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1992-01-01
SAGE2D is two-dimensional implementation of Self Adaptive Grid Evolution computer program that intelligently redistributes initial grid points on basis of initial flow-field solution. Grids modified according to initial computed flows enabling recomputation at greater accuracy. Written in FORTRAN 77.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.
1995-01-01
This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
Moving and adaptive grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Trepanier, Jean-Yves; Camarero, Ricardo
1995-01-01
This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.
An interactive grid generator for TOUGH family code
2004-01-09
WinGridder has been developed for designing, generating, and visualizing (at various spatial scales) numerical grids used in reservoir simulations and groundwater modeling studies. It can save mesh files for TOUGH family codes and output additional grid information for various purposes in either graphic format or plain text format, many important features, such as inclined faults and offset, layering structure, local refinements, and embedded engineering structures, can be represented in the grid. The main advantages ofmore » this grid-generation software are its user friendly graphical interfaces, flexible grid design capabilities, efficient grid generation, and powerful searching and post-processing capability, especially for large size grid (e.g., a grid of million grid cells). The main improvements of the version 2.0 are (1) to add a capability of handling a repository with multiple sub-regions and specified drifts, (2) to use an interpolation method, instead of picking the nearest point, in calculating the geological data from the given digital geological model, and (3) enhanced searching and other capability.« less
Cooperative solutions coupling a geometry engine and adaptive solver codes
NASA Technical Reports Server (NTRS)
Dickens, Thomas P.
1995-01-01
Follow-on work has progressed in using Aero Grid and Paneling System (AGPS), a geometry and visualization system, as a dynamic real time geometry monitor, manipulator, and interrogator for other codes. In particular, AGPS has been successfully coupled with adaptive flow solvers which iterate, refining the grid in areas of interest, and continuing on to a solution. With the coupling to the geometry engine, the new grids represent the actual geometry much more accurately since they are derived directly from the geometry and do not use refits to the first-cut grids. Additional work has been done with design runs where the geometric shape is modified to achieve a desired result. Various constraints are used to point the solution in a reasonable direction which also more closely satisfies the desired results. Concepts and techniques are presented, as well as examples of sample case studies. Issues such as distributed operation of the cooperative codes versus running all codes locally and pre-calculation for performance are discussed. Future directions are considered which will build on these techniques in light of changing computer environments.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
An object-oriented approach for parallel self adaptive mesh refinement on block structured grids
NASA Technical Reports Server (NTRS)
Lemke, Max; Witsch, Kristian; Quinlan, Daniel
1993-01-01
Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.
Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.
2014-01-01
Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.
Solving Fluid Flow Problems on Moving and Adaptive Overlapping Grids
Henshaw, W
2005-07-28
Solution of fluid dynamics problems on overlapping grids will be discussed. An overlapping grid consists of a set of structured component grids that cover a domain and overlap where they meet. Overlapping grids provide an effective approach for developing efficient and accurate approximations for complex, possibly moving geometry. Topics to be addressed include the reactive Euler equations, the incompressible Navier-Stokes equations and elliptic equations solved with a multigrid algorithm. Recent developments coupling moving grids and adaptive mesh refinement and preliminary parallel results will also be presented.
Adaptive predictive image coding using local characteristics
NASA Astrophysics Data System (ADS)
Hsieh, C. H.; Lu, P. C.; Liou, W. G.
1989-12-01
The paper presents an efficient adaptive predictive coding method using the local characteristics of images. In this method, three coding schemes, namely, mean, subsampling combined with fixed DPCM, and ADPCM/PCM, are used and one of these is chosen adaptively based on the local characteristics of images. The prediction parameters of the two-dimensional linear predictor in the ADPCM/PCM are extracted on a block by block basis. Simulation results show that the proposed method is effective in reducing the slope overload distortion and the granular noise at low bit rates, and thus it can improve the visual quality of reconstructed images.
NASA Astrophysics Data System (ADS)
Commerçon, B.; Debout, V.; Teyssier, R.
2014-03-01
Context. Implicit solvers present strong limitations when used on supercomputing facilities and in particular for adaptive mesh-refinement codes. Aims: We present a new method for implicit adaptive time-stepping on adaptive mesh-refinement grids. We implement it in the radiation-hydrodynamics solver we designed for the RAMSES code for astrophysical purposes and, more particularly, for protostellar collapse. Methods: We briefly recall the radiation-hydrodynamics equations and the adaptive time-stepping methodology used for hydrodynamical solvers. We then introduce the different types of boundary conditions (Dirichlet, Neumann, and Robin) that are used at the interface between levels and present our implementation of the new method in the RAMSES code. The method is tested against classical diffusion and radiation-hydrodynamics tests, after which we present an application for protostellar collapse. Results: We show that using Dirichlet boundary conditions at level interfaces is a good compromise between robustness and accuracy and that it can be used in structure formation calculations. The gain in computational time over our former unique time step method ranges from factors of 5 to 50 depending on the level of adaptive time-stepping and on the problem. We successfully compare the old and new methods for protostellar collapse calculations that involve highly non linear physics. Conclusions: We have developed a simple but robust method for adaptive time-stepping of implicit scheme on adaptive mesh-refinement grids. It can be applied to a wide variety of physical problems that involve diffusion processes.
Application of a solution adaptive grid scheme, SAGE, to complex three-dimensional flows
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1991-01-01
A new three-dimensional (3D) adaptive grid code based on the algebraic, solution-adaptive scheme of Nakahashi and Deiwert is developed and applied to a variety of problems. The new computer code, SAGE, is an extension of the same-named two-dimensional (2D) solution-adaptive program that has already proven to be a powerful tool in computational fluid dynamics applications. The new code has been applied to a range of complex three-dimensional, supersonic and hypersonic flows. Examples discussed are a tandem-slot fuel injector, the hypersonic forebody of the Aeroassist Flight Experiment (AFE), the 3D base flow behind the AFE, the supersonic flow around a 3D swept ramp and a generic, hypersonic, 3D nozzle-plume flow. The associated adapted grids and the solution enhancements resulting from the grid adaption are presented for these cases. Three-dimensional adaption is more complex than its 2D counterpart, and the complexities unique to the 3D problems are discussed.
Adaptive Mesh Refinement in Curvilinear Body-Fitted Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Modiano, David; Colella, Phillip
1995-01-01
To be truly compatible with structured grids, an AMR algorithm should employ a block structure for the refined grids to allow flow solvers to take advantage of the strengths of unstructured grid systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes. One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted for use with body-fitted structured grid systems. Results are presented for a transonic flow over a NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.
Adaptive mesh refinement in curvilinear body-fitted grid systems
NASA Astrophysics Data System (ADS)
Steinthorsson, Erlendur; Modiano, David; Colella, Phillip
1995-10-01
To be truly compatible with structured grids, an AMR algorithm should employ a block structure for the refined grids to allow flow solvers to take advantage of the strengths of unstructured grid systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes. One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted for use with body-fitted structured grid systems. Results are presented for a transonic flow over a NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
Topology and grid adaption for high-speed flow computations
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Tiwari, Surendra N.
1989-01-01
This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.
Adaptive grid generation in a patient-specific cerebral aneurysm
NASA Astrophysics Data System (ADS)
Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan
2013-11-01
Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce
Adaptive grid generation in a patient-specific cerebral aneurysm.
Hodis, Simona; Kallmes, David F; Dragomir-Daescu, Dan
2013-11-01
Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce
Parallel Implementation of an Adaptive Scheme for 3D Unstructured Grids on the SP2
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Strawn, Roger C.
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.OX speedup on 64 processors when 10% of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.
Parallel implementation of an adaptive scheme for 3D unstructured grids on the SP2
NASA Technical Reports Server (NTRS)
Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.0X speedup on 64 processors when 10 percent of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all the mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and
Variational method for adaptive grid generation
Brackbill, J.U.
1983-01-01
A variational method for generating adaptive meshes is described. Functionals measuring smoothness, skewness, orientation, and the Jacobian are minimized to generate a mapping from a rectilinear domain in natural coordinate to an arbitrary domain in physical coordinates. From the mapping, a mesh is easily constructed. In using the method to adaptively zone computational problems, as few as one third the number of mesh points are required in each coordinate direction compared with a uniformly zoned mesh.
ICASE/LaRC Workshop on Adaptive Grid Methods
NASA Technical Reports Server (NTRS)
South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)
1995-01-01
Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.
RHALE: A 3-D MMALE code for unstructured grids
Peery, J.S.; Budge, K.G.; Wong, M.K.W.; Trucano, T.G.
1993-08-01
This paper describes RHALE, a multi-material arbitrary Lagrangian-Eulerian (MMALE) shock physics code. RHALE is the successor to CTH, Sandia`s 3-D Eulerian shock physics code, and will be capable of solving problems that CTH cannot adequately address. We discuss the Lagrangian solid mechanics capabilities of RHALE, which include arbitrary mesh connectivity, superior artificial viscosity, and improved material models. We discuss the MMALE algorithms that have been extended for arbitrary grids in both two- and three-dimensions. The MMALE addition to RHALE provides the accuracy of a Lagrangian code while allowing a calculation to proceed under very large material distortions. Coupling an arbitrary quadrilateral or hexahedral grid to the MMALE solution facilitates modeling of complex shapes with a greatly reduced number of computational cells. RHALE allows regions of a problem to be modeled with Lagrangian, Eulerian or ALE meshes. In addition, regions can switch from Lagrangian to ALE to Eulerian based on user input or mesh distortion. For ALE meshes, new node locations are determined with a variety of element based equipotential schemes. Element quantities are advected with donor, van Leer, or Super-B algorithms. Nodal quantities are advected with the second order SHALE or HIS algorithms. Material interfaces are determined with a modified Young`s high resolution interface tracker or the SLIC algorithm. RHALE has been used to model many problems of interest to the mechanics, hypervelocity impact, and shock physics communities. Results of a sampling of these problems are presented in this paper.
Adaptive hybrid prismatic-tetrahedral grids for viscous flows
NASA Technical Reports Server (NTRS)
Kallinderis, Yannis; Khawaja, Aly; Mcmorris, Harlan
1995-01-01
The paper presents generation of adaptive hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is an Automatic Receding Method (ARM) for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples division of tetrahedra, as well as 2-D directional division of prisms.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.; Karman, Steve L., Jr.
1996-01-01
The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
ICAN Computer Code Adapted for Building Materials
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.
1997-01-01
The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.
Self-Avoiding Walks Over Adaptive Triangular Grids
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1999-01-01
Space-filling curves is a popular approach based on a geometric embedding for linearizing computational meshes. We present a new O(n log n) combinatorial algorithm for constructing a self avoiding walk through a two dimensional mesh containing n triangles. We show that for hierarchical adaptive meshes, the algorithm can be locally adapted and easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the runtime partitioning and load balancing of adaptive unstructured grids.
Hierarchy-Direction Selective Approach for Locally Adaptive Sparse Grids
Stoyanov, Miroslav K
2013-09-01
We consider the problem of multidimensional adaptive hierarchical interpolation. We use sparse grids points and functions that are induced from a one dimensional hierarchical rule via tensor products. The classical locally adaptive sparse grid algorithm uses an isotropic refinement from the coarser to the denser levels of the hierarchy. However, the multidimensional hierarchy provides a more complex structure that allows for various anisotropic and hierarchy selective refinement techniques. We consider the more advanced refinement techniques and apply them to a number of simple test functions chosen to demonstrate the various advantages and disadvantages of each method. While there is no refinement scheme that is optimal for all functions, the fully adaptive family-direction-selective technique is usually more stable and requires fewer samples.
Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak
1997-01-01
Mesh adaption is a powerful tool for efficient unstructured- grid computations but causes load imbalance among processors on a parallel machine. We present a novel method to dynamically balance the processor workloads with a global view. This paper presents, for the first time, the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. Previous results indicated that mesh repartitioning and data remapping are potential bottlenecks for performing large-scale scientific calculations. We resolve these issues and demonstrate that our framework remains viable on a large number of processors.
Three-dimensional Navier-Stokes calculations using solution-adapted grids
NASA Technical Reports Server (NTRS)
Henderson, T. L.; Huang, W.; Lee, K. D.; Choo, Y. K.
1993-01-01
A three-dimensional solution-adaptive grid generation technique is presented. The adaptation technique redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. It is applicable to structured grids with a multiblock topology. The method uses a numerical mapping and potential theory to modify the initial grid distribution based on the properties of the flow solution on the initial grid. The technique is demonstrated with two examples - a transonic finite wing and a supersonic blunt fin. The advantages are shown by comparing flow solutions on the adapted grids with those on the initial grids.
An Adaptive Motion Estimation Scheme for Video Coding
Gao, Yuan; Jia, Kebin
2014-01-01
The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised. PMID:24672313
An adaptive motion estimation scheme for video coding.
Liu, Pengyu; Gao, Yuan; Jia, Kebin
2014-01-01
The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised.
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2003-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2001-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
NASA Technical Reports Server (NTRS)
Nakamura, S.
1983-01-01
The effects of truncation error on the numerical solution of transonic flows using the full potential equation are studied. The effects of adapting grid point distributions to various solution aspects including shock waves is also discussed. A conclusion is that a rapid change of grid spacing is damaging to the accuracy of the flow solution. Therefore, in a solution adaptive grid application an optimal grid is obtained as a tradeoff between the amount of grid refinement and the rate of grid stretching.
NASA Astrophysics Data System (ADS)
den, M.; Yamashita, K.; Ogawa, T.
A three-dimensional (3D) hydrodynamical (HD) and magneto-hydrodynamical (MHD) simulation codes using an adaptive mesh refinement (AMR) scheme are developed. This method places fine grids over areas of interest such as shock waves in order to obtain high resolution and places uniform grids with lower resolution in other area. Thus AMR scheme can provide a combination of high solution accuracy and computational robustness. We demonstrate numerical results for a simplified model of a shock propagation, which strongly indicate that the AMR techniques have the ability to resolve disturbances in an interplanetary space. We also present simulation results for MHD code.
Visualizing 3D Turbulence On Temporally Adaptive Wavelet Collocation Grids
NASA Astrophysics Data System (ADS)
Goldstein, D. E.; Kadlec, B. J.; Yuen, D. A.; Erlebacher, G.
2005-12-01
Today there is an explosion in data from high-resolution computations of nonlinear phenomena in many fields, including the geo- and environmental sciences. The efficient storage and subsequent visualization of these large data sets is a trade off in storage costs versus data quality. New dynamically adaptive simulation methodologies promise significant computational cost savings and have the added benefit of producing results on adapted grids that significantly reduce storage and data manipulation costs. Yet, with these adaptive simulation methodologies come new challenges in the visualization of temporally adaptive data sets. In this work turbulence data sets from Stochastic Coherent Adaptive Large Eddy Simulations (SCALES) are visualized with the open source tool ParaView, as a challenging case study. SCALES simulations use a temporally adaptive collocation grid defined by wavelet threshold filtering to resolve the most energetic coherent structures in a turbulence field. A subgrid scale model is used to account for the effect of unresolved subgrid scale modes. The results from the SCALES simulations are saved on a thresholded dyadic wavelet collocation grid, which by its nature does not include cell information. Paraview is an open source visualization package developed by KitWare(tm) that is based on the widely used VTK graphics toolkit. The efficient generation of cell information, required with current ParaView data formats, is explored using custom algorithms and VTK toolkit routines. Adaptive 3d visualizations using isosurfaces and volume visualizations are compared with non-adaptive visualizations. To explore the localized multiscale structures in the turbulent data sets the wavelet coefficients are also visualized allowing visualization of energy contained in local physical regions as well as in local wave number space.
Digital breast tomosynthesis reconstruction with an adaptive voxel grid
NASA Astrophysics Data System (ADS)
Claus, Bernhard; Chan, Heang-Ping
2014-03-01
In digital breast tomosynthesis (DBT) volume datasets are typically reconstructed with an anisotropic voxel size, where the in-plane voxel size usually reflects the detector pixel size (e.g., 0.1 mm), and the slice separation is generally between 0.5-1.0 mm. Increasing the tomographic angle is expected to give better 3D image quality; however, the slice spacing in the reconstruction should be reduced, otherwise one may risk losing fine-scale image detail (e.g., small microcalcifications). An alternative strategy consists of reconstructing on an adaptive voxel grid, where the voxel height at each location is adapted based on the backprojected data at this location, with the goal to improve image quality for microcalcifications. In this paper we present an approach for generating such an adaptive voxel grid. This approach is based on an initial reconstruction step that is performed at a finer slice-spacing combined with a selection of an "optimal" height for each voxel. This initial step is followed by a (potentially iterative) reconstruction acting now on the adaptive grid only.
Unstructured viscous flow solution using adaptive hybrid grids
NASA Technical Reports Server (NTRS)
Galle, Martin
1995-01-01
A three dimensional finite volume scheme based on hybrid grids containing both tetrahedral and hexahedral cells is presented. The application to hybrid grids offers the possibility to combine the flexibility of tetrahedral meshes with the accuracy of hexahedral grids. An algorithm to compute a dual mesh for the entire computational domain was developed. The dual mesh technique guarantees conservation in the whole flow field even at interfaces between hexahedral and tetrahedral domains and enables the employment of an accurate upwind flow solver. The hybrid mesh can be adapted to the solution by dividing cells in areas of insufficient resolution. The method is tested on different viscous and inviscid cases for hypersonic, transonic and subsonic flows.
Solution adaptive grids applied to low Reynolds number flow
NASA Astrophysics Data System (ADS)
de With, G.; Holdø, A. E.; Huld, T. A.
2003-08-01
A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified.
On the dynamics of some grid adaption schemes
NASA Technical Reports Server (NTRS)
Sweby, Peter K.; Yee, Helen C.
1994-01-01
The dynamics of a one-parameter family of mesh equidistribution schemes coupled with finite difference discretisations of linear and nonlinear convection-diffusion model equations is studied numerically. It is shown that, when time marched to steady state, the grid adaption not only influences the stability and convergence rate of the overall scheme, but can also introduce spurious dynamics to the numerical solution procedure.
Unstructured Adaptive Grid Computations on an Array of SMPs
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Pramanick, Ira; Sohn, Andrew; Simon, Horst D.
1996-01-01
Dynamic load balancing is necessary for parallel adaptive methods to solve unsteady CFD problems on unstructured grids. We have presented such a dynamic load balancing framework called JOVE, in this paper. Results on a four-POWERnode POWER CHALLENGEarray demonstrated that load balancing gives significant performance improvements over no load balancing for such adaptive computations. The parallel speedup of JOVE, implemented using MPI on the POWER CHALLENCEarray, was significant, being as high as 31 for 32 processors. An implementation of JOVE that exploits 'an array of SMPS' architecture was also studied; this hybrid JOVE outperformed flat JOVE by up to 28% on the meshes and adaption models tested. With large, realistic meshes and actual flow-solver and adaption phases incorporated into JOVE, hybrid JOVE can be expected to yield significant advantage over flat JOVE, especially as the number of processors is increased, thus demonstrating the scalability of an array of SMPs architecture.
HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.
A geometry-based adaptive unstructured grid generation algorithm for complex geological media
NASA Astrophysics Data System (ADS)
Bahrainian, Seyed Saied; Dezfuli, Alireza Daneh
2014-07-01
In this paper a novel unstructured grid generation algorithm is presented that considers the effect of geological features and well locations in grid resolution. The proposed grid generation algorithm presents a strategy for definition and construction of an initial grid based on the geological model, geometry adaptation of geological features, and grid resolution control. The algorithm is applied to seismotectonic map of the Masjed-i-Soleiman reservoir. Comparison of grid results with the “Triangle” program shows a more suitable permeability contrast. Immiscible two-phase flow solutions are presented for a fractured porous media test case using different grid resolutions. Adapted grid on the fracture geometry gave identical results with that of a fine grid. The adapted grid employed 88.2% less CPU time when compared to the solutions obtained by the fine grid.
The Quantum Workings of the Rotating 64-Grid Genetic Code
Castro-Chavez, Fernando
2011-01-01
In this article, the pattern learned from the classic or conventional rotating circular genetic code is transferred to a 64-grid model. In this non-static representation, the codons for the same amino acid within each quadrant could be exchanged, wobbling or rotating in a quantic way similar to the electrons within an atomic orbit. Represented in this 64-grid format are the three rules of variation encompassing 4, 2, or 1 quadrant, respectively: 1) same position in four quadrants for the essential hydrophobic amino acids that have U at the center, 2) same or contiguous position for the same or related amino acids in two quadrants, and 3) equivalent amino acids within one quadrant. Also represented is the mathematical balance of the odd and even codons, and the most used codons per amino acid in humans compared to one diametrically opposed organism: the plant Arabidopsis thaliana, a comparison that depicts the difference in third nucleotide preferences: a C/U exchange for 11 amino acids, a G/A and a G/U exchange for 2 amino acids, respectively, and a C/A exchange for one amino acid; by studying these codon usage preferences per amino acid we present our two hypotheses: 1) A slower translation in vertebrates and 2) a faster translation in invertebrates, possibly due to the aqueous environments where they live. These codon usage preferences may also be able to determine genomic compatibility by comparing individual mRNAs and their functional third dimensional structure, transport and translation within cells and organisms. These observations are aimed to the design of bioinformatics computational tools to compare human genomes and to determine the exchange between compatible codons and amino acids, to preserve and/or to bring back extinct biodiversity, and for the early detection of incompatible changes that lead to genetic diseases. PMID:22308074
Parallel architectures for iterative methods on adaptive, block structured grids
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1983-01-01
A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.
Load Balancing Unstructured Adaptive Grids for CFD Problems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid
1996-01-01
Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.
Adaptive grid embedding for the two-dimensional flux-split Euler equations. M.S. Thesis
NASA Technical Reports Server (NTRS)
Warren, Gary Patrick
1990-01-01
A numerical algorithm is presented for solving the 2-D flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for a subcritical airfoil and a transonic airfoil with 3 levels of adaptation. Comparisons are made with a structured upwind Euler code which uses the same flux integration techniques of the present algorithm. Good agreement is obtained with converged surface pressure coefficients. The lift coefficients of the adaptive code are within 2 1/2 percent of the structured code for the sub-critical case and within 4 1/2 percent of the structured code for the transonic case using approximately one-third the number of grid points.
A Solution Adaptive Technique Using Tetrahedral Unstructured Grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2000-01-01
An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.
Cunningham, Andrew J.; Frank, Adam; Varniere, Peggy; Mitran, Sorin; Jones, Thomas W.
2009-06-15
A description is given of the algorithms implemented in the AstroBEAR adaptive mesh-refinement code for ideal magnetohydrodynamics. The code provides several high-resolution shock-capturing schemes which are constructed to maintain conserved quantities of the flow in a finite-volume sense. Divergence-free magnetic field topologies are maintained to machine precision by collating the components of the magnetic field on a cell-interface staggered grid and utilizing the constrained transport approach for integrating the induction equations. The maintenance of magnetic field topologies on adaptive grids is achieved using prolongation and restriction operators which preserve the divergence and curl of the magnetic field across collocated grids of different resolutions. The robustness and correctness of the code is demonstrated by comparing the numerical solution of various tests with analytical solutions or previously published numerical solutions obtained by other codes.
INITIAL APPL;ICATION OF THE ADAPTIVE GRID AIR POLLUTION MODEL
The paper discusses an adaptive-grid algorithm used in air pollution models. The algorithm reduces errors related to insufficient grid resolution by automatically refining the grid scales in regions of high interest. Meanwhile the grid scales are coarsened in other parts of the d...
NASA Technical Reports Server (NTRS)
Lytle, John K.; Harloff, Gary J.; Hsu, Andrew T.
1990-01-01
Previous calculations of jet-in-crossflow problems have been sensitive to the turbulence and artificial viscosity models and to the grid. Consequently, the eddy viscosity model in the PARC3D code was modified to consider the turbulent jet by switching from the Baldwin-Lomax (1978) model to an axisymmetric jet model. A modified artificial viscosity model has been utilized and evaluated in this study as well. The new model includes cell size scaling and a directional dependence in the coefficients. Computational results from PARC3D demonstrate the effects of the viscosity models on the pressure distribution fore and aft of the jet and the ability of the adaptive grid scheme to adjust to the three-dimensional gradients around the jet.
Self-Avoiding Walks over Adaptive Triangular Grids
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1998-01-01
In this paper, we present a new approach to constructing a "self-avoiding" walk through a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling curves which is based on a geometric embedding, our approach is combinatorial in the sense that it uses the mesh connectivity only. We present an algorithm for constructing a self-avoiding walk which can be applied to any unstructured triangular mesh. The complexity of the algorithm is O(n x log(n)), where n is the number of triangles in the mesh. We show that for hierarchical adaptive meshes, the algorithm can be easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the run-time partitioning and load balancing of adaptive unstructured grids.
TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE
NASA Technical Reports Server (NTRS)
Vu, B. T.
1994-01-01
TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
DRAGON Grid: A Three-Dimensional Hybrid Grid Generation Code Developed
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2000-01-01
Because grid generation can consume 70 percent of the total analysis time for a typical three-dimensional viscous flow simulation for a practical engineering device, payoffs from research and development could reduce costs and increase throughputs considerably. In this study, researchers at the NASA Glenn Research Center at Lewis Field developed a new hybrid grid approach with the advantages of flexibility, high-quality grids suitable for an accurate resolution of viscous regions, and a low memory requirement. These advantages will, in turn, reduce analysis time and increase accuracy. They result from an innovative combination of structured and unstructured grids to represent the geometry and the computation domain. The present approach makes use of the respective strengths of both the structured and unstructured grid methods, while minimizing their weaknesses. First, the Chimera grid generates high-quality, mostly orthogonal meshes around individual components. This process is flexible and can be done easily. Normally, these individual grids are required overlap each other so that the solution on one grid can communicate with another. However, when this communication is carried out via a nonconservative interpolation procedure, a spurious solution can result. Current research is aimed at entirely eliminating this undesired interpolation by directly replacing arbitrary grid overlapping with a nonstructured grid called a DRAGON grid, which uses the same set of conservation laws over the entire region, thus ensuring conservation everywhere. The DRAGON grid is shown for a typical film-cooled turbine vane with 33 holes and 3 plenum compartments. There are structured grids around each geometrical entity and unstructured grids connecting them. In fiscal year 1999, Glenn researchers developed and tested the three-dimensional DRAGON grid-generation tools. A flow solver suitable for the DRAGON grid has been developed, and a series of validation tests are underway.
The use of solution adaptive grids in solving partial differential equations
NASA Technical Reports Server (NTRS)
Anderson, D. A.; Rai, M. M.
1982-01-01
The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.
Preliminary Benchmarking of Plinian Eruption Simulations Using an Adaptive Grid Eulerian Technique
NASA Astrophysics Data System (ADS)
Peterson, A. H.; Ogden, D. E.; Wohletz, K. H.; Gisler, G.; Glatzmaier, G. A.
2005-12-01
The SAGE (SAIC Adaptive Grid Eulerian) code is an Eulerian hydrodynamics numerical technique employing adaptive mesh refinement at each cycle for every cell in 1-, 2-, and 3-D grids. It is primarily designed to solve high deformation flow of multiple materials and thus provides important capabilities for simulating volcanic eruption phenomena. Its multimaterial equation of state libraries includes a comprehensive coverage of water from solid ice through two-phase liquid and vapor to supercritical states approaching the Hugoniot, and extremely important aspect for simulating volcanic gases in general. In development are strength and failure rules that model non-Newtonian fluid/solid deformation. Because of the low effective sound speeds of eruptive mixtures, the facts that SAGE uses a piecewise, linear, multi-material, Gudonov numerical method to resolve shocks with second-order precision and exactly conserves mass, momentum, and energy, are a highly desirable attributes. Although this code has been previously used to simulate a volcanic eruption (i.e., eruption through a crater lake at Ruapehu volcano by Morrissey and Gisler), we are embarking in an effort to benchmark the code with CFDLib, a well-validated arbitrary Lagrangian-Eulerian code developed at Los Alamos National Laboratory. Through this effort we expect to better understand the strengths and weaknesses, the limitations, and provide direction for important enhancement of SAGE, and potentially provide the volcanological community with a powerful alternative to numerical codes currently available. At this point in our benchmarking, we demonstrate some results for fluid convection within a chamber and fluid jetting through a conduit.
Adaptive sparse grid expansions of the vibrational Hamiltonian.
Strobusch, D; Scheurer, Ch
2014-02-21
The vibrational Hamiltonian involves two high dimensional operators, the kinetic energy operator (KEO), and the potential energy surface (PES). Both must be approximated for systems involving more than a few atoms. Adaptive approximation schemes are not only superior to truncated Taylor or many-body expansions (MBE), they also allow for error estimates, and thus operators of predefined precision. To this end, modified sparse grids (SG) are developed that can be combined with adaptive MBEs. This MBE/SG hybrid approach yields a unified, fully adaptive representation of the KEO and the PES. Refinement criteria, based on the vibrational self-consistent field (VSCF) and vibrational configuration interaction (VCI) methods, are presented. The combination of the adaptive MBE/SG approach and the VSCF plus VCI methods yields a black box like procedure to compute accurate vibrational spectra. This is demonstrated on a test set of molecules, comprising water, formaldehyde, methanimine, and ethylene. The test set is first employed to prove convergence for semi-empirical PM3-PESs and subsequently to compute accurate vibrational spectra from CCSD(T)-PESs that agree well with experimental values.
Adaptive sparse grid expansions of the vibrational Hamiltonian
Strobusch, D.; Scheurer, Ch.
2014-02-21
The vibrational Hamiltonian involves two high dimensional operators, the kinetic energy operator (KEO), and the potential energy surface (PES). Both must be approximated for systems involving more than a few atoms. Adaptive approximation schemes are not only superior to truncated Taylor or many-body expansions (MBE), they also allow for error estimates, and thus operators of predefined precision. To this end, modified sparse grids (SG) are developed that can be combined with adaptive MBEs. This MBE/SG hybrid approach yields a unified, fully adaptive representation of the KEO and the PES. Refinement criteria, based on the vibrational self-consistent field (VSCF) and vibrational configuration interaction (VCI) methods, are presented. The combination of the adaptive MBE/SG approach and the VSCF plus VCI methods yields a black box like procedure to compute accurate vibrational spectra. This is demonstrated on a test set of molecules, comprising water, formaldehyde, methanimine, and ethylene. The test set is first employed to prove convergence for semi-empirical PM3-PESs and subsequently to compute accurate vibrational spectra from CCSD(T)-PESs that agree well with experimental values.
Anisotropic Solution Adaptive Unstructured Grid Generation Using AFLR
NASA Technical Reports Server (NTRS)
Marcum, David L.
2007-01-01
An existing volume grid generation procedure, AFLR3, was successfully modified to generate anisotropic tetrahedral elements using a directional metric transformation defined at source nodes. The procedure can be coupled with a solver and an error estimator as part of an overall anisotropic solution adaptation methodology. It is suitable for use with an error estimator based on an adjoint, optimization, sensitivity derivative, or related approach. This offers many advantages, including more efficient point placement along with robust and efficient error estimation. It also serves as a framework for true grid optimization wherein error estimation and computational resources can be used as cost functions to determine the optimal point distribution. Within AFLR3 the metric transformation is implemented using a set of transformation vectors and associated aspect ratios. The modified overall procedure is presented along with details of the anisotropic transformation implementation. Multiple two-and three-dimensional examples are also presented that demonstrate the capability of the modified AFLR procedure to generate anisotropic elements using a set of source nodes with anisotropic transformation metrics. The example cases presented use moderate levels of anisotropy and result in usable element quality. Future testing with various flow solvers and methods for obtaining transformation metric information is needed to determine practical limits and evaluate the efficacy of the overall approach.
A novel bit-wise adaptable entropy coding technique
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is adaptable in that each bit to be encoded may have an associated probability esitmate which depends on previously encoded bits. The technique may have advantages over arithmetic coding. The technique can achieve arbitrarily small redundancy and admits a simple and fast decoder.
Generating code adapted for interlinking legacy scalar code and extended vector code
Gschwind, Michael K
2013-06-04
Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.
THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS
Mignone, A.; Tzeferacos, P.; Zanni, C.; Bodo, G.; Van Straalen, B.; Colella, P.
2012-01-01
We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory, or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.
Simpler Adaptive Selection of Golomb Power-of-Two Codes
NASA Technical Reports Server (NTRS)
Kiely, Aaron
2007-01-01
An alternative method of adaptive selection of Golomb power-of-two (GPO2) codes has been devised for use in efficient, lossless encoding of sequences of non-negative integers from discrete sources. The method is intended especially for use in compression of digital image data. This method is somewhat suboptimal, but offers the advantage in that it involves significantly less computation than does a prior method of adaptive selection of optimum codes through brute force application of all code options to every block of samples.
A wavelet-optimized, very high order adaptive grid and order numerical method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1996-01-01
Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. This paper begins with a comparison of such differencing operator construction. Next, the issue of proper grids for high order polynomials is addressed. Finally, an adaptive numerical method is introduced which adapts the numerical grid and the order of the differencing operator depending on the data. The numerical grid adaptation is performed on a Chebyshev grid. That is, at each level of refinement the grid is a Chebvshev grid and this grid is refined locally based on wavelet analysis.
NASA Astrophysics Data System (ADS)
Long, Robin
2015-12-01
With the data output from the LHC increasing, many of the LHC experiments have made significant improvements to their code to take advantage of modern CPU architecture and the accompanying advanced features. With the grid environment changing to heavily include virtualisation and cloud services, we look at whether these two systems can be compatible, or whether improvements in code are lost through virtualisation. We compare the runtime speed improvements achieved in more recent versions of ATLAS code and see if these improvements hold up on various grid paradigms.
Adaptive 3D single-block grids for the computation of viscous flows around wings
Hagmeijer, R.; Kok, J.C.
1996-12-31
A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.
Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis
Perkó, Zoltán Gilli, Luca Lathouwers, Danny Kloosterman, Jan Leen
2014-03-01
The demand for accurate and computationally affordable sensitivity and uncertainty techniques is constantly on the rise and has become especially pressing in the nuclear field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of nuclear installations. Besides traditional, already well developed methods – such as first order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE) has been given a growing emphasis in recent years due to its simple application and good performance. This paper presents new developments of the research done at TU Delft on such Polynomial Chaos (PC) techniques. Our work is focused on the Non-Intrusive Spectral Projection (NISP) approach and adaptive methods for building the PCE of responses of interest. Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating the PC coefficients. The algorithm is based on Gerstner's procedure for calculating multi-dimensional integrals but proves to be computationally significantly cheaper, while at the same it retains a similar accuracy as the original method. More importantly the issue of basis adaptivity has been investigated and two techniques have been implemented for constructing the sparse PCE of quantities of interest. Not using the traditional full PC basis set leads to further reduction in computational time since the high order grids necessary for accurately estimating the near zero expansion coefficients of polynomial basis vectors not needed in the PCE can be excluded from the calculation. Moreover the sparse PC representation of the response is easier to handle when used for sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors. The developed grid and basis adaptive methods have been implemented in Matlab as the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested on four analytical problems. These show consistent good performance both
Three-dimensional adaptive grid generation for body-fitted coordinate system
NASA Technical Reports Server (NTRS)
Chen, S. C.
1988-01-01
This report describes a numerical method for generating 3-D grids for general configurations. The basic method involves the solution of a set of quasi-linear elliptic partial differential equations via pointwise relaxation with a local relaxation factor. It allows specification of the grid spacing off the boundary surfaces and the grid orthogonality at the boundary surfaces. It includes adaptive mechanisms to improve smoothness, orthogonality, and flow resolution in the grid interior.
Enhancement of surface definition and gridding in the EAGLE code
NASA Technical Reports Server (NTRS)
Thompson, Joe F.
1991-01-01
Algorithms for smoothing of curves and surfaces for the EAGLE grid generation program are presented. The method uses an existing automated technique which detects undesirable geometric characteristics by using a local fairness criterion. The geometry entity is then smoothed by repeated removal and insertion of spline knots in the vicinity of the geometric irregularity. The smoothing algorithm is formulated for use with curves in Beta spline form and tensor product B-spline surfaces.
GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid
NASA Astrophysics Data System (ADS)
Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua
2016-10-01
A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.
A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Eiseman, Peter R.
1990-01-01
A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.
An adaptive grid method for computing the high speed 3D viscous flow about a re-entry vehicle
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Smith, Robert E.
1992-01-01
An algebraic solution adaptive grid generation method that allows adapting the grid in all three coordinate directions is presented. Techniques are described that maintain the integrity of the original vehicle definition for grid point movement on the vehicle surface and that avoid grid cross over in the boundary layer portion of the grid lying next to the vehicle surface. The adaptive method is tested by computing the Mach 6 hypersonic three dimensional viscous flow about a proposed Martian entry vehicle.
Adaptive Modulation and Coding for LTE Wireless Communication
NASA Astrophysics Data System (ADS)
Hadi, S. S.; Tiong, T. C.
2015-04-01
Long Term Evolution (LTE) is the new upgrade path for carrier with both GSM/UMTS networks and CDMA2000 networks. The LTE is targeting to become the first global mobile phone standard regardless of the different LTE frequencies and bands use in other countries barrier. Adaptive Modulation and Coding (AMC) is used to increase the network capacity or downlink data rates. Various modulation types are discussed such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM). Spatial multiplexing techniques for 4×4 MIMO antenna configuration is studied. With channel station information feedback from the mobile receiver to the base station transmitter, adaptive modulation and coding can be applied to adapt to the mobile wireless channels condition to increase spectral efficiencies without increasing bit error rate in noisy channels. In High-Speed Downlink Packet Access (HSDPA) in Universal Mobile Telecommunications System (UMTS), AMC can be used to choose modulation types and forward error correction (FEC) coding rate.
Analysis of a Major Electric Grid -- Stability and Adaptive Protection
NASA Astrophysics Data System (ADS)
Alanzi, Sultan
Protective systems of the electric grid are designed to detect and mitigate the effects of faults and other disturbances that may occur. Distance relays are used extensively for the detection of faults on transmission lines. Out-of-step relays are used for generator protection to detect loss of synchronism conditions that result from disturbances on the electric grid. Also, when a disturbance occurs and generators may tend to lose synchronism with each other, it is beneficial to separate the overall system into several independent systems that can remain stable. Unfortunately there have been cases, such as the 2003 Northeast blackout where the operation of protective relays, namely the zone 3 distance relay used for transmission line protection, contributed to the cascading effect of the blackout. It is the objective of this dissertation to propose adaptive relays for both distance protection of transmission lines and out-of-step protection of generators. By being adaptive, the relays are made aware of the system operating conditions and can adjust its settings accordingly. Inputs to the adaptive logic can come from system or environmental conditions. As a result of this effort, a new distance relay operating characteristic is proposed, referred to as a mushroom relay, which is a combination of a quadrilateral relay and a Mho relay. Also, a new criterion for determining if a power swing following a disturbance is stable or unstable is proposed. Distance protection of transmission lines is very important when discussing system responses to faults and disturbances. Distance relays are very common worldwide and although they offer great protection, there are limitations that need to be addressed. Parallel line operations (infeed effect) and the loadability limits are among the limitations that lead to improper response of relays. An Adaptive Distance Relays (ADR) offer great benefits to the protection scheme as their settings can be changed in accordance with prefault
Analysis of a Major Electric Grid -- Stability and Adaptive Protection
NASA Astrophysics Data System (ADS)
Alanzi, Sultan
Protective systems of the electric grid are designed to detect and mitigate the effects of faults and other disturbances that may occur. Distance relays are used extensively for the detection of faults on transmission lines. Out-of-step relays are used for generator protection to detect loss of synchronism conditions that result from disturbances on the electric grid. Also, when a disturbance occurs and generators may tend to lose synchronism with each other, it is beneficial to separate the overall system into several independent systems that can remain stable. Unfortunately there have been cases, such as the 2003 Northeast blackout where the operation of protective relays, namely the zone 3 distance relay used for transmission line protection, contributed to the cascading effect of the blackout. It is the objective of this dissertation to propose adaptive relays for both distance protection of transmission lines and out-of-step protection of generators. By being adaptive, the relays are made aware of the system operating conditions and can adjust its settings accordingly. Inputs to the adaptive logic can come from system or environmental conditions. As a result of this effort, a new distance relay operating characteristic is proposed, referred to as a mushroom relay, which is a combination of a quadrilateral relay and a Mho relay. Also, a new criterion for determining if a power swing following a disturbance is stable or unstable is proposed. Distance protection of transmission lines is very important when discussing system responses to faults and disturbances. Distance relays are very common worldwide and although they offer great protection, there are limitations that need to be addressed. Parallel line operations (infeed effect) and the loadability limits are among the limitations that lead to improper response of relays. An Adaptive Distance Relays (ADR) offer great benefits to the protection scheme as their settings can be changed in accordance with prefault
Adaptive data management in the ARC Grid middleware
NASA Astrophysics Data System (ADS)
Cameron, D.; Gholami, A.; Karpenko, D.; Konstantinov, A.
2011-12-01
The Advanced Resource Connector (ARC) Grid middleware was designed almost 10 years ago, and has proven to be an attractive distributed computing solution and successful in adapting to new data management and storage technologies. However, with an ever-increasing user base and scale of resources to manage, along with the introduction of more advanced data transfer protocols, some limitations in the current architecture have become apparent. The simple first-in first-out approach to data transfer leads to bottlenecks in the system, as does the built-in assumption that all data is immediately available from remote data storage. We present an entirely new data management architecture for ARC which aims to alleviate these problems, by introducing a three-layer structure. The top layer accepts incoming requests for data transfer and directs them to the middle layer, which schedules individual transfers and negotiates with various intermediate catalog and storage systems until the physical file is ready to be transferred. The lower layer performs all operations which use large amounts of bandwidth, i.e. the physical data transfer. Using such a layered structure allows more efficient use of the available bandwidth as well as enabling late-binding of jobs to data transfer slots based on a priority system. Here we describe in full detail the design and implementation of the new system.
More About Vector Adaptive/Predictive Coding Of Speech
NASA Technical Reports Server (NTRS)
Jedrey, Thomas C.; Gersho, Allen
1992-01-01
Report presents additional information about digital speech-encoding and -decoding system described in "Vector Adaptive/Predictive Encoding of Speech" (NPO-17230). Summarizes development of vector adaptive/predictive coding (VAPC) system and describes basic functions of algorithm. Describes refinements introduced enabling receiver to cope with errors. VAPC algorithm implemented in integrated-circuit coding/decoding processors (codecs). VAPC and other codecs tested under variety of operating conditions. Tests designed to reveal effects of various background quiet and noisy environments and of poor telephone equipment. VAPC found competitive with and, in some respects, superior to other 4.8-kb/s codecs and other codecs of similar complexity.
An adaptive algorithm for motion compensated color image coding
NASA Technical Reports Server (NTRS)
Kwatra, Subhash C.; Whyte, Wayne A.; Lin, Chow-Ming
1987-01-01
This paper presents an adaptive algorithm for motion compensated color image coding. The algorithm can be used for video teleconferencing or broadcast signals. Activity segmentation is used to reduce the bit rate and a variable stage search is conducted to save computations. The adaptive algorithm is compared with the nonadaptive algorithm and it is shown that with approximately 60 percent savings in computing the motion vector and 33 percent additional compression, the performance of the adaptive algorithm is similar to the nonadaptive algorithm. The adaptive algorithm results also show improvement of up to 1 bit/pel over interframe DPCM coding with nonuniform quantization. The test pictures used for this study were recorded directly from broadcast video in color.
Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code
Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I
1998-12-28
An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.
Automated Grid Disruption Response System: Robust Adaptive Topology Control (RATC)
2012-03-01
GENI Project: The RATC research team is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The RATC system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.
Three-dimensional solution-adaptive grid generation of composite configurations
NASA Astrophysics Data System (ADS)
Tu, Yen
A solution adaptive grid generation procedure is developed and applied to 3-D inviscid transonic fluid flow around complex geometries using a composite block grid structure. The adaptation is based upon control functions in an elliptic grid generation system. The control function is constructed in a manner such that a proper grid network can be generated as a fluid flow solution is evolving. The grid network is boundary conforming for accurate representation of boundary conditions. The procedure implemented allows orthodonality at boundaries for more accurate computations, while smoothness is implicit in the elliptic equations. The approach allows multiple block grid systems to be constructed to treat complex configurations as well. The solution adaptive computational procedure was accomplished by coupling the elliptic grid generation technique with an implicit, finite volume, upwind Euler flow solver. In simulating trasonic fluid flow around finned body of revolution and a multiple store configuration, the grid systems adapt to pressure gradients in the flow field. Results obtained show that the technique is capable of generating grid networks proper for the simulations of complex aerodynamic configurations.
GAMER: A GRAPHIC PROCESSING UNIT ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTROPHYSICS
Schive, H.-Y.; Tsai, Y.-C.; Chiueh Tzihong
2010-02-01
We present the newly developed code, GPU-accelerated Adaptive-MEsh-Refinement code (GAMER), which adopts a novel approach in improving the performance of adaptive-mesh-refinement (AMR) astrophysical simulations by a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy of grid patches with an oct-tree data structure. We adopt a three-dimensional relaxing total variation diminishing scheme for the hydrodynamic solver and a multi-level relaxation scheme for the Poisson solver. Both solvers have been implemented in GPU, by which hundreds of patches can be advanced in parallel. The computational overhead associated with the data transfer between the CPU and GPU is carefully reduced by utilizing the capability of asynchronous memory copies in GPU, and the computing time of the ghost-zone values for each patch is diminished by overlapping it with the GPU computations. We demonstrate the accuracy of the code by performing several standard test problems in astrophysics. GAMER is a parallel code that can be run in a multi-GPU cluster system. We measure the performance of the code by performing purely baryonic cosmological simulations in different hardware implementations, in which detailed timing analyses provide comparison between the computations with and without GPU(s) acceleration. Maximum speed-up factors of 12.19 and 10.47 are demonstrated using one GPU with 4096{sup 3} effective resolution and 16 GPUs with 8192{sup 3} effective resolution, respectively.
Block-structured adaptive meshes and reduced grids for atmospheric general circulation models.
Jablonowski, Christiane; Oehmke, Robert C; Stout, Quentin F
2009-11-28
Adaptive mesh refinement techniques offer a flexible framework for future variable-resolution climate and weather models since they can focus their computational mesh on certain geographical areas or atmospheric events. Adaptive meshes can also be used to coarsen a latitude-longitude grid in polar regions. This allows for the so-called reduced grid setups. A spherical, block-structured adaptive grid technique is applied to the Lin-Rood finite-volume dynamical core for weather and climate research. This hydrostatic dynamics package is based on a conservative and monotonic finite-volume discretization in flux form with vertically floating Lagrangian layers. The adaptive dynamical core is built upon a flexible latitude-longitude computational grid and tested in two- and three-dimensional model configurations. The discussion is focused on static mesh adaptations and reduced grids. The two-dimensional shallow water setup serves as an ideal testbed and allows the use of shallow water test cases like the advection of a cosine bell, moving vortices, a steady-state flow, the Rossby-Haurwitz wave or cross-polar flows. It is shown that reduced grid configurations are viable candidates for pure advection applications but should be used moderately in nonlinear simulations. In addition, static grid adaptations can be successfully used to resolve three-dimensional baroclinic waves in the storm-track region.
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1991-01-01
A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.
Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model.
Lagzi, I; Kármán, D; Turányi, T; Tomlin, A S; Haszpra, L
2004-01-01
Application of an Eulerian model using layered adaptive unstructured grids coupled to a meso-scale meteorological model is presented for modelling the dispersion of nuclear contamination following the accidental release from a single but strong source to the atmosphere. The model automatically places a finer resolution grid, adaptively in time, in regions were high spatial numerical error is expected. The high-resolution grid region follows the movement of the contaminated air over time. Using this method, grid resolutions of the order of 6 km can be achieved in a computationally effective way. The concept is illustrated by the simulation of hypothetical nuclear accidents at the Paks NPP, in Central Hungary. The paper demonstrates that the adaptive model can achieve accuracy comparable to that of a high-resolution Eulerian model using significantly less grid points and computer simulation time. PMID:15149762
STELLA: A domain-specific embedded language for stencil codes on structured grids
NASA Astrophysics Data System (ADS)
Gysi, Tobias; Fuhrer, Oliver; Osuna, Carlos; Cumming, Benjamin; Schulthess, Thomas
2014-05-01
Adapting regional weather and climate models (RCMs) for hybrid many-core computing architectures is a formidable challenge. Achieving high performance on different supercomputing architectures while retaining a single source code are often perceived as contradicting goals. Typically, the numerical algorithms employed are tightly inter-twined with hardware dependent implementation choices and optimizations such as for example data-structures and loop order. While Fortran is currently the de-facto standard for programming RCMs, no single such standard for porting such models to graphics processing units (GPUs) has yet emerged. The approaches used can be grouped into three main categories: compiler directives (OpenACC, PGI compiler directives), custom programming languages (CUDA, OpenCL) and domain-specific libraries or languages. STELLA (STencil Loop LAnguage) is a domain-specific embedded language (DSEL) built using generic programming in C++ which is targeted at stencil codes on structured grids. It allows a high-level specification of the algorithm while separating hardware dependent implementation details into back-ends. Currently, a back-end for multi-core CPUs using the OpenMP programming model and a back-end for NVIDIA GPUs using the CUDA programming mode has been developed. We will present the domain-specific language and its features such as software managed caching. With the example of an implementation of the dynamical core of a RCM (COSMO) we will compare performance with respect to the original Fortran implementation both on both CPUs and GPUs. Finally, we will discuss advantages and disadvantages of our approach as compared to other approaches such as source-to-source translators.
Scalable hologram video coding for adaptive transmitting service.
Seo, Young-Ho; Lee, Yoon-Hyuk; Yoo, Ji-Sang; Kim, Dong-Wook
2013-01-01
This paper discusses processing techniques for an adaptive digital holographic video service in various reconstruction environments, and proposes two new scalable coding schemes. The proposed schemes are constructed according to the hologram generation or acquisition schemes: hologram-based resolution-scalable coding (HRS) and light source-based signal-to-noise ratio scalable coding (LSS). HRS is applied for holograms that are already acquired or generated, while LSS is applied to the light sources before generating digital holograms. In the LSS scheme, the light source information is lossless coded because it is too important to lose, while the HRS scheme adopts a lossy coding method. In an experiment, we provide eight stages of an HRS scheme whose data compression ratios range from 1:1 to 100:1 for each layered data. For LSS, four layers and 16 layers of scalable coding schemes are provided. We experimentally show that the proposed techniques make it possible to service a digital hologram video adaptively to the various displays with different resolutions, computation capabilities of the receiver side, or bandwidths of the network.
An efficient second-order accurate and continuous interpolation for block-adaptive grids
NASA Astrophysics Data System (ADS)
Borovikov, Dmitry; Sokolov, Igor V.; Tóth, Gábor
2015-09-01
In this paper we present a second-order and continuous interpolation algorithm for cell-centered adaptive-mesh-refinement (AMR) grids. Continuity requirement poses a non-trivial problem at resolution changes. We develop a classification of the resolution changes, which allows us to employ efficient and simple linear interpolation in the majority of the computational domain. The algorithm is well suited for massively parallel computations. Our interpolation algorithm allows extracting jump-free interpolated data distribution along lines and surfaces within the computational domain. This capability is important for various applications, including kinetic particles tracking in three dimensional vector fields, visualization (i.e. surface extraction) and extracting variables along one-dimensional curves such as field lines, streamlines and satellite trajectories, etc. Particular examples are models for acceleration of solar energetic particles (SEPs) along magnetic field-lines. As such models are sensitive to sharp gradients and discontinuities the capability to interpolate the data from the AMR grid to be passed to the SEP model without producing false gradients numerically becomes crucial. We provide a complete description of the algorithm and make the code publicly available as a Fortran 90 library.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
...-stakeholder Process To Develop a Voluntary Code of Conduct for Smart Grid Data Privacy AGENCY: Office of... convene the first meeting of the smart grid data privacy multistakeholder process concerning the..., Office of Electricity Delivery and Energy Reliability (DOE OE) hosted the Smart Grid Privacy Workshop...
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...
ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS
Bryan, Greg L.; Turk, Matthew J.; Norman, Michael L.; Bordner, James; Xu, Hao; Kritsuk, Alexei G.; O'Shea, Brian W.; Smith, Britton; Abel, Tom; Wang, Peng; Skillman, Samuel W.; Wise, John H.; Reynolds, Daniel R.; Collins, David C.; Harkness, Robert P.; Kim, Ji-hoon; Kuhlen, Michael; Goldbaum, Nathan; Hummels, Cameron; Collaboration: Enzo Collaboration; and others
2014-04-01
This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in one, two, and three dimensions, and supports a wide variety of physics including hydrodynamics, ideal and non-ideal magnetohydrodynamics, N-body dynamics (and, more broadly, self-gravity of fluids and particles), primordial gas chemistry, optically thin radiative cooling of primordial and metal-enriched plasmas (as well as some optically-thick cooling models), radiation transport, cosmological expansion, and models for star formation and feedback in a cosmological context. In addition to explaining the algorithms implemented, we present solutions for a wide range of test problems, demonstrate the code's parallel performance, and discuss the Enzo collaboration's code development methodology.
NASA Technical Reports Server (NTRS)
Shyam, Vikram
2010-01-01
A preprocessor for the Computational Fluid Dynamics (CFD) code TURBO has been developed and tested. The preprocessor converts grids produced by GridPro (Program Development Company (PDC)) into a format readable by TURBO and generates the necessary input files associated with the grid. The preprocessor also generates information that enables the user to decide how to allocate the computational load in a multiple block per processor scenario.
FLY: a Tree Code for Adaptive Mesh Refinement
NASA Astrophysics Data System (ADS)
Becciani, U.; Antonuccio-Delogu, V.; Costa, A.; Ferro, D.
FLY is a public domain parallel treecode, which makes heavy use of the one-sided communication paradigm to handle the management of the tree structure. It implements the equations for cosmological evolution and can be run for different cosmological models. This paper shows an example of the integration of a tree N-body code with an adaptive mesh, following the PARAMESH scheme. This new implementation will allow the FLY output, and more generally any binary output, to be used with any hydrodynamics code that adopts the PARAMESH data structure, to study compressible flow problems.
ALEGRA -- A massively parallel h-adaptive code for solid dynamics
Summers, R.M.; Wong, M.K.; Boucheron, E.A.; Weatherby, J.R.
1997-12-31
ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Using this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.
Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain
Hagmeijer, R.
1994-11-01
A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of the computational coordinates.
A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids
NASA Astrophysics Data System (ADS)
Chen, Yuxi; Tóth, Gábor; Gombosi, Tamas I.
2016-01-01
We present a new fifth-order accurate finite difference method for hyperbolic equations on block-adaptive curvilinear grids. The scheme employs the 5th order accurate monotonicity preserving limiter MP5 to construct high order accurate face fluxes. The fifth-order accuracy of the spatial derivatives is ensured by a flux correction step. The method is generalized to curvilinear grids with a free-stream preserving discretization. It is also extended to block-adaptive grids using carefully designed ghost cell interpolation algorithms. Only three layers of ghost cells are required, and the grid blocks can be as small as 6 × 6 × 6 cells. Dynamic grid refinement and coarsening are also fifth-order accurate. All interpolation algorithms employ a general limiter based on the principles of the MP5 limiter. The finite difference scheme is fully conservative on static uniform grids. Conservation is only maintained at the truncation error level at grid resolution changes and during grid adaptation, but our numerical tests indicate that the results are still very accurate. We demonstrate the capabilities of the new method on a number of numerical tests, including smooth but non-linear problems as well as simulations involving discontinuities.
Adaptive gridding strategies for Free-Lagrangian calculations of low speed flows
NASA Astrophysics Data System (ADS)
Fritts, Martin J.
1988-01-01
Free-Lagrangian methods have been employed in two-dimensional simulations of the long-term evolution of fluid instabilities for low speed flows. For example, calculations of the Rayleigh-Taylor instability have proceeded through the inversion and mixing of two fluid layers and simulations of droplet deformations have continued well beyond droplet shattering. The freedom to choose grid connections permits several important benefits for these calculations. 1. Mass conservation is enforced for all individual fluid elements. 2. Vertex movement is always Lagrangian. 3. Grid adjustments can be made automatically, with no user intervention. 4. Grid connections may be selected to ensure accuracy in the difference equations. 5. Adaptive gridding schemes are local, adding and deleting vertices as dictated by local accuracy estimators. 6. Any geometric configuration may be easily gridded, for any vertex distribution on the boundaries or in the interior of the fluids. This paper will review some two-dimensional results, with the emphasis on the adaptive gridding algorithms and the accuracy of the resultant difference templates for the mathematical operators. The relation of the triangular mesh to the Voronoi mesh will be explored, particularly for the case when they are dual meshes. Three-dimensional algorithms for adaptive gridding will be presented which are exact analogues to the two-dimensional case. Gridding efficiencies will be discussed for several schemes.
An Efficient Means of Adaptive Refinement Within Systems of Overset Grids
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
An efficient means of adaptive refinement within systems of overset grids is presented. Problem domains are segregated into near-body and off-body fields. Near-body fields are discretized via overlapping body-fitted grids that extend only a short distance from body surfaces. Off-body fields are discretized via systems of overlapping uniform Cartesian grids of varying levels of refinement. a novel off-body grid generation and management scheme provides the mechanism for carrying out adaptive refinement of off-body flow dynamics and solid body motion. The scheme allows for very efficient use of memory resources, and flow solvers and domain connectivity routines that can exploit the structure inherent to uniform Cartesian grids.
White, M.J.; Iskander, M.F.; Kimrey, H.D.
1996-12-31
The Finite-Difference Time-Domain (FDTD) code available at the University of Utah has been used to simulate sintering of ceramics in single and multimode cavities, and many useful results have been reported in literature. More detailed and accurate results, specifically around and including the ceramic sample, are often desired to help evaluate the adequacy of the heating procedure. In electrically large multimode cavities, however, computer memory requirements limit the number of the mathematical cells, and the desired resolution is impractical to achieve due to limited computer resources. Therefore, an FDTD algorithm which incorporates multiple-grid regions with variable-grid sizes is required to adequately perform the desired simulations. In this paper the authors describe the development of a three-dimensional multi-grid FDTD code to help focus a large number of cells around the desired region. Test geometries were solved using a uniform-grid and the developed multi-grid code to help validate the results from the developed code. Results from these comparisons, as well as the results of comparisons between the developed FDTD code and other available variable-grid codes are presented. In addition, results from the simulation of realistic microwave sintering experiments showed improved resolution in critical sites inside the three-dimensional sintering cavity. With the validation of the FDTD code, simulations were performed for electrically large, multimode, microwave sintering cavities to fully demonstrate the advantages of the developed multi-grid FDTD code.
Spatial grid services for adaptive spatial query optimization
NASA Astrophysics Data System (ADS)
Gao, Bingbo; Xie, Chuanjie; Sheng, Wentao
2008-10-01
Spatial information sharing and integration has now become an important issue of Geographical Information Science (GIS). Web Service technologies provide a easy and standard way to share spatial resources over network, and grid technologies which aim at sharing resources such as data, storage, and computational powers can help the sharing go deeper. However, the dynamic characteristic of grid brings complexity to spatial query optimization which is more stressed in GIS domain because spatial operations are both CPU intensive and data intensive. To address this problem, a new grid framework is employed to provide standard spatial services which can also manage and report their state information to the coordinator which is responsible for distributed spatial query optimization.
Overview of the NASA Glenn Flux Reconstruction Based High-Order Unstructured Grid Code
NASA Technical Reports Server (NTRS)
Spiegel, Seth C.; DeBonis, James R.; Huynh, H. T.
2016-01-01
A computational fluid dynamics code based on the flux reconstruction (FR) method is currently being developed at NASA Glenn Research Center to ultimately provide a large- eddy simulation capability that is both accurate and efficient for complex aeropropulsion flows. The FR approach offers a simple and efficient method that is easy to implement and accurate to an arbitrary order on common grid cell geometries. The governing compressible Navier-Stokes equations are discretized in time using various explicit Runge-Kutta schemes, with the default being the 3-stage/3rd-order strong stability preserving scheme. The code is written in modern Fortran (i.e., Fortran 2008) and parallelization is attained through MPI for execution on distributed-memory high-performance computing systems. An h- refinement study of the isentropic Euler vortex problem is able to empirically demonstrate the capability of the FR method to achieve super-accuracy for inviscid flows. Additionally, the code is applied to the Taylor-Green vortex problem, performing numerous implicit large-eddy simulations across a range of grid resolutions and solution orders. The solution found by a pseudo-spectral code is commonly used as a reference solution to this problem, and the FR code is able to reproduce this solution using approximately the same grid resolution. Finally, an examination of the code's performance demonstrates good parallel scaling, as well as an implementation of the FR method with a computational cost/degree- of-freedom/time-step that is essentially independent of the solution order of accuracy for structured geometries.
Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways
Farkhooi, Farzad; Froese, Anja; Muller, Eilif; Menzel, Randolf; Nawrot, Martin P.
2013-01-01
Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture. PMID:24098101
Grid coupling mechanism in the semi-implicit adaptive Multi-Level Multi-Domain method
NASA Astrophysics Data System (ADS)
Innocenti, M. E.; Tronci, C.; Markidis, S.; Lapenta, G.
2016-05-01
The Multi-Level Multi-Domain (MLMD) method is a semi-implicit adaptive method for Particle-In-Cell plasma simulations. It has been demonstrated in the past in simulations of Maxwellian plasmas, electrostatic and electromagnetic instabilities, plasma expansion in vacuum, magnetic reconnection [1, 2, 3]. In multiple occasions, it has been commented on the coupling between the coarse and the refined grid solutions. The coupling mechanism itself, however, has never been explored in depth. Here, we investigate the theoretical bases of grid coupling in the MLMD system. We obtain an evolution law for the electric field solution in the overlap area of the MLMD system which highlights a dependance on the densities and currents from both the coarse and the refined grid, rather than from the coarse grid alone: grid coupling is obtained via densities and currents.
Higher-order schemes with CIP method and adaptive Soroban grid towards mesh-free scheme
NASA Astrophysics Data System (ADS)
Yabe, Takashi; Mizoe, Hiroki; Takizawa, Kenji; Moriki, Hiroshi; Im, Hyo-Nam; Ogata, Youichi
2004-02-01
A new class of body-fitted grid system that can keep the third-order accuracy in time and space is proposed with the help of the CIP (constrained interpolation profile/cubic interpolated propagation) method. The grid system consists of the straight lines and grid points moving along these lines like abacus - Soroban in Japanese. The length of each line and the number of grid points in each line can be different. The CIP scheme is suitable to this mesh system and the calculation of large CFL (>10) at locally refined mesh is easily performed. Mesh generation and searching of upstream departure point are very simple and almost mesh-free treatment is possible. Adaptive grid movement and local mesh refinement are demonstrated.
Adaptive shape coding for perceptual decisions in the human brain.
Kourtzi, Zoe; Welchman, Andrew E
2015-01-01
In its search for neural codes, the field of visual neuroscience has uncovered neural representations that reflect the structure of stimuli of variable complexity from simple features to object categories. However, accumulating evidence suggests an adaptive neural code that is dynamically shaped by experience to support flexible and efficient perceptual decisions. Here, we review work showing that experience plays a critical role in molding midlevel visual representations for perceptual decisions. Combining behavioral and brain imaging measurements, we demonstrate that learning optimizes feature binding for object recognition in cluttered scenes, and tunes the neural representations of informative image parts to support efficient categorical judgements. Our findings indicate that similar learning mechanisms may mediate long-term optimization through development, tune the visual system to fundamental principles of feature binding, and optimize feature templates for perceptual decisions. PMID:26024511
Adaptive shape coding for perceptual decisions in the human brain
Kourtzi, Zoe; Welchman, Andrew E.
2015-01-01
In its search for neural codes, the field of visual neuroscience has uncovered neural representations that reflect the structure of stimuli of variable complexity from simple features to object categories. However, accumulating evidence suggests an adaptive neural code that is dynamically shaped by experience to support flexible and efficient perceptual decisions. Here, we review work showing that experience plays a critical role in molding midlevel visual representations for perceptual decisions. Combining behavioral and brain imaging measurements, we demonstrate that learning optimizes feature binding for object recognition in cluttered scenes, and tunes the neural representations of informative image parts to support efficient categorical judgements. Our findings indicate that similar learning mechanisms may mediate long-term optimization through development, tune the visual system to fundamental principles of feature binding, and optimize feature templates for perceptual decisions. PMID:26024511
Adaptive neural coding: from biological to behavioral decision-making
Louie, Kenway; Glimcher, Paul W.; Webb, Ryan
2015-01-01
Empirical decision-making in diverse species deviates from the predictions of normative choice theory, but why such suboptimal behavior occurs is unknown. Here, we propose that deviations from optimality arise from biological decision mechanisms that have evolved to maximize choice performance within intrinsic biophysical constraints. Sensory processing utilizes specific computations such as divisive normalization to maximize information coding in constrained neural circuits, and recent evidence suggests that analogous computations operate in decision-related brain areas. These adaptive computations implement a relative value code that may explain the characteristic context-dependent nature of behavioral violations of classical normative theory. Examining decision-making at the computational level thus provides a crucial link between the architecture of biological decision circuits and the form of empirical choice behavior. PMID:26722666
NASA Technical Reports Server (NTRS)
Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.
2016-01-01
Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.
AMRA: An Adaptive Mesh Refinement hydrodynamic code for astrophysics
NASA Astrophysics Data System (ADS)
Plewa, T.; Müller, E.
2001-08-01
Implementation details and test cases of a newly developed hydrodynamic code, amra, are presented. The numerical scheme exploits the adaptive mesh refinement technique coupled to modern high-resolution schemes which are suitable for relativistic and non-relativistic flows. Various physical processes are incorporated using the operator splitting approach, and include self-gravity, nuclear burning, physical viscosity, implicit and explicit schemes for conductive transport, simplified photoionization, and radiative losses from an optically thin plasma. Several aspects related to the accuracy and stability of the scheme are discussed in the context of hydrodynamic and astrophysical flows.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.
1995-01-01
This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.
NASA Technical Reports Server (NTRS)
Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.
1995-01-01
Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.
Adaptive Synaptogenesis Constructs Neural Codes That Benefit Discrimination
Thomas, Blake T.; Blalock, Davis W.; Levy, William B.
2015-01-01
Intelligent organisms face a variety of tasks requiring the acquisition of expertise within a specific domain, including the ability to discriminate between a large number of similar patterns. From an energy-efficiency perspective, effective discrimination requires a prudent allocation of neural resources with more frequent patterns and their variants being represented with greater precision. In this work, we demonstrate a biologically plausible means of constructing a single-layer neural network that adaptively (i.e., without supervision) meets this criterion. Specifically, the adaptive algorithm includes synaptogenesis, synaptic shedding, and bi-directional synaptic weight modification to produce a network with outputs (i.e. neural codes) that represent input patterns proportional to the frequency of related patterns. In addition to pattern frequency, the correlational structure of the input environment also affects allocation of neural resources. The combined synaptic modification mechanisms provide an explanation of neuron allocation in the case of self-taught experts. PMID:26176744
A self-adaptive-grid method with application to airfoil flow
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.
Adaptive grid finite element model of the tokamak scrapeoff layer
Kuprat, A.P.; Glasser, A.H.
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
A general hybrid radiation transport scheme for star formation simulations on an adaptive grid
Klassen, Mikhail; Pudritz, Ralph E.; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi; Buntemeyer, Lars
2014-12-10
Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.
A General Hybrid Radiation Transport Scheme for Star Formation Simulations on an Adaptive Grid
NASA Astrophysics Data System (ADS)
Klassen, Mikhail; Kuiper, Rolf; Pudritz, Ralph E.; Peters, Thomas; Banerjee, Robi; Buntemeyer, Lars
2014-12-01
Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.
Grid noise in moving mesh codes: fixing the volume inconsistency problem
NASA Astrophysics Data System (ADS)
Steinberg, Elad; Yalinewich, Almog; Sari, Re'em
2016-06-01
Current Voronoi-based moving mesh hydro codes suffer from `grid noise'. We identify the cause of this noise as the volume inconsistency error, where the volume that is transferred between cells is inconsistent with the hydrodynamical calculations. As a result, the codes do not achieve second-order convergence. In this paper we describe how a simple fix allows Voronoi-based moving mesh codes to attain second-order convergence. The fix is based on the understanding that the volume exchanged between cells should be consistent with the hydrodynamical calculations. We benchmark our fix with three test problems and show that it can significantly improve the computational accuracy. We also examine the effect of initial mesh initialization and present an improved model for the Green-Gauss-based gradient estimator.
Olfactory coding in Drosophila larvae investigated by cross-adaptation.
Boyle, Jennefer; Cobb, Matthew
2005-09-01
In order to reveal aspects of olfactory coding, the effects of sensory adaptation on the olfactory responses of first-instar Drosophila melanogaster larvae were tested. Larvae were pre-stimulated with a homologous series of acetic esters (C3-C9), and their responses to each of these odours were then measured. The overall patterns suggested that methyl acetate has no specific pathway but was detected by all the sensory pathways studied here, that butyl and pentyl acetate tended to have similar effects to each other and that hexyl acetate was processed separately from the other odours. In a number of cases, cross-adaptation transformed a control attractive response into a repulsive response; in no case was an increase in attractiveness observed. This was investigated by studying changes in dose-response curves following pre-stimulation. These findings are discussed in light of the possible intra- and intercellular mechanisms of adaptation and the advantage of altered sensitivity for the larva. PMID:16155221
Generalized Monge-Kantorovich optimization for grid generation and adaptation in LP
Delzanno, G L; Finn, J M
2009-01-01
The Monge-Kantorovich grid generation and adaptation scheme of is generalized from a variational principle based on L{sub 2} to a variational principle based on L{sub p}. A generalized Monge-Ampere (MA) equation is derived and its properties are discussed. Results for p > 1 are obtained and compared in terms of the quality of the resulting grid. We conclude that for the grid generation application, the formulation based on L{sub p} for p close to unity leads to serious problems associated with the boundary. Results for 1.5 {approx}< p {approx}< 2.5 are quite good, but there is a fairly narrow range around p = 2 where the results are close to optimal with respect to grid distortion. Furthermore, the Newton-Krylov methods used to solve the generalized MA equation perform best for p = 2.
Multigrid-based grid-adaptive solution of the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Michelsen, Jess
A finite volume scheme for solution of the incompressible Navier-Stokes equations in two dimensions and axisymmetry is described. Solutions are obtained on nonorthogonal, solution adaptive BFC grids, based on the Brackbill-Saltzman generator. Adaptivity is achieved by the use of a single control function based on the local kinetic energy production. Nonstaggered allocation of pressure and Cartesian velocity components avoids the introduction of curvature terms associated with the use of a grid-direction vector-base. A special interpolation of the pressure correction equation in the SIMPLE algorithm ensures firm coupling between velocity and pressure field. Steady-state solutions are accelerated by a full approximation multigrid scheme working on the decoupled grid-flow problem, while an algebraic multigrid scheme is employed for the pressure correction equation.
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.
NASA Astrophysics Data System (ADS)
Sheng, Qin; Sun, Hai-wei
2016-11-01
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman-Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.
An adaptive grid-based all hexahedral meshing algorithm based on 2-refinement.
Edgel, Jared; Benzley, Steven E.; Owen, Steven James
2010-08-01
Most adaptive mesh generation algorithms employ a 3-refinement method. This method, although easy to employ, provides a mesh that is often too coarse in some areas and over refined in other areas. Because this method generates 27 new hexes in place of a single hex, there is little control on mesh density. This paper presents an adaptive all-hexahedral grid-based meshing algorithm that employs a 2-refinement method. 2-refinement is based on dividing the hex to be refined into eight new hexes. This method allows a greater control on mesh density when compared to a 3-refinement procedure. This adaptive all-hexahedral meshing algorithm provides a mesh that is efficient for analysis by providing a high element density in specific locations and a reduced mesh density in other areas. In addition, this tool can be effectively used for inside-out hexahedral grid based schemes, using Cartesian structured grids for the base mesh, which have shown great promise in accommodating automatic all-hexahedral algorithms. This adaptive all-hexahedral grid-based meshing algorithm employs a 2-refinement insertion method. This allows greater control on mesh density when compared to 3-refinement methods. This algorithm uses a two layer transition zone to increase element quality and keeps transitions from lower to higher mesh densities smooth. Templates were introduced to allow both convex and concave refinement.
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM. (R827028)
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme––the piecewise parabolic method (PPM)––for computing advective solution fields; a weight function capable o...
White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid
NASA Technical Reports Server (NTRS)
Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn
1996-01-01
A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.
SIMULATION OF A REACTING POLLUTANT PUFF USING AN ADAPTIVE GRID ALGORITHM
A new dynamic solution adaptive grid algorithm DSAGA-PPM, has been developed for use in air quality modeling. In this paper, this algorithm is described and evaluated with a test problem. Cone-shaped distributions of various chemical species undergoing chemical reactions are rota...
Some aspects of adaptive grid technology related to boundary and interior layers
NASA Astrophysics Data System (ADS)
Carey, Graham F.; Anderson, M.; Carnes, B.; Kirk, B.
2004-04-01
We consider the use of adaptive mesh strategies for solution of problems exhibiting boundary and interior layer solutions. As the presence of these layer structures suggests, reliable and accurate solution of this class of problems using finite difference, finite volume or finite element schemes requires grading the mesh into the layers and due attention to the associated algorithms. When the nature and structure of the layer is known, mesh grading can be achieved during the grid generation by specifying an appropriate grading function. However, in many applications the location and nature of the layer behavior is not known in advance. Consequently, adaptive mesh techniques that employ feedback from intermediate grid solutions are an appealing approach. In this paper, we provide a brief overview of the main adaptive grid strategies in the context of problems with layers. Associated error indicators that guide the refinement feedback control/grid optimization process are also covered and there is a brief commentary on the supporting data structure requirements. Some current issues concerning the use of stabilization in conjunction with adaptive mesh refinement (AMR), the question of "pollution effects" in computation of local error indicators, the influence of nonlinearities and the design of meshes for targeted optimization of specific quantities are considered. The application of AMR for layer problems is illustrated by means of case studies from semiconductor device transport (drift diffusion), nonlinear reaction-diffusion, layers due to surface capillary effects, and shockwaves in compressible gas dynamics.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code
S. Klasky; S. Ethier; Z. Lin; K. Martins; D. McCune; R. Samtaney
2003-09-15
We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data from a remote supercomputer to the scientist's home analysis/visualization cluster, as the simulation executes, with negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable compared with writing to local disk and then transferring this data to be post-processed. The present approach is conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study microturbulence in magnetic confinement fusion from first principles plasma theory.
Paiva, I; Oliveira, C; Trindade, R; Portugal, L
2005-01-01
Radioactive sealed sources are in use worldwide in different fields of application. When no further use is foreseen for these sources, they become spent or disused sealed sources and are subject to a specific waste management scheme. Portugal does have a Radioactive Waste Interim Storage Facility where spent or disused sealed sources are conditioned in a cement matrix inside concrete drums and following the geometrical disposition of a grid. The gamma dose values around each grid depend on the drum's enclosed activity and radionuclides considered, as well as on the drums distribution in the various layers of the grid. This work proposes a method based on the Monte Carlo simulation using the MCNPX code to estimate the best drum arrangement through the optimisation of dose distribution in a grid. Measured dose rate values at 1 m distance from the surface of the chosen optimised grid were used to validate the corresponding computational grid model. PMID:16604671
N-Body Code with Adaptive Mesh Refinement
NASA Astrophysics Data System (ADS)
Yahagi, Hideki; Yoshii, Yuzuru
2001-09-01
We have developed a simulation code with the techniques that enhance both spatial and time resolution of the particle-mesh (PM) method, for which the spatial resolution is restricted by the spacing of structured mesh. The adaptive-mesh refinement (AMR) technique subdivides the cells that satisfy the refinement criterion recursively. The hierarchical meshes are maintained by the special data structure and are modified in accordance with the change of particle distribution. In general, as the resolution of the simulation increases, its time step must be shortened and more computational time is required to complete the simulation. Since the AMR enhances the spatial resolution locally, we reduce the time step locally also, instead of shortening it globally. For this purpose, we used a technique of hierarchical time steps (HTS), which changes the time step, from particle to particle, depending on the size of the cell in which particles reside. Some test calculations show that our implementation of AMR and HTS is successful. We have performed cosmological simulation runs based on our code and found that many of halo objects have density profiles that are well fitted to the universal profile proposed in 1996 by Navarro, Frenk, & White over the entire range of their radius.
3D Finite Element Trajectory Code with Adaptive Meshing
NASA Astrophysics Data System (ADS)
Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien
2004-11-01
Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.
RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code
Zhang, Wei-Qun; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study
2005-06-06
The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.
Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Jones, Michael G.; Nark, Douglas M.; Lodding, Kenneth N.
2010-01-01
In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault tolerant
Carving and adaptive drainage enforcement of grid digital elevation models
NASA Astrophysics Data System (ADS)
Soille, Pierre; Vogt, Jürgen; Colombo, Roberto
2003-12-01
An effective and widely used method for removing spurious pits in digital elevation models consists of filling them until they overflow. However, this method sometimes creates large flat regions which in turn pose a problem for the determination of accurate flow directions. In this study, we propose to suppress each pit by creating a descending path from it to the nearest point having a lower elevation value. This is achieved by carving, i.e., lowering, the terrain elevations along the detected path. Carving paths are identified through a flooding simulation starting from the river outlets. The proposed approach allows for adaptive drainage enforcement whereby river networks coming from other data sources are imposed to the digital elevation model only in places where the automatic river network extraction deviates substantially from the known networks. An improvement to methods for routing flow over flat regions is also introduced. Detailed results are presented over test areas of the Danube basin.
A three-dimensional adaptive grid method. [for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A three-dimensional solution-adaptive-grid scheme is described which is suitable for complex fluid flows. This method, using tension and torsion spring analogies, was previously developed and successfully applied for two-dimensional flows. In the present work, a collection of three-dimensional flow fields are used to demonstrate the feasibility and versatility of this concept to include an added dimension. Flow fields considered include: (1) supersonic flow past an aerodynamic afterbody with a propulsive jet at incidence to the free stream, (2) supersonic flow past a blunt fin mounted on a solid wall, and (3) supersonic flow over a bump. In addition to generating three-dimensional solution-adapted grids, the method can also be used effectively as an initial grid generator. The utility of the method lies in: (1) optimum distribution of discrete grid points, (2) improvement of accuracy, (3) improved computational efficiency, (4) minimization of data base sizes, and (5) simplified three-dimensional grid generation.
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
NASA Technical Reports Server (NTRS)
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
NASA Astrophysics Data System (ADS)
Walsh, Jonathan A.; Romano, Paul K.; Forget, Benoit; Smith, Kord S.
2015-11-01
In this work we propose, implement, and test various optimizations of the typical energy grid-cross section pair lookup algorithm in Monte Carlo particle transport codes. The key feature common to all of the optimizations is a reduction in the length of the vector of energies that must be searched when locating the index of a particle's current energy. Other factors held constant, a reduction in energy vector length yields a reduction in CPU time. The computational methods we present here are physics-informed. That is, they are designed to utilize the physical information embedded in a simulation in order to reduce the length of the vector to be searched. More specifically, the optimizations take advantage of information about scattering kinematics, neutron cross section structure and data representation, and also the expected characteristics of a system's spatial flux distribution and energy spectrum. The methods that we present are implemented in the OpenMC Monte Carlo neutron transport code as part of this work. The gains in computational efficiency, as measured by overall code speedup, associated with each of the optimizations are demonstrated in both serial and multithreaded simulations of realistic systems. Depending on the system, simulation parameters, and optimization method employed, overall code speedup factors of 1.2-1.5, relative to the typical single-nuclide binary search algorithm, are routinely observed.
Vortical Flow Prediction using an Adaptive Unstructured Grid Method. Chapter 11
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2009-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Adaptive integral method with fast Gaussian gridding for solving combined field integral equations
NASA Astrophysics Data System (ADS)
Bakır, O.; Baǧ; Cı, H.; Michielssen, E.
Fast Gaussian gridding (FGG), a recently proposed nonuniform fast Fourier transform algorithm, is used to reduce the memory requirements of the adaptive integral method (AIM) for accelerating the method of moments-based solution of combined field integral equations pertinent to the analysis of scattering from three-dimensional perfect electrically conducting surfaces. Numerical results that demonstrate the efficiency and accuracy of the AIM-FGG hybrid in comparison to an AIM-accelerated solver, which uses moment matching to project surface sources onto an auxiliary grid, are presented.
Henshaw, W; Schwendeman, D
2007-11-15
This paper describes an approach for the numerical solution of time-dependent partial differential equations in complex three-dimensional domains. The domains are represented by overlapping structured grids, and block-structured adaptive mesh refinement (AMR) is employed to locally increase the grid resolution. In addition, the numerical method is implemented on parallel distributed-memory computers using a domain-decomposition approach. The implementation is flexible so that each base grid within the overlapping grid structure and its associated refinement grids can be independently partitioned over a chosen set of processors. A modified bin-packing algorithm is used to specify the partition for each grid so that the computational work is evenly distributed amongst the processors. All components of the AMR algorithm such as error estimation, regridding, and interpolation are performed in parallel. The parallel time-stepping algorithm is illustrated for initial-boundary-value problems involving a linear advection-diffusion equation and the (nonlinear) reactive Euler equations. Numerical results are presented for both equations to demonstrate the accuracy and correctness of the parallel approach. Exact solutions of the advection-diffusion equation are constructed, and these are used to check the corresponding numerical solutions for a variety of tests involving different overlapping grids, different numbers of refinement levels and refinement ratios, and different numbers of processors. The problem of planar shock diffraction by a sphere is considered as an illustration of the numerical approach for the Euler equations, and a problem involving the initiation of a detonation from a hot spot in a T-shaped pipe is considered to demonstrate the numerical approach for the reactive case. For both problems, the solutions are shown to be well resolved on the finest grid. The parallel performance of the approach is examined in detail for the shock diffraction problem.
Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.
2012-05-08
This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of
Adaptive distributed video coding with correlation estimation using expectation propagation
NASA Astrophysics Data System (ADS)
Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel
2012-10-01
Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.
Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation.
Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel
2012-10-15
Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.
An adaptive grid refinement strategy for the simulation of negative streamers
Montijn, C. . E-mail: carolynne.montijn@cwi.nl; Hundsdorfer, W. . E-mail: willem.hundsdorfer@cwi.nl; Ebert, U. . E-mail: ute.ebert@cwi.nl
2006-12-10
The evolution of negative streamers during electric breakdown of a non-attaching gas can be described by a two-fluid model for electrons and positive ions. It consists of continuity equations for the charged particles including drift, diffusion and reaction in the local electric field, coupled to the Poisson equation for the electric potential. The model generates field enhancement and steep propagating ionization fronts at the tip of growing ionized filaments. An adaptive grid refinement method for the simulation of these structures is presented. It uses finite volume spatial discretizations and explicit time stepping, which allows the decoupling of the grids for the continuity equations from those for the Poisson equation. Standard refinement methods in which the refinement criterion is based on local error monitors fail due to the pulled character of the streamer front that propagates into a linearly unstable state. We present a refinement method which deals with all these features. Tests on one-dimensional streamer fronts as well as on three-dimensional streamers with cylindrical symmetry (hence effectively 2D for numerical purposes) are carried out successfully. Results on fine grids are presented, they show that such an adaptive grid method is needed to capture the streamer characteristics well. This refinement strategy enables us to adequately compute negative streamers in pure gases in the parameter regime where a physical instability appears: branching streamers.
NASA Astrophysics Data System (ADS)
Singh, B.; Goel, S.
2015-03-01
This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.
Adaptive phase-coded reconstruction for cardiac CT
NASA Astrophysics Data System (ADS)
Hsieh, Jiang; Mayo, John; Acharya, Kishor; Pan, Tin-Su
2000-04-01
Cardiac imaging with conventional computed tomography (CT) has gained significant attention in recent years. New hardware development enables a CT scanner to rotate at a faster speed so that less cardiac motion is present in acquired projection data. Many new tomographic reconstruction techniques have also been developed to reduce the artifacts induced by the cardiac motion. Most of the algorithms make use of the projection data collected over several cardiac cycles to formulate a single projection data set. Because the data set is formed with samples collected roughly in the same phase of a cardiac cycle, the temporal resolution of the newly formed data set is significantly improved compared with projections collected continuously. In this paper, we present an adaptive phase- coded reconstruction scheme (APR) for cardiac CT. Unlike the previously proposed schemes where the projection sector size is identical, APR determines each sector size based on the tomographic reconstruction algorithm. The newly proposed scheme ensures that the temporal resolution of each sector is substantially equal. In addition, the scan speed is selected based on the measured EKG signal of the patient.
An adaptive grid for graph-based segmentation in retinal OCT
Lang, Andrew; Carass, Aaron; Calabresi, Peter A.; Ying, Howard S.; Prince, Jerry L.
2016-01-01
Graph-based methods for retinal layer segmentation have proven to be popular due to their efficiency and accuracy. These methods build a graph with nodes at each voxel location and use edges connecting nodes to encode the hard constraints of each layer’s thickness and smoothness. In this work, we explore deforming the regular voxel grid to allow adjacent vertices in the graph to more closely follow the natural curvature of the retina. This deformed grid is constructed by fixing node locations based on a regression model of each layer’s thickness relative to the overall retina thickness, thus we generate a subject specific grid. Graph vertices are not at voxel locations, which allows for control over the resolution that the graph represents. By incorporating soft constraints between adjacent nodes, segmentation on this grid will favor smoothly varying surfaces consistent with the shape of the retina. Our final segmentation method then follows our previous work. Boundary probabilities are estimated using a random forest classifier followed by an optimal graph search algorithm on the new adaptive grid to produce a final segmentation. Our method is shown to produce a more consistent segmentation with an overall accuracy of 3.38 μm across all boundaries.
Jakeman, J.D. Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.
Adaptive Source Coding Schemes for Geometrically Distributed Integer Alphabets
NASA Technical Reports Server (NTRS)
Cheung, K-M.; Smyth, P.
1993-01-01
Revisit the Gallager and van Voorhis optimal source coding scheme for geometrically distributed non-negative integer alphabets and show that the various subcodes in the popular Rice algorithm can be derived from the Gallager and van Voorhis code.
NASA Technical Reports Server (NTRS)
Houston, Johnny L.
1989-01-01
Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) Numerical Grid Generation System is a composite (multi-block) algebraic or elliptic grid generation system designed to discretize the domain in and/or around any arbitrarily shaped three dimensional regions. This system combines a boundary conforming surface generation scheme and includes plotting routines designed to take full advantage of the DISSPLA Graphics Package (Version 9.0). Program EAGLE is written to compile and execute efficiently on any Cray machine with or without solid state disk (SSD) devices. Also, the code uses namelist inputs which are supported by all Cray machines using the FORTRAN compiler CFT77. The namelist inputs makes it easier for the user to understand the inputs and operation of Program EAGLE. EAGLE's numerical grid generator is constructed in the following form: main program, EGG (executive routine); subroutine SURFAC (surface generation routine); subroutine GRID (grid generation routine); and subroutine GRDPLOT (grid plotting routines). The EAGLE code was modified to use on the NASA-LaRC SNS computer (Cray 2S) system. During the modification a conversion program was developed for the output data of EAGLE's subroutine GRID to permit the data to be graphically displayed by IRIS workstations, using Plot3D. The code of program EAGLE was modified to make operational subroutine GRDPLOT (using DI-3000 Graphics Software Packages) on the NASA-LaRC SNS Computer System. How to implement graphically, the output data of subroutine GRID was determined on any NASA-LaRC graphics terminal that has access to the SNS Computer System DI-300 Graphics Software Packages. A Quick Reference User Guide was developed for the use of program EAGLE on the NASA-LaRC SNS Computer System. One or more application program(s) was illustrated using program EAGLE on the NASA LaRC SNS Computer System, with emphasis on graphics illustrations.
The Volume Grid Manipulator (VGM): A Grid Reusability Tool
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
Boschitsch, Alexander H; Fenley, Marcia O
2011-05-10
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous
NASA Technical Reports Server (NTRS)
Treiber, David A.; Muilenburg, Dennis A.
1995-01-01
The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.
2002-01-01
Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.
Seaborg, David M
2010-08-01
The canonical genetic code is on a sub-optimal adaptive peak with respect to its ability to minimize errors, and is close to, but not quite, optimal. This is demonstrated by the near-total adjacency of synonymous codons, the similarity of adjacent codons, and comparisons of frequency of amino acid usage with number of codons in the code for each amino acid. As a rare empirical example of an adaptive peak in nature, it shows adaptive peaks are real, not merely theoretical. The evolution of deviant genetic codes illustrates how populations move from a lower to a higher adaptive peak. This is done by the use of "adaptive bridges," neutral pathways that cross over maladaptive valleys by virtue of masking of the phenotypic expression of some maladaptive aspects in the genotype. This appears to be the general mechanism by which populations travel from one adaptive peak to another. There are multiple routes a population can follow to cross from one adaptive peak to another. These routes vary in the probability that they will be used, and this probability is determined by the number and nature of the mutations that happen along each of the routes. A modification of the depiction of adaptive landscapes showing genetic distances and probabilities of travel along their multiple possible routes would throw light on this important concept.
A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection
Zhang, Guannan; Webster, Clayton G; Gunzburger, Max D; Burkardt, John V
2014-03-01
This work proposes and analyzes a hyper-spherical adaptive hi- erarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the the- oretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a func- tion representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smooth- ness of the hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity anal- yses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.
Anderson, R W; Pember, R B; Elliot, N S
2000-09-26
A new method for the solution of the unsteady Euler equations has been developed. The method combines staggered grid Lagrangian techniques with structured local adaptive mesh refinement (AMR). This method is a precursor to a more general adaptive arbitrary Lagrangian Eulerian (ALE-AMR) algorithm under development, which will facilitate the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required. Many of the core issues involved in the development of the ALE-AMR method hinge upon the integration of AMR with a Lagrange step, which is the focus of the work described here. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. These new algorithmic components are first developed in one dimension and are then generalized to two dimensions. Solutions of several model problems involving shock hydrodynamics are presented and discussed.
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids
NASA Technical Reports Server (NTRS)
Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.
1993-01-01
Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.
A user`s guide for BREAKUP: A computer code for parallelizing the overset grid approach
Barnette, D.W.
1998-04-01
In this user`s guide, details for running BREAKUP are discussed. BREAKUP allows the widely used overset grid method to be run in a parallel computer environment to achieve faster run times for computational field simulations over complex geometries. The overset grid method permits complex geometries to be divided into separate components. Each component is then gridded independently. The grids are computationally rejoined in a solver via interpolation coefficients used for grid-to-grid communications of boundary data. Overset grids have been in widespread use for many years on serial computers, and several well-known Navier-Stokes flow solvers have been extensively developed and validated to support their use. One drawback of serial overset grid methods has been the extensive compute time required to update flow solutions one grid at a time. Parallelizing the overset grid method overcomes this limitation by updating each grid or subgrid simultaneously. BREAKUP prepares overset grids for parallel processing by subdividing each overset grid into statically load-balanced subgrids. Two-dimensional examples with sample solutions, and three-dimensional examples, are presented.
Parallel level-set methods on adaptive tree-based grids
NASA Astrophysics Data System (ADS)
Mirzadeh, Mohammad; Guittet, Arthur; Burstedde, Carsten; Gibou, Frederic
2016-10-01
We present scalable algorithms for the level-set method on dynamic, adaptive Quadtree and Octree Cartesian grids. The algorithms are fully parallelized and implemented using the MPI standard and the open-source p4est library. We solve the level set equation with a semi-Lagrangian method which, similar to its serial implementation, is free of any time-step restrictions. This is achieved by introducing a scalable global interpolation scheme on adaptive tree-based grids. Moreover, we present a simple parallel reinitialization scheme using the pseudo-time transient formulation. Both parallel algorithms scale on the Stampede supercomputer, where we are currently using up to 4096 CPU cores, the limit of our current account. Finally, a relevant application of the algorithms is presented in modeling a crystallization phenomenon by solving a Stefan problem, illustrating a level of detail that would be impossible to achieve without a parallel adaptive strategy. We believe that the algorithms presented in this article will be of interest and useful to researchers working with the level-set framework and modeling multi-scale physics in general.
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of
NASA Technical Reports Server (NTRS)
Houston, Johnny L.
1990-01-01
Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.
NASA Astrophysics Data System (ADS)
Zeng, Xiankui; Ye, Ming; Burkardt, John; Wu, Jichun; Wang, Dong; Zhu, Xiaobin
2016-04-01
Sparse grid (SG) stochastic collocation methods have been recently used to build accurate but cheap-to-run surrogates for groundwater models to reduce the computational burden of Bayesian uncertainty analysis. The surrogates can be built for either a log-likelihood function or state variables such as hydraulic head and solute concentration. Using a synthetic groundwater flow model, this study evaluates the log-likelihood and head surrogates in terms of the computational cost of building them, the accuracy of the surrogates, and the accuracy of the distributions of model parameters and predictions obtained using the surrogates. The head surrogates outperform the log-likelihood surrogates for the following four reasons: (1) the shape of the head response surface is smoother than that of the log-likelihood response surface in parameter space, (2) the head variation is smaller than the log-likelihood variation in parameter space, (3) the interpolation error of the head surrogates does not accumulate to be larger than the interpolation error of the log-likelihood surrogates, and (4) the model simulations needed for building one head surrogate can be recycled for building others. For both log-likelihood and head surrogates, adaptive sparse grids are built using two indicators: absolute error and relative error. The adaptive head surrogates are insensitive to the error indicators, because the ratio between the two indicators is hydraulic head, which has small variation in the parameter space. The adaptive log-likelihood surrogates based on the relative error indicators outperform those based on the absolute error indicators, because adaptation based on the relative error indicator puts more sparse-grid nodes in the areas in the parameter space where the log-likelihood is high. While our numerical study suggests building state-variable surrogates and using the relative error indicator for building log-likelihood surrogates, selecting appropriate type of surrogates and
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-01
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-01
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK. PMID:27505775
Verification of the three-dimensional tetrahedral grid S{sub N} code THOR
Schunert, S.; Ferrer, R.; Azmy, Y.
2013-07-01
In this work current capabilities implemented in the novel, arbitrary-order, tetrahedral-grid short characteristics S{sub N} radiation transport code THOR are verified based on four benchmark problems: (1) A one-group Method of Manufactured Solution (MMS) problem on a cuboidal domain, (2) an infinite medium eigenvalue problem with up-scattering, (3) a homogeneous torus and (4) a bare cube eigenvalue problem with anisotropic scattering up to order three. The first benchmark problem exercises the various spatial discretization options available in THOR: The short characteristics method in conjunction with polynomial expansions of the source and face fluxes either using the complete or Lagrange family of arbitrary orders. Using the numerical solution's order of convergence test in the framework of a mesh refinement study, correct implementation of a selection of spatial expansion orders is demonstrated for two meshes with tetrahedral aspect ratios close to unity and 50. The second benchmark problem exercises the implementation of angular fluxes on reflective boundary faces that are implicit within a mesh sweep, and up-scattering. The third benchmark problem comprises cyclic dependencies within the mesh sweep thus exercising the algorithm devised for 'breaking' the cyclic dependencies. Finally, the fourth benchmark problem, a simple bare cube, is used to test correct implementation of the anisotropic scattering capability. For all test problems THOR obtains solutions that converge to the reference/exact solution with the expected rate thereby contributing to our confidence in the correctness of its tested features in the present implementation. (authors)
Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming.
Xie, Shengli; Zhong, Weifeng; Xie, Kan; Yu, Rong; Zhang, Yan
2016-08-01
Research on the smart grid is being given enormous supports worldwide due to its great significance in solving environmental and energy crises. Electric vehicles (EVs), which are powered by clean energy, are adopted increasingly year by year. It is predictable that the huge charge load caused by high EV penetration will have a considerable impact on the reliability of the smart grid. Therefore, fair energy scheduling for EV charge and discharge is proposed in this paper. By using the vehicle-to-grid technology, the scheduler controls the electricity loads of EVs considering fairness in the residential distribution network. We propose contribution-based fairness, in which EVs with high contributions have high priorities to obtain charge energy. The contribution value is defined by both the charge/discharge energy and the timing of the action. EVs can achieve higher contribution values when discharging during the load peak hours. However, charging during this time will decrease the contribution values seriously. We formulate the fair energy scheduling problem as an infinite-horizon Markov decision process. The methodology of adaptive dynamic programming is employed to maximize the long-term fairness by processing online network training. The numerical results illustrate that the proposed EV energy scheduling is able to mitigate and flatten the peak load in the distribution network. Furthermore, contribution-based fairness achieves a fast recovery of EV batteries that have deeply discharged and guarantee fairness in the full charge time of all EVs.
Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming.
Xie, Shengli; Zhong, Weifeng; Xie, Kan; Yu, Rong; Zhang, Yan
2016-08-01
Research on the smart grid is being given enormous supports worldwide due to its great significance in solving environmental and energy crises. Electric vehicles (EVs), which are powered by clean energy, are adopted increasingly year by year. It is predictable that the huge charge load caused by high EV penetration will have a considerable impact on the reliability of the smart grid. Therefore, fair energy scheduling for EV charge and discharge is proposed in this paper. By using the vehicle-to-grid technology, the scheduler controls the electricity loads of EVs considering fairness in the residential distribution network. We propose contribution-based fairness, in which EVs with high contributions have high priorities to obtain charge energy. The contribution value is defined by both the charge/discharge energy and the timing of the action. EVs can achieve higher contribution values when discharging during the load peak hours. However, charging during this time will decrease the contribution values seriously. We formulate the fair energy scheduling problem as an infinite-horizon Markov decision process. The methodology of adaptive dynamic programming is employed to maximize the long-term fairness by processing online network training. The numerical results illustrate that the proposed EV energy scheduling is able to mitigate and flatten the peak load in the distribution network. Furthermore, contribution-based fairness achieves a fast recovery of EV batteries that have deeply discharged and guarantee fairness in the full charge time of all EVs. PMID:26930694
Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.
2011-01-01
We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.
Grid Generation Techniques Utilizing the Volume Grid Manipulator
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1998-01-01
This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.
Adaptations in a Community-Based Family Intervention: Replication of Two Coding Schemes.
Cooper, Brittany Rhoades; Shrestha, Gitanjali; Hyman, Leah; Hill, Laura
2016-02-01
Although program adaptation is a reality in community-based implementations of evidence-based programs, much of the discussion about adaptation remains theoretical. The primary aim of this study was to replicate two coding systems to examine adaptations in large-scale, community-based disseminations of the Strengthening Families Program for Parents and Youth 10-14, a family-based substance use prevention program. Our second aim was to explore intersections between various dimensions of facilitator-reported adaptations from these two coding systems. Our results indicate that only a few types of adaptations and a few reasons accounted for a majority (over 70 %) of all reported adaptations. We also found that most adaptations were logistical, reactive, and not aligned with program's goals. In many ways, our findings replicate those of the original studies, suggesting the two coding systems are robust even when applied to self-reported data collected from community-based implementations. Our findings on the associations between adaptation dimensions can inform future studies assessing the relationship between adaptations and program outcomes. Studies of local adaptations, like the present one, should help researchers, program developers, and policymakers better understand the issues faced by implementers and guide efforts related to program development, transferability, and sustainability. PMID:26661413
Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes
Parsons, I D; Solberg, J M
2006-02-03
This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.
Adaptation reduces variability of the neuronal population code
NASA Astrophysics Data System (ADS)
Farkhooi, Farzad; Muller, Eilif; Nawrot, Martin P.
2011-05-01
Sequences of events in noise-driven excitable systems with slow variables often show serial correlations among their intervals of events. Here, we employ a master equation for generalized non-renewal processes to calculate the interval and count statistics of superimposed processes governed by a slow adaptation variable. For an ensemble of neurons with spike-frequency adaptation, this results in the regularization of the population activity and an enhanced postsynaptic signal decoding. We confirm our theoretical results in a population of cortical neurons recorded in vivo.
ADAPTION OF NONSTANDARD PIPING COMPONENTS INTO PRESENT DAY SEISMIC CODES
D. T. Clark; M. J. Russell; R. E. Spears; S. R. Jensen
2009-07-01
With spiraling energy demand and flat energy supply, there is a need to extend the life of older nuclear reactors. This sometimes requires that existing systems be evaluated to present day seismic codes. Older reactors built in the 1960s and early 1970s often used fabricated piping components that were code compliant during their initial construction time period, but are outside the standard parameters of present-day piping codes. There are several approaches available to the analyst in evaluating these non-standard components to modern codes. The simplest approach is to use the flexibility factors and stress indices for similar standard components with the assumption that the non-standard component’s flexibility factors and stress indices will be very similar. This approach can require significant engineering judgment. A more rational approach available in Section III of the ASME Boiler and Pressure Vessel Code, which is the subject of this paper, involves calculation of flexibility factors using finite element analysis of the non-standard component. Such analysis allows modeling of geometric and material nonlinearities. Flexibility factors based on these analyses are sensitive to the load magnitudes used in their calculation, load magnitudes that need to be consistent with those produced by the linear system analyses where the flexibility factors are applied. This can lead to iteration, since the magnitude of the loads produced by the linear system analysis depend on the magnitude of the flexibility factors. After the loading applied to the nonstandard component finite element model has been matched to loads produced by the associated linear system model, the component finite element model can then be used to evaluate the performance of the component under the loads with the nonlinear analysis provisions of the Code, should the load levels lead to calculated stresses in excess of Allowable stresses. This paper details the application of component-level finite
Palermo, Romina; Rivolta, Davide; Wilson, C Ellie; Jeffery, Linda
2011-12-01
People with congenital prosopagnosia (CP) report difficulty recognising faces in everyday life and perform poorly on face recognition tests. Here, we investigate whether impaired adaptive face space coding might contribute to poor face recognition in CP. To pinpoint how adaptation may affect face processing, a group of CPs and matched controls completed two complementary face adaptation tasks: the figural aftereffect, which reflects adaptation to general distortions of shape, and the identity aftereffect, which directly taps the mechanisms involved in the discrimination of different face identities. CPs displayed a typical figural aftereffect, consistent with evidence that they are able to process some shape-based information from faces, e.g., cues to discriminate sex. CPs also demonstrated a significant identity aftereffect. However, unlike controls, CPs impression of the identity of the neutral average face was not significantly shifted by adaptation, suggesting that adaptive coding of identity is abnormal in CP. In sum, CPs show reduced aftereffects but only when the task directly taps the use of face norms used to code individual identity. This finding of a reduced face identity aftereffect in individuals with severe face recognition problems is consistent with suggestions that adaptive coding may have a functional role in face recognition.
Palermo, Romina; Rivolta, Davide; Wilson, C Ellie; Jeffery, Linda
2011-12-01
People with congenital prosopagnosia (CP) report difficulty recognising faces in everyday life and perform poorly on face recognition tests. Here, we investigate whether impaired adaptive face space coding might contribute to poor face recognition in CP. To pinpoint how adaptation may affect face processing, a group of CPs and matched controls completed two complementary face adaptation tasks: the figural aftereffect, which reflects adaptation to general distortions of shape, and the identity aftereffect, which directly taps the mechanisms involved in the discrimination of different face identities. CPs displayed a typical figural aftereffect, consistent with evidence that they are able to process some shape-based information from faces, e.g., cues to discriminate sex. CPs also demonstrated a significant identity aftereffect. However, unlike controls, CPs impression of the identity of the neutral average face was not significantly shifted by adaptation, suggesting that adaptive coding of identity is abnormal in CP. In sum, CPs show reduced aftereffects but only when the task directly taps the use of face norms used to code individual identity. This finding of a reduced face identity aftereffect in individuals with severe face recognition problems is consistent with suggestions that adaptive coding may have a functional role in face recognition. PMID:21986295
Adaptive Zero-Coefficient Distribution Scan for Inter Block Mode Coding of H.264/AVC
NASA Astrophysics Data System (ADS)
Wang, Jing-Xin; Su, Alvin W. Y.
Scanning quantized transform coefficients is an important tool for video coding. For example, the MPEG-4 video coder adopts three different scans to get better coding efficiency. This paper proposes an adaptive zero-coefficient distribution scan in inter block coding. The proposed method attempts to improve H.264/AVC zero coefficient coding by modifying the scan operation. Since the zero-coefficient distribution is changed by the proposed scan method, new VLC tables for syntax elements used in context-adaptive variable length coding (CAVLC) are also provided. The savings in bit-rate range from 2.2% to 5.1% in the high bit-rate cases, depending on different test sequences.
Multi-level adaptive particle mesh (MLAPM): a c code for cosmological simulations
NASA Astrophysics Data System (ADS)
Knebe, Alexander; Green, Andrew; Binney, James
2001-08-01
We present a computer code written in c that is designed to simulate structure formation from collisionless matter. The code is purely grid-based and uses a recursively refined Cartesian grid to solve Poisson's equation for the potential, rather than obtaining the potential from a Green's function. Refinements can have arbitrary shapes and in practice closely follow the complex morphology of the density field that evolves. The time-step shortens by a factor of 2 with each successive refinement. Competing approaches to N-body simulation are discussed from the point of view of the basic theory of N-body simulation. It is argued that an appropriate choice of softening length ɛ is of great importance and that ɛ should be at all points an appropriate multiple of the local interparticle separation. Unlike tree and P3M codes, multigrid codes automatically satisfy this requirement. We show that at early times and low densities in cosmological simulations, ɛ needs to be significantly smaller relative to the interparticle separation than in virialized regions. Tests of the ability of the code's Poisson solver to recover the gravitational fields of both virialized haloes and Zel'dovich waves are presented, as are tests of the code's ability to reproduce analytic solutions for plane-wave evolution. The times required to conduct a ΛCDM cosmological simulation for various configurations are compared with the times required to complete the same simulation with the ART, AP3M and GADGET codes. The power spectra, halo mass functions and halo-halo correlation functions of simulations conducted with different codes are compared. The code is available from http://www-thphys.physics.ox.ac.uk/users/MLAPM.
Guzik, S; McCorquodale, P; Colella, P
2011-12-16
A fourth-order accurate finite-volume method is presented for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Novel considerations for formulating the semi-discrete system of equations in computational space combined with detailed mechanisms for accommodating the adapting grids ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). Advancement in time is achieved with a fourth-order Runge-Kutta method.
NASA Astrophysics Data System (ADS)
Wongwathanarat, A.; Grimm-Strele, H.; Müller, E.
2016-10-01
We present a new fourth-order, finite-volume hydrodynamics code named Apsara. The code employs a high-order, finite-volume method for mapped coordinates with extensions for nonlinear hyperbolic conservation laws. Apsara can handle arbitrary structured curvilinear meshes in three spatial dimensions. The code has successfully passed several hydrodynamic test problems, including the advection of a Gaussian density profile and a nonlinear vortex and the propagation of linear acoustic waves. For these test problems, Apsara produces fourth-order accurate results in case of smooth grid mappings. The order of accuracy is reduced to first-order when using the nonsmooth circular grid mapping. When applying the high-order method to simulations of low-Mach number flows, for example, the Gresho vortex and the Taylor-Green vortex, we discover that Apsara delivers superior results to codes based on the dimensionally split, piecewise parabolic method (PPM) widely used in astrophysics. Hence, Apsara is a suitable tool for simulating highly subsonic flows in astrophysics. In the first astrophysical application, we perform implicit large eddy simulations (ILES) of anisotropic turbulence in the context of core collapse supernova (CCSN) and obtain results similar to those previously reported.
An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation
NASA Astrophysics Data System (ADS)
Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi
A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.
The use of the spectral method within the fast adaptive composite grid method
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
CHARACTERIZATION OF DISCONTINUITIES IN HIGH-DIMENSIONAL STOCHASTIC PROBLEMS ON ADAPTIVE SPARSE GRIDS
Jakeman, John D; Archibald, Richard K; Xiu, Dongbin
2011-01-01
In this paper we present a set of efficient algorithms for detection and identification of discontinuities in high dimensional space. The method is based on extension of polynomial annihilation for edge detection in low dimensions. Compared to the earlier work, the present method poses significant improvements for high dimensional problems. The core of the algorithms relies on adaptive refinement of sparse grids. It is demonstrated that in the commonly encountered cases where a discontinuity resides on a small subset of the dimensions, the present method becomes optimal , in the sense that the total number of points required for function evaluations depends linearly on the dimensionality of the space. The details of the algorithms will be presented and various numerical examples are utilized to demonstrate the efficacy of the method.
NASA Astrophysics Data System (ADS)
Niccolini, G.; Alcolea, J.
Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).
Practical improvements of multi-grid iteration for adaptive mesh refinement method
NASA Astrophysics Data System (ADS)
Miyashita, Hisashi; Yamada, Yoshiyuki
2005-03-01
Adaptive mesh refinement(AMR) is a powerful tool to efficiently solve multi-scaled problems. However, the vanilla AMR method has a well-known critical demerit, i.e., it cannot be applied to non-local problems. Although multi-grid iteration (MGI) can be regarded as a good remedy for a non-local problem such as the Poisson equation, we observed fundamental difficulties in applying the MGI technique in AMR to realistic problems under complicated mesh layouts because it does not converge or it requires too many iterations even if it does converge. To cope with the problem, when updating the next approximation in the MGI process, we calculate the precise total corrections that are relatively accurate to the current residual by introducing a new iteration for such a total correction. This procedure greatly accelerates the MGI convergence speed especially under complicated mesh layouts.
NASA Astrophysics Data System (ADS)
Bhowmik, Deepayan; Abhayaratne, Charith
2009-02-01
A framework for evaluating wavelet based watermarking schemes against scalable coded visual media content adaptation attacks is presented. The framework, Watermark Evaluation Bench for Content Adaptation Modes (WEBCAM), aims to facilitate controlled evaluation of wavelet based watermarking schemes under MPEG-21 part-7 digital item adaptations (DIA). WEBCAM accommodates all major wavelet based watermarking in single generalised framework by considering a global parameter space, from which the optimum parameters for a specific algorithm may be chosen. WEBCAM considers the traversing of media content along various links and required content adaptations at various nodes of media supply chains. In this paper, the content adaptation is emulated by the JPEG2000 coded bit stream extraction for various spatial resolution and quality levels of the content. The proposed framework is beneficial not only as an evaluation tool but also as design tool for new wavelet based watermark algorithms by picking and mixing of available tools and finding the optimum design parameters.
Deficits in context-dependent adaptive coding of reward in schizophrenia.
Kirschner, Matthias; Hager, Oliver M; Bischof, Martin; Hartmann-Riemer, Matthias N; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N; Kaiser, Stefan
2016-01-01
Theoretical principles of information processing and empirical findings suggest that to efficiently represent all possible rewards in the natural environment, reward-sensitive neurons have to adapt their coding range dynamically to the current reward context. Adaptation ensures that the reward system is most sensitive for the most likely rewards, enabling the system to efficiently represent a potentially infinite range of reward information. A deficit in neural adaptation would prevent precise representation of rewards and could have detrimental effects for an organism's ability to optimally engage with its environment. In schizophrenia, reward processing is known to be impaired and has been linked to different symptom dimensions. However, despite the fundamental significance of coding reward adaptively, no study has elucidated whether adaptive reward processing is impaired in schizophrenia. We therefore studied patients with schizophrenia (n=27) and healthy controls (n=25), using functional magnetic resonance imaging in combination with a variant of the monetary incentive delay task. Compared with healthy controls, patients with schizophrenia showed less efficient neural adaptation to the current reward context, which leads to imprecise neural representation of reward. Importantly, the deficit correlated with total symptom severity. Our results suggest that some of the deficits in reward processing in schizophrenia might be due to inefficient neural adaptation to the current reward context. Furthermore, because adaptive coding is a ubiquitous feature of the brain, we believe that our findings provide an avenue in defining a general impairment in neural information processing underlying this debilitating disorder. PMID:27430009
Deficits in context-dependent adaptive coding of reward in schizophrenia
Kirschner, Matthias; Hager, Oliver M; Bischof, Martin; Hartmann-Riemer, Matthias N; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N; Kaiser, Stefan
2016-01-01
Theoretical principles of information processing and empirical findings suggest that to efficiently represent all possible rewards in the natural environment, reward-sensitive neurons have to adapt their coding range dynamically to the current reward context. Adaptation ensures that the reward system is most sensitive for the most likely rewards, enabling the system to efficiently represent a potentially infinite range of reward information. A deficit in neural adaptation would prevent precise representation of rewards and could have detrimental effects for an organism’s ability to optimally engage with its environment. In schizophrenia, reward processing is known to be impaired and has been linked to different symptom dimensions. However, despite the fundamental significance of coding reward adaptively, no study has elucidated whether adaptive reward processing is impaired in schizophrenia. We therefore studied patients with schizophrenia (n=27) and healthy controls (n=25), using functional magnetic resonance imaging in combination with a variant of the monetary incentive delay task. Compared with healthy controls, patients with schizophrenia showed less efficient neural adaptation to the current reward context, which leads to imprecise neural representation of reward. Importantly, the deficit correlated with total symptom severity. Our results suggest that some of the deficits in reward processing in schizophrenia might be due to inefficient neural adaptation to the current reward context. Furthermore, because adaptive coding is a ubiquitous feature of the brain, we believe that our findings provide an avenue in defining a general impairment in neural information processing underlying this debilitating disorder. PMID:27430009
PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. I. ALGORITHM
Maron, Jason L.; McNally, Colin P.; Mac Low, Mordecai-Mark E-mail: cmcnally@amnh.org
2012-05-01
We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and test problem results.
Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed Reactive and Non-reactive Flow
Henshaw, W D; Schwendeman, D W
2005-08-30
We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows in order to demonstrate the use and accuracy of the numerical approach.
Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system.
Clague, H; Theunissen, F; Miller, J P
1997-01-01
Methods of stochastic systems analysis were applied to examine the effect of adaptation on frequency encoding by two functionally identical primary interneurons of the cricket cercal system. Stimulus reconstructions were obtained from a linear filtering transformation of spike trains elicited in response to bursts of broadband white noise air current stimuli (5-400 Hz). Each linear reconstruction was compared with the actual stimulus in the frequency domain to obtain a measure of waveform coding accuracy as a function of frequency. The term adaptation in this paper refers to the decrease in firing rate of a cell after the onset or increase in power of a white noise stimulus. The increase in firing rate after stimulus offset or decrease in stimulus power is assumed to be a complementary aspect of the same phenomenon. As the spike rate decreased during the course of adaptation, the total amount of information carried about the velocity waveform of the stimulus also decreased. The quality of coding of frequencies between 70 and 400 Hz decreased dramatically. The quality of coding of frequencies between 5 and 70 Hz decreased only slightly or even increased in some cases. The disproportionate loss of information about the higher frequencies could be attributed in part to the more rapid loss of spikes correlated with high-frequency stimulus components than of spikes correlated with low-frequency components. An increase in the responsiveness of a cell to frequencies > 70 Hz was correlated with a decrease in the ability of that cell to encode frequencies in the 5-70 Hz range. This nonlinear property could explain the improvement seen in some cases in the coding accuracy of frequencies between 5 and 70 Hz during the course of adaptation. Waveform coding properties also were characterized for fully adapted neurons at several stimulus intensities. The changes in coding observed through the course of adaptation were similar in nature to those found across stimulus powers
Image subband coding using context-based classification and adaptive quantization.
Yoo, Y; Ortega, A; Yu, B
1999-01-01
Adaptive compression methods have been a key component of many proposed subband (or wavelet) image coding techniques. This paper deals with a particular type of adaptive subband image coding where we focus on the image coder's ability to adjust itself "on the fly" to the spatially varying statistical nature of image contents. This backward adaptation is distinguished from more frequently used forward adaptation in that forward adaptation selects the best operating parameters from a predesigned set and thus uses considerable amount of side information in order for the encoder and the decoder to operate with the same parameters. Specifically, we present backward adaptive quantization using a new context-based classification technique which classifies each subband coefficient based on the surrounding quantized coefficients. We couple this classification with online parametric adaptation of the quantizer applied to each class. A simple uniform threshold quantizer is employed as the baseline quantizer for which adaptation is achieved. Our subband image coder based on the proposed adaptive classification quantization idea exhibits excellent rate-distortion performance, in particular at very low rates. For popular test images, it is comparable or superior to most of the state-of-the-art coders in the literature.
Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging
NASA Astrophysics Data System (ADS)
Diaz, Nelson; Rueda, Hoover; Arguello, Henry
2016-05-01
Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.
2000-01-01
Preliminary verification and validation of an efficient Euler solver for adaptively refined Cartesian meshes with embedded boundaries is presented. The parallel, multilevel method makes use of a new on-the-fly parallel domain decomposition strategy based upon the use of space-filling curves, and automatically generates a sequence of coarse meshes for processing by the multigrid smoother. The coarse mesh generation algorithm produces grids which completely cover the computational domain at every level in the mesh hierarchy. A series of examples on realistically complex three-dimensional configurations demonstrate that this new coarsening algorithm reliably achieves mesh coarsening ratios in excess of 7 on adaptively refined meshes. Numerical investigations of the scheme's local truncation error demonstrate an achieved order of accuracy between 1.82 and 1.88. Convergence results for the multigrid scheme are presented for both subsonic and transonic test cases and demonstrate W-cycle multigrid convergence rates between 0.84 and 0.94. Preliminary parallel scalability tests on both simple wing and complex complete aircraft geometries shows a computational speedup of 52 on 64 processors using the run-time mesh partitioner.
Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results
NASA Technical Reports Server (NTRS)
Gombosi, Tamas I.; Powell, Kenneth G.; De Zeeuw, Darren L.
1994-01-01
The first results of an axisymmetric magnetohydrodynamic (MHD) model of the interaction of an expanding cometary atmosphere with the solar wind are presented. The model assumes that far upstream the plasma flow lines are parallel to the magnetic field vector. The effects of mass loading and ion-neutral friction are taken into account by the governing equations, whcih are solved on an adaptively refined unstructured grid using a Monotone Upstream Centered Schemes for Conservative Laws (MUSCL)-type numerical technique. The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the near nucleus of the comet. The main findingsare the following: (1) A shock is formed approximately = 0.45 Mkm upstream of the comet (its location is controlled by the sonic and Alfvenic Mach numbers of the ambient solar wind flow and by the cometary mass addition rate). (2) A contact surface is formed approximately = 5,600 km upstream of the nucleus separating an outward expanding cometary ionosphere from the nearly stagnating solar wind flow. The location of the contact surface is controlled by the upstream flow conditions, the mass loading rate and the ion-neutral drag. The contact surface is also the boundary of the diamagnetic cavity. (3) A closed inner shock terminates the supersonic expansion of the cometary ionosphere. This inner shock is closer to the nucleus on dayside than on the nightside.
Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun
2016-02-01
As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.
Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Angel
2015-12-21
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.
NASA Astrophysics Data System (ADS)
Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.
Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Angel
2015-12-21
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems. PMID:25721500
Adaptive variable-length coding for efficient compression of spacecraft television data.
NASA Technical Reports Server (NTRS)
Rice, R. F.; Plaunt, J. R.
1971-01-01
An adaptive variable length coding system is presented. Although developed primarily for the proposed Grand Tour missions, many features of this system clearly indicate a much wider applicability. Using sample to sample prediction, the coding system produces output rates within 0.25 bit/picture element (pixel) of the one-dimensional difference entropy for entropy values ranging from 0 to 8 bit/pixel. This is accomplished without the necessity of storing any code words. Performance improvements of 0.5 bit/pixel can be simply achieved by utilizing previous line correlation. A Basic Compressor, using concatenated codes, adapts to rapid changes in source statistics by automatically selecting one of three codes to use for each block of 21 pixels. The system adapts to less frequent, but more dramatic, changes in source statistics by adjusting the mode in which the Basic Compressor operates on a line-to-line basis. Furthermore, the compression system is independent of the quantization requirements of the pulse-code modulation system.
Application of adaptive subband coding for noisy bandlimited ECG signal processing
NASA Astrophysics Data System (ADS)
Aditya, Krishna; Chu, Chee-Hung H.; Szu, Harold H.
1996-03-01
An approach to impulsive noise suppression and background normalization of digitized bandlimited electrovcardiogram signals is presented. This approach uses adaptive wavelet filters that incorporate the band-limited a priori information and the shape information of a signal to decompose the data. Empirical results show that the new algorithm has good performance in wideband impulsive noise suppression and background normalization for subsequent wave detection, when compared with subband coding using Daubechie's D4 wavelet, without the bandlimited adaptive wavelet transform.
NASA Astrophysics Data System (ADS)
Karwowski, Damian; Domański, Marek
2016-01-01
An improved context-based adaptive binary arithmetic coding (CABAC) is presented. The idea for the improvement is to use a more accurate mechanism for estimation of symbol probabilities in the standard CABAC algorithm. The authors' proposal of such a mechanism is based on the context-tree weighting technique. In the framework of a high-efficiency video coding (HEVC) video encoder, the improved CABAC allows 0.7% to 4.5% bitrate saving compared to the original CABAC algorithm. The application of the proposed algorithm marginally affects the complexity of HEVC video encoder, but the complexity of video decoder increases by 32% to 38%. In order to decrease the complexity of video decoding, a new tool has been proposed for the improved CABAC that enables scaling of the decoder complexity. Experiments show that this tool gives 5% to 7.5% reduction of the decoding time while still maintaining high efficiency in the data compression.
QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding
Razzaque, Mohammad Abdur; Javadi, Saeideh S.; Coulibaly, Yahaya; Hira, Muta Tah
2015-01-01
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts. PMID:25551485
Rhodes, Gillian; Jeffery, Linda; Taylor, Libby; Hayward, William G; Ewing, Louise
2014-06-01
Despite their similarity as visual patterns, we can discriminate and recognize many thousands of faces. This expertise has been linked to 2 coding mechanisms: holistic integration of information across the face and adaptive coding of face identity using norms tuned by experience. Recently, individual differences in face recognition ability have been discovered and linked to differences in holistic coding. Here we show that they are also linked to individual differences in adaptive coding of face identity, measured using face identity aftereffects. Identity aftereffects correlated significantly with several measures of face-selective recognition ability. They also correlated marginally with own-race face recognition ability, suggesting a role for adaptive coding in the well-known other-race effect. More generally, these results highlight the important functional role of adaptive face-coding mechanisms in face expertise, taking us beyond the traditional focus on holistic coding mechanisms.
Rhodes, Gillian; Jeffery, Linda; Taylor, Libby; Hayward, William G; Ewing, Louise
2014-06-01
Despite their similarity as visual patterns, we can discriminate and recognize many thousands of faces. This expertise has been linked to 2 coding mechanisms: holistic integration of information across the face and adaptive coding of face identity using norms tuned by experience. Recently, individual differences in face recognition ability have been discovered and linked to differences in holistic coding. Here we show that they are also linked to individual differences in adaptive coding of face identity, measured using face identity aftereffects. Identity aftereffects correlated significantly with several measures of face-selective recognition ability. They also correlated marginally with own-race face recognition ability, suggesting a role for adaptive coding in the well-known other-race effect. More generally, these results highlight the important functional role of adaptive face-coding mechanisms in face expertise, taking us beyond the traditional focus on holistic coding mechanisms. PMID:24684315
Gain-adaptive vector quantization for medium-rate speech coding
NASA Astrophysics Data System (ADS)
Chen, J.-H.; Gersho, A.
A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.
Gain-adaptive vector quantization for medium-rate speech coding
NASA Technical Reports Server (NTRS)
Chen, J.-H.; Gersho, A.
1985-01-01
A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.; Nixon, David (Technical Monitor)
1998-01-01
The work presents a new method for on-the-fly domain decomposition technique for mapping grids and solution algorithms to parallel machines, and is applicable to both shared-memory and message-passing architectures. It will be demonstrated on the Cray T3E, HP Exemplar, and SGI Origin 2000. Computing time has been secured on all these platforms. The decomposition technique is an outgrowth of techniques used in computational physics for simulations of N-body problems and the event horizons of black holes, and has not been previously used by the CFD community. Since the technique offers on-the-fly partitioning, it offers a substantial increase in flexibility for computing in heterogeneous environments, where the number of available processors may not be known at the time of job submission. In addition, since it is dynamic it permits the job to be repartitioned without global communication in cases where additional processors become available after the simulation has begun, or in cases where dynamic mesh adaptation changes the mesh size during the course of a simulation. The platform for this partitioning strategy is a completely new Cartesian Euler solver tarcreted at parallel machines which may be used in conjunction with Ames' "Cart3D" arbitrary geometry simulation package.
Edge equilibrium code for tokamaks
Li, Xujing; Drozdov, Vladimir V.
2014-01-15
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.
The role of overset grids in the development of the general purpose CFD code
NASA Technical Reports Server (NTRS)
Belk, Davy M.
1995-01-01
A discussion of the strengths and weaknesses of overset composite grid and solution technology is given, along with a sampling of current work in the area. Major trends are identified, and the observation is made that generalized and hybridized overset methods provide a natural framework for combining disparate mesh types and physics models. Because of this, the author concludes that overset methods will be the foundation for the general purpose computational fluid dynamics programs of the future.
Recent Results in the Study of Static Ground Effect Using an Inviscid Unstructured Grid Code
NASA Technical Reports Server (NTRS)
Yaros, Steven F.
1999-01-01
The TetrUSS (Tetrahedral Unstructured Software System), developed at NASA LaRC, enables one to take a vehicle from its surface definition to its analyzed solution. The important parts are the shape definition, accomplished in GRIDTOOL; the initial front and volume grid generation in VGRID; the flow solver USM3D, and the various ways used to post-process the computational results.
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James
2014-07-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.
Context-Adaptive Arithmetic Coding Scheme for Lossless Bit Rate Reduction of MPEG Surround in USAC
NASA Astrophysics Data System (ADS)
Yoon, Sungyong; Pang, Hee-Suk; Sung, Koeng-Mo
We propose a new coding scheme for lossless bit rate reduction of the MPEG Surround module in unified speech and audio coding (USAC). The proposed scheme is based on context-adaptive arithmetic coding for efficient bit stream composition of spatial parameters. Experiments show that it achieves the significant lossless bit reduction of 9.93% to 12.14% for spatial parameters and 8.64% to 8.96% for the overall MPEG Surround bit streams compared to the original scheme. The proposed scheme, which is not currently included in USAC, can be used for the improved coding efficiency of MPEG Surround in USAC, where the saved bits can be utilized by the other modules in USAC.
Kallinderis, Yannis; Vitsas, Panagiotis A.; Menounou, Penelope
2012-07-15
A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.
Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun
2016-02-01
As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid. PMID:25910254
NASA Astrophysics Data System (ADS)
Mahalanobis, A.; Reyner, C.; Patel, H.; Haberfelde, T.; Brady, David; Neifeld, Mark; Kumar, B. V. K. Vijaya; Rogers, Stanley
2007-09-01
Adaptive coded aperture sensing is an emerging technology enabling real time, wide-area IR/visible sensing and imaging. Exploiting unique imaging architectures, adaptive coded aperture sensors achieve wide field of view, near-instantaneous optical path repositioning, and high resolution while reducing weight, power consumption and cost of air- and space born sensors. Such sensors may be used for military, civilian, or commercial applications in all optical bands but there is special interest in diffraction imaging sensors for IR applications. Extension of coded apertures from Visible to the MWIR introduces the effects of diffraction and other distortions not observed in shorter wavelength systems. A new approach is being developed under the DARPA/SPO funded LACOSTE (Large Area Coverage Optical search-while Track and Engage) program, that addresses the effects of diffraction while gaining the benefits of coded apertures, thus providing flexibility to vary resolution, possess sufficient light gathering power, and achieve a wide field of view (WFOV). The photonic MEMS-Eyelid "sub-aperture" array technology is currently being instantiated in this DARPA program to be the heart of conducting the flow (heartbeat) of the incoming signal. However, packaging and scalability are critical factors for the MEMS "sub-aperture" technology which will determine system efficacy as well as military and commercial usefulness. As larger arrays with 1,000,000+ sub-apertures are produced for this LACOSTE effort, the available Degrees of Freedom (DOF) will enable better spatial resolution, control and refinement on the coding for the system. Studies (SNR simulations) will be performed (based on the Adaptive Coded Aperture algorithm implementation) to determine the efficacy of this diffractive MEMS approach and to determine the available system budget based on simulated bi-static shutter-element DOF degradation (1%, 5%, 10%, 20%, etc..) trials until the degradation level where it is
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
Meyers, M.D.; Huang, C.-K.; Zeng, Y.; Yi, S.A.; Albright, B.J.
2015-09-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
REMAP: A computer code that transfers node information between dissimilar grids
Shapiro, A.B.
1990-04-01
REMAP is a computer code that transfers the axisymmetric, two dimensional planar, or three dimensional temperature field from one finite element mesh to another. The meshes may be arbitrary as far as the number of elements and their geometry. REMAP interpolates or extrapolates the node temperatures from the old mesh to the new mesh using linear, bilinear, or trilinear isoparametric finite element shape functions. REMAP is used to transfer the temperature field from a thermal analysis mesh to a more finely discretized structural analysis mesh when performing a thermal stress analysis. REMAP was designed to be used with the finite element heat transfer codes TOPAZ2D and TOPAZ3D, and the solid mechanics codes NIKE2D and NIKE3D. The I/O formats in REMAP can be easily modified to accept input from other codes (e.g., finite difference) and generate output files for other structural codes. REMAP can be used to transfer any scalar field variable between dissimilar finite element meshes. The idea of a coarse filter by a fine filter to determine which element from the old mesh contains a node point from the new mesh was used. The coarse filter determines a subset of elements from the old mesh that may contain the new node point. The fine filter determines the element that contains the new node point. REMAP uses the ray-surface intersection algorithm developed for the FACET code for the fine filter. This algorithm has the added capability to determine which element the node is closest to if the node point lies outside the perimeter of the old mesh. Once an element from the old mesh has been identified as containing or closest to the new node point, the natural coordinates for the node point are calculated. The isoparametric finite element shape functions are calculated next. These shape functions are then used to interpolate or extrapolate the temperatures from the nodes comprising the old element to the new node point.
Generating Grids For Computing Flow In A Manifold
NASA Technical Reports Server (NTRS)
Anderson, Peter G.
1993-01-01
Establishing computer code modified to apply to complicated shapes. Grids for computing flows in manifold of complicated shape generated by use of modified version of geometry module of LWIND computer code. Code adaptable to other computations of flows in different geometries.
Adaptive software-defined coded modulation for ultra-high-speed optical transport
NASA Astrophysics Data System (ADS)
Djordjevic, Ivan B.; Zhang, Yequn
2013-10-01
In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.
Context adaptive lossless and near-lossless coding for digital angiographies.
dos Santos, Rafael A P; Scharcanski, Jacob
2007-01-01
This paper presents a context adaptive coding method for image sequences in hemodynamics. The proposed method implements motion compensation through of a two-stage context adaptive linear predictor. It is robust to the local intensity changes and the noise that often degrades these image sequences, and provides lossless and near-lossless quality. Our preliminary experiments with lossless compression of 12 bits/pixel studies indicate that, potentially, our approach can perform 3.8%, 2% and 1.6% better than JPEG-2000, JPEG-LS and the method proposed in [1], respectively. The performance tends to improve for near-lossless compression.
An edge-based solution-adaptive method applied to the AIRPLANE code
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.
1995-01-01
Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.
NASA Technical Reports Server (NTRS)
Su, T. Y.; Appleby, R. A.; Chen, H. C.
1991-01-01
The BCON is a menu-driven graphics interface program whose input consists of strings or arrays of points generated from a computer aided design (CAD) tool or any other surface geometry source. The user needs to design the block topology and prepare the surface geometry definition and surface grids separately. The BCON generates input files that contain the block definitions and the block relationships required for generating a multiblock volume grid with the EAGLE grid generation package. The BCON also generates the block boundary conditions file which is used along with the block relationship file as input for the general multiblock Euler (GMBE) code (GMBE, volumes 1 and 3).
NASA Astrophysics Data System (ADS)
Navaratne, Uditha Sudheera
The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.
An adaptive discretization of compressible flow using a multitude of moving Cartesian grids
NASA Astrophysics Data System (ADS)
Qiu, Linhai; Lu, Wenlong; Fedkiw, Ronald
2016-01-01
We present a novel method for simulating compressible flow on a multitude of Cartesian grids that can rotate and translate. Following previous work, we split the time integration into an explicit step for advection followed by an implicit solve for the pressure. A second order accurate flux based scheme is devised to handle advection on each moving Cartesian grid using an effective characteristic velocity that accounts for the grid motion. In order to avoid the stringent time step restriction imposed by very fine grids, we propose strategies that allow for a fluid velocity CFL number larger than 1. The stringent time step restriction related to the sound speed is alleviated by formulating an implicit linear system in order to find a pressure consistent with the equation of state. This implicit linear system crosses overlapping Cartesian grid boundaries by utilizing local Voronoi meshes to connect the various degrees of freedom obtaining a symmetric positive-definite system. Since a straightforward application of this technique contains an inherent central differencing which can result in spurious oscillations, we introduce a new high order diffusion term similar in spirit to ENO-LLF but solved for implicitly in order to avoid any associated time step restrictions. The method is conservative on each grid, as well as globally conservative on the background grid that contains all other grids. Moreover, a conservative interpolation operator is devised for conservatively remapping values in order to keep them consistent across different overlapping grids. Additionally, the method is extended to handle two-way solid fluid coupling in a monolithic fashion including cases (in the appendix) where solids in close proximity do not properly allow for grid based degrees of freedom in between them.
NASA Astrophysics Data System (ADS)
Tsang, P. W. M.; Poon, T.-C.; Jiao, A. S. M.
2013-09-01
Past research has demonstrated that a three-dimensional (3D) intensity image can be preserved to a reasonable extent with a binary Fresnel hologram called the grid-cross down-sampling (GCD) binary hologram, if the intensity image is first down-sampled with a grid-cross lattice prior to the generation of the hologram. It has also been shown that the binary hologram generated with such means can be embedded with a binary image without causing observable artifact on the reconstructed image. Hence, the method can be further extended to embed an intensity image by binarizing it with error diffusion. Despite the favorable findings, the visual quality of the retrieved embedded intensity image from the hologram is rather poor. In this paper, we propose a method to overcome this problem. First, we employ the block truncation coding (BTC) to convert the intensity image into a binary bit stream. Next, the binary bit stream is embedded into the GCD binary hologram. The embedded image can be recovered with a BTC decoder, as well as a noise suppression scheme if the hologram is partially damaged. Experimental results demonstrate that with our proposed method, the visual quality of the embedded intensity image is superior to that of the existing approach, and the extracted image preserves favorably even if the binary hologram is damaged and contaminated with noise.
Rayleigh-Bénard convection via Lattice Boltzmann method: code validation and grid resolution effects
NASA Astrophysics Data System (ADS)
Lavezzo, V.; Clercx, H. J. H.; Toschi, F.
2011-12-01
Thermal plumes, formed at the wall of turbulent natural convection cells, play an important role in the re-suspension and dispersion process of inertial particles. For this reason, a good resolution of the region close to the wall is necessary to correctly describe the plumes and, consequently, the particle dynamics. In this work, a Lattice Boltzmann Method (LBM) coupled with Lagrangian particle tracking is used to understand the effects of the filtering action exerted by the grid resolution on particle trajectories. A validation of the numerical method against the work of Kunnen (2009) and Schumacher (2009) is presented and, in this framework, mean and RMS statistics on fluid temperature are considered and analyzed in detail.
CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION
Van der Holst, B.; Toth, G.; Sokolov, I. V.; Myra, E. S.; Fryxell, B.; Drake, R. P.; Powell, K. G.; Holloway, J. P.; Stout, Q.; Adams, M. L.; Morel, J. E.; Karni, S.
2011-06-01
We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1) an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.
An adaptive source-channel coding with feedback for progressive transmission of medical images.
Lo, Jen-Lung; Sanei, Saeid; Nazarpour, Kianoush
2009-01-01
A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design.
An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images
Lo, Jen-Lung; Sanei, Saeid; Nazarpour, Kianoush
2009-01-01
A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design. PMID:19190770
Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rost, Martin Christopher
1988-01-01
Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.
Less can be more: RNA-adapters may enhance coding capacity of replicators.
de Boer, Folkert K; Hogeweg, Paulien
2012-01-01
It is still not clear how prebiotic replicators evolved towards the complexity found in present day organisms. Within the most realistic scenario for prebiotic evolution, known as the RNA world hypothesis, such complexity has arisen from replicators consisting solely of RNA. Within contemporary life, remarkably many RNAs are involved in modifying other RNAs. In hindsight, such RNA-RNA modification might have helped in alleviating the limits of complexity posed by the information threshold for RNA-only replicators. Here we study the possible role of such self-modification in early evolution, by modeling the evolution of protocells as evolving replicators, which have the opportunity to incorporate these mechanisms as a molecular tool. Evolution is studied towards a set of 25 arbitrary 'functional' structures, while avoiding all other (misfolded) structures, which are considered to be toxic and increase the death-rate of a protocell. The modeled protocells contain a genotype of different RNA-sequences while their phenotype is the ensemble of secondary structures they can potentially produce from these RNA-sequences. One of the secondary structures explicitly codes for a simple sequence-modification tool. This 'RNA-adapter' can block certain positions on other RNA-sequences through antisense base-pairing. The altered sequence can produce an alternative secondary structure, which may or may not be functional. We show that the modifying potential of interacting RNA-sequences enables these protocells to evolve high fitness under high mutation rates. Moreover, our model shows that because of toxicity of misfolded molecules, redundant coding impedes the evolution of self-modification machinery, in effect restraining the evolvability of coding structures. Hence, high mutation rates can actually promote the evolution of complex coding structures by reducing redundant coding. Protocells can successfully use RNA-adapters to modify their genotype-phenotype mapping in order to
Post, R.F.
1960-08-01
An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Modiano, David; Colella, Phillip
1994-01-01
A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.
Less Can Be More: RNA-Adapters May Enhance Coding Capacity of Replicators
de Boer, Folkert K.; Hogeweg, Paulien
2012-01-01
It is still not clear how prebiotic replicators evolved towards the complexity found in present day organisms. Within the most realistic scenario for prebiotic evolution, known as the RNA world hypothesis, such complexity has arisen from replicators consisting solely of RNA. Within contemporary life, remarkably many RNAs are involved in modifying other RNAs. In hindsight, such RNA-RNA modification might have helped in alleviating the limits of complexity posed by the information threshold for RNA-only replicators. Here we study the possible role of such self-modification in early evolution, by modeling the evolution of protocells as evolving replicators, which have the opportunity to incorporate these mechanisms as a molecular tool. Evolution is studied towards a set of 25 arbitrary ‘functional’ structures, while avoiding all other (misfolded) structures, which are considered to be toxic and increase the death-rate of a protocell. The modeled protocells contain a genotype of different RNA-sequences while their phenotype is the ensemble of secondary structures they can potentially produce from these RNA-sequences. One of the secondary structures explicitly codes for a simple sequence-modification tool. This ‘RNA-adapter’ can block certain positions on other RNA-sequences through antisense base-pairing. The altered sequence can produce an alternative secondary structure, which may or may not be functional. We show that the modifying potential of interacting RNA-sequences enables these protocells to evolve high fitness under high mutation rates. Moreover, our model shows that because of toxicity of misfolded molecules, redundant coding impedes the evolution of self-modification machinery, in effect restraining the evolvability of coding structures. Hence, high mutation rates can actually promote the evolution of complex coding structures by reducing redundant coding. Protocells can successfully use RNA-adapters to modify their genotype-phenotype mapping in
Motion-adaptive model-assisted compatible coding with spatiotemporal scalability
NASA Astrophysics Data System (ADS)
Lee, JaeBeom; Eleftheriadis, Alexandros
1997-01-01
We introduce the concept of motion adaptive spatio-temporal model-assisted compatible (MA-STMAC) coding, a technique to selectively encode areas of different importance to the human eye in terms of space and time in moving images with the consideration of object motion. PRevious STMAC was proposed base don the fact that human 'eye contact' and 'lip synchronization' are very important in person-to-person communication. Several areas including the eyes and lips need different types of quality, since different areas have different perceptual significance to human observers. The approach provides a better rate-distortion tradeoff than conventional image coding techniques base don MPEG-1, MPEG- 2, H.261, as well as H.263. STMAC coding is applied on top of an encoder, taking full advantage of its core design. Model motion tracking in our previous STMAC approach was not automatic. The proposed MA-STMAC coding considers the motion of the human face within the STMAC concept using automatic area detection. Experimental results are given using ITU-T H.263, addressing very low bit-rate compression.
Adaptation of TRIPND Field Line Tracing Code to a Shaped, Poloidal Divertor Geometry
NASA Astrophysics Data System (ADS)
Monat, P.; Moyer, R. A.; Evans, T. E.
2001-10-01
The magnetic field line tracing code TRIPND(T.E. Evans, Proc. 18th Conf. on Control. Fusion and Plasma Phys., Berlin, Germany, Vol. 15C, Part II (European Physical Society, 1991) p. 65.) has been modified to use the axisymmetric equilibrium magnetic fields from an EFIT reconstruction in place of circular equilibria with multi-filament current profile expansions. This adaptation provides realistic plasma current profiles in shaped geometries. A major advantage of this modification is that it allows investigation of magnetic field line trajectories in any device for which an EFIT reconstruction is available. The TRIPND code has been used to study the structure of the magnetic field line topology in circular, limiter tokamaks, including Tore Supra and TFTR and has been benchmarked against the GOURDON code used in Europe for magnetic field line tracing. The new version of the code, called TRIP3D, is used to investigate the sensitivity of various shaped equilibria to non-axisymmetric perturbations such as a shifted F coil or error field correction coils.
Hierarchical prediction and context adaptive coding for lossless color image compression.
Kim, Seyun; Cho, Nam Ik
2014-01-01
This paper presents a new lossless color image compression algorithm, based on the hierarchical prediction and context-adaptive arithmetic coding. For the lossless compression of an RGB image, it is first decorrelated by a reversible color transform and then Y component is encoded by a conventional lossless grayscale image compression method. For encoding the chrominance images, we develop a hierarchical scheme that enables the use of upper, left, and lower pixels for the pixel prediction, whereas the conventional raster scan prediction methods use upper and left pixels. An appropriate context model for the prediction error is also defined and the arithmetic coding is applied to the error signal corresponding to each context. For several sets of images, it is shown that the proposed method further reduces the bit rates compared with JPEG2000 and JPEG-XR.
Radiographic image sequence coding using adaptive finite-state vector quantization
NASA Astrophysics Data System (ADS)
Joo, Chang-Hee; Choi, Jong S.
1990-11-01
Vector quantization is an effective spatial domain image coding technique at under 1 . 0 bits per pixel. To achieve the quality at lower rates it is necessary to exploit spatial redundancy over a larger region of pixels than is possible with memoryless VQ. A fmite state vector quant. izer can achieve the same performance as memoryless VQ at lower rates. This paper describes an athptive finite state vector quantization for radiographic image sequence coding. Simulation experiment has been carried out with 4*4 blocks of pixels from a sequence of cardiac angiogram consisting of 40 frames of size 256*256pixels each. At 0. 45 bpp the resulting adaptive FSVQ encoder achieves performance comparable to earlier memoryless VQs at 0. 8 bpp.
PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. II. IMPLEMENTATION AND TESTS
McNally, Colin P.; Mac Low, Mordecai-Mark; Maron, Jason L. E-mail: jmaron@amnh.org
2012-05-01
We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is required to ensure the particles fill the computational volume and gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. We have parallelized the code by adapting the framework provided by GADGET-2. A set of standard test problems, including 10{sup -6} amplitude linear magnetohydrodynamics waves, magnetized shock tubes, and Kelvin-Helmholtz instabilities is presented. Finally, we demonstrate good agreement with analytic predictions of linear growth rates for magnetorotational instability in a cylindrical geometry. This paper documents the Phurbas algorithm as implemented in Phurbas version 1.1.
Channel Error Propagation In Predictor Adaptive Differential Pulse Code Modulation (DPCM) Coders
NASA Astrophysics Data System (ADS)
Devarajan, Venkat; Rao, K. R.
1980-11-01
New adaptive differential pulse code modulation (ADPCM) coders with adaptive prediction are proposed and compared with existing non-adaptive DPCM coders, for processing composite National Television System Commission (NTSC) television signals. Comparisons are based on quantitative criteria as well as subjective evaluation of the processed still frames. The performance of the proposed predictors is shown to be independent of well-designed quantizers and better than existing predictors in such critical regions of the pictures as edges ind contours. Test data consists of four color images with varying levels of activity, color and detail. The adaptive predictors, however, are sensitive to channel errors. Propagation of transmission noise is dependent on the type of prediction and on location of noise i.e., whether in an uniform region or in an active region. The transmission error propagation for different predictors is investigated. By introducing leak in predictor output and/or predictor function it is shown that this propagation can be significantly reduced. The combination predictors not only attenuate and/or terminate the channel error propagation but also improve the predictor performance based on quantitative evaluation such as essential peak value and mean square error between the original and reconstructed images.
GridMan: A grid manipulation system
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Wang, Zhu
1992-01-01
GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.
Edge Equilibrium Code (EEC) For Tokamaks
Li, Xujling
2014-02-24
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids
Jablonowski, Christiane
2015-07-14
The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project
Prusa, Joseph
2012-05-08
This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.
Optimal joint power-rate adaptation for error resilient video coding
NASA Astrophysics Data System (ADS)
Lin, Yuan; Gürses, Eren; Kim, Anna N.; Perkis, Andrew
2008-01-01
In recent years digital imaging devices become an integral part of our daily lives due to the advancements in imaging, storage and wireless communication technologies. Power-Rate-Distortion efficiency is the key factor common to all resource constrained portable devices. In addition, especially in real-time wireless multimedia applications, channel adaptive and error resilient source coding techniques should be considered in conjunction with the P-R-D efficiency, since most of the time Automatic Repeat-reQuest (ARQ) and Forward Error Correction (FEC) are either not feasible or costly in terms of bandwidth efficiency delay. In this work, we focus on the scenarios of real-time video communication for resource constrained devices over bandwidth limited and lossy channels, and propose an analytic Power-channel Error-Rate-Distortion (P-E-R-D) model. In particular, probabilities of macroblocks coding modes are intelligently controlled through an optimization process according to their distinct rate-distortion-complexity performance for a given channel error rate. The framework provides theoretical guidelines for the joint analysis of error resilient source coding and resource allocation. Experimental results show that our optimal framework provides consistent rate-distortion performance gain under different power constraints.
Automatic network-adaptive ultra-low-bit-rate video coding
NASA Astrophysics Data System (ADS)
Chien, Wei-Jung; Lam, Tuyet-Trang; Abousleman, Glen P.; Karam, Lina J.
2006-05-01
This paper presents a software-only, real-time video coder/decoder (codec) for use with low-bandwidth channels where the bandwidth is unknown or varies with time. The codec incorporates a modified JPEG2000 core and interframe predictive coding, and can operate with network bandwidths of less than 1 kbits/second. The encoder and decoder establish two virtual connections over a single IP-based communications link. The first connection is UDP/IP guaranteed throughput, which is used to transmit the compressed video stream in real time, while the second is TCP/IP guaranteed delivery, which is used for two-way control and compression parameter updating. The TCP/IP link serves as a virtual feedback channel and enables the decoder to instruct the encoder to throttle back the transmission bit rate in response to the measured packet loss ratio. It also enables either side to initiate on-the-fly parameter updates such as bit rate, frame rate, frame size, and correlation parameter, among others. The codec also incorporates frame-rate throttling whereby the number of frames decoded is adjusted based upon the available processing resources. Thus, the proposed codec is capable of automatically adjusting the transmission bit rate and decoding frame rate to adapt to any network scenario. Video coding results for a variety of network bandwidths and configurations are presented to illustrate the vast capabilities of the proposed video coding system.
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio
2014-02-01
High Efficiency Video Coding (HEVC), the latest video compression standard (also known as H.265), can deliver video streams of comparable quality to the current H.264 Advanced Video Coding (H.264/AVC) standard with a 50% reduction in bandwidth. Research into SHVC, the scalable extension to the HEVC standard, is still in its infancy. One important area for investigation is whether, given the greater compression ratio of HEVC (and SHVC), the loss of packets containing video content will have a greater impact on the quality of delivered video than is the case with H.264/AVC or its scalable extension H.264/SVC. In this work we empirically evaluate the layer-based, in-network adaptation of video streams encoded using SHVC in situations where dynamically changing bandwidths and datagram loss ratios require the real-time adaptation of video streams. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for SHVC-based highdefinition video streaming in loss prone network environments such as those commonly found in mobile networks. Among other results, we highlight that packet losses of only 1% can lead to a substantial reduction in PSNR of over 3dB and error propagation in over 130 pictures following the one in which the loss occurred. This work would be one of the earliest studies in this cutting-edge area that reports benchmark evaluation results for the effects of datagram loss on SHVC picture quality and offers empirical and analytical insights into SHVC adaptation to lossy, mobile networking conditions.
Zou, Ding; Djordjevic, Ivan B
2016-09-01
In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10^{-15} for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code. PMID:27607718
Zou, Ding; Djordjevic, Ivan B
2016-09-01
In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10^{-15} for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code.
Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.
Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo
2015-08-01
The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537
Improving Inpatient Surveys: Web-Based Computer Adaptive Testing Accessed via Mobile Phone QR Codes
2016-01-01
Background The National Health Service (NHS) 70-item inpatient questionnaire surveys inpatients on their perceptions of their hospitalization experience. However, it imposes more burden on the patient than other similar surveys. The literature shows that computerized adaptive testing (CAT) based on item response theory can help shorten the item length of a questionnaire without compromising its precision. Objective Our aim was to investigate whether CAT can be (1) efficient with item reduction and (2) used with quick response (QR) codes scanned by mobile phones. Methods After downloading the 2008 inpatient survey data from the Picker Institute Europe website and analyzing the difficulties of this 70-item questionnaire, we used an author-made Excel program using the Rasch partial credit model to simulate 1000 patients’ true scores followed by a standard normal distribution. The CAT was compared to two other scenarios of answering all items (AAI) and the randomized selection method (RSM), as we investigated item length (efficiency) and measurement accuracy. The author-made Web-based CAT program for gathering patient feedback was effectively accessed from mobile phones by scanning the QR code. Results We found that the CAT can be more efficient for patients answering questions (ie, fewer items to respond to) than either AAI or RSM without compromising its measurement accuracy. A Web-based CAT inpatient survey accessed by scanning a QR code on a mobile phone was viable for gathering inpatient satisfaction responses. Conclusions With advances in technology, patients can now be offered alternatives for providing feedback about hospitalization satisfaction. This Web-based CAT is a possible option in health care settings for reducing the number of survey items, as well as offering an innovative QR code access. PMID:26935793
On the use of adaptive moving grid methods in combustion problems
Hyman, J.M.; Larrouturou, B.
1986-01-01
The investigators have presented the reasons and advantages of adaptively moving the mesh points for the solution of time-dependent PDEs (partial differential equations) systems developing sharp gradients, and more specifically for combustion problems. Several available adaptive dynamic rezone methods have been briefly reviewed, and the effectiveness of these algorithms for combustion problems has been illustrated by the numerical solution of a simple flame propagation problem. 29 refs., 7 figs.
Adaptive coded spreading OFDM signal for dynamic-λ optical access network
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhang, Lijia; Xin, Xiangjun
2015-12-01
This paper proposes and experimentally demonstrates a novel adaptive coded spreading (ACS) orthogonal frequency division multiplexing (OFDM) signal for dynamic distributed optical ring-based access network. The wavelength can be assigned to different remote nodes (RNs) according to the traffic demand of optical network unit (ONU). The ACS can provide dynamic spreading gain to different signals according to the split ratio or transmission length, which offers flexible power budget for the network. A 10×13.12 Gb/s OFDM access with ACS is successfully demonstrated over two RNs and 120 km transmission in the experiment. The demonstrated method may be viewed as one promising for future optical metro access network.
Non-parametric PCM to ADM conversion. [Pulse Code to Adaptive Delta Modulation
NASA Technical Reports Server (NTRS)
Locicero, J. L.; Schilling, D. L.
1977-01-01
An all-digital technique to convert pulse code modulated (PCM) signals into adaptive delta modulation (ADM) format is presented. The converter developed is shown to be independent of the statistical parameters of the encoded signal and can be constructed with only standard digital hardware. The structure of the converter is simple enough to be fabricated on a large scale integrated circuit where the advantages of reliability and cost can be optimized. A concise evaluation of this PCM to ADM translation technique is presented and several converters are simulated on a digital computer. A family of performance curves is given which displays the signal-to-noise ratio for sinusoidal test signals subjected to the conversion process, as a function of input signal power for several ratios of ADM rate to Nyquist rate.
Bernstein, A D; Camm, A J; Fletcher, R D; Gold, R D; Rickards, A F; Smyth, N P; Spielman, S R; Sutton, R
1987-07-01
A new generic pacemaker code, derived from and compatible with the Revised ICHD Code, was proposed jointly by the North American Society of Pacing and Electrophysiology (NASPE) Mode Code Committee and the British Pacing and Electrophysiology Group (BPEG), and has been adopted by the NASPE Board of Trustees. It is abbreviated as the NBG (for "NASPE/BPEG Generic") Code, and was developed to permit extension of the generic-code concept to pacemakers whose escape rate is continuously controlled by monitoring some physiologic variable, rather than determined by fixed escape intervals measured from stimuli or sensed depolarizations, and to antitachyarrhythmia devices including cardioverters and defibrillators. The NASPE/BPEG Code incorporates an "R" in the fourth position to signify rate modulation (adaptive-rate pacing), and one of four letters in the fifth position to indicate the presence of antitachyarrhythmia-pacing capability or of cardioversion or defibrillation functions. PMID:2441363
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Simon, Horst D.; Sohn, Andrew
1996-01-01
The computational requirements for an adaptive solution of unsteady problems change as the simulation progresses. This causes workload imbalance among processors on a parallel machine which, in turn, requires significant data movement at runtime. We present a new dynamic load-balancing framework, called JOVE, that balances the workload across all processors with a global view. Whenever the computational mesh is adapted, JOVE is activated to eliminate the load imbalance. JOVE has been implemented on an IBM SP2 distributed-memory machine in MPI for portability. Experimental results for two model meshes demonstrate that mesh adaption with load balancing gives more than a sixfold improvement over one without load balancing. We also show that JOVE gives a 24-fold speedup on 64 processors compared to sequential execution.
NASA Astrophysics Data System (ADS)
Jayaweera, Sudharman K.; Poor, H. Vincent
2003-12-01
A downlink receiver is proposed for space-time block coded CDMA systems operating in multipath channels. By combining the powerful RAKE receiver concept for a frequency selective channel with space-time decoding, it is shown that the performance of mobile receivers operating in the presence of channel fading can be improved significantly. The proposed receiver consists of a bank of decorrelating filters designed to suppress the multiple access interference embedded in the received signal before the space-time decoding. The new receiver performs the space-time decoding along each resolvable multipath component and then the outputs are diversity combined to obtain the final decision statistic. The proposed receiver relies on a key constraint imposed on the output of each filter in the bank of decorrelating filters in order to maintain the space-time block code structure embedded in the signal. The proposed receiver can easily be adapted blindly, requiring only the desired user's signature sequence, which is also attractive in the context of wireless mobile communications. Simulation results are provided to confirm the effectiveness of the proposed receiver in multipath CDMA systems.
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding.
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A
2016-01-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications. PMID:27515908
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding.
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A
2016-01-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A.
2016-01-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications. PMID:27515908
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding
NASA Astrophysics Data System (ADS)
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A.
2016-08-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.
White Dwarf Mergers on Adaptive Meshes. I. Methodology and Code Verification
NASA Astrophysics Data System (ADS)
Katz, Max P.; Zingale, Michael; Calder, Alan C.; Swesty, F. Douglas; Almgren, Ann S.; Zhang, Weiqun
2016-03-01
The Type Ia supernova (SN Ia) progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf (WD) merger scenario, which has the potential to naturally explain many of the observed characteristics of SNe Ia. To date there have been relatively few self-consistent simulations of merging WD systems using mesh-based hydrodynamics. This is the first paper in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this paper we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.
Zhang, Guannan; Webster, Clayton G; Gunzburger, Max D
2012-09-01
Although Bayesian analysis has become vital to the quantification of prediction uncertainty in groundwater modeling, its application has been hindered due to the computational cost associated with numerous model executions needed for exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, we utilize a compactly supported higher-order hierar- chical basis to construct the surrogate system, resulting in a significant reduction in the number of computational simulations required. In addition, we use hierarchical surplus as an error indi- cator to determine adaptive sparse grids. This allows local refinement in the uncertain domain and/or anisotropic detection with respect to the random model parameters, which further improves computational efficiency. Finally, we incorporate a global optimization technique and propose an iterative algorithm for building the surrogate system for the PPDF with multiple significant modes. Once the surrogate system is determined, the PPDF can be evaluated by sampling the surrogate system directly with very little computational cost. The developed method is evaluated first using a simple analytical density function with multiple modes and then using two synthetic groundwater reactive transport models. The groundwater models represent different levels of complexity; the first example involves coupled linear reactions and the second example simulates nonlinear ura- nium surface complexation. The results show that the aSG-hSC is an effective and efficient tool for Bayesian inference in groundwater modeling in comparison with conventional
ADAPTIVE-GRID SIMULATION OF GROUNDWATER FLOW IN HETEROGENEOUS AQUIFERS. (R825689C068)
The prediction of contaminant transport in porous media requires the computation of the flow velocity. This work presents a methodology for high-accuracy computation of flow in a heterogeneous isotropic formation, employing a dual-flow formulation and adaptive...
Context adaptive binary arithmetic coding-based data hiding in partially encrypted H.264/AVC videos
NASA Astrophysics Data System (ADS)
Xu, Dawen; Wang, Rangding
2015-05-01
A scheme of data hiding directly in a partially encrypted version of H.264/AVC videos is proposed which includes three parts, i.e., selective encryption, data embedding and data extraction. Selective encryption is performed on context adaptive binary arithmetic coding (CABAC) bin-strings via stream ciphers. By careful selection of CABAC entropy coder syntax elements for selective encryption, the encrypted bitstream is format-compliant and has exactly the same bit rate. Then a data-hider embeds the additional data into partially encrypted H.264/AVC videos using a CABAC bin-string substitution technique without accessing the plaintext of the video content. Since bin-string substitution is carried out on those residual coefficients with approximately the same magnitude, the quality of the decrypted video is satisfactory. Video file size is strictly preserved even after data embedding. In order to adapt to different application scenarios, data extraction can be done either in the encrypted domain or in the decrypted domain. Experimental results have demonstrated the feasibility and efficiency of the proposed scheme.
A New Real-coded Genetic Algorithm with an Adaptive Mating Selection for UV-landscapes
NASA Astrophysics Data System (ADS)
Oshima, Dan; Miyamae, Atsushi; Nagata, Yuichi; Kobayashi, Shigenobu; Ono, Isao; Sakuma, Jun
The purpose of this paper is to propose a new real-coded genetic algorithm (RCGA) named Networked Genetic Algorithm (NGA) that intends to find multiple optima simultaneously in deceptive globally multimodal landscapes. Most current techniques such as niching for finding multiple optima take into account big valley landscapes or non-deceptive globally multimodal landscapes but not deceptive ones called UV-landscapes. Adaptive Neighboring Search (ANS) is a promising approach for finding multiple optima in UV-landscapes. ANS utilizes a restricted mating scheme with a crossover-like mutation in order to find optima in deceptive globally multimodal landscapes. However, ANS has a fundamental problem that it does not find all the optima simultaneously in many cases. NGA overcomes the problem by an adaptive parent-selection scheme and an improved crossover-like mutation. We show the effectiveness of NGA over ANS in terms of the number of detected optima in a single run on Fletcher and Powell functions as benchmark problems that are known to have multiple optima, ill-scaledness, and UV-landscapes.
NASA Astrophysics Data System (ADS)
Ki, Dae Wook; Kim, Jae Ho
2013-07-01
We propose a fast new multiple run_before decoding method in context-adaptive variable length coding (CAVLC). The transform coefficients are coded using CAVLC, in which the run_before symbols are generated for a 4×4 block input. To speed up the CAVLC decoding, the run_before symbols need to be decoded in parallel. We implemented a new CAVLC table for simultaneous decoding of up to three run_befores. The simulation results show a Total Speed-up Factor of 205%˜144% over various resolutions and quantization steps.
Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core
NASA Astrophysics Data System (ADS)
Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.
2009-12-01
One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.
Parallel Adaptive Mesh Refinement Library
NASA Technical Reports Server (NTRS)
Mac-Neice, Peter; Olson, Kevin
2005-01-01
Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.
2015-09-14
GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
Development of a grid generator to support 3-D multizone Navier-Stokes analysis
NASA Astrophysics Data System (ADS)
Holcomb, J. E.
1987-01-01
A three-dimensional grid generation code has been developed to support multizone Navier-Stokes analysis of flowfields associated with complex geometries. The code includes a number of features necessary for this task, including the definition of arbitrary zonal boundary surfaces using the output from a separate surface geometry program. The interior of each zone is gridded by an efficient parabolic/elliptic partial differential equation algorithm. To test the new grid generation code, grids were successfully generated for a finned missile configuration, for a hypersonic vehicle, for a fluid dynamic vortex valve, and for a three-dimensional rocket base/nozzle/plume configuration. Navier-Stokes calculations were run on these grids, with satisfactory results. The new code is expected to provide a solid basis for the extension to optimized and solution-adaptive grid generation in the future.
Advanced Unstructured Grid Generation for Complex Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new approach for distribution of grid points on the surface and in the volume has been developed and implemented in the NASA unstructured grid generation code VGRID. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.
Computational Aerothermodynamic Simulation Issues on Unstructured Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; White, Jeffery A.
2004-01-01
The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.
The fluid dynamic approach to equidistribution methods for grid generation and adaptation
Delzanno, Gian Luca; Finn, John M
2009-01-01
The equidistribution methods based on L{sub p} Monge-Kantorovich optimization [Finn and Delzanno, submitted to SISC, 2009] and on the deformation [Moser, 1965; Dacorogna and Moser, 1990, Liao and Anderson, 1992] method are analyzed primarily in the context of grid generation. It is shown that the first class of methods can be obtained from a fluid dynamic formulation based on time-dependent equations for the mass density and the momentum density, arising from a variational principle. In this context, deformation methods arise from a fluid formulation by making a specific assumption on the time evolution of the density (but with some degree of freedom for the momentum density). In general, deformation methods do not arise from a variational principle. However, it is possible to prescribe an optimal deformation method, related to L{sub 1} Monge-Kantorovich optimization, by making a further assumption on the momentum density. Some applications of the L{sub p} fluid dynamic formulation to imaging are also explored.
NASA Astrophysics Data System (ADS)
Kaus, B.; Popov, A.
2014-12-01
The complexity of lithospheric rheology and the necessity to resolve the deformation patterns near the free surface (faults and folds) sufficiently well places a great demand on a stable and scalable modeling tool that is capable of efficiently handling nonlinearities. Our code LaMEM (Lithosphere and Mantle Evolution Model) is an attempt to satisfy this demand. The code utilizes a stable and numerically inexpensive finite difference discretization with the spatial staggering of velocity, pressure, and temperature unknowns (a so-called staggered grid). As a time discretization method the forward Euler, or a combination of the predictor-corrector and the fourth-order Runge-Kutta can be chosen. Elastic stresses are rotated on the markers, which are also used to track all relevant material properties and solution history fields. The Newtonian nonlinear iteration, however, is handled at the level of the grid points to avoid spurious averaging between markers and grid. Such an arrangement required us to develop a non-standard discretization of the effective strain-rate second invariant. Important feature of the code is its ability to handle stress-free and open-box boundary conditions, in which empty cells are simply eliminated from the discretization, which also solves the biggest problem of the sticky-air approach - namely large viscosity jumps near the free surface. We currently support an arbitrary combination of linear elastic, nonlinear viscous with multiple creep mechanisms, and plastic rheologies based on either a depth-dependent von Mises or pressure-dependent Drucker-Prager yield criteria.LaMEM is being developed as an inherently parallel code. Structurally all its parts are based on the building blocks provided by PETSc library. These include Jacobian-Free Newton-Krylov nonlinear solvers with convergence globalization techniques (line search), equipped with different linear preconditioners. We have also implemented the coupled velocity-pressure multigrid
Robust image transmission using a new joint source channel coding algorithm and dual adaptive OFDM
NASA Astrophysics Data System (ADS)
Farshchian, Masoud; Cho, Sungdae; Pearlman, William A.
2004-01-01
In this paper we consider the problem of robust image coding and packetization for the purpose of communications over slow fading frequency selective channels and channels with a shaped spectrum like those of digital subscribe lines (DSL). Towards this end, a novel and analytically based joint source channel coding (JSCC) algorithm to assign unequal error protection is presented. Under a block budget constraint, the image bitstream is de-multiplexed into two classes with different error responses. The algorithm assigns unequal error protection (UEP) in a way to minimize the expected mean square error (MSE) at the receiver while minimizing the probability of catastrophic failure. In order to minimize the expected mean square error at the receiver, the algorithm assigns unequal protection to the value bit class (VBC) stream. In order to minimizes the probability of catastrophic error which is a characteristic of progressive image coders, the algorithm assigns more protection to the location bit class (LBC) stream than the VBC stream. Besides having the advantage of being analytical and also numerically solvable, the algorithm is based on a new formula developed to estimate the distortion rate (D-R) curve for the VBC portion of SPIHT. The major advantage of our technique is that the worst case instantaneous minimum peak signal to noise ratio (PSNR) does not differ greatly from the averge MSE while this is not the case for the optimal single stream (UEP) system. Although both average PSNR of our method and the optimal single stream UEP are about the same, our scheme does not suffer erratic behavior because we have made the probability of catastrophic error arbitarily small. The coded image is sent via orthogonal frequency division multiplexing (OFDM) which is a known and increasing popular modulation scheme to combat ISI (Inter Symbol Interference) and impulsive noise. Using dual adaptive energy OFDM, we use the minimum energy necessary to send each bit stream at a
Carson, James P.; Kuprat, Andrew P.; Jiao, Xiangmin; Dyedov, Volodymyr; del Pin, Facundo; Guccione, Julius M.; Ratcliffe, Mark B.; Einstein, Daniel R.
2010-04-01
Spatial discretization of complex imaging-derived fluid-solid geometries, such as the cardiac environment, is a critical but often overlooked challenge in biomechanical computations. This is particularly true in problems with Lagrangian interfaces, where, the fluid and solid phases must match geometrically. For simplicity and better accuracy, it is also highly desirable for the two phases to share the same surface mesh at the interface between them. We outline a method for solving this problem, and illustrate the approach with a 3D fluid-solid mesh of the mouse heart. An MRI perfusion-fixed dataset of a mouse heart with 50μm isotropic resolution was semi-automatically segmented using a customized multimaterial connected-threshold approach that divided the volume into non-overlapping regions of blood, tissue and background. Subsequently, a multimaterial marching cubes algorithm was applied to the segmented data to produce two detailed, compatible isosurfaces, one for blood and one for tissue. Both isosurfaces were simultaneously smoothed with a multimaterial smoothing algorithm that exactly conserves the volume for each phase. Using these two isosurfaces, we developed and applied novel automated meshing algorithms to generate anisotropic hybrid meshes on arbitrary biological geometries with the number of layers and the desired element anisotropy for each phase as the only input parameters. Since our meshes adapt to the local feature sizes and include boundary layer prisms, they are more efficient and accurate than non-adaptive, isotropic meshes, and the fluid-structure interaction computations will tend to have relative error equilibrated over the whole mesh.
Carson, J.P.; Kuprat, A.P; Jiao, X.; Dyedov, V.; del Pin, F.; Johnson, G.A.; Guccione, J.M.; Ratcliffe, M.B.; Einstein, D.R.
2009-01-01
Spatial discretization of complex imaging-derived fluid-solid geometries, such as the cardiac environment, is a critical but often overlooked challenge in biomechanical computations. This is particularly true in problems with Lagrangian interfaces, where the fluid and solid phases share a common interface geometrically. For simplicity and better accuracy, it is also highly desirable for the two phases to have a matching surface mesh at the interface between them. We outline a method for solving this problem, and illustrate the approach with a 3D fluid-solid mesh of the mouse heart. An MRI perfusion-fixed dataset of a mouse heart with 50μm isotropic resolution was semi-automatically segmented using a customized multimaterial connected-threshold approach that divided the volume into non-overlapping regions of blood, tissue and background. Subsequently, a multimaterial marching cubes algorithm was applied to the segmented data to produce two detailed, compatible isosurfaces, one for blood and one for tissue. Both isosurfaces were simultaneously smoothed with a multimaterial smoothing algorithm that exactly conserves the volume for each phase. Using these two isosurfaces, we developed and applied novel automated meshing algorithms to generate anisotropic hybrid meshes on arbitrary biological geometries with the number of layers and the desired element anisotropy for each phase as the only input parameters. Since our meshes adapt to the local feature sizes and include boundary layer prisms, they are more efficient and accurate than non-adaptive, isotropic meshes, and the fluid-structure interaction computations will tend to have relative error equilibrated over the whole mesh. PMID:19727874
NASA Astrophysics Data System (ADS)
Zhang, Yongsheng; Xiong, Hongkai; He, Zhihai; Yu, Songyu
2010-07-01
An important issue in Wyner-Ziv video coding is the reconstruction of Wyner-Ziv frames with decoded bit-planes. So far, there are two major approaches: the Maximum a Posteriori (MAP) reconstruction and the Minimum Mean Square Error (MMSE) reconstruction algorithms. However, these approaches do not exploit smoothness constraints in natural images. In this paper, we model a Wyner-Ziv frame by Markov random fields (MRFs), and produce reconstruction results by finding an MAP estimation of the MRF model. In the MRF model, the energy function consists of two terms: a data term, MSE distortion metric in this paper, measuring the statistical correlation between side-information and the source, and a smoothness term enforcing spatial coherence. In order to better describe the spatial constraints of images, we propose a context-adaptive smoothness term by analyzing the correspondence between the output of Slepian-Wolf decoding and successive frames available at decoders. The significance of the smoothness term varies in accordance with the spatial variation within different regions. To some extent, the proposed approach is an extension to the MAP and MMSE approaches by exploiting the intrinsic smoothness characteristic of natural images. Experimental results demonstrate a considerable performance gain compared with the MAP and MMSE approaches.
Development of an Atmospheric Climate Model with Self-Adapting Grid and Physics
Penner, Joyce E.
2013-08-10
This project was targeting the development of a computational approach that would allow resolving cloud processes on small-scales within the framework of the most recent version of the NASA/NCAR Finite-Volume Community Atmospheric Model (FVCAM). The FVCAM is based on the multidimensional Flux-Form Semi-Lagrangian (FFSL) dynamical core and uses a ?vertically Lagrangian? finite-volume (FV) representation of the model equations with a mass-conserving re-mapping algorithm. The Lagrangian coordinate requires a remapping of the Lagrangian volume back to Eulerian coordinates to restore the original resolution and keep the mesh from developing distortions such as layers with overlapping interfaces. The main objectives of the project were, first, to develop the 3D library which allows refinement and coarsening of the model domain in spherical coordinates, and second, to develop a non-hydrostatic code for calculation of the model variables within the refined areas that could be seamlessly incorporated with the hydrostatic finite volume dynamical core when higher resolution is wanted. We also updated the aerosol simulation model in CAM in order to ready the model for the treatment of aerosol/cloud interactions.
NASA Astrophysics Data System (ADS)
Shin, Frances B.; Kil, David H.
1998-09-01
One of the biggest challenges in distributed underwater mine warfare for area sanitization and safe power projection during regional conflicts is transmission of compressed raw imagery data to a central processing station via a limited bandwidth channel while preserving crucial target information for further detection and automatic target recognition processing. Moreover, operating in an extremely shallow water with fluctuating channels and numerous interfering sources makes it imperative that image compression algorithms effectively deal with background nonstationarity within an image as well as content variation between images. In this paper, we present a novel approach to lossy image compression that combines image- content classification, content-adaptive bit allocation, and hybrid wavelet tree-based coding for over 100:1 bandwidth reduction with little sacrifice in signal-to-noise ratio (SNR). Our algorithm comprises (1) content-adaptive coding that takes advantage of a classify-before-coding strategy to reduce data mismatch, (2) subimage transformation for energy compaction, and (3) a wavelet tree-based coding for efficient encoding of significant wavelet coefficients. Furthermore, instead of using the embedded zerotree coding with scalar quantization (SQ), we investigate the use of a hybrid coding strategy that combines SQ for high-magnitude outlier transform coefficients and classified vector quantization (CVQ) for compactly clustered coefficients. This approach helps us achieve reduced distortion error and robustness while achieving high compression ratio. Our analysis based on the high-frequency sonar real data that exhibit severe content variability and contain both mines and mine-like clutter indicates that we can achieve over 100:1 compression ratio without losing crucial signal attributes. In comparison, benchmarking of the same data set with the best still-picture compression algorithm called the set partitioning in hierarchical trees (SPIHT) reveals
Adaptive quarter-pel motion estimation and motion vector coding algorithm for the H.264/AVC standard
NASA Astrophysics Data System (ADS)
Jung, Seung-Won; Park, Chun-Su; Ha, Le Thanh; Ko, Sung-Jea
2009-11-01
We present an adaptive quarter-pel (Qpel) motion estimation (ME) method for H.264/AVC. Instead of applying Qpel ME to all macroblocks (MBs), the proposed method selectively performs Qpel ME in an MB level. In order to reduce the bit rate, we also propose a motion vector (MV) encoding technique that adaptively selects a different variable length coding (VLC) table according to the accuracy of the MV. Experimental results show that the proposed method can achieve about 3% average bit rate reduction.
Towards Hybrid Overset Grid Simulations of the Launch Environment
NASA Astrophysics Data System (ADS)
Moini-Yekta, Shayan
A hybrid overset grid approach has been developed for the design and analysis of launch vehicles and facilities in the launch environment. The motivation for the hybrid grid methodology is to reduce the turn-around time of computational fluid dynamic simulations and improve the ability to handle complex geometry and flow physics. The LAVA (Launch Ascent and Vehicle Aerodynamics) hybrid overset grid scheme consists of two components: an off-body immersed-boundary Cartesian solver with block-structured adaptive mesh refinement and a near-body unstructured body-fitted solver. Two-way coupling is achieved through overset connectivity between the off-body and near-body grids. This work highlights verification using code-to-code comparisons and validation using experimental data for the individual and hybrid solver. The hybrid overset grid methodology is applied to representative unsteady 2D trench and 3D generic rocket test cases.
Adaptive mesh simulations of astrophysical detonations using the ASCI flash code
NASA Astrophysics Data System (ADS)
Fryxell, B.; Calder, A. C.; Dursi, L. J.; Lamb, D. Q.; MacNeice, P.; Olson, K.; Ricker, P.; Rosner, R.; Timmes, F. X.; Truran, J. W.; Tufo, H. M.; Zingale, M.
2001-08-01
The Flash code was developed at the University of Chicago as part of the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). The code was designed specifically to simulate thermonuclear flashes in compact stars (white dwarfs and neutron stars). This paper will give a brief introduction to the astrophysics problems we wish to address, followed by a description of the current version of the Flash code. Finally, we discuss two simulations of astrophysical detonations that we have carried out with the code. The first is of a helium detonation in an X-ray burst. The other simulation models a carbon detonation in a Type Ia supernova explosion. .
NASA Astrophysics Data System (ADS)
Muta, Osamu; Akaiwa, Yoshihiko
In this paper, we propose a simple peak power reduction (PPR) method based on adaptive inversion of parity-check block of codeword in BCH-coded OFDM system. In the proposed method, the entire parity-check block of the codeword is adaptively inversed by multiplying weighting factors (WFs) so as to minimize PAPR of the OFDM signal, symbol-by-symbol. At the receiver, these WFs are estimated based on the property of BCH decoding. When the primitive BCH code with single error correction such as (31,26) code is used, to estimate the WFs, the proposed method employs a significant bit protection method which assigns a significant bit to the best subcarrier selected among all possible subcarriers. With computer simulation, when (31,26), (31,21) and (32,21) BCH codes are employed, PAPR of the OFDM signal at the CCDF (Complementary Cumulative Distribution Function) of 10-4 is reduced by about 1.9, 2.5 and 2.5dB by applying the PPR method, while achieving the BER performance comparable to the case with the perfect WF estimation in exponentially decaying 12-path Rayleigh fading condition.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2010-11-22
In this paper, a new and simple rate-adaptive transmission scheme for free-space optical (FSO) communication systems with intensity modulation and direct detection (IM/DD) over atmospheric turbulence channels is analyzed. This scheme is based on the joint use of repetition coding and variable silence periods, exploiting the potential time-diversity order (TDO) available in the turbulent channel as well as allowing the increase of the peak-to-average optical power ratio (PAOPR). Here, repetition coding is firstly used in order to accommodate the transmission rate to the channel conditions until the whole time diversity order available in the turbulent channel by interleaving is exploited. Then, once no more diversity gain is available, the rate reduction can be increased by using variable silence periods in order to increase the PAOPR. Novel closed-form expressions for the average bit-error rate (BER) as well as their corresponding asymptotic expressions are presented when the irradiance of the transmitted optical beam follows negative exponential and gamma-gamma distributions, covering a wide range of atmospheric turbulence conditions. Obtained results show a diversity order as in the corresponding rate-adaptive transmission scheme only based on repetition codes but providing a relevant improvement in coding gain. Simulation results are further demonstrated to confirm the analytical results. Here, not only rectangular pulses are considered but also OOK formats with any pulse shape, corroborating the advantage of using pulses with high PAOPR, such as gaussian or squared hyperbolic secant pulses. We also determine the achievable information rate for the rate-adaptive transmission schemes here analyzed.
Anti-Voice Adaptation Suggests Prototype-Based Coding of Voice Identity
Latinus, Marianne; Belin, Pascal
2011-01-01
We used perceptual aftereffects induced by adaptation with anti-voice stimuli to investigate voice identity representations. Participants learned a set of voices then were tested on a voice identification task with vowel stimuli morphed between identities, after different conditions of adaptation. In Experiment 1, participants chose the identity opposite to the adapting anti-voice significantly more often than the other two identities (e.g., after being adapted to anti-A, they identified the average voice as A). In Experiment 2, participants showed a bias for identities opposite to the adaptor specifically for anti-voice, but not for non-anti-voice adaptors. These results are strikingly similar to adaptation aftereffects observed for facial identity. They are compatible with a representation of individual voice identities in a multidimensional perceptual voice space referenced on a voice prototype. PMID:21847384
2012-06-01
We have entered a new era in agricultural and biomedical science made possible by remarkable advances in DNA sequencing technologies. The complete sequence of an individual's set of chromosomes (collectively, its genome) provides a primary genetic code for what makes that individual unique, just as the contents of every personal computer reflect the unique attributes of its owner. But a second code, composed of "epigenetic" layers of information, affects the accessibility of the stored information and the execution of specific tasks. Nature's second code is enigmatic and must be deciphered if we are to fully understand and optimize the genetic potential of crop plants. The goal of the Epigenomics of Plants International Consortium is to crack this second code, and ultimately master its control, to help catalyze a new green revolution.
Finite-difference modeling with variable grid-size and adaptive time-step in porous media
NASA Astrophysics Data System (ADS)
Liu, Xinxin; Yin, Xingyao; Wu, Guochen
2014-04-01
Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.
NASA Astrophysics Data System (ADS)
Cooper, Christopher D.; Barba, Lorena A.
2016-05-01
Interactions between surfaces and proteins occur in many vital processes and are crucial in biotechnology: the ability to control specific interactions is essential in fields like biomaterials, biomedical implants and biosensors. In the latter case, biosensor sensitivity hinges on ligand proteins adsorbing on bioactive surfaces with a favorable orientation, exposing reaction sites to target molecules. Protein adsorption, being a free-energy-driven process, is difficult to study experimentally. This paper develops and evaluates a computational model to study electrostatic interactions of proteins and charged nanosurfaces, via the Poisson-Boltzmann equation. We extended the implicit-solvent model used in the open-source code PyGBe to include surfaces of imposed charge or potential. This code solves the boundary integral formulation of the Poisson-Boltzmann equation, discretized with surface elements. PyGBe has at its core a treecode-accelerated Krylov iterative solver, resulting in O(N log N) scaling, with further acceleration on hardware via multi-threaded execution on GPUs. It computes solvation and surface free energies, providing a framework for studying the effect of electrostatics on adsorption. We derived an analytical solution for a spherical charged surface interacting with a spherical dielectric cavity, and used it in a grid-convergence study to build evidence on the correctness of our approach. The study showed the error decaying with the average area of the boundary elements, i.e., the method is O(1 / N) , which is consistent with our previous verification studies using PyGBe. We also studied grid-convergence using a real molecular geometry (protein G B1 D4‧), in this case using Richardson extrapolation (in the absence of an analytical solution) and confirmed the O(1 / N) scaling. With this work, we can now access a completely new family of problems, which no other major bioelectrostatics solver, e.g. APBS, is capable of dealing with. PyGBe is open
Rhodes, Gillian; Jeffery, Linda; Taylor, Libby; Ewing, Louise
2013-11-01
Our ability to discriminate and recognize thousands of faces despite their similarity as visual patterns relies on adaptive, norm-based, coding mechanisms that are continuously updated by experience. Reduced adaptive coding of face identity has been proposed as a neurocognitive endophenotype for autism, because it is found in autism and in relatives of individuals with autism. Autistic traits can also extend continuously into the general population, raising the possibility that reduced adaptive coding of face identity may be more generally associated with autistic traits. In the present study, we investigated whether adaptive coding of face identity decreases as autistic traits increase in an undergraduate population. Adaptive coding was measured using face identity aftereffects, and autistic traits were measured using the Autism-Spectrum Quotient (AQ) and its subscales. We also measured face and car recognition ability to determine whether autistic traits are selectively related to face recognition difficulties. We found that men who scored higher on levels of autistic traits related to social interaction had reduced adaptive coding of face identity. This result is consistent with the idea that atypical adaptive face-coding mechanisms are an endophenotype for autism. Autistic traits were also linked with face-selective recognition difficulties in men. However, there were some unexpected sex differences. In women, autistic traits were linked positively, rather than negatively, with adaptive coding of identity, and were unrelated to face-selective recognition difficulties. These sex differences indicate that autistic traits can have different neurocognitive correlates in men and women and raise the intriguing possibility that endophenotypes of autism can differ in males and females.
NASA Astrophysics Data System (ADS)
Bennett, Beth Anne V.; Fielding, Joseph; Mauro, Richard J.; Long, Marshall B.; Smooke, Mitchell D.
1999-12-01
Axisymmetric laminar methane-air Bunsen flames are computed for two equivalence ratios: lean (icons/Journals/Common/Phi" ALT="Phi" ALIGN="TOP"/> = 0.776), in which the traditional Bunsen cone forms above the burner; and rich (icons/Journals/Common/Phi" ALT="Phi" ALIGN="TOP"/> = 1.243), in which the premixed Bunsen cone is accompanied by a diffusion flame halo located further downstream. Because the extremely large gradients at premixed flame fronts greatly exceed those in diffusion flames, their resolution requires a more sophisticated adaptive numerical method than those ordinarily applied to diffusion flames. The local rectangular refinement (LRR) solution-adaptive gridding method produces robust unstructured rectangular grids, utilizes multiple-scale finite-difference discretizations, and incorporates Newton's method to solve elliptic partial differential equation systems simultaneously. The LRR method is applied to the vorticity-velocity formulation of the fully elliptic governing equations, in conjunction with detailed chemistry, multicomponent transport and an optically-thin radiation model. The computed lean flame is lifted above the burner, and this liftoff is verified experimentally. For both lean and rich flames, grid spacing greatly influences the Bunsen cone's position, which only stabilizes with adequate refinement. In the rich configuration, the oxygen-free region above the Bunsen cone inhibits the complete decay of CH4, thus indirectly initiating the diffusion flame halo where CO oxidizes to CO2. In general, the results computed by the LRR method agree quite well with those obtained on equivalently refined conventional grids, yet the former require less than half the computational resources.
NASA Astrophysics Data System (ADS)
Egorova, Tatiana; Gatsonis, Nikolaos A.; Demetriou, Michael A.
2013-11-01
In this work the process of gas release into the atmosphere by a moving aerial source is simulated and estimated using a sensing aerial vehicle (SAV). The process is modeled with atmospheric advection diffusion equation, which is solved by the finite volume method (FVM). Advective fluxes are constrained using total variation diminishing (TVD) approach. The estimator provides on-line estimates of concentration field and proximity of the source. The guidance of the SAV is dictated by the performance of the estimator. To further improve the estimation algorithm from the computational prospective, the grid is adapted dynamically through local refinement and coarsening. The adaptation algorithm uses the current sensor position as a center of refinement, with the areas further away from the SAV being covered by a coarse grid. This leads to the time varying state matrix of the estimator and the variation depends on the SAV motion. Advantages of the adaptive FVM-TVD implementation are illustrated on the examples of estimator performance for different source trajectories.
NASA Astrophysics Data System (ADS)
Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor
2014-06-01
TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.
Calculating C-grids with fine and embedded mesh regions
NASA Technical Reports Server (NTRS)
Loyd, B.
1984-01-01
A program for calculating a C-type mesh around airfoil like shapes is described. The Jameson/Caughey approach is used: a parabolic transformation coupled with a shearing transformation. The algebraic algorithm is capable of efficiently generating nearly orthogonal grids. A high degree of grid control is possible. The user may specify grid boundaries, number of grid lines, and location of (and spacing in) trailing edge and leading edge fine mesh areas. The capability of embedding fine mesh regions, for use with new adaptive grid techniques, is being developed. Grids generated by the program were used in Euler flow flow calculatons by W. Usab. Results superior to results calculated on previous O-type grids were obtained. Specifically, calculations converged faster using C-grids rather than 0-grids, total pressure loss spikes at the trailing edge of the airfoil were eliminated, and the Ni method converged with zero artificial smoothing for a subcritical case (resulting overall total pressure loss was then nearly zero). These improvements were attributed to higher grid orthogonality, especially at the trailing edge. The program itself is fairly straightforward. Roughly half of the 800 code lines are comment lines.
NASA Technical Reports Server (NTRS)
Kandula, Max; Caimi, Raoul; Steinrock, T. (Technical Monitor)
2001-01-01
An acoustic prediction capability for supersonic axisymmetric jets was developed on the basis of OVERFLOW Navier-Stokes CFD (Computational Fluid Dynamics) code of NASA Langley Research Center. Reynolds-averaged turbulent stresses in the flow field are modeled with the aid of Spalart-Allmaras one-equation turbulence model. Appropriate acoustic and outflow boundary conditions were implemented to compute time-dependent acoustic pressure in the nonlinear source-field. Based on the specification of acoustic pressure, its temporal and normal derivatives on the Kirchhoff surface, the near-field and the far-field sound pressure levels are computed via Kirchhoff surface integral, with the Kirchhoff surface chosen to enclose the nonlinear sound source region described by the CFD code. The methods are validated by a comparison of the predictions of sound pressure levels with the available data for an axisymmetric turbulent supersonic (Mach 2) perfectly expanded jet.
Lee, Dongyul; Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
NASA Astrophysics Data System (ADS)
Malgarinos, Ilias; Nikolopoulos, Nikolaos; Gavaises, Manolis
2015-11-01
This study presents the implementation of an interface sharpening scheme on the basis of the Volume of Fluid (VOF) method, as well as its application in a number of theoretical and real cases usually modelled in literature. More specifically, the solution of an additional sharpening equation along with the standard VOF model equations is proposed, offering the advantage of "restraining" interface numerical diffusion, while also keeping a quite smooth induced velocity field around the interface. This sharpening equation is solved right after volume fraction advection; however a novel method for its coupling with the momentum equation has been applied in order to save computational time. The advantages of the proposed sharpening scheme lie on the facts that a) it is mass conservative thus its application does not have a negative impact on one of the most important benefits of VOF method and b) it can be used in coarser grids as now the suppression of the numerical diffusion is grid independent. The coupling of the solved equation with an adaptive local grid refinement technique is used for further decrease of computational time, while keeping high levels of accuracy at the area of maximum interest (interface). The numerical algorithm is initially tested against two theoretical benchmark cases for interface tracking methodologies followed by its validation for the case of a free-falling water droplet accelerated by gravity, as well as the normal liquid droplet impingement onto a flat substrate. Results indicate that the coupling of the interface sharpening equation with the HRIC discretization scheme used for volume fraction flux term, not only decreases the interface numerical diffusion, but also allows the induced velocity field to be less perturbed owed to spurious velocities across the liquid-gas interface. With the use of the proposed algorithmic flow path, coarser grids can replace finer ones at the slight expense of accuracy.
William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz
2012-04-09
This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.
fMR-Adaptation Reveals Invariant Coding of Biological Motion on the Human STS
Grossman, Emily D.; Jardine, Nicole L.; Pyles, John A.
2009-01-01
Neuroimaging studies of biological motion perception have found a network of coordinated brain areas, the hub of which appears to be the human posterior superior temporal sulcus (STSp). Understanding the functional role of the STSp requires characterizing the response tuning of neuronal populations underlying the BOLD response. Thus far our understanding of these response properties comes from single-unit studies of the monkey anterior STS, which has individual neurons tuned to body actions, with a small population invariant to changes in viewpoint, position and size of the action being viewed. To measure for homologous functional properties on the human STS, we used fMR-adaptation to investigate action, position and size invariance. Observers viewed pairs of point-light animations depicting human actions that were either identical, differed in the action depicted, locally scrambled, or differed in the viewing perspective, the position or the size. While extrastriate hMT+ had neural signals indicative of viewpoint specificity, the human STS adapted for all of these changes, as compared to viewing two different actions. Similar findings were observed in more posterior brain areas also implicated in action recognition. Our findings are evidence for viewpoint invariance in the human STS and related brain areas, with the implication that actions are abstracted into object-centered representations during visual analysis. PMID:20431723
Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search.
Liu, Xianglong; Huang, Lei; Deng, Cheng; Lang, Bo; Tao, Dacheng
2016-10-01
Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods. PMID:27448359
Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search.
Liu, Xianglong; Huang, Lei; Deng, Cheng; Lang, Bo; Tao, Dacheng
2016-10-01
Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods.
A novel pseudoderivative-based mutation operator for real-coded adaptive genetic algorithms
Kanwal, Maxinder S; Ramesh, Avinash S; Huang, Lauren A
2013-01-01
Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates. PMID:24627784
Multiple grid problems on concurrent-processing computers
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.
1986-01-01
Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.
2005-01-01
This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge
Yin, Jun; Yang, Yuwang; Wang, Lei
2016-01-01
Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering—CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes—MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme. PMID:27043574
Automated grid generation from models of complex geologic structure and stratigraphy
Gable, C.; Trease, H.; Cherry, T.
1996-04-01
The construction of computational grids which accurately reflect complex geologic structure and stratigraphy for flow and transport models poses a formidable task. With an understanding of stratigraphy, material properties and boundary and initial conditions, the task of incorporating this data into a numerical model can be difficult and time consuming. Most GIS tools for representing complex geologic volumes and surfaces are not designed for producing optimal grids for flow and transport computation. We have developed a tool, GEOMESH, for generating finite element grids that maintain the geometric integrity of input volumes, surfaces, and geologic data and produce an optimal (Delaunay) tetrahedral grid that can be used for flow and transport computations. GEOMESH also satisfies the constraint that the geometric coupling coefficients of the grid are positive for all elements. GEOMESH generates grids for two dimensional cross sections, three dimensional regional models, represents faults and fractures, and has the capability of including finer grids representing tunnels and well bores into grids. GEOMESH also permits adaptive grid refinement in three dimensions. The tools to glue, merge and insert grids together demonstrate how complex grids can be built from simpler pieces. The resulting grid can be utilized by unstructured finite element or integrated finite difference computational physics codes.
Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures
NASA Astrophysics Data System (ADS)
Vijayakumaran, Vineeth
Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol
CAGI: Computer Aided Grid Interface. A work in progress
NASA Technical Reports Server (NTRS)
Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David
1992-01-01
Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.
Chertkov, Michael
2012-07-24
The goal of the DTRA project is to develop a mathematical framework that will provide the fundamental understanding of network survivability, algorithms for detecting/inferring pre-cursors of abnormal network behaviors, and methods for network adaptability and self-healing from cascading failures.
Ragusa, Jean C.
2015-01-01
In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement.
Complex Volume Grid Generation Through the Use of Grid Reusability
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.
NASA Astrophysics Data System (ADS)
Lee, Hoyoung; Jung, Bongsoo; Jung, Jooyoung; Jeon, Byeungwoo
2012-11-01
The quarter-pel motion vector accuracy supported by H.264/advanced video coding (AVC) in motion estimation (ME) and compensation (MC) provides high compression efficiency. However, it also increases the computational complexity. While various well-known fast integer-pel ME methods are already available, lack of a good, fast subpel ME method results in problems associated with relatively high computational complexity. This paper presents one way of solving the complexity problem of subpel ME by making adaptive motion vector (MV) accuracy decisions in inter-mode selection. The proposed MV accuracy decision is made using inter-mode selection of a macroblock with two decision criteria. Pixels are classified as stationary (and/or homogeneous) or nonstationary (and/or nonhomogeneous). In order to avoid unnecessary interpolation and processing, a proper subpel ME level is chosen among four different combinations, each of which has a different MV accuracy and number of subpel ME iterations based on the classification. Simulation results using an open source x264 software encoder show that without any noticeable degradation (by -0.07 dB on average), the proposed method reduces total encoding time and subpel ME time, respectively, by 51.78% and by 76.49% on average, as compared to the conventional full-pel pixel search.
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)
2003-01-01
The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote
Vision: Efficient Adaptive Coding
Burr, David; Cicchini, Guido Marco
2016-01-01
Recent studies show that perception is driven not only by the stimuli currently impinging on our senses, but also by the immediate past history. The influence of recent perceptual history on the present reflects the action of efficient mechanisms that exploit temporal redundancies in natural scenes. PMID:25458222
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Kirk, B.L.; Sartori, E.
1997-06-01
Subsequent to the introduction of High Performance Computing in the developed countries, the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) created the Task Force on Adapting Computer Codes in Nuclear Applications to Parallel Architectures (under the guidance of the Nuclear Science Committee`s Working Party on Advanced Computing) to study the growth area in supercomputing and its applicability to the nuclear community`s computer codes. The result has been four years of investigation for the Task Force in different subject fields - deterministic and Monte Carlo radiation transport, computational mechanics and fluid dynamics, nuclear safety, atmospheric models and waste management.
TIGER: Turbomachinery interactive grid generation
NASA Technical Reports Server (NTRS)
Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark
1992-01-01
A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.
Breach, Leach, and Transport-Multiple Species GRID
2006-04-01
BLTMS-GRID is a FORTRAN code developed to facilitate specifications of a finite-element grid for the Nuclear Regulatory Commission code called Breach, Leach, and Transport - Multiple Species (BLT-MS). BLTMS-GRID is an open-source code. It functions under a DOS window.
NASA Astrophysics Data System (ADS)
Fabian, Dedecker; Peter, Cundall; Daniel, Billaux; Torsten, Groeger
Digging a shaft or drift inside a rock mass is a common practice in civil engineering when a transportation way, such as a motorway, railway tunnel or storage shaft is to be built. In most cases, the consequences of the disturbance on the medium must be known in order to estimate the behaviour of the disturbed rock mass. Indeed, excavating part of the rock causes a new distribution of the stress field around the excavation that can lead to micro-cracking and even to the failure of some rock volume in the vicinity of the shaft. Consequently, the formed micro-cracks modify the mechanical and hydraulic properties of the rock. In this paper, we present an original method for the evaluation of damage-induced permeability. ITASCA has developed and used discontinuum models to study rock damage by building particle assemblies and checking the breakage of bonds under stress. However, such models are limited in size by the very large number of particles needed to model even a comparatively small volume of rock. In fact, a large part of most models never experiences large strains and does not require the accurate description of large-strain/damage/post-peak behaviour afforded by a discontinuum model. Thus, a large model frequently can be separated into a strongly strained “core” area to be represented by a Discontinuum and a peripheral area for which continuum zones would be adequate. Based on this observation, Itasca has developed a coupled, three-dimensional, continuum/discontinuum modelling approach. The new approach, termed Adaptive Continuum/Discontinuum Code (AC/DC), is based on the use of a periodic discontinuum “base brick” for which more or less simplified continuum equivalents are derived. Depending on the level of deformation in each part of the model, the AC/DC code can dynamically select the appropriate brick type to be used. In this paper, we apply the new approach to an excavation performed in the Bure site, at which the French nuclear waste agency
Parallel Power Grid Simulation Toolkit
Smith, Steve; Kelley, Brian; Banks, Lawrence; Top, Philip; Woodward, Carol
2015-09-14
ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong
2016-03-01
Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.
AZEuS: AN ADAPTIVE ZONE EULERIAN SCHEME FOR COMPUTATIONAL MAGNETOHYDRODYNAMICS
Ramsey, Jon P.; Clarke, David A.; Men'shchikov, Alexander B.
2012-03-01
A new adaptive mesh refinement (AMR) version of the ZEUS-3D astrophysical magnetohydrodynamical fluid code, AZEuS, is described. The AMR module in AZEuS has been completely adapted to the staggered mesh that characterizes the ZEUS family of codes on which scalar quantities are zone-centered and vector components are face-centered. In addition, for applications using static grids, it is necessary to use higher-order interpolations for prolongation to minimize the errors caused by waves crossing from a grid of one resolution to another. Finally, solutions to test problems in one, two, and three dimensions in both Cartesian and spherical coordinates are presented.
Constructing the ASCI computational grid
BEIRIGER,JUDY I.; BIVENS,HUGH P.; HUMPHREYS,STEVEN L.; JOHNSON,WILBUR R.; RHEA,RONALD E.
2000-06-01
The Accelerated Strategic Computing Initiative (ASCI) computational grid is being constructed to interconnect the high performance computing resources of the nuclear weapons complex. The grid will simplify access to the diverse computing, storage, network, and visualization resources, and will enable the coordinated use of shared resources regardless of location. To match existing hardware platforms, required security services, and current simulation practices, the Globus MetaComputing Toolkit was selected to provide core grid services. The ASCI grid extends Globus functionality by operating as an independent grid, incorporating Kerberos-based security, interfacing to Sandia's Cplant{trademark},and extending job monitoring services. To fully meet ASCI's needs, the architecture layers distributed work management and criteria-driven resource selection services on top of Globus. These services simplify the grid interface by allowing users to simply request ''run code X anywhere''. This paper describes the initial design and prototype of the ASCI grid.
Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation
NASA Technical Reports Server (NTRS)
Padilla, Jose F.
2010-01-01
Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.
AN ADAPTIVE PARTICLE-MESH GRAVITY SOLVER FOR ENZO
Passy, Jean-Claude; Bryan, Greg L.
2014-11-01
We describe and implement an adaptive particle-mesh algorithm to solve the Poisson equation for grid-based hydrodynamics codes with nested grids. The algorithm is implemented and extensively tested within the astrophysical code Enzo against the multigrid solver available by default. We find that while both algorithms show similar accuracy for smooth mass distributions, the adaptive particle-mesh algorithm is more accurate for the case of point masses, and is generally less noisy. We also demonstrate that the two-body problem can be solved accurately in a configuration with nested grids. In addition, we discuss the effect of subcycling, and demonstrate that evolving all the levels with the same timestep yields even greater precision.
2012-01-01
We have entered a new era in agricultural and biomedical science made possible by remarkable advances in DNA sequencing technologies. The complete sequence of an individual’s set of chromosomes (collectively, its genome) provides a primary genetic code for what makes that individual unique, just as the contents of every personal computer reflect the unique attributes of its owner. But a second code, composed of “epigenetic” layers of information, affects the accessibility of the stored information and the execution of specific tasks. Nature’s second code is enigmatic and must be deciphered if we are to fully understand and optimize the genetic potential of crop plants. The goal of the Epigenomics of Plants International Consortium is to crack this second code, and ultimately master its control, to help catalyze a new green revolution. PMID:22751210
Kumar, Ravi
2014-01-01
Semiblind channel estimation method provides the best trade-off in terms of bandwidth overhead, computational complexity and latency. The result after using multiple input multiple output (MIMO) systems shows higher data rate and longer transmit range without any requirement for additional bandwidth or transmit power. This paper presents the detailed analysis of diversity coding techniques using MIMO antenna systems. Different space time block codes (STBCs) schemes have been explored and analyzed with the proposed higher code rate. STBCs with higher code rates have been simulated for different modulation schemes using MATLAB environment and the simulated results have been compared in the semiblind environment which shows the improvement even in highly correlated antenna arrays and is found very close to the condition when channel state information (CSI) is known to the channel. PMID:24688379
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place
NASA Astrophysics Data System (ADS)
Eckert, C. H. J.; Zenker, E.; Bussmann, M.; Albach, D.
2016-10-01
We present an adaptive Monte Carlo algorithm for computing the amplified spontaneous emission (ASE) flux in laser gain media pumped by pulsed lasers. With the design of high power lasers in mind, which require large size gain media, we have developed the open source code HASEonGPU that is capable of utilizing multiple graphic processing units (GPUs). With HASEonGPU, time to solution is reduced to minutes on a medium size GPU cluster of 64 NVIDIA Tesla K20m GPUs and excellent speedup is achieved when scaling to multiple GPUs. Comparison of simulation results to measurements of ASE in Y b 3 + : Y AG ceramics show perfect agreement.
NASA Astrophysics Data System (ADS)
Popov, Anton; Kaus, Boris
2015-04-01
This software project aims at bringing the 3D lithospheric deformation modeling to a qualitatively different level. Our code LaMEM (Lithosphere and Mantle Evolution Model) is based on the following building blocks: * Massively-parallel data-distributed implementation model based on PETSc library * Light, stable and accurate staggered-grid finite difference spatial discretization * Marker-in-Cell pedictor-corector time discretization with Runge-Kutta 4-th order * Elastic stress rotation algorithm based on the time integration of the vorticity pseudo-vector * Staircase-type internal free surface boundary condition without artificial viscosity contrast * Geodynamically relevant visco-elasto-plastic rheology * Global velocity-pressure-temperature Newton-Raphson nonlinear solver * Local nonlinear solver based on FZERO algorithm * Coupled velocity-pressure geometric multigrid preconditioner with Galerkin coarsening Staggered grid finite difference, being inherently Eulerian and rather complicated discretization method, provides no natural treatment of free surface boundary condition. The solution based on the quasi-viscous sticky-air phase introduces significant viscosity contrasts and spoils the convergence of the iterative solvers. In LaMEM we are currently implementing an approximate stair-case type of the free surface boundary condition which excludes the empty cells and restores the solver convergence. Because of the mutual dependence of the stress and strain-rate tensor components, and their different spatial locations in the grid, there is no straightforward way of implementing the nonlinear rheology. In LaMEM we have developed and implemented an efficient interpolation scheme for the second invariant of the strain-rate tensor, that solves this problem. Scalable efficient linear solvers are the key components of the successful nonlinear problem solution. In LaMEM we have a range of PETSc-based preconditioning techniques that either employ a block factorization of
Greenough, Jeffrey A.; de Supinski, Bronis R.; Yates, Robert K.; Rendleman, Charles A.; Skinner, David; Beckner, Vince; Lijewski, Mike; Bell, John; Sexton, James C.
2005-04-25
We describe the performance of the block-structured Adaptive Mesh Refinement (AMR) code Raptor on the 32k node IBM BlueGene/L computer. This machine represents a significant step forward towards petascale computing. As such, it presents Raptor with many challenges for utilizing the hardware efficiently. In terms of performance, Raptor shows excellent weak and strong scaling when running in single level mode (no adaptivity). Hardware performance monitors show Raptor achieves an aggregate performance of 3:0 Tflops in the main integration kernel on the 32k system. Results from preliminary AMR runs on a prototype astrophysical problem demonstrate the efficiency of the current software when running at large scale. The BG/L system is enabling a physics problem to be considered that represents a factor of 64 increase in overall size compared to the largest ones of this type computed to date. Finally, we provide a description of the development work currently underway to address our inefficiencies.
Progress in Grid Generation: From Chimera to DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Kao, Kai-Hsiung
1994-01-01
Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are
Ganapol, Barry; Maldonado, Ivan
2014-01-23
The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity.
NASA Technical Reports Server (NTRS)
Swinbank, Richard; Purser, James
2006-01-01
Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.
GridTool: A surface modeling and grid generation tool
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1995-01-01
GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.
CFD code evaluation for internal flow modeling
NASA Technical Reports Server (NTRS)
Chung, T. J.
1990-01-01
Research on the computational fluid dynamics (CFD) code evaluation with emphasis on supercomputing in reacting flows is discussed. Advantages of unstructured grids, multigrids, adaptive methods, improved flow solvers, vector processing, parallel processing, and reduction of memory requirements are discussed. As examples, researchers include applications of supercomputing to reacting flow Navier-Stokes equations including shock waves and turbulence and combustion instability problems associated with solid and liquid propellants. Evaluation of codes developed by other organizations are not included. Instead, the basic criteria for accuracy and efficiency have been established, and some applications on rocket combustion have been made. Research toward an ultimate goal, the most accurate and efficient CFD code, is in progress and will continue for years to come.
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
NAS Grid Benchmarks: A Tool for Grid Space Exploration
NASA Technical Reports Server (NTRS)
Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)
2001-01-01
We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.
NASA Astrophysics Data System (ADS)
Melsa, J. L.; Mills, J. D.; Arora, A. A.
1983-06-01
This report describes the results of a fifteen month study of the real-time implementation of an algorithm combining time-domain harmonic scaling and Adaptive Residual Coding at a transmission bit rate of 16 kb/s. The modifications of this encoding algorithm as originally presented by Melso and Pande to allow real-time implementation are described in detail. A non real-time FORTRAN simulation using a sixteen-bit word length was developed and tested to establish feasibility. The hardware implementation of a full-duplex, real-time system has demonstrated that this algorithm is capable of producing toll quality speech digitization. This report has been divided into two volumes. The second volume discusses details of the hardware implementation, schematics for the system and operating instructions.
NASA Astrophysics Data System (ADS)
Melsa, J. L.; Mills, J. D.; Arora, A. A.
1983-06-01
This report describes the results of a fifteen-month study of the real-time implementation of algorithm combining time-domain harmonic scaling and Adaptive Residual Coding at a transmission bit rate of 16 kb/s. The modifications of this encoding algorithm as originally presented by Melsa and Pande to allow real-time implementation are described in detail. A non real-time FORTRAN simulation using a sixteen-bit word length was developed and tested to establish feasibility. The hardware implementation of a full-duplex, real-time system has demonstrated that this algorithm is capable of producing toll quality speech digitization. This report has been divided into two volumes. The first volume discusses the algorithm modifications and FORTRAN simulation. The details of the hardware implementation, schematics for the system and operating instructions are included in Volume 2 of this final report.
Cross-code comparisons of mixing during the implosion of dense cylindrical and spherical shells
NASA Astrophysics Data System (ADS)
Joggerst, C. C.; Nelson, Anthony; Woodward, Paul; Lovekin, Catherine; Masser, Thomas; Fryer, Chris L.; Ramaprabhu, P.; Francois, Marianne; Rockefeller, Gabriel
2014-10-01
We present simulations of the implosion of a dense shell in two-dimensional (2D) spherical and cylindrical geometry performed with four different compressible, Eulerian codes: RAGE, FLASH, CASTRO, and PPM. We follow the growth of instabilities on the inner face of the dense shell. Three codes employed Cartesian grid geometry, and one (FLASH) employed polar grid geometry. While the codes are similar, they employ different advection algorithms, limiters, adaptive mesh refinement (AMR) schemes, and interface-preservation techniques. We find that the growth rate of the instability is largely insensitive to the choice of grid geometry or other implementation details specific to an individual code, provided the grid resolution is sufficiently fine. Overall, all simulations from different codes compare very well on the fine grids for which we tested them, though they show slight differences in small-scale mixing. Simulations produced by codes that explicitly limit numerical diffusion show a smaller amount of small-scale mixing than codes that do not. This difference is most prominent for low-mode perturbations where little instability finger interaction takes place, and less prominent for high- or multi-mode simulations where a great deal of interaction takes place, though it is still present. We present RAGE and FLASH simulations to quantify the initial perturbation amplitude to wavelength ratio at which metrics of mixing agree across codes, and find that bubble/spike amplitudes are converged for low-mode and high-mode simulations in which the perturbation amplitude is more than 1% and 5% of the wavelength of the perturbation, respectively. Other metrics of small-scale mixing depend on details of multi-fluid advection and do not converge between codes for the resolutions that were accessible.
NASA Astrophysics Data System (ADS)
Foster, Ian
2001-08-01
The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.
Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion
2013-08-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.
CFD Process Automation Using Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; George, Michael W. (Technical Monitor)
1995-01-01
This talk summarizes three applications of the overset grid method for CFD using some level of automated grid generation, flow solution and post-processing. These applications are 2D high-lift airfoil analysis (INS2D code), turbomachinery applications (ROTOR2/3 codes), and subsonic transport wing/body configurations (OVERFLOW code). These examples provide a forum for discussing the advantages and disadvantages of overset gridding for use in an automated CFD process. The goals and benefits of the automation incorporated in each application will be described, as well as the shortcomings of the approaches.
On Multigrid for Overlapping Grids
Henshaw, W
2004-01-13
The solution of elliptic partial differential equations on composite overlapping grids using multigrid is discussed. An approach is described that provides a fast and memory efficient scheme for the solution of boundary value problems in complex geometries. The key aspects of the new scheme are an automatic coarse grid generation algorithm, an adaptive smoothing technique for adjusting residuals on different component grids, and the use of local smoothing near interpolation boundaries. Other important features include optimizations for Cartesian component grids, the use of over-relaxed Red-Black smoothers and the generation of coarse grid operators through Galerkin averaging. Numerical results in two and three dimensions show that very good multigrid convergence rates can be obtained for both Dirichlet and Neumann/mixed boundary conditions. A comparison to Krylov based solvers shows that the multigrid solver can be much faster and require significantly less memory.
Computer code for the calculation of the temperature distribution of cooled turbine blades
NASA Astrophysics Data System (ADS)
Tietz, Thomas A.; Koschel, Wolfgang W.
A generalized computer code for the calculation of the temperature distribution in a cooled turbine blade is presented. Using an iterative procedure, this program especially allows the coupling of the aerothermodynamic values of the internal flow with the corresponding temperature distribution of the blade material. The temperature distribution of the turbine blade is calculated using a fully three-dimensional finite element computer code, so that the radial heat flux is taken into account. This code was extended to 4-node tetrahedral elements enabling an adaptive grid generation. To facilitate the mesh generation of the usually complex blade geometries, a computer program was developed, which performs the grid generation of blades having basically arbitrary shape on the basis of two-dimensional cuts. The performance of the code is demonstrated with reference to a typical cooling configuration of a modern turbine blade.
Gratia: New Challenges in Grid Accounting
NASA Astrophysics Data System (ADS)
Canal, Philippe
2011-12-01
Gratia originated as an accounting system for batch systems and Linux process accounting. In production since 2006 at FNAL, it was adopted by the Open Science Grid as a distributed, grid-wide accounting system in 2007. Since adoption Gratia's next challenge has been to adapt to an explosive increase in data volume and to handle several new categories of accounting data. Gratia now accounts for regular grid jobs, file transfers, glide-in jobs, and the state of grid services. We show that Gratia gives access to a thorough picture of the OSG and discuss the complexity caused by newer grid techniques such as pilot jobs, job forwarding, and backfill.
Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Slater, John W.; Henderson, Todd L.; Bidwell, Colin S.; Braun, Donald C.; Chung, Joongkee
1998-01-01
TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.
NASA Astrophysics Data System (ADS)
Saiz, P.; Andreeva, J.; Cirstoiu, C.; Gaidioz, B.; Herrala, J.; Maguire, E. J.; Maier, G.; Rocha, R.
2008-07-01
Thanks to the Grid, users have access to computing resources distributed all over the world. The Grid hides the complexity and the differences of its heterogeneous components. In such a distributed system, it is clearly very important that errors are detected as soon as possible, and that the procedure to solve them is well established. We focused on two of its main elements: the workload and the data management systems. We developed an application to investigate the efficiency of the different centres. Furthermore, our system can be used to categorize the most common error messages, and control their time evolution.
CDF software distribution on the Grid using Parrot
NASA Astrophysics Data System (ADS)
Compostella, G.; Pagan Griso, S.; Lucchesi, D.; Sfiligoi, I.; Thain, D.
2010-04-01
Large international collaborations that use decentralized computing models are becoming a custom rather than an exception in High Energy Physics. A good computing model for such big collaborations has to deal with the distribution of the experiment-specific software around the world. When the CDF experiment developed its software infrastructure, most computing was done on dedicated clusters. As a result, libraries, configuration files and large executables were deployed over a shared file system. In order to adapt its computing model to the Grid, CDF decided to distribute its software to all European Grid sites using Parrot, a user-level application capable of attaching existing programs to remote I/O systems through the filesystem interface. This choice allows CDF to use just one centralized source of code and a scalable set of caches all around Europe to efficiently distribute its code and requires almost no interaction with the existing Grid middleware or with local system administrators. This system has been in production at CDF in Europe since almost two years. Here, we present CDF implementation of Parrot and some comments on its performances.
CDF software distribution on the grid using Parrot
Compostella, G.; Pagan Griso, S.; Lucchesi, D.; Sfiligoi, I.; Thain, D.; /Notre Dame U.
2010-01-01
Large international collaborations that use decentralized computing models are becoming a custom rather than an exception in High Energy Physics. A good computing model for such big collaborations has to deal with the distribution of the experiment-specific software around the world. When the CDF experiment developed its software infrastructure, most computing was done on dedicated clusters. As a result, libraries, configuration files and large executables were deployed over a shared file system. In order to adapt its computing model to the Grid, CDF decided to distribute its software to all European Grid sites using Parrot, a user-level application capable of attaching existing programs to remote I/O systems through the filesystem interface. This choice allows CDF to use just one centralized source of code and a scalable set of caches all around Europe to efficiently distribute its code and requires almost no interaction with the existing Grid middleware or with local system administrators. This system has been in production at CDF in Europe since almost two years. Here, we present CDF implementation of Parrot and some comments on its performances.
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
Lomov, I; Pember, R; Greenough, J; Liu, B
2005-10-18
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized to remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.
Automatic Data Distribution for CFD Applications on Structured Grids
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Yan, Jerry; Saini, Subhash (Technical Monitor)
1999-01-01
Development of HPF versions of NPB and ARC3D showed that HPF has potential to be a high level language for parallelization of CFD applications. The use of HPF requires an intimate knowledge of the applications and a detailed analysis of data affinity, data movement and data granularity. Since HPF hides data movement from the user even with this knowledge it is easy to overlook pieces of the code causing low performance of the application. In order to simplify and accelerate the task of developing HPF versions of existing CFD applications we have designed and partially implemented ADAPT (Automatic Data Distribution and Placement Tool). The ADAPT analyzes a CFD application working on a single structured grid and generates HPF TEMPLATE, (RE)DISTRIBUTION, ALIGNMENT and INDEPENDENT directives. The directives can be generated on the nest level, subroutine level, application level or inter application level. ADAPT is designed to annotate existing CFD FORTRAN application performing computations on single or multiple grids. On each grid the application can considered as a sequence of operators each applied to a set of variables defined in a particular grid domain. The operators can be classified as implicit, having data dependences, and explicit, without data dependences. In order to parallelize an explicit operator it is sufficient to create a template for the domain of the operator, align arrays used in the operator with the template, distribute the template, and declare the loops over the distributed dimensions as INDEPENDENT. In order to parallelize an implicit operator, the distribution of the operator's domain should be consistent with the operator's dependences. Any dependence between sections distributed on different processors would preclude parallelization if compiler does not have an ability to pipeline computations. If a data distribution is "orthogonal" to the dependences of an implicit operator then the loop which implements the operator can be declared as
Curvilinear grids for sinuous river channels
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Waldrop, W. R.; Smith, S. R.
1980-01-01
In order to effectively analyze the flow in sinuous river channels, a curvilinear grid system was developed for use in the appropriate hydrodynamic code. The CENTERLINE program was designed to generate a two dimensional grid for this purpose. The Cartesian coordinates of a series of points along the boundaries of the sinuous channel represent the primary input to CENTERLINE. The program calculates the location of the river centerline, the distance downstream along the centerline, and both radius of curvature and channel width as a function of such distance downstream. These parameters form the basis for the generation of the curvilinear grid. Based on input values for longitudinal and lateral grid spacing, the corresponding grid system is generated and a file is created containing the appropriate parameters for use in the associated explicit finite difference hydrodynamic programs. Because of the option for a nonuniform grid, grid spacing can be concentrated in areas containing the largest flow gradients.
Chan, A D; Lovely, D F; Hudgins, B
1998-03-01
Muscle activity produces an electrical signal termed the myo-electric signal (MES). The MES is a useful clinical tool, used in diagnostics and rehabilitation. This signal is typically stored in 2 bytes as 12-bit data, sampled at 3 kHz, resulting in a 6 kbyte s-1 storage requirement. Processing MES data requires large bit manipulations and heavy memory storage requirements. Adaptive differential pulse code modulation (ADPCM) is a popular and successful compression technique for speech. Its application to MES would reduce 12-bit data to a 4-bit representation, providing a 3:1 compression. As, in most practical applications, memory is organised in bytes, the realisable compression is 4:1, as pairs of data can be stored in a single byte. The performance of the ADPCM compression technique, using a real-time system at 1 kHz, 2 kHz and 4 kHz sampling rates, is evaluated. The data used include MES from both isometric and dynamic contractions. The percent residual difference (PRD) between an unprocessed and processed MES is used as a performance measure. Errors in computed parameters, such as median frequency and variance, which are used in clinical diagnostics, and waveform features employed in prosthetic control are also used to evaluate the system. The results of the study demonstrate that the ADPCM compression technique is an excellent solution for relieving the data storage requirements of MES both in isometric and dynamic situations. PMID:9684462
Solving Partial Differential Equations on Overlapping Grids
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.
Generating Composite Overlapping Grids on CAD Geometries
Henshaw, W.D.
2002-02-07
We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.
Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris
2014-07-01
Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to
GRChombo: Numerical relativity with adaptive mesh refinement
NASA Astrophysics Data System (ADS)
Clough, Katy; Figueras, Pau; Finkel, Hal; Kunesch, Markus; Lim, Eugene A.; Tunyasuvunakool, Saran
2015-12-01
In this work, we introduce {\\mathtt{GRChombo}}: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial ‘many-boxes-in-many-boxes’ mesh hierarchies and massive parallelism through the message passing interface. {\\mathtt{GRChombo}} evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. We show that {\\mathtt{GRChombo}} can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.
NASA Astrophysics Data System (ADS)
Durmaz, Murat; Karslioglu, Mahmut Onur
2015-04-01
There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.
Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng
2015-08-28
For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N₀) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N₀. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N₀. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area.
Parallel grid library for rapid and flexible simulation development
NASA Astrophysics Data System (ADS)
Honkonen, I.; von Alfthan, S.; Sandroos, A.; Janhunen, P.; Palmroth, M.
2013-04-01
We present an easy to use and flexible grid library for developing highly scalable parallel simulations. The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space and time allowing dccrg to be used in very different types of simulations, for example in fluid and particle codes. Dccrg transfers the data between neighboring cells on different processes transparently and asynchronously allowing one to overlap computation and communication. This enables excellent scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI processes reducing the scalability of adaptive mesh refinement (AMR) to between 200 and 600 processes. Dccrg is free software that anyone can use, study and modify and is available at https://gitorious.org/dccrg. Users are also kindly requested to cite this work when publishing results obtained with dccrg. Catalogue identifier: AEOM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License version 3 No. of lines in distributed program, including test data, etc.: 54975 No. of bytes in distributed program, including test data, etc.: 974015 Distribution format: tar.gz Programming language: C++. Computer: PC, cluster, supercomputer. Operating system: POSIX. The code has been parallelized using MPI and tested with 1-32768 processes RAM: 10 MB-10 GB per process Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20. External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4] Nature of problem: Grid library supporting arbitrary data in grid cells, parallel adaptive mesh refinement, transparent remote neighbor data updates and
Scientific Computing on the Grid
Allen, Gabrielle; Seidel, Edward; Shalf, John
2001-12-12
Computer simulations are becoming increasingly important as the only means for studying and interpreting the complex processes of nature. Yet the scope and accuracy of these simulations are severely limited by available computational power, even using today's most powerful supercomputers. As we endeavor to simulate the true complexity of nature, we will require much larger scale calculations than are possible at present. Such dynamic and large scale applications will require computational grids and grids require development of new latency tolerant algorithms, and sophisticated code frameworks like Cactus to carry out more complex and high fidelity simulations with a massive degree of parallelism.
Compressible Astrophysics Simulation Code
Howell, L.; Singer, M.
2007-07-18
This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.
Beauvais, Z S; Thompson, K H; Kearfott, K J
2009-07-01
Due to a recent upward trend in the price of uranium and subsequent increased interest in uranium mining, accurate modeling of baseline dose from environmental sources of radioactivity is of increasing interest. Residual radioactivity model and code (RESRAD) is a program used to model environmental movement and calculate the dose due to the inhalation, ingestion, and exposure to radioactive materials following a placement. This paper presents a novel use of RESRAD for the calculation of dose from non-enhanced, or ancient, naturally occurring radioactive material (NORM). In order to use RESRAD to calculate the total effective dose (TED) due to ancient NORM, a procedural adaptation was developed to negate the effects of time progressive distribution of radioactive materials. A dose due to United States' average concentrations of uranium, actinium, and thorium series radionuclides was then calculated. For adults exposed in a residential setting and assumed to eat significant amounts of food grown in NORM concentrated areas, the annual dose due to national average NORM concentrations was 0.935 mSv y(-1). A set of environmental dose factors were calculated for simple estimation of dose from uranium, thorium, and actinium series radionuclides for various age groups and exposure scenarios as a function of elemental uranium and thorium activity concentrations in groundwater and soil. The values of these factors for uranium were lowest for an adult exposed in an industrial setting: 0.00476 microSv kg Bq(-1) y(-1) for soil and 0.00596 microSv m(3) Bq(-1) y(-1) for water (assuming a 1:1 234U:238U activity ratio in water). The uranium factors were highest for infants exposed in a residential setting and assumed to ingest food grown onsite: 34.8 microSv kg Bq(-1) y(-1) in soil and 13.0 microSv m(3) Bq(-1) y(-1) in water. PMID:19509509
Generation of unstructured grids and Euler solutions for complex geometries
NASA Technical Reports Server (NTRS)
Loehner, Rainald; Parikh, Paresh; Salas, Manuel D.
1989-01-01
Algorithms are described for the generation and adaptation of unstructured grids in two and three dimensions, as well as Euler solvers for unstructured grids. The main purpose is to demonstrate how unstructured grids may be employed advantageously for the economic simulation of both geometrically as well as physically complex flow fields.
NASA Astrophysics Data System (ADS)
Pavlou, Andrew Theodore
The Monte Carlo simulation of full-core neutron transport requires high fidelity data to represent not only the various types of possible interactions that can occur, but also the temperature and energy regimes for which these data are relevant. For isothermal conditions, nuclear cross section data are processed in advance of running a simulation. In reality, the temperatures in a neutronics simulation are not fixed, but change with respect to the temperatures computed from an associated heat transfer or thermal hydraulic (TH) code. To account for the temperature change, a code user must either 1) compute new data at the problem temperature inline during the Monte Carlo simulation or 2) pre-compute data at a variety of temperatures over the range of possible values. Inline data processing is computationally inefficient while pre-computing data at many temperatures can be memory expensive. An alternative on-the-fly approach to handle the temperature component of nuclear data is desired. By on-the-fly we mean a procedure that adjusts cross section data to the correct temperature adaptively during the Monte Carlo random walk instead of before the running of a simulation. The on-the-fly procedure should also preserve simulation runtime efficiency. While on-the-fly methods have recently been developed for higher energy regimes, the double differential scattering of thermal neutrons has not been examined in detail until now. In this dissertation, an on-the-fly sampling method is developed by investigating the temperature dependence of the thermal double differential scattering distributions. The temperature dependence is analyzed with a linear least squares regression test to develop fit coefficients that are used to sample thermal scattering data at any temperature. The amount of pre-stored thermal scattering data has been drastically reduced from around 25 megabytes per temperature per nuclide to only a few megabytes per nuclide by eliminating the need to compute data
NASA Technical Reports Server (NTRS)
Rice, R. F.; Lee, J. J.
1986-01-01
Scheme for coding facsimile messages promises to reduce data transmission requirements to one-tenth current level. Coding scheme paves way for true electronic mail in which handwritten, typed, or printed messages or diagrams sent virtually instantaneously - between buildings or between continents. Scheme, called Universal System for Efficient Electronic Mail (USEEM), uses unsupervised character recognition and adaptive noiseless coding of text. Image quality of resulting delivered messages improved over messages transmitted by conventional coding. Coding scheme compatible with direct-entry electronic mail as well as facsimile reproduction. Text transmitted in this scheme automatically translated to word-processor form.
ARPA-E: Advancing the Electric Grid
Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael
2014-02-24
The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.
ARPA-E: Advancing the Electric Grid
Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael
2016-07-12
The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.
Development of Three-Dimensional DRAGON Grid Technology
NASA Technical Reports Server (NTRS)
Zheng, Yao; Kiou, Meng-Sing; Civinskas, Kestutis C.
1999-01-01
For a typical three dimensional flow in a practical engineering device, the time spent in grid generation can take 70 percent of the total analysis effort, resulting in a serious bottleneck in the design/analysis cycle. The present research attempts to develop a procedure that can considerably reduce the grid generation effort. The DRAGON grid, as a hybrid grid, is created by means of a Direct Replacement of Arbitrary Grid Overlapping by Nonstructured grid. The DRAGON grid scheme is an adaptation to the Chimera thinking. The Chimera grid is a composite structured grid, composing a set of overlapped structured grids, which are independently generated and body-fitted. The grid is of high quality and amenable for efficient solution schemes. However, the interpolation used in the overlapped region between grids introduces error, especially when a sharp-gradient region is encountered. The DRAGON grid scheme is capable of completely eliminating the interpolation and preserving the conservation property. It maximizes the advantages of the Chimera scheme and adapts the strengths of the unstructured and while at the same time keeping its weaknesses minimal. In the present paper, we describe the progress towards extending the DRAGON grid technology into three dimensions. Essential and programming aspects of the extension, and new challenges for the three-dimensional cases, are addressed.
Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY
Almgren, Ann S.; Bell, John B.; Lijewski, Mike J.; Lukic, Zarija; Van Andel, Ethan
2013-03-01
We present a new N-body and gas dynamics code, called Nyx, for large-scale cosmological simulations. Nyx follows the temporal evolution of a system of discrete dark matter particles gravitationally coupled to an inviscid ideal fluid in an expanding universe. The gas is advanced in an Eulerian framework with block-structured adaptive mesh refinement; a particle-mesh scheme using the same grid hierarchy is used to solve for self-gravity and advance the particles. Computational results demonstrating the validation of Nyx on standard cosmological test problems, and the scaling behavior of Nyx to 50,000 cores, are presented.
The Construction of an Ontology-Based Ubiquitous Learning Grid
ERIC Educational Resources Information Center
Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David
2009-01-01
The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…
NASA Technical Reports Server (NTRS)
Jameson, Leland
1996-01-01
Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.
Grid Convergence for Turbulent Flows(Invited)
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel
2015-01-01
A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.
The PIES2012 Code for Calculating 3D Equilibria with Islands and Stochastic Regions
NASA Astrophysics Data System (ADS)
Monticello, Donald; Reiman, Allan; Raburn, Daniel
2013-10-01
We have made major modifications to the PIES 3D equilibrium code to produce a new version, PIES2012. The new version uses an adaptive radial grid for calculating equilibrium currents. A subset of the flux surfaces conform closely to island separatrices, providing an accurate treatment of the effects driving the neoclassical tearing mode. There is now a set of grid surfaces that conform to the flux surfaces in the interiors of the islands, allowing the proper treatment of the current profiles in the islands, which play an important role in tearing phenomena. We have verified that we can introduce appropriate current profiles in the islands to suppress their growth, allowing us to simulate situations where islands are allowed to grow at some rational surfaces but not others. Placement of grid surfaces between islands is guided by the locations of high order fixed points, allowing us to avoid spectral polution and providing a more robust, and smoother convergence of the code. The code now has an option for turning on a vertical magnetic field to fix the position of the magnetic axis, which models the horizontal feedback positioning of a tokamak plasma. The code has a new option for using a Jacobian-Free Newton Krylov scheme for convergence. The code now also contains a model that properly handles stochastic regions with nonzero pressure gradients. Work supported by DOE contract DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Valdivia, Valeska; Hennebelle, Patrick
2014-11-01
Context. Ultraviolet radiation plays a crucial role in molecular clouds. Radiation and matter are tightly coupled and their interplay influences the physical and chemical properties of gas. In particular, modeling the radiation propagation requires calculating column densities, which can be numerically expensive in high-resolution multidimensional simulations. Aims: Developing fast methods for estimating column densities is mandatory if we are interested in the dynamical influence of the radiative transfer. In particular, we focus on the effect of the UV screening on the dynamics and on the statistical properties of molecular clouds. Methods: We have developed a tree-based method for a fast estimate of column densities, implemented in the adaptive mesh refinement code RAMSES. We performed numerical simulations using this method in order to analyze the influence of the screening on the clump formation. Results: We find that the accuracy for the extinction of the tree-based method is better than 10%, while the relative error for the column density can be much more. We describe the implementation of a method based on precalculating the geometrical terms that noticeably reduces the calculation time. To study the influence of the screening on the statistical properties of molecular clouds we present the probability distribution function of gas and the associated temperature per density bin and the mass spectra for different density thresholds. Conclusions: The tree-based method is fast and accurate enough to be used during numerical simulations since no communication is needed between CPUs when using a fully threaded tree. It is then suitable to parallel computing. We show that the screening for far UV radiation mainly affects the dense gas, thereby favoring low temperatures and affecting the fragmentation. We show that when we include the screening, more structures are formed with higher densities in comparison to the case that does not include this effect. We
Grid Generation Issues and CFD Simulation Accuracy for the X33 Aerothermal Simulations
NASA Technical Reports Server (NTRS)
Polsky, Susan; Papadopoulos, Periklis; Davies, Carol; Loomis, Mark; Prabhu, Dinesh; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Grid generation issues relating to the simulation of the X33 aerothermal environment using the GASP code are explored. Required grid densities and normal grid stretching are discussed with regards to predicting the fluid dynamic and heating environments with the desired accuracy. The generation of volume grids is explored and includes discussions of structured grid generation packages such as GRIDGEN, GRIDPRO and HYPGEN. Volume grid manipulation techniques for obtaining desired outer boundary and grid clustering using the OUTBOUND code are examined. The generation of the surface grid with the required surface grid with the required surface grid topology is also discussed. Utilizing grids without singular axes is explored as a method of avoiding numerical difficulties at the singular line.
Accuracy enhancements for overset grids using a defect correction approach
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Pulliam, Thomas H.
1994-01-01
A defect-correction approach is investigated as a means of enhancing the accuracy of flow computations on overset grids. Typically, overset-grid techniques process and pass information only at grid boundaries. In the current approach, error corrections at all overlapped interior points are injected between grids by using a defect-correction scheme. In some cases this is found to enhance the overall accuracy of the overset-grid method. Locally refined overset grids can be used to provide an efficient solution-adaptation method. The defect correction can also be ultilized as an error-correction technique for a coarse grid by evaluating the residual using a fine base grid, but solving the implicit equations only on the coarse grid. Numerical examples include an accuracy and dissipation study of an unsteady decaying vortex flow, the flow over a NACA 0012 airfoil, and the flow over a mulit-element high-lift airfoil.
Bremer, P. -T.
2014-08-26
ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.
AstroGrid-D: Grid technology for astronomical science
NASA Astrophysics Data System (ADS)
Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve
2011-02-01
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
Grid Stiffened Structure Analysis Tool
NASA Technical Reports Server (NTRS)
1999-01-01
The Grid Stiffened Analysis Tool contract is contract performed by Boeing under NASA purchase order H30249D. The contract calls for a "best effort" study comprised of two tasks: (1) Create documentation for a composite grid-stiffened structure analysis tool, in the form of a Microsoft EXCEL spread sheet, that was developed by originally at Stanford University and later further developed by the Air Force, and (2) Write a program that functions as a NASTRAN pre-processor to generate an FEM code for grid-stiffened structure. In performing this contract, Task 1 was given higher priority because it enables NASA to make efficient use of a unique tool they already have; Task 2 was proposed by Boeing because it also would be beneficial to the analysis of composite grid-stiffened structures, specifically in generating models for preliminary design studies. The contract is now complete, this package includes copies of the user's documentation for Task 1 and a CD ROM & diskette with an electronic copy of the user's documentation and an updated version of the "GRID 99" spreadsheet.
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
Adaptive mesh refinement in titanium
Colella, Phillip; Wen, Tong
2005-01-21
In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.
TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh
Schnack, D.D.; Lottati, I.; Mikic, Z.
1995-07-01
The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.
Conservative Grid-Interface Algorithm For Computing Flows
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Molvik, G. A.
1992-01-01
Best features of structured- and unstructured-grid methods combined. Gaps and overlaps between zonal grids eliminated by grid-interface algorithm, which generates single interfacial grid and corrects fluxes of flow quantities accordingly. Incorporated into two three-dimensional Navier-Stokes finite-volume codes and tested in computations of incompressible and compressible flows about simple bodies. Good numerical results obtained. General enough to be incorporated into other finite-volume codes without restrictions on complexities of shapes of bodies and zonal interfaces.
Cloud feedback studies with a physics grid
Dipankar, Anurag; Stevens, Bjorn
2013-02-07
During this project the investigators implemented a fully parallel version of dual-grid approach in main frame code ICON, implemented a fully conservative first-order interpolation scheme for horizontal remapping, integrated UCLA-LES micro-scale model into ICON to run parallely in selected columns, and did cloud feedback studies on aqua-planet setup to evaluate the classical parameterization on a small domain. The micro-scale model may be run in parallel with the classical parameterization, or it may be run on a "physics grid" independent of the dynamics grid.
Parallel Anisotropic Tetrahedral Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.
Dynamic grid refinement for partial differential equations on parallel computers
NASA Technical Reports Server (NTRS)
Mccormick, S.; Quinlan, D.
1989-01-01
The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.
Three-dimensional elliptic grid generation for an F-16
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1988-01-01
A case history depicting the effort to generate a computational grid for the simulation of transonic flow about an F-16 aircraft at realistic flight conditions is presented. The flow solver for which this grid is designed is a zonal one, using the Reynolds averaged Navier-Stokes equations near the surface of the aircraft, and the Euler equations in regions removed from the aircraft. A body conforming global grid, suitable for the Euler equation, is first generated using 3-D Poisson equations having inhomogeneous terms modeled after the 2-D GRAPE code. Regions of the global grid are then designated for zonal refinement as appropriate to accurately model the flow physics. Grid spacing suitable for solution of the Navier-Stokes equations is generated in the refinement zones by simple subdivision of the given coarse grid intervals. That grid generation project is described, with particular emphasis on the global coarse grid.
NASA Astrophysics Data System (ADS)
Cao, Jian; Li, Qi; Cheng, Jicheng
2005-10-01
This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.
A perspective on unstructured grid flow solvers
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.
1995-01-01
This survey paper assesses the status of compressible Euler and Navier-Stokes solvers on unstructured grids. Different spatial and temporal discretization options for steady and unsteady flows are discussed. The integration of these components into an overall framework to solve practical problems is addressed. Issues such as grid adaptation, higher order methods, hybrid discretizations and parallel computing are briefly discussed. Finally, some outstanding issues and future research directions are presented.
Adaptive Mesh Refinement in Reactive Transport Modeling of Subsurface Environments
NASA Astrophysics Data System (ADS)
Molins, S.; Day, M.; Trebotich, D.; Graves, D. T.
2015-12-01
Adaptive mesh refinement (AMR) is a numerical technique for locally adjusting the resolution of computational grids. AMR makes it possible to superimpose levels of finer grids on the global computational grid in an adaptive manner allowing for more accurate calculations locally. AMR codes rely on the fundamental concept that the solution can be computed in different regions of the domain with different spatial resolutions. AMR codes have been applied to a wide range of problem including (but not limited to): fully compressible hydrodynamics, astrophysical flows, cosmological applications, combustion, blood flow, heat transfer in nuclear reactors, and land ice and atmospheric models for climate. In subsurface applications, in particular, reactive transport modeling, AMR may be particularly useful in accurately capturing concentration gradients (hence, reaction rates) that develop in localized areas of the simulation domain. Accurate evaluation of reaction rates is critical in many subsurface applications. In this contribution, we will discuss recent applications that bring to bear AMR capabilities on reactive transport problems from the pore scale to the flood plain scale.
Unstructured grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.; Peiro, J.
1992-01-01
The implementation of the finite element method on unstructured triangular grids is described and the development of centered finite element schemes for the solution of the compressible Euler equation on general triangular and tetrahedral grids is discussed. Explicit and implicit Lax-Wendroff type methods and a method based upon the use of explicit multistep timestepping are considered. In the latter case, the convergence behavior of the method is accelerated by the incorporation of a fully unstructured multigrid procedure. The advancing front method for generating unstructured grids of triangles and tetrahedra is described and the application of adaptive mesh techniques to both steady and transient flow analysis is illustrated.
Visualization of grids conforming to geological structures: a topological approach
NASA Astrophysics Data System (ADS)
Caumon, Guillaume; Lévy, Bruno; Castanié, Laurent; Paul, Jean-Claude
2005-07-01
Flexible grids are used in many Geoscience applications because they can accurately adapt to the great diversity of shapes encountered in nature. These grids raise a number difficult challenges, in particular for fast volume visualization. We propose a generic incremental slicing algorithm for versatile visualization of unstructured grids, these being constituted of arbitrary convex cells. The tradeoff between the complexity of the grid and the efficiency of the method is addressed by special-purpose data structures and customizations. A general structure based on oriented edges is defined to address the general case. When only a limited number of polyhedron types is present in the grid (zoo grids), memory usage and rendering time are reduced by using a catalog of cell types generated automatically. This data structure is further optimized to deal with stratigraphic grids made of hexahedral cells. The visualization method is applied to several gridded subsurface models conforming to geological structures.
Adaptation of Block-Structured Adaptive Mesh Refinement to Particle-In-Cell simulations
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Colella, Phillip; McCorquodale, Peter; Friedman, Alex; Grote, Dave
2001-10-01
Particle-In-Cell (PIC) methods which solve the Maxwell equations (or a simplification) on a regular Cartesian grid are routinely used to simulate plasma and particle beam systems. Several techniques have been developed to accommodate irregular boundaries and scale variations. We describe here an ongoing effort to adapt the block-structured Adaptive Mesh Refinement (AMR) algorithm (http://seesar.lbl.gov/AMR/) to the Particle-In-Cell method. The AMR technique connects grids having different resolutions, using interpolation. Special care has to be taken to avoid the introduction of spurious forces close to the boundary of the inner, high-resolution grid, or at least to reduce such forces to an acceptable level. The Berkeley AMR library CHOMBO has been modified and coupled to WARP3d (D.P. Grote et al., Fusion Engineering and Design), 32-33 (1996), 193-200, a PIC code which is used for the development of high current accelerators for Heavy Ion Fusion. The methods and preliminary results will be presented.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Applications of the ARGUS code in accelerator physics
Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.
1993-12-31
ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper.
Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2015-11-01
FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.
Unstructured grids on SIMD torus machines
NASA Technical Reports Server (NTRS)
Bjorstad, Petter E.; Schreiber, Robert
1994-01-01
Unstructured grids lead to unstructured communication on distributed memory parallel computers, a problem that has been considered difficult. Here, we consider adaptive, offline communication routing for a SIMD processor grid. Our approach is empirical. We use large data sets drawn from supercomputing applications instead of an analytic model of communication load. The chief contribution of this paper is an experimental demonstration of the effectiveness of certain routing heuristics. Our routing algorithm is adaptive, nonminimal, and is generally designed to exploit locality. We have a parallel implementation of the router, and we report on its performance.
Wald, Ingo; Ize, Santiago
2015-07-28
Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on
Mapping PetaSHA Applications to TeraGrid Architectures
NASA Astrophysics Data System (ADS)
Cui, Y.; Moore, R.; Olsen, K.; Zhu, J.; Dalguer, L. A.; Day, S.; Cruz-Atienza, V.; Maechling, P.; Jordan, T.
2007-12-01
The Southern California Earthquake Center (SCEC) has a science program in developing an integrated cyberfacility - PetaSHA - for executing physics-based seismic hazard analysis (SHA) computations. The NSF has awarded PetaSHA 15 million allocation service units this year on the fastest supercomputers available within the NSF TeraGrid. However, one size does not fit all, a range of systems are needed to support this effort at different stages of the simulations. Enabling PetaSHA simulations on those TeraGrid architectures to solve both dynamic rupture and seismic wave propagation have been a challenge from both hardware and software levels. This is an adaptation procedure to meet specific requirements of each architecture. It is important to determine how fundamental system attributes affect application performance. We present an adaptive approach in our PetaSHA application that enables the simultaneous optimization of both computation and communication at run-time using flexible settings. These techniques optimize initialization, source/media partition and MPI-IO output in different ways to achieve optimal performance on the target machines. The resulting code is a factor of four faster than the orignial version. New MPI-I/O capabilities have been added for the accurate Staggered-Grid Split-Node (SGSN) method for dynamic rupture propagation in the velocity-stress staggered-grid finite difference scheme (Dalguer and Day, JGR, 2007), We use execution workflow across TeraGrid sites for managing the resulting data volumes. Our lessons learned indicate that minimizing time to solution is most critical, in particular when scheduling large scale simulations across supercomputer sites. The TeraShake platform has been ported to multiple architectures including TACC Dell lonestar and Abe, Cray XT3 Bigben and Blue Gene/L. Parallel efficiency of 96% with the PetaSHA application Olsen-AWM has been demonstrated on 40,960 Blue Gene/L processors at IBM TJ Watson Center. Notable
A Flow Solver for Three-Dimensional DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Zheng, Yao
2002-01-01
DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.
Coveney, Peter V
2005-08-15
We introduce a definition of Grid computing which is adhered to throughout this Theme Issue. We compare the evolution of the World Wide Web with current aspirations for Grid computing and indicate areas that need further research and development before a generally usable Grid infrastructure becomes available. We discuss work that has been done in order to make scientific Grid computing a viable proposition, including the building of Grids, middleware developments, computational steering and visualization. We review science that has been enabled by contemporary computational Grids, and associated progress made through the widening availability of high performance computing.
Advanced Unstructured Grid Generation for Complex Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
2010-01-01
A new approach for distribution of grid points on the surface and in the volume has been developed. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.
IGGy: An interactive environment for surface grid generation
NASA Technical Reports Server (NTRS)
Prewitt, Nathan C.
1992-01-01
A graphically interactive derivative of the EAGLE boundary code is presented. This code allows the user to interactively build and execute commands and immediately see the results. Strong ties with a batch oriented script language are maintained. A generalized treatment of grid definition parameters allows a more generic definition of the grid generation process and allows the generation of command scripts which can be applied to topologically similar configurations. The use of the graphical user interface is outlined and example applications are presented.
Finite difference time domain grid generation from AMC helicopter models
NASA Technical Reports Server (NTRS)
Cravey, Robin L.
1992-01-01
A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.
ARTIST: Adaptable Radiative Transfer Innovations for Submillimeter Telescopes
NASA Astrophysics Data System (ADS)
Jørgensen, Jes; Brinch, Christian; Girart, Josep Miquel; Padovani, Marco; Frau, Pau; Schaaf, Reinhold; Kuiper, Rolf; Bertoldi, Frank; Hogerheijde, Michiel; Juhasz, Attila; Vlemmings, Wouter
2014-02-01
ARTIST is a suite of tools for comprehensive multi-dimensional radiative transfer calculations of dust and line emission, as well as their polarization, to help interpret observations from submillimeter telescopes. The ARTIST package consists of LIME, a radiative transfer code that uses adaptive gridding allowing simulations of sources with arbitrary multi-dimensional (1D, 2D, 3D) and time-dependent structures, thus ensuring rapid convergence; the DustPol and LinePol tools for modeling the polarization of the line and dust emission; and an interface run from Python scripts that manages the interaction between a general model library and LIME, and a graphical interface to simulate images.
Adaptive triangular mesh generation
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Eiseman, P. R.
1984-01-01
A general adaptive grid algorithm is developed on triangular grids. The adaptivity is provided by a combination of node addition, dynamic node connectivity and a simple node movement strategy. While the local restructuring process and the node addition mechanism take place in the physical plane, the nodes are displaced on a monitor surface, constructed from the salient features of the physical problem. An approximation to mean curvature detects changes in the direction of the monitor surface, and provides the pulling force on the nodes. Solutions to the axisymmetric Grad-Shafranov equation demonstrate the capturing, by triangles, of the plasma-vacuum interface in a free-boundary equilibrium configuration.
IEEE 1547 Standards Advancing Grid Modernization
Basso, Thomas; Chakraborty, Sudipta; Hoke, Andy; Coddington, Michael
2015-06-14
Technology advances including development of advanced distributed energy resources (DER) and grid-integrated operations and controls functionalities have surpassed the requirements in current standards and codes for DER interconnection with the distribution grid. The full revision of IEEE Standards 1547 (requirements for DER-grid interconnection and interoperability) and 1547.1 (test procedures for conformance to 1547) are establishing requirements and best practices for state-of-the-art DER including variable renewable energy sources. The revised standards will also address challenges associated with interoperability and transmission-level effects, in addition to strictly addressing the distribution grid needs. This paper provides the status and future direction of the ongoing development focus for the 1547 standards.
Rigel: An interactive structured grid generation system
Hachfeld, W.D.; Khamayseh, A.K.; Hansen, G.A.
1998-02-01
An interactive structured grid generation application that facilitates the construction of complex, discretized, simulation models directly from the original CAD geometry specifications is presented. The application, named Rigel, reads physical model descriptions generated by modern CAD packages. Rigel includes a suite of interactive geometry editing functions to assist the user in the construction of a topologically correct geometry from the original CAD specification. Once a topologically correct geometry is created, an interactively steered grid generation capability is provided to facilitate the construction of an appropriate discretization for the simulation. Grid quality enhancement is supported with the application of user-directed elliptic smoothing, refinement, and coarsening operators. After a grid is completed, various output filters are supplied to write an input file for the target simulation code. This paper is intended to provide an overview of the mechanics of this process and to highlight some of the novel algorithms and techniques employed.
Barnette, Daniel W.
2002-01-01
The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.
Onishi, Yasuo
2013-03-29
Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenarios would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.
Recent Developments in Grid Generation and Force Integration Technology for Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; VanDalsem, William R. (Technical Monitor)
1994-01-01
Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.
NASA Technical Reports Server (NTRS)
Hinke, Thomas
2003-01-01
This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.
Malmierca, Manuel S.; Anderson, Lucy A.; Antunes, Flora M.
2015-01-01
To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should “trigger” the network’s response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex. PMID:25805974
A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA
Jiang Chaowei; Feng Xueshang; Xiang Changqing
2012-08-10
Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 Multiplication-Sign 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
NASA Astrophysics Data System (ADS)
Liu, Yuk Tung; Etienne, Zachariah; Shapiro, Stuart
2011-04-01
The Illinois relativity group has written and tested a new GRMHD code, which is compatible with adaptive-mesh refinement (AMR) provided by the widely-used Cactus/Carpet infrastructure. Our code solves the Einstein-Maxwell-MHD system of coupled equations in full 3+1 dimensions, evolving the metric via the BSSN formalism and the MHD and magnetic induction equations via a conservative, high-resolution shock-capturing scheme. The induction equations are recast as an evolution equation for the magnetic vector potential. The divergenceless constraint div(B) = 0 is enforced by the curl of the vector potential. In simulations with uniform grid spacing, our MHD scheme is numerically equivalent to a commonly used, staggered-mesh constrained-transport scheme. We will present numerical method and code validation tests for both Minkowski and curved spacetimes. The tests include magnetized shocks, nonlinear Alfven waves, cylindrical explosions, cylindrical rotating disks, magnetized Bondi tests, and the collapse of a magnetized rotating star. Some of the more stringent tests involve black holes. We find good agreement between analytic and numerical solutions in these tests, and achieve convergence at the expected order.
Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab
2007-05-01
As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.
Taft, Jeffrey D.
2016-01-01
The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.
Generation of a multi-component aircraft grid system using NGP and Begger
Lijewski, L.E.; Belk, D.M.
1996-12-31
Generation of a multiple component aircraft grid system is presented. A hybrid system of blocked and overset grids axe generated using NGP and overlap communications established with the Beggar code. Techniques for gridding wing-flap and fuselage-flap gap regions axe discussed. Steady-state subsonic flow solutions are presented.
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1994-01-01
Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.
Insightful Workflow For Grid Computing
Dr. Charles Earl
2008-10-09
We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
2007-11-15
The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology
Navigation in Grid Space with the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.
Grid enabled Service Support Environment - SSE Grid
NASA Astrophysics Data System (ADS)
Goor, Erwin; Paepen, Martine
2010-05-01
The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more
Vector Adaptive/Predictive Encoding Of Speech
NASA Technical Reports Server (NTRS)
Chen, Juin-Hwey; Gersho, Allen
1989-01-01
Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.
Securing smart grid technology
NASA Astrophysics Data System (ADS)
Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman
2013-03-01
In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-08-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parameterizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-10-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data
NASA Technical Reports Server (NTRS)
Pollara, Fabrizio; Hamkins, Jon; Dolinar, Sam; Andrews, Ken; Divsalar, Dariush
2006-01-01
This viewgraph presentation reviews uplink coding. The purpose and goals of the briefing are (1) Show a plan for using uplink coding and describe benefits (2) Define possible solutions and their applicability to different types of uplink, including emergency uplink (3) Concur with our conclusions so we can embark on a plan to use proposed uplink system (4) Identify the need for the development of appropriate technology and infusion in the DSN (5) Gain advocacy to implement uplink coding in flight projects Action Item EMB04-1-14 -- Show a plan for using uplink coding, including showing where it is useful or not (include discussion of emergency uplink coding).
PARAVT: Parallel Voronoi tessellation code
NASA Astrophysics Data System (ADS)
González, R. E.
2016-10-01
In this study, we present a new open source code for massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid. Code implementation and user guide are publicly available at https://github.com/regonzar/paravt.
Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng
2015-01-01
For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area. PMID:26343683
IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes
NASA Astrophysics Data System (ADS)
Etienne, Zachariah B.; Paschalidis, Vasileios; Haas, Roland; Mösta, Philipp; Shapiro, Stuart L.
2015-09-01
In the extreme violence of merger and mass accretion, compact objects like black holes and neutron stars are thought to launch some of the most luminous outbursts of electromagnetic and gravitational wave energy in the Universe. Modeling these systems realistically is a central problem in theoretical astrophysics, but has proven extremely challenging, requiring the development of numerical relativity codes that solve Einstein's equations for the spacetime, coupled to the equations of general relativistic (ideal) magnetohydrodynamics (GRMHD) for the magnetized fluids. Over the past decade, the Illinois numerical relativity (ILNR) group's dynamical spacetime GRMHD code has proven itself as a robust and reliable tool for theoretical modeling of such GRMHD phenomena. However, the code was written ‘by experts and for experts’ of the code, with a steep learning curve that would severely hinder community adoption if it were open-sourced. Here we present IllinoisGRMHD, which is an open-source, highly extensible rewrite of the original closed-source GRMHD code of the ILNR group. Reducing the learning curve was the primary focus of this rewrite, with the goal of facilitating community involvement in the code's use and development, as well as the minimization of human effort in generating new science. IllinoisGRMHD also saves computer time, generating roundoff-precision identical output to the original code on adaptive-mesh grids, but nearly twice as fast at scales of hundreds to thousands of cores.
NASA Technical Reports Server (NTRS)
Yasui, R. K.; Berman, P. A. (Inventor)
1976-01-01
A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.