Science.gov

Sample records for adaptive humoral immune

  1. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells.

    PubMed

    Chorny, Alejo; Casas-Recasens, Sandra; Sintes, Jordi; Shan, Meimei; Polentarutti, Nadia; García-Escudero, Ramón; Walland, A Cooper; Yeiser, John R; Cassis, Linda; Carrillo, Jorge; Puga, Irene; Cunha, Cristina; Bastos, Hélder; Rodrigues, Fernando; Lacerda, João F; Morais, António; Dieguez-Gonzalez, Rebeca; Heeger, Peter S; Salvatori, Giovanni; Carvalho, Agostinho; Garcia-Sastre, Adolfo; Blander, J Magarian; Mantovani, Alberto; Garlanda, Cecilia; Cerutti, Andrea

    2016-09-19

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation-related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell-independent and T cell-dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens. PMID:27621420

  2. Essential Roles of TIM-1 and TIM-4 Homologs in Adaptive Humoral Immunity in a Zebrafish Model.

    PubMed

    Xu, Xiao-Gang; Hu, Jing-Fang; Ma, Jun-Xia; Nie, Li; Shao, Tong; Xiang, Li-Xin; Shao, Jian-Zhong

    2016-02-15

    TIM-1 and TIM-4 proteins have become increasingly attractive for their critical functions in immune modulation, particularly in CD4(+) Th2 cell activation. Thus, these proteins were hypothesized to regulate adaptive humoral immunity. However, further evidence is needed to validate this hypothesis. This study describes the molecular and functional characteristics of TIM-1 and TIM-4 homologs from a zebrafish (Danio rerio) model (D. rerio TIM [DrTIM]-1 and DrTIM-4). DrTIM-1 and DrTIM-4 were predominantly expressed in CD4(+) T cells and MHC class II(+) APCs under the induction of Ag stimulation. Blockade or knockdown of both DrTIM-1 and DrTIM-4 significantly decreased Ag-specific CD4(+) T cell activation, B cell proliferation, Ab production, and vaccinated immunoprotection against bacterial infection. This result suggests that DrTIM-1 and DrTIM-4 serve as costimulatory molecules required for the full activation of adaptive humoral immunity. DrTIM-1 was detected to be a trafficking protein located in the cytoplasm of CD4(+) T cells. It can translocate onto the cell surface under stimulation by TIM-4-expressing APCs, which might be a precise regulatory strategy for CD4(+) T cells to avoid self-activation before APCs stimulation. Furthermore, a unique alternatively spliced soluble DrTIM-4 variant was identified to exert a negative regulatory effect on the proliferation of CD4(+) T cells. The above findings highlight a novel costimulatory mechanism underlying adaptive immunity. This study enriches the current knowledge on TIM-mediated immunity and provides a cross-species understanding of the evolutionary history of costimulatory systems throughout vertebrate evolution.

  3. Humoral innate immune response and disease

    PubMed Central

    Shishido, Stephanie N.; Varahan, Sriram; Yuan, Kai; Li, Xiangdong; Fleming, Sherry D.

    2012-01-01

    The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies. PMID:22771788

  4. Evaluation of specific humoral immune response in pigs vaccinated with cell culture adapted classical swine fever vaccine

    PubMed Central

    Nath, Mrinal K.; Sarma, D. K.; Das, B. C.; Deka, P.; Kalita, D.; Dutta, J. B.; Mahato, G.; Sarma, S.; Roychoudhury, P.

    2016-01-01

    Aim: To determine an efficient vaccination schedule on the basis of the humoral immune response of cell culture adapted live classical swine fever virus (CSFV) vaccinated pigs and maternally derived antibody (MDA) in piglets of vaccinated sows. Materials and Methods: A cell culture adapted live CSFV vaccine was subjected to different vaccination schedule in the present study. Serum samples were collected before vaccination (day 0) and 7, 14, 28, 42, 56, 180, 194, 208, 270, 284 and 298 days after vaccination and were analyzed by liquid phase blocking enzyme-linked immunosorbent assay. Moreover, MDA titre was detected in the serum of piglets at 21 and 42 days of age after farrowing of the vaccinated sows. Results: On 28 days after vaccination, serum samples of 83.33% vaccinated pigs showed the desirable level of antibody titer (log10 1.50 at 1:32 dilution), whereas 100% animals showed log10 1.50 at 1:32 dilution after 42 days of vaccination. Animals received a booster dose at 28 and 180 days post vaccination showed stable high-level antibody titre till the end of the study period. Further, piglets born from pigs vaccinated 1 month after conception showed the desirable level of MDA up to 42 days of age. Conclusion: CSF causes major losses in pig industry. Lapinised vaccines against CSFV are used routinely in endemic countries. In the present study, a cell culture adapted live attenuated vaccine has been evaluated. Based on the level of humoral immune response of vaccinated pigs and MDA titer in piglets born from immunized sows, it may be concluded that the more effective vaccination schedule for prevention of CSF is primary vaccination at 2 months of age followed by booster vaccination at 28 and 180 days post primary vaccination and at 1 month of gestation. PMID:27057117

  5. Complement and Humoral Adaptive Immunity in the Human Choroid Plexus: Roles for Stromal Concretions, Basement Membranes, and Epithelium

    PubMed Central

    Laule, Cornelia; Leung, Esther; Pavlova, Vladimira; Morgan, B. Paul; Esiri, Margaret M.

    2016-01-01

    The choroid plexus (CP) provides a barrier to entry of toxic molecules from the blood into the brain and transports vital molecules into the cerebrospinal fluid. While a great deal is known about CP physiology, relatively little is known about its immunology. Here, we show immunohistochemical data that help define the role of the CP in innate and adaptive humoral immunity. The results show that complement, in the form of C1q, C3d, C9, or C9neo, is preferentially deposited in stromal concretions. In contrast, immunoglobulin (Ig) G (IgG) and IgA are more often found in CP epithelial cells, and IgM is found in either locale. C4d, IgD, and IgE are rarely, if ever, seen in the CP. In multiple sclerosis CP, basement membrane C9 or stromal IgA patterns were common but were not specific for the disease. These findings indicate that the CP may orchestrate the clearance of complement, particularly by deposition in its concretions, IgA and IgG preferentially via its epithelium, and IgM by either mechanism. PMID:26994633

  6. Complement and Humoral Adaptive Immunity in the Human Choroid Plexus: Roles for Stromal Concretions, Basement Membranes, and Epithelium.

    PubMed

    Moore, G R Wayne; Laule, Cornelia; Leung, Esther; Pavlova, Vladimira; Morgan, B Paul; Esiri, Margaret M

    2016-05-01

    The choroid plexus (CP) provides a barrier to entry of toxic molecules from the blood into the brain and transports vital molecules into the cerebrospinal fluid. While a great deal is known about CP physiology, relatively little is known about its immunology. Here, we show immunohistochemical data that help define the role of the CP in innate and adaptive humoral immunity. The results show that complement, in the form of C1q, C3d, C9, or C9neo, is preferentially deposited in stromal concretions. In contrast, immunoglobulin (Ig) G (IgG) and IgA are more often found in CP epithelial cells, and IgM is found in either locale. C4d, IgD, and IgE are rarely, if ever, seen in the CP. In multiple sclerosis CP, basement membrane C9 or stromal IgA patterns were common but were not specific for the disease. These findings indicate that the CP may orchestrate the clearance of complement, particularly by deposition in its concretions, IgA and IgG preferentially via its epithelium, and IgM by either mechanism.

  7. Regulation of humoral immunity by complement.

    PubMed

    Carroll, Michael C; Isenman, David E

    2012-08-24

    The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity.

  8. Powerful Complex Immunoadjuvant Based on Synergistic Effect of Combined TLR4 and NOD2 Activation Significantly Enhances Magnitude of Humoral and Cellular Adaptive Immune Responses.

    PubMed

    Tukhvatulin, Amir I; Dzharullaeva, Alina S; Tukhvatulina, Natalia M; Shcheblyakov, Dmitry V; Shmarov, Maxim M; Dolzhikova, Inna V; Stanhope-Baker, Patricia; Naroditsky, Boris S; Gudkov, Andrei V; Logunov, Denis Y; Gintsburg, Alexander L

    2016-01-01

    Binding of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) activates innate immune responses and contributes to development of adaptive immunity. Simultaneous stimulation of different types of PRRs can have synergistic immunostimulatory effects resulting in enhanced production of molecules that mediate innate immunity such as inflammatory cytokines, antimicrobial peptides, etc. Here, we evaluated the impact of combined stimulation of PRRs from different families on adaptive immunity by generating alum-based vaccine formulations with ovalbumin as a model antigen and the Toll-like receptor 4 (TLR4) agonist MPLA and the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist MDP adsorbed individually or together on the alum-ovalbumin particles. Multiple in vitro and in vivo readouts of immune system activation all showed that while individual PRR agonists increased the immunogenicity of vaccines compared to alum alone, the combination of both PRR agonists was significantly more effective. Combined stimulation of TLR4 and NOD2 results in a stronger and broader transcriptional response in THP-1 cells compared to individual PRR stimulation. Immunostimulatory composition containing both PRR agonists (MPLA and MDP) in the context of the alum-based ovalbumin vaccine also enhanced uptake of vaccine particles by bone marrow derived dendritic cells (BMDCs) and promoted maturation (up-regulation of expression of CD80, CD86, MHCII) and activation (production of cytokines) of BMDCs. Finally, immunization of mice with vaccine particles containing both PRR agonists resulted in enhanced cellular immunity as indicated by increased proliferation and activation (IFN-γ production) of splenic CD4+ and CD8+ T cells following in vitro restimulation with ovalbumin and enhanced humoral immunity as indicated by higher titers of ovalbumin-specific IgG antibodies. These results indicate that combined stimulation of TLR4 and NOD2

  9. Mathematical modeling the radiation effects on humoral immunity

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.

    A mathematical model of humoral immune response in nonirradiated and irradiated mammals is developed. It is based on conventional theories and experimental facts in this field. The model is a system of nonlinear differential equations which describe the dynamics of concentrations of antibody and antigen molecules, immunocompetent B lymphocytes, and the rest blood lymphocytes, as well as the bone-marrow lymphocyte precursors. The interaction of antigen molecules with antibodies and with antibody-like receptors on immunocompetent cells is also incorporated. The model quantitatively reproduces the dynamics of the humoral immune response to the T-independent antigen (capsular antigen of plague microbe) in nonirradiated mammals (CBA mice). It describes the peculiarities of the humoral immune response in CBA mice exposed to acute radiation before or after introducing antigen. The model predicts an adaptation of humoral immune system to low dose rate chronic irradiation in the result of which the intensity of immune response relaxes to a new, lower than normal, stable level. The mechanisms of this phenomenon are revealed. The results obtained show that the developed model, after the appropriate identification, can be used to predict the effects of acute and low-level long-term irradiation on the system of humoral immunity in humans. Employment of the mathematical model identified in the proper way should be important in estimating the radiation risk for cosmonauts and astronauts on long space missions such as a voyage to Mars or a lunar colony.

  10. Engineering Humoral Immunity as Prophylaxis or Therapy

    PubMed Central

    Deal, Cailin E.; Balazs, Alejandro B.

    2015-01-01

    Purpose of the review In this review, we will discuss the field of engineered humoral immunity with an emphasis on recent work using viral vectors to produce antibodies in vivo. As an alternative to passive transfer of monoclonal antibody protein, a transgene encoding an antibody is delivered to cells via vector transduction, resulting in expression and secretion by the host cell. This review will summarize the evidence in support of this strategy as an alternative to traditional vaccines against infection and as novel therapeutics for a variety of diseases. Recent findings Historically, humoral immunity has been engineered through vaccination and passive transfer of monoclonal antibodies. However, recent work suggests that vectors can be used to deliver transgenes encoding broadly neutralizing antibodies to nonhematopoietic tissues and can mediate long-term expression that is capable of preventing or treating infectious diseases. The production of engineered monoclonal antibodies allows for precise targeting and elimination of aberrant self-proteins that are characteristic of certain neurodegenerative disease. This approach has also been successfully used to combat cancer and addiction in several animal models. Despite the wide array of expression platforms that have been described, adeno-associated virus vectors have emerged as the frontrunner for rapid clinical translation. Summary Recent advances in vector-mediated antibody expression have demonstrated the potential for such interventions to prevent infection and treat disease. As such, it offers an alternative to immunogen-based vaccine design and a novel therapeutic intervention by enabling precise manipulation of humoral immunity. Success translating these approaches to patients may enable the development of effective prevention against previously intractable pathogens that evade immunity such as HIV, influenza, malaria or HCV and may also enable new treatment options for neurodegenerative diseases such as

  11. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity.

  12. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  13. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  14. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  15. Specific and nonspecific aspects of humoral immune response in leprosy.

    PubMed

    Kirsztajn, G M; Nishida, S K; Silva, M S; Lombardi, C; Ajzen, H; Pereira, A B

    1994-01-01

    1. We have studied some generic and specific aspects of the humoral immune response in 96 patients with leprosy (29 paucibacillary and 67 multibacillary individuals). We determined serum immunoglobulins (IgM, IgG and IgA), CH50, C1q, C3 and C4, circulating immune complexes (CIC), C-reactive protein (CRP), rheumatoid factor (RF) and antinuclear antibodies. No specific pattern of general humoral immune changes could be observed. 2. The specific immune response was studied by the detection of specific IgM anti-M. leprae antibodies. An immunoradiometric assay (IRMA) and an ELISA were compared for clinical effectiveness. IRMA showed greater sensitivity for the serodiagnosis of leprosy as compared to ELISA (88.1% vs 58.2% for multibacillary patients and 20.7% vs 10.3% for paucibacillary leprosy patients). Specificity was 96% for IRMA and 97% for ELISA. 3. Our results indicate that nonspecific changes in the humoral immune response are of little value in assessing leprosy patients and that immune assays for the detection of specific anti-M. leprae antibodies may be of value in the diagnosis, study and follow-up of these patients. PMID:8173529

  16. DNAk is a dominant epitope in the humoral immune response of channel catfish (Ictalurus punctatus) to Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination remains a viable alternative for bacterial disease protection in fish; however additional work is required to understand the mechanisms of adaptive immunity in the channel catfish. To assess the humoral immune response to Flavobacterium columnare; a group of channel catfish were first im...

  17. Partial removal of brown adipose tissue enhances humoral immunity in warm-acclimated Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Yang, Deng-Bao; Xu, Yan-Chao; Wang, De-Hua

    2012-01-01

    Temperate rodent species experience marked seasonal fluctuations in environmental temperatures. High thermoregulatory demands during winter usually weaken immune function. Brown adipose tissue (BAT) plays a crucial role in adaptive thermoregulatory process. Thus, we proposed the hypothesis that BAT might participate in the regulation of seasonal changes in immune function. The present study examined the trade-off between thermoregulation and immune function and the potential role of BAT in regulating seasonal changes in immune function in Mongolian gerbils. Specifically, surgical removal of interscapular BAT (34% of total BAT) was performed in male gerbils, and subsequently acclimated to either warm (23 ± 1 °C) or cold (4 ± 1 °C) conditions. Gerbils were then challenged with innocuous antigens and the immune responses were measured. Resting metabolic rate (RMR) and nonshivering thermogenesis (NST) were increased under cold conditions. However, the cost of thermoregulation during cold acclimation did not suppress T-cell mediated immunity and humoral immunity or decrease spleen mass, thymus mass and white blood cells. Partial removal of BAT significantly enhanced humoral immunity in warm-acclimated, but not in cold-acclimated gerbils. T-cell mediated immunity, white blood cells and immune organs were not affected by BAT removal under both warm and cold conditions. Collectively, our results imply that BAT has a suppressive effect on humoral immunity in warm-acclimated gerbils and differential effects of BAT on humoral immunity under different temperatures (e.g., summer and winter) might be benefit to their survival.

  18. Humoral immune responses in foetal sheep.

    PubMed Central

    Fahey, K J; Morris, B

    1978-01-01

    A total of fifty-two foetal sheep between 49 and 126 days gestation were injected with polymeric and monomeric flagellin, dinitrophenylated monomeric flagellin, chicken red blood cells, ovalbumin, ferritin, chicken gamma-globulin and the somatic antigens of Salmonella typhimurium in a variety of combinations. Immune responses were followed in these animals by taking serial blood samples from them through indwelling vascular cannulae and measuring the circulating titres of antibody. Of the antigens tested, ferritin induced immune responses in the youngest foetuses. A short time later in gestation, the majority of foetuses responded to chicken red blood cells, polymeric flagellin, monomeric flagellin and dinitrophenylated monomeric flagellin. Only older foetuses responded regularly to chicken gamma-globulin and ovalbumin. However, antibodies to all these antigens were first detected over the relatively short period of development between 64 and 82 days gestation and this made it difficult to define any precise order in the development of immune responsiveness. Of the antigens tested only the somatic antigens of S. typhimurium failed to induce a primary antibody response during foetal life. The character and magnitude of the antibody responses in foetuses changed throughout in utero development. Both the total amount of antibody produced and the duration of the response increased with foetal age. Foetuses younger than 87 days gestation did not synthesize 2-mercaptoethanol resistant antibodies or IgG1 immunoglobulin to any of the antigens tested, whereas most foetuses older than this regularly did so. PMID:711249

  19. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense system ...

  20. A systematic review of humoral immune responses against tumor antigens.

    PubMed

    Reuschenbach, Miriam; von Knebel Doeberitz, Magnus; Wentzensen, Nicolas

    2009-10-01

    This review summarizes studies on humoral immune responses against tumor-associated antigens (TAAs) with a focus on antibody frequencies and the potential diagnostic, prognostic, and etiologic relevance of antibodies against TAAs. We performed a systematic literature search in Medline and identified 3,619 articles on humoral immune responses and TAAs. In 145 studies, meeting the inclusion criteria, humoral immune responses in cancer patients have been analyzed against over 100 different TAAs. The most frequently analyzed antigens were p53, MUC1, NY-ESO-1, c-myc, survivin, p62, cyclin B1, and Her2/neu. Antibodies against these TAAs were detected in 0-69% (median 14%) of analyzed tumor patients. Antibody frequencies were generally very low in healthy individuals, with the exception of few TAAs, especially MUC1. For several TAAs, including p53, Her2/neu, and NY-ESO-1, higher antibody frequencies were reported when tumors expressed the respective TAA. Antibodies against MUC1 were associated with a favorable prognosis while antibodies against p53 were associated with poor disease outcome. These data suggest different functional roles of endogenous antibodies against TAAs. Although data on prediagnostic antibody levels are scarce and antibody frequencies for most TAAs are at levels precluding use in diagnostic assays for cancer early detection, there is some promising data on achieving higher sensitivity for cancer detection using panels of TAAs.

  1. A systematic review of humoral immune responses against tumor antigens

    PubMed Central

    Reuschenbach, Miriam; von Knebel Doeberitz, Magnus; Wentzensen, Nicolas

    2009-01-01

    This review summarizes studies on humoral immune responses against tumor associated antigens (TAA) with a focus on antibody frequencies and the potential diagnostic, prognostic, and etiologic relevance of antibodies against TAAs. We performed a systematic literature search in Medline and identified 3619 articles on humoral immune responses and TAAs. In 145 studies meeting the inclusion criteria, humoral immune responses in cancer patients have been analyzed against over 100 different TAAs. The most frequently analyzed antigens were p53, MUC1, NY-ESO-1, c-myc, survivin, p62, cyclin B1 and Her2/neu. Antibodies against these TAAs were detected in 0 to 69% (median 14%) of analyzed tumor patients. Antibody frequencies were generally very low in healthy individuals, with the exception of few TAAs, especially MUC1. For several TAAs, including p53, Her2/neu, and NY-ESO-1, higher antibody frequencies were reported when tumors expressed the respective TAA. Antibodies against MUC1 were associated with a favorable prognosis while antibodies against p53 were associated with poor disease outcome. These data suggest different functional roles of endogenous antibodies against TAAs. Although data on prediagnostic antibody levels is scarce and antibody frequencies for most TAAs are at levels precluding use in diagnostic assays for cancer early detection, there is some promising data on achieving higher sensitivity for cancer detection using panels of TAAs. PMID:19562338

  2. Endocannabinoid signalling in innate and adaptive immunity

    PubMed Central

    Chiurchiù, Valerio; Battistini, Luca; Maccarrone, Mauro

    2015-01-01

    The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments. PMID:25585882

  3. Effect of centchroman on cellular and humoral immunity.

    PubMed

    Thomas, Licto; Asad, Mohammad; Hrishikeshavan, Heremaglur Jagannath; Chandrakala, Gowda Kallenahalli

    2007-01-01

    Centchroman (Ormeloxifene) is a nonsteroidal selective estrogen receptor modulator that is used as once a week oral contraceptive agent. The effect of centchroman on the immune system was evaluated by using different experimental models such as carbon clearance test, cyclophosphamide induced neutropenia, neutrophil adhesion test, effect on serum immunoglobulins, mice lethality test and indirect haemagglutination test. The first three models namely carbon clearance test, cyclophosphamide induced neutropenia and neutrophil adhesion test were used to study cell mediated immunity while the latter three models were used to see the effect on humoral immunity. Centchroman was administered orally at a dose of 5 mg/kg and levamisole (2.5 mg/kg/ p.o) was used as standard drug. Centchroman significantly increased the levels of serum immunoglobulins and also prevented the mortality induced by bovine Pasteurella multocida in mice. It also increased significantly the circulating antibody litre in indirect haemagglunation test. However, it did not show any significant effect on phagocytic index in carbon clearance assay and nor did influence the adhesion of neutrophils in the neutrophil adhesion test. Centchroman was also not effective in preventing the cyclophosphamde induced neutropenia. Hence, it was concluded that centchroman increases humoral immunity with no significant effect on cell mediated immunity. PMID:18476393

  4. Hibernation is associated with depression of T-cell independent humoral immune responses in the 13-lined ground squirrel.

    PubMed

    Bouma, Hjalmar R; Henning, Robert H; Kroese, Frans G M; Carey, Hannah V

    2013-03-01

    Mammalian hibernation consists of periods of low metabolism and body temperature (torpor), interspersed by euthermic arousal periods. The function of both the innate and adaptive immune system is suppressed during hibernation. In this study, we analyzed the humoral adaptive immune response to a T-cell independent (TI-2) and a T-cell dependent (TD) antigen. Thirteen-lined ground squirrels were immunized in summer or during hibernation with either a TI-2 or TD antigen on day 0 and day 14. Blood was drawn on day 0, 7, 14, 21 and 28. Both types of antigens induced a significant rise in antibody titer in summer animals. Much to our surprise, however, only immunization with the TD antigen, and not with the TI-2 antigen induced a humoral response in hibernators. Flow cytometric analysis of CD4 (helper T-lymphocytes), CD8 (cytotoxic T-lymphocytes) and CD45RA (B-lymphocytes) in blood, spleen and lymph nodes ruled out massive apoptosis as explanation of the absent TI humoral response during hibernation. Rather, reduced TI-2 stimulation of B-lymphocytes, possibly due to lowered serum complement during torpor, may explain the reduced antibody production in response to a TI-2 antigen. These results demonstrate that hibernation diminishes the capacity to induce a TI-2 humoral immune response, while the capacity to induce a humoral response to a TD antigen is maintained.

  5. Adaptive immunity to fungi.

    PubMed

    Verma, Akash; Wüthrich, Marcel; Deepe, George; Klein, Bruce

    2014-11-06

    Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases.

  6. Humoral immune responses in CD40 ligand-deficient mice

    PubMed Central

    1994-01-01

    Individuals with X-linked hyper-IgM syndrome fail to express functional CD40 ligand (CD40L) and, as a consequence, are incapable of mounting protective antibody responses to opportunistic bacterial infections. To address the role of CD40L in humoral immunity, we created, through homologous recombination, mice deficient in CD40L expression. These mice exhibited no gross developmental deficiencies or health abnormalities and contained normal percentages of B and T cell subpopulations. CD40L-deficient mice did display selective deficiencies in humoral immunity; basal serum isotype levels were significantly lower than observed in normal mice, and IgE was undetectable. Furthermore, the CD40L-deficient mice failed to mount secondary antigen- specific responses to immunization with a thymus-dependent antigen, trinitrophenol-conjugated keyhole limpet hemocyanin (TNP-KLH). By contrast, the CD40L-deficient mice produced antigen-specific antibody of all isotypes except IgE in response to the thymus-independent antigen, DNP-Ficoll. These results underscore the requirement of CD40L for T cell-dependent antibody responses. Moreover, Ig class switching to isotypes other than IgE can occur in vivo in the absence of CD40L, supporting the notion that alternative B cell signaling pathways regulate responses to thymus-independent antigens. PMID:7964465

  7. The Clinical Impact of Humoral Immunity in Pediatric Renal Transplantation

    PubMed Central

    Chaudhuri, Abanti; Ozawa, Mikki; Everly, Matthew J.; Ettenger, Robert; Dharnidharka, Vikas; Benfield, Mark; Mathias, Robert; Portale, Anthony; McDonald, Ruth; Harmon, William; Kershaw, David; Vehaskari, V. Matti; Kamil, Elaine; Baluarte, H. Jorge; Warady, Bradley; Li, Li; Sigdel, Tara K.; Hsieh, Szu-chuan; Dai, Hong; Naesens, Maarten; Waskerwitz, Janie; Salvatierra, Oscar; Terasaki, Paul I.

    2013-01-01

    The development of anti-donor humoral responses after transplantation associates with higher risks for acute rejection and 1-year graft survival in adults, but the influence of humoral immunity on transplant outcomes in children is not well understood. Here, we studied the evolution of humoral immunity in low-risk pediatric patients during the first 2 years after renal transplantation. Using data from 130 pediatric renal transplant patients randomized to steroid-free (SF) or steroid-based (SB) immunosuppression in the NIH-SNSO1 trial, we correlated the presence of serum anti-HLA antibodies to donor HLA antigens (donor-specific antibodies) and serum MHC class 1-related chain A (MICA) antibody with both clinical outcomes and histology identified on protocol biopsies at 0, 6, 12, and 24 months. We detected de novo antibodies after transplant in 24% (23% of SF group and 25% of SB group), most often after the first year. Overall, 22% developed anti-HLA antibodies, of which 6% were donor-specific antibodies, and 6% developed anti-MICA antibody. Presence of these antibodies de novo associated with significantly higher risks for acute rejection (P=0.02), chronic graft injury (P=0.02), and decline in graft function (P=0.02). In summary, antibodies to HLA and MICA antigens appear in approximately 25% of unsensitized pediatric patients, placing them at greater risk for acute and chronic rejection with accelerated loss of graft function. Avoiding steroids does not seem to modify this incidence. Whether serial assessments of these antibodies after transplant could guide individual tailoring of immunosuppression requires additional study. PMID:23449533

  8. The clinical impact of humoral immunity in pediatric renal transplantation.

    PubMed

    Chaudhuri, Abanti; Ozawa, Mikki; Everly, Matthew J; Ettenger, Robert; Dharnidharka, Vikas; Benfield, Mark; Mathias, Robert; Portale, Anthony; McDonald, Ruth; Harmon, William; Kershaw, David; Vehaskari, V Matti; Kamil, Elaine; Baluarte, H Jorge; Warady, Bradley; Li, Li; Sigdel, Tara K; Hsieh, Szu-chuan; Dai, Hong; Naesens, Maarten; Waskerwitz, Janie; Salvatierra, Oscar; Terasaki, Paul I; Sarwal, Minnie M

    2013-03-01

    The development of anti-donor humoral responses after transplantation associates with higher risks for acute rejection and 1-year graft survival in adults, but the influence of humoral immunity on transplant outcomes in children is not well understood. Here, we studied the evolution of humoral immunity in low-risk pediatric patients during the first 2 years after renal transplantation. Using data from 130 pediatric renal transplant patients randomized to steroid-free (SF) or steroid-based (SB) immunosuppression in the NIH-SNSO1 trial, we correlated the presence of serum anti-HLA antibodies to donor HLA antigens (donor-specific antibodies) and serum MHC class 1-related chain A (MICA) antibody with both clinical outcomes and histology identified on protocol biopsies at 0, 6, 12, and 24 months. We detected de novo antibodies after transplant in 24% (23% of SF group and 25% of SB group), most often after the first year. Overall, 22% developed anti-HLA antibodies, of which 6% were donor-specific antibodies, and 6% developed anti-MICA antibody. Presence of these antibodies de novo associated with significantly higher risks for acute rejection (P=0.02), chronic graft injury (P=0.02), and decline in graft function (P=0.02). In summary, antibodies to HLA and MICA antigens appear in approximately 25% of unsensitized pediatric patients, placing them at greater risk for acute and chronic rejection with accelerated loss of graft function. Avoiding steroids does not seem to modify this incidence. Whether serial assessments of these antibodies after transplant could guide individual tailoring of immunosuppression requires additional study.

  9. Adaptive immunity to fungi.

    PubMed

    Wüthrich, Marcel; Deepe, George S; Klein, Bruce

    2012-01-01

    Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue.

  10. Serum immunoglobulin levels and humoral immune competence in coalworkers

    SciTech Connect

    Robertson, M.D.; Boyd, J.E.; Collins, H.P.; Davis, J.M.

    1984-01-01

    Serum immunoglobulin (Ig) levels were measured in 788 coalworkers and 121 nonmining controls for comparison with the radiological category of pneumoconiosis after taking into account age and smoking habit. In addition a simple assessment of humoral immune competence was made by estimating the titre of serum antibody against the common gut commensal Escherichia coli. Smoking was found to depress serum IgA and IgM while levels of IgG and IgA increased slightly with age. Men with radiological signs of coalworkers pneumoconiosis (CWP) had significantly raised levels of IgA and IgG with increasing pneumoconiosis category. Even coalworkers with less than category 1 simple pneumoconiosis had raised levels of IgA, suggesting that increased production of this immunoglobulin occurs before radiologically identifiable pathological changes have occurred in the lung tissue. No association between reduced humoral immune competence and radiological category of pneumoconiosis was found. Whether high Ig levels in men exposed to coal dust are merely a passive response to dusted lung tissue or whether they indicate that an immunological process is important in the development of pneumoconiotic lesions remains uncertain.

  11. Cellular and humoral immunity in subacute sclerosing panencephalitis.

    PubMed Central

    Dhib-Jalbut, S S; Abdelnoor, A M; Haddad, F S

    1981-01-01

    Cellular and humoral immunity was studied in 26 patients with subacute sclerosing panencephalitis. Results were compared with those of 14 normal controls and 11 patients suffering from other neurological disorders. It was shown that cellular and humoral immune responses are adequate in subacute sclerosing panencephalitis. The persistently elevated levels of serum immunoglobulin G (IgG) and IgA indicated a persistent infection, and their progressive rise in later stages correlated with the progressive nature of the illness. IgG progressively increased with the clinical stage in the cerebrospinal fluid unaccompanied by a corresponding rise in the measles antibody titer. This suggests that antigenic determinants other than those tested play a role in the production of IgG in the cerebrospinal fluid. The progressive increase in the ratio of cerebrospinal fluid to serum IgG with the advance of the disease suggests synthesis of IgG locally in the central nervous system. Elevated measles antibody titer in serum and cerebrospinal fluid is a consistent aid in the diagnosis of subacute sclerosing panencephalitis. It is more specific in cerebrospinal fluid than in serum. Its level did not vary significantly with the clinical stages or duration of illness. Depressed serum complement activity has been detected in some subacute sclerosing panencephalitis patients in whom serum levels of the third and fourth components of the complement were normal. PMID:6973545

  12. Humor.

    PubMed

    Woodbury-Fariña, Michel A; Antongiorgi, Joalex L

    2014-12-01

    Humor has not been taken as seriously as it should be. Humor has many positive effects in the daily lives of patients and clinicians need to take advantage of these. Many indices of stress are attenuated and this serves to improve the therapeutic alliance. Freudian, rational emotive therapy, and kleinian views are presented, as well as examples of how to use playful therapy. In addition, advice on how to develop humor is given.

  13. Humor.

    PubMed

    Woodbury-Fariña, Michel A; Antongiorgi, Joalex L

    2014-12-01

    Humor has not been taken as seriously as it should be. Humor has many positive effects in the daily lives of patients and clinicians need to take advantage of these. Many indices of stress are attenuated and this serves to improve the therapeutic alliance. Freudian, rational emotive therapy, and kleinian views are presented, as well as examples of how to use playful therapy. In addition, advice on how to develop humor is given. PMID:25455066

  14. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    PubMed

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  15. Missing the target: DNAk is a dominant epitope in the humoral immune response of channel catfish (Ictalurus punctatus) to Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination remains a viable alternative for bacterial disease protection in fish; however additional work is required to understand the mechanisms of adaptive immunity in the channel catfish. To assess the humoral immune response to Flavobacterium columnare; a group of channel catfish were first im...

  16. Maternal antibody transfer can lead to suppression of humoral immunity in developing zebra finches (Taeniopygia guttata).

    PubMed

    Merrill, Loren; Grindstaff, Jennifer L

    2014-01-01

    Maternally transferred antibodies have been documented in a wide range of taxa and are thought to adaptively provide protection against parasites and pathogens while the offspring immune system is developing. In most birds, transfer occurs when females deposit immunoglobulin Y into the egg yolk, and it is proportional to the amount in the female's plasma. Maternal antibodies can provide short-term passive protection as well as specific and nonspecific immunological priming, but high levels of maternal antibody can result in suppression of the offspring's humoral immune response. We injected adult female zebra finches (Taeniopygia guttata) with one of two antigens (lipopolysaccharide [LPS] or keyhole limpet hemocyanin [KLH]) or a control and then injected offspring with LPS, KLH, or a control on days 5 and 28 posthatch to examine the impact of maternally transferred antibodies on the ontogeny of the offspring's humoral immune system. We found that offspring of females exposed to KLH had elevated levels of KLH-reactive antibody over the first 17-28 days posthatch but reduced KLH-specific antibody production between days 28 and 36. We also found that offspring exposed to either LPS or KLH exhibited reduced total antibody levels, compared to offspring that received a control injection. These results indicate that high levels of maternal antibodies or antigen exposure during development can have negative repercussions on short-term antibody production and may have long-term fitness repercussions for the offspring.

  17. Evasion and Interactions of the Humoral Innate Immune Response in Pathogen Invasion, Autoimmune Disease, and Cancer

    PubMed Central

    Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.

    2015-01-01

    The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788

  18. Sense of humor, childhood cancer stressors, and outcomes of psychosocial adjustment, immune function, and infection.

    PubMed

    Dowling, Jacqueline S; Hockenberry, Marilyn; Gregory, Richard L

    2003-01-01

    The diagnosis, treatment, and side effects of childhood cancer have been described as extremely stressful experiences in the life of a child. Anecdotally, children report that a sense of humor helps them cope with the daily experiences of living with cancer; however, no research has examined sense of humor and childhood cancer stressors. This study investigated the effect of sense of humor on the relationship between cancer stressors and children's psychosocial adjustment to cancer, immune function, and infection using Lazarus and Folkman's theory of stress, appraisal, and coping. A direct relationship was observed between sense of humor and psychosocial adjustment to cancer, such that children with a high sense of humor had greater psychological adjustment, regardless of the amount of cancer stressors. A moderating effect was observed for incidence of infection. As childhood cancer stressors increase, children with high coping humor scores reported fewer incidences of infection than low scorers.

  19. Humoral immunity in brain aging and Alzheimer's disease.

    PubMed

    Bouras, Constantin; Riederer, Beat M; Kövari, Enikö; Hof, Patrick R; Giannakopoulos, Panteleimon

    2005-06-01

    Although the contribution of inflammatory processes in the etiology of late-onset Alzheimer's disease (AD) has been suspected for years, most studies were confined to the analysis of cell-mediated immunological reactions thought to represent an epiphenomenon of AD lesion development. Based on the traditional view of the "immunological privilege" of the brain, which excludes a direct access of human immunoglobulins (Ig) to the central nervous system under normal conditions, little attention has been paid to a possible role of humoral immunity in AD pathogenesis. In the first part of this review, we summarize evidences for a blood-brain barrier (BBB) dysfunction in this disorder and critically comment on earlier observations supporting the presence of anti-brain autoantibodies and immunoglobulins (Ig) in AD brains. Current concepts regarding the Ig turnover in the central nervous system and the mechanisms of glial and neuronal Fc receptors activation are also discussed. In the second part, we present new ex vivo and in vitro data suggesting that human immunoglobulins can interact with tau protein and alter both the dynamics and structural organization of microtubules. Subsequent experiments needed to test this new working hypothesis are addressed at the end of the review.

  20. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  1. Humoral Immunity Links Candida albicans Infection and Celiac Disease

    PubMed Central

    Fradin, Chantal; Salleron, Julia; Damiens, Sébastien; Moragues, Maria Dolores; Souplet, Vianney; Jouault, Thierry; Robert, Raymond; Dubucquoi, Sylvain; Sendid, Boualem; Colombel, Jean Fréderic; Poulain, Daniel

    2015-01-01

    Objective The protein Hwp1, expressed on the pathogenic phase of Candida albicans, presents sequence analogy with the gluten protein gliadin and is also a substrate for transglutaminase. This had led to the suggestion that C. albicans infection (CI) may be a triggering factor for Celiac disease (CeD) onset. We investigated cross-immune reactivity between CeD and CI. Methods Serum IgG levels against recombinant Hwp1 and serological markers of CeD were measured in 87 CeD patients, 41 CI patients, and 98 healthy controls (HC). IgA and IgG were also measured in 20 individuals from each of these groups using microchips sensitized with 38 peptides designed from the N-terminal of Hwp1. Results CI and CeD patients had higher levels of anti-Hwp1 (p=0.0005 and p=0.004) and anti-gliadin (p=0.002 and p=0.0009) antibodies than HC but there was no significant difference between CeD and CI patients. CeD and CI patients had higher levels of anti-transglutaminase IgA than HC (p=0.0001 and p=0.0039). During CI, the increase in anti-Hwp1 paralleled the increase in anti-gliadin antibodies. Microchip analysis showed that CeD patients were more reactive against some Hwp1 peptides than CI patients, and that some deamidated peptides were more reactive than their native analogs. Binding of IgG from CeD patients to Hwp1 peptides was inhibited by γIII gliadin peptides. Conclusions Humoral cross-reactivity between Hwp1 and gliadin was observed during CeD and CI. Increased reactivity to Hwp1 deamidated peptide suggests that transglutaminase is involved in this interplay. These results support the hypothesis that CI may trigger CeD onset in genetically-susceptible individuals. PMID:25793717

  2. Specific humoral and cellular immunity induced by Trypanosoma cruzi DNA immunization in a canine model

    PubMed Central

    2013-01-01

    Chagas disease has a high incidence in Mexico and other Latin American countries. Because one of the most important known methods of prevention is vector control, which has been effective only in certain areas of South America, the development of a vaccine to protect people at risk has been proposed. In this study, we assessed the cellular and humoral immune response generated following immunization with pBCSP and pBCSSP4 plasmids containing the genes encoding a trans-sialidase protein (present in all three forms of T. cruzi) and an amastigote specific glycoprotein, respectively, in a canine model. Thirty-five beagle dogs were divided randomly into 5 groups (n = 7) and were immunized twice intramuscularly with 500 μg of pBCSSP4, pBCSP, pBk-CMV (empty plasmid) or saline solution. Fifteen days after the last immunization the 4 groups were infected intraperitoneally with 500 000 metacyclic trypomastigotes. The fifth group was unimmunized/infected. The parasitaemia in the immunized/infected dogs was for a shorter period (14 vs. 29 days) and the parasite load was lower. The concentration of IgG1 (0.612 ± 0.019 O.D.) and IgG2 (1.167 ± 0.097 O.D.) subclasses was measured (absorbance) 15 days after the last immunization with both recombinant plasmids, the majority of which were IgG2. The treatment of parasites using the serum from dogs immunized with pBCSP and pBCSSP4 plasmids produced 54% (± 11.8) and 68% (± 21.4) complement-mediated lysis, respectively. At 12 h post immunization, an increase in cytokines was not observed; however, vaccination with pBCSSP4 significantly increased the levels of IFN-γ and IL-10 at 9 months post-infection. The recombinant plasmid immunization stimulated the spleen cell proliferation showing a positive stimulatory index above 2.0. In conclusion, immunization using both genes effectively induces a humoral and cellular immune response. PMID:23497041

  3. Specific humoral and cellular immunity induced by Trypanosoma cruzi DNA immunization in a canine model.

    PubMed

    Arce-Fonseca, Minerva; Ballinas-Verdugo, Martha A; Zenteno, Emma R Abreu; Suárez-Flores, Davinia; Carrillo-Sánchez, Silvia C; Alejandre-Aguilar, Ricardo; Rosales-Encina, José Luis; Reyes, Pedro A; Rodríguez-Morales, Olivia

    2013-01-01

    Chagas disease has a high incidence in Mexico and other Latin American countries. Because one of the most important known methods of prevention is vector control, which has been effective only in certain areas of South America, the development of a vaccine to protect people at risk has been proposed. In this study, we assessed the cellular and humoral immune response generated following immunization with pBCSP and pBCSSP4 plasmids containing the genes encoding a trans-sialidase protein (present in all three forms of T. cruzi) and an amastigote specific glycoprotein, respectively, in a canine model. Thirty-five beagle dogs were divided randomly into 5 groups (n=7) and were immunized twice intramuscularly with 500 μg of pBCSSP4, pBCSP, pBk-CMV (empty plasmid) or saline solution. Fifteen days after the last immunization the 4 groups were infected intraperitoneally with 500,000 metacyclic trypomastigotes. The fifth group was unimmunized/infected. The parasitaemia in the immunized/infected dogs was for a shorter period (14 vs. 29 days) and the parasite load was lower. The concentration of IgG1 (0.612±0.019 O.D.) and IgG2 (1.167±0.097 O.D.) subclasses was measured (absorbance) 15 days after the last immunization with both recombinant plasmids, the majority of which were IgG2. The treatment of parasites using the serum from dogs immunized with pBCSP and pBCSSP4 plasmids produced 54% (±11.8) and 68% (±21.4) complement-mediated lysis, respectively. At 12 h post immunization, an increase in cytokines was not observed; however, vaccination with pBCSSP4 significantly increased the levels of IFN-γ and IL-10 at 9 months post-infection. The recombinant plasmid immunization stimulated the spleen cell proliferation showing a positive stimulatory index above 2.0. In conclusion, immunization using both genes effectively induces a humoral and cellular immune response. PMID:23497041

  4. Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster.

    PubMed

    Pragya, P; Shukla, A K; Murthy, R C; Abdin, M Z; Kar Chowdhuri, D

    2015-11-01

    With the advancement of human race, different anthropogenic activities have heaped the environment with chemicals that can cause alteration in the immune system of exposed organism. As a first line of barrier, the evolutionary conserved innate immunity is crucial for the health of an organism. However, there is paucity of information regarding in vivo assessment of the effect of environmental chemicals on innate immunity. Therefore, we examined the effect of a widely used environmental chemical, Cr(VI), on humoral innate immune response using Drosophila melanogaster. The adverse effect of Cr(VI) on host humoral response was characterized by decreased gene expression of antimicrobial peptides (AMPs) in the exposed organism. Concurrently, a significantly decreased transcription of humoral pathway receptors (Toll and PGRP) and triglyceride level along with inhibition of antioxidant enzyme activities were observed in exposed organism. This in turn weakened the immune response of exposed organism that was manifested by their reduced resistance against bacterial infection. In addition, overexpression of the components of humoral immunity particularly Diptericin benefits Drosophila from Cr(VI)-induced humoral immune-suppressive effect. To our knowledge, this is the first report regarding negative impact of an environmental chemical on humoral innate immune response of Drosophila along with subsequent protection by AMPs, which may provide novel insight into host-chemical interactions. Also, our data validate the utility and sensitivity of Drosophila as a model that could be used for screening the possible risk of environmental chemicals on innate immunity with minimum ethical concern that can be further extrapolated to higher organisms.

  5. An HIV-1 Mini Vaccine Induced Long-lived Cellular and Humoral Immune Responses

    PubMed Central

    Mahdavi, Mehdi; Ebtekar, Massoumeh; Hassan, Zuhair Mohammad; Faezi, Sobhan; Khorram Khorshid, Hamidreza; Taghizadeh, Morteza; Azadmanesh, Keyhan

    2015-01-01

    Memory formation is the most important aspect of a vaccine which can guarantee long-lasting immunity and protection. The main aim of the present study was to evaluate the memory immune responses after immunization with a mini vaccine. Mice were immunized with human immunodeficiency virus-1 P24-Nef fusion peptide and then cellular and humoral immune responses were evaluated. In order to determine long-lived memory, immune responses were monitored for 20 weeks after final immunization. The results showed that the candidate vaccine induced proliferation and cytotoxic T lymphocyte responses and shifted cytokine patterns to T helper-1 profile. Evaluation of humoral immune responses also showed an increase in total peptide specific-IgG titer and a shift to IgG2a humoral response. Monitoring of immune responses at weeks 4, 12 and 20 after last immunization showed that immunologic parameters have been sustained for 20 weeks. Our findings support the notion that long-lived memory responses were achieved using a mini vaccine immunization. PMID:27014646

  6. In Vivo Delivery of Antigens by Adenovirus Dodecahedron Induces Cellular and Humoral Immune Responses to Elicit Antitumor Immunity

    PubMed Central

    Villegas-Mendez, Ana; Garin, Marina I; Pineda-Molina, Estela; Veratti, Eugenia; Bueren, Juan A; Fender, Pascal; Lenormand, Jean-Luc

    2010-01-01

    Cancer vaccines based on virus-like particles (VLPs) vectors may offer many advantages over other antigen-delivery systems and represent an alternative to the ex vivo cell therapy approach. In this study, we describe the use of penton-dodecahedron (Pt-Dd) VLPs from human adenovirus type 3 (Ad3) as cancer vaccine vehicle for specific antigens, based on its unique cellular internalization properties. WW domains from the ubiquitin ligase Nedd4 serve as an adapter to bind the antigen to Pt-Dd. By engineering fusion partners of WW with the model antigen ovalbumin (OVA), Pt-Dd can efficiently deliver WW-OVA in vitro and the Pt-Dd/WW complex can be readily internalized by dendritic cells (DCs). Immunization with WW-OVA/Pt-Dd results in 90% protection against B16-OVA melanoma implantation in syngeneic mice. This high level of protection correlates with the development of OVA-specific CD8+ T cells. Moreover, vaccination with WW-OVA Pt-Dd induces robust humoral responses in mice as shown by the high levels of anti-OVA antibodies (Abs) detected in serum. Importantly, treatment of mice bearing B16-OVA tumors with WW-OVA/Pt-Dd results in complete tumor regression in 100% of cases. Thus, our data supports a dual role of Pt-Dd as antigen-delivery vector and natural adjuvant, able to generate integrated cellular and humoral responses of broad immunogenic complexity to elicit specific antitumor immunity. Antigen delivery by Pt-Dd vector is a promising novel strategy for development of cancer vaccines with important clinical applications. PMID:20179681

  7. Variability of whipworm infection and humoral immune response in a wild population of mole voles (Ellobius talpinus Pall.).

    PubMed

    Novikov, Eugene; Petrovski, Dmitry; Mak, Viktoria; Kondratuk, Ekaterina; Krivopalov, Anton; Moshkin, Mikhail

    2016-08-01

    Restricted mobility and spatial isolation of social units in gregarious subterranean mammals ensure good defence mechanisms against parasites, which in turn allows for a reduction of immunity components. In contrast, a parasite invasion may cause an increased adaptive immune response. Therefore, it can be expected that spatial and temporal distribution of parasites within a population will correlate with the local variability in the host's immunocompetence. To test this hypothesis, the intra-population variability of a whipworm infestation and the humoral immune response to non-replicated antigens in mole voles (Ellobius talpinus Pall.), social subterranean rodents, was estimated. Whipworm prevalence in mole voles increased from spring to autumn, and this tendency was more pronounced in settlements living in natural meadows compared to settlements in man-made meadows. However, humoral immune response was lowest in animals from natural meadows trapped in autumn. Since whipworm infestation does not directly affect the immunity of mole voles, the reciprocal tendencies in seasonal dynamics and spatial distribution of whipworm abundance and host immunocompetence may be explained by local deterioration of habitat conditions, which increases the probability of an infestation. PMID:27079461

  8. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin.

    PubMed

    Vijay-Kumar, Matam; Carvalho, Frederic A; Aitken, Jesse D; Fifadara, Nimita H; Gewirtz, Andrew T

    2010-12-01

    The fact that some TLR-based vaccine adjuvants maintain function in TLR-deficient hosts highlights that their mechanism of function remains incompletely understood. Thus, we examined the ability of flagellin to induce cytokines and elicit/promote murine antibody responses upon deletion of the flagellin receptors TLR5 and/or NLRC4 (also referred to as IPAF) using a prime/boost regimen. In TLR5-KO mice, flagellin failed to induce NF-κB-regulated cytokines such as keratinocyte-derived chemokine (CXCL1) but induced WT levels of the inflammasome cytokine IL-18 (IL-1F4). Conversely, in NLRC4-KO mice, flagellin induced keratinocyte-derived chemokine, but not IL-18, whereas TLR5/NLRC4-DKO lacked induction of all cytokines measured. Flagellin/ovalbumin treatment resulted in high-antibody titers to both flagellin and ovalbumin in WT, TLR5-KO and DKO mice but did not elicit antibodies to either in TLR5/NLRC4-DKO mice. Thus, flagellin's ability to elicit/promote humoral immunity requires a germ-line-encoded receptor capable of recognizing this molecule. Such promotion of adaptive immunity can be effectively driven by either TLR5-mediated activation of NF-κB or NLRC4-mediated activation of the inflammasome.

  9. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages.

    PubMed

    Nazimek, Katarzyna; Kozlowski, Michael; Bryniarski, Pawel; Strobel, Spencer; Bryk, Agata; Myszka, Michal; Tyszka, Anna; Kuszmiersz, Piotr; Nowakowski, Jaroslaw; Filipczak-Bryniarska, Iwona

    2016-08-01

    Depression is associated with an altered immune response, which could be normalized by antidepressant drugs. However, little is known about the influence of antidepressants on the peripheral immune response and function of macrophages in individuals not suffering from depression. Our studies were aimed at determining the influence of antidepressant drugs on the humoral and cellular immune response in mice. Mice were treated intraperitoneally with imipramine, fluoxetine, venlafaxine, or moclobemide and contact immunized with trinitrophenyl hapten followed by elicitation and measurement of contact sensitivity by ear swelling response. Peritoneal macrophages from drug-treated mice were either pulsed with sheep erythrocytes or conjugated with trinitrophenyl and transferred into naive recipients to induce humoral or contact sensitivity response, respectively. Secretion of reactive oxygen intermediates, nitric oxide, and cytokines by macrophages from drug-treated mice was assessed, respectively, in chemiluminometry, Griess-based colorimetry and enzyme-linked immunosorbent assay, and the expression of macrophage surface markers was analyzed cytometrically. Treatment of mice with fluoxetine, venlafaxine, and moclobemide results in suppression of humoral and cell-mediated immunity with a reduction of the release of macrophage proinflammatory mediators and the expression of antigen-presentation markers. In contrast, treatment with imipramine enhanced the humoral immune response and macrophage secretory activity but slightly suppressed active contact sensitivity. Our studies demonstrated that systemically delivered antidepressant drugs modulate the peripheral humoral and cell-mediated immune responses, mostly through their action on macrophages. Imipramine was rather proinflammatory, whereas other tested drugs expressed immunosuppressive potential. Current observations may be applied to new therapeutic strategies dedicated to various disorders associated with excessive

  10. Heat killed multi-serotype Shigella immunogens induced humoral immunity and protection against heterologous challenge in rabbit model.

    PubMed

    Nag, Dhrubajyoti; Sinha, Ritam; Mitra, Soma; Barman, Soumik; Takeda, Yoshifumi; Shinoda, Sumio; Chakrabarti, M K; Koley, Hemanta

    2015-11-01

    Recently we have shown the homologous protective efficacy of heat killed multi-serotype Shigella (HKMS) immunogens in a guinea pig colitis model. In our present study, we have advanced our research by immunizing rabbits with a reduced number of oral doses and evaluating the host's adaptive immune responses. The duration of immunogenicity and subsequently protective efficacy was determined against wild type heterologous Shigella strains in a rabbit luminal model. After three successive oral immunizations with HKMS immunogens, serum and lymphocyte supernatant antibody titer against the heterologous shigellae were reciprocally increased and remained at an elevated level up to 180 days. Serogroup and serotype specific O-antigen of lipopolysaccharide and immunogenic proteins of heterologous challenge strains were detected by immunoblot assay. Up-regulation of IL-12p35, IFN-γ and IL-10 mRNA expression was detected in immunized rabbit peripheral blood mononuclear cells (PBMC) after stimulation with HKMS in vitro. HKMS-specific plasma cell response was confirmed by production of a relatively higher level of HKMS-specific IgG in immunized PBMC supernatant compared to control group. Furthermore, the immunized groups of rabbits exhibited complete protection against wild type heterologous shigellae challenge. Thus HKMS immunogens induced humoral and Th1-mediated adaptive immunity and provided complete protection in a rabbit model. These immunogens could be a broad spectrum non-living vaccine candidate for human use in the near future.

  11. Mifepristone (RU486) restores humoral and T cell-mediated immune response in endotoxin immunosuppressed mice.

    PubMed

    Rearte, B; Maglioco, A; Balboa, L; Bruzzo, J; Landoni, V I; Laborde, E A; Chiarella, P; Ruggiero, R A; Fernández, G C; Isturiz, M A

    2010-12-01

    Sepsis and septic shock can be caused by Gram-positive and -negative bacteria and other microorganisms. In the case of Gram-negative bacteria, endotoxin, a normal constituent of the bacterial wall, also known as lipopolysaccharide (LPS), has been considered as one of the principal agents causing the undesirable effects in this critical illness. The response to LPS involves a rapid secretion of proinflammatory cytokines such as tumour necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, interferon (IFN)-γ and the concomitant induction of anti-inflammatory mediators such as IL-10, transforming growth factor (TGF)-β or glucocorticoids, which render the host temporarily refractory to subsequent lethal doses of LPS challenge in a process known as LPS or endotoxin tolerance. Although protective from the development of sepsis or systemic inflammation, endotoxin tolerance has also been pointed out as the main cause of the non-specific humoral and cellular immunosuppression described in these patients. In this report we demonstrate, using a mouse model, that mifepristone (RU486), a known glucocorticoid receptor antagonist, could play an important role in the restoration of both adaptive humoral and cellular immune response in LPS immunosuppressed mice, suggesting the involvement of endogenous glucocorticoids in this phenomenon. On the other hand, using cyclophosphamide and gemcitabine, we demonstrated that regulatory/suppressor CD4(+) CD25(+) forkhead boxP3(+) and GR-1(+) CD11b(+) cells do not play a major role in the establishment or the maintenance of endotoxin tolerance, a central mechanism for inducing an immunosuppression state. PMID:20964639

  12. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were va...

  13. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: To evaluate and compare humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine. Methods: Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each....

  14. INDICATORS OF HUMORAL IMMUNITY UNDER CHEMICAL BURNS OF ESOPHAGUS IN RATS.

    PubMed

    Ishchuk, T V; Kravchenko, N K; Raetska, Ya B; Ostapchenko, L I

    2015-01-01

    It is well known that the immune system has been actively involved in the regeneration and healing processes of post burn wounds. However, unanswered questions remain concerning the role of humoral immunity in the healing mechanisms and development of burn wound complications. We have developed an experimental model of chemical esophageal burn (CEB) which corresponds to esophageal burn in 1-8 years old children. We studied the features of humoral immunity upon CEB in rats. A decrease in IgG levels and an increase in levels of medium- and low- molecular circulating immune complexes (CIC) on the first day of esophageal burns were observed. On the 21st day of burn, we observed an increase in the IgG concentration and a tendency to accumulation of medium- and low-molecular CIC. The studied indicators can be used to differentiate CEB development and create a timeline of burn wounds.

  15. Humoral immune responses in Rana catesbiana frogs and tadpoles.

    PubMed

    Pross, S H; Rowlands, D T

    1976-07-01

    Rana catesbiana adult frogs and tadpoles were immunized with the bacteriophage F2, 0X-174, and T4 and the haptens 2,4 dinitrophenyl (DNP) and fluorescein (FTC). The haptens were conjugated with bovine serum albumin (BSA), bovine gamma globulin (BGG), or horsehoe crab hemocyanin (Hycn). Sera were obtained from immunized animals at invervals up to six months after immunization. The antibody activities were measured by bacteriophage neutralization techniques. Sucrose density gradients were used to separate the antibody classes. Both adults and tadpoles responded to each of the antigens tested. High molecular weight antibodies were predominant in both groups of animals. Low molecular weight antibody activity was not found in adults until nine weeks post immunization but, thereafter, this fraction increased throughout the immune response. Low molecular weight antibodies could also be identified in serum of tadpoles, but only under certain conditions. PMID:59790

  16. Roles of Innate and Adaptive Immunity in Respiratory Mycoplasmosis

    PubMed Central

    Cartner, Samuel C.; Lindsey, J. Russell; Gibbs-Erwin, Julie; Cassell, Gail H.; Simecka, Jerry W.

    1998-01-01

    Current evidence suggests that host defense in respiratory mycoplasmosis is dependent on both innate and humoral immunity. To further delineate the roles of innate and adaptive immunity in antimycoplasmal defenses, we intranasally infected C3H/HeSnJ-scid/scid (C3H-SCID), C3H/HeSnJ (C3H), C57BL/6J-scid/scid (C57-SCID), and C57BL/6N (C57BL) mice with Mycoplasma pulmonis and at 14 and 21 days postinfection performed quantitative cultures of lungs and spleens, quantification of lung lesions, and histopathologic assessments of all other major organs. We found that numbers of mycoplasmas in lungs were associated with genetic background (C3H susceptible, C57BL resistant) rather than functional state of adaptive immunity, indicating that innate immunity is the main contributor to antimycoplasmal defense of the lungs. Extrapulmonary dissemination of mycoplasmas with colonization of spleens and histologic lesions in multiple organs was a common occurrence in all mice. The absence of adaptive immune responses in severe combined immunodeficient (SCID) mice resulted in increased mycoplasmal colonization of spleens and lesions in extrapulmonary sites, particularly spleens, hearts, and joints, and also reduced lung lesion severity. The transfer of anti-M. pulmonis serum to infected C3H-SCID mice prevented extrapulmonary infection and disease, while the severity of lung lesions was restored by transfer of naive spleen cells to infected C3H-SCID mice. Collectively, our results strongly support the conclusions that innate immunity provides antimycoplasmal defense of the lungs and humoral immunity has the major role in defense against systemic dissemination of mycoplasmal infection, but cellular immune responses may be important in exacerbation of mycoplasmal lung disease. PMID:9673224

  17. Engaging adaptive immunity with biomaterials

    PubMed Central

    Mora-Solano, Carolina; Collier, Joel H.

    2014-01-01

    Adaptive immune responses, characterized by T cells and B cells engaging and responding to specific antigens, can be raised by biomaterials containing proteins, peptides, and other biomolecules. How does one avoid, control, or exploit such responses? This review will discuss major properties and processes that influence biomaterials-directed adaptive immunity, including the physical dimensions of a material, its epitope content, and its multivalency. Selected strategies involving novel biomaterials designs will be discussed to illustrate these points of control. Specific immunological processes that biomaterials are being developed to direct will be highlighted, including minimally inflammatory scaffolds for tissue repair and immunotherapies eliciting desired B cell (antibody) responses, T cell responses, or tolerance. The continuing development of a knowledge base for specifying the strength and phenotype of biomaterials-mediated adaptive immune responses is important, not only for the engineering of better vaccines and immunotherapies, but also for managing immune responses against newer generations of increasingly biological and biomolecular materials in contexts such as tissue repair, tissue engineering, or cell delivery. PMID:24729870

  18. PD-L1hi B cells are critical regulators of humoral immunity.

    PubMed

    Khan, Adnan R; Hams, Emily; Floudas, Achilleas; Sparwasser, Tim; Weaver, Casey T; Fallon, Padraic G

    2015-01-01

    Specific B-cell subsets can regulate T-cell immune responses, and are termed regulatory B cells (Breg). The majority of Breg cells described in mouse and man have been identified by IL-10 production and are known to suppress allergy and autoimmunity. However, Breg cell mediated immune suppression, independent of IL-10, also occurs. Here we show that Breg cells play a critical role in regulating humoral immunity mediated by CD4(+)CXCR5(+)PD-1(+) follicular helper T cells, and can suppress inflammation in autoimmune disease through elevated expression of PD-L1. We have also identified that these B cells are resistant to αCD20 B-cell depletion. This work describes how Breg cells are critical in humoral homoeostasis and may have implications for the regulation of autoimmune diseases. PMID:25609381

  19. Humoral immunity to smallpox vaccines and monkeypox virus challenge: proteomic assessment and clinical correlations.

    PubMed

    Townsend, M B; Keckler, M S; Patel, N; Davies, D H; Felgner, P; Damon, I K; Karem, K L

    2013-01-01

    Despite the eradication of smallpox, orthopoxviruses (OPV) remain public health concerns. Efforts to develop new therapeutics and vaccines for smallpox continue through their evaluation in animal models despite limited understanding of the specific correlates of protective immunity. Recent monkeypox virus challenge studies have established the black-tailed prairie dog (Cynomys ludovicianus) as a model of human systemic OPV infections. In this study, we assess the induction of humoral immunity in humans and prairie dogs receiving Dryvax, Acam2000, or Imvamune vaccine and characterize the proteomic profile of immune recognition using enzyme-linked immunosorbent assays (ELISA), neutralization assays, and protein microarrays. We confirm anticipated similarities of antigenic protein targets of smallpox vaccine-induced responses in humans and prairie dogs and identify several differences. Subsequent monkeypox virus intranasal infection of vaccinated prairie dogs resulted in a significant boost in humoral immunity characterized by a shift in reactivity of increased intensity to a broader range of OPV proteins. This work provides evidence of similarities between the vaccine responses in prairie dogs and humans that enhance the value of the prairie dog model system as an OPV vaccination model and offers novel findings that form a framework for examining the humoral immune response induced by systemic orthopoxvirus infection. PMID:23135728

  20. Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis

    PubMed Central

    Welsh, Michael D; Cunningham, Rodat T; Corbett, David M; Girvin, R Martyn; McNair, James; Skuce, Robin A; Bryson, David G; Pollock, John M

    2005-01-01

    Studies of tuberculosis have suggested a shift in dominance from a T helper type 1 (Th1) towards a Th2 immune response that is associated with suppressed cell-mediated immune (CMI) responses and increased humoral responses as the disease progresses. In this study a natural host disease model was used to investigate the balance of the evolving immune response towards Mycobacterium bovis infection in cattle with respect to pathogenesis. Cytokine analysis of CD4 T-cell clones derived from M. bovis-infected animals gave some indication that there was a possible relationship between enhanced pathogenesis and an increased ratio of Th0 [interleukin-4-positive/interferon-γ-positive (IL-4+/IFN-γ+)] clones to Th1 (IFN-γ+) clones. All animals developed strong antimycobacterial CMI responses, but depressed cellular responses were evident as the disease progressed, with the IFN-γ test failing to give consistently positive results in the latter stages. Furthermore, a stronger Th0 immune bias, depressed in vitro CMI responses, elevated levels of IL-10 expression and enhanced humoral responses were also associated with increased pathology. In minimal disease, however, a strong Th1 immune bias was maintained and an anti-M. bovis humoral response failed to develop. It was also seen that the level of the anti-M. bovis immunoglobulin G1 (IgG1) isotype antibody responses correlated with the pathology scores, whereas CMI responses did not have as strong a relationship with the development of pathology. Therefore, the development and maintenance of a Th1 IFN-γ response is associated with a greater control of M. bovis infection. Animals progressing from a Th1-biased to a Th0-biased immune response developed more extensive pathology and performed less well in CMI-based diagnostic tests but developed strong IgG1 humoral responses. PMID:15606800

  1. Stress and Humoral Innate Immune Response of Gilthead Seabream Sparus aurata Cultured in Sea Cages.

    PubMed

    Salati, Fulvio; Roncarati, Alessandra; Angelucci, Giulia; Fenza, Alessandra; Meluzzi, Adele

    2016-09-01

    Innate and acquired immune responses of Gilthead Seabream Sparus aurata was studied under normal culture and short-term stressful conditions for 18 months in offshore sea cages in Alghero Bay, Italy. Every 45 d, 50 fish were sampled and divided into two groups: fish in the first group (normal culture conditions) were bled after harvesting; fish in the second group were put into a tank under stressful conditions (crowding and confinement) and bled after 2 h. Innate humoral immunity, such as complement-like, hemagglutination, and lysozyme activities, was determined in the sera of both groups. Pathogen challenge was not performed, but the specific humoral immune response was assessed against the most common pathogens affecting cultured fish in Sardinia. Stressed fish, compared with the control, showed a lower lysozyme activity against Vibrio (Listonella) anguillarum, which was not clearly correlated with temperatures. Complement-like activity differed between the first and second half of the study and, at the end of the trial, a slightly higher activity was recorded in the controls than in the stressed fish. Hemagglutination activity was mainly higher in the stressed fish than in control fish. Confinement, crowding, and cold water temperature caused decreased lysozyme activity in short-term stressed Gilthead Seabream compared with those reared normally. The specific humoral immune response, against V. anguillarum, Tenacibaculum mesophilum, Enterococcus Seriolicida, and Aeromonas sobria, fluctuated during the rearing period, particularly during the first year of culture. Received October 12, 2015; accepted March 24, 2016.

  2. Stress and Humoral Innate Immune Response of Gilthead Seabream Sparus aurata Cultured in Sea Cages.

    PubMed

    Salati, Fulvio; Roncarati, Alessandra; Angelucci, Giulia; Fenza, Alessandra; Meluzzi, Adele

    2016-09-01

    Innate and acquired immune responses of Gilthead Seabream Sparus aurata was studied under normal culture and short-term stressful conditions for 18 months in offshore sea cages in Alghero Bay, Italy. Every 45 d, 50 fish were sampled and divided into two groups: fish in the first group (normal culture conditions) were bled after harvesting; fish in the second group were put into a tank under stressful conditions (crowding and confinement) and bled after 2 h. Innate humoral immunity, such as complement-like, hemagglutination, and lysozyme activities, was determined in the sera of both groups. Pathogen challenge was not performed, but the specific humoral immune response was assessed against the most common pathogens affecting cultured fish in Sardinia. Stressed fish, compared with the control, showed a lower lysozyme activity against Vibrio (Listonella) anguillarum, which was not clearly correlated with temperatures. Complement-like activity differed between the first and second half of the study and, at the end of the trial, a slightly higher activity was recorded in the controls than in the stressed fish. Hemagglutination activity was mainly higher in the stressed fish than in control fish. Confinement, crowding, and cold water temperature caused decreased lysozyme activity in short-term stressed Gilthead Seabream compared with those reared normally. The specific humoral immune response, against V. anguillarum, Tenacibaculum mesophilum, Enterococcus Seriolicida, and Aeromonas sobria, fluctuated during the rearing period, particularly during the first year of culture. Received October 12, 2015; accepted March 24, 2016. PMID:27485027

  3. Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage

    PubMed Central

    Thomas, Susan N.; Rutkowski, Joseph M.; Pasquier, Miriella; Kuan, Emma L.; Alitalo, Kari; Randolph, Gwendalyn J.; Swartz, Melody A.

    2012-01-01

    Lymphatic vessels transport interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs), yet the contribution of peripheral lymphatic drainage to adaptive immunity remains poorly understood. We examined immune responses to dermal vaccination and contact hypersensitivity (CHS) challenge in K14-VEGFR-3-Ig mice, which lack dermal lymphatic capillaries and experience markedly depressed transport of solutes and dendritic cells from the skin to draining LNs. In response to dermal immunization, K14-VEGFR-3-Ig mice produced lower antibody titers. In contrast, although delayed, T cell responses were robust after 21 days, including high levels of antigen-specific CD8+ T cells and production of IFN-γ, IL-4 and IL-10 upon restimulation. T cell-mediated CHS responses were strong in K14-VEGFR-3-Ig mice, but importantly, their ability to induce CHS tolerance in the skin was impaired. Additionally, one-year-old mice displayed multiple signs of autoimmunity. These data suggest that lymphatic drainage plays more important roles in regulating humoral immunity and peripheral tolerance than in effector T cell immunity. PMID:22844119

  4. Cellular and humoral immune abnormalities in Gulf War veterans.

    PubMed Central

    Vojdani, Aristo; Thrasher, Jack D

    2004-01-01

    We examined 100 symptomatic Gulf War veterans (patients) and 100 controls for immunologic assays. The veterans and controls were compared for the percentage of T cells (CD3); B cells (CD19); helper:suppressor (CD4:CD8) ratio; natural killer (NK) cell activity; mitogenic response to phytohemagglutin (PHA) and pokeweed mitogen (PWM); level of immune complexes; myelin basic protein (MBP) and striated and smooth muscle autoantibodies; and antibodies against Epstein-Barr virus, cytomegalovirus, herpes simplex virus type 1 (HSV-1), HSV-2, human herpes Type 6 (HHV-6), and Varicella zoster virus (VZV). The percentage of T cells in patients versus controls was not significantly different, whereas a significantly higher proportion of patients had elevated T cells compared with controls. The percentage of B cells was significantly elevated in the patients versus the controls. The NK cell (NK) activity was significantly decreased in the patients (24.8 +/- 16.5 lytic units) versus the controls (37.3 +/- 26.4 lytic units). The percentage of patients with lower than normal response to PHA and PWM was significantly different from controls. Immune complexes were significantly increased in the patients (53.1 +/- 18.6, mean +/- SD) versus controls (34.6 +/- 14.3). Autoantibody titers directed against MBP and striated or smooth muscle were significantly greater in patients versus controls. Finally, the patients had significantly greater titers of antibodies to the viruses compared with the controls (p < 0.001). These immune alterations were detected 2-8 years after participation in the Gulf War. The immune alterations are consistent with exposure to different environmental factors. We conclude that Gulf War syndrome is a multifaceted illness with immune function alterations that may be induced by various factors and are probably associated with chronic fatigue syndrome. PMID:15175170

  5. Humoral immune response of dengue hemorrhagic fever cases in children from Tegucigalpa, Honduras.

    PubMed

    De Rivera, Ivette Lorenzana; Parham, Leda; Murillo, Wendy; Moncada, Walter; Vazquez, Susana

    2008-08-01

    The humoral immune response in Honduran dengue hemorrhagic fever (DHF) hospitalized pediatric cases from the epidemics of 2004 and 2005 was studied in sera collected from 5 to 7 days of fever onset. A total of 145 cases were included in the study: 40 classified as primary with DHF Grade I or II and 86 classified as secondary; from them, 73 were DHF Grade I or II and 13 were dengue shock syndrome (DSS) Grade III or IV. The highest number of primary cases was found in children < 1 year of age. The highest number of secondary cases was observed in children between 5 and 10 years of age. The IgA values showed a statistically significant difference between primary and secondary groups. The relationship between antibody responses and severity grade is discussed. This is the first study related to the humoral immune response and severity grade in DHF cases in Honduran children.

  6. Dysregulation of the humoral immune response in old mice.

    PubMed

    Zhao, K S; Wang, Y F; Guéret, R; Weksler, M E

    1995-06-01

    The increase in autoantibodies with age of both experimental animals and humans has been thought to reflect a shift in the antibody repertoire from foreign to self antigens. In mice, before immunization, the age-associated increase in antibodies reactive with a prototypic autoantigen, bromelain-treated autologous erythrocytes (BrMRBC), reflected a 3-fold increase in serum IgM and the number of IgM-secreting spleen cells in old compared with young mice. However, the percentage of the IgM-secreting spleen cell repertoire reactive with BrMRBC in old mice was actually approximately 50% that in young mice. In contrast, after immunization with sheep erythrocytes (SRBC), old mice showed a 5-fold increase in the percentage of IgM-secreting cells reactive with BrMRBC while young mice showed no significant increase. The converse is true for the percentage of IgM-secreting spleen cells in old mice specific for SBRC, which is 10% the number generated by young mice. The increased autoantibody response of old mice is not, however, linked to their poor response to the nominal antigen. Thus, immunization with phosphorylcholine (PC) conjugated keyhole limpet hemocyanin, an antigen that induces a comparable anti-PC response in old and young mice, also induced more autoantibody forming cells in old than young mice. The increased autoantibody response of old mice after immunization can be accounted for by both an increased number of Ig-secreting spleen cells as well as an increased percentage of the expressed repertoire of IgM-secreting spleen cells that react with autoantigens.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Humoral Immune Response to Primary Rubella Virus Infection

    PubMed Central

    Wilson, Kim M.; Di Camillo, Carlie; Doughty, Larissa; Dax, Elizabeth M.

    2006-01-01

    An assay capable of distinguishing between the immune response generated by recent exposure to rubella virus and the immune response existing as a result of past exposure or immunization is required for the diagnosis of primary rubella virus infection, especially in pregnant women. Avidity assays, which are based on the premise that chaotropic agents can be used to selectively dissociate the low-avidity antibodies generated early in the course of infection, have become routinely used in an effort to accomplish this. We have thoroughly investigated the immunological basis of an avidity assay using a viral lysate-based assay and an enzyme-linked immunosorbent assay (ELISA) based on a peptide analogue of the putative immunodominant region of the E1 glycoprotein (E1208-239). The relative affinities of the antibodies directed against E1208-239 were measured by surface plasmon resonance and were found to correlate well with the avidity index calculated from the ELISA results. We found that the immune response generated during primary rubella virus infection consists of an initial low-affinity peak of immunoglobulin M (IgM) reactivity followed by transient peaks of low-avidity IgG3 and IgA reactivity. The predominant response is an IgG1 response which increases in concentration and affinity progressively over the course of infection. Incubation with the chaotropic agent used in the avidity assay abolished the detection of the early low-affinity peaks of IgM, IgA, and IgG3 reactivity while leaving the high-affinity IgG1 response relatively unaffected. The present study supported the premise that avidity assays based on appropriate antigens can be useful to confirm primary rubella virus infection. PMID:16522781

  8. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  9. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis

    PubMed Central

    Negm, Ola H.; Hamed, Mohamed R.; Dilnot, Elizabeth M.; Shone, Clifford C.; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E.; Edwards, Laura J.; Tighe, Patrick J.; Wilcox, Mark H.

    2015-01-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  10. Type I Interferons Induce T Regulatory 1 Responses and Restrict Humoral Immunity during Experimental Malaria

    PubMed Central

    Zander, Ryan A.; Guthmiller, Jenna J.; Graham, Amy C.; Burke, Bradly E.; Carr, Daniel J.J.

    2016-01-01

    CD4 T cell-dependent antibody responses are essential for limiting Plasmodium parasite replication and the severity of malaria; however, the factors that regulate humoral immunity during highly inflammatory, Th1-biased systemic infections are poorly understood. Using genetic and biochemical approaches, we show that Plasmodium infection-induced type I interferons limit T follicular helper accumulation and constrain anti-malarial humoral immunity. Mechanistically we show that CD4 T cell-intrinsic type I interferon signaling induces T-bet and Blimp-1 expression, thereby promoting T regulatory 1 responses. We further show that the secreted effector cytokines of T regulatory 1 cells, IL-10 and IFN-γ, collaborate to restrict T follicular helper accumulation, limit parasite-specific antibody responses, and diminish parasite control. This circuit of interferon-mediated Blimp-1 induction is also operational during chronic virus infection and can occur independently of IL-2 signaling. Thus, type I interferon-mediated induction of Blimp-1 and subsequent expansion of T regulatory 1 cells represent generalizable features of systemic, inflammatory Th1-biased viral and parasitic infections that are associated with suppression of humoral immunity. PMID:27732671

  11. A Novel Live Pichinde Virus-Based Vaccine Vector Induces Enhanced Humoral and Cellular Immunity after a Booster Dose

    PubMed Central

    Dhanwani, Rekha; Zhou, Yanqin; Huang, Qinfeng; Verma, Vikram; Dileepan, Mythili; Ly, Hinh

    2015-01-01

    ABSTRACT Pichinde virus (PICV) is a bisegmented enveloped RNA virus that targets macrophages and dendritic cells (DCs) early in infection and induces strong innate and adaptive immunity in mice. We have developed a reverse genetics system to produce live recombinant PICV (strain P18) with a trisegmented RNA genome (rP18tri), which encodes all four PICV gene products and as many as two foreign genes. We have engineered the vector to express the green fluorescent protein (GFP) reporter gene (abbreviated as G in virus designations) and either the hemagglutination (HA [H]) or the nucleoprotein (NP [P]) gene of the influenza A/PR8 virus. The trisegmented viruses rP18tri-G/H and rP18tri-G/P showed slightly reduced growth in vitro and expressed HA and NP, respectively. Mice immunized with rP18tri-G/H were completely protected against lethal influenza virus challenge even 120 days after immunization. These rP18tri-based vectors could efficiently induce both neutralizing antibodies and antigen-specific T cell responses via different immunization routes. Interestingly, the immune responses were significantly increased upon a booster dose and remained at high levels even after three booster doses. In summary, we have developed a novel PICV-based live vaccine vector that can express foreign antigens to induce strong humoral and cell-mediated immunity and is ideal for a prime-and-boost vaccination strategy. IMPORTANCE We have developed a novel Pichinde virus (PICV)-based live viral vector, rP18tri, that packages three RNA segments and encodes as many as two foreign genes. Using the influenza virus HA and NP genes as model antigens, we show that this rP18tri vector can induce strong humoral and cellular immunity via different immunization routes and can lead to protection in mice. Interestingly, a booster dose further enhances the immune responses, a feature that distinguishes this from other known live viral vectors. In summary, our study demonstrates a unique feature of this

  12. The adjuvant effect of jacalin on the mouse humoral immune response to trinitrophenyl and Trypanosoma cruzi.

    PubMed

    Albuquerque, D A; Martins, G A; Campos-Neto, A; Silva, J S

    1999-06-01

    We have evaluated the adjuvant action of jacalin, a lectin obtained from seeds of Artocarpus integrifolia, on humoral immune response against the trinitrophenyl (TNP) hapten when conjugated to it and to Trypanosoma cruzi. The protective effect of parasite-specific antibodies generated in mice immunized with epimastigote forms of T. cruzi plus jacalin was also evaluated by determining the parasitemia levels of animals after infection with 1000 trypomastigote forms. Immunization of mice with trinitrophenylated jacalin (TNP-JAC) in saline resulted in an antibody response to the TNP hapten that was eight and 16 times higher than that found in mice immunized with TNP-human gamma globulin (TNP-HGG) or TNP-bovine serum albumin (TNP-BSA), respectively. In addition, immunization with either a lysate or viable epimastigote forms of T. cruzi in the presence of jacalin resulted in a marked increase in the levels of anti-T. cruzi antibodies. The protective action of antibodies against acute infection by T. cruzi was evident when mice were immunized with 1.0 x 10(5) epimastigotes plus jacalin. These animals had a significantly lower parasitemia than those immunized with epimastigotes alone. In contrast, mice immunized with 1.0 x 10(6) epimastigotes developed very low levels of parasitemia, regardless of the presence of jacalin. These data suggest that jacalin is a potent adjuvant in the humoral response to TNP and T. cruzi, and that the protective action of the T. cruzi-specific antibodies depends on the number of parasites used in the immunization protocol.

  13. Humoral immune responses are maintained with age in a long-lived ectotherm, the red-eared slider turtle.

    PubMed

    Zimmerman, Laura M; Clairardin, Sandrine G; Paitz, Ryan T; Hicke, Justin W; LaMagdeleine, Katie A; Vogel, Laura A; Bowden, Rachel M

    2013-02-15

    Aging is typically associated with a decrease in immune function. However, aging does not affect each branch of the immune system equally. Because of these varying effects of age on immune responses, aging could affect taxa differently based on how the particular taxon employs its resources towards different components of immune defense. An example of this is found in the humoral immune system. Specific responses tend to decrease with age while non-specific, natural antibody responses increase with age. Compared with mammals, reptiles of all ages have a slower and less robust humoral immune system. Therefore, they may invest more in non-specific responses and thus avoid the negative consequences of age on the immune system. We examined how the humoral immune system of reptiles is affected by aging and investigated the roles of non-specific, natural antibody responses and specific responses by examining several characteristics of antibodies against lipopolysaccharide (LPS) in the red-eared slider turtle. We found very little evidence of immunosenescence in the humoral immune system of the red-eared slider turtle, Trachemys scripta, which supports the idea that non-specific, natural antibody responses are an important line of defense in reptiles. Overall, this demonstrates that a taxon's immune strategy can influence how the immune system is affected by age.

  14. Humoral and cellular immunity in cosmonauts after the ISS missions

    NASA Astrophysics Data System (ADS)

    Rykova, M. P.; Antropova, E. N.; Larina, I. M.; Morukov, B. V.

    Spaceflight effects on the immune system were studied in 30 cosmonauts flown onto the International Space Station (ISS) for long- (125-195 d, n=15) and short-term (8-10 d, n=15) missions. Immunological investigations before launch and after landing were performed by using methods for quantitative and functional evaluation of the immunologically competent cells. Specific assays include: peripheral leukocyte distribution, natural killer (NK) cell cytotoxic activity, phagocytic activity of monocytes and granulocytes, proliferation of T-cells in response to a mitogen, levels of immunoglobulins IgA, IgM, IgG, virus-specific antibody and cytokine in serum. It was noticed that after long-term spaceflights the percentage of NK (CD3-/CD16+/CD56+) cells was significantly reduced compared with pre-flight data (p<0.05) and NK activity was suppressed by 20-85% as compared with pre-flight data in 12 out of 15 cosmonauts. T-lymphocyte activity was decreased by 25-39% as compared with pre-flight data in 5 out of 13 cosmonauts. However, the relative number of CD3+, CD4+ and CD8+ T-cells did not change. The functional activity of NK and T-cells decreased in some of the cosmonauts after short-term missions. On the other hand, a moderate trend upward of NK cytotoxic activity and proliferative activity of T-cells was observed in some individuals. Concentrations immunoglobulins (IgA, IgM, IgG) and levels of M and G antibodies to herpes simplex virus (HSV), cytomegalovirus (CMV), Epstein-Barr virus (EBV) and herpes virus type 6 (HV6) in serum did not reveal significant changes after long- and short-term flights. Concentrations of cytokines (IL- 1β, IL-2, IL-4 and TNF- α) in serum changed in an apparently random manner as compared with values before long- and short-term missions. Despite the fact that many improvements have been made to the living conditions of aboard the ISS our investigations demonstrate the remarkable depression of the immunological function after the ISS missions

  15. [Seasonal fluctuations of the indicators of cellular and humoral immunity in persons with prenosological and nosological manifestations of chronic bronchitis].

    PubMed

    Batkin, I Z; Dyk, L M

    1986-01-01

    A study was made of the tissue and humoral immunity in 276 persons with prenosological and nosological signs of chronic bronchitis among the indigenous population as well as in newcomers living under the conditions of ultracontinental climate. Seasonal fluctuations of indices of the cellular and humoral immunity were more noticeable in the former than in the latter. Persons with prenosological signs of bronchitis were characterized by less pronounced tension of the cellular immunity in autumn than healthy people whereas considerable inhibition of the cellular immunity and change in the rhythm of its seasonal fluctuations were noted in patients with chronic bronchitis.

  16. Inflammatory bowel disease related innate immunity and adaptive immunity

    PubMed Central

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD. PMID:27398134

  17. Humoral antibacterial immunity in first degree relatives of insulin-dependent diabetics.

    PubMed

    Schernthaner, G; Ludwig, H; Mayr, W R; Eibl, M

    1978-09-01

    Humoral immunity to bacterial antigens was investigated in 68 tissue typed and glucose tolerance tested first degree blood relatives of insulin dependent diabetics (IDD). The data were compared with those obtained in 60 IDDs and in 55 healthy controls. The prevalence of bacterial antibodies to E. coli, staphylococci, pertussis and diphtheria toxins were just slightly, but not significantly reduced in the blood relations compared with controls. Incidence of antibacterial antibodies was almost identical in blood relations with impaired and in those with normal glucose tolerance. By contrast, antibody formation to E. coli and staphylococci (p less than 0,0005, p less than 0,0005) respectively was significantly impaired in IDD. No correlation between genes of the major histocompatibility complex and humoral antibacterial immunity could be observed in IDD and blood relations. In conclusion, antibacterial antibody formation was found to be severely impaired in IDD patients but to be almost normal in blood relations of insulin dependent diabetics. These findings suggest that the humoral antibacterial immunodeficiency observed in IDD is a disease associated process probably independent of major histocompatibility complex linked genes. PMID:710677

  18. [Pulmonary manifestations in adult patients with a defect in humoral immunity].

    PubMed

    Latysheva, T V; Latysheva, E A; Martynova, I A; Aminova, G E

    2016-01-01

    Primary immunodeficiencies (PIDs) are a group of congenital diseases of the immune system, which numbers more than 230 nosological entities associated with lost, decreased, or wrong function of its one or several components. Due to the common misconception that these are extremely rare diseases that occur only in children and lead to their death at an early age, PIDs are frequently ruled out by physicians of related specialties from the range of differential diagnosis. The most common forms of PIDs, such as humoral immunity defects, common variable immune deficiency, X-linked agammaglobulinemia, selective IgA deficiency, etc., are milder than other forms of PID, enabling patients to attain their adult age, and may even manifest in adulthood. Bronchopulmonary involvements are the most common manifestations of the disease in patients with a defect in humoral immunity. Thus, a therapist and a pulmonologist are mostly the first doctors who begin to treat these patients and play a key role in their fate, since only timely diagnosis and initiation of adequate therapy can preserve not only the patient's life, but also its quality, avoiding irreversible complications. Chest computed tomography changes play a large role in diagnosis. These are not specific for PID; however, there are a number of characteristic signs that permit this diagnosis to be presumed. PMID:27636936

  19. Immunomodulatory activity of mefenamic acid in mice models of cell-mediated and humoral immunity

    PubMed Central

    Shabbir, Arham; Arshad, Hafiza Maida; Shahzad, Muhammad; Shamsi, Sadia; Ashraf, Muhammad Imran

    2016-01-01

    Objectives: Previously, different nonsteroidal anti-inflammatory drugs (NSAIDs) have been evaluated for their potential immunomodulatory activities. Mefenamic acid is a well-known NSAID and is used in the treatment of musculoskeletal disorders, inflammation, fever, and pain. To the best of our knowledge, promising data regarding the immunomodulatory activity of mefenamic acid is scarce. Current study investigates the immunomodulatory activity of mefenamic acid in different models of cell-mediated and humoral immunity. Materials and Methods: Immunomodulatory effects on cell-mediated immunity were evaluated using dinitrochlorobenzene-induced delayed type hypersensitivity (DTH) and cyclophosphamide-induce myelosuppression assays. While effects on humoral immunity were evaluated using hemagglutination assay and mice lethality test. Results: Hematological analysis showed that mefenamic acid significantly reduced white blood cell count, red blood cell (RBC) count, hemoglobin content, lymphocytes levels, and neutrophils levels in healthy mice as compared with control, suggesting the immunosuppressive activity of mefenamic acid. Treatment with mefenamic acid also significantly reduced all the hematological parameters in cyclophosphamide-induced neutropenic mice, as compared with positive control group. We found that treatment with mefenamic acid significantly suppressed DTH after 24 h, 48 h, and 72 h, as compared with positive control group. Mefenamic acid treated groups showed a significant reduction in antibody titer against sheep RBCs as compared to control group, similar to the effect of cyclophosphamide. We also found increased mice lethality rate in mefenamic acid treated groups, as compared with positive control group. Conclusions: The results provided basic information of immunosuppression of mefenamic acid on both cell-mediated and humoral immunity. PMID:27127320

  20. The Murine Humoral Immune Response to Hepatitis B Surface Antigen: Idiotype Network Pathways.

    NASA Astrophysics Data System (ADS)

    Schick, Michael Roy

    Recognition of a wide spectrum in disease outcomes following Hepatitis B Virus (HBV) infection has led to the suggestion that individual differences may be due to characteristics of the immune response. HBV, a hepatotropic virus, is not directly cytopathic to the host hepatocytes but the cellular damage which does not occur may be due to the host's own immune response. It is this variety in immune response capabilities following natural infection or vaccination which led to the present study in which the murine humoral immune response to hepatitis B surface antigen (HBsAg) was examined. Following immunization with purified HBsAg an anti-HBs response could be detected in 19 inbred strains of mice. The response, which varied among the strains, was linked to the major histocompatibility complex (MHC). Among high responders to HBsAg were two strains in which a poor response to a single epitope could be detected. Although quantitatively serum from these strains resembled serum from other high responders, there was a major difference in the qualitative aspects. Included within this study was the role of idotype networks within the murine anti-HBs response. By directly targeting HBsAg-specific B cells within the framework of an idiotype network by an Ab-2, it was possible to circumvent T cell-dependent regulation of an immune response. In each of five inbred strains of mice immunized with a polyclonal rabbit Ab-2 an Ab-3 population with HBsAg-specificity (Ab -1^') was induced. These mice were also immunized with HBsAg resulting in a higher anti-HBs response as compared to HBsAg immunization alone in all of the strains tested except for one. The response in this strain, normally a low responder to HBsAg, indicated that the mechanisms for genetic restriction of the anti -HBs response was still active, although it was not apparent during anti-Id immunization. The effects of an anti-Id on the murine antibody response to HBsAg may lead to insights on the presence of idiotype

  1. Experimental pulmonary paracoccidioidomycosis in mice: morphology and correlation of lesions with humoral and cellular immune response.

    PubMed

    Defaveri, J; Rezkallah-Iwasso, M T; de Franco, M F

    1982-01-15

    The present paper describes a murine model for pulmonary paracoccidioidomycosis injecting 6 X 10(5) yeast forms of Paracoccidioides brasiliensis (Pb) by the direct intratracheal route. The sequential histopathology of lung and dissemination lesions together with humoral (immunodiffusion test) and cellular immune response (footpad test and macrophage inhibition factor assay - MIF assay) were investigated since the 1st to the 360th day after infection. All infected animal showed pulmonary Pbmycosis up to Day 30; onwards the lesions subsided being found only in one mouse at Day 360. Dissemination lesions were observed in paratracheal and cervical lymph nodes in 9 out of 68 infected animals. Histologically early lesions were rich in polymorphonuclear cells and evolved to a macrophage desquamative pneumonitis at Day 15 and to typical epithelioid granulomata from Day 30 up to Day 360. Specific precipitating antibodies were first detected 15 days after infection, peaked from Day 30 to 60 and were not observed at Day 360. Significant cell-mediated immunity to Pb was noted at Day 15 with the peak reaction at Day 60 and 90. The intratracheal route represents a highly effective way of infecting mouse with Pb. This experimental pulmonary Pbmycosis is a granulomatous inflammation which courses with specific humoral and cellular immune response. It may be a good tool for further investigation in the pathogenesis and natural history of the disease.

  2. Sharpsnout sea bream (Diplodus puntazzo) humoral immune response against the parasite Enteromyxum leei (Myxozoa).

    PubMed

    Muñoz, P; Cuesta, A; Athanassopoulou, F; Golomazou, H; Crespo, S; Padrós, F; Sitjà-Bobadilla, A; Albiñana, G; Esteban, M A; Alvarez-Pellitero, P; Meseguer, J

    2007-09-01

    The humoral innate immune response of sharpsnout seabream Diplodus puntazzo against the myxozoan Enteromyxum leei was studied. Enteromyxosis was transmitted by cohabitation and a group of uninfected fish served as control. At 5, 12, 19, 26, 40 and 55 days post-exposure (p.e.), control and recipient fish were sampled to determine the prevalence of infection and some humoral innate immune parameters (antiprotease, antitumoral and peroxidase activities). Prevalence of infection was high from day 12 p.e. and reached 100% at days 40 and 55, when intensity of infection was medium to severe. The antiprotease activity was significantly increased in E. leei-exposed fish with respect to control fish at days 12 and 19 p.e. The serum antitumoral activity was slightly lower in recipient than in control fish at all sampling times, except at 40 days p.e., though no statistically significant differences were observed. Serum peroxidases were higher in all recipient fish than in control ones, with the highest stimulation index at 40 days p.e. Within recipient fish, no differences were detected between sampling times in any of the measured activities. The possible implication of these immune factors in the high susceptibility of D. puntazzo to this enteromyxosis is discussed. PMID:17475509

  3. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination.

    PubMed

    Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens. PMID:27031986

  4. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination.

    PubMed

    Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.

  5. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination

    PubMed Central

    Zimmermann, Michael T.; Oberg, Ann L.; Grill, Diane E.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Kennedy, Richard B.; Poland, Gregory A.

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50–74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant’s propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens. PMID:27031986

  6. The humoral immune response of lambs experimentally infected with Mycoplasma ovipneumoniae.

    PubMed

    Thirkell, D; Spooner, R K; Jones, G E; Russell, W C

    1990-08-01

    Using sera from lambs experimentally infected with Mycoplasma ovipneumoniae and Pasteurella haemolytica, the development of a good humoral immune response to M. ovipneumoniae was detected by ELISA. The antibody titres peaked 41 days post-infection and good antibody titres were maintained over the 16-week experimental period. Immunoblotting revealed that antibodies to specific antigens appeared in the sera in a sequential manner, some being seen shortly after infection and others developing only after a substantial time lag. Antibodies were raised against almost all the major antigens detected in one laboratory strain (956/2) and against all antigens previously shown to be conserved in 22 Scottish field isolates of M. ovipneumoniae.

  7. Bone marrow transplantation for CVID-like humoral immune deficiency associated with red cell aplasia.

    PubMed

    Sayour, Elias J; Mousallem, Talal; Van Mater, David; Wang, Endi; Martin, Paul; Buckley, Rebecca H; Barfield, Raymond C

    2016-10-01

    Patients with common variable immunodeficiency (CVID) have a higher incidence of autoimmune disease, which may mark the disease onset; however, anemia secondary to pure red cell aplasia is an uncommon presenting feature. Here, we describe a case of CVID-like humoral immune deficiency in a child who initially presented with red cell aplasia and ultimately developed progressive bone marrow failure. Although bone marrow transplantation (BMT) has been associated with high mortality in CVID, our patient was successfully treated with a matched sibling BMT and engrafted with >98% donor chimerism and the development of normal antibody titers to diphtheria and tetanus toxoids. PMID:27273469

  8. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection

    PubMed Central

    Elsner, Rebecca A.; Hastey, Christine J.; Olsen, Kimberly J.; Baumgarth, Nicole

    2015-01-01

    Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host’s ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure to develop long

  9. Adaptation in the innate immune system and heterologous innate immunity.

    PubMed

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  10. Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses

    PubMed Central

    van de Sandt, Carolien E.; Kreijtz, Joost H. C. M.; Rimmelzwaan, Guus F.

    2012-01-01

    The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies. PMID:23170167

  11. Attenuation of Apoptosis Underlies B Lymphocyte Stimulator Enhancement of Humoral Immune Response

    PubMed Central

    Do, Richard K.G.; Hatada, Eunice; Lee, Hayyoung; Tourigny, Michelle R.; Hilbert, David; Chen-Kiang, Selina

    2000-01-01

    B lymphocyte stimulator (BLyS) is a newly identified monocyte-specific TNF family cytokine. It has been implicated in the development of autoimmunity, and functions as a potent costimulator with antiimmunoglobulin M in B cell proliferation in vitro. Here we demonstrate that BLyS prominently enhances the humoral responses to both T cell–independent and T cell–dependent antigens, primarily by attenuation of apoptosis as evidenced by the prolonged survival of antigen-activated B cells in vivo and in vitro. BLyS acts on primary splenic B cells autonomously, and directly cooperates with CD40 ligand (CD40L) in B cell activation in vitro by protecting replicating B cells from apoptosis. Moreover, although BLyS alone cannot activate the cell cycle, it is sufficient to prolong the survival of naive resting B cells in vitro. Attenuation of apoptosis by BLyS correlates with changes in the ratios between Bcl-2 family proteins in favor of cell survival, predominantly by reducing the proapoptotic Bak and increasing its prosurvival partners, Bcl-2 and Bcl-xL. In either resting or CD40L-activated B cells, the NF-κB transcription factors RelB and p50 are specifically activated, suggesting that they may mediate BLyS signals for B cell survival. Together, these results provide direct evidence for BLyS enhancement of both T cell–independent and T cell–dependent humoral immune responses, and imply a role for BLyS in the conservation of the B cell repertoire. The ability of BLyS to increase B cell survival indiscriminately, at either a resting or activated state, and to cooperate with CD40L, further suggests that attenuation of apoptosis underlies BLyS enhancement of polyclonal autoimmunity as well as the physiologic humoral immune response. PMID:11015437

  12. Distinct Pathways of Humoral and Cellular Immunity Induced with the Mucosal Administration of a Nanoemulsion Adjuvant

    PubMed Central

    Makidon, Paul E.; Janczak, Katarzyna W.; Blanco, Luz P.; Swanson, Benjamin; Smith, Douglas M.; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F.; Baker, James R.

    2014-01-01

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1– and Th-17–balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell–mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses. PMID:24532579

  13. Yeast product supplementation modulated humoral and mucosal immunity and uterine inflammatory signals in transition dairy cows.

    PubMed

    Yuan, K; Mendonça, L G D; Hulbert, L E; Mamedova, L K; Muckey, M B; Shen, Y; Elrod, C C; Bradford, B J

    2015-05-01

    The transition from late gestation to early lactation is characterized by substantial metabolic stress and altered immune function. The objective of this study was to assess the effects of supplementing a yeast product derived from Saccharomyces cerevisiae on immunity and uterine inflammation in transition cows. Forty multiparous Holstein cows were blocked by expected parturition date and randomly assigned within block to 1 of 4 treatments (n=10) from 21d before expected parturition to 42d postpartum. Rations were top-dressed with a product containing yeast culture plus enzymatically hydrolyzed yeast (YC-EHY; Celmanax, Vi-COR, Mason City, IA) at the rate of 0, 30, 60, or 90g/d throughout the experiment. Cows were injected subcutaneously with ovalbumin on d -21, -7, and 14 to assess their humoral response. Data were analyzed using mixed models with repeated measures over time. Concentrations of colostrum IgG were unaffected by treatments. A treatment × week interaction was observed for somatic cell linear score, reflecting a tendency for a quadratic dose effect on wk 1 (2.34, 2.85, 1.47, and 4.06±0.59 for 0, 30, 60, and 90g/d, respectively) and a quadratic dose effect on wk 5 (1.36, -0.15, -1.07, and 0.35±0.64 for 0, 30, 60, and 90g/d, respectively). Platelet count was increased by YC-EHY. Increasing YC-EHY dose linearly increased plasma anti-ovalbumin IgG levels following 3 ovalbumin challenges, suggesting that treatments enhanced humoral immunity. Increasing YC-EHY dose also quadratically increased fecal IgA concentrations in early lactation, suggesting that 30 and 60g/d doses enhanced mucosal immunity. Uterine neutrophil populations were much greater in samples collected on d 7 compared with those on d 42 (32.1 vs. 7.6±3.5% of cells), reflecting neutrophil infiltration immediately after calving, but no treatment effect was detected. Significant day effects were detected for mRNA of IL-6, IL-8, neutrophil myeloperoxidase (MPO), and neutrophil elastase (ELANE

  14. Humoral and cellular immune responses by normal individuals to hepatitis B surface antigen vaccination.

    PubMed Central

    Filion, L G; Saginur, R; Szczerbak, N

    1988-01-01

    The kinetics of the cellular and humoral responses of 30 recipients of hepatitis B vaccine were studied. All individuals exerted an HBsAg blastogenic response sometime throughout the study period but the maximum response was detected on day 28 and 56. The removal of CD8+ cells enhanced significantly the HBsAg response at the times tested, whereas treatment with anti-CD4, anti-CD8, C' and anti-CD4+ C' had no effect. Vaccination also led to the depression of phytohaemagglutinin (PHA) blastogenic response. This response was maximally suppressed 4 to 8 days after immunization at least for the primary and secondary responses and 28 days after the third dose of vaccine. The humoral response to HBsAg was detected only after the second dose of vaccine was given. The results suggest that a CD8+ cell controls the magnitude and intensity of the HBsAg blastogenic response, which may help to explain why several investigators had not been able to detect this response in hyperimmunized individuals. Primary immunization with HBsAg does lead to an expansion of B memory since a secondary response anti-HBsAg was observed. PMID:2968200

  15. Humoral immune response to an antigen from Porphyromonas gingivalis 381 in periodontal disease.

    PubMed Central

    Kurihara, H; Nishimura, F; Nakamura, T; Nakagawa, M; Tanimoto, I; Nomura, Y; Kokeguchi, S; Kato, K; Murayama, Y

    1991-01-01

    The humoral immune responses of patients with periodontitis were evaluated to characterize the host response to Porphyromonas gingivalis. A sonic extract of P. gingivalis 381 from whole cells was fractionated by gel chromatography and ion-exchange chromatography. The fractionated extracts were evaluated by Western blot (immunoblot) analyses with patient sera. A dominant antigen was identified from the sonic extract with an apparent molecular mass of 53 kDa. The 53-kDa protein antigen (Ag53) was purified by affinity chromatography by using a monoclonal antibody. Ag53 was detected on the vesicle surface of P. gingivalis 381 by immunoelectron microscopy by using the monoclonal antibody and was detected as a major protein in the outer membrane and in vesicles by Western blot analysis. Monoclonal antibody cross-reactivity to Ag53 in the sonic extracts of P. gingivalis ATCC 33277, P. gingivalis 1021, and Porphyromonas endodontalis ATCC 35406 was revealed. Seventy-seven patients with periodontitis were examined for their responses to Ag53. Serum immunoglobulin G (IgG) from 54 patients reacted strongly to Ag53; however, serum IgG from the remaining 23 patients did not exhibit detectable reactivity at all to Ag53, even though the patients had high serum IgG titers to the sonic extract. Ag53 is a new marker that represents an interesting aspect of the humoral immune response to P. gingivalis in patients with periodontitis. Images PMID:1855992

  16. Potential role of soluble CD40 in the humoral immune response impairment of uraemic patients

    PubMed Central

    Contin, Cécile; Pitard, Vincent; Delmas, Yahsou; Pelletier, Nadège; Defrance, Thierry; Moreau, Jean-François; Merville, Pierre; Déchanet-Merville, Julie

    2003-01-01

    CD40/CD154 interaction is essential for both humoral and cellular immune response. We investigated whether this interaction could be altered in patients with kidney failure who are known to present an impaired immune response. To that aim, we measured the levels of the soluble form of CD40 (sCD40), which is known to interfere with CD40/CD154 interaction, in 43 chronic renal failure patients, 162 hemodialysed patients, and 83 healthy donors. Uraemic and haemodialysed patients presented a three- and fivefold increase, respectively, of the antagonist soluble form of CD40 in their serum, when compared to healthy subjects. Serum sCD40 levels correlated with those of creatinine in uraemic non-haemodialysed patients. While sCD40 is widely excreted in urine of healthy individuals, it is not eliminated by dialysis sessions on classic membranes. The return to a normal kidney function in nine haemodialysed patients who received renal transplantation, leads to a rapid decrease of serum sCD40 levels. This natural sCD40 exhibited multimeric forms and was able to inhibit immunoglobulin production by CD154-activated B lymphocytes in vitro. Furthermore, the positive correlation we observed between the serum levels of sCD40 and the deficient response to hepatitis B vaccination in uraemic patients suggests that sCD40 also compromises the humoral response in vivo. PMID:12941150

  17. Specific Humoral Immune Response Induced by Propionibacterium acnes Can Prevent Actinobacillus pleuropneumoniae Infection in Mice

    PubMed Central

    Yang, Feng; Ma, Qiuyue; Huang, Jing; Ji, Qun; Zhai, Ruidong; Wang, Lei; Wang, Yu; Li, Linxi; Sun, Changjiang; Feng, Xin; Han, Wenyu

    2014-01-01

    Porcine contagious pleuropneumonia, caused by Actinobacillus pleuropneumoniae, has a major impact on economics, ecology, and animal welfare in the pig-rearing industry. Propionibacterium acnes, a facultative anaerobic Gram-positive corynebacterium, exists widely in normal healthy adult animals. We have shown previously that P. acnes can prevent A. pleuropneumoniae infections in mice and pigs. To elucidate the mechanism of this effect and to identify novel A. pleuropneumoniae vaccines, the role of anti-P. acnes antibodies in preventing infection was analyzed by indirect immunofluorescence and opsonophagocytosis assays in vitro. The role of the specific humoral immune response induced by P. acnes was confirmed in a B cell depletion mouse model. The survival rates of mice challenged with A. pleuropneumoniae exhibited a highly significant positive rank correlation with the levels of anti-P. acnes antibodies. The specific antibodies induced by P. acnes had the ability to combine with A. pleuropneumoniae and increase opsonization of A. pleuropneumoniae for phagocytosis. Furthermore, analysis in the murine B cell depletion model confirmed that the humoral immune response induced by P. acnes played an important role in resistance to A. pleuropneumoniae infection. In this study, we further elucidated the reasons that P. acnes can prevent A. pleuropneumoniae infection, which provides useful evidence for the development of heterologous vaccines for the control of porcine contagious pleuropneumonia. PMID:24429068

  18. Scrub typhus vaccine candidate Kp r56 induces humoral and cellular immune responses in cynomolgus monkeys.

    PubMed

    Chattopadhyay, Suchismita; Jiang, Ju; Chan, Teik-Chye; Manetz, T Scott; Chao, Chien-Chung; Ching, Wei-Mei; Richards, Allen L

    2005-08-01

    A truncated recombinant 56-kDa outer membrane protein of the Karp strain of Orientia tsutsugamushi (Kp r56) was evaluated in cynomolgus monkeys (Macaca fascicularis) for immunogenicity and safety as a vaccine candidate for the prevention of scrub typhus. This recombinant antigen induced strong humoral and cellular immune responses in two monkeys and was found to be well tolerated. Antigen-specific immunoglobulin M (IgM) and IgG were produced to almost maximal levels within 1 week of a single immunization. Peripheral blood mononuclear cells from vaccinated animals showed an induction of antigen-specific proliferation and gamma interferon production. The Kp r56 was not as efficient as infection with live organisms in preventing reinfection but was able to reduce the inflammation produced at the site of challenge. This report describes the results of the first systematic study of the immunogenicity of a recombinant scrub typhus vaccine candidate in a nonhuman primate model.

  19. What are the commonalities governing the behavior of humoral immune recognitive repertoires?

    PubMed

    Cohn, Melvin

    2006-01-01

    The humoral repertoire of immune systems is large, random and somatically selected. It is derived from a germline selected repertoire by a variety of diversification mechanisms, complementation of subunits, mutation and gene conversion. However derived, the end-product must be able to recognize and rid a vast variety of pathogens. This is accomplished by viewing antigens as combinatorials of epitopes, an astuce that permits a small repertoire to respond sufficiently rapidly to a vast antigenic universe. A somatically generated repertoire, however, requires a solution to two problems. First, a somatic mechanism for a self-nonself discrimination has to be put in place. Second, the repertoire has to be coupled to the effector mechanisms in a coherent fashion. The rules governing these two mechanisms are species-independent and delineate the parameters of all immune repertoires, whatever the somatic mechanism used to generate them.

  20. What are the commonalities governing the behavior of humoral immune recognitive repertoires?

    PubMed

    Cohn, Melvin

    2006-01-01

    The humoral repertoire of immune systems is large, random and somatically selected. It is derived from a germline selected repertoire by a variety of diversification mechanisms, complementation of subunits, mutation and gene conversion. However derived, the end-product must be able to recognize and rid a vast variety of pathogens. This is accomplished by viewing antigens as combinatorials of epitopes, an astuce that permits a small repertoire to respond sufficiently rapidly to a vast antigenic universe. A somatically generated repertoire, however, requires a solution to two problems. First, a somatic mechanism for a self-nonself discrimination has to be put in place. Second, the repertoire has to be coupled to the effector mechanisms in a coherent fashion. The rules governing these two mechanisms are species-independent and delineate the parameters of all immune repertoires, whatever the somatic mechanism used to generate them. PMID:16139887

  1. A Study on the Humoral and Complement Immune System of Patients with Organic Acidemia.

    PubMed

    Alizadeh Najjarbashi, Faegheh; Mesdaghi, Mehrnaz; Alaei, Mohammadreza; Shakiba, Marjan; Jami, Aliakbar; Ghadimi, Farah

    2015-12-01

    Patients with organic acidemia are prone to different infections, which lead to acidosis episodes. Some studies have evaluated the status of immune system in acidotic phase in these patients, but to the best of our knowledge no study has evaluated the immune system in non-acidotic phase of the disease. In this study, thirty-one patients with organic acidemia were enrolled. For evaluation of humoral immunity, serum IgA, IgG, IgE, IgM, isohemaggltuinin titer, anti tetanus and anti diphtheria IgG were measured. For screening of complement deficiencies, serum C3, C4, and CH50 were assessed. Eleven patients had Maple Syrup Urine Disease (MSUD), 10 had methylmalonic acidemia, 5 had isovaleric acidemia, 4 had glutaric aciduria, and 1 had propionic acidemia. Serum IgM level was less than normal in 2 patients. Serum isohemagglutinin titer was less than 1:8 in 2 other patients. IgA, IgE, and IgG were within normal range for all patients. Anti tetanus and anti diphtheria IgG levels were low in two patients with MSUD. No significant relationship was found between any of the measured parameters and history of recurrent admissions, recurrent infections and the type of their diseases. Five patients had high C3 level, 4 had high C4 level, and 5 had high CH50 percentage. Totally, 10 patients had high complement level, but no remarkable connection was noted between the type of the disease and complement level. Minor insignificant deficiencies in humoral immunity in non-acidotic phase of organic acidemia were found. Some components of complement system showed increase in some patients, which might be due to decreased pH in extracellular fluid. PMID:26725562

  2. A Study on the Humoral and Complement Immune System of Patients with Organic Acidemia.

    PubMed

    Alizadeh Najjarbashi, Faegheh; Mesdaghi, Mehrnaz; Alaei, Mohammadreza; Shakiba, Marjan; Jami, Aliakbar; Ghadimi, Farah

    2015-12-01

    Patients with organic acidemia are prone to different infections, which lead to acidosis episodes. Some studies have evaluated the status of immune system in acidotic phase in these patients, but to the best of our knowledge no study has evaluated the immune system in non-acidotic phase of the disease. In this study, thirty-one patients with organic acidemia were enrolled. For evaluation of humoral immunity, serum IgA, IgG, IgE, IgM, isohemaggltuinin titer, anti tetanus and anti diphtheria IgG were measured. For screening of complement deficiencies, serum C3, C4, and CH50 were assessed. Eleven patients had Maple Syrup Urine Disease (MSUD), 10 had methylmalonic acidemia, 5 had isovaleric acidemia, 4 had glutaric aciduria, and 1 had propionic acidemia. Serum IgM level was less than normal in 2 patients. Serum isohemagglutinin titer was less than 1:8 in 2 other patients. IgA, IgE, and IgG were within normal range for all patients. Anti tetanus and anti diphtheria IgG levels were low in two patients with MSUD. No significant relationship was found between any of the measured parameters and history of recurrent admissions, recurrent infections and the type of their diseases. Five patients had high C3 level, 4 had high C4 level, and 5 had high CH50 percentage. Totally, 10 patients had high complement level, but no remarkable connection was noted between the type of the disease and complement level. Minor insignificant deficiencies in humoral immunity in non-acidotic phase of organic acidemia were found. Some components of complement system showed increase in some patients, which might be due to decreased pH in extracellular fluid.

  3. [Immune-humoral response of water buffalo (Bubalus bubalis) against Anaplasma marginale (Theiler, 1910)].

    PubMed

    Gomes, Ricardo A; Machado, Rosangela Z; Starke-Buzetti, Wilma A; Bonesso, Maria A

    2008-01-01

    The aim of the present study was to analyze the humoral-immune response of water buffalo (Bubalus bubalis) naturally infected against Anaplasma marginale. For this work, colostrums/milk and blood samples were sequentially collected from buffalo cows prior and after partum for a period of 335 days and from buffalo calves from birth to 365 days after. The antibodies in the colostrums/milk and serum samples of these animals were determined using an ELISA indirect method and the data were analyzed as a mean of a group of animals with the matched ages during the period of 1999/2000 or individually during the year of 2005. The data from animals analyzed in group showed that the antibodies against A. marginale were in low concentration (below the cut off point: D.O. = 0.265 and ELISA levels, EL < or =3), in the sera of buffalo, during the first 90 and 105 days, respectively for cows and calves. Then, the levels of antibodies in the serum samples of buffalo calves, slightly raised to above the cut-off point and kept in higher levels up to approximately 365 days after birth, indicating active acquired immunity. Furthermore, when the animals were individually examined, the buffalo cows showed high antibody levels in the colostrums, but low levels in the blood stream during the first seven days post-partum, suggesting antibody transference from blood to mammary gland. In addition to that, buffalo calves showed high antibody levels during the first 24 hours after suckling colostrum, indicating a colostral passive immunity. By conclusion, the buffaloes were able to arm a humoral immune response against A. marginale and were considered reservoir of this parasite.

  4. Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination.

    PubMed

    Voigt, Emily A; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2016-09-22

    In addition to host genetic and environmental factors, variations in immune responses to vaccination are influenced by demographic variables, such as race and sex. The influence of genetic race and sex on measles vaccine responses is not well understood, yet important for the development of much-needed improved measles vaccines with lower failure rates. We assessed associations between genetically defined race and sex with measles humoral and cellular immunity after measles vaccination in three independent and geographically distinct cohorts totaling 2872 healthy racially diverse children, older adolescents, and young adults. We found no associations between biological sex and either humoral or cellular immunity to measles vaccine, and no correlation between humoral and cellular immunity in these study subjects. Genetically defined race was, however, significantly associated with both measles vaccine-induced humoral and cellular immune responses, with subjects genetically classified as having African-American ancestry demonstrating significantly higher antibody and cell-mediated immune responses relative to subjects of Caucasian ancestry. This information may be useful in designing novel measles vaccines that are optimally effective across human genetic backgrounds. PMID:27591105

  5. Effect of nanovaccine chemistry on humoral immune response kinetics and maturation

    NASA Astrophysics Data System (ADS)

    Haughney, Shannon L.; Ross, Kathleen A.; Boggiatto, Paola M.; Wannemuehler, Michael J.; Narasimhan, Balaji

    2014-10-01

    Acute respiratory infections represent a significant portion of global morbidity and mortality annually. There is a critical need for efficacious vaccines against respiratory pathogens. To vaccinate against respiratory disease, pulmonary delivery is an attractive route because it mimics the route of natural infection and can confer both mucosal and systemic immunity. We have previously demonstrated that a single dose, intranasal vaccine based on polyanhydride nanoparticles elicited a protective immune response against Yersinia pestis for at least 40 weeks after immunization with F1-V. Herein, we investigate the effect of nanoparticle chemistry and its attributes on the kinetics and maturation of the antigen-specific serum antibody response. We demonstrate that manipulation of polyanhydride nanoparticle chemistry facilitated differential kinetics of development of antibody titers, avidity, and epitope specificity. The results provide new insights into the underlying role(s) of nanoparticle chemistry in providing long-lived humoral immunity and aid in the rational design of nanovaccine formulations to induce long-lasting and mature antibody responses.Acute respiratory infections represent a significant portion of global morbidity and mortality annually. There is a critical need for efficacious vaccines against respiratory pathogens. To vaccinate against respiratory disease, pulmonary delivery is an attractive route because it mimics the route of natural infection and can confer both mucosal and systemic immunity. We have previously demonstrated that a single dose, intranasal vaccine based on polyanhydride nanoparticles elicited a protective immune response against Yersinia pestis for at least 40 weeks after immunization with F1-V. Herein, we investigate the effect of nanoparticle chemistry and its attributes on the kinetics and maturation of the antigen-specific serum antibody response. We demonstrate that manipulation of polyanhydride nanoparticle chemistry

  6. Immunological processes underlying the slow acquisition of humoral immunity to malaria.

    PubMed

    Ryg-Cornejo, Victoria; Ly, Ann; Hansen, Diana S

    2016-02-01

    Malaria is one of the most serious infectious diseases with ~250 million clinical cases annually. Most cases of severe disease are caused by Plasmodium falciparum. The blood stage of Plasmodium parasite is entirely responsible for malaria-associated pathology. Disease syndromes range from fever to more severe complications, including respiratory distress, metabolic acidosis, renal failure, pulmonary oedema and cerebral malaria. The most susceptible population to severe malaria is children under the age of 5, with low levels of immunity. It is only after many years of repeated exposure, that individuals living in endemic areas develop clinical immunity. This form of protection does not result in sterilizing immunity but prevents clinical episodes by substantially reducing parasite burden. Naturally acquired immunity predominantly targets blood-stage parasites and it is known to require antibody responses. A large body of epidemiological evidence suggests that antibodies to Plasmodium antigens are inefficiently generated and rapidly lost in the absence of ongoing exposure, which suggests a defect in the development of B cell immunological memory. This review summarizes the main findings to date contributing to our understanding on cellular processes underlying the slow acquisition of humoral immunity to malaria. Some of the key outstanding questions in the field are discussed.

  7. Generation and characterization of the humoral immune response to DNA immunization with a chimeric β-amyloid-interleukin-4 minigene

    PubMed Central

    Ghochikyan, Anahit; Vasilevko, Vitaly; Petrushina, Irina; Movsesyan, Nina; Babikyan, Davit; Tian, Wenqiang; Sadzikava, Nadya; Ross, TedM.; Head, Elizabeth; Cribbs, David H.; Agadjanyan, Michael G.

    2006-01-01

    Active immunization with fibrillar β–amyloid peptide (Aβ42) as well as passive transfer of anti-Aβ antibodies significantly reduces Aβ plaque deposition, neuritic dystrophy, and astrogliosis in the brain of mutant amyloid precursor protein (APP)-transgenic mice. Although the mechanism(s) of clearance of Aβ from the brain following active or passive immunization remains to be determined, it is clear that anti-Aβ antibodies are critical for clearance. DNA immunization provides an attractive alternative to direct peptide and adjuvant approaches for inducing a humoral response to Aβ. We constructed a DNA minigene with Aβ fused to mouse interleukin-4 (pAβ42-IL-4) as a molecular adjuvant to generate anti-Aβ antibodies and enhance the Th2-type of immune responses. Gene gun immunizations induced primarily IgG1 and IgG2b anti-Aβ antibodies. Fine epitope analysis with overlapping peptides of the Aβ42 sequence identified the 1–15 region as a dominant B cell epitope. The DNA minigeneinduced anti-Aβ antibodies bound to Aβ plaques in brain tissue from an Alzheimer’s disease patient demonstrating functional activity of the antibodies and the potential for therapeutic efficacy. PMID:14635031

  8. Drosophila immune priming against Pseudomonas aeruginosa is short-lasting and depends on cellular and humoral immunity

    PubMed Central

    Apidianakis, Yiorgos

    2013-01-01

    Immune responses are traditionally divided into the innate and the adaptive arm, both of which are present in vertebrates, while only the innate arm is found in invertebrates. Immune priming experiments in Drosophila melanogaster and other invertebrates during the last decade have challenged this dogma, questioning the boundaries between innate and adaptive immunity. Studies on repeated inoculation of Drosophila with microbes reveal a long-lasting cellular immunity adaptation against particular microorganisms. Here we study the lasting effect of immune priming against infection with Pseudomonas aeruginosa, an opportunistic human pathogen that is lethal to the common fruit fly. Drosophila priming with heat-killed or low in virulence P. aeruginosa extends fly survival during a secondary lethal infection with a virulent strain of the same species. The protective immune response can last for more than 10 days after exposure to a persistent low-in-virulence live infection, but it is eliminated 7 days after the host is primed with heat-killed bacteria. Moreover, not only the cellular, but also the systemic NF-κB-mediated immune responses contribute to immune priming. Thus each microbe might elicit different mechanisms of immune priming that may or may not last for long. PMID:24358857

  9. Bilateral Lung Transplantation in a Patient with Humoral Immune Deficiency: A Case Report with Review of the Literature

    PubMed Central

    Farmer, Jocelyn R.; Sokol, Caroline L.; Bonilla, Francisco A.; Murali, Mandakolathur R.; Kradin, Richard L.; Astor, Todd L.; Walter, Jolan E.

    2014-01-01

    Humoral immune deficiencies have been associated with noninfectious disease complications including autoimmune cytopenias and pulmonary disease. Herein we present a patient who underwent splenectomy for autoimmune cytopenias and subsequently was diagnosed with humoral immune deficiency in the context of recurrent infections. Immunoglobulin analysis prior to initiation of intravenous immunoglobulin (IVIG) therapy was notable for low age-matched serum levels of IgA (11 mg/dL), IgG2 (14 mg/L), and IgG4 (5 mg/L) with a preserved total level of IgG. Flow cytometry was remarkable for B cell maturation arrest at the IgM+/IgD+ stage. Selective screening for known primary immune deficiency-causing genetic defects was negative. The disease course was uniquely complicated by the development of pulmonary arteriovenous malformations (AVMs), ultimately requiring bilateral lung transplantation in 2012. This is a patient with humoral immune deficiency that became apparent only after splenectomy, which argues for routine immunologic evaluation prior to vaccination and splenectomy. Lung transplantation is a rare therapeutic endpoint and to our knowledge has never before been described in a patient with humoral immune deficiency for the indication of pulmonary AVMs. PMID:25379312

  10. Staphylococcus aureus avirulent mutant vaccine induces humoral and cellular immune responses on pregnant heifers.

    PubMed

    Pellegrino, M; Rodriguez, N; Vivas, A; Giraudo, J; Bogni, C

    2016-06-17

    Bovine mastitis produces economic losses, attributable to the decrease in milk production, reduced milk quality, costs of treatment and replacement of animals. A successful prophylactic vaccine against Staphylococcus aureus should elicit both humoral and cellular immune responses. In a previous report we evaluated the effectiveness of a live vaccine to protect heifers against challenge with a virulent strain. In the present study the immunological response of heifers after combined immunization schedule was investigated. In a first experimental trial, heifers were vaccinated with 3 subcutaneous doses of avirulent mutant S. aureus RC122 before calving and one intramammary dose (IMD) after calving. Antibodies concentration in blood, bactericidal effect of serum from vaccinated animals and lymphocyte proliferation was determined. The levels of total IgG, IgG1 and IgG2 in colostrum and the lymphocyte proliferation index were significantly higher in vaccinated respect to non-vaccinated group throughout the experiment. The second trial, where animals were inoculated with different vaccination schedules, was carried out to determine the effect of the IMD on the level of antibodies in blood and milk, cytokines (IL-13 and IFN-γ) concentration and milk's SCC and bacteriology. The bacterial growth of the S. aureus strains was totally inhibited at 1-3×10(6) and 1-3×10(3)cfu/ml, when the strains were mixed with pooled serum diluted 1/40. The results shown that IMD has not a significant effect on the features determinate. In conclusion, a vaccination schedule involving three SC doses before calving would be enough to stimulate antibodies production in milk without an IMD. Furthermore, the results showed a bactericidal effect of serum from vaccinated animals and this provides further evidence about serum functionality. Immune responses, humoral (antigen-specific antibodies and Th2 type cytokines) and cellular (T-lymphocyte proliferation responses and Th1 type cytokines), were

  11. Cellular and humoral immunity elicited by influenza vaccines in pediatric hematopoietic-stem cell transplantation.

    PubMed

    Guérin-El Khourouj, Valérie; Duchamp, Marie; Krivine, Anne; Pédron, Béatrice; Ouachée-Chardin, Marie; Yakouben, Karima; Frémond, Marie-Louise; Baruchel, André; Dalle, Jean-Hugues; Sterkers, Ghislaine

    2012-09-01

    Immunity induced by influenza vaccines following hematopoietic stem-cell transplantation (HSCT) is poorly understood. Here, 14 pediatric recipients (mean age: 6 years) received H1N1 (n=9) or H1N1/H3N2 (n=5) vaccines at a median of 5.7 months post-HSCT (HLA-identical related bone-marrow graft: 10/14). Fourteen clinically-matched non-vaccinated recipients were included as controls. Cellular response to vaccination was assessed by a T-cell proliferation assay. Humoral response was assessed by H1N1-specific antibody titration. IL2 and IFNγ responses to influenza were also evaluated by an intracellular cytokine accumulation method for some of the recipients. Higher proliferative responses to H1N1 (p=0.0001) and higher H1N1-specific antibody titers (p<0.02) were observed in vaccines opposed to non-vaccinated recipients. In some cases, proliferative responses to H1N1 developed while at the same time antibody titers did not reach protective (≥1:40) levels. Most recipients vaccinated with only the H1N1 strain had proliferative responses to both H1N1 and H3N2 (median stimulation index H1N1: 96, H3N2: 126 in responders). Finally, IL2 responses predominated over IFNγ responses (p<0.02) to influenza viruses in responders. In conclusion, H1N1 vaccination induced substantial cell-mediated immunity, and to a lesser extent, humoral immunity at early times post-HSCT. H1N1/H3N2 T-cell cross-reactivity and protective (IL2) rather than effector (IFNγ) cytokinic profiles were elicited.

  12. Camellia sinensis Mediated Enhancement of Humoral Immunity to Particulate and Non-particulate Antigens.

    PubMed

    Khan, Adnan; Ali, Nafisa Hassan; Santercole, Viviana; Paglietti, Bianca; Rubino, Salvatore; Kazmi, Shahana Urooj; Farooqui, Amber

    2016-01-01

    The most common drinking beverage in large portion of the world is Camellia sinensis (green tea). In the present study, we evaluated the adjuvant effect of green tea and tea polyphenols to particulate and non-particulate antigens. BALB/c mice were immunized with particulate and non-particulate antigens. Modulation of immunoglobulin-secreting splenocytes, IgG-mediated and IgM-mediated immunity, was evaluated by hemolytic plaque assay and enzyme-linked immunosorbent assay, respectively. Dose-dependent response of tea polyphenols was also assayed. Phenolic content was measured in crude preparations of green tea. We observed a stimulatory effect of green tea preparations on humoral immune response mediated by the increased number of antibody-secreted cells in spleen. A significant increase in IgM-mediated and IgG-mediated immune response to non-particulate antigen was also observed in green tea-treated animals. A dose-dependent adjuvant effect was seen in the case of tea polyphenols for a longer period of time compared with crude tea preparations. This study indicates polyphenols as major constituents responsible for the enhanced and sustained adjuvant activity of green tea. We suggest that tea polyphenols might be considered for real-life evaluation during adjuvant-mediated vaccination trial programs.

  13. Role of the humoral immune response in resistance to Theiler's virus infection.

    PubMed Central

    Rossi, C P; Cash, E; Aubert, C; Coutinho, A

    1991-01-01

    Theiler's virus, a murine picornavirus, persists in the central nervous system of susceptible strains of mice, causing chronic inflammation and demyelination in the white matter of the spinal cord. Resistant strains, however, clear the virus and do not develop late disease. In this study, we compared the characteristics of T and B lymphocytes in C57BL/6 (resistant) and SJL/J (susceptible) mice 1 week after intracerebral infection. We detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 mice (but not in those of SJL/J mice), which correlated with higher levels of serum IgM antiviral antibodies. The role of the humoral response in virus clearance and resistance was demonstrated by a marked decrease in the number of infected spinal cord cells in SJL/J mice after passive transfer of serum from infected C57BL/6 donors. The B-cell response was found to be partly T cell independent. These results suggest an important role of the early humoral immune response in resistance to Theiler's virus-induced disease. Images PMID:1645797

  14. Impact of the blood meal on humoral immunity and microbiota in the gut of female Culicoides sonorensis.

    PubMed

    Nayduch, Dana; Erram, Dinesh; Lee, Matthew B; Zurek, Ludek; Saski, Christopher A

    2015-01-01

    Although Culicoides sonorensis is an important vector of orbiviruses causing significant disease in domestic and wild ruminants in the USA, little is known about factors contributing to midge vector competence. In other vectors such as mosquitoes, interactions among the humoral immune response, microbiota, and ingested pathogens within the vector gut directly impact pathogen survival and therefore vectoring potential. We recently described components of the humoral immune response in the reference transcriptome for adult female C. sonorensis and analysed their temporal expression profiles across several dietary states (unfed, blood, or sugar fed). Blood feeding altered the transcription of several humoral immune components of the Immune deficiency (Imd), dual‑oxidase (DUOX), and Janus Kinase and Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Genes for immune effectors, such as antimicrobial peptides, were in particular highly induced. Since blood feeding also stimulated proliferation and diversification of bacterial populations colonising the gut of female midges, we infer that changes in immune gene expression were a result of fluctuations in gut microbiota. Thus, diet can indirectly (via microbiota) impact gut immune status and therefore should be carefully considered in subsequent studies assessing vector competence in biting midges. PMID:26741251

  15. Interaction of menstrual cycle phase and sexual activity predicts mucosal and systemic humoral immunity in healthy women.

    PubMed

    Lorenz, Tierney K; Demas, Gregory E; Heiman, Julia R

    2015-12-01

    Several studies have documented shifts in humoral immune parameters (e.g., immunoglobulins) across the menstrual cycle in healthy women. It is thought that these shifts may reflect dynamic balancing between reproduction and pathogen defense, as certain aspects of humoral immunity may disrupt conception and may be temporarily downregulated at ovulation. If so, one could expect maximal cycle-related shifts of humoral immunity in individuals invested in reproduction - that is, women who are currently sexually active - and less pronounced shifts in women who are not reproductively active (i.e., abstinent). We investigated the interaction of sexual activity, menstrual cycle phase, and humoral immunity in a sample of 32 healthy premenopausal women (15 sexually active, 17 abstinent). Participants provided saliva samples during their menses, follicular phase, ovulation (as indicated by urine test for LH surge), and luteal phase, from which IgA was assayed. Participants also provided blood samples at menses and ovulation, from which IgG was assayed. Sexually active participants provided records of their frequency of sexual activity as well as condom use. At ovulation, sexually active women had higher IgG than abstinent women (d=0.77), with women reporting regular condom use showing larger effects (d=0.63) than women reporting no condom use (d=0.11). Frequency of sexual activity predicted changes in IgA (Cohen's f(2)=0.25), with women reporting high frequency of sexual activity showing a decrease in IgA at ovulation, while women reporting low frequency or no sexual activity showing an increase in IgA at ovulation. Taken together, these findings support the hypothesis that shifts in humoral immunity across the menstrual cycle are associated with reproductive effort, and could contribute to the mechanisms by which women's physiology navigates tradeoffs between reproduction and immunity.

  16. Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2016-08-01

    We consider an HIV-1 dynamics model by incorporating (i) two routes of infection via, respectively, binding of a virus to a receptor on the surface of a target cell to start genetic reactions (virus-to-target infection), and the direct transmission from infected cells to uninfected cells through the concept of virological synapse in vivo (infected-to-target infection); (ii) two types of distributed-time delays to describe the time between the virus or infected cell contacts an uninfected CD4+ T cell and the emission of new active viruses; (iii) humoral immune response, where the HIV-1 particles are attacked by the antibodies that are produced from the B lymphocytes. The existence and stability of all steady states are completely established by two bifurcation parameters, R 0 (the basic reproduction number) and R 1 (the viral reproduction number at the chronic-infection steady state without humoral immune response). By constructing Lyapunov functionals and using LaSalle's invariance principle, we have proven that, if R 0 ≤ 1 , then the infection-free steady state is globally asymptotically stable, if R 1 ≤ 1 < R 0 , then the chronic-infection steady state without humoral immune response is globally asymptotically stable, and if R 1 > 1 , then the chronic-infection steady state with humoral immune response is globally asymptotically stable. We have performed numerical simulations to confirm our theoretical results.

  17. Impact of the blood meal on humoral immunity and microbiota in the gut of female Culicoides sonorensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although Culicoides sonorensis is an important vector of orbiviruses that cause significant disease in domestic and wild ruminants in the USA, little is known about factors contributing to midge vector competence. In other vectors such as mosquitoes, interactions between the humoral immune response,...

  18. Dissociation between systemic and mucosal humoral immune responses in coeliac disease.

    PubMed Central

    O'Mahony, S; Arranz, E; Barton, J R; Ferguson, A

    1991-01-01

    We examined humoral immunity in coeliac disease as expressed in serum (systemic immunity), and in saliva, jejunal aspirate, and whole gut lavage fluid (mucosal immunity). The aims were to define features of the secretory immune response (IgA and IgM concentrations and antibody values to gliadin and other food proteins measured by enzyme linked immunosorbent assay (ELISA)) in active disease and remission, and to establish whether secretions obtained by relatively non-invasive techniques (saliva and gut lavage fluid) can be used for indirect measurements of events in the jejunum. Serum, saliva, and jejunal aspirate from 26 adults with untreated coeliac disease, 22 treated patients, and 28 immunologically normal control subjects were studied, together with intestinal secretions obtained by gut lavage from 15 untreated and 19 treated patients with coeliac disease and 25 control subjects. Jejunal aspirate IgA and IgM and gut lavage fluid IgM concentrations were significantly raised in patients with untreated coeliac disease; the lavage fluid IgM concentration remained higher in patients with treated coeliac disease than in controls. Serum and salivary immunoglobulin concentrations were similar in the three groups. Patients with untreated coeliac disease had higher values of antibodies to gliadin compared with treated patients and control subjects in all body fluids tested; these were predominantly of IgA and IgG classes in serum, and of IgA and IgM classes in jejunal aspirate and gut lavage fluid. Values of salivary IgA antibodies to gliadin were significantly higher in untreated coeliacs, though antibody values were generally low, with a large overlap between coeliac disease patients and control subjects. In treated patients, with proved histological recovery on gluten free diet, serum IgA antigliadin antibody values fell to control values, though serum IgG antigliadin antibody values remained moderately raised. In contrast, there was persistence of secretory

  19. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  20. The effects of melamine on humoral immunity with or without cyanuric acid in mice.

    PubMed

    Yin, Rong H; Li, Xi T; Wang, Xin; Li, Hua S; Yin, Rong L; Liu, Jiao; Dong, Qiao; Wang, Wen C; Yuan, Jing; Liu, Bao S; Han, Xiao H; He, Jian B; Bai, Wen L

    2016-04-01

    Melamine is an industrial chemical with high nitrogen content. When added to the pet food and milk it can falsely elevate the apparent protein concentration readings. Cyanuric acid related structurally to melamine has a strong mutual affinity with melamine. The combined ingestion of melamine and cyanuric acid was considered to be responsible for the crystalluria, kidney stones and subsequent renal failure in animals. In our previous investigation, we demonstrated that melamine alone or its combination with cyanuric acid appears to be toxic to the immune system in mice. The objective of this study was to investigate the potential effects of melamine on humoral immunity with or without cyanuric acid in mice. In comparison to control group, a significantly lower content of plasma cells expressing CD138 were observed in mixture groups of melamine and cyanuric acid with both middle and high doses. The co-administration of melamine and cyanuric acid resulted in a significant decreasing in blimp-1 protein expression and the contents of sIgA, C3, IL-21 and IL-4 compared with the control group. Moreover, our data clearly showed that melamine-related toxicity suppressed the production of IL-6 and IL-10 in a dose-dependent manner. Also, the animals from mixture of melamine and cyanuric acid with high dose group exhibited a significantly lower expression of gata-3 protein, The results from the present study suggested that the exposure to melamine alone or combination with cyanuric acid had certain humoral immunotoxicity in mice, especially when ingested in high dosage. PMID:27033911

  1. Immunostimulant Adjuvant Patch Enhances Humoral and Cellular Immune Responses to DNA Immunization

    PubMed Central

    Mkrtichyan, Mikayel; Ghochikyan, Anahit; Movsesyan, Nina; Karapetyan, Adrine; Begoyan, Gayane; Yu, Jianmei; Glenn, Gregory M.; Ross, Ted M.; Agadjanyan, Michael G.; Cribbs, David H.

    2008-01-01

    The focus of this report is on the development of an improved DNA immunization protocol, which takes advantage of the strengths of DNA immunization, as well as those associated with adjuvant delivered by transcutaneous immunostimulatory (IS) patches. Because transcutaneous delivery of adjuvants to the skin at the vaccination site has been shown to amplify the immune response to protein antigens, we hypothesized that the same IS patch when placed on the skin at the site of DNA injection could further enhance the immune response to a DNA influenza vaccine. We have combined an influenza DNA vaccine, hemagglutinin fused with three copies of complement C3d, to enhance uptake and antigen presentation, with an IS patch containing heat-labile enterotoxin from Escherichia coli. Coadministration of a potent adjuvant in IS patches placed on the skin at the site of DNA vaccination dramatically amplifies anti-influenza antibody immune response. Supplementing DNA vaccines with IS patches may be a particularly valuable strategy because DNA vaccines can be rapidly modified in response to mutations in pathogens, and individuals with compromised immune systems such as transplant patients and the elderly will benefit from the enhanced antibody response induced by the IS patches. PMID:17961074

  2. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2.

    PubMed

    Molina, H; Holers, V M; Li, B; Fung, Y; Mariathasan, S; Goellner, J; Strauss-Schoenberger, J; Karr, R W; Chaplin, D D

    1996-04-16

    Complement receptor 1 (CR1, CD35) and complement receptor 2 (CR2, CD21) have been implicated as regulators of B-cell activation. We explored the role of these receptors in the development of humoral immunity by generating CR1- and CR2-deficient mice using gene-targeting techniques. These mice have normal basal levels of IgM and of IgG isotypes. B- and T-cell development are overtly normal. Nevertheless, B-cell responses to low and high doses of a T-cell-dependent antigen are impaired with decreased titers of antigen-specific IgM and IgG isotypes. This defect is not complete because there is still partial activation of B lymphocytes during the primary immune response, with generation of splenic germinal centers and a detectable, although reduced, secondary antibody response. These data suggest that certain T-dependent antigens manifest an absolute dependence on complement receptors for the initiation of a normally robust immune response.

  3. [Humoral and cellular immune phenomena in an acute viral hepatitis (author's transl)].

    PubMed

    Sodomann, C P

    1975-08-01

    During the course of acute viral hepatitis A and B, several humoral and cellular immune phenomena have been observed, part of which is predominantly or even exclusively associated with hepatitis B: 1. Relative and absolute counts for T-lymphocytes depressed and for "null" -cells elevated; 2. mild elevation of serum globulin levels; 3. IgM augmentation occurring fastly, pronounced, and long lasting in typical cases; 4. IgG augmentation occurring later, less pronounced, and for a shorter period in typical cases; 5. autoantibodies to smooth muscles and mitochondria in low titers in some patients; 6. specific antibodies to "e" -antigen (early) and HB-Ag (later in the course) in part of the cases with hepatitis B; 7. immune complexes including HB-Ag, IgG and probably IgM (and IgA) as well as complement in some cases; 8. depressed levels of the fourth component of complement and - in cases complicated by "allergic" symptoms - of C3, C4, and total complement; 9. occurrence of activated lymphocytes ("virocytes") in peripheral blood; 10. enhanced spontaneous lymphocytic DNA-synthesis; 11. enchanced phytohaemagglutinin stimulation of lymphocytes; 12. mild lymphocyte proliferation to HB-Ag in part of the acute and convalescent cases of hepatitis B; 13. production of migration inhibition factor to liver specific protein (and HB-Ag) or lymphocytes in different percentages of patients with hepatitis B. Origin, diagnostic and prognostic importance, as well as pathogenetic revelance of the described immune phenomena are discussed.

  4. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2.

    PubMed

    Molina, H; Holers, V M; Li, B; Fung, Y; Mariathasan, S; Goellner, J; Strauss-Schoenberger, J; Karr, R W; Chaplin, D D

    1996-04-16

    Complement receptor 1 (CR1, CD35) and complement receptor 2 (CR2, CD21) have been implicated as regulators of B-cell activation. We explored the role of these receptors in the development of humoral immunity by generating CR1- and CR2-deficient mice using gene-targeting techniques. These mice have normal basal levels of IgM and of IgG isotypes. B- and T-cell development are overtly normal. Nevertheless, B-cell responses to low and high doses of a T-cell-dependent antigen are impaired with decreased titers of antigen-specific IgM and IgG isotypes. This defect is not complete because there is still partial activation of B lymphocytes during the primary immune response, with generation of splenic germinal centers and a detectable, although reduced, secondary antibody response. These data suggest that certain T-dependent antigens manifest an absolute dependence on complement receptors for the initiation of a normally robust immune response. PMID:8622941

  5. Effects of intraperitoneal lead and cadmium on the humoral immune response of Salmo trutta

    SciTech Connect

    O'Neill, J.G.

    1981-07-01

    In the present study the effects of i.p. dosed lead (Pb) and cadium (Cd) on humoral antibody levels were examined in brown trout, Salmo trutta, immunized with MS2 bacteriophage. Earlier work had shown that the live MS2 virus was a primary immunogen and highly immunogenic, while non-pathogenic in fishes. Further, the antibody response could be quantified by a sensitive and reproducible technique. The i.p. route of heavy metal challenge was utilized to remove the complications presented by the environmental modifications of the toxicity of these metals and their passage through the gills of the fish. It was apparent that single i.p. doses of Pb and Cd resulted in a substantial reduction of antibody titre in MS2-immunized trout and that within the time limits of the experiment there was no recovery. However, only in the case of the two lethal concentrations was antibody totally eliminated from the sera and death ensued. Cd-exposure suppressed those responses mediated by T-lymphocytes and macrophages. A reduction in the number of B-like cells, as well as the loss of helper and memory cell activity, could have been responsible for reducing antibody titre in Pb- and Cd-dosed trout. A reduction in the number and activity of immune effector cells would also account for the Cd-dose dependent suppression of the antibody response after a rechallenge with MS2.

  6. Enhancement of cellular and humoral immunity following embryonic exposure to melatonin in turkeys (Meleagris gallopavo).

    PubMed

    Moore, C B; Siopes, T D

    2005-09-01

    Two experiments were performed to determine the effect of in ovo melatonin supplementation on the ontogeny of immunity in the Large White turkey poult. Different levels of melatonin were injected into the air cell of the egg 4 days prior to hatch. In Experiment 1, turkey embryos received 3 ml of solution containing 200, 100, 50, 25, 10, or 1 microg/ml of melatonin. The hatchability at each dose was determined and compared to vehicle-injected controls. In Experiment 2, only poults from melatonin treatments in Experiment 1 that resulted in normal hatchability (10 and 1 microg/ml) were used. Lymphoproliferative responses to phytohemagglutinin (PHA-P) and primary antibody responses to Chukar red blood cells (CRBC) were determine at five time intervals: 0, 1, 7, 14, and 21 days post-hatch. At each of these times, including 28 days post-hatch, treatment effects on body weights were determined. At 28 days post-hatch, bursal, thymic, and splenic weights were obtained. In ovo melatonin administration significantly accelerated (P0.05) the development of cell-mediated (PHA-P) and humoral (CRBC) immune responses, and these responses were significantly elevated above vehicle-injected controls through 21 days post-hatch. No effect was observed on bursal, thymic, splenic or body weights. These data suggest that embryonic exposure to melatonin enhances post-hatch immune development and responsiveness.

  7. Antiparasite treatments reduce humoral immunity and impact oxidative status in raptor nestlings

    PubMed Central

    Hanssen, Sveinn Are; Bustnes, Jan Ove; Schnug, Lisbeth; Bourgeon, Sophie; Johnsen, Trond Vidar; Ballesteros, Manuel; Sonne, Christian; Herzke, Dorte; Eulaers, Igor; Jaspers, Veerle L B; Covaci, Adrian; Eens, Marcel; Halley, Duncan J; Moum, Truls; Ims, Rolf Anker; Erikstad, Kjell Einar

    2013-01-01

    Parasites are natural stressors that may have multiple negative effects on their host as they usurp energy and nutrients and may lead to costly immune responses that may cause oxidative stress. At early stages, animals may be more sensitive to infectious organisms because of their rapid growth and partly immature immune system. The objective of this study was to explore effects of parasites by treating chicks of two raptor species (northern goshawk Accipiter gentilis and white-tailed sea eagle Haliaeetus albicilla) against both endoparasites (internal parasites) and ectoparasites (external parasites). Nests were either treated against ectoparasites by spraying with pyrethrin or left unsprayed as control nests. Within each nest, chicks were randomly orally treated with either an antihelminthic medication (fenbendazole) or sterile water as control treatment. We investigated treatment effects on plasma (1) total antioxidant capacity TAC (an index of nonenzymatic circulating antioxidant defenses), (2) total oxidant status TOS (a measure of plasmatic oxidants), and (3) immunoglobulin levels (a measure of humoral immune function). Treatment against ectoparasites led to a reduction in circulating immunoglobulin plasma levels in male chicks. TOS was higher when not receiving any parasite reduction treatment and when receiving both endo- and ectoparasitic reduction treatment compared with receiving only one treatment. TAC was higher in all treatment groups, when compared to controls. Despite the relatively low sample size, this experimental study suggests complex but similar relationships between treatment groups and oxidative status and immunoglobulin levels in two raptor species. PMID:24455145

  8. Effects of endosulfan on humoral and cell-mediated immune responses in rats

    SciTech Connect

    Banerjee, B.D.; Hussain, Q.Z.

    1987-03-01

    Endosulfan (6,7,8,9,10,10a-hexa-chloro-1,5,5a,6,9,9a-hexahydro, 6,9-methano-2,4,3-benzodioxathiepin-3-oxide), a polycyclic chlorinated hydrocarbon of cyclodien group, is a well known insecticide. Food is the main source of exposure of the general population to endosulfan. The physical, chemical as well as toxicological effects of endosulfan in experimental animals have been reported by various workers. However, the reports regarding the effect of endosulfan on immune system are not available. In view of its widespread use there is an urgent need to investigate the immunotoxicological effect of endosulfan in mammals for the safety evaluation of this insecticide. This has, therefore, prompted the authors to investigate the effect of endosulfan on immune system employing albino rats as the experimental animals. Included in this report are their preliminary findings on humoral and cell-mediated immune responses in rats exposed to sub-chronic doses of endosulfan.

  9. Antibodies against small heat-shock proteins in Alzheimer's disease as a part of natural human immune repertoire or activation of humoral response?

    PubMed

    Papuć, Ewa; Krupski, Witold; Kurys-Denis, Ewa; Rejdak, Konrad

    2016-04-01

    Characterization of autoantibodies specific for some disease-related proteins, would allow to better assess their role as diagnostic and prognostic markers. In the light of increasing evidence for both humoral and cellular adaptive immune responses in the pathophysiology of Alzheimer's disease (AD), and data on the increased small heat-shock proteins (sHSP) expression in this disease, it seemed justified to assess humoral response against sHSP in AD patients. The aim of the study was to check whether AD has the ability to elicit immune response against small HSP, which could also serve as disease biomarkers. IgG and IgM autoantibodies against alpha B-crystallin and anti-HSP 60 IgG autoantibodies were assessed in 59 AD patients and 59 healthy subjects. Both IgM and IgG autoantibodies against alpha B-crystallin in AD patients were significantly higher compared to healthy controls (p < 0.05). No statistically significant differences were found between AD patients and healthy subjects were found in anti-HSP60 IgG autoantibody titers (p = 0.29). Anti-HSP60 antibodies present in AD patients may indeed belong to natural human immune repertoire, and chronic neurodegenerative process does not have significant inducing effect on the systemic immunoreactivity against HSP60. Increased titers of IgM and IgG autoantibodies against alpha B-crystallin in AD patients may reflect activation of humoral immune response in the course of this chronic disease, probably secondary to its increased expression. Further prospective studies, on larger group of AD patients and measuring a change in antibodies titers with disease progression are necessary to assess the exact role of these antibodies in AD.

  10. Evaluation of Humoral Immunity to Mycobacterium tuberculosis-Specific Antigens for Correlation with Clinical Status and Effective Vaccine Development.

    PubMed

    Niki, Mamiko; Suzukawa, Maho; Akashi, Shunsuke; Nagai, Hideaki; Ohta, Ken; Inoue, Manabu; Niki, Makoto; Kaneko, Yukihiro; Morimoto, Kozo; Kurashima, Atsuyuki; Kitada, Seigo; Matsumoto, Sohkichi; Suzuki, Koichi; Hoshino, Yoshihiko

    2015-01-01

    Although tuberculosis remains a major global health problem, Bacille Calmette-Guérin (BCG) is the only available vaccine. However, BCG has limited applications, and a more effective vaccine is needed. Cellular mediated immunity (CMI) is thought to be the most important immune response for protection against Mycobacterium tuberculosis (Mtb). However, the recent failure of a clinical trial for a booster BCG vaccine and increasing evidence of antibody-mediated immunity prompted us to evaluate humoral immunity to Mtb-specific antigens. Using Enzyme-Linked ImmunoSpot and Enzyme-Linked ImmunoSorbent Assays, we observed less correlation of both CMI and IgG titers with patient clinical status, including serum concentration of C reactive protein. However, IgA titers against Mtb were significantly correlated with clinical status, suggesting that specific IgA antibodies protect against Mtb proliferation. In addition, in some cases, IgA antibody titers were significantly associated with the serum concentration of total albumin, which supports the idea that humoral immunity can be influenced by the nutritional status. Based on these observations, we propose that the induction of humoral immunity should be included as an option in TB vaccine development strategies. PMID:26568961

  11. Evaluation of Humoral Immunity to Mycobacterium tuberculosis-Specific Antigens for Correlation with Clinical Status and Effective Vaccine Development

    PubMed Central

    Niki, Mamiko; Suzukawa, Maho; Akashi, Shunsuke; Nagai, Hideaki; Ohta, Ken; Inoue, Manabu; Niki, Makoto; Kaneko, Yukihiro; Morimoto, Kozo; Kurashima, Atsuyuki; Kitada, Seigo; Matsumoto, Sohkichi; Suzuki, Koichi; Hoshino, Yoshihiko

    2015-01-01

    Although tuberculosis remains a major global health problem, Bacille Calmette-Guérin (BCG) is the only available vaccine. However, BCG has limited applications, and a more effective vaccine is needed. Cellular mediated immunity (CMI) is thought to be the most important immune response for protection against Mycobacterium tuberculosis (Mtb). However, the recent failure of a clinical trial for a booster BCG vaccine and increasing evidence of antibody-mediated immunity prompted us to evaluate humoral immunity to Mtb-specific antigens. Using Enzyme-Linked ImmunoSpot and Enzyme-Linked ImmunoSorbent Assays, we observed less correlation of both CMI and IgG titers with patient clinical status, including serum concentration of C reactive protein. However, IgA titers against Mtb were significantly correlated with clinical status, suggesting that specific IgA antibodies protect against Mtb proliferation. In addition, in some cases, IgA antibody titers were significantly associated with the serum concentration of total albumin, which supports the idea that humoral immunity can be influenced by the nutritional status. Based on these observations, we propose that the induction of humoral immunity should be included as an option in TB vaccine development strategies. PMID:26568961

  12. Autogenous immunity to endogenous RNA tumor virus: humoral immune response to virus envelope antigens.

    PubMed

    Hanna, M G; Ihle, J N; Lee, J C

    1976-02-01

    Autogenous immune sera from several strains of mice have been examined for type-, group-, or interspecies-specific reactivities against leukemia virus envelope antigens and virus-induced cell surface proteins. The natural antibody of these test sera react with gp69/71, gp43, and p15 structural components on murine leukemia viruses including AKR, Friend, Rauscher, Moloney, and xenotropic BALB:virus-2. Furthermore, comparable radioimmune titration curves are obtained when these viruses are used in radioimmune precipitation assays. Competition experiments, however, suggest that natural immune sera are predominantly type specific and only weakly cross-react with the Rauscher or Friend virus. Natural immune sera react with the virion envelope but not with the virus-induced cell surface antigen. With respect to the biological activity of autogenous immune sera, there appears to be an inconsistency between the spectrum of virus-precipitating antibody and virus-neutralizing antibody. Although normal mouse serum readily neutralizes xenotropic viruses (BALB:virus-2), only weak neutralization of the ecotropic viruses can be achieved in vitro. Although there is a lack of direct evidence to indicate that autogenous immunity to murine leukemia virus is involved in the control of virus-mediated neoplasia, several empirical correlations point in this direction.

  13. Innate and Adaptive Humoral Responses Coat Distinct Commensal Bacteria with Immunoglobulin A.

    PubMed

    Bunker, Jeffrey J; Flynn, Theodore M; Koval, Jason C; Shaw, Dustin G; Meisel, Marlies; McDonald, Benjamin D; Ishizuka, Isabel E; Dent, Alexander L; Wilson, Patrick C; Jabri, Bana; Antonopoulos, Dionysios A; Bendelac, Albert

    2015-09-15

    Immunoglobulin A (IgA) is prominently secreted at mucosal surfaces and coats a fraction of the intestinal microbiota. However, the commensal bacteria bound by IgA are poorly characterized and the type of humoral immunity they elicit remains elusive. We used bacterial flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in murine models of immunodeficiency to identify IgA-bound bacteria and elucidate mechanisms of commensal IgA targeting. We found that residence in the small intestine, rather than bacterial identity, dictated induction of specific IgA. Most commensals elicited strong T-independent (TI) responses that originated from the orphan B1b lineage and from B2 cells, but excluded natural antibacterial B1a specificities. Atypical commensals including segmented filamentous bacteria and Mucispirillum evaded TI responses but elicited T-dependent IgA. These data demonstrate exquisite targeting of distinct commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses.

  14. Innate and Adaptive Humoral Responses Coat Distinct Commensal Bacteria with Immunoglobulin A.

    PubMed

    Bunker, Jeffrey J; Flynn, Theodore M; Koval, Jason C; Shaw, Dustin G; Meisel, Marlies; McDonald, Benjamin D; Ishizuka, Isabel E; Dent, Alexander L; Wilson, Patrick C; Jabri, Bana; Antonopoulos, Dionysios A; Bendelac, Albert

    2015-09-15

    Immunoglobulin A (IgA) is prominently secreted at mucosal surfaces and coats a fraction of the intestinal microbiota. However, the commensal bacteria bound by IgA are poorly characterized and the type of humoral immunity they elicit remains elusive. We used bacterial flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in murine models of immunodeficiency to identify IgA-bound bacteria and elucidate mechanisms of commensal IgA targeting. We found that residence in the small intestine, rather than bacterial identity, dictated induction of specific IgA. Most commensals elicited strong T-independent (TI) responses that originated from the orphan B1b lineage and from B2 cells, but excluded natural antibacterial B1a specificities. Atypical commensals including segmented filamentous bacteria and Mucispirillum evaded TI responses but elicited T-dependent IgA. These data demonstrate exquisite targeting of distinct commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses. PMID:26320660

  15. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  16. Influence of betulinic acid on lymphocyte subsets and humoral immune response in mice.

    PubMed

    Jine, Y; Lis, M; Szczypka, M; Obmińska-Mrukowicz, B

    2012-01-01

    Betulinic acid is a pentacyclic triterpene found in many plant species, among others, in the bark of white birch Betula alba. Betulinic acid was reported to display a wide range of biological effects, including antiviral, antiparasitic, antibacterial, anticancer and anti-inflammatory activities. The effects of betulinic acid (50, 5, 0.5 mg/kg) administered orally five times at 24 hours intervals to non-immunized and red blood cells (SRBC)-immunized mice were determined. The present study examined the total number of lymphocytes in the thymus, spleen and mesenteric lymph nodes, and the percentage of subsets of T cells (CD4+CD8+, CD4CD8, CD4+, CD8+) in thymus,T (CD3+, CD4+, CD8+) and B (CD19+) lymphocytes in the spleen and mesenteric lymph nodes, as well as white blood cell (WBC) and differential leukocyte counts in non-immunized mice, and humoral immune response in SRBC-immunized mice. SRBC was injected 24 hours after administration of the last dose of betulinic acid. It was found that betulinic acid administered orally five times at the dose of 0.5 mg/kg increased the total number of thymocytes, splenocytes, lymphocytes of mesenteric lymph node cells, and the weight ratio of the spleen and mesenteric lymph nodes in non-immunized mice. Betulinic acid also changed the percentage of T cell subsets in the thymus and T and B lymphocytes in peripheral lymphatic organs. The effects of betulinic acid on T and B cell subpopulations depended on the dose applied. The strongest stimulating effect of betulinic acid was observed when the drug was administered at the dose of 0.5 mg/kg. Five exposures to betulinic acid (0.5 mg/kg) decreased the percentage of immature CD4+CD8+ thymic cells with corresponding increases in the percentage and absolute count of mature, single-positive CD4+ thymocytes and decreased the percentage and total count of CD3+ splenocytes and mesenteric lymph node cells with corresponding decreases in the percentage and absolute count of CD4+ and CD8+ cells

  17. Taenia crassiceps cysticercosis: humoral immune response and protection elicited by DNA immunization.

    PubMed

    Rosas, G; Cruz-Revilla, C; Fragoso, G; López-Casillas, F; Pérez, A; Bonilla, M A; Rosales, R; Sciutto, E

    1998-06-01

    The purpose of this study was to evaluate DNA vaccination in cysticercosis prevention by using a Taenia crassiceps cDNA of a recombinant antigen (KETc7) that has been reported as protective against murine cysticercosis. The KETc7 cDNA was cloned into the pcDNA3 plasmid alone or with the betaglycan signal peptide sequence (pTc-7 and pTc-sp7, respectively). Positive expression of the pTc-sp7 product was confirmed by transfection of C33 cells and immunofluorescence using sera of mice infected with T. crassiceps. Immunization of mice with 3 injections of pTc-sp7 DNA at the higher dose (200 microg) was the most effective to induce antibody with or without bupivacaine. Immunization with pTc-sp7 induced protection against challenge with T. crassiceps cysticerci as successfully as previously observed with the KETc7 recombinant protein. Antibodies elicited by DNA immunization with pTc-sp7 specifically reacted with the native protein of 56 kDa previously reported, which is immunolocalized in the tegument of T. crassiceps cysticerci. The 56-kDa antigen is also present in Taenia solium oncospheres, cysticerci, and adult tissue. The protection induced in DNA-immunized mice and the observation that the injected plasmid remains as an episomic form within muscle cells, encouraged us to continue testing this procedure to prevent T. solium cysticercosis.

  18. Protective Humoral Immunity Elicited by a Needle-Free Malaria Vaccine Comprised of a Chimeric Plasmodium falciparum Circumsporozoite Protein and a Toll-Like Receptor 5 Agonist, Flagellin

    PubMed Central

    Carapau, Daniel; Mitchell, Robert; Nacer, Adéla; Shaw, Alan; Othoro, Caroline; Frevert, Ute

    2013-01-01

    Immunization with Plasmodium sporozoites can elicit high levels of sterile immunity, and neutralizing antibodies from protected hosts are known to target the repeat region of the circumsporozoite (CS) protein on the parasite surface. CS-based subunit vaccines have been hampered by suboptimal immunogenicity and the requirement for strong adjuvants to elicit effective humoral immunity. Pathogen-associated molecular patterns (PAMPs) that signal through Toll-like receptors (TLRs) can function as potent adjuvants for innate and adaptive immunity. We examined the immunogenicity of recombinant proteins containing a TLR5 agonist, flagellin, and either full-length or selected epitopes of the Plasmodium falciparum CS protein. Mice immunized with either of the flagellin-modified CS constructs, administered intranasally (i.n.) or subcutaneously (s.c.), developed similar levels of malaria-specific IgG1 antibody and interleukin-5 (IL-5)-producing T cells. Importantly, immunization via the i.n. but not the s.c. route elicited sporozoite neutralizing antibodies capable of inhibiting >90% of sporozoite invasion in vitro and in vivo, as measured using a transgenic rodent parasite expressing P. falciparum CS repeats. These findings demonstrate that functional sporozoite neutralizing antibody can be elicited by i.n. immunization with a flagellin-modified P. falciparum CS protein and raise the potential of a scalable, safe, needle-free vaccine for the 40% of the world's population at risk of malaria. PMID:24042110

  19. Tumors STING adaptive antitumor immunity.

    PubMed

    Bronte, Vincenzo

    2014-11-20

    Immunotherapy is revolutionizing the treatment of cancer patients, but the molecular basis for tumor immunogenicity is unclear. In this issue of Immunity, Deng et al. (2014) and Woo et al. (2014) provide evidence suggesting that dendritic cells detect DNA from tumor cells via the STING-mediated, cytosolic DNA sensing pathway.

  20. Humoral and cellular immune responses to matrix protein of measles virus in subacute sclerosing panencephalitis.

    PubMed Central

    Dhib-Jalbut, S; McFarland, H F; Mingioli, E S; Sever, J L; McFarlin, D E

    1988-01-01

    The immune response to matrix (M) protein of measles virus was examined in patients with subacute sclerosing panencephalitis (SSPE) and controls. Antibodies specific for M and nucleocapsid (NC) proteins in 11 serum and 8 cerebrospinal fluid (CSF) samples from patients with SSPE were quantitated by enzyme-linked immunosorbent assay by using affinity-purified measles virus proteins. Geometric mean anti-NC antibody titers were higher in the serum (6.58 +/- 0.98 [mean +/- standard deviation]) and CSF (4.38 +/- 0.74) of SSPE patients compared with controls. Anti-M antibodies were present in the serum and CSF of all SSPE samples tested but in titers lower than those of anti-NC antibodies. Geometric mean anti-M antibody titer was 3.35 +/- 0.53 in sera from patients with SSPE compared with 3.05 +/- 0.66 in sera from patients with other neurological diseases and 3.12 +/- 0.74 in sera from healthy individuals. Geometric mean anti-M antibody titer was 2.59 +/- 0.86 in the CSF of eight patients with SSPE compared with a mean less than 1.00 for patients with other neurological disease (controls). Intrathecal synthesis of anti-M or anti-NC antibodies was established in four patients with SSPE. The cellular immune responses to M, F, HA, and NC proteins were examined in four of the patients with SSPE by lymphoproliferation and were not significantly different from those in five healthy controls. The results demonstrate humoral and cellular immune responses to M protein in patients with SSPE and indicate that it is unlikely that a defect in the immune response to this virus component accounts for the disease process in the patients studied. Images PMID:3373575

  1. Impact of Malaria Preexposure on Antiparasite Cellular and Humoral Immune Responses after Controlled Human Malaria Infection

    PubMed Central

    Obiero, Joshua M.; Shekalaghe, Seif; Hermsen, Cornelus C.; Mpina, Maxmillian; Bijker, Else M.; Roestenberg, Meta; Teelen, Karina; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Daubenberger, Claudia A.; Hoffman, Stephen L.; Abdulla, Salim

    2015-01-01

    To understand the effect of previous malaria exposure on antiparasite immune responses is important for developing successful immunization strategies. Controlled human malaria infections (CHMIs) using cryopreserved Plasmodium falciparum sporozoites provide a unique opportunity to study differences in acquisition or recall of antimalaria immune responses in individuals from different transmission settings and genetic backgrounds. In this study, we compared antiparasite humoral and cellular immune responses in two cohorts of malaria-naive Dutch volunteers and Tanzanians from an area of low malarial endemicity, who were subjected to the identical CHMI protocol by intradermal injection of P. falciparum sporozoites. Samples from both trials were analyzed in parallel in a single center to ensure direct comparability of immunological outcomes. Within the Tanzanian cohort, we distinguished one group with moderate levels of preexisting antibodies to asexual P. falciparum lysate and another that, based on P. falciparum serology, resembled the malaria-naive Dutch cohort. Positive P. falciparum serology at baseline was associated with a lower parasite density at first detection by quantitative PCR (qPCR) after CHMI than that for Tanzanian volunteers with negative serology. Post-CHMI, both Tanzanian groups showed a stronger increase in anti-P. falciparum antibody titers than Dutch volunteers, indicating similar levels of B-cell memory independent of serology. In contrast to the Dutch, Tanzanians failed to increase P. falciparum-specific in vitro recall gamma interferon (IFN-γ) production after CHMI, and innate IFN-γ responses were lower in P. falciparum lysate-seropositive individuals than in seronegative individuals. In conclusion, positive P. falciparum lysate serology can be used to identify individuals with better parasite control but weaker IFN-γ responses in circulating lymphocytes, which may help to stratify volunteers in future CHMI trials in areas where malaria is

  2. Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice

    PubMed Central

    Wondimu, Assefa; Zhang, Tianqian; Kieber-Emmons, Thomas; Gimotty, Phyllis; Sproesser, Katrin; Somasundaram, Rajasekharan; Ferrone, Soldano; Tsao, Chun-Yen

    2012-01-01

    Introduction Because of its restricted distribution in normal tissues and its high expression on tumors of neuroectodermal origin, GD2 ganglioside is an excellent target for active specific immunotherapy. However, GD2 usually elicits low-titered IgM and no IgG or cellular immune responses, limiting its usefulness as a vaccine for cancer patients. We have previously shown that anti-idiotypic monoclonal antibody mimics of GD2 can induce antigen-specific humoral and cellular immunity in mice, but inhibition of tumor growth by the mimics could not be detected. Methods and results Here, we isolated two peptides from phage display peptide libraries by panning with GD2-specific mAb ME361. The peptides inhibited binding of the mAb to GD2. When coupled to keyhole limpet hemocyanin (KLH) or presented as multiantigenic peptides in QS21 adjuvant, the peptides induced in mice antibodies binding specifically to GD2 and delayed-type hypersensitive lymphocytes reactive specifically with GD2-positive D142.34 mouse melanoma cells. Induction of delayed-type hypersensitivity (DTH) reaction was dependent on CD4-positive lymphocytes. The immunity elicited by the peptides significantly inhibited growth of GD2-positive melanoma cells in mice. Conclusion Our study suggests that immunization with peptides mimicking GD2 ganglioside inhibits tumor growth through antibody and/or CD4-positive T cell-mediated mechanisms. Cytolytic T lymphocytes most likely do not play a role. Our results provide the basis for structural analysis of carbohydrate mimicry by peptides. PMID:18157673

  3. TCDD Adsorbed on Silica as a Model for TCDD Contaminated Soils: Evidence for Suppression of Humoral Immunity in Mice

    PubMed Central

    Kaplan, Barbara L. F.; Crawford, Robert B.; Kovalova, Natalia; Arencibia, Amaya; Kim, Seong Su; Pinnavaia, Thomas J.; Boyd, Stephen A.; Teppen, Brian J.; Kaminski, Norbert E.

    2011-01-01

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the prototypical aryl hydrocarbon receptor (AhR) ligand, exhibits immune suppression in vivo and in vitro. Suppression of primary humoral immune responses in particular has been well characterized as one of the most sensitive functional immune endpoints in animals treated with TCDD. Previous studies have used purified TCDD to elucidate the mechanisms by which TCDD and dioxin-like compounds (DLC) impair IgM production by B cells, but did not represent the route by which animals and humans are likely to be exposed environmentally. In the studies reported here, mice were treated with TCDD adsorbed onto a well-defined synthetic silica phase of known purity and physical properties, followed by sensitization with sheep erythrocytes to initiate a humoral immune. We found that surfactant-templated mesoporous forms of amorphous silica provided an ideal combination of purity, dispersibility and textural properties for immobilizing TCDD. TCDD-adsorbed silica distributed to the spleen and liver after oral administration as assessed by induction of cyp1a1 gene expression. Most notably, TCDD delivered in the adsorbed state on amorphous silica and as a solute in corn oil (CO) produced similar suppression of the anti-sheep red blood cell immunoglobulin M antibody forming cell response (sRBC IgM AFC) response at equivalent doses of TCDD. These results suggest that TCDD immobilized on silicate particles found in soils distributes to the spleen and suppresses humoral immunity. PMID:21272611

  4. Humoral immune response in patients with cerebral parenchymal cysticercosis treated with praziquantel.

    PubMed Central

    Estañol, B; Juárez, H; Irigoyen, M del C; González-Barranco, D; Corona, T

    1989-01-01

    The humoral immune response to treatment with praziquantel (PZQ) was studied in eight patients with parenchymal cerebral cysticercosis (CC). In the serum and in the cerebrospinal fluid (CSF) before, during and after the administration of the drug, the following were quantitated (a) levels of specific anticysticercous antibodies measured in optical densities by the ELISA method; (b) levels of IgG, IgM, IgA and IgE; (c) levels of complement fraction C3, C4; (d) presence of immune complexes; (e) total number of white blood cells in the CSF. It was found that after treatment with PZQ, the level of specific anticysticercous antibodies and the level of IgG rose significantly in the CSF but not in the blood. The levels of the fractions of the complement and the immunoglobulins IgM, IgA and IgE did not change significantly either in the serum or in the CSF. The blood-brain barrier was found ruptured in three patients before therapy and in five patients after the therapy as measured by the albumin index. Nevertheless, the IgG index showed that there was local production of IgG in five patients before treatment and in seven after the end of it. The relative specific antibody index was greater than 1.0 in five patients before therapy and in seven after therapy. This data strongly supports the idea that the specific antibodies are produced intrathecally and are not derived from the serum pool through a ruptured blood-brain barrier. It was concluded that patients with parenchymal CC have an elevation of specific anticysticercous probably due to a combination of a ruptured blood-brain barrier and intrathecal synthesis. The relatively small rupture of the blood-brain barrier and the high IgG and relative specific antibody index suggest that intrathecal synthesis is the most important mechanism. The humoral immune response may be of importance not only in the elimination of the parasite but also in the genesis of the illness. PMID:2703841

  5. Staphylococcus aureus avirulent mutant vaccine induces humoral and cellular immune responses on pregnant heifers.

    PubMed

    Pellegrino, M; Rodriguez, N; Vivas, A; Giraudo, J; Bogni, C

    2016-06-17

    Bovine mastitis produces economic losses, attributable to the decrease in milk production, reduced milk quality, costs of treatment and replacement of animals. A successful prophylactic vaccine against Staphylococcus aureus should elicit both humoral and cellular immune responses. In a previous report we evaluated the effectiveness of a live vaccine to protect heifers against challenge with a virulent strain. In the present study the immunological response of heifers after combined immunization schedule was investigated. In a first experimental trial, heifers were vaccinated with 3 subcutaneous doses of avirulent mutant S. aureus RC122 before calving and one intramammary dose (IMD) after calving. Antibodies concentration in blood, bactericidal effect of serum from vaccinated animals and lymphocyte proliferation was determined. The levels of total IgG, IgG1 and IgG2 in colostrum and the lymphocyte proliferation index were significantly higher in vaccinated respect to non-vaccinated group throughout the experiment. The second trial, where animals were inoculated with different vaccination schedules, was carried out to determine the effect of the IMD on the level of antibodies in blood and milk, cytokines (IL-13 and IFN-γ) concentration and milk's SCC and bacteriology. The bacterial growth of the S. aureus strains was totally inhibited at 1-3×10(6) and 1-3×10(3)cfu/ml, when the strains were mixed with pooled serum diluted 1/40. The results shown that IMD has not a significant effect on the features determinate. In conclusion, a vaccination schedule involving three SC doses before calving would be enough to stimulate antibodies production in milk without an IMD. Furthermore, the results showed a bactericidal effect of serum from vaccinated animals and this provides further evidence about serum functionality. Immune responses, humoral (antigen-specific antibodies and Th2 type cytokines) and cellular (T-lymphocyte proliferation responses and Th1 type cytokines), were

  6. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    PubMed

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life.

  7. Association between microRNA polymorphisms and humoral immunity to hepatitis B vaccine

    PubMed Central

    Xion, Yongzhen; Chen, Shengli; Chen, Ruhong; Lin, Weiyan; Ni, Jindong

    2013-01-01

    To investigate whether selected single nucleotide polymorphisms (SNPs) in miR-146a, miR-196a2, miR-27a, miR-26a-1, miR-124 and miR-149 genes are associated with immune response to hepatitis B vaccine. The genotype and allele frequencies of SNPs were compared between the non-responders (n = 77) and responders (n = 207). The associations of the genotypes with antibody levels were assessed in the responders. Significant associations were observed between SNPs in miR-146a and miR-26a-1 genes and non-response to hepatitis B vaccine (p < 0.05). In addition, SNPs in miR-146a and miR-27a genes were associated with variations in levels of antibodies to hepatitis B antigen. Thus, specific SNPs in microRNAs (miRNAs) genes may affect status of the hepatitis B vaccine induced protective humoral immune response. They also suggest that the three miRNAs play a role in modulating antibody responses to hepatitis B vaccine. PMID:23807362

  8. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    PubMed Central

    Bhakta, Gajadhar; Nurcombe, Victor; Maitra, Amarnath; Shrivastava, Anju

    2014-01-01

    The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein)-encapsulated PEGylated (meaning polyethylene glycol coated) magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles) for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-? and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP). Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi) nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation. PMID:24936399

  9. [Effect of multiple vaccination against influenza on the specificity of humoral immunity].

    PubMed

    Iagodovskiĭ, V V; Slepushkin, A N; Schastnyĭ, E I; Fedorova, G I

    1986-01-01

    The influence of multiple vaccinations against influenza on humoral immunity specificity was studied by titration of sera from the vaccinees and non-vaccinees in radial hemolysis test (RHT). In order to determine the specificity of antihemagglutinins, the sera were adsorbed with the appropriate antigen followed by titration in RHT. The study showed the sera from vaccinees to contain the strain-specific antibody much more frequently, the titres and content being especially high to the vaccine A/Bangkok/1/79 strain used for large-scale vaccination of the human population in the three years preceeding the study. Fewer sera of the vaccinees contained cross-reacting antibodies. Both in vaccinees and non-vaccinees the total number of sera with antibody to the A/Bangkok/1/79 and A/Moscow/30/83 strains was approximately similar, however, antibody mean titre to these epidemiologically important strains was significantly higher in the vaccinees. The results of the study explain the narrow specificity of the protective effect of whole-virion inactivated vaccines used for mass immunization of the human population.

  10. Studies on the humoral immune response to a synthetic vaccine against Plasmodium falciparum malaria.

    PubMed Central

    Salcedo, M; Barreto, L; Rojas, M; Moya, R; Cote, J; Patarroyo, M E

    1991-01-01

    A synthetic vaccine against the asexual blood stages of P. falciparum, the SPf 66 synthetic hybrid polymer, composed of peptides derived from three merozoite membrane proteins as well as one peptide from the sporozoite CS protein, has been developed by our group and tested in different protection assays in Aotus monkeys as well as in human volunteers. This study evaluates the humoral immune response induced by the SPf 66 protein vaccination in adult human volunteers from the Colombian Pacific coast as follows: determination of specific IgG antibody levels against SPf 66 by FAST-ELISA after each immunization; analysis of antibody reactivity with P. falciparum schizont lysates by immunoblots; and determination of the in vitro parasite growth inhibition. A clear boosting effect, dependent on time and dose, was observed in the antibody production kinetics. These antibodies also specifically recognize three proteins of the P. falciparum schizont lysate corresponding to the molecular weights of the proteins from which the amino acid sequence was derived. These sera were also capable of markedly inhibiting in vitro parasite growth. PMID:2015702

  11. Humoral Immune Pressure Selects for HIV-1 CXC-chemokine Receptor 4-using Variants.

    PubMed

    Lin, Nina; Gonzalez, Oscar A; Registre, Ludy; Becerril, Carlos; Etemad, Behzad; Lu, Hong; Wu, Xueling; Lockman, Shahin; Essex, Myron; Moyo, Sikhulile; Kuritzkes, Daniel R; Sagar, Manish

    2016-06-01

    Although both C-C chemokine receptor 5 (CCR5)- and CXC chemokine receptor 4 (CXCR4)-using HIV-1 strains cause AIDS, the emergence of CXCR4-utilizing variants is associated with an accelerated decline in CD4+ T cells. It remains uncertain if CXCR4-using viruses hasten disease or if these variants only emerge after profound immunological damage. We show that exclusively CXCR4- as compared to cocirculating CCR5-utilizing variants are less sensitive to neutralization by both contemporaneous autologous plasma and plasma pools from individuals that harbor only CCR5-using HIV-1. The CXCR4-utilizing variants, however, do not have a global antigenic change because they remain equivalently susceptible to antibodies that do not target coreceptor binding domains. Studies with envelope V3 loop directed antibodies and chimeric envelopes suggest that the neutralization susceptibility differences are potentially influenced by the V3 loop. In vitro passage of a neutralization sensitive CCR5-using virus in the presence of autologous plasma and activated CD4+ T cells led to the emergence of a CXCR4-utilizing virus in 1 of 3 cases. These results suggest that in some but not necessarily all HIV-1 infected individuals humoral immune pressure against the autologous virus selects for CXCR4-using variants, which potentially accelerates disease progression. Our observations have implications for using antibodies for HIV-1 immune therapy. PMID:27428434

  12. [Adaptive immune response and associated trigger factors in atopic dermatitis].

    PubMed

    Heratizadeh, A; Werfel, T; Rösner, L M

    2015-02-01

    Due to a broad variety of extrinsic trigger factors, patients with atopic dermatitis (AD) are characterized by complex response mechanisms of the adaptive immune system. Notably, skin colonization with Staphylococcus aureus seems to be of particular interest since not only exotoxins, but also other proteins of S. aureus can induce specific humoral and cellular immune responses which partially also correlate with the severity of AD. In a subgroup of AD patients Malassezia species induce specific IgE- and T cell-responses which has been demonstrated by atopy patch tests. Moreover, Mala s 13 is characterized by high cross-reactivity to the human corresponding protein (thioredoxin). Induction of a potential autoallergy due to molecular mimicry seems therefore to be relevant for Malassezia-sensitized AD patients. In addition, sensitization mechanisms to autoallergens aside from cross-reactivity are under current investigation. Regarding inhalant allergens, research projects are in progress with the aim to elucidate allergen-specific immune response mechanisms in more depth. For grass-pollen allergens a flare-up of AD following controlled exposure has been observed while for house dust mite-allergens a polarization towards Th2 and Th2/Th17 T cell phenotypes can be observed. These and further findings might finally contribute to the development of specific and effective treatments for aeroallergen-sensitized AD patients. PMID:25532900

  13. Leptospiral Proteins Recognized during the Humoral Immune Response to Leptospirosis in Humans

    PubMed Central

    Guerreiro, Hygia; Croda, Júlio; Flannery, Brendan; Mazel, Mary; Matsunaga, James; Reis, Mitermayer Galvão; Levett, Paul N.; Ko, Albert I.; Haake, David A.

    2001-01-01

    Leptospirosis is an emerging zoonosis caused by pathogenic spirochetes belonging to the genus Leptospira. An understanding of leptospiral protein expression regulation is needed to develop new immunoprotective and serodiagnostic strategies. We used the humoral immune response during human leptospirosis as a reporter of protein antigens expressed during infection. Qualitative and quantitative immunoblot analysis was performed using sera from 105 patients from Brazil and Barbados. Sera from patients with other diseases and healthy individuals were evaluated as controls. Seven proteins, p76, p62, p48, p45, p41, p37, and p32, were identified as targets of the humoral response during natural infection. In both acute and convalescent phases of illness, antibodies to lipopolysaccharide were predominantly immunoglobulin M (IgM) while antibodies to proteins were exclusively IgG. Anti-p32 reactivity had the greatest sensitivity and specificity: positive reactions were observed in 37 and 84% of acute- and convalescent-phase sera, respectively, while only 5% of community control individuals demonstrated positive reactions. Six immunodominant antigens were expressed by all pathogenic leptospiral strains tested; only p37 was inconsistently expressed. Two-dimensional immunoblots identified four of the seven infection-associated antigens as being previously characterized proteins: LipL32 (the major outer membrane lipoprotein), LipL41 (a surface-exposed outer membrane lipoprotein), and heat shock proteins GroEL and DnaK. Fractionation studies demonstrated LipL32 and LipL41 reactivity in the outer membrane fraction and GroEL and DnaK in the cytoplasmic fraction, while p37 appeared to be a soluble periplasmic protein. Most of the other immunodominant proteins, including p48 and p45, were localized to the inner membrane. These findings indicate that leptospiral proteins recognized during natural infection are potentially useful for serodiagnosis and may serve as targets for vaccine

  14. Leptospiral proteins recognized during the humoral immune response to leptospirosis in humans.

    PubMed

    Guerreiro, H; Croda, J; Flannery, B; Mazel, M; Matsunaga, J; Galvão Reis, M; Levett, P N; Ko, A I; Haake, D A

    2001-08-01

    Leptospirosis is an emerging zoonosis caused by pathogenic spirochetes belonging to the genus Leptospira. An understanding of leptospiral protein expression regulation is needed to develop new immunoprotective and serodiagnostic strategies. We used the humoral immune response during human leptospirosis as a reporter of protein antigens expressed during infection. Qualitative and quantitative immunoblot analysis was performed using sera from 105 patients from Brazil and Barbados. Sera from patients with other diseases and healthy individuals were evaluated as controls. Seven proteins, p76, p62, p48, p45, p41, p37, and p32, were identified as targets of the humoral response during natural infection. In both acute and convalescent phases of illness, antibodies to lipopolysaccharide were predominantly immunoglobulin M (IgM) while antibodies to proteins were exclusively IgG. Anti-p32 reactivity had the greatest sensitivity and specificity: positive reactions were observed in 37 and 84% of acute- and convalescent-phase sera, respectively, while only 5% of community control individuals demonstrated positive reactions. Six immunodominant antigens were expressed by all pathogenic leptospiral strains tested; only p37 was inconsistently expressed. Two-dimensional immunoblots identified four of the seven infection-associated antigens as being previously characterized proteins: LipL32 (the major outer membrane lipoprotein), LipL41 (a surface-exposed outer membrane lipoprotein), and heat shock proteins GroEL and DnaK. Fractionation studies demonstrated LipL32 and LipL41 reactivity in the outer membrane fraction and GroEL and DnaK in the cytoplasmic fraction, while p37 appeared to be a soluble periplasmic protein. Most of the other immunodominant proteins, including p48 and p45, were localized to the inner membrane. These findings indicate that leptospiral proteins recognized during natural infection are potentially useful for serodiagnosis and may serve as targets for vaccine

  15. Adaptive immune responses to Candida albicans infection.

    PubMed

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  16. [CRISPR adaptive immunity systems of procaryotes].

    PubMed

    2012-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a newly identified prokaryotic immunity system against foreign genetic elements. In contrast to other cellular defense mechanisms (e.g. restriction-modification) CRISPR-mediated immunity is adaptive and can be programmed to protect cells against a particular bacteriophage or conjugative plasmid. In this review we describe general principles of CRISPR systems action and summarize known details of CRISPR systems from different microorganisms.

  17. Immunologic effects of nickel. 1. Suppression of cellular and humoral immunity

    SciTech Connect

    Smialowicz, R.J.; Rogers, R.R.; Riddle, M.M.; Stott, G.A.

    1984-04-01

    The effects of nickel chloride on the cellular and humoral immune responses of mice were studied. A single intramuscular injection of nickel chloride (18.3 mg/kg) caused a significant involution of the thymus within 2 days following treatment. Significant reductions in the in vitro mitogen-stimulated response of lymphocytes from nickel chloride-treated mice (24 hr following a single injection of 18.3 or 36.6 mg/kg) were observed for the T-cell mitogens phytohemagglutinin (PHA) and concanavalin A (Con A), and the B- and T-cell mitogen pokeweed mitogen (PWM) but not the B-cell mitogen lipopolysaccharide (LPS). Theta-positive but not Ig-positive spleen cells were significantly reduced in nickel-treated mice compared with controls. Significant suppression of the primary antibody response to the T-cell dependent antigen sheep red blood cells was observed following a single injection of 18.3 mg/kg NiCl/sub 2/. Natural killer (NK) cell activity was significantly suppressed following a single injection of 18.3 mg/kg NiCl/sub 2/. The administration of NiCl/sub 2/ (18.3 mg/kg) also decreased the amount of endotoxin required to kill 50% of treated mice, although this was not statistically significant. In all cases the immunosuppressive effects of NiCl/sub 2/ were found to be transient with responses returning to normal within a few days. No alteration in the response of mice immunized with the T-cell independent antigen polyvinylpyrrolidone was observed following treatment with nickel. Furthermore, the phagocytic capacity of resident peritoneal macrophages from nickel-treated mice was not significantly different from saline-injected mice. The results indicate that NiCl/sub 2/ predominantly affects T-cell mediated immune responses and natural killer cells.

  18. Cellular and humoral immune responses to Borrelia burgdorferi antigens in patients with culture-positive early Lyme disease.

    PubMed

    Vaz, A; Glickstein, L; Field, J A; McHugh, G; Sikand, V K; Damle, N; Steere, A C

    2001-12-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA.

  19. Cellular and Humoral Immune Responses to Borrelia burgdorferi Antigens in Patients with Culture-Positive Early Lyme Disease

    PubMed Central

    Vaz, Austin; Glickstein, Lisa; Field, Jodie A.; McHugh, Gail; Sikand, Vijay K.; Damle, Nitin; Steere, Allen C.

    2001-01-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA. PMID:11705918

  20. Honey bee drones maintain humoral immune competence throughout all life stages in the absence of vitellogenin production.

    PubMed

    Gätschenberger, Heike; Gimple, Olaf; Tautz, Jürgen; Beier, Hildburg

    2012-04-15

    Drones are haploid male individuals whose major social function in honey bee colonies is to produce sperm and mate with a queen. In spite of their limited tasks, the vitality of drones is of utmost importance for the next generation. The immune competence of drones - as compared to worker bees - is largely unexplored. Hence, we studied humoral and cellular immune reactions of in vitro reared drone larvae and adult drones of different age upon artificial bacterial infection. Haemolymph samples were collected after aseptic and septic injury and subsequently employed for (1) the identification of immune-responsive peptides and/or proteins by qualitative proteomic analyses in combination with mass spectrometry and (2) the detection of antimicrobial activity by inhibition-zone assays. Drone larvae and adult drones responded with a strong humoral immune reaction upon bacterial challenge, as validated by the expression of small antimicrobial peptides. Young adult drones exhibited a broader spectrum of defence reactions than drone larvae. Distinct polypeptides including peptidoglycan recognition protein-S2 and lysozyme 2 were upregulated in immunized adult drones. Moreover, a pronounced nodulation reaction was observed in young drones upon bacterial challenge. Prophenoloxidase zymogen is present at an almost constant level in non-infected adult drones throughout the entire lifespan. All observed immune reactions in drones were expressed in the absence of significant amounts of vitellogenin. We conclude that drones - like worker bees - have the potential to activate multiple elements of the innate immune response.

  1. Intravenous usage of gammaglobulin: humoral immunodeficiency, immune thrombocytopenic purpura, and newer indications.

    PubMed

    Bussel, J B; Cunningham-Rundles, C

    1985-01-01

    Intravenous gammaglobulin is effective therapy of ITP and other autoantibody-mediated immune cytopenias. All children as well as adults unresponsive to splenectomy or with known immune deficiency are probably the best candidates for treatment with IVGG. Its major advantage, in addition to its efficacy of treatment and possible remission-inducing effect, is that it has the fewest side effects of any treatment of ITP so that it is the best maintenance therapy of patients when effective. Future uses of IVGG remain to be determined. Premature infants with a high mortality from sepsis and with hypogammaglobulinemia due to termination of pregnancy prior to transplacental antibody transfer may benefit from IVGG. A preliminary study suggested such benefit and also showed safety of IVGG treatment in that there was no impaired immune responsiveness of these prematures at 2 years of age (28). Another potential usage of IVGG involves the treatment of the hypogammaglobulinemia associated with certain types of malignancy. Patients with CLL, especially in the advanced stages, are often hypogammaglobulinemic. Multiple myeloma and Waldenstrom's macroglobulinemia are two other B-cell malignancies associated with antibody production defects which might benefit from antibody replacement therapy. Therapeutic IgG levels may be harder to obtain due to hypercatabolism of immunoglobulin. The issue of immune hyporesponsiveness during intensive chemotherapy is also unexplored. Secondary antibody responses do not seem to be impaired, but primary responses, as tested in numerous immunization studies, are decidedly impaired. Certain protocols, especially those treating high-risk acute leukemias and neuroblastoma during induction therapy are intensive with high rates of sepsis, and may warrant trials of prophylactic IVGG. Similarly, some form of humoral prophylaxis is becoming an important part of the handling of the patient undergoing bone marrow transplantation not only to prevent bacterial

  2. Humoral immune response of water buffalo monitored with three different antigens of Toxocara vitulorum.

    PubMed

    de Souza, E M; Starke-Buzetti, W A; Ferreira, F P; Neves, M F; Machado, R Z

    2004-06-10

    Humoral immune response of water buffalo naturally infected with Toxocara vitulorum was monitored using three different antigens of this parasite in serum and colostrum of buffalo cows and calves. Soluble extract (Ex) and excretory/secretory (ES) larval antigens and perienteric fluid antigen (Pe) of adult T. vitulorum were used to measure the antibody levels by an indirect ELISA. Serum of 7-12 buffalo cows for the first 365 days and colostrum of the same number of buffalo cows for the first 60 days of parturition, and serum of 8-10 buffalo calves for the first 365 days after birth were assayed. The ELISA detected antibodies against all three T. vitulorum antigens in the colostrum and serum of 100% of buffalo cows and calves examined. The highest antibody levels against Ex, ES and Pe antigens were detected in the buffalo cow sera during the perinatal period and were maintained at high levels through 300 days after parturition. On the other hand, colostrum antibody concentrations of all three antigens were highest on the first day post-parturition, but decreased sharply during the first 15 days. Concomitantly to the monitoring of immune response, the parasitic status of the calves was also evaluated. In calves, antibodies passively acquired were at the highest concentrations 24 h after birth and remained at high levels until 45 days coincidentally with the peak of T. vitulorum infection. The rejection of the worms by the calves occurred simultaneously with the decline of antibody levels, which reached their lowest levels between 76 and 150 days. Thereafter, probably because of the presence of adults/larvae stimulation, the calves acquired active immunity and the antibodies started to increase slightly in the serum and plateaued between the days 211 and 365. All three antigens were detected by the serum antibodies of buffalo calves; however, the concentration of anti-Pe antibody was higher than anti-EX and anti-ES, particularly after 90 days of age. By conclusion, the

  3. Protective effect of melatonin against propoxur-induced oxidative stress and suppression of humoral immune response in rats.

    PubMed

    Suke, Sanvidhan G; Kumar, Achint; Ahmed, Rafat S; Chakraborti, Ayanabha; Tripathi, A K; Mediratta, P K; Banerjee, B D

    2006-04-01

    Effect of melatonin in attenuation of propoxur induced oxidative stress and suppression of humoral immune response was studied in rats. Oral administration of propoxur (10 mg/kg) increased lipid peroxidation in serum after 28 days treatment. Superoxide dismutase, catalase and glutathione were also altered following propoxur exposure. In addition propoxur exposure markedly suppressed humoral immune response as assessed by antibody titre and plaque forming cell assay. Simultaneous treatment with melatonin (5 mg/kg, ip) markedly attenuated the effect of propoxur on (a) lipid peroxidation, (b) oxidative stress parameters and (c) immunotoxicity. Results have been discussed in the light of possible immunopotentiating and antioxidant effects of melatonin to understand the influence of oxidative stress on propoxur induced immunomodulation.

  4. [Effects of hemosplenic perfusion on the state of humoral immunity in suppurative-septic complications in emergency abdominal surgery].

    PubMed

    Chikaev, V F; Safina, N A; Zinkevich, O D

    2000-01-01

    Hemosplenoperfusion (HSP) through the donor porcine spleen was used in complex treatment of 75 patients aged from 16 to 75 with pyo-septic complications of diseases and traumas of the abdominal cavity. The influence of HSP on the state of humoral immunity was estimated by the level of antibacterial antibodies to the antigens of E. coli, Ps. aeruginosa, Pr. mirabilis, St. aureus, Bact. fragilis, Bact. bifidum and antiendotoxin antibodies to glycolipid S. Minnesota RE 595, general cortical part of the lipopolysaccharide of Gram-negative bacteria. The use of HPS promoted the resolving of endogenous intoxication, elevation of the strain of humoral antibacterial immunity and is characterized by a reliable increase of the level of antibacterial antibodies in the dynamics of treatment.

  5. Comparison of Effects of Smoking and Smokeless Tobacco “Maras Powder” Use on Humoral Immune System Parameters

    PubMed Central

    Aral, Murat; Ekerbicer, Hasan Cetin; Celik, Mustafa; Ciragil, Pınar; Gul, Mustafa

    2006-01-01

    Background. The aim of this study is to assess the impacts of “Maras powder” and cigarette smoking on the parameters of the humoral immune system. Material and Methods. One hundred seventy seven subjects were included in the study. The IgA, IgG, IgM, C3 and C4 levels were detected via nephelometric method. Results. In 1.4% of the control group IgM levels were below normal where it was 10.8% and 18.6% in Maras powder group and in cigarette smoking group respectively. The IgM levels of both groups were significantly lower compared to the control group (P < .05). Nonetheless, the IgE levels of Maras powder group and smoking group were found to be remarkably higher compared to the control group (P < .01). Conclusion. Effects of Maras powder on humoral immune response were found to be similar to that of smoking. PMID:16951495

  6. Molecular determinants of humoral immune specificity for the occupational allergen, methylene diphenyl diisocyanate.

    PubMed

    Wisnewski, Adam V; Liu, Jian

    2013-06-01

    Methylene diphenyl diisocyanate (MDI), a low molecular weight chemical important for producing polyurethane foam, coatings, and elastomers is a major cause of occupational asthma, however, mechanisms of disease pathogenesis remain poorly understood. This study characterizes the rearranged germline and hypervariable region cDNA of new anti-MDI secreting hybridomas derived from mice immunized with MDI-conjugated to autologous serum proteins. Six IgG1 secreting clones were identified in initial screening ELISAs, based on differential binding to MDI conjugated human albumin vs. mock exposed albumin. The mAbs secreted by the hybridomas also recognized MDI conjugated to other model proteins (e.g. ovalbumin, transferrin), but did not bind unconjugated proteins, or protein conjugates prepared with other isocyanates (e.g. TDI, HDI). The mAbs displayed MDI-dose dependent binding in ELISA and Western blot, and exhibited varying degrees of cross-competition, suggesting differences in epitope specificity. The cDNA encoding the monoclonal antibodies reveal clonal differences in the CDR3 regions, germline gene usage, and patterns of somatic hypermutation related to epitope specificity. Together, the data provide new insight into the molecular determinants of humoral MDI specificity, and characterize anti-MDI IgG1 mAbs that may be developed into useful diagnostic reagents.

  7. Dietary nucleotides might influence the humoral immune response against cow's milk proteins in preterm neonates.

    PubMed

    Martínez-Augustin, O; Boza, J J; Del Pino, J I; Lucena, J; Martínez-Valverde, A; Gil, A

    1997-01-01

    The objective of this study was to evaluate the influence of dietary nucleotide supplementation in preterm infants during the first month of life on the intestinal permeability to lactulose, mannitol and to beta-lactoglobulin and on the development of circulating antibodies to beta-lactoglobulin and alpha-casein. Twenty-seven preterm infants were enrolled in the study; 11 of them were fed a standard low-birth weight milk formula and 16 infants were fed the same formula supplemented with nucleotides at similar levels to those found in human milk. Blood and urine samples were obtained at 1, 7 and 30 days of age. Serum beta-lactoglobulin, serum IgG antibody to alpha-casein and serum IgG antibody to beta-lactoglobulin were measured by ELISA. The lactulose/mannitol urinary excretion rate was measured by gas liquid chromatography. Neither the intestinal permeability to saccharides nor the intestinal absorption of beta-lactoglobulin were affected by the nucleotide supplementation. However, serum concentrations of IgG antibody to beta-lactoglobulin were higher in preterm neonates fed the supplemented formula than in those fed the standard formula. According to these results, dietary nucleotides might influence the maturation of the humoral immune response in preterm newborn infants.

  8. Genetic control of the humoral immune response to avian egg white lysozymes in the chicken

    SciTech Connect

    Flanagan, M.P.

    1987-01-01

    Chickens from two closely related sublines, GHs-B6 and GHs-B13, differing serologically at the major histocompatibility complex, were significantly different in their humoral response to three avian egg white lysozymes. Specific antisera levels were measured by radioimmunoassay using /sup 125/I-labeled lysozymes. Antibodies elicited in response to these lysozymes are assumed to be directed against sites on these lysozymes where their amino acid sequence differs from that of the recipient G. domesticus egg white lysozyme (HEL). GHs-B6 birds produced a high level of antibody in response to immunization of turkey (TEL), pheasant (PhL) and guinea hen (GHL) lysozymes. GHs-B13 birds produced no detectable antibody to TEL, were intermediate in their response to PhL and equaled the antibody production of GHs-B6 birds in response to GHL. Antisera to each lysozyme were examined for crossreactivity with all other lysozymes by use of a competitive binding assay.

  9. MHC/Peptide-Specific Interaction of the Humoral Immune System: A New Category of Antibodies.

    PubMed

    Held, Gerhard; Luescher, Immanuel F; Neumann, Frank; Papaioannou, Chrysostomos; Schirrmann, Thomas; Sester, Martina; Smola, Sigrun; Pfreundschuh, Michael

    2015-11-01

    Abs bind to unprocessed Ags, whereas cytotoxic CD8(+) T cells recognize peptides derived from endogenously processed Ags presented in the context of class I MHC complexes. We screened, by ELISA, human sera for Abs reacting specifically with the influenza matrix protein (IMP)-derived peptide(58-66) displayed by HLA-A*0201 complexes. Among 653 healthy volunteers, blood donors, and women on delivery, high-titered HLA-A*0201/IMP(58-66) complex-specific IgG Abs were detected in 11 females with a history of pregnancies and in 1 male, all HLA-A*0201(-). These Abs had the same specificity as HLA-A*0201/IMP(58-66)-specific cytotoxic T cells and bound neither to HLA-A*0201 nor the peptide alone. No such Abs were detected in HLA-A*0201(+) volunteers. These Abs were not cross-reactive to other self-MHC class I alleles displaying IMP(58-66), but bound to MHC class I complexes of an HLA nonidentical offspring. HLA-A*0201/IMP(58-66) Abs were also detected in the cord blood of newborns, indicating that HLA-A*0201/IMP(58-66) Abs are produced in HLA-A*0201(-) mothers and enter the fetal blood system. That Abs can bind to peptides derived from endogenous Ags presented by MHC complexes opens new perspectives on interactions between the cellular and humoral immune system. PMID:26416277

  10. Pleurodeles waltl (urodele amphibian) humoral immunity changes after a space flight

    NASA Astrophysics Data System (ADS)

    Frippiat, J.-P.; Dournon, C.

    Previous studies reported important immunological changes after a space flight. However, most of these studies were focused on cellular immunity. To better understand what could be the effects of a space flight on the humoral immunity, we have analyzed the immunoglobulin heavy chain repertoire of adult P. waltl reared 1) on earth in classical conditions, 2) on board the MIR space station during five months (Perseus mission), and 3) on earth in the same conditions than those found on board MIR. P. walt was chosen for this study because this animal requires only limited care, thereby facilitating the work of the crew, and also because it was successfully used in previous missions. A prerequisite to this work was the knowledge of the number of immunoglobulin (Ig) isotypes, VH families, JH, and DH segments used by this amphibian. Once we had these data, we were able to analyze the level of transcription of Ig heavy chains, and the usage of the VH families in the three kinds of samples cited above. Our data revealed a strong increase in the level of IgY (IgG analogue), but not of IgM, heavy chain transcription in animals reared on board MIR. We also noted a profound change in the usage of the different VH families. A prolonged stay in space could therefore affect quantitatively and qualitatively the antibody production. Further studies will be necessary to evaluate the functional importance of these observations, and the time required to come back to a normal situation once back on earth. Finally, our experiments demonstrate that P. waltl is a useful model to study some of the physiological changes observed after a space flight.

  11. [A study of the humoral immunity of mice injected with beryllium chloride].

    PubMed

    Sakaguchi, S; Sakaguchi, T; Nakamura, I; Kudo, Y

    1992-12-01

    We studied changes of humoral immunity, such as complement pathway activity, C3 contents and contents of immunoglobulin, in mice injected subcutaneously with BeCl2 or CuCl2 once a week for 12 weeks. Mean body weights of JCL: ICR female mice were approximately 30g in control mice (control group; n = 7), in mice injected with Be (Be group; n = 8) and in mice injected with Cu (Cu group; n = 8). Values of classical complement pathway activity (CH50) were 18.8 +/- 1.4 U per ml, 15.3 +/- 1.8 U per ml and 16.7 +/- 1.3 U per ml in the control group, Be group and Cu group, respectively. The CH50 values of Be and Cu groups were significantly lower than that of the control group (P < 0.01). In contrast, values of alternative complement pathway activity (ACH50) and contents of C3 were almost constant in the three groups. The immunoglobulin content in the Be group tended to increase. The activity of alanine aminotransferase in the Be group was markedly higher than that in the control group (P < 0.05), and the aspartate aminotransferase activity was also high. The CH50 value of mice injected with a small amount of Be once a week over a 12-week period decreased markedly, although either the ACH50 value or C3 content was the same as in the control group. The immunoglobulin content somewhat increased in the Be group. These results suggest the possibility that immune complex is induced by Be.

  12. Investigating the humoral immune response in chronic venous leg ulcer patients colonised with Pseudomonas aeruginosa.

    PubMed

    Jacobsen, Jasper N; Andersen, Anders S; Sonnested, Michael K; Laursen, Inga; Jorgensen, Bo; Krogfelt, Karen A

    2011-02-01

    The ability to manage the bioburden in chronic wounds is most likely coupled to the humoral immune response of the patient. We analysed markers of systemic immune response in patients with chronic venous leg ulcers (CVLUs) colonised (no-systemic infection) with the opportunistic pathogen Pseudomonas aeruginosa. Sera from 44 clinically non infected patients with CVLUs were analysed for total IgM and IgG isotype 1-4, complement C3, mannose-binding lectin (MBL), interleukin (IL)-6, C-reactive protein (CRP) and specific anti-P. aeruginosa antibodies against exotoxin A, elastase and alkaline phosphatase. Concentrations of IL-6 versus CRP intercorrelated (β = 2.43 95% CI (1.34-4.34)), but were independent of P. aeruginosa colonisation. MBL deficiency (MBL < 500 ng/ml) correlated to high serum levels of IgG(1) (P = 0.038) consistent with a compensatory mechanism, but not related to presence of P. aeruginosa in the ulcers. Twenty-four patients (54.5%) were culture positive for P. aeruginosa, also conferring significantly high serum levels of complement C3 (P = 0.014), but only two of these had positive titres for antibodies against exotoxin A. All patient sera were negative for antibodies against elastase and alkaline phosphatase. Fluorescent in situ hybridization analysis on randomly selected culture-positive patients could not establish unambiguous presence of P. aeruginosa biofilms in the ulcers. A multiple regression model showed P. aeruginosa and systemic CRP as significant factors in deterioration of ulcer healing rate.

  13. Profile and persistence of the virus-specific neutralizing humoral immune response in human survivors of Sudan ebolavirus (Gulu).

    PubMed

    Sobarzo, Ariel; Groseth, Allison; Dolnik, Olga; Becker, Stephan; Lutwama, Julius Julian; Perelman, Eddie; Yavelsky, Victoria; Muhammad, Majidat; Kuehne, Ana I; Marks, Robert S; Dye, John M; Lobel, Leslie

    2013-07-15

    To better understand humoral immunity following ebolavirus infection, a serological study of the humoral immune response against the individual viral proteins of Sudan ebolavirus (Gulu) in human survivors was performed. An enzyme-linked immunosorbent assay specific for full-length recombinant viral proteins NP, VP30, VP40, and GP1-649 (GP lacking the transmembrane domain) of Sudan ebolavirus (Gulu) was used as well as a plaque reduction neutralization test. Serum samples from human survivors, which were collected up to 10 years following recovery, were screened and analyzed. Results demonstrate that samples obtained 10 years following infection contain virus-specific antibodies that can neutralize virus. Neutralization correlates well with immunoreactivity against the viral proteins NP, VP30, and GP1-649. Sera from individuals who died or those with no documented infection but immunoreactive to ebolavirus did not neutralize. This work provides insight into the duration, profile of immunoreactivity, and neutralization capacity of the humoral immune response in ebolavirus survivors. PMID:23585686

  14. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response.

    PubMed

    Pickering, Brad S; Hardham, John M; Smith, Greg; Weingartl, Eva T; Dominowski, Paul J; Foss, Dennis L; Mwangi, Duncan; Broder, Christopher C; Roth, James A; Weingartl, Hana M

    2016-09-14

    Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus, within the family Paramyxoviridae. Nipah virus has caused outbreaks of human disease in Bangladesh, Malaysia, Singapore, India and Philippines, in addition to a large outbreak in swine in Malaysia in 1998/1999. Recently, NiV was suspected to be a causative agent of an outbreak in horses in 2014 in the Philippines, while HeV has caused multiple human and equine outbreaks in Australia since 1994. A swine vaccine able to prevent shedding of infectious virus is of veterinary and human health importance, and correlates of protection against henipavirus infection in swine need to be better understood. In the present study, three groups of animals were employed. Pigs vaccinated with adjuvanted recombinant soluble HeV G protein (sGHEV) and challenged with HeV, developed antibody levels considered to be protective prior to the challenge (titers of 320). However, activation of the cell-mediated immune response was not detected, and the animals were only partially protected against challenge with 5×10(5) PFU of HeV per animal. In the second group, cross-neutralizing antibody levels against NiV in the sGHEV vaccinated animals did not reach protective levels, and with no activation of cellular immune memory, these animals were not protected against NiV. Only pigs orally infected with 5×10(4) PFU of NiV per animal were protected against nasal challenge with 5×10(5) PFU of NiV per animal. This group of pigs developed protective antibody levels, as well as cell-mediated immune memory. Peripheral blood mononuclear cells restimulated with UV-inactivated NiV upregulated IFN-gamma, IL-10 and the CD25 activation marker on CD4(+)CD8(+) T memory helper cells and to lesser extent on CD4(-)CD8(+) T cells. In conclusion, both humoral and cellular immune responses were required for protection of swine against henipaviruses. PMID:27544586

  15. Attenuated D2 16681-PDK53 vaccine: defining humoral and cell-mediated immunity.

    PubMed

    Rabablert, J; Yoksan, S

    2009-01-01

    Dengue viruses cause 50-100 million cases of acute febrile disease every year, including more than 500000 reported cases of the severe forms of the disease-dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Attempts to create conventional vaccines have been hampered by the lack of suitable experimental models, the need to provide protection against all four serotypes simultaneously and the possible involvement of virus-specific immune responses in severe disease. Live attenuated D2 16681-PDK53 vaccine was first developed from Mahidol University, Thailand. This vaccine induced both humoral and cell-mediated immunity and lack of reactogeneticity in humans. Infectious cDNA clones of the virulent D2 16681 virus and its attenuated D2 16681-PDK53 were constructed. The attenuated virus elicited neutralizing antibodies in mice and monkeys and developed viremia in monkeys. At molecular level, patterns of cytokines which are immunological mediators released from human mononuclear cells obtained from dengue naïve and immune donors infected with this attenuated virus compared with virulent virus were studied. In dengue naïve PBMC, the virulent and attenuated clones induced alternation in expression of 25 and 24 versus 13 and 18 genes out of 268 genes on day 1 and 3. In dengue immune PBMC, the virulent and attenuated clones induced alternation in expression of 33 and 38 versus 25 and 29 genes on days 1 and 3. Up-regulation of IL-1beta, IL-6, IL-8, IL-10, IFN-alpha, IFNgammaR, MIP-1alpha, MIP-1beta, MIP-2alpha, VEGF and down-regulation of IL-4, IL-4R, IL-RII, MIF, RANTES, IGF-1, GM-CSF-2 were shown. This review pointed out the infectious clones of the attenuated D2 16681-PDK53 was safe and induced both neutralizing antibodies in vivo and cytokine gene expression in vitro at molecular level. Furthermore, the phenotypic markers of ideal dengue vaccine could be included the alteration of cytokine gene expression and cytokine production in human mononuclear cells.

  16. Complement receptor type two (CR2,CR21): a target for influencing the humoral immune response and antigen-trapping.

    PubMed

    Prodinger, W M

    1999-01-01

    Cellular receptors for complement C3 fragments deposited on antigens are important bricks in the wall defending against microbial pathogens. The part of complement receptor type 2 (CR2; CD21) deals with enhancing humoral immune responses and with long-term trapping of C3d-coated antigen by follicular dendritic cells. CR2 is also pivotal for Epstein-Barr virus (EBV) infection. Here, the current understanding, how CR2 interacts with its ligands C3d, EBV, and CD23 is summarized. The potential to target CR2 for clinical therapy or immunization purposes are discussed. PMID:10741859

  17. Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (Rutilus frisii kutum) fry.

    PubMed

    Hoseinifar, Seyed Hossein; Zoheiri, Fazel; Caipang, Christopher Marlowe

    2016-08-01

    The present study investigates the efficiency of graded levels (0, 0.25, 0.5, 1 and 2%) of sodium propionate (SP) on Caspian white fish (Rutilus frisii kutum) fry growth performance, skin mucus immune response as well as humoral immune parameters. Fish were divided into 5 groups repeated in triplicates and each group were fed on experimental diets for 7 weeks. Growth performance parameters, skin mucus total immunoglobulin (Ig) level, lysozyme, protease and alkaline phosphatase (ALP) activity as well as the non-specific humoral immune response (total Ig, lysozyme, alternative haemolytic complement activity (ACH50) were determined at the end of feeding trial. The results showed that supplementation of diet with 0.25% SP significantly improved growth performance compared control group (P < 0.05). Evaluation of skin mucus immune parameters revealed significant elevation in fish fed SP supplemented diet (P < 0.05). Variation in the levels of responses was evident among different SP level and more pronounced in 0.25% and 0.5% treatments. Regarding non-specific humoral response, remarkably increased lysozyme and ACH50 activities were observed in 0.25% and 0.5% groups compared other treatments (P < 0.05); highest level in 0.25% SP fed fish. No significant change was noticed for serum total Ig compared control group (P > 0.05), except 0.25% SP treatment which was significantly higher than those in other groups (P < 0.05). These results revealed that inclusion of administration of 0.25% and 0.5% SP in early stage of the Caspian white fish culture could improve mucosal and non-specific immune responses as well as performance. PMID:27343374

  18. Humoral immune response and TLR9 gene expression in Pacific red snapper (Lutjanus peru) experimentally exposed to Aeromonas veronii.

    PubMed

    Reyes-Becerril, Martha; Angulo, Carlos; Ascencio, Felipe

    2015-02-01

    Aquaculture production of Pacific red snapper Lutjanus peru is growing rapidly in Mexico, especially in Gulf of California. As it is a relatively new aquaculture species there are few reports evaluating its immune response to pathogens. The Gram-negative bacteria Aeromonas veronii is a heterogeneous organism that causes the disease known as motile aeromonad septicemia, which is responsible for serious economic loss in seabream culture due to bacterial infections. For the purpose of this study, juvenile Pacific red snapper specimens were intraperitoneally injected with low doses of A. veronii (1 × 10(6) CFU ml(-1)). Changes in humoral immune parameters (total protein, myeloperoxidase, lisozyme and antiprotease activities and IgM levels), as well as superoxide dismutase and catalase activities, and TLR9 gene expression were evaluated 24 and 48 h after injection. Overall, the results showed an enhanced in humoral immune parameters and SOD and CAT activities in fish infected with A. veronii compared with control group at 24 or 48 h. By real time PCR assays, the basal mRNA transcripts of TLR9 showed that were highly expressed in intestine and leucocytes compared to skin, head kidney, liver and gill. Then, the mRNA expression levels of TLR9 in head kidney, skin, liver and intestine were analyzed in non-infected and experimentally infected fish 24 and 48 h after injection. A. veronii up-regulated the expression of TLR9 at 24 or 48 h of exposure in all samples analyzed except in liver. Interestingly, intestine produced the greatest increase in transcript levels upon exposure (48 h) to A. veronii. Taken together, our results suggest that low doses of A. veronii infection inducing humoral immune system and TLR9 immune gene in Pacific red snapper that can be useful in the health control of this species.

  19. Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (Rutilus frisii kutum) fry.

    PubMed

    Hoseinifar, Seyed Hossein; Zoheiri, Fazel; Caipang, Christopher Marlowe

    2016-08-01

    The present study investigates the efficiency of graded levels (0, 0.25, 0.5, 1 and 2%) of sodium propionate (SP) on Caspian white fish (Rutilus frisii kutum) fry growth performance, skin mucus immune response as well as humoral immune parameters. Fish were divided into 5 groups repeated in triplicates and each group were fed on experimental diets for 7 weeks. Growth performance parameters, skin mucus total immunoglobulin (Ig) level, lysozyme, protease and alkaline phosphatase (ALP) activity as well as the non-specific humoral immune response (total Ig, lysozyme, alternative haemolytic complement activity (ACH50) were determined at the end of feeding trial. The results showed that supplementation of diet with 0.25% SP significantly improved growth performance compared control group (P < 0.05). Evaluation of skin mucus immune parameters revealed significant elevation in fish fed SP supplemented diet (P < 0.05). Variation in the levels of responses was evident among different SP level and more pronounced in 0.25% and 0.5% treatments. Regarding non-specific humoral response, remarkably increased lysozyme and ACH50 activities were observed in 0.25% and 0.5% groups compared other treatments (P < 0.05); highest level in 0.25% SP fed fish. No significant change was noticed for serum total Ig compared control group (P > 0.05), except 0.25% SP treatment which was significantly higher than those in other groups (P < 0.05). These results revealed that inclusion of administration of 0.25% and 0.5% SP in early stage of the Caspian white fish culture could improve mucosal and non-specific immune responses as well as performance.

  20. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    PubMed

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen.

  1. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    PubMed

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen. PMID:26410104

  2. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors

    PubMed Central

    Sobarzo, Ariel; Stonier, Spencer W.; Herbert, Andrew S.; Ochayon, David E.; Kuehne, Ana I.; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C.; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M.; Lobel, Leslie

    2016-01-01

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000–2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections. PMID:27187443

  3. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors.

    PubMed

    Sobarzo, Ariel; Stonier, Spencer W; Herbert, Andrew S; Ochayon, David E; Kuehne, Ana I; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M; Lobel, Leslie

    2016-01-01

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections. PMID:27187443

  4. Humoral Immunity to West Nile Virus Is Long-Lasting and Protective in the House Sparrow (Passer domesticus)

    PubMed Central

    Nemeth, Nicole M.; Oesterle, Paul T.; Bowen, Richard A.

    2009-01-01

    The house sparrow (Passer domesticus) is a common and abundant amplifying host of West Nile virus (WNV) and many survive infection and develop humoral immunity. We experimentally inoculated house sparrows with WNV and monitored duration and protection of resulting antibodies. Neutralizing antibody titers remained relatively constant for ≥ 36 months (N = 42) and provided sterilizing immunity for up to 36 months post-inoculation in 98.6% of individuals (N = 72). These results imply that immune house sparrows are protected from WNV infection for multiple transmission seasons. Additionally, individuals experiencing WNV-associated mortality reached significantly higher peak viremia titers than survivors, and mortality during acute infection was significantly higher in caged versus free-flight sparrows. A better understanding of the long-term immunity and mortality rates in birds is valuable in interpreting serosurveillance and diagnostic data and modeling transmission and disease dynamics. PMID:19407139

  5. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors.

    PubMed

    Sobarzo, Ariel; Stonier, Spencer W; Herbert, Andrew S; Ochayon, David E; Kuehne, Ana I; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M; Lobel, Leslie

    2016-05-11

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections.

  6. Abnormal humoral immune responses in peripheral blood lymphocyte cultures of bone marrow transplant recipients.

    PubMed Central

    Pahwa, S G; Pahwa, R N; Friedrich, W; O'Reilly, R J; Good, R A

    1982-01-01

    The present study was aimed at investigating recovery of humoral immunity in vitro after bone marrow transplantation in patients with acute leukemia and severe aplastic anemia. Hemolytic plaque assays were utilized to quantitate pokeweed mitogen-stimulated polyclonal immunoglobulin production and sheep erythrocyte antigen-specific antibody responses in cultures of peripheral blood mononuclear cells of 39 patients beginning at 1 month, for variable periods up to a maximum of 4 years after marrow transplantation. Three phases were identified: an early period of primary B cell dysfunction with concomitant immunoregulatory T cell abnormalities--i.e., decreased helper and increased suppressor activities; an intermediate phase in which B cell dysfunction could be attributed in large measure to immunoregulatory T cell abnormalities; and a late phase of normal B and T lymphocyte functions. Patients with graft-versus-host disease differed from those without it in that they often did not manifest increased T cell suppressor activity in the early period, and they were noted to have prolonged and profound B and T cell abnormalities in the chronic phase of their disease. In selected patients, simultaneous assessment of ratios of Leu-2 to Leu-3 antigens on T cells by monoclonal antibodies and of immunoregulatory T cell functions revealed a correlation between the two only late in the post-transplant period. These studies provide an insight into the ontogeny of B cell function in the post-transplant period and indicate that in certain situations phenotypic alterations in T cell subsets cannot reliably be used to predict abnormalities in their function in recipients of marrow transplantation. Images PMID:6211673

  7. Mycoplasma suis antigens recognized during humoral immune response in experimentally infected pigs.

    PubMed

    Hoelzle, L E; Hoelzle, K; Ritzmann, M; Heinritzi, K; Wittenbrink, M M

    2006-01-01

    Today, serodiagnostic tests for Mycoplasma suis infections in pigs have low accuracies. The development of novel serodiagnostic strategies requires a detailed analysis of the humoral immune response elicited by M. suis and, in particular, the identification of antigenic proteins of the agent. For this study, indirect enzyme-linked immunosorbent assay (ELISA) and immunoblot analyses were performed using pre- and sequential postinoculation sera from M. suis-infected and mock-infected control pigs. M. suis purified from porcine blood served as the antigen. Eight M. suis-specific antigens (p33, p40, p45, p57, p61, p70, p73, and p83) were identified as targets of the immunoglobulin G (IgG) antibody response during experimental infection, with p40, p45, and p70 being the preferentially recognized M. suis antigens. Besides the M. suis-specific antigens, porcine immunoglobulins were identified in blood-derived M. suis preparations. By immunoglobulin depletion, the specificity of the M. suis antigen for use in indirect ELISA was significantly improved. M. suis-specific Western blot and ELISA reactions were observed in all infected pigs by 14 days postinfection at the latest and until week 14, the end of the experiments. During acute clinical attacks of eperythrozoonosis, a derailment of the antibody response, determined by decreases in both the M. suis net ELISA values and the numbers of M. suis-specific immunoblot bands, was accompanied by peaking levels of autoreactive IgG antibodies. In conclusion, the M. suis-specific antigens found to stimulate specific IgG antibodies are potentially useful for the development of novel serodiagnostic tests.

  8. Humoral immunity status if infertile men antisperm antibodies and various pathologies of reproductive organs.

    PubMed

    Tchiokadze, Sh; Galdava, G

    2015-04-01

    The aim of the research was to study humoral immunity status of infertile men with high concentration of antisperm antibodies in blood plasma, sexually transmitted diseases (STD) and various pathologies of reproductive system. Analysis of 496 outpatient cards has been conducted. It was found, that patients with high levels of ASA >150 mg/l, or average 100-150 mg/l, had statistically significant (p=0,001) high content of Ig A and Ig G relative to the control group. Men with serum ASA concentration >100 mg/l, had statistically insignificant increased levels of all 3 types of immunoglobulins relative to the control group. Patients infected with Chlamydia trachomatis proved to have decreased IgA and IgG, 0,95±0,12 and 6,64±0,5 respectively (p<0,001). As for the patients infected with Ureaplasma urealyticum, decreased levels in Ig A and Ig M have been reported as 0,75±0,29 and 1,08±0,08 respectively (p<0,05). In the course of prostate gland inflammation statistically significant deficiency of Ig A and IgG was evident relative to the control group, 0,75±0,10 g/l and 5,94±0,54 g/l respectively (p<0,001). As for the males with varicocele, Ig A and Ig M decrease is noticeable relative to the control group, 1,06±0,21 g/l and 0,61±0,19 g/l respectively (p<0,05).

  9. Antibody Fc: Linking Adaptive and Innate Immunity

    PubMed Central

    Reichert, Janice M.

    2014-01-01

    Antibody Fc: Linking Adaptive and Innate Immunity, edited by Margaret E. Ackerman and Falk Nimmerjahn and published by Academic Press, provides a highly detailed examination of the involvement of the antibody Fc in mechanisms critical to both innate and adaptive immune responses. Despite a recent increase in format diversity, most marketed antibodies are full-length IgG molecules and the majority of the commercial clinical pipeline of antibody therapeutics is composed of Fc-containing IgG molecules, which underscores the importance of understanding how the Fc domain affects biological responses. The book is divided into six sections that include a total of 20 chapters. In order of their appearance, the sections provide extensive coverage of effector mechanisms, effector cells, Fc receptors, variability of the Fc domain, genetic associations, and evolving areas.

  10. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies.

  11. Prophylactic and Therapeutic Modulation of Innate and Adaptive Immunity Against Mucosal Infection of Herpes Simplex Virus

    PubMed Central

    Uyangaa, Erdenebileg; Patil, Ajit Mahadev

    2014-01-01

    Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, CD4+ Th1 T cells producing IFN-γ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses. PMID:25177251

  12. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination.

    PubMed

    Lambert, Nathaniel D; Haralambieva, Iana H; Kennedy, Richard B; Ovsyannikova, Inna G; Pankratz, Vernon Shane; Poland, Gregory A

    2015-03-15

    Vaccination with live attenuated rubella virus induces a strong immune response in most individuals. However, small numbers of subjects never reach or maintain protective antibody levels, and there is a high degree of variability in immune response. We have previously described genetic polymorphisms in HLA and other candidate genes that are associated with interindividual differences in humoral immunity to rubella virus. To expand our previous work, we performed a genome-wide association study (GWAS) to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus-specific neutralizing antibodies. We identified rs2064479 in the HLA-DPB1 genetic region as being significantly associated with humoral immune response variations after rubella vaccination (P = 8.62 × 10(-8)). All other significant SNPs in this GWAS were located near the HLA-DPB1 gene (P ≤ 1 × 10(-7)). These findings demonstrate that polymorphisms in HLA-DPB1 are strongly associated with interindividual differences in neutralizing antibody levels to rubella vaccination and represent a validation of our previous HLA work.

  13. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination.

    PubMed

    Lambert, Nathaniel D; Haralambieva, Iana H; Kennedy, Richard B; Ovsyannikova, Inna G; Pankratz, Vernon Shane; Poland, Gregory A

    2015-03-15

    Vaccination with live attenuated rubella virus induces a strong immune response in most individuals. However, small numbers of subjects never reach or maintain protective antibody levels, and there is a high degree of variability in immune response. We have previously described genetic polymorphisms in HLA and other candidate genes that are associated with interindividual differences in humoral immunity to rubella virus. To expand our previous work, we performed a genome-wide association study (GWAS) to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus-specific neutralizing antibodies. We identified rs2064479 in the HLA-DPB1 genetic region as being significantly associated with humoral immune response variations after rubella vaccination (P = 8.62 × 10(-8)). All other significant SNPs in this GWAS were located near the HLA-DPB1 gene (P ≤ 1 × 10(-7)). These findings demonstrate that polymorphisms in HLA-DPB1 are strongly associated with interindividual differences in neutralizing antibody levels to rubella vaccination and represent a validation of our previous HLA work. PMID:25293367

  14. Time course and metabolic costs of a humoral immune response in the little ringed plover Charadrius dubius.

    PubMed

    Abad-Gómez, José M; Gutiérrez, Jorge S; Villegas, Auxiliadora; Sánchez-Guzmán, Juan M; Navedo, Juan G; Masero, José A

    2013-01-01

    Despite host defense against parasites and pathogens being considered a costly life-history trait, relatively few studies have assessed the energetic cost of immune responsiveness. Knowledge of such energetic costs may help to understand the mechanisms by which trade-offs with other demanding activities occur. The time course and associated metabolic costs of mounting a primary and secondary humoral immune response was examined in little ringed plovers Charadrius dubius challenged with sheep red blood cells. As was expected, the injection with this antigen increased the production of specific antibodies significantly, with peaks 6 d postinjection in both primary and secondary responses. At the peak of secondary antibody response, the antibody production was 29% higher than that observed during the primary response, but the difference was nonsignificant. Mounting the primary response did not significantly increase the resting metabolic rate (RMR) of birds, whereas the secondary response did by 21%, suggesting that the latter was more costly in terms of RMR. In spite of the fact that the primary response did not involve an increase in RMR, birds significantly decreased their body mass. This could imply an internal energy reallocation strategy to cope with the induced immune challenge. Last, we found that RMR and antibody production peaks were not coupled, which could help to conciliate the variable results of previous studies. Collectively, the results of this study support the hypothesis that humoral immunity, especially the secondary response, entails energetic costs that may trade-off with other physiological activities.

  15. Effects of amoxicillin, ceftiofur, doxycycline, tiamulin and tulathromycin on pig humoral immune responses induced by erysipelas vaccination.

    PubMed

    Pomorska-Mól, M; Kwit, K; Wierzchosławski, K; Dors, A; Pejsak, Z

    2016-05-28

    It addition to their antimicrobial properties, antibiotics can influence the host immune system (modulation of cytokine secretion, antibody production and T-cell proliferation). In the present study, the authors studied the effects of therapeutic doses of amoxicillin (AMX), ceftiofur (CEF), doxycycline (DOXY), tiamulin (TIAM) and tulathromycin (TUL) on the postvaccinal immune response after pigs had been vaccinated against erysipelas. Because humoral immunity is considered as the most important in the protection against swine erysipelas, the present study focused on the interactions between antibiotics and postvaccinal humoral immunity. One hundred and five, eight-week-old pigs of both sexes were used. Specific antibodies to the Erysipelothrix rhusiopathiae antigen were determined using a commercial ELISA test. In pigs treated with DOXY or CEF or TIAM, a significant reduction in the number of positive pigs was observed four and six weeks after the second dose of vaccine, compared with the remaining vaccinated groups. In pigs treated with CEF, the ELISA score was significantly lower than in non-treated vaccinated pigs. While in vaccinated pigs treated with AMX or TUL, the ELISA score was significantly higher than in pigs treated with the remaining antibiotics and than in non-treated vaccinated controls. The results of the present study indicate that vaccination of pigs against erysipelas in the presence of antibiotics may result in a decrease (CEF, DOXY, TIAM) or enhancement (AMX, TUL) in the production of specific antibodies.

  16. HDL in innate and adaptive immunity.

    PubMed

    Catapano, Alberico Luigi; Pirillo, Angela; Bonacina, Fabrizia; Norata, Giuseppe Danilo

    2014-08-01

    During infections or acute conditions high-density lipoproteins cholesterol (HDL-C) levels decrease very rapidly and HDL particles undergo profound changes in their composition and function. These changes are associated with poor prognosis following endotoxemia or sepsis and data from genetically modified animal models support a protective role for HDL. The same is true for some parasitic infections, where the key player appears to be a specific and minor component of HDL, namely apoL-1. The ability of HDL to influence cholesterol availability in lipid rafts in immune cells results in the modulation of toll-like receptors, MHC-II complex, as well as B- and T-cell receptors, while specific molecules shuttled by HDL such as sphingosine-1-phosphate (S1P) contribute to immune cells trafficking. Animal models with defects associated with HDL metabolism and/or influencing cell cholesterol efflux present features related to immune disorders. All these functions point to HDL as a platform integrating innate and adaptive immunity. The aim of this review is to provide an overview of the connection between HDL and immunity in atherosclerosis and beyond. PMID:24935428

  17. Influence of nematode Anguillicoloides crassus infestation on the cellular and humoral innate immunity in European eel (Anguilla anguilla L.)

    PubMed Central

    Terech-Majewska, Elżbieta; Siwicki, Andrzej K.

    2015-01-01

    Parasitic invasions are recognized as one of the primary factors responsible for decreasing populations of European eel. The aim of the present study was to determine the influence of infestation with the nematode Anguillicoloides crassus on the innate immunity in European eel (Anguilla anguilla). Anguillicoloides crassus parasitizes the swim bladder of this fish. Levels of the following immunological parameters were measured: spleen phagocyte respiratory burst activity, spleen phagocyte potential killing activity, pronephros lymphocyte proliferation stimulated by concanavaline A or lipopolisaccharide, plasma lysozyme and ceruloplasmin activity, total protein and immunoglobulin (Ig) serum levels. The analyses of the results of humoral and cellular immunity indicate that all studied parameters were statistically significant higher (p < 0.05) in non-infested fish compared to the ones with anguillicolosis except for ceruloplasmin level. These data suggest that the A. crassus infestation in European eel is responsible for a decreased immune response what could result in higher susceptibility to other pathogenic conditions. PMID:26557024

  18. Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens

    PubMed Central

    Santra, Sampa; Muldoon, Mark; Watson, Sydeaka; Buzby, Adam; Balachandran, Harikrishnan; Carlson, Kevin R.; Mach, Linh; Kong, Wing-Pui; McKee, Krisha; Yang, Zhi-Yong; Rao, Srinivas S.; Mascola, John R.; Nabel, Gary J.; Korber, Bette T.; Letvin, Norman L.

    2013-01-01

    To create an HIV-1 vaccine that generates sufficient breadth of immune recognition to protect against the genetically diverse forms of the circulating virus, we have been exploring vaccines based on consensus and mosaic protein designs. Increasing the valency of a mosaic immunogen cocktail increases epitope coverage but with diminishing returns, as increasingly rare epitopes are incorporated into the mosaic proteins. In this study we compared the immunogenicity of 2-valent and 3-valent HIV-1 envelope mosaic immunogens in rhesus monkeys. Immunizations with the 3-valent mosaic immunogens resulted in a modest increase in the breadth of vaccine-elicited T lymphocyte responses compared to the 2-valent mosaic immunogens. However, the 3-valent mosaic immunogens elicited significantly higher neutralizing responses to Tier 1 viruses than the 2-valent mosaic immunogens. These findings underscore the potential utility of polyvalent mosaic immunogens for eliciting both cellular and humoral immune responses to HIV-1. PMID:22521913

  19. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata.

    PubMed

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called "immune priming" or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  20. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata

    PubMed Central

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C.; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M.; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  1. Humoral immunity to Malassezia furfur serovars A, B and C in patients with pityriasis versicolor, seborrheic dermatitis and controls.

    PubMed

    Ashbee, H R; Fruin, A; Holland, K T; Cunliffe, W J; Ingham, E

    1994-10-01

    This study examined the humoral immune responses to Malassezia furfur serovars A, B and C of 10 patients with pityriasis versicolor, 10 patients with seborrheic dermatitis and 20 age- and sex-matched controls. A transferable solid-phase ELISA was used to determine titres of total Igs, IgM, IgA and IgG specific to M. furfur serovars A, B and C. The results demonstrated that patients with seborrheic dermatitis had a significantly higher titre of total Igs to serovar A than patients with pityriasis versicolor; and that patients with seborrheic dermatitis had a significantly higher titre of IgA to serovar C than patients with pityriasis versicolor. The titres of total Igs for controls and patients with seborrheic dermatitis were significantly lower to serovar B than to serovar C. A modified TSP ELISA was used to determine the titres of the IgG subclasses. Titres of IgG1,3,4 to serovar B were significantly higher in seborrheic dermatitis patients than pityriasis versicolor patients and titres of IgG3 to serovar A were significantly higher in seborrheic dermatitis patients than pityriasis versicolor patients. However, despite the differences between the patient groups, none of these results was significantly different to those of controls. Thus, this study did not demonstrate any differences in humoral immunity of patients suffering from Malassezia-associated dermatoses when compared to normal controls. These results may suggest that the humoral immune response to M. furfur is not related to the pathogenesis of Malassezia-associated dermatoses, but simply to the carriage of M. furfur on the skin.

  2. Mannose-binding lectin and ficolin-2 do not influence humoral immune response to hepatitis B vaccine

    PubMed Central

    Osthoff, Michael; Irungu, Elizabeth; Ngure, Kenneth; Mugo, Nelly; Thomas, Katherine K.; Baeten, Jared M.; Eisen, Damon P

    2015-01-01

    Background Host genetics appear to be an important factor in the failure to generate a protective immune response after hepatitis B (HBV) vaccination. Mannose-binding lectin (MBL) and ficolin-2 (FCN2), two pattern recognition receptors of the lectin pathway of complement, influence the clinical outcome of HBV, and MBL deficiency has been shown to augment the humoral response to HBV vaccination in several experimental models. Here, we investigated the association of MBL and FCN2 with the humoral response to HBV vaccination in a candidate gene and functional study. Patients and methods A post hoc analysis of a prospective, interventional HBV vaccination study among human immunodeficiency virus type 1 (HIV-1) uninfected individuals in Kenya was conducted. Serum levels and polymorphisms of MBL and FCN2 were analysed in relation to the immune response to HBV vaccination. Results Protective hepatitis B surface antibody levels (≥10 mIU/ml) were evident in 251/293 (85.7%) individuals. Median MBL and FCN2 levels were similar in responders vs. non-responders with a weak trend towards lower median MBL levels in non-responders (1.0 vs. 1.6 μg/ml, p=0.1). Similarly, there was no difference in four MBL and six FCN2 polymorphisms analysed in the two groups with the exception of an increased frequency of a homozygous MBL codon 57 mutation in non-responders (4 (9.5%) vs. 8 (3.2%), p=0.05) corresponding to lower MBL levels. Results were similar after adjusting for age and sex. Conclusions Our study does not support a prominent role of the lectin pathway of complement in general and MBL and FCN2 in particular in the humoral immune response to HBV vaccination in African adults. PMID:25024112

  3. Humoral and cellular immune responses in adult geese induced by an inactivated vaccine against new type gosling viral enteritis virus.

    PubMed

    Chen, S; Cheng, A C; Wang, M S; Zhu, D K; Jia, R Y; Luo, Q H; Liu, F; Chen, X Y; Yang, J L

    2010-11-01

    To assess the immunogenicity of an inactivated new type gosling viral enteritis virus (NGVEV) vaccine, we investigated 3 different doses of the inactivated vaccine and the inactivated vaccine in conjunction with 3 different doses of recombinant goose interleukin-2 (rGoIL-2) adjuvant. A virus concentration of 10(5) 50% embryo infective dose/mL was subcutaneously inoculated into adult geese divided into 6 groups. The dynamic changes of the humoral and cellular immunity responses elicited by the vaccines in the adult geese postvaccination (PV) were investigated using ELISA, virus neutralization test, and lymphocyte proliferation assay. The clearance of virus from the intestines of geese (175 d PV) was studied by histopathological examination and indirect immunofluorescence assay after virulent NGVEV challenge. This study showed that the inactivated NGVEV vaccine elicits strong humoral and cellular responses in the vaccinated adult geese. The absorbance values of specific anti-NGVEV antibodies, the neutralization antibody titer, and the lymphocyte proliferation index rapidly increased, peaked at about 28 d PV, progressed to the plateau stage, and then decreased slightly. The rGoIL-2 adjuvant enhanced the immune response, and this adjuvant in conjunction with the inactivated NGVEV vaccine induces a significantly higher specific anti-NGVEV antibody absorbance value, neutralization antibody titer, and lymphocyte proliferation index than the non-adjuvant-inactivated NGVEV vaccine (P < 0.05). The inactivated NGVEV vaccine conferred adequate efficient ability to clear NGVEV in vaccinated geese even in the last phase of the vaccination period (175 d PV). The inactivated NGVEV vaccine (0.5 mL/goose) with 1,000 units of rGoIL-2 adjuvant/goose is the most effective dose, thereby eliciting the strongest humoral and cellular immunity responses and providing the most efficacious clearance of NGVEV in vivo.

  4. Empirical evidence of cold stress induced cell mediated and humoral immune response in common myna ( Sturnus tristis)

    NASA Astrophysics Data System (ADS)

    Sandhu, Mansur A.; Zaib, Anila; Anjum, Muhammad S.; Qayyum, Mazhar

    2015-11-01

    Common myna ( Sturnus tristis) is a bird indigenous to the Indian subcontinent that has invaded many parts of the world. At the onset of our investigation, we hypothesized that the immunological profile of myna makes it resistant to harsh/new environmental conditions. In order to test this hypothesis, a number of 40 mynas were caught and divided into two groups, i.e., 7 and 25 °C for 14 days. To determine the effect of cold stress, cell mediated and humoral immune responses were assessed. The macrophage engulfment percentage was significantly ( P < 0.05) higher at 25 °C rather than 7 °C either co-incubated with opsonized or unopsonized sheep red blood cells (SRBC). Macrophage engulfment/cell and nitric oxide production behaved in a similar manner. However, splenic cells plaque formation, heterophil to lymphocyte (H/L) ratio, and serum IgM or IgG production remained non-significant. There was a significant increase of IgG antibody production after a second immunization by SRBC. To the best of our knowledge, these findings have never been reported in the progression of this bird's invasion in frosty areas of the world. The results revealed a strengthened humoral immune response of myna and made this bird suitable for invasion in the areas of harsh conditions.

  5. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection.

    PubMed

    Jaillon, Sébastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto

    2014-04-17

    Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs.

  6. Inhibitory Effects of the Standardized Extract of Phyllanthus amarus on Cellular and Humoral Immune Responses in Balb/C Mice.

    PubMed

    Ilangkovan, Menaga; Jantan, Ibrahim; Mesaik, Mohamed Ahmed; Bukhari, Syed Nasir Abbas

    2016-08-01

    Phyllanthus amarus has been shown to have strong inhibitory effects on phagocytic activity of human neutrophils and on cellular immune responses in Wistar-Kyoto rats. In this study, we investigated the effects of daily treatment of standardized extract of P. amarus at 50, 100 and 200 mg/kg for 14 days in Balb/C mice by measuring the myeloperoxidase activity (MPO), nitric oxide (NO) release, macrophage phagocytosis, swelling of footpad in delayed type hypersensitivity (DTH), and serum immunoglobulins, ceruloplasmin and lysozyme levels. Qualitative and quantitative analyses of the extract using validated reversed-phase HPLC methods identified phyllanthin, hypophyllanthin, corilagin and geraniin as the biomarkers. Significant dose-dependent inhibitions of MPO activity and NO release were observed in treated mice. The extract also inhibited E. coli phagocytic capacity of peritoneal macrophages of treated mice and inhibited the sheep red blood cells (sRBC)-induced swelling rate of mice paw in the DTH. There was also a significant decrease in non-specific humoral immunity including ceruloplasmin and lysozyme levels in the extract-fed groups as well as the release of serum level immunoglobulins. The strong inhibitory effects of the extract on the cellular and humoral immune responses suggest the potential of the plant to be developed as an effective immunosuppressive agent. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Empirical evidence of cold stress induced cell mediated and humoral immune response in common myna (Sturnus tristis).

    PubMed

    Sandhu, Mansur A; Zaib, Anila; Anjum, Muhammad S; Qayyum, Mazhar

    2015-11-01

    Common myna (Sturnus tristis) is a bird indigenous to the Indian subcontinent that has invaded many parts of the world. At the onset of our investigation, we hypothesized that the immunological profile of myna makes it resistant to harsh/new environmental conditions. In order to test this hypothesis, a number of 40 mynas were caught and divided into two groups, i.e., 7 and 25 °C for 14 days. To determine the effect of cold stress, cell mediated and humoral immune responses were assessed. The macrophage engulfment percentage was significantly (P < 0.05) higher at 25 °C rather than 7 °C either co-incubated with opsonized or unopsonized sheep red blood cells (SRBC). Macrophage engulfment/cell and nitric oxide production behaved in a similar manner. However, splenic cells plaque formation, heterophil to lymphocyte (H/L) ratio, and serum IgM or IgG production remained non-significant. There was a significant increase of IgG antibody production after a second immunization by SRBC. To the best of our knowledge, these findings have never been reported in the progression of this bird's invasion in frosty areas of the world. The results revealed a strengthened humoral immune response of myna and made this bird suitable for invasion in the areas of harsh conditions.

  8. Evidence against humoral immune attack as the cause of sheep-goat interspecies and hybrid pregnancy failure in the doe.

    PubMed

    Oppenheim, S M; Moyer, A L; BonDurant, R H; Rowe, J D; Anderson, G B

    2001-04-15

    The failure of interspecies and hybrid pregnancies between the domestic sheep (Ovis aries) and goat (Capra hircus) is not completely understood. The sheep-goat hematopoietic chimera is a unique model for studying the role of the maternal immune response in failure of interspecies and hybrid pregnancies between these species. Hematopoietic chimeras were created by in utero transplantation of sheep fetal liver cells into goat fetuses. The resulting chimeric females were recipients of sheep demi-embryos genetically identical to their sheep cells and/or were bred to a ram to create a hybrid pregnancy. Pregnancy sera were analyzed for the presence of anti-species antibodies (Ab) using a lymphocyte microcytotoxicity assay. None of the concepti survived to term. Gross and histological evaluations of two interspecies sheep concepti revealed abnormal placentome formation. The humoral immune response of several hematopoietic chimeras to the challenging concepti differed from control animals. We observed delayed onset of Ab production, low and absent titers, and persistent Ab titers with delayed fetal death. Ultrasonography typically revealed normal fetal development associated with high volumes of placental fluids and retarded placentome development. We conclude that fetal death was associated with abnormal placental development that was not the result of maternal humoral immune attack. PMID:11354715

  9. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection.

    PubMed

    Jaillon, Sébastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto

    2014-04-17

    Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs. PMID:24745336

  10. Effect of single or combined climatic and hygienic stress on natural and specific humoral immune competence in four layer lines.

    PubMed

    Star, L; Nieuwland, M G B; Kemp, B; Parmentier, H K

    2007-09-01

    Effects of long-term climatic stress (heat exposure), short-term hygienic stress [lipopolysaccharide (LPS)], or a combination of both challenges on the immune competence of 4 layer lines was investigated. The lines were earlier characterized for natural humoral immune competence and survival rate. Eighty hens per line were randomly divided over 2 identical climate chambers and exposed to a constant high temperature (32 degrees C) or a control temperature (21 degrees C) for 23 d. Half of the hens housed in each chamber were i.v. injected with LPS at d 1 after the start of the heat stress period. Within each of the treatment groups, half of the hens were s.c. immunized with human serum albumin (HuSA) at d 2 after the start of the heat stress period to measure specific antibody (Ab) titers to HuSA. The effect of heat, LPS, or a combined challenge on specific Ab titers to HuSA, natural Ab titers to keyhole limpet hemocyanin or HuSA (in hens that were not immunized with HuSA), and activity of the classical and alternative complement pathways were investigated. Heat stress enhanced specific and natural immune responses. Administration of LPS enhanced natural immune responses but decreased specific immune responses. The lack of interaction between heat stress and LPS administration, except for natural Ab titers to HuSA, suggest that these were 2 independent stressors. The lines had a similar response pattern but differed in the response level. Neither natural humoral immune competence nor survival rate, for which the lines had been characterized, was indicative of the specific and natural immune response to different stressors. Lipopolysaccharide and heat stress initiated sequential responses over time, with an earlier effect of short-term LPS exposure (within the first and second week) and a later effect of long-term heat exposure (within the second and third week). These data suggest that LPS and heat stress affect the natural and specific immune competence of laying

  11. Adaptive immune regulation in autoimmune diabetes.

    PubMed

    Ferretti, Concetta; La Cava, Antonio

    2016-03-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing pancreatic β-cells. The pathogenesis of T1D is complex and multifactorial and involves a genetic susceptibility that predisposes to abnormal immune responses in the presence of ill-defined environmental insults to the pancreatic islets. This review discusses how adaptive immunoregulatory T cells contribute to the modulation of the development and evolution of T1D, together with potential approaches that target these cells for new therapies in the disease. PMID:26631820

  12. EPSAH, an exopolysaccharide from Aphanothece halophytica GR02, improves both cellular and humoral immunity as a novel polysaccharide adjuvant.

    PubMed

    Zhu, Lei; Zhang, Fan; Yang, Li-Jun; Ge, Yang; Wei, Qing-Fang; Ou, Yu

    2016-07-01

    EPSAH is an exopolysaccharide from Aphanothece halophytica GR02. The present study was designed to evaluate its toxicity and adjuvant potential in the specific cellular and humoral immune responses in ovalbumin (OVA) in mice. EPSAH did not cause any mortality and side effects when the mice were administered subcutaneously twice at the dose of 50 mg·kg(-1). Hemolytic activity in vitro indicated that EPSAH was non-hemolytic. Splenocyte proliferation in vitro was assayed with different concentrations of EPSAH. The mice were immunized subcutaneously with OVA 0.1 mg alone or with OVA 0.1 mg dissolved in saline containing Alum (0.2 mg) or EPSAH (0.2, 0.4, or 0.8 mg) on Day 1 and 15. Two weeks later, splenocyte proliferation, natural killer (NK) cell activity, production of cytokines IL-2 from splenocytes, and serum OVA-specific antibody titers were measured. Phagocytic activity, production of pro-inflammatory cytokines IL-1 and IL-12 in mice peritoneal macrophages were also determined. EPSAH showed a dose-dependent stimulating effect on mitogen-induced proliferation. The Con A-, LPS-, and OVA-induced splenocyte proliferation and the serum OVA-specific IgG, IgG1, and IgG2a antibody titers in the immunized mice were significantly enhanced. EPSAH also significantly promoted the production of Th1 cytokine IL-2. Besides, EPSAH remarkably increased the killing activities of NK cells from splenocytes in the immunized mice. In addition, EPSAH enhanced phagocytic activity and the generation of pro-inflammatory cytokines IL-1 and IL-12 in macrophages. These results indicated that EPSAH had a strong potential to increase both cellular and humoral immune responses, particularly promoting the development of Th1 polarization. PMID:27507205

  13. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses.

    PubMed

    Wu, Gongqing; Xu, Li; Yi, Yunhong

    2016-06-01

    Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response. PMID:27107784

  14. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus.

    PubMed

    Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K

    2015-01-01

    The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8(+) T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4(+) T cells. The level of Gag-specific CD8(+) and CD4(+) T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins.

  15. Humoral Immune Responses to Streptococcus pneumoniae in the Setting of HIV-1 Infection

    PubMed Central

    Zhang, Lumin; Li, Zihai; Wan, Zhuang; Kilby, Andrew; Kilby, J Michael; Jiang, Wei

    2015-01-01

    Streptococcus pneumonia (pneumococcus) remains one of the most commonly identified causes of bacterial infection in the general population, and the risk is 30-100 fold higher in HIV-infected individuals. Both innate and adaptive host immune responses to pneumococcal infection are important against pathogen invasion. Pneumococcal-specific IgA antibody (Ab) is key to control infection at the mucosal sites. Ab responses against pneumococcal infection by B cells can be generated through T cell-dependent or T cell-independent pathways. Depletion of CD4+ T cells is a hallmark of immunodeficiency in HIV infection and this defect also contributes to B cell dysfunction, which predisposes to infections such as the pneumococcus. Two pneumococcal vaccines have been demonstrated to have potential benefits for HIV-infected patients. One is a T cell dependent 13-valent pneumococcal conjugate vaccine (PCV13); the other is a T cell independent 23-valent pneumococcal polysaccharide vaccine (PPV23). However, many questions remain unknown regarding these two vaccines in the clinical setting in HIV disease. Here we review the latest research regarding B cell immune responses against pneumococcal antigens, whether derived from potentially invading pathogens or vaccinations, in the setting of HIV-1 infection. PMID:26141012

  16. Intercellular Communication in the Adaptive Immune System

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  17. Sex differences in photoperiod control of antigen-specific primary and secondary humoral immunity in Siberian Hamsters.

    PubMed

    Hadley, Allison R; Tran, Long T; Fagoaga, Omar R; Nehlsen-Cannarella, Sandra L; Yellon, Steven M

    2002-07-01

    Photoperiod was hypothesized to mediate T cell-dependent B cell production of IgM and IgG. Antigens induced production of specific immunoglobulins; serum IgM but not IgG, was higher in males in long vs. short days (16 vs. 8 h light/day) and similarly among all groups of females. A second immunization with KLH robustly enhanced serum IgM, as well as IgG; increases were blunted in short- vs. long-day males but not in females. Thus, in male but not female hamsters, winter-like short days restrain aspects of primary and secondary humoral immune responses to xenoantigens. Actions on lymphocyte activities or clonal expansion are in considerations.

  18. Antigen translocation machineries in adaptive immunity and viral immune evasion.

    PubMed

    Mayerhofer, Peter U; Tampé, Robert

    2015-03-13

    Protein homeostasis results in a steady supply of peptides, which are further degraded to fuel protein synthesis or metabolic needs of the cell. In higher vertebrates, a small fraction of the resulting peptidome, however, is translocated into the endoplasmic reticulum by the transporter associated with antigen processing (TAP). Antigenic peptides are guided to major histocompatibility complex class I (MHC I) molecules and are finally displayed on the cell surface, where they mount an adaptive immune response against viral infected or malignantly transformed cells. Here, we review the structural organization and the molecular mechanism of this specialized antigen translocon. We discuss how the ATP-binding cassette (ABC) transporter TAP communicates and cooperates within the multi-component peptide loading machinery, mediating the proper assembly and editing of kinetically stable peptide/MHC I complexes. In light of its important role within the MHC I antigen processing pathway, TAP is a prime target for viral immune evasion strategies, and we summarize how this antigen translocation machinery is sabotaged by viral factors. Finally, we compare TAP with other ABC systems that facilitate peptide translocation.

  19. Impairment of the humoral and CD4(+) T cell responses in HTLV-1-infected individuals immunized with tetanus toxoid.

    PubMed

    Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P; Grassi, Maria Fernanda R; Carvalho, Edgar M

    2016-08-01

    T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls (UC) with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4(+) T cells expressing IFN-γ, TNF-α and IL-10 in response to TT were lower in the HC than in the UC. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it's necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4(+) T cell immune responses after vaccination. PMID:27282836

  20. Correlation of Humoral Immune Response in Southern Bluefin Tuna, T. maccoyii, with Infection Stage of the Blood Fluke, Cardicola forsteri

    PubMed Central

    Kirchhoff, Nicole T.; Leef, Melanie J.; Valdenegro, Victoria; Hayward, Craig J.; Nowak, Barbara F.

    2012-01-01

    The blood fluke, Cardicola forsteri, is a prevalent infection in ranched southern bluefin tuna. This project aimed to define the timing and intensity of the various developmental stages of C. forsteri within southern bluefin tuna as well as to relate infection to host pathology and immune response. Archival samples from several cohorts of T. maccoyii sampled from 2008 to 2010 were used in this study. The prevalence and intensity of C. forsteri infection was described using heart flushes and histological examination. Humoral immune response, i.e. C. forsteri specific antibody, lysozyme activity, and alternative complement activity, was also described. Based on the validated and detailed C. forsteri infection timeline, relationships between infection events, physiological response, and diagnosis were proposed. Immune response developed concurrently with C. forsteri infection, with the majority of physiological response coinciding with commencing egg production. Further research is needed to confirm the origin of C. forsteri antigen which is responsible for immune response development and how T. maccoyii immune response works against infection. To aide this research, further diagnostic methods for confirmation of infection need to be developed. PMID:23029217

  1. Impairment of the humoral and CD4(+) T cell responses in HTLV-1-infected individuals immunized with tetanus toxoid.

    PubMed

    Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P; Grassi, Maria Fernanda R; Carvalho, Edgar M

    2016-08-01

    T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls (UC) with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4(+) T cells expressing IFN-γ, TNF-α and IL-10 in response to TT were lower in the HC than in the UC. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it's necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4(+) T cell immune responses after vaccination.

  2. Complex Adaptive Immunity to Enteric Fevers in Humans: Lessons Learned and the Path Forward

    PubMed Central

    Sztein, Marcelo B.; Salerno-Goncalves, Rosangela; McArthur, Monica A.

    2014-01-01

    Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, and S. Paratyphi A and B, causative agents of paratyphoid fever, are major public health threats throughout the world. Although two licensed typhoid vaccines are currently available, they are only moderately protective and immunogenic necessitating the development of novel vaccines. A major obstacle in the development of improved typhoid, as well as paratyphoid vaccines is the lack of known immunological correlates of protection in humans. Considerable progress has been made in recent years in understanding the complex adaptive host responses against S. Typhi. Although the induction of S. Typhi-specific antibodies (including their functional properties) and memory B cells, as well as their cross-reactivity with S. Paratyphi A and S. Paratyphi B has been shown, the role of humoral immunity in protection remains undefined. Cell mediated immunity (CMI) is likely to play a dominant role in protection against enteric fever pathogens. Detailed measurements of CMI performed in volunteers immunized with attenuated strains of S. Typhi have shown, among others, the induction of lymphoproliferation, multifunctional type 1 cytokine production, and CD8+ cytotoxic T-cell responses. In addition to systemic responses, the local microenvironment of the gut is likely to be of paramount importance in protection from these infections. In this review, we will critically assess current knowledge regarding the role of CMI and humoral immunity following natural S. Typhi and S. Paratyphi infections, experimental challenge, and immunization in humans. We will also address recent advances regarding cross-talk between the host’s gut microbiota and immunization with attenuated S. Typhi, mechanisms of systemic immune responses, and the homing potential of S. Typhi-specific B- and T-cells to the gut and other tissues. PMID:25386175

  3. Evaluation of ToxA and Vibrio parahaemolyticus lysate on humoral immune response and immune-related genes in Pacific red snapper.

    PubMed

    Reyes-Becerril, Martha; Maldonado-García, Minerva; Guluarte, Crystal; León-Gallo, Amalia; Rosales-Mendoza, Sergio; Ascencio, Felipe; Hirono, Ikuo; Angulo, Carlos

    2016-09-01

    Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico.

  4. Evaluation of ToxA and Vibrio parahaemolyticus lysate on humoral immune response and immune-related genes in Pacific red snapper.

    PubMed

    Reyes-Becerril, Martha; Maldonado-García, Minerva; Guluarte, Crystal; León-Gallo, Amalia; Rosales-Mendoza, Sergio; Ascencio, Felipe; Hirono, Ikuo; Angulo, Carlos

    2016-09-01

    Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico. PMID:27417232

  5. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    PubMed

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  6. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    PubMed Central

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  7. Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity.

    PubMed

    Wu, Zeguang; Sinzger, Christian; Frascaroli, Giada; Reichel, Johanna; Bayer, Carina; Wang, Li; Schirmbeck, Reinhold; Mertens, Thomas

    2013-07-01

    Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2C(hi) CD57(hi) NK cells gated on CD3(neg) CD56(dim) cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2C(hi) CD57(hi) NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2C(hi) CD57(hi) NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2C(hi) CD57(hi) NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.

  8. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  9. How Neutrophils Shape Adaptive Immune Responses.

    PubMed

    Leliefeld, Pieter H C; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell-cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  10. Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-03-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.

  11. Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.)* §

    PubMed Central

    Tang, Hong-gang; Wu, Tian-xing; Zhao, Zhan-yu; Pan, Xiao-dong

    2008-01-01

    We investigated the effects of fish protein hydrolysate (FPH) on growth performance and humoral immune response of the large yellow croaker (Pseudosciaena crocea R.). One thousand and two hundred large yellow croakers [initial average weight: (162.75±23.85) g] were divided into four groups and reared in floating sea cages (3 m×3 m×3 m). The animals were fed with 4 diets: basal diet only (control) or diets supplemented with 5%, 10% and 15% (w/w) FPH. The results show that dietary FPH levels significantly influenced the growth and immunity of the large yellow croaker. Compared with the control group, total weight gain (TWG) in all treatment groups, relative weight gain (RWG) and specific growth rate (SGR) in fish fed with diets supplemented with 10% and 15% FPH were significantly increased (P<0.05). Similar results were observed in immune parameters [lysozyme activity, serum complements, immunoglobulin M (IgM)]. Lysozyme activity, complement C4 and IgM were also significantly increased (P<0.05) in fish fed with diets supplemented with 10% and 15% FPH, while complement C3 level was significantly increased (P<0.05) in all treatment groups. In general, with the supplementation of FPH, particularly at dose of 10%, the growth performance and immunity of the large yellow croaker can be improved effectively. PMID:18763300

  12. Pathogen-Mimicking Polymeric Nanoparticles based on Dopamine Polymerization as Vaccines Adjuvants Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Qi; Jia, Jilei; Yang, Tingyuan; Fan, Qingze; Wang, Lianyan; Ma, Guanghui

    2016-04-01

    Aiming to enhance the immunogenicity of subunit vaccines, a novel antigen delivery and adjuvant system based on dopamine polymerization on the surface of poly(D,L-lactic-glycolic-acid) nanoparticles (NPs) with multiple mechanisms of immunity enhancement is developed. The mussel-inspired biomimetic polydopamine (pD) not only serves as a coating to NPs but also functionalizes NP surfaces. The method is facile and mild including simple incubation of the preformed NPs in the weak alkaline dopamine solution, and incorporation of hepatitis B surface antigen and TLR9 agonist unmethylated cytosine-guanine (CpG) motif with the pD surface. The as-constructed NPs possess pathogen-mimicking manners owing to their size, shape, and surface molecular immune-activating properties given by CpG. The biocompatibility and biosafety of these pathogen-mimicking NPs are confirmed using bone marrow-derived dendritic cells. Pathogen-mimicking NPs hold great potential as vaccine delivery and adjuvant system due to their ability to: 1) enhance cytokine secretion and immune cell recruitment at the injection site; 2) significantly activate and maturate dendritic cells; 3) induce stronger humoral and cellular immune responses in vivo. Furthermore, this simple and versatile dopamine polymerization method can be applicable to endow NPs with characteristics to mimic pathogen structure and function, and manipulate NPs for the generation of efficacious vaccine adjuvants. PMID:26849717

  13. B and CD4+ T cell expression of TLR2 are critical for optimal induction of a T cell-dependent humoral immune response to intact Streptococcus pneumoniae

    PubMed Central

    Vasilevsky, S.; Chattopadhyay, G.; Colino, Jesus; Yeh, T-J; Chen, Q.; Sen, G.; Snapper, C. M.

    2009-01-01

    Summary TLR2−/− mice immunized with Streptococcus pneumoniae (Pn) elicit normal IgM, but defective CD4+ T cell-dependent (TD) type 1 IgG isotype production, associated with a largely intact innate immune response. We studied the TD phosphorylcholine (PC)-specific IgG3 versus the T cell-independent IgM response to Pn to determine whether TLR2 signals directly via the adaptive immune system. Pn-activated TLR2−/− bone marrow dendritic cells (BMDC) have only a modest defect in cytokine secretion, undergo normal maturation, and when transferred into naive WT mice elicit a normal IgM and IgG3 anti-PC response, relative to WT BMDC. Pn synergizes with BCR and TCR signaling for DNA synthesis in purified WT B and CD4+ T cells, respectively, but is defective in cells lacking TLR2. Pn primes TLR2−/− mice for a normal CD4+ T cell IFN-γ recall response. Notably, TLR2−/− B cells transferred into RAG-2−/− mice with WT CD4+ T cells, or TLR2−/− CD4+ T cells transferred into athymic nude mice, each elicit a defective IgG3, in contrast to normal IgM, anti-PC response relative to WT cells. These data are the first to demonstrate a major role for B cell and CD4+ T cell expression of TLR2 for eliciting an anti-bacterial humoral immune response. PMID:19003933

  14. Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses

    PubMed Central

    Moreno, Noelia; Mena, Ignacio; Angulo, Iván; Gómez, Yolanda; Crisci, Elisa; Montoya, María; Castón, José R.; Blanco, Esther; Bárcena, Juan

    2016-01-01

    Virus-like particles (VLPs), comprised of viral structural proteins devoid of genetic material, are tunable nanoparticles that can be chemically or genetically engineered, to be used as platforms for multimeric display of foreign antigens. Here, we report the engineering of chimeric VLPs, derived from rabbit hemorrhagic disease virus (RHDV) for presentation of foreign B-cell antigens to the immune system. The RHDV capsid comprises 180 copies of a single capsid subunit (VP60). To evaluate the ability of chimeric RHDV VLPs to elicit protective humoral responses against foreign antigens, we tested two B-cell epitopes: a novel neutralizing B-cell epitope, derived from feline calicivirus capsid protein, and a well characterized B-cell epitope from the extracellular domain of influenza A virus M2 protein (M2e). We generated sets of chimeric RHDV VLPs by insertion of the foreign B-cell epitopes at three different locations within VP60 protein (which involved different levels of surface accessibility) and in different copy numbers per site. The immunogenic potential of the chimeric VLPs was analyzed in the mouse model. The results presented here indicated that chimeric RHDV VLPs elicit potent protective humoral responses against displayed foreign B-cell epitopes, demonstrated by both, in vitro neutralization and in vivo protection against a lethal challenge. PMID:27549017

  15. Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses.

    PubMed

    Moreno, Noelia; Mena, Ignacio; Angulo, Iván; Gómez, Yolanda; Crisci, Elisa; Montoya, María; Castón, José R; Blanco, Esther; Bárcena, Juan

    2016-01-01

    Virus-like particles (VLPs), comprised of viral structural proteins devoid of genetic material, are tunable nanoparticles that can be chemically or genetically engineered, to be used as platforms for multimeric display of foreign antigens. Here, we report the engineering of chimeric VLPs, derived from rabbit hemorrhagic disease virus (RHDV) for presentation of foreign B-cell antigens to the immune system. The RHDV capsid comprises 180 copies of a single capsid subunit (VP60). To evaluate the ability of chimeric RHDV VLPs to elicit protective humoral responses against foreign antigens, we tested two B-cell epitopes: a novel neutralizing B-cell epitope, derived from feline calicivirus capsid protein, and a well characterized B-cell epitope from the extracellular domain of influenza A virus M2 protein (M2e). We generated sets of chimeric RHDV VLPs by insertion of the foreign B-cell epitopes at three different locations within VP60 protein (which involved different levels of surface accessibility) and in different copy numbers per site. The immunogenic potential of the chimeric VLPs was analyzed in the mouse model. The results presented here indicated that chimeric RHDV VLPs elicit potent protective humoral responses against displayed foreign B-cell epitopes, demonstrated by both, in vitro neutralization and in vivo protection against a lethal challenge. PMID:27549017

  16. Humoral Immune Responses of White-tailed Deer (Odocoileus virginianus) to Mycobacterium bovis BCG Vaccination and Experimental Challenge with M. bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring serum antibody production kinetics to multiple mycobacterial antigens can be useful as a diagnostic tool for the detection of Mycobacterium bovis infection as well as for the characterization of disease progression and efficacy of intervention strategies in several species. Humoral immun...

  17. [Changes of local resistance of oral cavity and humoral immunity among workers of metallurgical and chemical production during parodontitis].

    PubMed

    Kobakhidze, M V; Dzhashi, L M; Chelidze, L N; Gogebashvili, N V

    2005-01-01

    On the basis of the data of immunological investigations of 142 workers of metallurgical (melting shops of Zestaphoni's Farroalloy Plant) and chemical (electrolytic shops of manganese and dioxide manganese of Farroalloy Plant and "Azoti") production it was found that during parodontitis among studied contingent local resistance of mouth cavity and humoral immunity are changed, the compound of lysozyme and amylase in saliva is lowered, in the layers of saliva and blood is revealed the misbalance of immunoglobulin's system. First of all was established, that during parodontitis among the studied workers autoimmune processes are developed directed against the I-st type collagen and the tissue of gum. Changes of local and common homeostasis as well as the changes of intensity of autoimmune process are in direct correlation with the severity of parodontitis and the pollution of production environment with the spray of manganese dioxide. PMID:16148387

  18. Origins and evolutionary relationships between the innate and adaptive arms of immune systems.

    PubMed

    Bayne, Christopher J

    2003-04-01

    Long before vertebrates first appeared, protists, plants and animals had evolved diverse, effective systems of innate immunity. Ancestors of the vertebrates utilized components of the complement system, protease-inhibitors, metal-binding proteins, carbohydrate-binding proteins and other plasma-born molecules as humoral agents of defense. In these same animals, immunocytes endowed with a repertoire of defensive behaviors expressed Toll-like receptors. They made NADPH oxidase, superoxide dismutase and other respiratory burst enzymes to produce toxic oxygen radicals, and nitric oxide synthase to produce nitric oxide. Antimicrobial peptides and lytic enzymes were in their armory. Immune responses were orchestrated by cytokines. Furthermore, genes within the immunoglobulin superfamily were expressed to meet a variety of needs possibly including defense. However, recombination activating genes played no role. With the acquisition of one or more transposases and the resulting capacity to generate diverse receptors from immunoglobulin gene fragments, the adaptive (lymphoid) arm of the immune system was born. This may have coincided with the elaboration of the neural crest. Naturally, the role of the adaptive arm was initially subservient to the defensive functions of the pre-existing innate arm. The strong selective advantages that stemmed from having "sharp-shooters" (cells making antigen-specific receptors) on the defense team ensured their retention. Refined through evolution, adaptive immunity, even in mammals, remains dependent upon cells of the innate series (e.g., dendritic cells) for signals driving their functional maturation. This paper calls for some fresh thinking leading to a clearer vision of the origins and co-evolution of the two arms of modern immune systems, and suggests a possible neural origin for the adaptive immune system.

  19. Assessment of selected biochemical parameters and humoral immune response of Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.

    PubMed

    La Grange, Louis J; Mukaratirwa, Samson

    2014-08-21

    Fifteen crocodiles were randomly divided into three groups of five animals. They represented high-infection, medium-infection and low-infection groups of 642 larvae/kg, 414 larvae/kg and 134 larvae/kg bodyweight, respectively. The parameters assessed were blood glucose, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and alanine transaminase (ALT). The humoral immune response to Trichinella zimbabwensis infection was evaluated in all three groups by an indirect ELISA method. The results showed deviations from normal parameters of blood glucose, CPK, LDH, AST and ALT when compared with reported levels in uninfected reptiles. Contrary to studies involving mammals, hypoglycaemia was not observed in the infected groups in this study. Peak values of blood glucose were reached on post-infection (PI) Day 49, Day 42 and Day 35 in the high-infection, medium-infection and low-infection groups, respectively. Peak values of LDH and AST were observed on PI Day 56, Day 49 and Day 42 in the high-infection, medium-infection and low-infection groups, respectively. Peak values of CPK were observed on Day 35 PI in all three groups. Peak ALT values were reached on Day 56 in the high-infection group and on Day 28 PI in both the medium-infection and low-infection groups. No correlations between the biochemical parameters and infection intensity were observed. Peak antibody titres were reached on Day 49 PI in the medium-infection group, and on Day 42 PI in both the high-infection and low-infection groups. Infection intensity could not be correlated with the magnitude of the humoral immune response or time to sero-conversion. Results from this study were in agreement with results reported in mammals infected with other Trichinella species and showed that antibody titres could not be detected indefinitely.

  20. Vaccination against H5 avian influenza virus induces long-term humoral immune responses in flamingoes (Phoenicopterus spp.).

    PubMed

    Fernández-Bellon, Hugo; Vergara-Alert, Júlia; Almagro, Vanessa; Rivas, Raquel; Sánchez, Azucena; Martínez, María Carmen; Majó, Natàlia; Busquets, Núria; Ramis, Antonio

    2016-06-01

    Avian influenza (AI) can represent a threat to endangered wild birds, as demonstrated with the H5N1 highly pathogenic AI (HPAI) outbreaks. Vaccination against AI using inactivated H5-vaccines has been shown to induce humoral immune response in zoo bird species. In this study, the long-term efficacy of H5-vaccination was evaluated in flamingoes from Barcelona Zoo. Specific H5-antibody titres were maintained at high levels (geometric mean titres ≥32) for over 7 years after vaccination, both against the H5N9 and H5N3 vaccine strains, as well as H5N3 and H5N1 reference strains. In addition the breadth of the immune response was also studied by testing antibody production against H1-, H3-, H4-, H7-, and H10-subtypes. It was observed that most flamingoes presented specific antibodies against H1 virus subtypes, but titres to the other HA-subtypes were rarely detected. We show that AI-vaccines can induce immunity lasting seven years in flamingoes, which suggests that vaccination can provide long term protection from HPAI outbreaks in zoo birds.

  1. Vaccination against H5 avian influenza virus induces long-term humoral immune responses in flamingoes (Phoenicopterus spp.).

    PubMed

    Fernández-Bellon, Hugo; Vergara-Alert, Júlia; Almagro, Vanessa; Rivas, Raquel; Sánchez, Azucena; Martínez, María Carmen; Majó, Natàlia; Busquets, Núria; Ramis, Antonio

    2016-06-01

    Avian influenza (AI) can represent a threat to endangered wild birds, as demonstrated with the H5N1 highly pathogenic AI (HPAI) outbreaks. Vaccination against AI using inactivated H5-vaccines has been shown to induce humoral immune response in zoo bird species. In this study, the long-term efficacy of H5-vaccination was evaluated in flamingoes from Barcelona Zoo. Specific H5-antibody titres were maintained at high levels (geometric mean titres ≥32) for over 7 years after vaccination, both against the H5N9 and H5N3 vaccine strains, as well as H5N3 and H5N1 reference strains. In addition the breadth of the immune response was also studied by testing antibody production against H1-, H3-, H4-, H7-, and H10-subtypes. It was observed that most flamingoes presented specific antibodies against H1 virus subtypes, but titres to the other HA-subtypes were rarely detected. We show that AI-vaccines can induce immunity lasting seven years in flamingoes, which suggests that vaccination can provide long term protection from HPAI outbreaks in zoo birds. PMID:27151883

  2. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens.

    PubMed

    Pourhossein, Zohreh; Qotbi, Ali Ahmad Alaw; Seidavi, Alireza; Laudadio, Vito; Centoducati, Gerardo; Tufarelli, Vincenzo

    2015-01-01

    This experiment was conducted to evaluate the effects of different levels of sweet orange (Citrus sinensis) peel extract (SOPE) on humoral immune system responses in broiler chickens. Three hundred 1-day broilers (Ross-308) were randomly allocated to treatments varying in supplemental SOPE added in the drinking water. The experimental groups consisted of three treatments fed for 42 days as follows: a control treatment without feed extract, a treatment containing 1000 ppm of SOPE and a treatment containing 1250 ppm of SOPE. All treatments were isocaloric and isonitrogenous. Broilers were vaccinated with Newcastle disease virus (NDV), avian influenza (AI), infectious bursal disease (IBD) and infectious bronchitis virus (IBV) vaccines. Antibody titer response to sheep red blood cells (SRBC) was higher in the group fed 1250 ppm of SOPE (P < 0.05) as well as for immunoglobulin G (IgG) and IgM. Similarly, antibody titer responses to all vaccines were constantly elevated (P < 0.05) by SOPE enrichment in a dose-dependent manner. Relative weights of spleen and bursa of Fabricius were unaffected by treatments. Dietary SOPE supplementation may improve the immune response and diseases resistance, indicating that it can constitute a useful additive in broiler feeding. Thus, supplying SOPE in rations may help to improve relative immune response in broiler chickens. PMID:24990585

  3. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens.

    PubMed

    Pourhossein, Zohreh; Qotbi, Ali Ahmad Alaw; Seidavi, Alireza; Laudadio, Vito; Centoducati, Gerardo; Tufarelli, Vincenzo

    2015-01-01

    This experiment was conducted to evaluate the effects of different levels of sweet orange (Citrus sinensis) peel extract (SOPE) on humoral immune system responses in broiler chickens. Three hundred 1-day broilers (Ross-308) were randomly allocated to treatments varying in supplemental SOPE added in the drinking water. The experimental groups consisted of three treatments fed for 42 days as follows: a control treatment without feed extract, a treatment containing 1000 ppm of SOPE and a treatment containing 1250 ppm of SOPE. All treatments were isocaloric and isonitrogenous. Broilers were vaccinated with Newcastle disease virus (NDV), avian influenza (AI), infectious bursal disease (IBD) and infectious bronchitis virus (IBV) vaccines. Antibody titer response to sheep red blood cells (SRBC) was higher in the group fed 1250 ppm of SOPE (P < 0.05) as well as for immunoglobulin G (IgG) and IgM. Similarly, antibody titer responses to all vaccines were constantly elevated (P < 0.05) by SOPE enrichment in a dose-dependent manner. Relative weights of spleen and bursa of Fabricius were unaffected by treatments. Dietary SOPE supplementation may improve the immune response and diseases resistance, indicating that it can constitute a useful additive in broiler feeding. Thus, supplying SOPE in rations may help to improve relative immune response in broiler chickens.

  4. Humoral immune response of dairy cattle immunized with rBm95 (KU-VAC1) derived from Thai Rhipicephalus microplus.

    PubMed

    Jittapalapong, S; Kaewhom, P; Kengradomkij, C; Saratapan, N; Canales, M; de la Fuente, J; Stich, R W

    2010-04-01

    Rhipicephalus (Boophilus) microplus is an important cause of economic losses in Thailand through direct effects of feeding on cattle and pathogen transmission. Current tick control methods rely on expensive chemical acaricides that result in environmental contamination, residues in food animal products and acaricide-resistant ticks. Anti-tick vaccines based on concealed antigens have shown promising results in the control of cattle tick. Thus, recombinant Bm95 (rBm95) from Thai R. microplus (KU-VAC1) was cloned and expressed to test as an anti-tick vaccine in Thailand. The objective of this study was to compare antibody responses induced by KU-VAC1 to that obtained after vaccination with Gavac that is based on the Bm86 homologue. Four groups of six cattle each were immunized with KU-VAC1, Gavac, adjuvant or phosphate-buffered saline, and boosted three times at 21-day intervals. Enzyme-linked-immunosorbent serologic assay were used to measure the humoral antibody responses specific to Thai rBm95. Cattle immunized with either KU-VAC1 or Gavac showed significantly greater antibody production than the controls. Antibody titres were detected after the first immunization and peaked after the seventh week. These results indicated that KU-VAC1 and Gavac are similarly immunogenic, and that further studies are warranted to compare performance parameters of ticks fed on immunized cattle.

  5. MHC-matched induced pluripotent stem cells can attenuate cellular and humoral immune responses but are still susceptible to innate immunity in pigs.

    PubMed

    Mizukami, Yoshihisa; Abe, Tomoyuki; Shibata, Hiroaki; Makimura, Yukitoshi; Fujishiro, Shuh-hei; Yanase, Kimihide; Hishikawa, Shuji; Kobayashi, Eiji; Hanazono, Yutaka

    2014-01-01

    Recent studies have revealed negligible immunogenicity of induced pluripotent stem (iPS) cells in syngeneic mice and in autologous monkeys. Therefore, human iPS cells would not elicit immune responses in the autologous setting. However, given that human leukocyte antigen (HLA)-matched allogeneic iPS cells would likely be used for medical applications, a more faithful model system is needed to reflect HLA-matched allogeneic settings. Here we examined whether iPS cells induce immune responses in the swine leukocyte antigen (SLA)-matched setting. iPS cells were generated from the SLA-defined C1 strain of Clawn miniature swine, which were confirmed to develop teratomas in mice, and transplanted into the testes (n = 4) and ovary (n = 1) of C1 pigs. No teratomas were found in pigs on 47 to 125 days after transplantation. A Mixed lymphocyte reaction revealed that T-cell responses to the transplanted MHC-matched (C1) iPS cells were significantly lower compared to allogeneic cells. The humoral immune responses were also attenuated in the C1-to-C1 setting. More importantly, even MHC-matched iPS cells were susceptible to innate immunity, NK cells and serum complement. iPS cells lacked the expression of SLA class I and sialic acids. The in vitro cytotoxic assay showed that C1 iPS cells were targeted by NK cells and serum complement of C1. In vivo, the C1 iPS cells developed larger teratomas in NK-deficient NOG (T-B-NK-) mice (n = 10) than in NK-competent NOD/SCID (T-B-NK+) mice (n = 8) (p<0.01). In addition, C1 iPS cell failed to form teratomas after incubation with the porcine complement-active serum. Taken together, MHC-matched iPS cells can attenuate cellular and humoral immune responses, but still susceptible to innate immunity in pigs.

  6. Linear ubiquitination signals in adaptive immune responses

    PubMed Central

    Ikeda, Fumiyo

    2015-01-01

    Summary Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage-type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized Tumor Necrosis Factor (TNF) -induced canonical nuclear factor-kappa B (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. PMID:26085218

  7. Adaptive Immunity in Neurodegenerative and Neuropsychological Disorders.

    PubMed

    Mosley, R Lee

    2015-12-01

    Neurodegenerative and neuropsychological disorders are becoming a greater proportion of the global disease burden; however the pathogenic mechanisms by which these disorders originate and contribute to disease progression are not well-described. Increasing evidence supports neuroinflammation as a common underlying component associated with the neuropathological processes that effect disease progression. This collection of articles explores the role of adaptive immunity in autoimmunity, neurodegeneration, neurotrauma, and psychological disorders. The section emphasizes the interactions of T cells with innate cellular responses within the CNS and the effects on neurological functions. One recurrent theme is that modified and aggregated self-proteins upregulate innate-mediated inflammation and provide a permissive environment for polarization of T cells to proinflammatory effector cells. Moreover, infiltration and reactivation of those T effector cells exacerbate neuroinflammation and oxidative stress to greater neurotoxic levels. Another recurrent theme in these disorders promotes diminished regulatory functions that reduce control over activated T effector cells and microglia, and ultimately augment proinflammatory conditions. Augmentation of regulatory control is discussed as therapeutic strategies to attenuate neuroinflammation, mitigate neurodegeneration or neuronal dysfunction, and lessen disease progression.

  8. Cellular and Humoral Cross-Immunity against Two H3N2v Influenza Strains in Presumably Unexposed Healthy and HIV-Infected Subjects

    PubMed Central

    Agrati, Chiara; Castilletti, Concetta; Cimini, Eleonora; Lapa, Daniele; Quartu, Serena; Caglioti, Claudia; Lanini, Simone; Cattoli, Giovanni; Martini, Federico; Ippolito, Giuseppe; Capobianchi, Maria R.

    2014-01-01

    Human cases of infection due to a novel swine-origin variant of influenza A virus subtype H3N2 (H3N2v) have recently been identified in the United States. Pre-existing humoral and cellular immunity has been recognized as one of the key factors in limiting the infection burden of an emerging influenza virus strain, contributing to restrict its circulation and to mitigate clinical presentation. Aim of this study was to assess humoral and cell-mediated cross immune responses to H3N2v in immuno-competent (healthy donors, n = 45) and immuno-compromised hosts (HIV-infected subjects, n = 46) never exposed to H3N2v influenza strain. Humoral response against i) H3N2v (A/H3N2/Ind/08/11), ii) animal vaccine H3N2 strain (A/H3N2/Min/11/10), and iii) pandemic H1N1 virus (A/H1N1/Cal/07/09) was analysed by hemagglutination inhibition assay; cell-mediated response against the same influenza strains was analysed by ELISpot assay. A large proportion of healthy and HIV subjects displayed cross-reacting humoral and cellular immune responses against two H3N2v strains, suggesting the presence of B- and T-cell clones able to recognize epitopes from emerging viral strains in both groups. Specifically, humoral response was lower in HIV subjects than in HD, and a specific age-related pattern of antibody response against different influenza strains was observed both in HD and in HIV. Cellular immune response was similar between HD and HIV groups and no relationship with age was reported. Finally, no correlation between humoral and cellular immune response was observed. Overall, a high prevalence of HD and HIV patients showing cross reactive immunity against two H3N2v strains was observed, with a slightly lower proportion in HIV persons. Other studies focused on HIV subjects at different stages of diseases are needed in order to define how cross immunity can be affected by advanced immunosuppression. PMID:25162670

  9. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    PubMed

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens. PMID:27056086

  10. Limited ability of humoral immune responses in control of viremia during infection with SIVsmmD215 strain

    SciTech Connect

    Ribiero, Ruy M

    2009-01-01

    To investigate the impact of humoral immunity on SIV replication, 11 rhesus macaques (RMs) were inoculated with the neutralization-sensitive strain SIVsmmD215. Seven RMs were treated every three weeks, with 50 mglkg of an anti-CD20 antibody (Rituxan, gift from Genentech) starting from day -7 p.i., as follows: four RMs were treated for two months, and three were treated for five months. The remaining four RMs were used as controls. Three RMs were completely depleted of CD20 cells. Four RMs only partially depleted CD20 cells in the LNs and intestine. The efficacy of tissue CD20 depletion predicted the ablation of antibody production, with SIVsmm seroconversion being delayed in the animals with complete tissue CD20 depletion, and neutralizing antibody production being significantly delayed and at low levels in all CD20-depleted RMs. There was no significant difference in acute or chronic VLs between CD20-depleted RMs and control monkeys, with a tendency for lower set-point VLs in CD20-depleted RMs. At 6 weeks p.i., cellular immune responses were significantly stronger in CD20 depleted RMs than in controls. After two years p.i., there was no significant difference in survival between CD20-depleted and control RMs. We concluded that CD20 depletion plays no significant role in the control of SIV replication or disease progression in SIVsmmD215-infected RMs.

  11. Humoral immunity in tuberculin skin test anergy and its role in high-risk persons exposed to active tuberculosis.

    PubMed

    Encinales, Liliana; Zuñiga, Joaquin; Granados-Montiel, Julio; Yunis, Maria; Granados, Julio; Almeciga, Ingrid; Clavijo, Olga; Awad, Carlos; Collazos, Vilma; Vargas-Rojas, María Inés; Bañales-Mendez, José Luis; Vazquez-Castañeda, Lilia; Stern, Joel N; Romero, Viviana; Fridkis-Hareli, Masha; Frindkis-Hareli, Masha; Terreros, Daniel; Fernandez-Viña, Marcelo; Yunis, Edmond J

    2010-02-01

    The most common test to identify latent tuberculosis is the tuberculin skin test that detects T cell responses of delayed type hypersensitivity type IV. Since it produces false negative reactions in active tuberculosis or in high-risk persons exposed to tuberculosis patients as shown in this report, we studied antibody profiles to explain the anergy of such responses in high-risk individuals without active infection. Our results showed that humoral immunity against tuberculin, regardless of the result of the tuberculin skin test is important for protection from active tuberculosis and that the presence of high antibody titers is a more reliable indicator of infection latency suggesting that latency can be based on the levels of antibodies together with in vitro proliferation of peripheral blood mononuclear cells in the presence of the purified protein derivative. Importantly, anti-tuberculin IgG antibody levels mediate the anergy described herein, which could also prevent reactivation of disease in high-risk individuals with high antibody titers. Such anti-tuberculin IgG antibodies were also found associated with blocking and/or stimulation of in vitro cultures of PBMC with tuberculin. In this regard, future studies need to establish if immune responses to Mycobacterium tuberculosis can generate a broad spectrum of reactions either toward Th1 responses favoring stimulation by cytokines or by antibodies and those toward diminished responses by Th2 cytokines or blocking by antibodies; possibly involving mechanisms of antibody dependent protection from Mtb by different subclasses of IgG.

  12. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity.

    PubMed

    Lee, Won-Hee; Choi, Hyun-Il; Hong, Sung-Wook; Kim, Kwang-Sun; Gho, Yong Song; Jeon, Seong Gyu

    2015-01-01

    The emergence of multidrug-resistant Klebsiella pneumoniae highlights the need to develop preventive measures to ameliorate Klebsiella infections. Bacteria-derived extracellular vesicles (EVs) are spherical nanometer-sized proteolipids enriched with outer membrane proteins. Gram-negative bacteria-derived EVs have gained interest for use as nonliving complex vaccines. In the present study, we evaluated whether K. pneumoniae-derived EVs confer protection against bacteria-induced lethality. K. pneumoniae-derived EVs isolated from in vitro bacterial culture supernatants induced innate immunity, including the upregulation of co-stimulatory molecule expression and proinflammatory mediator production. EV vaccination via the intraperitoneal route elicited EV-reactive antibodies and interferon-gamma-producing T-cell responses. Three vaccinations with the EVs prevented bacteria-induced lethality. As verified by sera and splenocytes adoptive transfer, the protective effect of EV vaccination was dependent on both humoral and cellular immunity. Taken together, these findings suggest that K. pneumoniae-derived EVs are a novel vaccine candidate against K. pneumoniae infections. PMID:26358222

  13. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    PubMed

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens.

  14. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity

    PubMed Central

    Lee, Won-Hee; Choi, Hyun-Il; Hong, Sung-Wook; Kim, Kwang-sun; Gho, Yong Song; Jeon, Seong Gyu

    2015-01-01

    The emergence of multidrug-resistant Klebsiella pneumoniae highlights the need to develop preventive measures to ameliorate Klebsiella infections. Bacteria-derived extracellular vesicles (EVs) are spherical nanometer-sized proteolipids enriched with outer membrane proteins. Gram-negative bacteria-derived EVs have gained interest for use as nonliving complex vaccines. In the present study, we evaluated whether K. pneumoniae-derived EVs confer protection against bacteria-induced lethality. K. pneumoniae-derived EVs isolated from in vitro bacterial culture supernatants induced innate immunity, including the upregulation of co-stimulatory molecule expression and proinflammatory mediator production. EV vaccination via the intraperitoneal route elicited EV-reactive antibodies and interferon-gamma-producing T-cell responses. Three vaccinations with the EVs prevented bacteria-induced lethality. As verified by sera and splenocytes adoptive transfer, the protective effect of EV vaccination was dependent on both humoral and cellular immunity. Taken together, these findings suggest that K. pneumoniae-derived EVs are a novel vaccine candidate against K. pneumoniae infections. PMID:26358222

  15. Assessment of humoral and cellular-mediated immune response in chickens treated with tilmicosin, florfenicol, or enrofloxacin at the time of Newcastle disease vaccination.

    PubMed

    Khalifeh, M S; Amawi, M M; Abu-Basha, E A; Yonis, I Bani

    2009-10-01

    The effect of tilmicosin, florfenicol, or enrofloxacin on humoral and cell-mediated immune response induced by Newcastle disease (ND) vaccination was evaluated in 20-wk-old specific-pathogen-free layer chickens. Humoral immunity was measured by detection of ND virus (NDV) antibody titer and anti-NDV IgG response using the hemagglutination inhibition (HI) test and ELISA, respectively, whereas cell-mediated immunity was evaluated by measurement of chicken interferon gamma (ChIFN-gamma) produced in splenocytes cell culture stimulated with concanavalin A, inactivated NDV antigen, or live attenuated La Sota strain using ELISA. Florfenicol hampered the ND antibody production measured by both HI and ELISA. Tilmicosin and enrofloxacin reduced the production of ND antibody in the first 3 wk after the last ND vaccination measured by HI test, which suggests that these antibiotics exert their effect mainly on the IgM isotype. The ND-vaccinated, but not treated group, showed an increase in ChIFN-gamma production after NDV antigen-specific stimulation above the nonstimulated cell culture, whereas this effect was masked in all the antibiotic-treated groups due to the stronger ChIFN-gamma production background value reported in the nonstimulated cell culture. In conclusion, our results showed, for the first time, that tilmicosin, florfenicol, or enrofloxacin reduced the humoral immune response and had beneficial effects on the cell-mediated immune response. In addition, we demonstrated that the combination of both inactivated and attenuated ND vaccine gave a strong immune response at both the humoral and cellular level.

  16. [Adaptive immune response of people living near chemically hazardous object].

    PubMed

    Petlenko, S V; Ivanov, M B; Goverdovskiĭ, Iu B; Bogdanova, E G; Golubkov, A V

    2011-10-01

    The article presents data dynamics of adaptive immune responses of people for a long time living in adverse environmental conditions caused by pollution of the environment by industrial toxic waste. It is shown that in the process of adaptation to adverse environmental factors, changes in the immune system are in the phase fluctuations of immunological parameters that are accompanied by changes in the structure of immunodependent pathology. Most sensitive to prolonged exposure to toxic compounds are the cellular mechanisms of immune protection. Violations of the structural and quantitative and functional parameters of the link of the immune system are leading to the formation of immunopathological processes.

  17. Maturation of the cellular and humoral immune responses to persistent infection in horses by equine infectious anemia virus is a complex and lengthy process.

    PubMed Central

    Hammond, S A; Cook, S J; Lichtenstein, D L; Issel, C J; Montelaro, R C

    1997-01-01

    Equine infectious anemia virus (EIAV) provides a natural model system by which immunological control of lentivirus infections may be studied. To date, no detailed study addressing in parallel both the humoral and cellular immune responses induced in horses upon infection by EIAV has been conducted. Therefore, we initiated the first comprehensive characterization of the cellular and humoral immune responses during clinical progression from chronic disease to inapparent stages of EIAV infection. Using new analyses of antibody avidity and antibody epitope conformation dependence that had not been previously employed in this system, we observed that the humoral immune response to EIAV required a 6- to 8-month period in which to fully mature. During this time frame, EIAV-specific antibody evolved gradually from a population characterized by low-avidity, nonneutralizing, and predominantly linear epitope specificity to an antibody population with an avidity of moderate to high levels, neutralizing activity, and predominantly conformational epitope specificity. Analyses of the cell-mediated immune response to EIAV revealed CD4+ and CD8+ major histocompatibility complex-restricted, EIAV-specific cytotoxic T-lymphocyte (CTL) activity apparent within 3 to 4 weeks postinfection, temporally correlating with the resolution of the primary viremia. After resolution of the initial viremia, EIAV-specific CTL activity differed greatly among the experimentally infected ponies, with some animals having readily detectable CTL activity while others had little measurable CTL activity. Thus, in contrast to the initial viremia, it appeared that no single immune parameter correlated with the resolution of further viremic episodes. Instead, immune control of EIAV infection during the clinically inapparent stage of infection appears to rely on a complex combination of immune system mechanisms to suppress viral replication that effectively functions only after the immune system has evolved to a

  18. Induction of humoral immunity and pulmonary mast cells in mice and rats after immunization with aerosolized antigen.

    PubMed Central

    Ahlstedt, S; Björkstén, B; Nygren, H; Smedegård, G

    1983-01-01

    Rats (BN X Wistar) and mice (CBA/Ca) were immunized by exposure in 10-day periods to an aerosol of ovalbumin (OA). In rats this immunization resulted in IgE antibodies detectable at very low levels in bronchial washings, whereas IgG, IgA and IgM antibodies were recorded both in serum and in bronchial washings. In mice, exposure to aerosolized antigen resulted in specific IgE and IgG antibodies in serum. The levels of IgM antibodies were low and no IgA antibodies could be recorded with the enzyme-linked immunosorbent assay (ELISA). Histological examination of lung tissue from immunized rats and mice revealed increased numbers of cells with characteristics of both immature and mature mast cells. In addition, in the rats these cells were more closely located to the bronchi in immunized than in control animals. In the latter animals the mast cells were located around the blood vessels. Immature mast cells were located in the bronchiole-associated lymphatic tissue (BALT) which showed a marked proliferation in immunized animals. The findings indicate that sensitization via the airways provides possibilities to develop a model in rodents for studies of IgE-mediated allergy in the lung. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:6822403

  19. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    PubMed

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo.

  20. Influence of chemotherapy for lymphoma in canine parvovirus DNA distribution and specific humoral immunity.

    PubMed

    Elias, M A; Duarte, A; Nunes, T; Lourenço, A M; Braz, B S; Vicente, G; Henriques, J; Tavares, L

    2014-12-01

    In man, the combination of cancer and its treatment increases patients' susceptibility to opportunistic infections, due to immune system impairment. In veterinary medicine little information is available concerning this issue. In order to evaluate if a similar dysfunction is induced in small animals undergoing chemotherapy, we assessed the complete blood count, leukocytic, plasma and fecal canine parvovirus (CPV) viral load, and anti-CPV protective antibody titers, in dogs with lymphoma treated with CHOP (cyclophosphamide, doxorubicin, vincristine and prednisolone) protocol, before and during chemotherapy. There was no evidence of decreased immune response, either at admission or after two chemotherapy cycles, indicating that the previously established immunity against CPV was not significantly impaired, supporting the idea that immunosuppression as a result of hematopoietic neoplasms and their treatment in dogs requires further investigation and conclusions cannot be extrapolated from human literature.

  1. The pathogenesis of arthritis in Lyme disease: humoral immune responses and the role of intra-articular immune complexes.

    PubMed Central

    Hardin, J. A.; Steere, A. C.; Malawista, S. E.

    1984-01-01

    We studied 78 patients with Lyme disease to determine how immune complexes and autoantibodies are related to the development of chronic Lyme arthritis. Circulating C1q binding material was found in nearly all patients at onset of erythema chronicum migrans, the skin lesion that marks the onset of infection with the causative spirochete. In patients with only subsequent arthritis this material tended to localize to joints where it gradually increased in concentrations with greater duration of joint inflammation. In joints, its concentration correlated positively with the number of synovial fluid polymorphonuclear leukocytes. Despite the prolonged presence of putative immune complexes, rheumatoid factors could not be demonstrated. These observations suggest that phlogistic immune complexes based on spirochete antigens form locally within joints during chronic Lyme arthritis. PMID:6334939

  2. Modulation of Adjuvant Arthritis by Cellular and Humoral Immunity to Hsp65.

    PubMed

    Kim, Eugene Y; Durai, Malarvizhi; Mia, Younus; Kim, Hong R; Moudgil, Kamal D

    2016-01-01

    Heat shock proteins (Hsps) are highly conserved, and their expression is upregulated in cells by heat and other stressful stimuli. These proteins play a vital role in preserving the structural and functional integrity of cells under stress. Despite the ubiquitous expression of Hsps in an individual, the immune system is not fully tolerant to them. In fact, Hsps are highly immunogenic in nature, and immune response to these proteins is observed in various inflammatory and autoimmune diseases. Studies on the immunopathogenesis of autoimmune arthritis in the rat adjuvant arthritis (AA) model of human rheumatoid arthritis (RA) as well as observations in patients with RA and juvenile idiopathic arthritis (JIA) have unraveled immunoregulatory attributes of self-Hsp65-directed immunity. Notable features of Hsp65 immunity in AA include protection rather than disease induction following immunization of Lewis rats with self (rat)-Hsp65; the diversification of T cell response to mycobacterial Hsp65 during the course of AA and its association with spontaneous induction of response to self-Hsp65; the cross-reactive T cells recognizing foreign and self homologs of Hsp65 and their role in disease suppression in rats; the suppressive effect of antibodies to Hsp65 in AA; and the use of Hsp65, its peptides, or altered peptide ligands in controlling autoimmune pathology. The results of studies in the AA model have relevance to RA and JIA. We believe that these insights into Hsp65 immunity would not only advance our understanding of the disease process in RA/JIA, but also lead to the development of novel therapeutic approaches for autoimmune arthritis. PMID:27379088

  3. The reconstitution of the thymus in immunosuppressed individuals restores CD4-specific cellular and humoral immune responses

    PubMed Central

    Plana, Montserrat; Garcia, Felipe; Darwich, Laila; Romeu, Joan; López, Anna; Cabrera, Cecilia; Massanella, Marta; Canto, Esther; Ruiz-Hernandez, Raul; Blanco, Julià; Sánchez, Marcelo; Gatell, Josep M; Clotet, Bonaventura; Ruiz, Lidia; Bofill, Margarita

    2011-01-01

    Infection with HIV-1 frequently results in the loss of specific cellular immune responses and an associated lack of antibodies. Recombinant growth hormone (rGH) administration reconstitutes thymic tissue and boosts the levels of peripheral T cells, so rGH therapy may be an effective adjuvant through promoting the recovery of lost cellular and T-cell-dependent humoral immune responses in immunosuppressed individuals. To test this concept, we administered rGH to a clinically defined group of HIV-1-infected subjects with defective cellular and serological immune responses to at least one of three commonly employed vaccines (hepatitis A, hepatitis B or tetanus toxoid). Of the original 278 HIV-1-infected patients entering the trial, only 20 conformed to these immunological criteria and were randomized into three groups: Group A (n = 8) receiving rGH and challenged with the same vaccine to which they were unresponsive and Groups B (n = 5) and C (n = 7) who received either rGH or vaccination alone, respectively. Of the eight subjects in Group A, five recovered CD4 cellular responses to vaccine antigen and four of these produced the corresponding antibodies. In the controls, three of the five in group B recovered cellular responses with two producing antibodies, whereas three of the seven in Group C recovered CD4 responses, with only two producing antibodies. Significantly, whereas seven of ten patients receiving rGH treatment in Group A (six patients) and B (one patient) recovered T-cell responses to HIVp24, only two of six in Group C responded similarly. In conclusion, reconstitution of the thymus in immunosuppressed adults through rGH hormone treatment restored both specific antibody and CD4 T-cell responses. PMID:21501161

  4. Molecular characterization of the humoral responses to Cryptococcus neoformans infection and glucuronoxylomannan-tetanus toxoid conjugate immunization

    PubMed Central

    1993-01-01

    The molecular characteristics of the humoral immune response to a serotype A Cryptococcus neoformans infection were compared with the response elicited by a cryptococcal glucuronoxylomannan-tetanus toxoid (GXM-TT) conjugate. Anticryptococcal monoclonal antibodies (mAbs) isolated from both responses have previously been shown to recognize the same antigenic determinant of cryptococcal GXM. Southern blot and sequence analyses indicate that the hybridomas isolated from each response arose from only a few precursor B cells. All the mAbs generated from the infected and GXM-TT conjugate-immunized mice utilize the same VH7183 family member: JH2/JH4, v kappa 5.1, and J kappa 1; mAbs generated by different B cells had complementarity-determining region 3's (CDR3s) composed of seven amino acids with a common sequence motif. Thus, the molecular analysis of these anticryptococcal mAb- producing hybridomas indicated that the response to both cryptococcal infection and conjugate immunization was oligoclonal and highly restricted with regard to immunoglobulin gene utilization. The GXM-TT conjugate primarily stimulated isotype switching and clonal proliferation, and did not result in hybridomas expressing additional immunoglobulin repertoires. The mAbs from both responses had a number of replacement mutations at the 5' end of CDR2 that appear to be the result of antigen-driven selection. Somatic mutation also resulted in altered epitope specificity for one mAb, 13F1. Passive administration of representative mAbs from different clones generated in response to the GXM-TT conjugate prolonged survival of lethally infected mice. PMID:8459205

  5. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    SciTech Connect

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen . E-mail: aizhen@mail.hzau.edu.cn

    2006-09-08

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28{sub 4} were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d{sub 3} DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD{sub 5}) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d{sub 3} DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.

  6. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients.

    PubMed

    Kennedy, Richard B; Poland, Gregory A; Ovsyannikova, Inna G; Oberg, Ann L; Asmann, Yan W; Grill, Diane E; Vierkant, Robert A; Jacobson, Robert M

    2016-06-14

    Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the appearance of a lesion or "take" at the vaccine site, which leaves behind a characteristic scar. Both the take and scar are readily recognizable and were used during the eradication effort to indicate successful vaccination and to categorize individuals as "protected." However, the development of a typical vaccine take may not equate to the successful development of a robust, protective immune response. In this report, we examined two large (>1000) cohorts of recipients of either Dryvax(®) or ACAM2000 using a testing and replication study design and identified subgroups of individuals who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers. Examination of these individuals revealed that they had suboptimal cellular immune responses as well. Further testing indicated these low responders had a diminished innate antiviral gene expression pattern (IFNA1, CXCL10, CXCL11, OASL) upon in vitro stimulation with vaccinia virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine. These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox vaccines and/or effective antiviral therapy targets against poxvirus infections.

  7. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients.

    PubMed

    Kennedy, Richard B; Poland, Gregory A; Ovsyannikova, Inna G; Oberg, Ann L; Asmann, Yan W; Grill, Diane E; Vierkant, Robert A; Jacobson, Robert M

    2016-06-14

    Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the appearance of a lesion or "take" at the vaccine site, which leaves behind a characteristic scar. Both the take and scar are readily recognizable and were used during the eradication effort to indicate successful vaccination and to categorize individuals as "protected." However, the development of a typical vaccine take may not equate to the successful development of a robust, protective immune response. In this report, we examined two large (>1000) cohorts of recipients of either Dryvax(®) or ACAM2000 using a testing and replication study design and identified subgroups of individuals who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers. Examination of these individuals revealed that they had suboptimal cellular immune responses as well. Further testing indicated these low responders had a diminished innate antiviral gene expression pattern (IFNA1, CXCL10, CXCL11, OASL) upon in vitro stimulation with vaccinia virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine. These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox vaccines and/or effective antiviral therapy targets against poxvirus infections. PMID:27177944

  8. The pH-sensitive fusogenic 3-methyl-glutarylated hyperbranched poly(glycidol)-conjugated liposome induces antigen-specific cellular and humoral immunity.

    PubMed

    Hebishima, Takehisa; Yuba, Eiji; Kono, Kenji; Takeshima, Shin-Nosuke; Ito, Yoshihiro; Aida, Yoko

    2012-09-01

    We examined the ability of a novel liposome, surface modified by 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG), to enhance antigen-specific immunity in vitro and in vivo and to function as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) encapsulated in MGlu-HPG-modified liposomes more effectively than free OVA or OVA encapsulated in unmodified liposomes. Immunization of mice with OVA-containing MGlu-HPG-modified liposomes induced antigen-specific splenocyte proliferation and production of gamma interferon (IFN-γ) more strongly than did immunization with free OVA or OVA encapsulated in unmodified liposomes. The immune responses induced by OVA encapsulated in MGlu-HPG-modified liposomes were significantly suppressed by addition of anti-major histocompatibility complex (MHC) class I and class II monoclonal antibodies, indicating the involvement of antigen presentation via MHC class I and II. Furthermore, delayed-type hypersensitivity responses and OVA-specific antibodies were induced more effectively in mice immunized with OVA encapsulated by MGlu-HPG-modified liposomes than with unencapsulated OVA or OVA encapsulated in unmodified liposomes. These results suggested that MGlu-HPG-modified liposomes effectively induced both cell-mediated and humoral immune responses. Collectively, this study is the first to demonstrate the induction of both cell-mediated and humoral immune responses in vivo by MGlu-HPG-modified liposomes.

  9. Disease-specific adaptive immune biomarkers in Alzheimer's disease and related pathologies.

    PubMed

    Dorothée, G; Sarazin, M; Aucouturier, P

    2013-10-01

    Identification of disease-specific diagnostic and prognostic biomarkers allowing for an early characterization and accurate clinical follow-up of Alzheimer's disease (AD) patients is a major clinical objective. Increasing evidences implicate both humoral and cellular adaptive immune responses in the pathophysiology of AD. Such disease-related B- and T-cell responses constitute a promising source of potential specific early biomarkers. Among them, levels of anti-Aβ antibodies in the serum and/or cerebrospinal fluid of patients may correlate with AD progression, clinical presentation of the disease, and occurrence of associated pathologies related to cerebral amyloid angiopathy. In the same line, Aβ-specific T cell responses and immune regulatory populations implicated in their modulation appear to play a role in the pathophysiology of AD and cerebral amyloid angiopathy. Further characterization of both autoantibodies and T cell responses specific for disease-related proteins, i.e. Aβ and hyperphosphorylated Tau, will allow better deciphering their interest as early diagnostic and prognostic markers in AD. Biomarkers of adaptive immune responses specific for other pathological proteins may also apply to other neurological disorders associated with abnormal protein deposition.

  10. Diversity of immune strategies explained by adaptation to pathogen statistics

    PubMed Central

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M.

    2016-01-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations—differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  11. Analysis of the humoral immune response to chlamydial genital infection in guinea pigs.

    PubMed

    Batteiger, B E; Rank, R G

    1987-08-01

    Studies using the guinea pig model of chlamydial genital infection with the Chlamydia psittaci agent of guinea pig inclusion conjunctivitis (GPIC) have shown that serum and local antibodies play a role both in the resolution of infection and in protection against reinfection. Thus, this model is suited for further exploration of immune mechanisms and for vaccine studies with chlamydial macromolecules. We have further characterized the model by assessing the antigen-specific antibody response to experimental genital infection by using immunoblotting to assay both genital secretions and serum. The GPIC agent was characterized by analysis of outer membrane proteins, which indicated that the GPIC agent possessed a major outer membrane protein (MOMP), with a molecular mass of 39 kilodaltons (kDa), and a 61-kDa protein, analogous to cysteine-rich 60-kDa proteins or doublets of Chlamydia trachomatis strains. As indicated by immunoblotting, most infected animals produced serum immunoglobulin G antibodies to MOMP, the 61-kDa proteins, an 84-kDa outer membrane protein, and lipopolysaccharide. Such serum antibodies persisted for at least 813 days after primary genital infection. Immunoglobulin A antibodies against the 61-kDa proteins, lipopolysaccharide, and MOMP, but not the 84-kDa protein, were detected in secretions. Animals challenged with GPIC 825 days after primary infection became infected again despite the presence of serum antibodies, but the period of chlamydial shedding was significantly shorter and less intense than in primary infections. Although the specific mechanism is not known, these data suggest that a long-lasting immune effect is capable of altering the course of infection late after primary infection. Correlation of the antigen-specific antibody response and other immune parameters with the duration and degree of protective immunity induced by infection or vaccination may be helpful in further understanding the nature of such protective immunity.

  12. EFFICACY OF NITAZOXANIDE AGAINST Toxocara canis: LARVAL RECOVERY AND HUMORAL IMMUNE RESPONSE IN EXPERIMENTALLY INFECTED MICE.

    PubMed

    Lescano, Susana A Zevallos; Santos, Sergio Vieira dos; Assis, Jesiel Maurício Lemos; Chieffi, Pedro Paulo

    2015-01-01

    The efficacy of nitazoxanide (NTZ) against toxocariasis was investigated in an experimental murine model and results were compared to those obtained using mebendazole. Sixty male BALB/c mice, aged six to eight weeks-old, were divided into groups of 10 each; fifty were orally infected with 300 larvaed eggs of T. canis and grouped as follows, G I: infected untreated mice; G II: infected mice treated with MBZ (15 mg/kg/day) 10 days postinfection (dpi); G III: infected mice treated with NTZ (20 mg/kg/day) 10 dpi; G IV: infected mice treated with MBZ 60 dpi; G V: infected mice treated with NTZ 60 dpi; GVI: control group comprising uninfected mice. Mice were bled via retro-orbital plexus on four occasions between 30 and 120 dpi. Sera were processed using the ELISA technique to detect IgG anti- Toxocara antibodies. At 120 dpi, mice were sacrificed for larval recovery in the CNS, liver, lungs, kidneys, eyes and carcass. Results showed similar levels of anti- Toxocara IgG antibodies among mice infected but not submitted to treatment and groups treated with MBZ or NTZ, 10 and 60 dpi. Larval recovery showed similar values in groups treated with NTZ and MBZ 10 dpi. MBZ showed better efficacy 60 dpi, with a 72.6% reduction in the parasite load compared with NTZ, which showed only 46.5% reduction. We conclude that administration of these anthelmintics did not modify the humoral response in experimental infection by T. canis. No parasitological cure was observed with either drug; however, a greater reduction in parasite load was achieved following treatment with MBZ. PMID:26422159

  13. EFFICACY OF NITAZOXANIDE AGAINST Toxocara canis: LARVAL RECOVERY AND HUMORAL IMMUNE RESPONSE IN EXPERIMENTALLY INFECTED MICE

    PubMed Central

    LESCANO, Susana A. Zevallos; dos SANTOS, Sergio Vieira; ASSIS, Jesiel Maurício Lemos; CHIEFFI, Pedro Paulo

    2015-01-01

    SUMMARY The efficacy of nitazoxanide (NTZ) against toxocariasis was investigated in an experimental murine model and results were compared to those obtained using mebendazole. Sixty male BALB/c mice, aged six to eight weeks-old, were divided into groups of 10 each; fifty were orally infected with 300 larvaed eggs of T. canisand grouped as follows, G I: infected untreated mice; G II: infected mice treated with MBZ (15 mg/kg/day) 10 days postinfection (dpi); G III: infected mice treated with NTZ (20 mg/kg/day) 10 dpi; G IV: infected mice treated with MBZ 60 dpi; G V: infected mice treated with NTZ 60 dpi; GVI: control group comprising uninfected mice. Mice were bled via retro-orbital plexus on four occasions between 30 and 120 dpi. Sera were processed using the ELISA technique to detect IgG anti- Toxocaraantibodies. At 120 dpi, mice were sacrificed for larval recovery in the CNS, liver, lungs, kidneys, eyes and carcass. Results showed similar levels of anti- ToxocaraIgG antibodies among mice infected but not submitted to treatment and groups treated with MBZ or NTZ, 10 and 60 dpi. Larval recovery showed similar values in groups treated with NTZ and MBZ 10 dpi. MBZ showed better efficacy 60 dpi, with a 72.6% reduction in the parasite load compared with NTZ, which showed only 46.5% reduction. We conclude that administration of these anthelmintics did not modify the humoral response in experimental infection by T. canis. No parasitological cure was observed with either drug; however, a greater reduction in parasite load was achieved following treatment with MBZ. PMID:26422159

  14. Pattern of humoral immune response to Plasmodium falciparum blood stages in individuals presenting different clinical expressions of malaria

    PubMed Central

    Leoratti, Fabiana MS; Durlacher, Rui R; Lacerda, Marcus VG; Alecrim, Maria G; Ferreira, Antonio W; Sanchez, Maria CA; Moraes, Sandra L

    2008-01-01

    Background The development of protective immunity against malaria is slow and to be maintained, it requires exposure to multiple antigenic variants of malaria parasites and age-associated maturation of the immune system. Evidence that the protective immunity is associated with different classes and subclasses of antibodies reveals the importance of considering the quality of the response. In this study, we have evaluated the humoral immune response against Plasmodium falciparum blood stages of individuals naturally exposed to malaria who live in endemic areas of Brazil in order to assess the prevalence of different specific isotypes and their association with different malaria clinical expressions. Methods Different isotypes against P. falciparum blood stages, IgG, IgG1, IgG2, IgG3, IgG4, IgM, IgE and IgA, were determined by ELISA. The results were based on the analysis of different clinical expressions of malaria (complicated, uncomplicated and asymptomatic) and factors related to prior malaria exposure such as age and the number of previous clinical malaria attacks. The occurrence of the H131 polymorphism of the FcγIIA receptor was also investigated in part of the studied population. Results The highest levels of IgG, IgG1, IgG2 and IgG3 antibodies were observed in individuals with asymptomatic and uncomplicated malaria, while highest levels of IgG4, IgE and IgM antibodies were predominant among individuals with complicated malaria. Individuals reporting more than five previous clinical malaria attacks presented a predominance of IgG1, IgG2 and IgG3 antibodies, while IgM, IgA and IgE antibodies predominated among individuals reporting five or less previous clinical malaria attacks. Among individuals with uncomplicated and asymptomatic malaria, there was a predominance of high-avidity IgG, IgG1, IgG2 antibodies and low-avidity IgG3 antibodies. The H131 polymorphism was found in 44.4% of the individuals, and the highest IgG2 levels were observed among asymptomatic

  15. Comparison of humoral immune responses in dairy heifers vaccinated with 3 different commercial vaccines against bovine viral diarrhea virus and bovine herpesvirus-1

    PubMed Central

    DesCôteaux, Luc; Cécyre, Dominique; Elsener, Johanne; Beauchamp, Guy

    2003-01-01

    A randomized clinical trial was conducted to compare the humoral immune response to 3 different commercial vaccines in dairy heifers housed in 3 different dairy farms in Quebec. All heifers were seronegative to type 1 bovine viral diarrhea virus (BVDV) (Singer strain), type 2 BVDV (NVSL 125c strain), and bovine herpesvirus-1 (BHV-1) at the beginning of the trial. In addition, control heifers in group 1 remained seronegative to the 2 viruses till the end of the trial. Significant differences in humoral immune responses occurred among the 3 commercial vaccines at 4 weeks and 6 months following vaccination. The vaccine in group 2 elicited higher mean antibody titers and seroconversion rates to both type 1 and type 2 BVDV than that in groups 3 or 4. Vaccines in groups 2 and 3 induced higher mean antibody titers to BHV-1 than did the vaccine in group 4. PMID:14601677

  16. Comparison of humoral immune responses in dairy heifers vaccinated with 3 different commercial vaccines against bovine viral diarrhea virus and bovine herpesvirus-1.

    PubMed

    DesCôteaux, Luc; Cécyre, Dominique; Elsener, Johanne; Beauchamp, Guy

    2003-10-01

    A randomized clinical trial was conducted to compare the humoral immune response to 3 different commercial vaccines in dairy heifers housed in 3 different dairy farms in Quebec. All heifers were seronegative to type 1 bovine viral diarrhea virus (BVDV) (Singer strain), type 2 BVDV (NVSL 125c strain), and bovine herpesvirus-1 (BHV-1) at the beginning of the trial. In addition, control heifers in group 1 remained seronegative to the 2 viruses till the end of the trial. Significant differences in humoral immune responses occurred among the 3 commercial vaccines at 4 weeks and 6 months following vaccination. The vaccine in group 2 elicited higher mean antibody titers and seroconversion rates to both type 1 and type 2 BVDV than that in groups 3 or 4. Vaccines in groups 2 and 3 induced higher mean antibody titers to BHV-1 than did the vaccine in group 4.

  17. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    PubMed

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  18. Humoral immune responses to inactivated oil-emulsified Marek's disease vaccine.

    PubMed

    Lee, L F; Witter, R L

    1991-01-01

    When inactivated Md11/75C vaccine was inoculated into 1-day-old chickens, it stimulated antibodies detectable by enzyme-linked immunosorbent assay (at a titer of 6400) and indirect fluorescent antibody test (at a titer of 640), but lacking virus-neutralizing activity. Chickens passively inoculated with these antibodies were protected against bursal atrophy, weight loss, and early mortality when challenged with the virulent Md5 strain of Marek's disease virus (MDV). That led to the conclusion that virus-neutralizing activity is not a prerequisite for protection. In another experiment, antibody titers of adult chickens previously primed by exposure to live turkey herpesvirus and MDV did not increase after immunization with inactivated oil-emulsion MDV vaccines. This result provides little hope that Marek's disease can be controlled in progeny chickens by maternal immunity derived from hyperimmunized parents.

  19. Nanoporous polyelectrolyte vaccine microcarriers. A formulation platform for enhancing humoral and cellular immune responses.

    PubMed

    De Koker, Stefaan; Fierens, Kaat; Dierendonck, Marijke; De Rycke, Riet; Lambrecht, Bart N; Grooten, Johan; Remon, Jean Paul; De Geest, Bruno G

    2014-12-10

    In this paper we report on the design, characterization and immuno-biological evaluation of nanoporous polyelectrolyte microparticles as vaccine carrier. Relative to soluble antigen, formulation of antigen as a sub-10 μm particle can strongly enhance antigen-specific cellular immune responses. The latter is crucial to confer protective immunity against intracellular pathogens and for anti-cancer vaccines. However, a major bottleneck in microparticulate vaccine formulation is the development of generic strategies that afford antigen encapsulation under benign and scalable conditions. Our strategy is based on spray drying of a dilute aqueous solution of antigen, oppositely charged polyelectrolytes and mannitol as a pore-forming component. The obtained solid microparticles can be redispersed in aqueous medium, leading to leaching out of the mannitol, thereby creating a highly porous internal structure. This porous structure enhances enzymatic processing of encapsulated proteins. After optimizing the conditions to process these microparticles we demonstrate that they strongly enhance cross-presentation in vitro by dendritic cells to CD8 T cells. In vivo experiments in mice confirm that this vaccine formulation technology is capable of enhancing cellular immune responses.

  20. Tyrosinase, a new innate humoral immune parameter in large yellow croaker ( Pseudosciaena crocea R)

    NASA Astrophysics Data System (ADS)

    Wang, Shuhong; Wang, Yilei; Zhang, Ziping; Xie, Fangjing; Lin, Peng; Tai, Zhengang

    2009-09-01

    We evaluated the immune response to infection with a pathogen in large yellow croaker ( Pseudosciaena crocea Richardson). The fish were given an intraperitoneal (i.p.) injection of Vibrio parahaemolyticus or sterile sea water (control). We collected blood sera from the fish 0.17, 1, 2, 4, 8, 12, or 16 d after injection (dpi). We measured tyrosinase activity and the concentrations of lysozyme, NOS, and antibodies. Serum tyrosinase activity was significantly higher at 0.17 and 4 dpi than in the control group, and peaked at 8 dpi. Lysozyme activity was significantly higher at 2 and 12 dpi than in the control group, but lower at 16 dpi. There is no statistical difference in the level of nitric oxides synthase (NOS) activity or antibodies between the control and injection groups. This is the first report of the tyrosinase activity in the serum of large yellow croaker. Our results indicate that tyrosinase plays an important role in the immediate immune defense against V. parahaemolyticus in large yellow croaker. Tyrosinase is a candidate parameter for investigation of fish innate immune defense.

  1. The immune system, adaptation, and machine learning

    NASA Astrophysics Data System (ADS)

    Farmer, J. Doyne; Packard, Norman H.; Perelson, Alan S.

    1986-10-01

    The immune system is capable of learning, memory, and pattern recognition. By employing genetic operators on a time scale fast enough to observe experimentally, the immune system is able to recognize novel shapes without preprogramming. Here we describe a dynamical model for the immune system that is based on the network hypothesis of Jerne, and is simple enough to simulate on a computer. This model has a strong similarity to an approach to learning and artificial intelligence introduced by Holland, called the classifier system. We demonstrate that simple versions of the classifier system can be cast as a nonlinear dynamical system, and explore the analogy between the immune and classifier systems in detail. Through this comparison we hope to gain insight into the way they perform specific tasks, and to suggest new approaches that might be of value in learning systems.

  2. A temporal analysis of the relationships between social stress, humoral immune response and glutathione-related antioxidant defenses.

    PubMed

    Gonçalves, Luciane; Dafre, Alcir Luiz; Carobrez, Sonia Gonçalves; Gasparotto, Odival Cezar

    2008-10-10

    The exposure to different kinds of stress impacts on the reactive oxygen species production with potential risk to the integrity of the tissues. Psychological or biological stress is responsible for a significant increase in the oxidative stress markers and also for activation of the antioxidant defense system. In this study, we analyzed the relationships between social stress, humoral immune response and glutathione-related antioxidant defenses. Groups of male Swiss mice were subjected to different lengths of social stress exposure (social confrontation) which varied from 1 up to 13 days. As a biological stressor, 10(9) sheep red blood cells (SRBC)/mL were injected by intraperitoneal route. As controls, animals not subjected to social stress and/or injected with vehicle solution were used. The serum samples and the cerebral cortex were collected at 4 h, 3, 5, 7, 9, 11, and 13 days after the end of social confrontation. The results indicated that the antioxidant enzymes activities were affected by psychological as well as by biological stressor. These alterations were dependent on the timing of stress exposure which resulted in a positive or in a negative correlation between the antibody titres to SRBC and antioxidant enzymes. We also discuss the possible role of SRBC injection in the modulation of the effects of psychosocial stress on antioxidant metabolism.

  3. Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin intercalated in smectite clay.

    PubMed

    Boyd, Stephen A; Johnston, Cliff T; Pinnavaia, Thomas J; Kaminski, Norbert E; Teppen, Brian J; Li, Hui; Khan, Bushra; Crawford, Robert B; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L F

    2011-12-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially.

  4. Humoral immunity against hepatitis B, tetanus, and diphtheria following chemotherapy for hematologic malignancies: a report and review of literature.

    PubMed

    Alavi, Samin; Rashidi, Armin; Arzanian, Mohammad Taghi; Shamsian, Bibishahin; Nourbakhsh, Kazem

    2010-04-01

    Malignancy and its treatment are major causes of secondary immunodeficiency in childhood. The authors investigated the effects of chemotherapy on humoral immunity against hepatitis B, tetanus, and diphtheria in children with hematologic malignancies. The authors recruited 54 patients with hematologic malignancies after the completion of chemotherapy (group A), 25 patients with newly diagnosed hematologic malignancies before initiation of chemotherapy (group B), and 74 healthy controls (group C). All participants had been vaccinated against hepatitis B, tetanus, and diphtheria according to the Iranian national vaccination scheme. Patients in group A achieved protective levels of diphtheria and hepatitis B antibodies significantly less frequently than the other 2 groups and protective levels of tetanus antibody significantly less frequently than group C (P <.05). After controlling for age, the association observed for tetanus lost its significance, but chemotherapy was a significant and independent predictor of failure to achieve protective levels of antibodies against diphtheria (odds ratio [OR] = 7.7, P < .001) and hepatitis B (OR = 3.13, P = .008). These results indicate that chemotherapy has independent adverse effects on vaccine-induced antibody protection against diphtheria and hepatitis B.

  5. Cell-mediated and humoral immune responses to chlamydial antigens in guinea pigs infected ocularly with the agent of guinea pig inclusion conjunctivitis.

    PubMed

    Senyk, G; Kerlan, R; Stites, D P; Schanzlin, D J; Ostler, H B; Hanna, L; Keshishyan, H; Jawetz, E

    1981-04-01

    Cell-mediated immune response and humoral response to chlamydial antigens were investigated in guinea pigs infected with the agent of guinea pig inclusion conjunctivitis (GPIC). Pronounced cell-mediated immune response to the homologous antigen, as well as to two other chlamydial antigens, 6BC (Chlamydia psittaci) and LB-1 (C. trachomatis), occurred in all infected animals. Cell-mediated immune response to GPIC, and to a lesser extent to 6BC and LB-1 as well, was enhanced with time after infection even without the re-inoculation of the infectious agent. Extensive cross-reactions among the three chlamydial antigens during the cell-mediated immune response appeared to be due to shared species-specific and group-reactive antigens. Serum antibody response was pronounced and uniform to GPIC; it was less marked to 6BC and LB-1, with fewer cross-reactions than seen in tests for cell-mediated immunity.

  6. Acute Effects of Pathogenic Simian-Human Immunodeficiency Virus Challenge on Vaccine-Induced Cellular and Humoral Immune Responses to Gag in Rhesus Macaques†

    PubMed Central

    Steger, Krista K.; Waterman, Paul M.; Pauza, C. David

    1999-01-01

    Simian-human immunodeficiency virus (SHIV) infection in macaques provides a convenient model for testing vaccine efficacy and for understanding viral pathogenesis in AIDS. We immunized macaques with recombinant, Salmonella typhimurium (expressing Gag) or soluble Gag in adjuvant to generate T-cell-dependent lymphoproliferative or serum antibody responses. Immunized animals were challenged by intrarectal inoculation with SHIV89.6PD. Virus infection was accompanied by rapid losses of lymphoproliferative responses to Gag or phytohemagglutinin. By 8 weeks, mitogen responses recovered to near normal levels but antigen-specific immunity remained at low or undetectable levels. Serum antibody levels were elevated initially by virus exposure but soon dropped well below levels achieved by immunization. Our studies show a rapid depletion of preexisting Gag-specific CD4+ T cells that prevent or limit subsequent antiviral cellular and humoral immune responses during acute SHIV infection. PMID:9971763

  7. Humoral and cell-mediated immunity to the Plasmodium falciparum ring-infected erythrocyte surface antigen in an adult population exposed to highly endemic malaria.

    PubMed Central

    Beck, H P; Felger, I; Genton, B; Alexander, N; al-Yaman, F; Anders, R F; Alpers, M

    1995-01-01

    A parasitological and immunological survey was carried out in an area in Papua New Guinea highly endemic for malaria. Two hundred fourteen adult individuals were selected for studies to assess their immune responses against the malaria vaccine candidate ring-infected erythrocyte surface antigen (RESA). Total immunoglobulin G (IgG) antibodies directed against RESA as well as specific IgG1, IgG2, and IgG3 antibodies were determined. Humoral responses directed against RESA were frequent in all IgG subclasses. Only IgG3 responses were found to be age dependent. Total anti-RESA IgG antibodies were not correlated with protection against malaria as measured by parasite prevalence, parasite density, or health center attendance. In contrast, cytophilic antibodies (IgG1 and IgG3) were associated with reduced Plasmodium falciparum prevalence and reduced health center attendance. T-cell proliferation in general was low and very infrequent. No correlation between humoral and cellular immune responses could be found. Parasite density, parasite prevalence, and health center visits tended to be reduced in individuals with good humoral and cell-mediated immune responses. PMID:7822028

  8. Virus infection-associated bone marrow B cell depletion and impairment of humoral immunity to heterologous infection mediated by TNF-alpha/LTalpha.

    PubMed

    Borrow, Persephone; Hou, Sam; Gloster, Simone; Ashton, Miranda; Hyland, Lisa

    2005-02-01

    We previously showed that influenza virus infection of mice induces a depletion of bone marrow B lineage cells due to apoptosis of early B cells mediated by a mechanism involving TNF-alpha/LTalpha. Here we demonstrate that this effect is also observed with acute lymphocytic choriomeningitis virus (LCMV) infection and resulted in a deficiency of both splenic transitional B cells and mature follicular B cells. To determine whether there was an associated impairment of humoral immunity, we infected mice with LCMV and 10 days later at the peak of the B cell depletion, inoculated them with influenza virus. We found that influenza virus-specific antibody titers were dramatically reduced in mice recovering from LCMV infection compared to those in mice infected with influenza virus alone. Further, we showed that there was no reduction of the influenza virus-specific antibody response in LCMV-infected TNF-alpha/LTalpha-deficient mice, suggesting that TNF-alpha/LTalpha-mediated effects on bone marrow and/or peripheral lymphocytes were responsible for the observed impairment in humoral immunity. These results show that the TNF-alpha/LTalpha production induced following infection with diverse viruses has detrimental effects on early B cells in the bone marrow, and may be among the factors that lead to the severely compromised humoral immunity observed to subsequent heterologous infections. PMID:15657949

  9. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    PubMed

    Biswas, Sumi; Choudhary, Prateek; Elias, Sean C; Miura, Kazutoyo; Milne, Kathryn H; de Cassan, Simone C; Collins, Katharine A; Halstead, Fenella D; Bliss, Carly M; Ewer, Katie J; Osier, Faith H; Hodgson, Susanne H; Duncan, Christopher J A; O'Hara, Geraldine A; Long, Carole A; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases

  10. B cell-specific deficiencies in mTOR limit humoral immune responses.

    PubMed

    Zhang, Shuling; Pruitt, Margaret; Tran, Dena; Du Bois, Wendy; Zhang, Ke; Patel, Rushi; Hoover, Shelley; Simpson, R Mark; Simmons, John; Gary, Joy; Snapper, Clifford M; Casellas, Rafael; Mock, Beverly A

    2013-08-15

    Generation of high-affinity Abs in response to Ags/infectious agents is essential for developing long-lasting immune responses. B cell maturation and Ab responses to Ag stimulation require Ig somatic hypermutation (SHM) and class-switch recombination (CSR) for high-affinity responses. Upon immunization with either the model Ag 4-hydroxy-3-nitrophenylacetyl hapten (NP) conjugated to chicken γ globulin lysine (NP-CGG) or heat-killed Streptococcus pneumoniae capsular type 14 protein (Pn14), knock-in (KI) mice hypomorphic for mTOR function had a decreased ability to form germinal centers, develop high-affinity anti-NP-specific or anti-Pn14-specific Abs, and perform SHM/CSR. Hypomorphic mTOR mice also had a high mortality (40%) compared with wild-type (WT) (0%) littermates and had lower pneumococcal surface protein A-specific Ab titers when immunized and challenged with live S. pneumoniae infection. Mice with mTOR deleted in their B cell lineage (knockout [KO]) also produced fewer splenic germinal centers and decreased high-affinity Ab responses to NP-CGG than did their WT littermates. CSR rates were lower in mTOR KI and KO mice, and pharmacologic inhibition of mTOR in WT B cells resulted in decreased rates of ex vivo CSR. RNA and protein levels of activation-induced cytidine deaminase (AID), a protein essential for SHM and CSR, were lower in B cells from both KI and B cell-specific KO mice, concomitant with increases in phosphorylated AKT and FOXO1. Rescue experiments increasing AID expression in KI B cells restored CSR levels to those in WT B cells. Thus, mTOR plays an important immunoregulatory role in the germinal center, at least partially through AID signaling, in generating high-affinity Abs.

  11. [State of cellular and humoral immunity in patients with stable angina].

    PubMed

    Lyzohub, V H; Savchenko, O V; Bondarchuk, O M; Voloshyna, O O; Koval'chuk, S M; Dykukha, I S

    2008-01-01

    The article presents results of the analysis of indicators immunogenotypic tests of 104 patients with stable stenocardia I-III functional classes. It was established that patients with stable stenocardia have lower level of CD3+ T- lymphocytes, decreased rate of T- lymphocytes helpers/ suppressors (CD4+/CD8+) and increased concentration of circulating immune complexes. These changes did not depend from Functional class of stenocardia and old myocardial infarction. It was established a close interrelation between immunological indicators on the one hand and cholesterol and leukocytosis from another. This correlation has allowed to offer the new classification approach for patients with stenocardia, which considers level of cholesterol and leukocytes.

  12. Antibody-mediated immunity in CFW mice infected with Mycobacterium lepraemurium. Humoral immune response in murine leprosy.

    PubMed Central

    Rojas-Espinosa, O; Casoluengo-Méndez, M; Díaz, G V

    1976-01-01

    A depression in antibody-mediated immunity (AMI) measured both in terms of circulating antibody and plaque-forming cells in the spleen was observed in CFW mice infected with M. lepraemurium when sheep red blood cells (SRBC) and human gammaglobulin (HGG) were used as antigens. The impairment in AMI was evident only after 75 days of infection thereafter the antibody response to SRBC antigen progressively decreased until the last day of experimentation (135 days). Within the first 60 days of infection no alteration in AMI was observed with the HGG antigen while the response to the SRBC antigen was significantly higher in the infected animals than in uninfected controls. PMID:795574

  13. CD98 at the crossroads of adaptive immunity and cancer

    PubMed Central

    Cantor, Joseph M.; Ginsberg, Mark H.

    2012-01-01

    Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer. PMID:22499670

  14. Tacrolimus ointment does not affect the immediate response to vaccination, the generation of immune memory, or humoral and cell‐mediated immunity in children

    PubMed Central

    Hofman, T; Cranswick, N; Kuna, P; Boznanski, A; Latos, T; Gold, M; Murrell, D F; Gebauer, K; Behre, U; Machura, E; Ólafsson, J; Szalai, Z

    2006-01-01

    Background Concern exists that the prolonged application of immunomodulators to treat atopic dermatitis may cause systemic immunosuppression. Aims In a 7‐month, multicentre, randomised, controlled trial, we investigated the equivalence of response to vaccination against meningococcal serogroup C disease with a protein‐conjugate vaccine in children (2–11 years) with moderate to severe atopic dermatitis, by applying either 0.03% tacrolimus ointment (TAC‐O; n = 21) or a hydrocortisone ointment regimen (HC‐O; n = 111). Methods TAC‐O was applied twice daily (bid) for 3 weeks, and thereafter daily until clearance. 1% hydrocortisone acetate (HA) for head/neck and 0.1% hydrocortisone butyrate ointment for trunk/limbs was applied bid for 2 weeks; thereafter HA was applied bid to all affected areas. At week 1, patients were vaccinated with protein‐conjugate vaccine against meningococcal serogroup C, and challenged at month 6 with low dose meningococcal polysaccharide vaccine. The control group (44 non‐atopic dermatatits children) received the primary vaccination and challenge dose. Assessments were made at baseline, weeks 1 and 5, and months 6 and 7. The primary end point was the percentage of patients with a serum bactericidal antibody (SBA) titre ⩾8 at the week 5 visit. Results The response rate (patients with SBA titre ⩾8) was 97.5% (confidence interval (CI) approximately 97.3 to 100), 99.1% (94.8 to 100) and 97.7% (93.3 to 100) in the TAC‐O, HC‐O and control groups, respectively. Conclusions The immune response to vaccination against meningococcal serogroup C in children with atopic dermatitis applying either 0.03% TAC‐O or HC is equivalent. Ointment application does not affect the immediate response to vaccination, generation of immune memory or humoral and cell‐mediated immunity. PMID:16798785

  15. Humoral immune response of mice injected with tocopherol after exposure to X-radiation

    SciTech Connect

    Roy, R.M.; Petrella, M.

    1987-01-01

    Serum haemagglutination (HA) titers have been determined for irradiated and non-irradiated mice responding to injection of two different concentrations of sheep red blood cells (SRBC) 24 to 48 hours after irradiation and immediate intraperitoneal injection of 2.5 mg DL alpha-tocopherol, the emulsifying vehicle, or saline. Mice maintained on tocopherol-deficient diets for 8 weeks post-weaning and those on regular diets exhibited increased IgG titers during peak response when injected with vitamin E. This partially alleviated the radiation-depression of the primary immune response induced by the smaller SRBC injection. This stimulatory effect was most significant in mice maintained on vitamin E-deficient diets. The HA titers of irradiated and non-irradiated mice maintained on normal rations were determined following a 10-fold increase in the SRBC inoculation. Antibody titer was greater following injection of the higher concentration of SRBC but post-irradiation injection of tocopherol immediately or 24 hours after irradiation did not enhance immune response. At the higher SRBC concentration maximum observed HA titers decreased with increasing dose of radiation; however, tocopherol had no significant dose-reducing effect. Tocopherol toxicity as manifested by depressed HA titers was observed occasionally in non-irradiated mice challenged with the higher concentration of SRBC.

  16. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    PubMed

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-01

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines.

  17. Humoral immune response in dogs and cats vaccinated against rabies in southeastern Brazil

    PubMed Central

    2013-01-01

    Background Brazil holds annual nationwide public campaigns to vaccinate dogs and cats against rabies. The presence of rabies antibodies in these animals, which are among the main transmitters of rabies to humans, is a good indicator that they are immunized and protected. Methods In the present study we analyzed 834 serum samples from dogs and cats from the Southeast of Brazil (Presidente Prudente and Dracena cities), 12 months after the 2009 vaccination campaign. We used the technique known as rapid fluorescent focus inhibition test (RFFIT) and considered reactant those sera with values higher 0.5 IU/mL. Results and discussion Reactant sample results in Presidente Prudente were 153 (51.0%) for dogs and 59 (32.6%) for cats, and in Dracena 110 (52.1%) for dogs and 71 (50.0%) for cats. We discussed vaccine coverage of animals involved in this experiment, and observed low titers < 0.5 IU/mL, especially in cats from Presidente Prudente. Conclusion According to the results presented in our experiment, we suggest that titers below 0.5 IU/mL are worrisome and that, for multiple reasons, animals should be immunized against rabies in the period between public vaccination campaigns. Hence, the desired vaccine coverage was not accomplished, especially among cats from Presidente Prudente. PMID:23899101

  18. Probiotics and colostrum/milk differentially affect neonatal humoral immune responses to oral rotavirus vaccine.

    PubMed

    Chattha, Kuldeep S; Vlasova, Anastasia N; Kandasamy, Sukumar; Esseili, Malak A; Siegismund, Christine; Rajashekara, Gireesh; Saif, Linda J

    2013-04-01

    Breast milk (colostrum [col]/milk) components and gut commensals play important roles in neonatal immune maturation, establishment of gut homeostasis and immune responses to enteric pathogens and oral vaccines. We investigated the impact of colonization by probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) with/without col/milk (mimicking breast/formula fed infants) on B lymphocyte responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine in a neonatal gnotobiotic pig model. Col/milk did not affect probiotic colonization in AttHRV vaccinated pigs. However, unvaccinated pigs fed col/milk shed higher numbers of probiotic bacteria in feces than non-col/milk fed colonized controls. In AttHRV vaccinated pigs, col/milk feeding with probiotic treatment resulted in higher mean serum IgA HRV antibody titers and intestinal IgA antibody secreting cell (ASC) numbers compared to col/milk fed, non-colonized vaccinated pigs. In vaccinated pigs without col/milk, probiotic colonization did not affect IgA HRV antibody titers, but serum IgG HRV antibody titers and gut IgG ASC numbers were lower, suggesting that certain probiotics differentially impact HRV vaccine responses. Our findings suggest that col/milk components (soluble mediators) affect initial probiotic colonization, and together, they modulate neonatal antibody responses to oral AttHRV vaccine in complex ways. PMID:23453730

  19. Evolution of adaptive immunity from transposable elements combined with innate immune systems.

    PubMed

    Koonin, Eugene V; Krupovic, Mart

    2015-03-01

    Adaptive immune systems in prokaryotes and animals give rise to long-term memory through modification of specific genomic loci, such as by insertion of foreign (viral or plasmid) DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci in prokaryotes and by V(D)J recombination of immunoglobulin genes in vertebrates. Strikingly, recombinases derived from unrelated mobile genetic elements have essential roles in both prokaryotic and vertebrate adaptive immune systems. Mobile elements, which are ubiquitous in cellular life forms, provide the only known, naturally evolved tools for genome engineering that are successfully adopted by both innate immune systems and genome-editing technologies. In this Opinion article, we present a general scenario for the origin of adaptive immunity from mobile elements and innate immune systems.

  20. Antibodies to Lytic Infection Proteins in Lymphocryptovirus-Infected Rhesus Macaques: a Model for Humoral Immune Responses to Epstein-Barr Virus Infection ▿

    PubMed Central

    Orlova, Nina; Fogg, Mark H.; Carville, Angela; Wang, Fred

    2011-01-01

    Humoral immune responses to rhesus lymphocryptovirus (rhLCV) lytic infection proteins were evaluated in the rhesus macaque animal model for Epstein-Barr virus (EBV) infection. We found a hierarchy of humoral responses to 14 rhLCV lytic infection proteins in naturally infected rhesus macaques, with (i) widespread and robust responses to four glycoproteins expressed as late proteins, (ii) frequent but less robust responses to a subset of early proteins, and (iii) low-level responses to immediate-early proteins. This hierarchy of humoral responses was similar to that reported for EBV-infected humans, with the notable exception of the response to rhBARF1. Serum antibodies to rhBARF1 were frequently detected in healthy rhLCV-infected macaques, but in humans, anti-BARF1 antibodies have been reported primarily in patients with EBV-positive nasopharyngeal carcinoma (NPC). The macaque data accurately predicted that serum antibodies against BARF1 are a normal response to EBV infection when human serum samples are analyzed. The rhesus macaque animal provides a unique perspective on humoral responses to EBV infection in humans and can be a valuable model for EBV vaccine development. PMID:21734064

  1. Humoral immune response in chinchillas to the capsular polysaccharides of Streptococcus pneumoniae.

    PubMed Central

    Giebink, G S; Schiffman, G

    1983-01-01

    Vaccines made from the capsular polysaccharides of Streptococcus pneumoniae have been shown to reduce the incidence of pneumococcal disease in certain populations and have recently been evaluated for their ability to elicit protection against experimental pneumococcal otitis media in a chinchilla model. In this study, chinchillas were vaccinated with a dodecavalent preparation of pneumococcal capsular polysaccharides (PCP) to obtain more information on the immunogenicity of these polysaccharide antigens. All 12 PCP types elicited an antibody response, but the optimum PCP dose and the kinetics of the antibody response varied among types. Immunological paralysis was demonstrated with an immunogenic dose of PCP after primary immunization with a large PCP dose (25 micrograms or more). Pertussis vaccine acted as neither an immunoadjuvant nor an immunosuppressant in the serum antibody response to type 7F PCP in chinchillas. PMID:6832812

  2. Immunoglobulin genes influence the magnitude of humoral immunity to cytomegalovirus glycoprotein B.

    PubMed

    Pandey, Janardan P; Kistner-Griffin, Emily; Radwan, Faisal F; Kaur, Navtej; Namboodiri, Aryan M; Black, Laurel; Butler, Mary Ann; Carreón, Tania; Ruder, Avima M

    2014-12-01

    Human cytomegalovirus (HCMV) is a risk factor for many human diseases, but among exposed individuals, not everyone is equally likely to develop HCMV-spurred diseases, implying the presence of host genetic factors that might modulate immunity to this virus. Here, we show that antibody responsiveness to HCMV glycoprotein B (gB) is significantly associated with particular immunoglobulin GM (γ marker) genotypes. Anti-HCMV gB antibody levels were highest in GM 17/17 homozygotes, intermediate in GM 3/17 heterozygotes, and lowest in GM 3/3 homozygotes (28.2, 19.0, and 8.1 µg/mL, respectively; P=.014). These findings provide mechanistic insights in the etiopathogenesis of HCMV-spurred diseases.

  3. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice

    PubMed Central

    Barroso, Shana P. C.; Nico, Dirlei; Nascimento, Danielle; Santos, Ana Clara V.; Couceiro, José Nelson S. S.; Bozza, Fernando A.; Ferreira, Ana M. A.; Ferreira, Davis F.; Palatnik-de-Sousa, Clarisa B.; Souza, Thiago Moreno L.; Gomes, Andre M. O.; Silva, Jerson L.; Oliveira, Andréa C.

    2015-01-01

    Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus. PMID:26056825

  4. Humoral and cell-mediated immunity following vaccination with synthetic Candida cell wall mannan derived heptamannoside-protein conjugate: immunomodulatory properties of heptamannoside-BSA conjugate.

    PubMed

    Paulovičová, Lucia; Paulovičová, Ema; Karelin, Alexander A; Tsvetkov, Yury E; Nifantiev, Nikolay E; Bystrický, Slavomír

    2012-10-01

    Chemically defined glycoprotein conjugate composed of synthetically prepared mannan-derived heptamannoside with terminal β-1,2-linked mannose residue attached to the α-1,3-linked mannose residues and BSA as carrier protein (M7-BSA conjugate) was analysed for the capacity to induce protective humoral immunity and appropriate alteration cellular immunity. To identify protective antigenic structure of Candida cell wall mannan M7-BSA conjugate was used for BALB/c mice immunization. The obtained results were compared with placebo group and with heat-inactivated C. albicans whole cells immunization. The administration route of M7-BSA conjugate secondary booster injection significantly affected the intensity of humoral immune response and the specificity of produced antibodies. All prepared sera were able to elevate candidacidal activity of polymorphonuclear leukocytes (PMN) in cooperation with complement. Moreover, polyclonal sera obtained after secondary subcutaneous (s.c.) booster injection of M7-BSA conjugate were able to induce candidacidal activity of PMN also in complement independent manner. M7-BSA conjugate immunization induced increases of phagocytic activity and respiratory burst of granulocytes, caused a raise of the proportion of CD3(+) T lymphocytes and increased the CD4(+)/CD8(+) T lymphocyte ratio. We observed also an increasing proportion of CD4(+)CD25(+) T cells compared to immunization with heat inactivated whole C. albicans cells, which in turn promoted an increase of the CD8(+)CD25(+) cell proportion. Immunization with M7-BSA conjugate induced Th1, Th2 and Th17 immune responses as indicated by the elevation of relevant cytokines levels. These data provide some insights on the immunomodulatory properties of oligomannosides and contribute to the development of synthetic oligosaccharide vaccines against fungal diseases.

  5. Innate and adaptive immune responses in neurodegeneration and repair.

    PubMed

    Amor, Sandra; Woodroofe, M Nicola

    2014-03-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases.

  6. Ascaridia galli infection influences the development of both humoral and cell-mediated immunity after Newcastle Disease vaccination in chickens.

    PubMed

    Pleidrup, Janne; Dalgaard, Tina S; Norup, Liselotte R; Permin, Anders; Schou, Torben W; Skovgaard, Kerstin; Vadekær, Dorte F; Jungersen, Gregers; Sørensen, Poul; Juul-Madsen, Helle R

    2014-01-01

    Potent vaccine efficiency is crucial for disease control in both human and livestock vaccination programmes. Free range chickens and chickens with access to outdoor areas have a high risk of infection with parasites including Ascaridia galli, a gastrointestinal nematode with a potential influence on the immunological response to vaccination against other infectious diseases. The purpose of this study was to investigate whether A. galli infection influences vaccine-induced immunity to Newcastle Disease (ND) in chickens from an MHC-characterized inbred line. Chickens were experimentally infected with A. galli at 4 weeks of age or left as non-parasitized controls. At 10 and 13 weeks of age half of the chickens were ND-vaccinated and at 16 weeks of age, all chickens were challenged with a lentogenic strain of Newcastle disease virus (NDV). A. galli infection influenced both humoral and cell-mediated immune responses after ND vaccination. Thus, significantly lower NDV serum titres were found in the A. galli-infected group as compared to the non-parasitized group early after vaccination. In addition, the A. galli-infected chickens showed significantly lower frequencies of NDV-specific T cells in peripheral blood three weeks after the first ND vaccination as compared to non-parasitized chickens. Finally, A. galli significantly increased local mRNA expression of IL-4 and IL-13 and significantly decreased TGF-ß4 expression in the jejunum two weeks after infection with A. galli. At the time of vaccination (six and nine weeks after A. galli infection) the local expression in the jejunum of both IFN-? and IL-10 was significantly decreased in A. galli-infected chickens. Upon challenge with the NDV LaSota strain, viral genomes persisted in the oral cavity for a slightly longer period of time in A. galli-infected vaccinees as compared to non-parasitized vaccinees. However, more work is needed in order to determine if vaccine-induced protective immunity is impaired in A. galli

  7. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    PubMed

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers. PMID:26792800

  8. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    PubMed

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers.

  9. Some aspects of humoral and cellular immunity in naturally occuring feline infectious peritonitis.

    PubMed

    Paltrinieri, S; Cammarata, M P; Cammarata, G; Comazzi, S

    1998-10-23

    Haematology, antibody titers and serum protein electrophoresis from 48 cats (34 effusive and 14 noneffusive forms) affected with feline infectious peritonitis (FIP) were studied and compared with those of 20 healthy cats. In the effusive form, antibody titers and protein electrophoresis in the effusions were analyzed. The distribution of the immune cells and of the virus in FIP lesions were also investigated immunohistochemically with the avidin-biotin complex (ABC) method, using antibodies against the FIP virus (FIPV), myelomonocytic (MAC387) and lymphoid (CD3, CD4 and CD8 for T-cells and IgM and IgG for B-cells) antigens. Seropositive animals (antibody titer>1:100) were present among both the FIP infected cats (73%) and the healthy cats (70%). Cats with effusive FIP had neutrophilic leukocytosis (P>0.05), lymphopenia (P<0.01) and eosinopenia (P<0.001). In both effusive and noneffusive forms decreased albumin/globulin ratio (P<0.001) with hypoalbuminemia (P<0.001), hyperglobulinemia (P<0.001) and increased alpha2- (P<0.05), beta- (P<0.05) and gamma-globulins (P<0.001) were found. Hypergammaglobulinemia was not related to the antibody titers, suggesting the presence of other proteins with gamma-motility (e.g. complement fractions). The electrophoretic pattern of the effusions was always similar to that of the corresponding serum. Antibody titers higher than those of the corresponding serum were often detected in the effusions. Immunohistochemical findings were not related to the antibody titers, but they were related to the histological aspect of the lesions. In cellular foci of FIP lesions many virus-infected macrophages and few lymphocytes, mainly CD4+, were found. Extracellular viral and myelomonocytic antigens were also detectable in the foci with intercellular necrosis. Only few FIPV-infected cells were present at the periphery of the larger necrotic foci: in these lesions MAC387+ cells were mainly neutrophils, with many MAC387 macrophages, probably due to

  10. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    PubMed

    da Rocha Junior, Laurindo Ferreira; Dantas, Andréa Tavares; Duarte, Angela Luzia Branco Pinto; de Melo Rego, Moacyr Jesus Barreto; Pitta, Ivan da Rocha; Pitta, Maira Galdino da Rocha

    2013-01-01

    Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPAR γ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPAR γ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPAR γ has also been associated with B cells. The present review addresses these issues by placing PPAR γ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity. PMID:23983678

  11. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection.

    PubMed

    Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu

    2014-09-01

    The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections.

  12. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection

    PubMed Central

    Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu

    2014-01-01

    The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268

  13. Dynamics of the Murine Humoral Immune Response to Neisseria meningitidis Group B Capsular Polysaccharide

    PubMed Central

    Colino, Jesús; Outschoorn, Ingrid

    1998-01-01

    Immunization with Neisseria meningitidis group B capsular polysaccharide (CpsB) elicited responses in adult mice that showed the typical dynamic characteristics of the response to a thymus-independent antigen, in contrast to the thymus-dependent behavior of antibody responses to CpsC. The former had a short latent period and showed a rapid increase in serum antibodies that peaked at day 5, and immunoglobulin M (IgM) was the major isotype even though IgG (mainly IgG2a and IgG2b) was also detectable. This response was of short duration, and the specific antibodies were rapidly cleared from the circulation. The secondary responses were similar in magnitude, kinetics, IgM predominance, and IgG distribution. Nevertheless, a threefold IgG increase, a correlation between IgM and IgG levels, and dose-dependent secondary responses were observed. Hyperimmunization considerably reinforced these responses: 10-fold for IgM and 300-fold for IgG. This favored isotype switch was accompanied by a progressive change in the subclass distribution to IgG3 (62%) and IgG1 (28%), along with the possible generation of B-cell memory. The results indicate that CpsB is being strictly thymus independent and suggest that unresponsiveness to purified CpsB is due to tolerance. PMID:9453603

  14. A study of the localized humoral immune response to implicated microorganisms in juvenile periodontitis

    SciTech Connect

    Hall, E.R.

    1988-01-01

    A study was undertaken using an in vitro explant culture system to determine the presence of immunoglobulins (IgG, IgA, and IgM) in the supernatant fluids (SF) of disease gingival tissue explant cultures. Studies were also undertaken to determine if the de novo biosynthesis of {sup 14}C-immunoglobulins could be observed in the explant cultures of diseased tissues from juvenile periodontitis (JP) patients. Radiolabeled proteins were detected in the SF and immunodiffusion studies using goat antihuman gamma, alpha or mu chain serum revealed the presence of IgG and IgA but no IgM present in the SF of the JP gingival tissue explant cultures. Immunodiffusion studies using goat anti-human gamma chain serum with Staph protein A isolated IgG fractions of the SF, followed by autoradiography of the IgG precipitation lines demonstrated the biosynthesis of IgG by the JP gingival tissue explant cultures. The serological studies suggested that local immune response in JP was to a polymicrobic infection. The SF of JP showed significantly higher levels of antibody reactivity to B. intermedius, C. ochracea, E. nodatum and P. micros as compared to healthy tissues. The local antibody response to the microorganisms tested differed from that observed in the sera of the patients.

  15. [State of local and total humoral immunity in duodenal ulcer with Campylobacter pylori infection].

    PubMed

    Il'chenko, A A; Zotina, M M; Serova, T I; Aruin, L I; Gorodinskaia, V S

    1990-01-01

    A total of 83 patients with duodenal ulcer and a varying degree of gastric mucosa contamination with C. pylori were examined. Secretory IgA was less frequently detectable in the gastric juice of patients with higher level of gastric mucosa contamination with C. pylori and in lower concentrations than in the patients with a lesser C. pylori contamination. Healing of duodenal ulcer defects was associated with a decrease of gastric mucosa contamination and elevation of secretory IgA content in the gastric juice. The role of serum immunoglobulins in the gastric juice is less significant: IgG and IgA are rarely detected. Salivary content of secretory IgA depended on the gastric mucosa contamination and ulcer stage. Secretory IgA level increased by the ulcer remission, and C. pylori contamination decreased. Normal blood serum IgA, IgG, and IgM ratios were shifted in the patients with C. pylori contamination, particularly so in those with a higher level of contamination. These findings suggest a contribution of local and total immune reactions related to C. pylori to the pathogenesis of duodenal ulcer.

  16. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    NASA Astrophysics Data System (ADS)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  17. Insight on cellular and humoral components of innate immunity in Squilla mantis (Crustacea, Stomatopoda).

    PubMed

    Gallo, Chiara; Schiavon, Filippo; Ballarin, Loriano

    2011-09-01

    For deeper insights into the function of crustacean haemocytes in immune responses, we studied the morphology and enzyme content of circulating cells of the mantis shrimp Squilla mantis from the North Adriatic Sea, together with their ability to phagocytose foreign cells. We also assayed the enzyme content and the agglutinating and haemolytic activities of cell-free haemolymph. Three haemocyte types, i.e., hyalinocytes, semigranulocytes and granulocytes, can be distinguished, according to cell and nuclear morphology and the presence of cytoplasmic granules. All of them share the same patterns of enzyme activities and are recognised by the same lectins. Spreading cells (hyalinocytes and semigranulocytes) can ingest foreign cells; granules of semigranular and granular cells have similar cytochemical properties. Injection of Micrococcus luteus into the heart sinus results in an increase in the frequency of hyaline cells and a decrease in the frequency of granulocytes. After 24 h from the injection, a decrease in the number of phagocytosing hyalinocytes, and a general decrease in the frequency of acid phosphatase-positive cells was reported. Our data match previous results and suggest the existence of a single differentiation pathway for Squilla haemocytes with the three haemocyte morphs as different stages of cell differentiation. Results also indicate that Squilla haemolymph performs immunosurveillance, through rapid changes in haemocyte distribution, increase of antimicrobial and antioxidant enzymes and secretion of lectins stimulating agglutination, phagocytosis and encapsulation. PMID:21712093

  18. The goldfish immune response. I. Characterization of the humoral response to particulate antigens.

    PubMed

    Desvaux, F X; Charlemagne, J

    1981-08-01

    Anti-red blood cells (RBC) and anti-hapten antibody synthesis were studied in the goldfish, Carassius auratus. Spontaneous haemagglutination titres were found against all the antigens tested. A weak secondary response was observed in RBC-primed fish boosted during the end-phase of the primary antibody production. However, when the second antigenic challenge was performed during the early exponential phase of a primary stimulation, an important amplified response was obtained. The antibody production and immunological memory can be dissociated: no antibody synthesis occurred in glutaraldehyde-fixed RBC (F-RBC) primed was obtained when untreated or F-RBC were given to F-RBC primed animals. The amplified response to sheep red blood cells (SRBC) was significantly inhibited when fish were primed with a mixture of SRBC and Xenopus red blood cells (XRBC), demonstrating an antigenic competition phenomenon. Studies on anti-trinitrobenzene responses confirm the efficiency of E. coli lipopolysaccharide as a carrier for fish anti-hapten immunization. The kinetics and regulation of antibody synthesis in fish are discussed in relation to the described results.

  19. Polyreactive antibodies in adaptive immune responses to viruses.

    PubMed

    Mouquet, Hugo; Nussenzweig, Michel C

    2012-05-01

    B cells express immunoglobulins on their surface where they serve as antigen receptors. When secreted as antibodies, the same molecules are key elements of the humoral immune response against pathogens such as viruses. Although most antibodies are restricted to binding a specific antigen, some are polyreactive and have the ability to bind to several different ligands, usually with low affinity. Highly polyreactive antibodies are removed from the repertoire during B-cell development by physiologic tolerance mechanisms including deletion and receptor editing. However, a low level of antibody polyreactivity is tolerated and can confer additional binding properties to pathogen-specific antibodies. For example, high-affinity human antibodies to HIV are frequently polyreactive. Here we review the evidence suggesting that in the case of some pathogens like HIV, polyreactivity may confer a selective advantage to pathogen-specific antibodies.

  20. CRISPR-Based Adaptive Immune Systems

    PubMed Central

    Terns, Michael P.; Terns, Rebecca M.

    2011-01-01

    CRISPR-Cas systems are recently discovered, RNA-based immune systems that control invasions of viruses and plasmids in archaea and bacteria. Prokaryotes with CRISPR-Cas immune systems capture short invader sequences within the CRISPR loci in their genomes, and small RNAs produced from the CRISPR loci (CRISPR (cr)RNAs) guide Cas proteins to recognize and degrade (or otherwise silence) the invading nucleic acids. There are multiple variations of the pathway found among prokaryotes, each mediated by largely distinct components and mechanisms that we are only beginning to delineate. Here we will review our current understanding of the remarkable CRISPR-Cas pathways with particular attention to studies relevant to systems found in the archaea. PMID:21531607

  1. Hormonal Contraception and HIV-1 Infection: Medroxyprogesterone Acetate Suppresses Innate and Adaptive Immune Mechanisms

    PubMed Central

    Huijbregts, Richard P. H.; Helton, E. Scott; Michel, Katherine G.; Sabbaj, Steffanie; Richter, Holly E.; Goepfert, Paul A.

    2013-01-01

    Recent observational studies indicate an association between the use of hormonal contraceptives and acquisition and transmission of HIV-1. The biological and immunological mechanisms underlying the observed association are unknown. Depot medroxyprogesterone acetate (DMPA) is a progestin-only injectable contraceptive that is commonly used in regions with high HIV-1 prevalence. Here we show that medroxyprogesterone acetate (MPA) suppresses the production of key regulators of cellular and humoral immunity involved in orchestrating the immune response to invading pathogens. MPA inhibited the production of interferon (IFN)-γ, IL-2, IL-4, IL-6, IL-12, TNFα, macrophage inflammatory protein-1α (MIP-1α), and other cytokines and chemokines by peripheral blood cells and activated T cells and reduced the production of IFNα and TNFα by plasmacytoid dendritic cells in response to Toll-like receptor-7, -8, and -9 ligands. Women using DMPA displayed lower levels of IFNα in plasma and genital secretions compared with controls with no hormonal contraception. In addition, MPA prevented the down-regulation of HIV-1 coreceptors CXCR4 and CCR5 on the surface of T cells after activation and increased HIV-1 replication in activated peripheral blood mononuclear cell cultures. The presented results suggest that MPA suppresses both innate and adaptive arms of the immune system resulting in a reduction of host resistance to invading pathogens. PMID:23354099

  2. Amino acids 89–96 of Salmonella typhimurium flagellin represent the major domain responsible for TLR5-independent adjuvanticity in the humoral immune response

    PubMed Central

    Zhang, Lei; Pan, Zhiming; Kang, Xilong; Yang, Yun; Kang, Heekap; Zhang, Na; Rosati, James M; Jiao, Xinan

    2015-01-01

    Toll-like receptor 5 (TLR5) signaling in response to flagellin is dispensable for inducing humoral immunity, but alterations of aa 89–96, the TLR5 binding site, significantly reduced the adjuvanticity of flagellin. These observations indicate that the underlying mechanism remains incompletely understood. Here, we found that the native form of Salmonella typhimurium aa 89–96-mutant flagellin extracted from flagella retains some TLR5 recognition activity, indicating that aa 89–96 is the primary, but not the only site that imparts TLR5 activity. Additionally, this mutation impaired the production of IL-1β and IL-18. Using TLR5KO mice, we found that aa 89–96 is critical for the humoral adjuvant effect, but this effect was independent of TLR5 activation triggered by this region of flagellin. In summary, our findings suggest that aa 89–96 of flagellin is not only the crucial site responsible for TLR5 recognition, but is also important for humoral immune adjuvanticity through a TLR5-independent pathway. PMID:25195514

  3. A randomized, placebo-controlled trial of subcutaneous administration of GM-CSF as a vaccine adjuvant: effect on cellular and humoral immune responses.

    PubMed

    Somani, Jyoti; Lonial, Sagar; Rosenthal, Hilary; Resnick, Suzanne; Kakhniashvili, Irina; Waller, Edmund K

    2002-12-13

    Thirty healthy volunteers were randomly assigned to receive either a single subcutaneous injection of GM-CSF or placebo at the time of vaccination with tetanus and diptheria toxoid (Td), influenza and hepatitis A vaccines. Humoral response was measured by weekly serum samples assayed for antibodies to tetanus toxoid (TT), influenza and hepatitis A; while cellular response to TT was determined by measuring IL-2 expression in T-cells following in vitro exposure to TT antigen using a flow cytometric assay. It was hypothesized that (1). GM-CSF would augment immune response and (2). that the frequencies of TT responsive T-cells in the blood would predict humoral responses. The administration of subcutaneous GM-CSF as an adjuvant at the time of vaccination did not augment the antibody responses to influenza or hepatitis A in normal volunteers when compared to placebo. Subjects who received GM-CSF had statistically significant lower increases in anti-tetanus antibodies than placebo recipients. Immunization with TT resulted in an increase in the frequency of antigen responsive T-cells in the blood over time. The frequencies of TT responsive T-cells in baseline blood samples were correlated with baseline anti-tetanus antibody titers, but humoral and cellular responses were not correlated following vaccination. Recipients of GM-CSF did not develop significantly higher numbers of TT responsive T-cells after vaccination compared to recipients who received placebo.

  4. Short-term energy restriction during late gestation of beef cows decreases postweaning calf humoral immune response to vaccination.

    PubMed

    Moriel, P; Piccolo, M B; Artioli, L F A; Marques, R S; Poore, M H; Cooke, R F

    2016-06-01

    Our objectives were to evaluate the pre- and postweaning growth and measurements of innate and humoral immune response of beef calves born to cows fed 70 or 100% of NEm requirements during the last 40 d of gestation. On d 0 (approximately 40 d before calving), 30 multiparous Angus cows pregnant to embryo transfer (BW = 631 ± 15 kg; age = 5.2 ± 0.98 yr; BCS = 6.3 ± 0.12) were randomly allocated into 1 of 10 drylot pens (3 cows/pen). Treatments were randomly assigned to pens (5 pens/treatment) and consisted of cows limit-fed (d 0 to calving) isonitrogenous, total-mixed diets formulated to provide 100 (CTRL) or 70% (REST) of daily NEm requirements of a 630-kg beef cow at 8 mo of gestation. Immediately after calving, all cow-calf pairs were combined into a single management group and rotationally grazed on tall fescue pastures (6 pastures; 22 ha/pasture) until weaning (d 266). All calves were assigned to a 40-d preconditioning period in a drylot from d 266 to 306 and vaccinated against infectious bovine rhinotracheitis, bovine viral diarrhea virus (BVDV), , and spp. on d 273 and 287. Blood samples from jugular vein were collected from cows on d 0, 17, and 35 and from calves within 12 h of birth and on d 266, 273, 274, 276, 279, and 287. By design, REST cows consumed less ( ≤ 0.002) total DMI, TDN, and NEm but had similar CP intake ( = 0.67), which tended ( = 0.06) to increase BW loss from d 0 to calving, than CTRL cows (-1.09 vs. -0.70 ± 0.14 kg/d, respectively). However, gestational NEm intake did not affect ( ≥ 0.30) plasma concentrations of cortisol, insulin, and glucose during gestation and BCS at calving as well as postcalving pregnancy rate, BW, and BCS change of cows. Calf serum IgG concentrations and plasma concentrations of haptoglobin and cortisol at birth as well as calf pre- and postweaning BW and ADG did not differ ( ≥ 0.15) between calves born to REST and CTRL cows. However, calf postweaning overall plasma concentrations of cortisol; plasma

  5. Mucosal Humoral Immune Response to SIVmac239∆nef Vaccination and Vaginal Challenge.

    PubMed

    Zeng, Ming; Smith, Anthony J; Shang, Liang; Wietgrefe, Stephen W; Voss, James E; Carlis, John V; Li, Qingsheng; Piatak, Michael; Lifson, Jeffrey D; Johnson, R Paul; Haase, Ashley T

    2016-03-15

    Live attenuated vaccines such as SIV with a deleted nef gene have provided the most robust protection against subsequent vaginal challenge with wild-type (WT) SIV in the SIV-rhesus macaque model of HIV-1 transmission to women. Hence, identifying correlates of this protection could enable design of an effective HIV-1 vaccine. One such prechallenge correlate of protection from vaginal challenge has recently been identified as a system with three components: 1) IgG Abs reacting with the viral envelope glycoprotein trimeric gp41; 2) produced by plasma cells in the submucosa and ectopic tertiary lymphoid follicles in the ectocervix and vagina; and 3) concentrated on the path of virus entry by the neonatal FcR in the overlying epithelium. We now examine the mucosal production of the Ab component of this system after vaginal challenge. We show that vaginal challenge immediately elicits striking increases in plasma cells not only in the female reproductive tract but also at other mucosal sites, and that these increases correlate with low but persistent replication at mucosal sites. We describe vaginal ectopic follicles that are structurally and functionally organized similar to follicles in secondary lymphoid organs, and we provide inferential evidence for a key role of the female reproductive tract epithelium in facilitating Ab production, affinity maturation, and class switch recombination. Vaccination thus accesses an epithelial-immune system axis in the female reproductive tract to respond to exposure to mucosal pathogens. Designing strategies to mimic this system could advance development of an effective HIV-1 vaccine. PMID:26864031

  6. Humoral immune response to oral rabies vaccination in raccoon kits: problems and implications.

    PubMed

    Fry, Tricia L; Vandalen, Kaci K; Shriner, Susan A; Moore, Susan M; Hanlon, Cathleen A; Vercauteren, Kurt C

    2013-06-10

    Little is known about the immunogenicity of RABORAL V-RG(®) (V-RG), an oral rabies vaccine, in raccoon kits (Procyon lotor). The objectives of this study were to characterize the immunogenicity of V-RG in young kits and investigate the potential impact of maternal antibodies on response to vaccination of nursing raccoon kits. Raccoon kits (n=30) were vaccinated at either 3 weeks of age, 7 weeks of age, or assigned as contact controls. Nineteen kits (73%) that were whelped by unvaccinated mothers responded to V-RG exposure (orally or indirect contact) by production of detectable rabies virus neutralizing antibodies (RVNA) while 7 (27%) kits did not respond to V-RG exposure. Four kits were whelped by a mother with high levels of RVNA and all four kits acquired maternal rabies antibodies. At approximately 9 months of age, all kits were inoculated with a killed rabies vaccine, IMRAB3(®). The kits which initially responded to V-RG oral vaccination or contact with vaccinated littermates demonstrated a rapid anamnestic response. In contrast, the V-RG non-responders and those with acquired maternal antibodies exhibited a primary immune response to IMRAB3(®), where RVNA levels were substantially lower on days 5 and 7 than the levels in the animals with an anamnestic response. These findings suggest that the naïve contact kits and the nonresponsive kits most likely remained susceptible to rabies virus infection whereas the ones demonstrating response to V-RG would not have been susceptible to a rabies virus infection.

  7. Humoral immune response and hematologic evaluation of pregnant Jersey cows after vaccination with Anaplasma centrale.

    PubMed

    Meléndez, R D; Toro Benítez, M; Niccita, G; Moreno, J; Puzzar, S; Morales, J

    2003-07-30

    The main objective of this work was to evaluate the safety of an Anaplasma centrale vaccine in pregnant pure bred Jersey cows selected from a herd located at Miranda State, Venezuela. Ten cows of 3-5 months of gestation were chosen and previous vaccination all cows were tested for Anaplasma antibodies by the indirect immunofluorescence assay (IFA), so only seronegative cows were included in the group, and for blood parameters, rectal temperature, and pregnancy. Selected cows were vaccinated intramuscularly with 1ml of an A. centrale live vaccine which had 10(8) A. centrale per ml. Over the next 2 months cows were checked weekly for hematological parameters and Anaplasma antibodies, and then for the next 2 months these evaluations were performed monthly. Among the values monitored were: A. centrale parasitemia, hematocrit, hemoglobin, and white blood cells (WBCs) (neutrophil, lymphocyte and eosinophil counts). Levels of Anaplasma antibodies were measured by IFA. Anaplasma were observed for the first time in blood films of two vaccinated cows at 14 days post-vaccination (PV), 6 out of 10 cows were A. centrale positive at 30 days PV, and all cows were A. centrale positive at 42 days PV. A. centrale often showed low parasitemia, 1-3%. Anaplasma antibodies were detected at day 14 PV in all vaccinated cows with a mean group titre of 360 (range: 80-1280). All vaccinated cows showed few changes in their hematologic parameters or in rectal temperature, and all gave birth to healthy calves. In conclusion, adult pregnant cows were safely vaccinated with this live A. centrale vaccine, which may help to develop a cross-protective immunity against field strains of A. marginale.

  8. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.

  9. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  10. Chimpanzee adenovirus and MVA-vectored respiratory syncytial virus vaccine is safe and expands humoral and cellular immunity in adults

    PubMed Central

    Green, CA; Scarselli, E; Sande, CJ; Thompson, AJ; de Lara, CM; Taylor, K; Haworth, K; Del Sorbo, M; Angus, B; Siani, L; Di Marco, S; Traboni, C; Folgori, A; Colloca, S; Capone, S; Vitelli, A; Cortese, R; Klenerman, P; Nicosia, A; Pollard, AJ

    2015-01-01

    Respiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication defective viral vectors encoding the RSV proteins F, N and M2-1 for the induction of humoral and cellular responses. We performed an open-label, dose-escalation, phase 1 clinical trial in 42 healthy adults in which four different combinations of prime/boost vaccinations were investigated for safety and immunogenicity, including both intra-muscular and intra-nasal administration of the adenoviral vectored vaccine. The vaccines were safe and well tolerated, with the most common reported adverse events being mild injection site reactions. No vaccine-related serious adverse events occurred. RSV neutralising antibody titres rose in response to intramuscular (IM) prime with PanAd3-RSV, and after IM boost for individuals primed by the intra-nasal (IN) route. Circulating anti-F IgG and IgA antibody secreting cells (ASCs) were observed after IM prime and IM boost. RSV-specific T-cell responses were increased after IM PanAd3-RSV prime and were most efficiently boosted by IM MVA-RSV. IFNγ secretion after boost was from both CD4+ and CD8+ T-cells, without detectable Th2 cytokines that have been previously associated with immune pathogenesis following exposure to RSV after formalin inactivated RSV vaccine. In conclusion, PanAd3-RSV and MVA-RSV are safe and immunogenic in healthy adults. These vaccine candidates warrant further clinical evaluation of efficacy to assess their potential to reduce the burden of RSV disease. PMID:26268313

  11. Gambiense Human African Trypanosomiasis and Immunological Memory: Effect on Phenotypic Lymphocyte Profiles and Humoral Immunity

    PubMed Central

    Lejon, Veerle; Mumba Ngoyi, Dieudonné; Kestens, Luc; Boel, Luc; Barbé, Barbara; Kande Betu, Victor; van Griensven, Johan; Bottieau, Emmanuel; Muyembe Tamfum, Jean-Jacques; Jacobs, Jan; Büscher, Philippe

    2014-01-01

    In mice, experimental infection with Trypanosoma brucei causes decreased bone marrow B-cell development, abolished splenic B-cell maturation and loss of antibody mediated protection including vaccine induced memory responses. Nothing is known about this phenomenon in human African trypanosomiasis (HAT), but if occurring, it would imply the need of revaccination of HAT patients after therapy and abolish hope for a HAT vaccine. The effect of gambiense HAT on peripheral blood memory T- and B-cells and on innate and vaccine induced antibody levels was examined. The percentage of memory B- and T-cells was quantified in peripheral blood, prospectively collected in DR Congo from 117 Trypanosoma brucei gambiense infected HAT patients before and six months after treatment and 117 controls at the same time points. Antibodies against carbohydrate antigens on red blood cells and against measles were quantified. Before treatment, significantly higher percentages of memory B-cells, mainly T-independent memory B-cells, were observed in HAT patients compared to controls (CD20+CD27+IgM+, 13.0% versus 2.0%, p<0.001). The percentage of memory T-cells, mainly early effector/memory T-cells, was higher in HAT (CD3+CD45RO+CD27+, 19.4% versus 16.7%, p = 0.003). After treatment, the percentage of memory T-cells normalized, the percentage of memory B-cells did not. The median anti-red blood cell carbohydrate IgM level was one titer lower in HAT patients than in controls (p<0.004), and partially normalized after treatment. Anti-measles antibody concentrations were lower in HAT patients than in controls (medians of 1500 versus 2250 mIU/ml, p = 0.02), and remained so after treatment, but were above the cut-off level assumed to provide protection in 94.8% of HAT patients, before and after treatment (versus 98.3% of controls, p = 0.3). Although functionality of the B-cells was not verified, the results suggest that immunity was conserved in T.b. gambiense infected HAT patients and

  12. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae.

    PubMed

    Teng, Zi-Wen; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Fang, Qi; Ye, Gong-Yin

    2016-02-01

    The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone.

  13. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg.

    PubMed

    Chen, Xiaoming; Liu, Yuying; Wang, Lianyan; Liu, Yuan; Zhang, Weifeng; Fan, Bei; Ma, Xiaowei; Yuan, Qipeng; Ma, Guanghui; Su, Zhiguo

    2014-06-01

    Surface-engineered particulate delivery systems for vaccine administration have been widely investigated in experimental and clinical studies. However, little is known about charge-coated microspheres as potential recombinant subunit protein antigen delivery systems in terms of adsorption and related immune responses. In the present study, cationic polymers, including chitosan (CS), chitosan chloride (CSC), and polyethylenimine (PEI), were used to coat PLA microspheres to build positively charged surfaces. Antigen adsorption capacity was enhanced with increased surface charge of coated microspheres. In macrophages, HBsAg adsorbed on the surface of cationic microspheres specifically enhanced antigen uptake and augmented CD86, MHC I, and MHC II expression and IL-1β, IL-6, TNF-α, and IL-12 release. Antigens were more likely to localize independent of lysosomes after phagocytosis in antigen-attached cationic microsphere formulations. After intraperitoneal immunization, cationic microsphere-based vaccine formulations generated a rapid and efficient humoral immune response and cytokine release as compared with aluminum-adsorbed vaccine and free antigens in vivo. Moreover, microspheres coated with cationic polymers with relatively high positive charges and higher antigen adsorption exhibited strong stimulation of the Th1 response. In conclusion, PLA microspheres coated with cationic polymers may be a potential recombinant antigen delivery system to induce strong cell and humoral immune responses.

  14. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  15. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.

  16. Mitochondria in the regulation of innate and adaptive immunity.

    PubMed

    Weinberg, Samuel E; Sena, Laura A; Chandel, Navdeep S

    2015-03-17

    Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.

  17. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  18. Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge.

    PubMed

    Leonard, S G; Sweeney, T; Bahar, B; O'Doherty, J V

    2012-02-01

    The present study was conducted to investigate the effect of maternal dietary supplementation (n = 10 sows/treatment) with seaweed extract (SWE: 0 vs. 10.0 g/d) from d 107 of gestation until weaning (d 26) on neonatal piglet growth, humoral immunity, intestinal morphology, selected intestinal microflora, and VFA concentrations. Furthermore, this study examined the effect of dietary treatment on the immune response after an ex vivo Escherichia coli lipopolysaccharide (LPS) tissue challenge at weaning in a 2 × 2 factorial arrangement. The main factors consisted of sow dietary treatment (SWE or control) and immunological challenge (yes or no). The SWE supplement (10.0 g/d) contained laminarin (1.0 g), fucoidan (0.8 g), and ash (8.2 g) and was extracted from a Laminaria spp. The SWE-supplemented sows had greater colostrum IgA (P < 0.01) and had a trend for greater IgG (P = 0.062) concentrations compared with non-SWE-supplemented sows. Piglets suckling SWE-supplemented sows had greater serum IgG (P < 0.05) concentrations on d 14 of lactation compared with those suckling non-SWE-supplemented sows. Dietary SWE supplementation decreased fecal Enterobacteriaceae populations in sows at parturition (P < 0.05), and piglets suckling SWE-supplemented sows had a decreased colonic E. coli population at weaning (P < 0.01) compared with non-SWE-supplemented sows. Lipopolysaccharide challenge increased the mRNA abundances of the pro-inflammatory cytokines IL-1α and IL-6 (P < 0.01) in ileal tissue and tumor necrosis factor (TNF)-α in colonic (P < 0.01) tissue. There was a treatment × LPS challenge interaction for ileal TNF-α mRNA expression (P < 0.05). Piglets suckling SWE-supplemented sows had greater TNF-α mRNA expression after ex vivo LPS challenge compared with non-SWE-supplemented sows (P < 0.05). However, there was no effect of sow dietary treatment on TNF-α mRNA expression in the unchallenged ileal tissue. Piglet BW at birth and weaning, and small intestinal morphology

  19. Breast cancer humoral immune response: involvement of Lewis y through the detection of circulating immune complexes and association with Mucin 1 (MUC1)

    PubMed Central

    Larrain, Marina Isla; Demichelis, Sandra; Crespo, Marina; Lacunza, Ezequiel; Barbera, Alberto; Cretón, Aldo; Terrier, Francisco; Segal-Eiras, Amada; Croce, María Virginia

    2009-01-01

    malignant samples. Conclusion Our findings support that in breast cancer there was a limited humoral immune response through Lewis y/IgM/CIC levels detection which correlated with MUC1/IgM/CIC. We also found that Lewis y might be part of circulating MUC1 glycoform structure and also that Lewis y/CIC did not correlate with Lewis y expression. PMID:19715603

  20. The Impact of Immunosenescence on Humoral Immune Response Variation after Influenza A/H1N1 Vaccination in Older Subjects

    PubMed Central

    Haralambieva, Iana H.; Painter, Scott D.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Lambert, Nathaniel D.; Goergen, Krista M.; Oberg, Ann L.; Poland, Gregory A.

    2015-01-01

    Background Although influenza causes significant morbidity and mortality in the elderly, the factors underlying the reduced vaccine immunogenicity and efficacy in this age group are not completely understood. Age and immunosenescence factors, and their impact on humoral immunity after influenza vaccination, are of growing interest for the development of better vaccines for the elderly. Methods We assessed associations between age and immunosenescence markers (T cell receptor rearrangement excision circles – TREC content, peripheral white blood cell telomerase – TERT expression and CD28 expression on T cells) and influenza A/H1N1 vaccine-induced measures of humoral immunity in 106 older subjects at baseline and three timepoints post-vaccination. Results TERT activity (TERT mRNA expression) was significantly positively correlated with the observed increase in the influenza-specific memory B cell ELISPOT response at Day 28 compared to baseline (p-value=0.025). TREC levels were positively correlated with the baseline and early (Day 3) influenza A/H1N1-specific memory B cell ELISPOT response (p-value=0.042 and p-value=0.035, respectively). The expression and/or expression change of CD28 on CD4+ and/or CD8+ T cells at baseline and Day 3 was positively correlated with the influenza A/H1N1-specific memory B cell ELISPOT response at baseline, Day 28 and Day 75 post-vaccination. In a multivariable analysis, the peak antibody response (HAI and/or VNA at Day 28) was negatively associated with age, the percentage of CD8+CD28low T cells, IgD+CD27- naïve B cells, and percentage overall CD20- B cells and plasmablasts, measured at Day 3 post-vaccination. The early change in influenza-specific memory B cell ELISPOT response was positively correlated with the observed increase in influenza A/H1N1-specific HAI antibodies at Day 28 and Day 75 relative to baseline (p-value=0.007 and p-value=0.005, respectively). Conclusion Our data suggest that influenza-specific humoral immunity

  1. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  2. Mycobacterium tuberculosis Zinc Metalloprotease-1 Elicits Tuberculosis-Specific Humoral Immune Response Independent of Mycobacterial Load in Pulmonary and Extra-Pulmonary Tuberculosis Patients

    PubMed Central

    Vemula, Mani H.; Ganji, Rakesh; Sivangala, Ramya; Jakkala, Kiran; Gaddam, Sumanlatha; Penmetsa, Sitaramaraju; Banerjee, Sharmistha

    2016-01-01

    Conventionally, facultative intracellular pathogen, Mycobacterium tuberculosis, the tuberculosis (TB) causing bacilli in human is cleared by cell-mediated immunity (CMI) with CD4+ T cells playing instrumental role in protective immunity, while antibody-mediated immunity (AMI) is considered non-protective. This longstanding convention has been challenged with recent evidences of increased susceptibility of hosts with compromised AMI and monoclonal antibodies conferring passive protection against TB and other intracellular pathogens. Therefore, novel approaches toward vaccine development include strategies aiming at induction of humoral response along with CMI. This necessitates the identification of mycobacterial proteins with properties of immunomodulation and strong immunogenicity. In this study, we determined the immunogenic potential of M. tuberculosis Zinc metalloprotease-1 (Zmp1), a secretory protein essential for intracellular survival and pathogenesis of M. tuberculosis. We observed that Zmp1 was secreted by in vitro grown M. tuberculosis under granuloma-like stress conditions (acidic, oxidative, iron deficiency, and nutrient deprivation) and generated Th2 cytokine microenvironment upon exogenous treatment of peripheral blood mononulear cells PBMCs with recombinant Zmp1 (rZmp1). This was supported by recording specific and robust humoral response in TB patients in a cohort of 295. The anti-Zmp1 titers were significantly higher in TB patients (n = 121) as against healthy control (n = 62), household contacts (n = 89) and non-specific infection controls (n = 23). A significant observation of the study is the presence of equally high titers of anti-Zmp1 antibodies in a range of patients with high bacilli load (sputum bacilli load of 300+ per mL) to paucibacillary smear-negative pulmonary tuberculosis (PTB) cases. This clearly indicated the potential of Zmp1 to evoke an effective humoral response independent of mycobacterial load. Such mycobacterial proteins can

  3. Evaluation of humoral immunity and protective efficacy of biofilm producing Staphylococcus aureus bacterin-toxoid prepared from a bovine mastitis isolate in rabbit

    PubMed Central

    A., Raza; G., Muhammad; S. U., Rahman; I., Rashid; K., Hanif; A., Atta; S., Sharif

    2015-01-01

    Mastitis is a one of the major diseases of dairy animals. Staphylococcus aureus is the most common microorganism associated with this dairy scourge. Cure rates of mastitis associated with this pathogen are appallingly low. Biofilm is an important virulence factor and immunogenic structure of S. aureus that makes it resistant to phagocytosis and antibiotics. Reports on the efficacy of vaccine prepared from a biofilm producing S. aureus are infrequent. The present study was designed to evaluate the role of a bacterin-toxoid prepared from a strong biofilm producing S. aureus in effective immunization of rabbits. The strong biofilm producing S. aureus selected from 64 isolates of staphylococci was used to prepare bacterin-toxoid and aluminum hydroxide gel was added as an adjuvant. The vaccine was evaluated in rabbits by challenge protection assay and humoral immune response. The mortality rates in control and vaccinated groups were 80% and 10% at day 7 post challenge and 100% and 20% at day 15 post challenge, respectively. Serum antibody titer (GMT) was significantly higher (294.0) in vaccinated group as compared to control group of rabbits (2.63) at day 45. The results showed that the vaccine has significantly elicited humoral immune response in rabbit and developed protective efficacy against new infections. PMID:27175154

  4. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  5. The antigenic specificity of the humoral immune response to primary and repeated ocular infections of the guinea pig with the GPIC agent (Chlamydia psittaci).

    PubMed

    Treharne, J D; Shallal, A

    1991-01-01

    The antigenic specificity of the humoral immune response in guinea pigs to primary and repeated ocular infections with the guinea pig inclusion conjunctivitis (GPIC) chlamydial agent was analysed using microbiological, serological and Western blotting techniques. The results indicate that although there was a response to many minor polypeptide antigens, there was a marked lack of reactivity to the major outer membrane protein (MOMP), particularly following reinfection of guinea pigs. It is suggested that, lack of a good antibody response to the MOMP, may be one of the reasons why guinea pigs are susceptible to repeated ocular infections with this chlamydial agent.

  6. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response.

    PubMed

    de Brito, Cyro Alves; Goldoni, Adriana Letícia; Sato, Maria Notomi

    2009-09-01

    The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.

  7. Silicate antibodies in women with silicone breast implants: development of an assay for detection of humoral immunity.

    PubMed Central

    Shen, G Q; Ojo-Amaize, E A; Agopian, M S; Peter, J B

    1996-01-01

    Silicon, in the form of sodium silicate (Na2SiO3), adsorbed onto bovine serum albumin (BSA)-precoated plates served as the solid-phase antigen in an enzyme immunoassay to detect silicate-reactive antibodies in the plasma of 40 symptomatic women with silicone breast implants, 91 asymptomatic women with silicone breast implants, 50 healthy control women, and 52 women with rheumatic diseases and without silicone breast implants, Silicate-reactive antibodies of immunoglobulin G (IgG) or IgM isotypes were detected in the plasma of 30% (12 of 40) of the symptomatic women with silicone breast implants; 9% (8 of 91) of the asymptomatic women with silicone breast implants; 5% (1 of 20) of the women without implants who had systemic lupus erythematosus; and 0% (0 of 32) of the women without implants who had either Sjögren syndrome, scleroderma, or rheumatoid arthritis. Only 2% (1 of 50) of the sera from the healthy control women contained silicate-reactive antibodies. Preincubation of sera with silicate and eight other metal compounds (including SiO2) demonstrated that the IgG and IgM antibodies bound specifically to silicate, because preincubation with Na2SiO3 inhibited more than 90% of the activity, whereas CrO3, Li2SO4, MgSO4, NiSO4, HgCl2, ZrOCl2, BeSO4, and SiO2 failed to inhibit the IgG or IgM antibody binding to the silicate-BSA plates. Furthermore, the F(ab')2 portion and not the Fc portion of the silicate-reactive IgG was reactive with BSA-bound silicate in the enzyme immunoassay. The assay for silicate-reactive antibodies was quantified by assigning arbitrary units to a standard curve composed of serial twofold dilutions of high-positive (ten times higher than the cutoff) silicate antibody sera. This novel assay is a useful method for detecting and quantifying humoral immune response to silicate. PMID:8991630

  8. Multifaceted interactions between adaptive immunity and the central nervous system.

    PubMed

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  9. Duration of immunity engendered by a single dose of a cold-adapted strain of Avian pneumovirus

    PubMed Central

    2006-01-01

    Abstract The duration of immunity after a single dose of a cold-adapted strain of Avian pneumovirus (APV) was studied. Turkeys were vaccinated at 1 wk of age and challenged with virulent virus 3, 7, 10, and 14 wk later. Nonvaccinated groups were also challenged at the same times. No clinical signs were observed in the vaccinated birds after vaccination or after any challenge. No viral RNA was shed by the vaccinated birds after any challenge. The nonvaccinated birds shed viral RNA after all challenges. Avian pneumovirus-specific humoral antibodies were detected in the vaccinated birds until 14 wk after vaccination. The results of this preliminary study indicate that inoculation with a single dose of a cold-adapted strain of APV at 1 wk of age provides protection until 15 wk of age. PMID:16548335

  10. A Recombinant Trivalent Fusion Protein F1-LcrV-HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis.

    PubMed

    Verma, Shailendra K; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1-LcrV and F1-LcrV-HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1-LcrV and F1-LcrV-HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it's isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1-LcrV-HSP70(II) sera in comparison to anti-F1-LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1-LcrV-HSP(II) immunized mice in comparison to F1-LcrV. Both F1-LcrV and F1-LcrV-HSP70(II) provided 100% protection. Our research findings suggest that F1-LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model. PMID:27458447

  11. A Recombinant Trivalent Fusion Protein F1–LcrV–HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis

    PubMed Central

    Verma, Shailendra K.; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1–lcrV and caf1–lcrV–hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1–lcrV and caf1–lcrV–hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1–LcrV and F1–LcrV–HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1–LcrV and F1–LcrV–HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it’s isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1–LcrV–HSP70(II) sera in comparison to anti-F1–LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1–LcrV–HSP(II) immunized mice in comparison to F1–LcrV. Both F1–LcrV and F1–LcrV–HSP70(II) provided 100% protection. Our research findings suggest that F1–LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model. PMID:27458447

  12. Reduced T-cell-dependent humoral immune response in microsomal prostaglandin E synthase-1 null mice is mediated by non-hematopoietic cells

    PubMed Central

    Kojima, Fumiaki; Frolov, Andrey; Matnani, Rahul; Woodward, Jerold G.; Crofford, Leslie J.

    2013-01-01

    Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible enzyme that specifically catalyzes the conversion of prostaglandin (PG)H2 to PGE2. We showed that mPGES-1 null mice had a significantly reduced incidence and severity of collagen-induced arthritis (CIA) compared to wild-type (WT) mice associated with a marked reduction in antibodies to type II collagen. In the present study, we further elucidated the role of mPGES-1 in the humoral immune response. Basal levels of serum IgM and IgG were significantly reduced in mPGES-1 null mice. Compared with WT mice, mPGES-1 null mice exhibited a significant reduction of hapten-specific serum antibodies in response to immunization with the T-cell dependent antigen DNP-KLH. Immunization with the T-cell independent type-1 antigen TNP-LPS or the T-cell independent type-2 antigen DNP-Ficoll revealed minimal differences between strains. Germinal center formation in the spleens of mPGES-1 null and WT mice were similar after immunization with DNP-KLH. To determine if the effect of mPGES-1 and PGE2 was localized to hematopoietic or non-hematopoietic cells, we generated bone marrow chimeras. We demonstrated that mPGES-1 deficiency in non-hematopoietic cells was the critical factor for reduced T-cell dependent antibody production. We conclude that mPGES-1 and PGE2-dependent phenotypic changes of non-hematopoietic/mesenchymal stromal cells play a key role in T-cell dependent humoral immune responses in vivo. These findings may have relevance to the pathogenesis of rheumatoid arthritis and other autoimmune inflammatory diseases associated with autoantibody formation. PMID:24127557

  13. Immunity comes first: the effect of parasite genotypes on adaptive immunity and immunization in three-spined sticklebacks.

    PubMed

    Haase, David; Rieger, Jennifer K; Witten, Anika; Stoll, Monika; Bornberg-Bauer, Erich; Kalbe, Martin; Reusch, Thorsten B H

    2016-01-01

    Adaptive immunity in vertebrates can confer increased resistance against invading pathogens upon re-infection. But how specific parasite genotypes affect the temporal transition from innate to adaptive immunity under continual exposure to parasites is poorly understood. Here, we investigated the effects of homologous and heterologous exposures of genetically distinct parasite lineages of the eye fluke Diplostomum pseudospathaceum on gene expression patterns of adaptive immunity in sticklebacks (Gasterosteus aculeatus). Observable differences in gene expression were largely attributable to final exposures while there was no transcription pattern characteristic for a general response to repeated infections with D. pseudospathaceum. None of the final exposure treatments was able to erase the distinct expression patterns resulting from a heterologous pre-exposed fish. Interestingly, heterologous final exposures showed similarities between different treatment groups subjected to homologous pre-exposure. The observed pattern was supported by parasite infection rates and suggests that host immunization was optimized towards an adaptive immune response that favored effectiveness against parasite diversity over specificity.

  14. Epithelium: At the interface of innate and adaptive immune responses

    PubMed Central

    Schleimer, Robert P.; Kato, Atsushi; Kern, Robert; Kuperman, Douglas; Avila, Pedro C.

    2009-01-01

    Several diseases of the airways have a strong component of allergic inflammation in their cause, including allergic rhinitis, asthma, polypoid chronic rhinosinusitis, eosinophilic bronchitis, and others. Although the roles played by antigens and pathogens vary, these diseases have in common a pathology that includes marked activation of epithelial cells in the upper airways, the lower airways, or both. Substantial new evidence indicates an important role of epithelial cells as both mediators and regulators of innate immune responses and adaptive immune responses, as well as the transition from innate immunity to adaptive immunity. The purpose of this review is to discuss recent studies that bear on the molecular and cellular mechanisms by which epithelial cells help to shape the responses of dendritic cells, T cells, and B cells and inflammatory cell recruitment in the context of human disease. Evidence will be discussed that suggests that secreted products of epithelial cells and molecules expressed on their cell surfaces can profoundly influence both immunity and inflammation in the airways. PMID:17949801

  15. Adaptive resistance: A tumor strategy to evade immune attack

    PubMed Central

    Yao, Sheng; Chen, Lieping

    2014-01-01

    A dilemma in cancer immunology is that, although patients often develop active anti-tumor immune responses, the tumor still outgrows. It has become clear that under the pressure of the host’s immune system, cancer cells have adapted elaborate tactics to reduce their immunogenicity (also known as immunoselection) and/or to actively suppress immune cells and promote immune tolerance (also known as immunosubversion). In this issue of the European Journal of Immunology, Dolen and Esendagli [Eur. J. Immunol. 2013. 43: 747–757] show that acute myeloid leukemia (AML) cells develop an adaptive immune phenotype switching mechanism: In response to attack by activated T cells, the leukemia cells quickly downregulate the T-cell costimulatory ligand B7-H2 and reciprocally upregulate the coinhibitory ligands B7-H1 and B7-DC in order to shut down T-cell activation via the PD-1 pathway. These novel findings and their relevance for cancer immunotherapy, especially potential applications in PD-1 check-point blockade therapy are discussed in this Commentary. PMID:23381914

  16. Humor styles, self-esteem, and subjective happiness.

    PubMed

    Yue, Xiao Dong; Liu, Katy Wing-Yin; Jiang, Feng; Hiranandani, Neelam Arjan

    2014-10-01

    Summary.-This study examined how humor styles could mediate the effect of self-esteem on subjective happiness. 227 Hong Kong undergraduate students completed the Humor Styles Questionnaire, the Roxsenberg Self-esteem Scale, and the Subjective Happiness Scale. Results showed adaptive humor styles (affiliative humor and self-enhancing humor) significantly predicted self-esteem and subjective happiness and mediated the relationship between self-esteem and subjective happiness. Maladaptive humor styles (aggressive humor and self-defeating humor) did not strongly predict self-esteem or subjective happiness. The mediation effects of humor styles found in the present research provided useful suggestions for future studies.

  17. Humor styles, self-esteem, and subjective happiness.

    PubMed

    Yue, Xiao Dong; Liu, Katy Wing-Yin; Jiang, Feng; Hiranandani, Neelam Arjan

    2014-10-01

    Summary.-This study examined how humor styles could mediate the effect of self-esteem on subjective happiness. 227 Hong Kong undergraduate students completed the Humor Styles Questionnaire, the Roxsenberg Self-esteem Scale, and the Subjective Happiness Scale. Results showed adaptive humor styles (affiliative humor and self-enhancing humor) significantly predicted self-esteem and subjective happiness and mediated the relationship between self-esteem and subjective happiness. Maladaptive humor styles (aggressive humor and self-defeating humor) did not strongly predict self-esteem or subjective happiness. The mediation effects of humor styles found in the present research provided useful suggestions for future studies. PMID:25153846

  18. Control of commensal microbiota by the adaptive immune system.

    PubMed

    Zhang, Husen; Luo, Xin M

    2015-01-01

    The symbiotic relationship between the mammalian host and gut microbes has fascinated many researchers in recent years. Use of germ-free animals has contributed to our understanding of how commensal microbes affect the host. Immunodeficiency animals lacking specific components of the mammalian immune system, on the other hand, enable studying of the reciprocal function-how the host controls which microbes to allow for symbiosis. Here we review the recent advances and discuss our perspectives of how to better understand the latter, with an emphasis on the effects of adaptive immunity on the composition and diversity of gut commensal bacteria. PMID:25901893

  19. Links between innate and adaptive immunity via type I interferon.

    PubMed

    Le Bon, Agnes; Tough, David F

    2002-08-01

    Type I interferon (IFN-alpha/beta) is expressed rapidly following exposure to a wide variety of infectious agents and plays a key role in innate control of virus replication. Recent studies have demonstrated that dendritic cells both produce IFN-alpha/beta and undergo maturation in response to IFN-alpha/beta. Moreover, IFN-alpha/beta has been shown to potently enhance immune responses in vivo through the stimulation of dendritic cells. These findings indicate that IFN-alpha/beta serves as a signal linking innate and adaptive immunity. PMID:12088676

  20. PD-1 Co-inhibitory and OX40 Co-stimulatory Crosstalk Regulates Helper T Cell Differentiation and Anti-Plasmodium Humoral Immunity.

    PubMed

    Zander, Ryan A; Obeng-Adjei, Nyamekye; Guthmiller, Jenna J; Kulu, Divine I; Li, Jun; Ongoiba, Aissata; Traore, Boubacar; Crompton, Peter D; Butler, Noah S

    2015-05-13

    The differentiation and protective capacity of Plasmodium-specific T cells are regulated by both positive and negative signals during malaria, but the molecular and cellular details remain poorly defined. Here we show that malaria patients and Plasmodium-infected rodents exhibit atypical expression of the co-stimulatory receptor OX40 on CD4 T cells and that therapeutic enhancement of OX40 signaling enhances helper CD4 T cell activity, humoral immunity, and parasite clearance in rodents. However, these beneficial effects of OX40 signaling are abrogated following coordinate blockade of PD-1 co-inhibitory pathways, which are also upregulated during malaria and associated with elevated parasitemia. Co-administration of biologics blocking PD-1 and promoting OX40 signaling induces excessive interferon-gamma that directly limits helper T cell-mediated support of humoral immunity and decreases parasite control. Our results show that targeting OX40 can enhance Plasmodium control and that crosstalk between co-inhibitory and co-stimulatory pathways in pathogen-specific CD4 T cells can impact pathogen clearance. PMID:25891357

  1. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. V. Anamnestic cellular and humoral responses following challenge infection

    SciTech Connect

    Correa-Oliveira, R.; Sher, A.; James, S.L.

    1984-03-01

    Mice vaccinated with radiation-attenuated cercariae display low levels of cellular and humoral immune responses toward schistosomulum antigens, as measured in vitro by lymphocyte blastogenesis and quantitation of anti-larval antibodies by indirect immunofluorescence. Both responses wane with time after vaccination. However subsequent challenge infection provokes immune responses of classical anamnestic character, being both more rapid in appearance and of greater magnitude. Antigen responsive cells appear in lymph nodes draining the challenge site within 24 hours after infection. Both circulating anti-schistosomulum surface antibodies as well as cytophilic IgE anti-worm antigen antibodies increase substantially by 1 week after challenge. All of the anamnestic circulating antibodies belong to the IgG class. Those findings support the concept that vaccine-induced resistance to Schistosoma mansoni infection involves sensitized T and B lymphocytes, and point to the possible role of post-challenge anamnestic responses in the effector mechanism of parasite killing in this model.

  2. Control of the Adaptive Immune Response by Tumor Vasculature

    PubMed Central

    Mauge, Laetitia; Terme, Magali; Tartour, Eric; Helley, Dominique

    2014-01-01

    The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy. PMID:24734218

  3. Effect of a polysaccharide from Poria cocos on humoral response in mice immunized by H1N1 influenza and HBsAg vaccines.

    PubMed

    Wu, Yajun; Li, Shuai; Li, Haixia; Zhao, Chunzhi; Ma, Hao; Zhao, Xiunan; Wu, Junhua; Liu, Kunlu; Shan, Junjie; Wang, Yuxia

    2016-10-01

    Poria cocos has a long history of medicinal use in China. Polysaccharides and their derivatives in the medicine exhibit many beneficial biological activities including anticancer, anti-inflammatory, antioxidant and antiviral activities. In this study, a new polysaccharide (PCP-II) was isolated from sclerotium of Poria cocos. Its physico-chemical characters were identified and its adjuvant activity was investigated in mice co-immunized with H1N1 influenza vaccine and hepatitis B surface antigen (HBsAg). The results revealed that PCP-II has a molecular weight of 29.0kDa. It was composed of fucose, mannose, glucose and galactose in molar ration of 1.00:1.63:0.16:6.29 respectively. Pharmacological data demonstrated that PCP-II increased antigen-specific antibody levels in mice immunized with influenza vaccine. PCP-II also elicited anti-HBsAg antibodies at significantly higher titers and generated robust and durable immunity compared to mice immunized with HBsAg-alum following two administrations. PCP-II improved proliferation of splenocytes, stimulated IL-12p70 and TNF-α productions in dendritic cells and macrophages respectively. These results suggested that PCP-II-adjuvanted vaccines enhanced humoral and cellular immunity. PCP-II could be developed as an efficacious adjuvant in human and animal vaccines. PMID:27185068

  4. Effect of a polysaccharide from Poria cocos on humoral response in mice immunized by H1N1 influenza and HBsAg vaccines.

    PubMed

    Wu, Yajun; Li, Shuai; Li, Haixia; Zhao, Chunzhi; Ma, Hao; Zhao, Xiunan; Wu, Junhua; Liu, Kunlu; Shan, Junjie; Wang, Yuxia

    2016-10-01

    Poria cocos has a long history of medicinal use in China. Polysaccharides and their derivatives in the medicine exhibit many beneficial biological activities including anticancer, anti-inflammatory, antioxidant and antiviral activities. In this study, a new polysaccharide (PCP-II) was isolated from sclerotium of Poria cocos. Its physico-chemical characters were identified and its adjuvant activity was investigated in mice co-immunized with H1N1 influenza vaccine and hepatitis B surface antigen (HBsAg). The results revealed that PCP-II has a molecular weight of 29.0kDa. It was composed of fucose, mannose, glucose and galactose in molar ration of 1.00:1.63:0.16:6.29 respectively. Pharmacological data demonstrated that PCP-II increased antigen-specific antibody levels in mice immunized with influenza vaccine. PCP-II also elicited anti-HBsAg antibodies at significantly higher titers and generated robust and durable immunity compared to mice immunized with HBsAg-alum following two administrations. PCP-II improved proliferation of splenocytes, stimulated IL-12p70 and TNF-α productions in dendritic cells and macrophages respectively. These results suggested that PCP-II-adjuvanted vaccines enhanced humoral and cellular immunity. PCP-II could be developed as an efficacious adjuvant in human and animal vaccines.

  5. Maternal adaptive immunity influences the intestinal microflora of suckling mice.

    PubMed

    Diaz, Rosa L; Hoang, Lisa; Wang, Jiafang; Vela, Jose L; Jenkins, Shannon; Aranda, Richard; Martín, Martín G

    2004-09-01

    The microflorae in the intestine of breast-fed infants are distinct from those that typically populate the intestine of formula-fed infants. Although the acquisition of passive immunity through breast-feeding may play a critical role in influencing the pattern of bacterial colonization of the gut, the precise mechanisms underlying the differences in the commensal microflorae of breast and formula-fed children have not been established. We hypothesized that the assemblage of commensal microflorae in suckling and weaned mice may be influenced by the maternal adaptive immune system. To test this hypothesis, we analyzed the intestinal microflorae of mice reared in the presence (wild-type) or absence of an intact maternal immune system (T- and B-cell deficient). Several types of bacteria (Lactobacillus, Enterococcus, Clostridium perfringens, Bifidobacterium, and Bacteroides) were isolated and enumerated from both the small and large intestine of 10-, 18-, 25- and 40- to 60-d old mice using selective media. The densities of bacteria were significantly lower in the small intestine of weaned mice that were reared by wild-type (WT) compared with immunodeficient (ID) dams. However, the microflorae were generally more abundant in the large intestine of suckling pups reared by WT compared with ID dams. Our results indicate that intestinal microflorae change throughout the suckling phase of development and that the maternal adaptive immune system influences the pattern and abundance of bacteria within the gut in an age- and site-specific manner.

  6. Evaluation of the Adaptive Immune Response to Respiratory Syncytial Virus.

    PubMed

    Knudson, Cory J; Weiss, Kayla A; Stoley, Megan E; Varga, Steven M

    2016-01-01

    Evaluation of the adaptive immune response is critical to the advancement of our basic knowledge and understanding of respiratory syncytial virus (RSV). The cellular composition in the lung following RSV infection is often evaluated using flow cytometry. However, a limitation of this approach has been the inability to readily distinguish cells that are within the lung parenchyma from cells that remain in the pulmonary blood vessels. Herein, we detail a procedure to evaluate the adaptive immune response via flow cytometric analysis that incorporates an in vivo intravascular staining technique. This technique allows for discrimination of immune cells in the lung tissue from cells that remain in the pulmonary vasculature following perfusion. Therefore at any given time point following an RSV infection, the leukocytic populations in the lung parenchyma can be quantified and phenotypically assessed with high resolution. While we focus on the T lymphocyte response in the lung, this technique can be readily adapted to examine various leukocytic cell types in the lung following RSV infection. PMID:27464699

  7. Effect of nutrient density on production performance, egg quality and humoral immune response of brown laying (Dahlem Red) hens in the tropics.

    PubMed

    Panda, Arun Kumar; Rao, Savaram Venkata Rama; Raju, Mantena Venkata Lakshmi Narasimha; Niranjan, Matam; Reddy, Maddula Ramkoti

    2012-02-01

    A study was conducted to evaluate the effect of various concentrations of metabolizable energy (ME) with graded incremental levels of crude protein (CP) and essential amino acids (lysine and methionine) on production performance, egg quality and humoral immune response of Dahlem Red laying hens. Four experimental diets based on maize-soybean meal-deoiled rice bran were prepared. Diet 1 was fed as a control diet containing 2,600 kcal ME/kg, 15% CP, 0.75% Lys and 0.36% Met, and in the other three diets (D2, D3 and D4), concentrations of the above nutrients were increased by 2.5%, 5.0% and 7.5%, respectively. The levels of Ca (3.5%) and available P (0.32) were constant in all the diets. Each diet was offered ad libitum from 28 to 40 weeks of age to eight replicates containing six birds in each replicate. The egg production, egg weight and egg mass (in grams of egg per hen per day) were not affected by increasing the nutrient density up to 7.5% (2,795 kcal ME/kg diet) compared to the control group (2,600 ME/kg diet). However, feed consumption and feed efficiency (in grams of egg per gram of feed) were influenced by the variation in the nutrient density of diets. As the nutrient density increased by 5% (2,730 ME/kg diet), birds consumed significantly (P < 0.001) less feed. The birds in the 7.5% higher density group produced significantly (P < 0.05) higher egg mass per unit feed consumption compared to the control diet. Increasing nutrient density up to 7.5% had no effect on relative weight of albumen, yolk or shell. The Haugh unit, yolk colour and shell thickness were also not affected due to variation in the nutrient density. The humoral immune response measured at 34 and 40 weeks was progressively improved by increasing the nutrient density up to 5%. Increasing the nutrient density beyond 5% in the diet had no further influence on the humoral immune response. Based on the results of the present study, it can be concluded that Dahlem Red laying hens required 2,795 kcal

  8. Effects of Classroom Humor Climate and Acceptance of Humor Messages on Adolescents' Expressions of Humor

    ERIC Educational Resources Information Center

    Chiang, Yi-Chen; Lee, Chun-Yang; Wang, Hong-Huei

    2016-01-01

    Background: To adapt to dramatic changes from physical growth, physical development and the increasing demand of significant others, humor has been found to be an effective coping strategy. However, previous studies have found that adolescents start to express their humor styles with aggressive components which causes negative consequences, such…

  9. Cooperation between CD4+ T Cells and Humoral Immunity Is Critical for Protection against Dengue Using a DNA Vaccine Based on the NS1 Antigen

    PubMed Central

    Gonçalves, Antônio J. S.; Oliveira, Edson R. A.; Costa, Simone M.; Paes, Marciano V.; Silva, Juliana F. A.; Azevedo, Adriana S.; Mantuano-Barradas, Marcio; Nogueira, Ana Cristina M. A.; Almeida, Cecília J.; Alves, Ada M. B.

    2015-01-01

    Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity. PMID:26650916

  10. A novel dengue virus serotype-2 nanovaccine induces robust humoral and cell-mediated immunity in mice.

    PubMed

    Hunsawong, Taweewun; Sunintaboon, Panya; Warit, Saradee; Thaisomboonsuk, Butsaya; Jarman, Richard G; Yoon, In-Kyu; Ubol, Sukathida; Fernandez, Stefan

    2015-03-30

    Dengue virus (DENV), a member of the Flaviviridae family, can be transmitted to humans through the bite of infected Aedes mosquitoes. The incidence of dengue has increased worldwide over the past few decades. Inadequate vector control, changing global ecology, increased urbanization, and faster global travel are factors enhancing the rapid spread of the virus and its vector. In the absence of specific antiviral treatments, the search for a safe and effective vaccine grows more imperative. Many strategies have been utilized to develop dengue vaccines. Here, we demonstrate the immunogenic properties of a novel dengue nanovaccine (DNV), composed of ultraviolet radiation (UV)-inactivated DENV-2, which has been loaded into the nanoparticles containing chitosan/Mycobacterium bovis Bacillus Calmette-Guerin cell wall components (CS/BCG-NPs). We investigated the immunogenicity of DNV in a Swiss albino mouse model. Inoculation with various concentrations of vaccine (0.3, 1, 3 and 10μg/dose) with three doses, 15-day apart, induced strong anti-dengue IgM and IgG antibodies in the mouse serum along with neutralizing antibody against DENV-2 reference strain (16681), a clinical-isolate strain (00745/10) and the mouse-adapted New Guinea-C (NGC) strain. Cytokine and chemokine secretion in the serum of DNV-immunized mice showed elevated levels of IFN-γ, IL-2, IL-5, IL-12p40, IL-12p70, IL-17, eotaxin and RANTES, all of which have varying immune functions. Furthermore, we observed a DNV dose-dependent increase in the frequencies of IFN-γ-producing CD4(+) and CD8(+) T cells after in vitro stimulation of nucleated cells. Based on these findings, DNV has the potential to become a candidate dengue vaccine. PMID:25701315

  11. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  12. SAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease.

    PubMed

    Rivat, Christine; Booth, Claire; Alonso-Ferrero, Maria; Blundell, Michael; Sebire, Neil J; Thrasher, Adrian J; Gaspar, H Bobby

    2013-02-14

    X-linked lymphoproliferative disease (XLP1) arises from mutations in the gene encoding SLAM-associated protein (SAP) and leads to abnormalities of NKT-cell development, NK-cell cytotoxicity, and T-dependent humoral function. Curative treatment is limited to allogeneic hematopoietic stem cell (HSC) transplantation. We tested whether HSC gene therapy could correct the multilineage defects seen in SAP(-/-) mice. SAP(-/-) murine HSCs were transduced with lentiviral vectors containing either SAP or reporter gene before transplantation into irradiated recipients. NKT-cell development was significantly higher and NK-cell cytotoxicity restored to wild-type levels in mice receiving the SAP vector in comparison to control mice. Baseline immunoglobulin levels were significantly increased and T-dependent humoral responses to NP-CGG, including germinal center formation, were restored in SAP-transduced mice.We demonstrate for the first time that HSC gene transfer corrects the cellular and humoral defects in SAP(-/-) mice providing proof of concept for gene therapy in XLP1.

  13. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via “Antigen Capsid-Incorporation” strategy

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L.; Derdeyn, Cynthia A.; Matthews, Qiana L.

    2016-01-01

    Adenoviral (Ad) vectors in combination with the “Antigen Capsid-Incorporation” strategy have been applied in developing HIV-1 vaccines, due to the vectors’ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the “Antigen Capsid-Incorporation” strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  14. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy.

    PubMed

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L

    2016-01-01

    Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2.

  15. A novel dendritic-cell-targeting DNA vaccine for hepatitis B induces T cell and humoral immune responses and potentiates the antivirus activity in HBV transgenic mice.

    PubMed

    Yu, Debin; Liu, Hong; Shi, Shuai; Dong, Liwei; Wang, Hongge; Wu, Nuoting; Gao, Hui; Cheng, Zhaojun; Zheng, Qun; Cai, Jiaojiao; Zou, Libo; Zou, Zhihua

    2015-12-01

    Strategies for inducing an effective immune response following vaccination have focused on targeting antigens to dendritic cells (DCs) through the DC-specific surface molecule DEC-205. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single-chain antibodies directed against DEC-205. Here, we investigated this promising approach for its enhancement of hepatitis B virus (HBV)-specific cellular and humoral immune responses and its antiviral effects in HBV transgenic mice. A plasmid DNA vaccine encoding mouse DEC-205 single-chain fragment variable (mDEC-205-scFv) linked with the hepatitis B surface antigen (HBsAg) was constructed. Vaccination with this fusion DNA vaccine in HBV transgenic mice induced robust antiviral T cell and antibody immunity against HBsAg. The levels of serum-circulating HBsAg and the HBV DNA copy number were downregulated by the induction of a higher HBsAg-specific response. Thus, in this study, we demonstrated the therapeutic efficacy of the novel mDEC-205-scFv-fused DNA vaccine in a mouse model of immune-tolerant, chronic HBV infection.

  16. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    PubMed

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR. PMID:26343487

  17. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    PubMed

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR.

  18. A two year BTV-8 vaccination follow up: molecular diagnostics and assessment of humoral and cellular immune reactions.

    PubMed

    Hund, Alexandra; Gollnick, Nicole; Sauter-Louis, Carola; Neubauer-Juric, Antonie; Lahm, Harald; Büttner, Mathias

    2012-01-27

    The compulsory vaccination campaign against Bluetongue virus serotype eight (BTV-8) in Germany was exercised in the state of Bavaria using three commercial monovalent inactivated vaccines given provisional marketing authorisation for emergency use. In eleven Bavarian farms representing a cross sectional area of the state the immune reactions of sheep and cattle were followed over a two year period (2008-2009) using cELISA, a serum neutralisation test (SNT) and interferon gamma (IFN-γ) ELISPOT. For molecular diagnostics of BTV genome presence two recommended real time quantitative RT-PCR protocols were applied. The recommended vaccination scheme led to low or even undetectable antibody titers (ELISA) in serum samples of both cattle and sheep. A fourfold increase of the vaccine dose in cattle, however, induced higher ELISA titers and virus neutralising antibodies. Accordingly, repeated vaccination in sheep caused an increase in ELISA-antibody titers. BTV-8 neutralising antibodies occurred in most animals only after multiple vaccinations in the second year of the campaign. The secretion of interferon gamma (IFN-γ) in ELISPOT after in vitro re-stimulation of PBMC of BTV-8 vaccinated animals with BTV was evaluated in the field for the first time. Sera of BTV-8 infected or vaccinated animals neutralising BTV-8 could also neutralise an Italian BTV serotype 1 cell culture adapted strain and PBMC of such animals secreted IFN-γ when stimulated with BTV-1.

  19. Rectal single dose immunization of mice with Escherichia coli O157:H7 bacterial ghosts induces efficient humoral and cellular immune responses and protects against the lethal heterologous challenge

    PubMed Central

    Mayr, Ulrike Beate; Kudela, Pavol; Atrasheuskaya, Alena; Bukin, Eugenij; Ignatyev, Georgy; Lubitz, Werner

    2012-01-01

    Summary Bacterial ghosts (BGs) have been applied through oral, aerogenic, intraocular or intranasal routes for mucosal immunization using a wide range of experimental animals. All these applications required a booster after primary immunization to achieve protective immunity against the lethal challenge. Here we report for the first time that a single rectal dose of BGs produced from enterohaemorrhagic Escherichia coli (EHEC) O157:H7 fully protects mice against a 50% lethal challenge with a heterologous EHEC strain given at day 55. BGs from EHEC O157:H7 were prepared by a combination of protein E‐mediated cell lysis and expression of staphylococcal nuclease A guaranteeing the complete degradation of pathogen residual DNA. The lack of genetic material in the EHEC BGs vaccine abolished any potential hazard for horizontal gene transfer of plasmid encoded antibiotic resistance genes or pathogenic islands to the recipient's gut flora. Single rectal immunization using EHEC O157:H7 BGs without any addition of adjuvant significantly stimulated efficient humoral and cellular immune responses, and was equally protective as two immunizations, which indicates the possibility to develop a novel efficacious single dose mucosal EHEC O157:H7 BGs vaccine using a simplified immunization regimen. PMID:22103353

  20. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response

    PubMed Central

    1996-01-01

    To investigate the role of TNF alpha in the development of in vivo immune response we have generated TNF alpha-deficient mice by gene targeting. Homozygous mutant mice are viable and fertile, develop lymph nodes and Peyer's patches and show no apparent phenotypic abnormalities, indicating that TNF alpha is not required for normal mouse development. In the absence of TNF alpha mice readily succumb to L. monocytogenes infections and show reduced contact hypersensitivity responses. Furthermore, TNF alpha knockout mice are resistant to the systemic toxicity of LPS upon D-galactosamine sensitization, yet they remain sensitive to high doses of LPS alone. Most interestingly, TNF alpha knockout mice completely lack splenic primary B cell follicles and cannot form organized follicular dendritic cell (FDC) networks and germinal centers. However, despite the absence of B cell follicles, Ig class-switching can still occur, yet deregulated humoral immune responses against either thymus-dependent (TD) or thymus-independent (TI) antigens are observed. Complementation of TNF alpha functioning by the expression of either human or murine TNF alpha transgenes is sufficient to reconstitute these defects, establishing a physiological role for TNF alpha in regulating the development and organization of splenic follicular architecture and in the maturation of the humoral immune response. PMID:8879212

  1. Gene discovery and differential expression analysis of humoral immune response elements in female Culicoides sonorensis (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Female Culicoides sonorensis midges (Diptera: Ceratopogonidae) are vectors of pathogens that impact livestock and wildlife in the United States. Little is known about their molecular functioning, including components of their immune system. Because the insect immune response is involved ...

  2. Role of Adaptive Immunity in Alcoholic Liver Disease

    PubMed Central

    Albano, Emanuele

    2012-01-01

    Stimulation of innate immunity is increasingly recognized to play an important role in the pathogenesis of alcoholic liver disease (ALD), while the contribution of adaptive immunity has received less attention. Clinical and experimental data show the involvement of Th-1 and Th-17 T-lymphocytes in alcoholic hepatitis. Nonetheless, the mechanisms by which alcohol triggers adaptive immunity are still incompletely characterized. Patients with advanced ALD have circulating IgG and T-lymphocytes recognizing epitopes derived from protein modification by hydroxyethyl free radicals and end products of lipid-peroxidation. High titers of IgG against lipid peroxidation-derived antigens are associated with an increased hepatic production of proinflammatory cytokines/chemokines. Moreover, the same antigens favor the breaking of self-tolerance towards liver constituents. In particular, autoantibodies against cytochrome P4502E1 (CYP2E1) are evident in a subset of ALD patients. Altogether these results suggest that allo- and autoimmune reactions triggered by oxidative stress might contribute to hepatic inflammation during the progression of ALD. PMID:22229098

  3. Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV mediated gene transfer with a non-depleting CD4 antibody and cyclosporine

    PubMed Central

    McIntosh, Jenny; Cochrane, Melanie; Cobbold, Stephen; Waldmann, Herman; Davidoff, Andrew M.; Nathwani, Amit C.

    2012-01-01

    The ability of transient immunosuppression with a combination of a nondepleting anti-CD4 (NDCD4) antibody and Cyclosporine (CyA) to abrogate immune reactivity to both adeno-associated virus vector (AAV) and its transgene product was evaluated. This combination of immunosuppressants resulted in a 20-fold reduction in the resulting anti-AAV8 antibody titres, to levels in naïve mice, following intravenous administration of 2×1012 AAV8 vector particles/kg to immunocompetent mice. This allowed efficient transduction upon secondary challenge with vector pseudotyped with the same capsid. Persistent tolerance did not result, however, as an anti-AAV8 antibody response was elicited upon rechallenge with AAV8 without immunosuppression. The route of vector administration, vector dose, AAV serotype or the concomitant administration of adenoviral vector appeared to have little impact on the ability of the NDCD4 antibody and CyA combination to moderate the primary humoral response to AAV capsid proteins. The combination of NDCD4 and CyA also abrogated the humoral response to the transgene product, that otherwise invariably would occur, following intramuscular injection of AAV5, leading to stable transgene expression. These observations could significantly improve the prospects of using rAAV vectors for chronic disorders by allowing for repeated vector administration and avoiding the development of antibodies to the transgene product. PMID:21716299

  4. [Immunocompetence and reproductive characteristics of male Campbell dwarf hamsters selected for low and high humoral immune response to SRBC: testing the immunocompetence handicap hypothesis].

    PubMed

    Rogovin, K A; Khrushcheva, A M; Shekarova, O N; Bushuev, A V; Sokolova, O V; Vasil'eva, N Iu

    2014-01-01

    We selected Campbell dwarf hamsters (Phodopus campbelli Thomas, 1905) for low and high humoral immune response to the sheep red blood cells (SRBC) challenge in three generations (P, F1, F2). Non-specific innate immunity and acquired T-cell immunity, resting metabolic rate, testosterone, and cortisole hormone levels, reproductive characteristics, including maturation related morphological traits, and aggressive behavior were studied within sets of males:with low (LI) and high (HI) immune response to SRBC. We found no difference between LI and HI males in cutaneous response to injection of phytohemagglutinin, (DTH test for T-cell immunity), in activity of Peroxidase - Endogenous Hydrogen Peroxide System of Neutrophils , in the white blood count, in resting metabolic rate, in body mass and ano-genital distance at the age of two months, in the blood level of testosterone before and after recurrent immunization by SRBC and in the blood level of cortisole in response to the social stressor (10 min encounter in the neutral arena). At that, LI males had significantly higher basal level of blood cortisole, were less aggressive in response to stranger male and had smaller testosterone-dependent mid-ventral specific skin gland at the age of two months. Males of two groups did not differ in the initial mating success with intact young females (time since pair formation until first litter born), although females of LI males born fewer number of pups. In fact, our results do not support the Handicap Immunocompetence Hypothesis (Folstad, Karter, 1999) which is based on the assumption of trade-off between immunocompetence and reproductive effort. PMID:25782275

  5. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts.

    PubMed

    Zhu, Lv-yun; Nie, Li; Zhu, Guan; Xiang, Li-xin; Shao, Jian-zhong

    2013-01-01

    Fish is considered to be an important model in comparative immunology studies because it is a representative population of lower vertebrates serving as an essential link to early vertebrate evolution. Fish immune-relevant genes have received considerable attention due to its role in improving understanding of both fish immunology and the evolution of immune systems. In this review, we discuss the current understanding of teleost immune-relevant genes for both innate and adaptive immunity, including pattern recognition receptors, antimicrobial peptides, complement molecules, lectins, interferons and signaling factors, inflammatory cytokines, chemokines, adaptive immunity relevant cytokines and negative regulators, major histocompatibility complexes, immunoglobulins, and costimulatory molecules. The implications of these factors on the evolutionary history of immune systems were discussed and a perspective outline of innate and adaptive immunity of teleost fish was described. This review may provide clues on the evolution of the essential defense system in vertebrates.

  6. The Five Humors.

    ERIC Educational Resources Information Center

    Boerman-Cornell, William

    1999-01-01

    Compares the effects of different types of humor in the classroom: humor drawn from literature, humor at the expense of literature, humor that puts someone down, humor that builds up or shapes identity, and humor as a classroom-management tool. Shows how teachers can use laughter as a conduit for students to find humor in what they read and write.…

  7. Editing at the crossroad of innate and adaptive immunity.

    PubMed

    Turelli, Priscilla; Trono, Didier

    2005-02-18

    Genetic information can be altered through the enzymatic modification of nucleotide sequences. This process, known as editing, was originally identified in the mitochondrial RNA of trypanosomes and later found to condition events as diverse as neurotransmission and lipid metabolism in mammals. Recent evidence reveals that editing enzymes may fulfill one of their most essential roles in the defense against infectious agents: first, as the mediators of antibody diversification, a step crucial for building adaptive immunity, and second, as potent intracellular poisons for the replication of viruses. Exciting questions are raised, which take us to the depth of the intimate relations between vertebrates and the microbial underworld.

  8. Hepatitis C virus core, NS3, NS4B and NS5A are the major immunogenic proteins in humoral immunity in chronic HCV infection

    PubMed Central

    Sillanpää, Maarit; Melén, Krister; Porkka, Päivi; Fagerlund, Riku; Nevalainen, Kaisu; Lappalainen, Maija; Julkunen, Ilkka

    2009-01-01

    Background The viral genome of hepatitis C virus constitutes a 9.6-kb single-stranded positive-sense RNA which encodes altogether 11 viral proteins. In order to study the humoral immune responses against different HCV proteins in patients suffering from chronic HCV infection, we produced three structural (core, E1 and E2) and six nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B) in Sf9 insect cells by using the baculovirus expression system. Results The recombinant HCV core, E1, E2, NS2, NS3, NS4A, NS4B, NS5A and NS5B proteins were purified and used in Western blot analysis to determine antibody responses against individual HCV protein in 68 HCV RNA and antibody positive human sera that were obtained from patients suffering from genotype 1, 2, 3 or 4 infection. These sera were also analysed with INNO-LIA Score test for HCV antibodies against core, NS3, NS4AB and NS5A, and the results were similar to the ones obtained by Western blot method. Based on our Western blot analyses we found that the major immunogenic HCV antigens were the core, NS4B, NS3 and NS5A proteins which were recognized in 97%, 86%, 68% and 53% of patient sera, respectively. There were no major genotype specific differences in antibody responses to individual HCV proteins. A common feature within the studied sera was that all except two sera recognized the core protein in high titers, whereas none of the sera recognized NS2 protein and only three sera (from genotype 3) recognised NS5B. Conclusion The data shows significant variation in the specificity in humoral immunity in chronic HCV patients. PMID:19549310

  9. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens.

    PubMed

    An, Byoung-Ki; Kim, Kwan-Eung; Jeon, Jin-Young; Lee, Kyung Woo

    2016-01-01

    This experiment was carried out to investigate the effects of dried chlorella powder (Chlorella vulgaris; DCP) and chlorella growth factor (CGF) on growth performance, serum characteristics, meat qualities and humoral immune responses in broiler chicks. A total of 1050 day-old Ross male broiler chicks were randomly divided into 35 pens (30 chicks/pen) and subjected to one of seven dietary treatments. A non-medicated corn-soybean meal base diet was considered as negative control (NC) and added with either antibiotic (PC), three levels of DCP (NC diets added with 0.05, 0.15 or 0.5 % DCP) or two levels of CGF (NC diets added with 0.05 or 0.15 % CGF). The final body weight and daily weight gain in PC and groups fed diets with 0.15 or 0.5 % DCP were heavier (p < 0.001) than those of NC and CGF-treated groups. Serum total lipid concentrations were lower (p = 0.001) in groups fed diets with 0.5 % DCP and 0.05 or 0.15 % CGF compared with PC group. The levels of serum IgG (p = 0.050) and IgM (p = 0.010) were elevated in chicks fed diets with DCP and CGF compared with the PC or NC group. Meat qualities such as cooking loss, meat color, and pH, of edible meats were not altered by dietary treatments. Collectively, these results indicate that dietary DCP, but not CGF, exerted growth-promoting effect, and both DCP and CGF affected humoral immune response in broiler chicks. PMID:27375987

  10. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens.

    PubMed

    An, Byoung-Ki; Kim, Kwan-Eung; Jeon, Jin-Young; Lee, Kyung Woo

    2016-01-01

    This experiment was carried out to investigate the effects of dried chlorella powder (Chlorella vulgaris; DCP) and chlorella growth factor (CGF) on growth performance, serum characteristics, meat qualities and humoral immune responses in broiler chicks. A total of 1050 day-old Ross male broiler chicks were randomly divided into 35 pens (30 chicks/pen) and subjected to one of seven dietary treatments. A non-medicated corn-soybean meal base diet was considered as negative control (NC) and added with either antibiotic (PC), three levels of DCP (NC diets added with 0.05, 0.15 or 0.5 % DCP) or two levels of CGF (NC diets added with 0.05 or 0.15 % CGF). The final body weight and daily weight gain in PC and groups fed diets with 0.15 or 0.5 % DCP were heavier (p < 0.001) than those of NC and CGF-treated groups. Serum total lipid concentrations were lower (p = 0.001) in groups fed diets with 0.5 % DCP and 0.05 or 0.15 % CGF compared with PC group. The levels of serum IgG (p = 0.050) and IgM (p = 0.010) were elevated in chicks fed diets with DCP and CGF compared with the PC or NC group. Meat qualities such as cooking loss, meat color, and pH, of edible meats were not altered by dietary treatments. Collectively, these results indicate that dietary DCP, but not CGF, exerted growth-promoting effect, and both DCP and CGF affected humoral immune response in broiler chicks.

  11. Intranasal Delivery of Influenza rNP Adjuvanted with c-di-AMP Induces Strong Humoral and Cellular Immune Responses and Provides Protection against Virus Challenge

    PubMed Central

    Sanchez, Maria Victoria; Ebensen, Thomas; Schulze, Kai; Cargnelutti, Diego; Blazejewska, Paulina; Scodeller, Eduardo A.; Guzmán, Carlos A.

    2014-01-01

    There is a critical need for new influenza vaccines able to protect against constantly emerging divergent virus strains. This will be sustained by the induction of vigorous cellular responses and humoral immunity capable of acting at the portal of entry of this pathogen. In this study we evaluate the protective efficacy of intranasal vaccination with recombinant influenza nucleoprotein (rNP) co-administrated with bis-(3′,5′)-cyclic dimeric adenosine monophosphate (c-di-AMP) as adjuvant. Immunization of BALB/c mice with two doses of the formulation stimulates high titers of NP-specific IgG in serum and secretory IgA at mucosal sites. This formulation also promotes a strong Th1 response characterized by high secretion of INF-γ and IL-2. The immune response elicited promotes efficient protection against virus challenge. These results suggest that c-di-AMP is a potent mucosal adjuvant which may significantly contribute towards the development of innovative mucosal vaccines against influenza. PMID:25140692

  12. Noninfectious X4 but not R5 human immunodeficiency virus type 1 virions inhibit humoral immune responses in human lymphoid tissue ex vivo

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Wendy; Sylwester, Andrew W.; Grivel, Jean-Charles; Lifson, Jeffrey D.; Margolis, Leonid B.

    2004-01-01

    Ex vivo human immunodeficiency virus type 1 (HIV-1) infection of human lymphoid tissue recapitulates some aspects of in vivo HIV-1 infection, including a severe depletion of CD4(+) T cells and suppression of humoral immune responses to recall antigens or to polyclonal stimuli. These effects are induced by infection with X4 HIV-1 variants, whereas infection with R5 variants results in only mild depletion of CD4(+) T cells and no suppression of immune responses. To study the mechanisms of suppression of immune responses in this ex vivo system, we used aldrithiol-2 (AT-2)-inactivated virions that have functional envelope glycoproteins but are not infectious and do not deplete CD4(+) T cells in human lymphoid tissues ex vivo. Nevertheless, AT-2-inactivated X4 (but not R5) HIV-1 virions, even with only a brief exposure, inhibit antibody responses in human lymphoid tissue ex vivo, similarly to infectious virus. This phenomenon is mediated by soluble immunosuppressive factor(s) secreted by tissue exposed to virus.

  13. Waddlia chondrophila induces systemic infection, organ pathology, and elicits Th1-associated humoral immunity in a murine model of genital infection

    PubMed Central

    Vasilevsky, Sam; Gyger, Joel; Piersigilli, Alessandra; Pilloux, Ludovic; Greub, Gilbert; Stojanov, Milos; Baud, David

    2015-01-01

    Waddlia chondrophila is a known bovine abortigenic Chlamydia-related bacterium that has been associated with adverse pregnancy outcomes in human. However, there is a lack of knowledge regarding how W. chondrophila infection spreads, its ability to elicit an immune response and induce pathology. A murine model of genital infection was developed to investigate the pathogenicity and immune response associated with a W. chondrophila infection. Genital inoculation of the bacterial agent resulted in a dose-dependent infection that spread to lumbar lymph nodes and successively to spleen and liver. Bacterial-induced pathology peaked on day 14, characterized by leukocyte infiltration (uterine horn, liver, and spleen), necrosis (liver) and extramedullary hematopoiesis (spleen). Immunohistochemistry demonstrated the presence of a large number of W. chondrophila in the spleen on day 14. Robust IgG titers were detected by day 14 and remained high until day 52. IgG isotypes consisted of high IgG2a, moderate IgG3 and no detectable IgG1, indicating a Th1-associated immune response. This study provides the first evidence that W. chondrophila genital infection is capable of inducing a systemic infection that spreads to major organs, induces uterus, spleen, and liver pathology and elicits a Th1-skewed humoral response. This new animal model will help our understanding of the mechanisms related to intracellular bacteria-induced miscarriages, the most frequent complication of pregnancy that affects one in four women. PMID:26583077

  14. Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection

    PubMed Central

    Khan, Nargis; Vidyarthi, Aurobind; Javed, Shifa; Agrewala, Javed N.

    2016-01-01

    T cells play a cardinal role in imparting protection against Mycobacterium tuberculosis (Mtb). However, ample time is required before T-cells are able to evoke efficient effector responses in the lung, where the mycobacterium inflicts disease. This delay in T cells priming, which is termed as lag phase, provides sufficient time for Mtb to replicate and establish itself within the host. In contrast, innate immunity efficiently curb the growth of Mtb during initial phase of infection through several mechanisms. Pathogen recognition by innate cells rapidly triggers a cascade of events, such as apoptosis, autophagy, inflammasome formation and nitric oxide production to kill intracellular pathogens. Furthermore, bactericidal mechanisms such as autophagy and apoptosis, augment the antigen processing and presentation, thereby contributing substantially to the induction of adaptive immunity. This manuscript highlights the role of innate immune mechanisms in restricting the survival of Mtb during lag phase. Finally, this article provides new insight for designing immuno-therapies by targeting innate immune mechanisms to achieve optimum immune response to cure TB. PMID:27014247

  15. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode.

    PubMed

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S; Tremoli, Elena; Catapano, Alberico L; Norata, Giuseppe D; Bottazzi, Barbara; Garlanda, Cecilia; Mantovani, Alberto

    2015-06-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  16. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    PubMed Central

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  17. Comparative immunotoxicity of 2,2`-dichlorodiethyl sulfide and cyclophosphamide: Evaluation of L1210 tumor cell resistance, cell-mediated immunity, and humoral immunity. (Reannouncement with new availability information)

    SciTech Connect

    Blank, J.A.; Joiner, R.L.; Houchens, D.P.; Dill, G.S.; Hobson, D.W.

    1991-12-31

    The immunotoxicity of 2,2`-dichlorodiethyl sulfide (sulfur mustard, SM),on humoral and cell-mediated immunity was compared with that of the nitrogen mustard 2-(bis(2-chloroethyl) amino)tetrahydro- 2H-1,3,2-oxazophosphorine 2-oxide (cyclophosphamide, CP). SM and CP had similar effects on thymic and splenic weights, spleen cell number, and the formation of antibody producing cells to sheep red blood cells (sRBC) when examined 5 days after exposure, but differed in their effects on body weights. Although there were no differences in the delayed hypersensitivity response to keyhole limpet hemocyanin, CP and SM had different effects in the L1210 tumor cell allograft rejection assay. CP, but not SM, decreased the 28 day survival rate of allogeneic mice exposed to a sublethal L1210 tumor challenge. The differing effects on survival to the L1210 tumor challenge could not be attributed to a direct cytotoxic effect of SM on the L1210 tumor cells as SM did not increase the survival rate or mediansurvival time of syngeneic mice exposed to a lethal L1210 tumor cell challenge. In summary, SM and CP had immunosuppressive effects in the humoral immune assay. Although neither compound suppressed the delayed hypersensitivity response, CP was found to suppress host resistance to L1210 tumor cells.

  18. Innate and Adaptive Immune Response to Fungal Products and Allergens.

    PubMed

    Williams, P Brock; Barnes, Charles S; Portnoy, Jay M

    2016-01-01

    Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions.

  19. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi.

    PubMed

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G; Joosten, Leo A B

    2016-09-01

    We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease. PMID:27101991

  20. How a well-adapted immune system is organized

    PubMed Central

    Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry; Walczak, Aleksandra M.

    2015-01-01

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from diverse pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. We develop a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters; individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens; and the optimal repertoires can be reached via the dynamics of competitive binding of antigens by receptors and selective amplification of stimulated receptors. Our results follow from a tension between the statistics of pathogen detection, which favor a broader receptor distribution, and the effects of cross-reactivity, which tend to concentrate the optimal repertoire onto a few highly abundant clones. Our predictions can be tested in high-throughput surveys of receptor and pathogen diversity. PMID:25918407

  1. Immune response

    MedlinePlus

    ... cells. T cells are responsible for cell-mediated immunity. This type of immunity becomes deficient in persons with HIV, the virus ... blood. B lymphocytes provide the body with humoral immunity as they circulate in the fluids in search ...

  2. The innate and adaptive immune response to avian influenza virus infections and vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  3. The role of the adaptive immune system in regulation of gut microbiota.

    PubMed

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-07-01

    The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system. Conversely, the immune system, particularly the adaptive immune system, plays a key role in shaping the repertoire of gut microbiota. The fitness of host immune system is reflected in the gut microbiota, and deficiencies in either innate or adaptive immunity impact on diversity and structures of bacterial communities in the gut. Here, we discuss the mechanisms that underlie this reciprocity and emphasize how the adaptive immune system via immunoglobulins (i.e. IgA) contributes to diversification and balance of gut microbiota required for immune homeostasis.

  4. Mexican Trypanosoma cruzi T. cruzi I Strains with Different Degrees of Virulence Induce Diverse Humoral and Cellular Immune Responses in a Murine Experimental Infection Model

    PubMed Central

    Espinoza, B.; Rico, T.; Sosa, S.; Oaxaca, E.; Vizcaino-Castillo, A.; Caballero, M. L.; Martínez, I.

    2010-01-01

    It is has been shown that the majority of T. cruzi strains isolated from Mexico belong to the T. cruzi I (TCI). The immune response produced in response to Mexican T. cruzi I strains has not been well characterized. In this study, two Mexican T. cruzi I strains were used to infect Balb/c mice. The Queretaro (TBAR/MX/0000/Queretaro)(Qro) strain resulted in 100% mortality. In contrast, no mortality was observed in mice infected with the Ninoa (MHOM/MX/1994/Ninoa) strain. Both strains produced extended lymphocyte infiltrates in cardiac tissue. Ninoa infection induced a diverse humoral response with a higher variety of immunoglobulin isotypes than were found in Qro-infected mice. Also, a stronger inflammatory TH1 response, represented by IL-12p40, IFNγ, RANTES, MIG, MIP-1β, and MCP-1 production was observed in Qro-infected mice when compared with Ninoa-infected mice. We propose that an exacerbated TH1 immune response is a likely cause of pathological damage observed in cardiac tissue and the primary cause of death in Qro-infected mice. PMID:20396398

  5. Development of an in vitro assay based on humoral immunity for quality control of oil-adjuvant Pseudotuberculosis vaccine in Yellowtail Seriola quinqueradiata.

    PubMed

    Hirano, Fumiya; Imamura, Saiki; Nakajima, Nao; Yamamoto, Kinya; Uchiyama, Mariko; Nagai, Hidetaka; Kijima, Mayumi

    2014-01-01

    Photobacterium damselae subsp. piscicida is an infectious pathogen that causes Pseudotuberculosis in Yellowtail fish. In Japan, several oil-adjuvant vaccines for Pseudotuberculosis have been approved for control of infectious diseases in aquaculture. Before distribution of an approved fish vaccine, an artificial challenge test for quality control is performed by the manufacturer and National Veterinary Assay Laboratory under Pharmaceutical Law of Japan to confirm potency. In this study, artificial challenge tests with a range of five diluted or undiluted approved vaccines was performed to determine the relationship between antigen levels and vaccine efficacy. Immunization of fish with the undiluted vaccine prevented Pseudotuberculosis. Results of artificial challenge tests demonstrated vaccine efficiency was dose dependent. Agglutination assays using immune sera were performed to determine agglutination titers, which were also dose dependent. These results suggest a link between survival rate in the artificial challenge tests and agglutination titers. Western blotting analysis identified a specific protein approximately 37 kDa in size in vaccinated fish. We confirmed antibodies were produced in vaccinated fish by immunoreactions with the approved vaccine. An agglutination assay based on humoral immunoreactions would be a useful alternative to the artificial challenge test for quality control of vaccines for aquaculture. PMID:24325870

  6. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    PubMed

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  7. Mast cells in allergy and autoimmunity: implications for adaptive immunity.

    PubMed

    Gregory, Gregory D; Brown, Melissa A

    2006-01-01

    As in the fashion industry, trends in a particular area of scientific investigation often are fleeting but then return with renewed and enthusiastic interest. Studies of mast cell biology are good examples of this. Although dogma once relegated mast cells almost exclusively to roles in pathological inflammation associated with allergic disease, these cells are emerging as important players in a number of other physiological processes. Consequently, they are quickly becoming the newest "trendy" cell, both within and outside the field of immunology. As sources of a large array of pro- and anti-inflammatory mediators, mast cells also express cell surface molecules with defined functions in lymphocyte activation and trafficking. Here, we provide an overview of the traditional and newly appreciated contributions of mast cells to both innate and adaptive immune responses.

  8. Intradermal DNA Electroporation Induces Cellular and Humoral Immune Response and Confers Protection against HER2/neu Tumor.

    PubMed

    Lamolinara, Alessia; Stramucci, Lorenzo; Hysi, Albana; Iezzi, Manuela; Marchini, Cristina; Mariotti, Marianna; Amici, Augusto; Curcio, Claudia

    2015-01-01

    Skin represents an attractive target for DNA vaccine delivery because of its natural richness in APCs, whose targeting may potentiate the effect of vaccination. Nevertheless, intramuscular electroporation is the most common delivery method for ECTM vaccination. In this study we assessed whether intradermal administration could deliver the vaccine into different cell types and we analyzed the evolution of tissue infiltrate elicited by the vaccination protocol. Intradermal electroporation (EP) vaccination resulted in transfection of different skin layers, as well as mononuclear cells. Additionally, we observed a marked recruitment of reactive infiltrates mainly 6-24 hours after treatment and inflammatory cells included CD11c(+). Moreover, we tested the efficacy of intradermal vaccination against Her2/neu antigen in cellular and humoral response induction and consequent protection from a Her2/neu tumor challenge in Her2/neu nontolerant and tolerant mice. A significant delay in transplantable tumor onset was observed in both BALB/c (p ≤ 0,0003) and BALB-neuT mice (p = 0,003). Moreover, BALB-neuT mice displayed slow tumor growth as compared to control group (p < 0,0016). In addition, while in vivo cytotoxic response was observed only in BALB/c mice, a significant antibody response was achieved in both mouse models. Our results identify intradermal EP vaccination as a promising method for delivering Her2/neu DNA vaccine. PMID:26247038

  9. GATA-3 function in innate and adaptive immunity.

    PubMed

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.

  10. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  11. Adaptive Immunity Restricts Replication of Novel Murine Astroviruses

    PubMed Central

    Yokoyama, Christine C.; Loh, Joy; Zhao, Guoyan; Stappenbeck, Thaddeus S.; Wang, David; Huang, Henry V.

    2012-01-01

    The mechanisms of astrovirus pathogenesis are largely unknown, in part due to a lack of a small-animal model of disease. Using shotgun sequencing and a custom analysis pipeline, we identified two novel astroviruses capable of infecting research mice, murine astrovirus (MuAstV) STL1 and STL2. Subsequent analysis revealed the presence of at least two additional viruses (MuAstV STL3 and STL4), suggestive of a diverse population of murine astroviruses in research mice. Complete genomic characterization and subsequent phylogenetic analysis showed that MuAstV STL1 to STL4 are members of the mamastrovirus genus and are likely members of a new mamastrovirus genogroup. Using Rag1−/− mice deficient in B and T cells, we demonstrate that adaptive immunity is required to control MuAstV infection. Furthermore, using Stat1−/− mice deficient in innate signaling, we demonstrate a role for the innate immune response in the control of MuAstV replication. Our results demonstrate that MuAstV STL permits the study of the mechanisms of astrovirus infection and host-pathogen interactions in a genetically manipulable small-animal model. Finally, we detected MuAstV in commercially available mice, suggesting that these viruses may be present in academic and commercial research mouse facilities, with possible implications for interpretation of data generated in current mouse models of disease. PMID:22951832

  12. Adaptive immunity and histopathology in frog virus 3-infected Xenopus

    SciTech Connect

    Robert, Jacques . E-mail: robert@mail.rochester.edu; Morales, Heidi; Buck, Wayne; Cohen, Nicholas; Marr, Shauna; Gantress, Jennifer

    2005-02-20

    Xenopus has been used as an experimental model to evaluate the contribution of adaptive cellular immunity in amphibian host susceptibility to the emerging ranavirus FV3. Conventional histology and immunohistochemistry reveal that FV3 has a strong tropism for the proximal tubular epithelium of the kidney and is rarely disseminated elsewhere in Xenopus hosts unless their immune defenses are impaired or developmentally immature as in larvae. In such cases, virus is found widespread in most tissues. Adults, immunocompromised by depletion of CD8{sup +} T cells or by sub-lethal {gamma}-irradiation, show increased susceptibility to FV3 infection. Larvae and irradiated (but not normal) adults can be cross-infected through water by infected adult conspecifics (irradiated or not). The natural MHC class I deficiency and the absence of effect of anti-CD8 treatment on both larval CD8{sup +} T cells and larval susceptibility to FV3 are consistent with an inefficient CD8{sup +} T cell effector function during this developmental period.

  13. Extract of medicinal mushroom Agaricus blazei Murill enhances the non-specific and adaptive immune activities in BALB/c mice.

    PubMed

    Ni, Wei-Ya; Wu, Ming-Fanf; Liao, Nien-Chieh; Yeh, Ming-Yang; Lu, Hsu-Feng; Hsueh, Shu-Ching; Liu, Jia-You; Huang, Yi-Ping; Chang, Chuan-Hsun; Chung, Jing-Gung

    2013-01-01

    Agaricus blazei Murill (AbM) is traditionally used against a wide range of conditions such as ulcerative colitis, Crohn's disease, foot-and-mouth disease and chronic hepatitis C infection. In this study, we evaluated the immunomodulatory effects of AbM. For the non-specific immune response experiments, a total of 40 female BALB/c mice were divided into control (group 1) and experimental (groups 2-4) groups of 10 animals each. Groups 2, 3 and 4 were orally-administered high (819 mg/kg), medium (273 mg/kg) and low (136.5 mg/kg) doses of AbM daily for six weeks and then six parameters related to non-specific immune response were detected. For the adaptive immune response experiments, 40 female mice were similarly divided into four groups. After six weeks of treatment, animals were immunized with the OVA immunogen. Two weeks later, splenocytes and sera were collected. Four parameters related to adaptive immune response were evaluated. We found that feeding mice with AbM extract increased the IgG level in serum, promoted phagocytosis of peritoneal macrophages and elevated the activity of Natural killer cells. We also found that the highest dose of AbM increased interleukin-2 (IL-2) levels in splenocytes and that a medium dose increased interferon-γ. The levels of interleukin-4 (IL-4) were reduced or unchanged. T-helper type 1 cytokine levels were increased. AbM increased the humoral immune response and also affected the cellular immune response. These results provide evidence that AbM can modulate innate and adaptive immunity.

  14. Whole inactivated equine influenza vaccine: Efficacy against a representative clade 2 equine influenza virus, IFNgamma synthesis and duration of humoral immunity.

    PubMed

    Paillot, R; Prowse, L; Montesso, F; Huang, C M; Barnes, H; Escala, J

    2013-03-23

    Equine influenza (EI) is a serious respiratory disease of horses induced by the equine influenza virus (EIV). Surveillance, quarantine procedures and vaccination are widely used to prevent or to contain the disease. This study aimed to further characterise the immune response induced by a non-updated inactivated EI and tetanus vaccine, including protection against a representative EIV isolate of the Florida clade 2 sublineage. Seven ponies were vaccinated twice with Duvaxyn IE-T Plus at an interval of four weeks. Five ponies remained unvaccinated. All ponies were experimentally infected with the EIV strain A/eq/Richmond/1/07 two weeks after the second vaccination. Clinical signs of disease were recorded and virus shedding was measured after experimental infection. Antibody response and EIV-specific IFNgamma synthesis, a marker of cell-mediated immunity, were measured at different time points of the study. Vaccination resulted in significant protection against clinical signs of disease induced by A/eq/Richmond/1/07 and reduced virus shedding when challenged at the peak of immunity. Antigenic drift has been shown to reduce protection against EIV infection. Inclusion of a more recent and representative EIV vaccine strain, as recommended by the OIE expert surveillance panel on equine influenza vaccine, may maximise field protection. In addition, significant levels of EIV-specific IFNgamma synthesis by peripheral blood lymphocytes were detected in immunised ponies, which provided a first evidence of CMI stimulation after vaccination with a whole inactivated EIV. Duration of humoral response was also retrospectively investigated in 14 horses vaccinated under field condition and following the appropriate immunisation schedule, up to 599 days after first immunisation. This study revealed that most immunised horses maintained significant levels of cross-reactive SRH antibody for a prolonged period of time, but individual monitoring may be beneficial to identify poor vaccine

  15. Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine.

    PubMed

    Khan, Shahneaz Ali; Polkinghorne, Adam; Waugh, Courtney; Hanger, Jon; Loader, Jo; Beagley, Kenneth; Timms, Peter

    2016-02-01

    The development of a vaccine is a key strategy to combat the widespread and debilitating effects of chlamydial infection in koalas. One such vaccine in development uses recombinant chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse model, suggest that both cell-mediated and antibody responses will be required for adequate protection. Recently, the important protective role of antibodies has been highlighted. In our current study, we conducted a detailed analysis of the antibody-mediated immune response in koalas that are either (a) naturally-infected, and/or (b) had received an rMOMP vaccine. Firstly, we observed that naturally-infected koalas had very low levels of Chlamydia pecorum-specific neutralising antibodies. A strong correlation between low IgG total titers/neutralising antibody levels, and higher C. pecorum infection load was also observed in these naturally-infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the humoral immune response by inducing strong levels of C. pecorum-specific neutralising antibodies. A detailed characterisation of the MOMP epitope response was also performed in naturally-infected and vaccinated koalas using a PepScan epitope approach. This analysis identified unique sets of MOMP epitope antibodies between naturally-infected non-protected and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a unique set of specific epitope-directed antibodies that we demonstrated were responsible for the in vitro neutralisation activity. Together, these results show the importance of antibodies in chlamydial infection and immunity following vaccination in the koala. PMID:26747718

  16. Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine.

    PubMed

    Khan, Shahneaz Ali; Polkinghorne, Adam; Waugh, Courtney; Hanger, Jon; Loader, Jo; Beagley, Kenneth; Timms, Peter

    2016-02-01

    The development of a vaccine is a key strategy to combat the widespread and debilitating effects of chlamydial infection in koalas. One such vaccine in development uses recombinant chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse model, suggest that both cell-mediated and antibody responses will be required for adequate protection. Recently, the important protective role of antibodies has been highlighted. In our current study, we conducted a detailed analysis of the antibody-mediated immune response in koalas that are either (a) naturally-infected, and/or (b) had received an rMOMP vaccine. Firstly, we observed that naturally-infected koalas had very low levels of Chlamydia pecorum-specific neutralising antibodies. A strong correlation between low IgG total titers/neutralising antibody levels, and higher C. pecorum infection load was also observed in these naturally-infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the humoral immune response by inducing strong levels of C. pecorum-specific neutralising antibodies. A detailed characterisation of the MOMP epitope response was also performed in naturally-infected and vaccinated koalas using a PepScan epitope approach. This analysis identified unique sets of MOMP epitope antibodies between naturally-infected non-protected and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a unique set of specific epitope-directed antibodies that we demonstrated were responsible for the in vitro neutralisation activity. Together, these results show the importance of antibodies in chlamydial infection and immunity following vaccination in the koala.

  17. Characterization of the humoral immune response in alpacas (Lama pacos) experimentally infected with Fasciola hepatica against cysteine proteinases Fas1 and Fas2 and histopathological findings.

    PubMed

    Timoteo, O; Maco, V; Maco, V; Neyra, V; Yi, P J; Leguía, G; Espinoza, J R

    2005-06-15

    A characterization of the humoral immune response of alpacas to Fasciola hepatica Fas1 and Fas2 antigens, two abundant cysteine proteinases in the excretory/secretory (E/S) products, was performed over the course of 6 months of experimental infection. Six adult alpacas aged 1-2 years old received a single dose of 200 F. hepatica metacercariae; two non-infected alpacas were kept as control group. All infected animals shed eggs 8 weeks post-infection (PI) and the number of flukes recovered at necropsy averaged 41+/-4. The livers of infected animals showed regions with chronic inflammation, granuloma containing parasite eggs, necrosis and cirrhosis. Peripheral eosinophilia in infected animals was greatly enhanced 6 weeks post-infection and later. A single peak of serum glutamic piruvic transaminase (SGPT) was observed 4 weeks PI and serum glutamic oxalacetic transaminase (SGOT) elevated 3 weeks PI and later. Circulating IgG Abs against Fas1 and Fas2 were measured by enzyme-linked immunosorbent assay (ELISA). Fas2-ELISA detected the infection 10 days PI reaching to highest titer on 7-8 weeks PI and kept elevated, until the end of infection. Fas1-ELISA detected the infection 2 weeks PI and followed the same pattern as Fas2-ELISA. Anti Fas2 IgG Abs were in higher titers and showed stronger avidity than anti Fas1 IgG Abs. In addition, rabbit IgG antibodies raised against cysteine proteinase Fas2 showed infiltration of this parasite antigen associated to the degradation of bile ducts and liver parenchyma of infected alpacas. In the present study we have established a F. hepatica experimental infection of alpacas, Fas2 appears to have a role in the pathogenesis of the liver damage in alpacas caused by the liver fluke. Infected alpacas elicited a strong humoral immune response against fluke cysteine proteinases Fas1 and Fas2, which might be considered as candidates for immunodiagnosis and vaccine development against fasciolosis in alpacas.

  18. [State of cellular and humoral immunity after soft tissue endoprosthesis implantation and correction of body forms using biogel Interfall].

    PubMed

    Pinchuk, M P; Kebuladze, I M; Stasenko, A A

    1997-01-01

    Injection implantation of polyacrylamide gel "Interfall" in soft tissues was conducted in 110 patients in 1992-1997 yrs. In 17 patients the mammary glands prosthesis was conducted using biogel. Biogel did not influence the cell subpopulations of the immunity T- and B-systems, the immunoglobulins level and did not cause the organism sensibilization.

  19. Proteomic Identification of saeRS-Dependent Targets Critical for Protective Humoral Immunity against Staphylococcus aureus Skin Infection.

    PubMed

    Zhao, Fan; Cheng, Brian L; Boyle-Vavra, Susan; Alegre, Maria-Luisa; Daum, Robert S; Chong, Anita S; Montgomery, Christopher P

    2015-09-01

    Recurrent Staphylococcus aureus skin and soft tissue infections (SSTIs) are common despite detectable antibody responses, leading to the belief that the immune response elicited by these infections is not protective. We recently reported that S. aureus USA300 SSTI elicits antibodies that protect against recurrent SSTI in BALB/c but not C57BL/6 mice, and in this study, we aimed to uncover the specificity of the protective antibodies. Using a proteomic approach, we found that S. aureus SSTI elicited broad polyclonal antibody responses in both BALB/c and C57BL/6 mice and identified 10 S. aureus antigens against which antibody levels were significantly higher in immune BALB/c serum. Four of the 10 antigens identified are regulated by the saeRS operon, suggesting a dominant role for saeRS in protection. Indeed, infection with USA300Δsae failed to protect against secondary SSTI with USA300, despite eliciting a strong polyclonal antibody response against antigens whose expression is not regulated by saeRS. Moreover, the antibody repertoire after infection with USA300Δsae lacked antibodies specific for 10 saeRS-regulated antigens, suggesting that all or a subset of these antigens are necessary to elicit protective immunity. Infection with USA300Δhla elicited modest protection against secondary SSTI, and complementation of USA300Δsae with hla restored protection but incompletely. Together, these findings support a role for both Hla and other saeRS-regulated antigens in eliciting protection and suggest that host differences in immune responses to saeRS-regulated antigens may determine whether S. aureus infection elicits protective or nonprotective immunity against recurrent infection.

  20. Proteomic Identification of saeRS-Dependent Targets Critical for Protective Humoral Immunity against Staphylococcus aureus Skin Infection

    PubMed Central

    Zhao, Fan; Cheng, Brian L.; Boyle-Vavra, Susan; Alegre, Maria-Luisa; Daum, Robert S.; Chong, Anita S.

    2015-01-01

    Recurrent Staphylococcus aureus skin and soft tissue infections (SSTIs) are common despite detectable antibody responses, leading to the belief that the immune response elicited by these infections is not protective. We recently reported that S. aureus USA300 SSTI elicits antibodies that protect against recurrent SSTI in BALB/c but not C57BL/6 mice, and in this study, we aimed to uncover the specificity of the protective antibodies. Using a proteomic approach, we found that S. aureus SSTI elicited broad polyclonal antibody responses in both BALB/c and C57BL/6 mice and identified 10 S. aureus antigens against which antibody levels were significantly higher in immune BALB/c serum. Four of the 10 antigens identified are regulated by the saeRS operon, suggesting a dominant role for saeRS in protection. Indeed, infection with USA300Δsae failed to protect against secondary SSTI with USA300, despite eliciting a strong polyclonal antibody response against antigens whose expression is not regulated by saeRS. Moreover, the antibody repertoire after infection with USA300Δsae lacked antibodies specific for 10 saeRS-regulated antigens, suggesting that all or a subset of these antigens are necessary to elicit protective immunity. Infection with USA300Δhla elicited modest protection against secondary SSTI, and complementation of USA300Δsae with hla restored protection but incompletely. Together, these findings support a role for both Hla and other saeRS-regulated antigens in eliciting protection and suggest that host differences in immune responses to saeRS-regulated antigens may determine whether S. aureus infection elicits protective or nonprotective immunity against recurrent infection. PMID:26169277

  1. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees.

    PubMed

    Schwarz, Ryan S; Evans, Jay D

    2013-01-01

    Frequently encountered parasite species impart strong selective pressures on host immune system evolution and are more apt to concurrently infect the same host, yet molecular impacts in light of this are often overlooked. We have contrasted immune responses in honey bees to two common eukaryotic endoparasites by establishing single and mixed-species infections using the long-associated parasite Crithidia mellificae and the emergent parasite Nosema ceranae. Quantitative polymerase chain reaction was used to screen host immune gene expression at 9 time points post inoculation. Systemic responses in abdomens during early stages of parasite establishment revealed conserved receptor (Down syndrome cell adhesion molecule, Dscam and nimrod C1, nimC1), signaling (MyD88 and Imd) and antimicrobial peptide (AMP) effector (Defensin 2) responses. Late, established infections were distinct with a refined 2 AMP response to C. mellificae that contrasted starkly with a 5 AMP response to N. ceranae. Mixed species infections induced a moderate 3 AMPs. Transcription in gut tissues highlighted important local roles for Dscam toward both parasites and Imd signaling toward N. ceranae. At both systemic and local levels Dscam, MyD88 and Imd transcription was consistently correlated based on clustering analysis. Significant gene suppression occurred in two cases from midgut to ileum tissue: Dscam was lowered during mixed infections compared to N. ceranae infections and both C. mellificae and mixed infections had reduced nimC1 transcription compared to uninfected controls. We show that honey bees rapidly mount complex immune responses to both Nosema and Crithidia that are dynamic over time and that mixed-species infections significantly alter local and systemic immune gene transcription.

  2. Intensity of the Humoral Response to Cytomegalovirus Is Associated with the Phenotypic and Functional Status of the Immune System

    PubMed Central

    Moro-García, M. A.; Echeverría, A.; Solano-Jaurrieta, J. J.; Suárez-García, F. M.

    2013-01-01

    Cytomegalovirus (CMV) infection exerts an enormous effect on human immunity, as it is associated with an immune-impaired response, a variety of chronic diseases, and overall survival in elderly individuals. Levels of anti-CMV antibodies may be associated with the differentiation degree of T cell subsets. Titers are significantly higher in the elderly and positively correlated with specific CD4+ T cell responses to CMV. In the elderly, antibody titers are associated with the degree of differentiation and the T cell receptor excision circle (TREC) content in CD4+ T cells, with other features of the immune risk profile, and with a reduced ability to respond to immunization in vivo. Associations may be absent in young subjects because their anti-CMV antibody titers are lower than those of the elderly. However, comparing young and elderly individuals with similar antibody levels reveals differences in their highly differentiated and naïve T cells. These are more marked in individuals with high titers. In parallel with the increase in anti-CMV antibodies, the elderly experience a significant reduction in absolute counts of naïve CD4+ T cells, which may be a strategy to compensate for the expansion of differentiated cells and to avoid an increase in total T cells. In summary, our results show that titers of anti-CMV antibodies, and not only CMV seropositivity, are related to differentiation status and immunocompetence in the elderly, making this as an important prognostic marker of the status of immune system function. PMID:23388717

  3. Protective Antigen-Specific Memory B Cells Persist Years after Anthrax Vaccination and Correlate with Humoral Immunity

    PubMed Central

    Garman, Lori; Smith, Kenneth; Farris, A. Darise; Nelson, Michael R.; Engler, Renata J. M.; James, Judith A.

    2014-01-01

    Anthrax Vaccine Adsorbed (AVA) generates short-lived protective antigen (PA) specific IgG that correlates with in vitro toxin neutralization and protection from Bacillus anthracis challenge. Animal studies suggest that when PA-specific IgG has waned, survival after spore challenge correlates with an activation of PA-specific memory B cells. Here, we characterize the quantity and the longevity of AVA-induced memory B cell responses in humans. Peripheral blood mononuclear cells (PBMCs) from individuals vaccinated ≥3 times with AVA (n = 50) were collected early (3–6 months, n = 27) or late after their last vaccination (2–5 years, n = 23), pan-stimulated, and assayed by ELISPOT for total and PA-specific memory B cells differentiated into antibody secreting cells (ASCs). PA-specific ASC percentages ranged from 0.02% to 6.25% (median: 1.57%) and did not differ between early and late post-vaccination individuals. PA-specific ASC percentages correlated with plasma PA-specific IgG (r = 0.42, p = 0.03) and toxin neutralization (r = 0.52, p = 0.003) early post vaccination. PA-specific ASC percentages correlated with supernatant anti-PA both early (r = 0.60, p = 0.001) and late post vaccination (r = 0.71, p < 0.0001). These data suggest PA-specific memory B cell responses are long-lived and can be estimated after recent vaccination by the magnitude and neutralization capacity of the humoral response. PMID:25123559

  4. Role of complement receptor type 2 and endogenous complement in the humoral immune response to conjugates of complement C3d and pneumococcal serotype 14 capsular polysaccharide.

    PubMed

    Mitsuyoshi, Joyce K; Hu, Yong; Test, Samuel T

    2005-11-01

    Conjugation of the complement fragment C3d to both T-cell-dependent (TD) protein and T-cell-independent type 2 (TI-2) polysaccharide antigens enhances the humoral immune response in mice immunized with either type of antigen. However, the ability of C3d-protein conjugates to enhance the antibody response in mice deficient in complement receptor types 1 and 2 (CR1 and CR2) has raised questions about the role of C3d-CR2 interactions in the adjuvant effect of C3d. In this study, we examined the role of CR2 binding and endogenous complement activation in the antibody response to conjugates of C3d and serotype 14 pneumococcal capsular polysaccharide (PPS14). To block binding of PPS14-C3d conjugates to CR2, mice were immunized with a mixture of vaccine and (CR2)2-immunoglobulin G1 (IgG1). Mice receiving (CR2)2-IgG1 at the time of primary immunization had a marked reduction in the primary anti-PPS14 antibody response but an enhanced secondary anti-PPS14 response, suggesting that C3d-CR2 interactions are required for the primary response but can have negative effects on the memory response. Further, compared with mice receiving PPS14-C3d having a high C3d/PPS14 ratio, mice immunized with PPS14-C3d with low C3d/PPS14 ratios had an enhanced secondary antibody response. Treatment of mice with cobra venom factor to deplete complement had insignificant effects on the antibody response to PPS14-C3d. Experiments with CBA/N xid mice confirmed that PPS14-C3d conjugates retain the characteristics of TI-2 rather than TD antigens. Thus, the adjuvant effect of C3d conjugated to PPS14 requires C3d-CR2 interactions, does not require activation of endogenous complement, and is not mediated by TD carrier effects. PMID:16239528

  5. Role of complement receptor type 2 and endogenous complement in the humoral immune response to conjugates of complement C3d and pneumococcal serotype 14 capsular polysaccharide.

    PubMed

    Mitsuyoshi, Joyce K; Hu, Yong; Test, Samuel T

    2005-11-01

    Conjugation of the complement fragment C3d to both T-cell-dependent (TD) protein and T-cell-independent type 2 (TI-2) polysaccharide antigens enhances the humoral immune response in mice immunized with either type of antigen. However, the ability of C3d-protein conjugates to enhance the antibody response in mice deficient in complement receptor types 1 and 2 (CR1 and CR2) has raised questions about the role of C3d-CR2 interactions in the adjuvant effect of C3d. In this study, we examined the role of CR2 binding and endogenous complement activation in the antibody response to conjugates of C3d and serotype 14 pneumococcal capsular polysaccharide (PPS14). To block binding of PPS14-C3d conjugates to CR2, mice were immunized with a mixture of vaccine and (CR2)2-immunoglobulin G1 (IgG1). Mice receiving (CR2)2-IgG1 at the time of primary immunization had a marked reduction in the primary anti-PPS14 antibody response but an enhanced secondary anti-PPS14 response, suggesting that C3d-CR2 interactions are required for the primary response but can have negative effects on the memory response. Further, compared with mice receiving PPS14-C3d having a high C3d/PPS14 ratio, mice immunized with PPS14-C3d with low C3d/PPS14 ratios had an enhanced secondary antibody response. Treatment of mice with cobra venom factor to deplete complement had insignificant effects on the antibody response to PPS14-C3d. Experiments with CBA/N xid mice confirmed that PPS14-C3d conjugates retain the characteristics of TI-2 rather than TD antigens. Thus, the adjuvant effect of C3d conjugated to PPS14 requires C3d-CR2 interactions, does not require activation of endogenous complement, and is not mediated by TD carrier effects.

  6. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens.

    PubMed

    Tani, K; Murphy, W J; Chertov, O; Salcedo, R; Koh, C Y; Utsunomiya, I; Funakoshi, S; Asai, O; Herrmann, S H; Wang, J M; Kwak, L W; Oppenheim, J J

    2000-05-01

    Defensins released by neutrophils are able to kill a broad spectrum of microbes. They also induce leukocyte migration in vitro and elicit inflammatory leukocyte responses at s.c. injection sites in mice. In vitro experiments showed that human defensins enhanced concanavalin A-stimulated murine spleen cell proliferation and IFN-gamma production. This led us to examine the effects of human defensins on specific immune responses in vivo. BALB/c mice were immunized with 50 microg of keyhole limpet hemocyanin (KLH) adsorbed to aluminum hydroxide and administered with defensins in aqueous solution. Intraperitoneal administration of defensins significantly increased the production of KLH-specific IgG1, IgG2a and IgG2b antibodies 14 days after immunization. In vitro splenic KLH-specific proliferative responses were higher in mice treated with KLH and defensins than in those treated with KLH alone. Increased IFN-gamma and, to a lesser extent, IL-4 production were also detected in the supernatants of ex vivoKLH-activated spleen cells from mice treated with defensins. Finally, defensins significantly enhanced the antibody response to a syngeneic tumor antigen, lymphoma Ig idiotype and also augmented resistance to tumor challenge. These results indicate that defensins act as potent immune adjuvants by inducing the production of lymphokines, which promote T cell-dependent cellular immunity and antigen-specific Ig production. Thus, defensins appear to function as neutrophil-derived signals that promote adaptive immune responses. PMID:10784615

  7. Oxidative damage of hepatopancreas induced by pollution depresses humoral immunity response in the freshwater crayfish Procambarus clarkii.

    PubMed

    Wei, Keqiang; Yang, Junxian

    2015-04-01

    Previous studies provide evidences for the possible oxidative damage of toxic environmental pollutants to tissue protein in fish and amphibian, but little information is available about their effects on immunity response in crustacean. In the present study, we evaluated the relationship between oxidative damage and immune response induced by both typical pollutants (viz. copper and beta-cypermethrin), by exposing the freshwater Procambarus clarkii to sub-lethal concentrations (1/40, 1/20, 1/10 and 1/5 of the 96 h LC50) up to 96 h. Five biomarkers of oxidative stress, i.e. reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and protein carbonyl in hepatopancreas, and two immune factors, i.e. phenoloxidase (PO) and hemocyanin in haemolymph were determined. The results indicated that there was a significant increase (P < 0.05) in the contents of ROS, MDA and protein carbonyl accompanied by markedly decreased (P < 0.05) PO and hemocyanin levels in a dose and time dependent manner. The significant and positive correlation (P < 0.01) between protein carbonyls induction and MDA formation was observed in crayfish hepatopancreas at 96 h. The production of these protein carbonyls could significantly depress (P < 0.01) the levels of phenoloxidase and hemocyanin in hemolymph. Higher contents of ROS enhanced the risk of lipid peroxidation, protein carbonylation and immunosuppression of crayfish, and hepatopancreas might play an important role in immune system of crustaceans. Protein oxidation may be one of the main mechanisms for pollution-induced immunotoxicity in P. clarkii.

  8. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets

    PubMed Central

    McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Mark Tompkins, S; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M

    2014-01-01

    Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape. PMID:24492306

  9. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets.

    PubMed

    McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Tompkins, S Mark; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M

    2014-01-01

    Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.

  10. The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L.

    PubMed

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-10-01

    Entomopathogenic fungi that manifest infections by overcoming insect's immune response could be a successful control agent for the house fly, Musca domestica L. which is a major domestic, medical, and veterinary pest. In this study, the immune response of house fly to Beauveria bassiana infection was investigated to reveal fundamental aspects of house fly hemocyte biology, such as hemocyte numbers and size, which is poorly understood. The total hemocyte counts (THCs) in B. bassiana-infected house fly showed an initial increase (from 6 to 9 h), followed by subsequent decrease (9 to 12 h) with increase in time of infection. The THCs was slightly greater in infected flies than the non-infected ones. Insight into relative hemocyte counts depicted a significant increase in prohemocyte (PR) and decrease in granulocyte (GR) in infected house flies compared to non-infected ones. The relative cell area of hemocyte cells showed a noticeable increase in PR and intermediate cells (ICs), while a considerable reduction was observed for plasmatocyte (PL) and GR. The considerable variation in relative cell number and cell area in the B. bassiana-infected house flies indicated stress development during infection. The present study highlights changes occurring during B. bassiana invasion to house fly leading to establishment of infection along with facilitation in understanding of basic hemocyte biology. The results of the study is expected to help in better understanding of house fly immune response during fungal infection, so as to assist production of more efficient mycoinsecticides for house fly control using B. bassiana.

  11. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria

    PubMed Central

    Barroso-Batista, João; Demengeot, Jocelyne; Gordo, Isabel

    2015-01-01

    Co-evolution between the mammalian immune system and the gut microbiota is believed to have shaped the microbiota's astonishing diversity. Here we test the corollary hypothesis that the adaptive immune system, directly or indirectly, influences the evolution of commensal species. We compare the evolution of Escherichia coli upon colonization of the gut of wild-type and Rag2−/− mice, which lack lymphocytes. We show that bacterial adaptation is slower in immune-compromised animals, a phenomenon explained by differences in the action of natural selection within each host. Emerging mutations exhibit strong beneficial effects in healthy hosts but substantial antagonistic pleiotropy in immune-deficient mice. This feature is due to changes in the composition of the gut microbiota, which differs according to the immune status of the host. Our results indicate that the adaptive immune system influences the tempo and predictability of E. coli adaptation to the mouse gut. PMID:26615893

  12. Immunization with the Haemophilus ducreyi trimeric autotransporter adhesin DsrA with alum, CpG or imiquimod generates a persistent humoral immune response that recognizes the bacterial surface.

    PubMed

    Samo, Melissa; Choudhary, Neelima R; Riebe, Kristina J; Shterev, Ivo; Staats, Herman F; Sempowski, Gregory D; Leduc, Isabelle

    2016-02-24

    The Ducreyi serum resistance A (DsrA) protein of Haemophilus ducreyi belongs to a large family of multifunctional outer membrane proteins termed trimeric autotransporter adhesins responsible for resistance to the bactericidal activity of human complement (serum resistance), agglutination and adhesion. The ability of DsrA to confer serum resistance and bind extracellular matrix proteins lies in its N-terminal passenger domain. We have previously reported that immunization with a recombinant form of the passenger domain of DsrA, rNT-DsrA, in complete/incomplete Freund's adjuvant, protects against a homologous challenge in swine. We present herein the results of an immunogenicity study in mice aimed at investigating the persistence, type of immune response, and the effect of immunization route and adjuvants on surrogates of protection. Our results indicate that a 20 μg dose of rNT-DsrA administered with alum elicited antisera with comparable bacterial surface reactivity to that obtained with complete/incomplete Freund's adjuvant. At that dose, high titers and bacterial surface reactivity persisted for 211 days after the first immunization. Administration of rNT-DsrA with CpG or imiquimod as adjuvants elicited a humoral response with similar quantity and quality of antibodies (Abs) as seen with Freund's adjuvant. Furthermore, intramuscular administration of rNT-DsrA elicited high-titer Abs with significantly higher reactivity to the bacterial surface than those obtained with subcutaneous immunization. All rNT-DsrA/adjuvant combinations tested, save CpG, elicited a Th2-type response. Taken together, these findings show that a 20 μg dose of rNT-DsrA administered with the adjuvants alum, CpG or imiquimod elicits high-quality Abs with reactivity to the bacterial surface that could protect against an H. ducreyi infection. PMID:26812077

  13. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens

    PubMed Central

    Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; Araujo, Leticia Mendes; Della Terra, Paula Portella; dos Santos, Priscila Oliveira; Pereira, Sandro Antonio; Schubach, Tânia Maria Pacheco; Burger, Eva; Lopes-Bezerra, Leila Maria; de Camargo, Zoilo Pires

    2015-01-01

    Background Sporothrix schenckii and associated species are agents of human and animal sporotrichosis that cause large sapronoses and zoonoses worldwide. Epidemiological surveillance has highlighted an overwhelming occurrence of the highly pathogenic fungus Sporothrix brasiliensis during feline outbreaks, leading to massive transmissions to humans. Early diagnosis of feline sporotrichosis by demonstrating the presence of a surrogate marker of infection can have a key role for selecting appropriate disease control measures and minimizing zoonotic transmission to humans. Methodology We explored the presence and diversity of serum antibodies (IgG) specific against Sporothrix antigens in cats with sporotrichosis and evaluated the utility of these antibodies for serodiagnosis. Antigen profiling included protein extracts from the closest known relatives S. brasiliensis and S. schenckii. Enzyme-linked immunosorbent assays and immunoblotting enabled us to characterize the major antigens of feline sporotrichosis from sera from cats with sporotrichosis (n = 49), healthy cats (n = 19), and cats with other diseases (n = 20). Principal Findings Enzyme-linked immunosorbent assay-based quantitation of anti-Sporothrix IgG exhibited high sensitivity and specificity in cats with sporotrichosis (area under the curve, 1.0; 95% confidence interval, 0.94–1; P<0.0001) versus controls. The two sets of Sporothrix antigens were remarkably cross-reactive, supporting the hypothesis that antigenic epitopes may be conserved among closely related agents. One-dimensional immunoblotting indicated that 3-carboxymuconate cyclase (a 60-kDa protein in S. brasiliensis and a 70-kDa protein in S. schenckii) is the immunodominant antigen in feline sporotrichosis. Two-dimensional immunoblotting revealed six IgG-reactive isoforms of gp60 in the S. brasiliensis proteome, similar to the humoral response found in human sporotrichosis. Conclusions A convergent IgG-response in various hosts (mice, cats, and

  14. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    PubMed

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  15. The Characterization of the Repertoire of Wheat Antigens and Peptides Involved in the Humoral Immune Responses in Patients with Gluten Sensitivity and Crohn's Disease

    PubMed Central

    Vojdani, Aristo

    2011-01-01

    Intestinal T cells from gluten sensitivity/celiac disease patients respond to a heterogeneous array of peptides. Our study extended this heterogeneity to humoral immune response to various wheat proteins and peptides in patients with gluten sensitivity or Crohn's disease. IgG and IgA antibodies in sera from those patients and healthy control subjects were measured against an array of wheat antigens and peptides. In gluten-sensitive patients, IgG reacted most against transglutaminase, prodynorphin, wheat extract, and α-, γ-, and ω-gliadin; IgA reacted most against wheat then transglutaminase, glutenin, and other peptides. In the sera of Crohn's disease patients, IgG reacted most against wheat and wheat germ agglutinin then transglutaminase, prodynorphin, α-, and γ-gliadin; IgA reacted foremost against prodynorphin then transglutaminase and α-gliadin. These results showed a substantial heterogeneity in the magnitude of IgG and IgA response against various wheat antigens and peptides. Measurements of IgG and IgA antibodies against such an array of wheat peptides and antigens can enhance the sensitivity and specificity of serological assays for gluten sensitivity and celiac disease and may also detect silent celiac disease or its overlap with inflammatory bowel disease. PMID:23724236

  16. A Trifunctional Dextran-Based Nanovaccine Targets and Activates Murine Dendritic Cells, and Induces Potent Cellular and Humoral Immune Responses In Vivo

    PubMed Central

    Shen, Limei; Higuchi, Tetsuya; Tubbe, Ingrid; Voltz, Nicole; Krummen, Mathias; Pektor, Stefanie; Montermann, Evelyn; Rausch, Kristin; Schmidt, Manfred; Schild, Hansjörg

    2013-01-01

    Dendritic cells (DCs) constitute an attractive target for specific delivery of nanovaccines for immunotherapeutic applications. Here we tested nano-sized dextran (DEX) particles to serve as a DC-addressing nanocarrier platform. Non-functionalized DEX particles had no immunomodulatory effect on bone marrow (BM)-derived murine DCs in vitro. However, when adsorbed with ovalbumine (OVA), DEX particles were efficiently engulfed by BM-DCs in a mannose receptor-dependent manner. A DEX-based nanovaccine containing OVA and lipopolysaccharide (LPS) as a DC stimulus induced strong OVA peptide-specific CD4+ and CD8+ T cell proliferation both in vitro and upon systemic application in mice, as well as a robust OVA-specific humoral immune response (IgG1>IgG2a) in vivo. Accordingly, this nanovaccine also raised both a more pronounced delayed-type hypersensitivity response and a stronger induction of cytotoxic CD8+ T cells than obtained upon administration of OVA and LPS in soluble form. Therefore, DEX-based nanoparticles constitute a potent, versatile and easy to prepare nanovaccine platform for immunotherapeutic approaches. PMID:24339889

  17. [Humoral immune anti-Plasmodium falciparum AMA1 and MSP1 response in two ethnic groups living in sympatry in Mali].

    PubMed

    Dolo, A; Coulibaly, M; Maïga, B; Daou, M; Arama, C; Troye-Blomberg, M; Doumbo, O

    2012-12-01

    Fulani of Mali are known for their lower susceptibility to Plasmodium falciparum malaria than their neighbours, the Dogon, despite similar transmission conditions. However, the mechanisms underlying these differences are poorly understood, particularly those concerning antigenspecific immune responses. The Apical Membrane Antigen 1 (AMA1) and the Merozoite Surface Antigen 1 (MSP1) are two malaria vaccine candidates, which play a pivotal role during the invasion of parasites into erythrocytes, and in the case of AMA1, of hepatocytes. Therefore, we analyzed the level of anti-AMA1 and anti-MSP1 antibodies (FVO and 3D7 alleles), by using ELISA (Enzyme Linked Immuno Sorbent Assay) to investigate whether there are differences between the two ethnic groups. Our results show that the splenic rate, the level of anti-AMA1 and anti-MSP1 were significantly higher in Fulani compared to Dogon; while the parasite rate was lower in Fulani group compared to Dogon. Our results suggest that the lower susceptibility of Fulani to malaria could be due to the higher specific humoral responses against AMA1 and MSP 1 in Fulani's ethnic group compared to Dogon.

  18. PLGA, PLGA-TMC and TMC-TPP Nanoparticles Differentially Modulate the Outcome of Nasal Vaccination by Inducing Tolerance or Enhancing Humoral Immunity

    PubMed Central

    Keijzer, Chantal; Slütter, Bram; van der Zee, Ruurd; Jiskoot, Wim; van Eden, Willem; Broere, Femke

    2011-01-01

    Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate) nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4+ T-cell proliferation. However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA nanoparticles to enhance CD4+ T-cell mediated immunomodulation after nasal application. The exploitation of this differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development for prophylactic or therapeutic vaccination in infectious or autoimmune diseases. PMID:22073184

  19. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity.

    PubMed

    Keijzer, Chantal; Slütter, Bram; van der Zee, Ruurd; Jiskoot, Wim; van Eden, Willem; Broere, Femke

    2011-01-01

    Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate) nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4(+) T-cell proliferation. However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA nanoparticles to enhance CD4(+) T-cell mediated immunomodulation after nasal application. The exploitation of this differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development for prophylactic or therapeutic vaccination in infectious or autoimmune diseases.

  20. Characterization of humoral immune responses against p16, p53, HPV16 E6 and HPV16 E7 in patients with HPV-associated cancers.

    PubMed

    Reuschenbach, Miriam; Waterboer, Tim; Wallin, Keng-Ling; Einenkel, Jens; Dillner, Joakim; Hamsikova, Eva; Eschenbach, Denise; Zimmer, Heike; Heilig, Bernhard; Kopitz, Jürgen; Pawlita, Michael; Doeberitz, Magnus von Knebel; Wentzensen, Nicolas

    2008-12-01

    The cellular tumor suppressor p16 is strongly overexpressed in cervical cancers and precancers. We have previously demonstrated that infiltrating T lymphocytes reactive against p16 can be found in cervical cancer patients. Here, we analyzed whether p16 induces humoral immune responses. Sera of patients with cervical cancer, oropharyngeal cancer, colorectal cancer and autoimmune disease were included. A total of 919 sera were analyzed, including 486 matched sera from a cervical cancer case control study. p16 antibodies were analyzed in Western blot and a newly developed peptide ELISA covering the complete p16 protein. In addition, a Luminex-based multiplex assay was used for simultaneous detection of antibodies directed against p16, p53, HPV16 E6 and HPV16 E7. In all entities, only low p16 antibody reactivity was observed. Epitope mapping revealed 2 predominant epitope regions of the p16 protein. No significant difference in p16 antibody frequency (OR = 0.9; 95% CI = 0.6-1.3) and p53 antibody frequency (OR = 0.6; 95% CI = 0.3-1.2) was found between patients and healthy controls in the cervical cancer case control study. Antibodies against the HPV16 oncoproteins E6 and E7 were detected more frequently in cervical cancer patients when compared with healthy controls (E6 OR = 27.8; 95% CI = 11.1-69.7, E7 OR = 5.7; 95% CI = 2.9-11.1). In conclusion, despite the strong expression of p16 and the observed induction of cellular immune responses, antibody reactivity against p16 was observed only at very low levels independent of the disease background.

  1. Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice.

    PubMed

    Song, Li; Xiong, Dan; Hu, Maozhi; Kang, Xilong; Pan, Zhiming; Jiao, Xinan

    2016-01-01

    In spring 2013, human infections with a novel avian influenza A (H7N9) virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC) and polyethyleneimine (PEI), through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza.

  2. Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice

    PubMed Central

    Song, Li; Xiong, Dan; Hu, Maozhi; Kang, Xilong; Pan, Zhiming; Jiao, Xinan

    2016-01-01

    In spring 2013, human infections with a novel avian influenza A (H7N9) virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC) and polyethyleneimine (PEI), through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza. PMID:26930068

  3. Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice.

    PubMed

    Song, Li; Xiong, Dan; Hu, Maozhi; Kang, Xilong; Pan, Zhiming; Jiao, Xinan

    2016-01-01

    In spring 2013, human infections with a novel avian influenza A (H7N9) virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC) and polyethyleneimine (PEI), through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza. PMID:26930068

  4. The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L.

    PubMed

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-10-01

    Entomopathogenic fungi that manifest infections by overcoming insect's immune response could be a successful control agent for the house fly, Musca domestica L. which is a major domestic, medical, and veterinary pest. In this study, the immune response of house fly to Beauveria bassiana infection was investigated to reveal fundamental aspects of house fly hemocyte biology, such as hemocyte numbers and size, which is poorly understood. The total hemocyte counts (THCs) in B. bassiana-infected house fly showed an initial increase (from 6 to 9 h), followed by subsequent decrease (9 to 12 h) with increase in time of infection. The THCs was slightly greater in infected flies than the non-infected ones. Insight into relative hemocyte counts depicted a significant increase in prohemocyte (PR) and decrease in granulocyte (GR) in infected house flies compared to non-infected ones. The relative cell area of hemocyte cells showed a noticeable increase in PR and intermediate cells (ICs), while a considerable reduction was observed for plasmatocyte (PL) and GR. The considerable variation in relative cell number and cell area in the B. bassiana-infected house flies indicated stress development during infection. The present study highlights changes occurring during B. bassiana invasion to house fly leading to establishment of infection along with facilitation in understanding of basic hemocyte biology. The results of the study is expected to help in better understanding of house fly immune response during fungal infection, so as to assist production of more efficient mycoinsecticides for house fly control using B. bassiana. PMID:26233748

  5. [The state of humoral immunity to enterobacterial antigens in juvenile rheumatoid arthritis and reactive arthritis in children].

    PubMed

    Kuz'mina, N N; Denisov, L N; Tartakovskiĭ, I A; Shaĭkov, A V; Belen'kiĭ, A G

    1989-01-01

    Investigation findings are generalized based on quantitation of antibodies against the antigens of intestinal microorganisms of Enterobacteriaceae family conducted in 66 children with various joint disease using the enzyme-linked immunoassay (ELISA) methodology. High antibody titres were revealed in 77.1% juvenile rheumatoid arthritis cases and in 80% cases with chronic juvenile arthritis which was not defined nosologically. All the patients with reactive arthritis associated with intestinal infection showed high tension of immunity to all tested enterobacteriaceae antigens with cross reactions to them. Patients with reactive arthritis associated with oral infection, with Reiter's disease and other disorders exhibited high antibody titres at the same rate as in the control.

  6. Interplay between innate and adaptive immunity in the development of non infectious uveitis

    PubMed Central

    Willermain, François; Rosenbaum, James T; Bodaghi, Bahram; Rosenzweig, Holly L; Childers, Sarah; Behrend, Travis; Wildner, Gerhild; Dick, Andrew D

    2012-01-01

    In vertebrates, the innate and adaptive immune systems have evolved seamlessly to protect the host by rapidly responding to danger signals, eliminating pathogens and creating immunological memory as well as immunological tolerance to self. The innate immune system harnesses receptors that recognize conserved pathogen patterns and alongside the more specific recognition systems and memory of adaptive immunity, their interplay is evidenced by respective roles during generation and regulation of immune responses. The hallmark of adaptive immunity which requires engagement of innate immunity is an ability to discriminate between self and non-self (and eventually between pathogen and symbiont) as well as peripheral control mechanisms maintaining immunological health and appropriate responses. Loss of control mechanisms and/or regulation of either the adaptive or the innate immune system lead to autoimmunity and autoinflammation respectively. Although autoimmune pathways have been largely studied to date in the context of development of non-infectious intraocular inflammation, the recruitment and activation of innate immunity is required for full expression of the varied phenotypes of non-infectious uveitis. Since autoimmunity and autoinflammation implicate different molecular pathways, even though some convergence occurs, increasing our understanding of their respective roles in the development of uveitis will highlight treatment targets and influence our understanding of immune mechanisms operative in other retinal diseases. Herein, we extrapolate from the basic mechanisms of activation and control of innate and adaptive immunity to how autoinflammatory and autoimmune pathways contribute to disease development in non-infectious uveitis patients. PMID:22120610

  7. Humor in Educational Contexts.

    ERIC Educational Resources Information Center

    Gurtler, Leo

    Humor can be a crucial factor of learning environments and of communication. Recent investigations of humor in educational settings mostly focus on learning performance. This paper shifts the attention to the enhancement of social climate through humor. Humor can be an element to solve critical social situations. To develop humor, it is necessary…

  8. Development of an ELISA to detect the humoral immune response to Trichinella zimbabwensis in Nile crocodiles (Crocodylus niloticus).

    PubMed

    Ludovisi, Alessandra; La Grange, Louis Jacobus; Gómez Morales, Maria Angeles; Pozio, Edoardo

    2013-05-20

    Crocodiles are known reservoir hosts of Trichinella papuae and Trichinella zimbabwensis, two zoonotic parasites that also infect mammals. Since commercial crocodile farming represents a key source of income in several countries, it is important to monitor this nematode infection in both farmed crocodiles and in breeding stocks which are frequently introduced from the wild. For this purpose, an indirect ELISA was developed to detect the anti-Trichinella immune response in crocodile sera. New Zealand rabbits were immunized with pooled sera from non-infected farmed crocodiles in the presence of Freund's complete adjuvant. The anti-crocodile serum was then conjugated with horseradish peroxidase. Serum samples from four Nile crocodiles (Crocodylus niloticus) experimentally infected with T. zimbabwensis and from four uninfected crocodiles were used to set up the ELISA. The larval burden per gram of muscle tissue was determined by muscle biopsy. The test was performed on serum samples from an additional 15 experimentally infected crocodiles as well as eight wild Nile crocodiles. Among the 19 experimentally infected crocodiles, seroconversion was observed in 11 animals. The highest antibody response was observed six weeks post infection (p.i.), but in most of these animals, antibodies were not detectable after six weeks p.i. even though live larvae were present in the muscles up to six months p.i.

  9. Effects of sibling competition on growth, oxidative stress, and humoral immunity: a two-year brood-size manipulation.

    PubMed

    Bourgeon, Sophie; Guindre-Parker, Sarah; Williams, Tony D

    2011-01-01

    We investigated the effects of ecological context (by comparing data from two consecutive years) and experimentally manipulated nestling developmental conditions (large vs. small brood size) on immune function (immunoglobulin Y [IgY]) and oxidative stress in nestling European starlings Sturnus vulgaris. On the basis of annual differences in chicks' morphological traits and body masses close to fledging, we established that 2007 was a relative low-quality year and 2008 was a relatively high-quality year. Total antioxidant capacity (TAC) was significantly lower in experimentally enlarged broods, but only in the low-quality year (2007). Total oxidant status (TOS) was independent of brood size in both years but was 45% higher in the low-quality year. Consequently, plasma oxidative status (the ratio between TOS and TAC) was higher in 2007. In contrast, plasma IgY levels were higher in the experimentally enlarged broods and in the high-quality year (2008). Thus, immune function and oxidative stress showed inverse relationships with developmental conditions and annual variation in year quality. Finally, TOS and TAC were positively correlated, but only in the low-quality year (2007), and there was no relationship observed between IgY and markers of oxidative stress. Our results demonstrate the importance of taking into account year effects or ecological context when assessing environmental effects on physiological mechanisms underlying the life-history traits of chicks, such as oxidative stress.

  10. Autologous albumin enhances the humoral immune response to capsular polysaccharide covalently coattached to bacteria-sized latex beads.

    PubMed

    Colino, Jesus; Duke, Leah; Snapper, Clifford M

    2014-05-01

    Abundant autologous proteins, like serum albumin, should be immunologically inert. However, individuals with no apparent predisposition to autoimmune disease can develop immune responses to autologous therapeutic proteins. Protein aggregation is a potential major trigger of these responses. Adsorption of proteins to particles provides macromolecular size and may generate structural changes in the protein, resembling aggregation. Using aldehyde/sulfate latex beads coated with murine serum albumin (MSA), we found that BALB/c mice mounted MSA-specific IgG responses that were dependent on CD4(+) T cells. IgGs were specific for MSA adsorbed to solid surfaces and noncross-reactive with human, bovine, or pig albumins. T cells induced in response to MSA augmented the primary and induced boosted secondary IgG and IgM responses specific for the T cell-independent antigen, capsular polysaccharide of Streptococcus pneumoniae type 14 (PPS14), when the latter was attached to the same bead. Similar to the anti-MSA IgG response, the boosted PPS14-specific IgG secondary response was CD4(+) T-cell dependent, displayed a typical carrier effect, and was enhanced by, but did not require, Toll-like receptor stimulation. These results provide a potential mechanism for the induction of responses to autoantigens unable to induce specific T-cell responses, and provide new insights into polysaccharide-specific immunity.

  11. Foreign DNA capture during CRISPR–Cas adaptive immunity

    PubMed Central

    Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.; Engelman, Alan N.; Doudna, Jennifer A.

    2015-01-01

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40 base pair (bp) lengths into clustered regularly interspaced short palindromic repeats (CRISPR) loci as spacer segments1–6. The universally conserved Cas1–Cas2 integrase complex catalyzes spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases7–13. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33 nucleotide (nt) protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′–OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo2–4. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  12. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.

  13. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    PubMed Central

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  14. The relative magnitude of transgene-specific adaptive immune responses induced by human and chimpanzee adenovirus vectors differs between laboratory animals and a target species.

    PubMed

    Dicks, Matthew D J; Guzman, Efrain; Spencer, Alexandra J; Gilbert, Sarah C; Charleston, Bryan; Hill, Adrian V S; Cottingham, Matthew G

    2015-02-25

    Adenovirus vaccine vectors generated from new viral serotypes are routinely screened in pre-clinical laboratory animal models to identify the most immunogenic and efficacious candidates for further evaluation in clinical human and veterinary settings. Here, we show that studies in a laboratory species do not necessarily predict the hierarchy of vector performance in other mammals. In mice, after intramuscular immunization, HAdV-5 (Human adenovirus C) based vectors elicited cellular and humoral adaptive responses of higher magnitudes compared to the chimpanzee adenovirus vectors ChAdOx1 and AdC68 from species Human adenovirus E. After HAdV-5 vaccination, transgene specific IFN-γ(+) CD8(+) T cell responses reached peak magnitude later than after ChAdOx1 and AdC68 vaccination, and exhibited a slower contraction to a memory phenotype. In cattle, cellular and humoral immune responses were at least equivalent, if not higher, in magnitude after ChAdOx1 vaccination compared to HAdV-5. Though we have not tested protective efficacy in a disease model, these findings have important implications for the selection of candidate vectors for further evaluation. We propose that vaccines based on ChAdOx1 or other Human adenovirus E serotypes could be at least as immunogenic as current licensed bovine vaccines based on HAdV-5.

  15. Selection for increased mass-independent maximal metabolic rate suppresses innate but not adaptive immune function

    PubMed Central

    Downs, Cynthia J.; Brown, Jessi L.; Wone, Bernard; Donovan, Edward R.; Hunter, Kenneth; Hayes, Jack P.

    2013-01-01

    Both appropriate metabolic rates and sufficient immune function are essential for survival. Consequently, eco-immunologists have hypothesized that animals may experience trade-offs between metabolic rates and immune function. Previous work has focused on how basal metabolic rate (BMR) may trade-off with immune function, but maximal metabolic rate (MMR), the upper limit to aerobic activity, might also trade-off with immune function. We used mice artificially selected for high mass-independent MMR to test for trade-offs with immune function. We assessed (i) innate immune function by quantifying cytokine production in response to injection with lipopolysaccharide and (ii) adaptive immune function by measuring antibody production in response to injection with keyhole limpet haemocyanin. Selection for high mass-independent MMR suppressed innate immune function, but not adaptive immune function. However, analyses at the individual level also indicate a negative correlation between MMR and adaptive immune function. By contrast BMR did not affect immune function. Evolutionarily, natural selection may favour increasing MMR to enhance aerobic performance and endurance, but the benefits of high MMR may be offset by impaired immune function. This result could be important in understanding the selective factors acting on the evolution of metabolic rates. PMID:23303541

  16. Synergistic effect of detergents and aluminium phosphate on the humoral immune response to bacterial and viral membrane proteins.

    PubMed

    Teerlink, T; Beuvery, E C; Evenberg, D; van Wezel, T L

    1987-12-01

    The influence of detergents on the immunogenic activity of the major outer membrane protein of Neisseria gonorrhoeae was investigated. Most detergents tested were found to enhance the immune response. This effect was synergistic with the adjuvant activity of AlPO4. The combination of detergent and AlPO4 showed a stronger adjuvant activity than Freund's complete adjuvant. The adjuvant effect was only observed with protein preparations with very low lipopolysaccharide content. The immunostimulating effect of detergents was also observed with meningococcal group C polysaccharide conjugated to a Haemophilus influenzae type b outer membrane protein and with the fusion protein of measles virus. The influence of some detergent parameters (critical micelle concentration, hydrophile-lipophile balance, charge) was investigated.

  17. The cell mediated and humoral immune response to vaccination with acellular and whole cell pertussis vaccine in adult humans.

    PubMed

    Petersen, J W; Ibsen, P H; Bentzon, M W; Capiau, C; Heron, I

    1991-10-01

    The cell mediated immune response (CMI) against pertussis antigens following vaccination with the traditional Danish whole cell pertussis vaccine (WC-P) and the Japanese acellular pertussis vaccine (A-PV) JNIH-3 was studied in four adult human volunteers. Vaccination with the A-PV induced an in vitro proliferative response of peripheral blood lymphocytes to pertussis toxin (PT) subunits S2-S4, S3-S4 and S5 and the filamentous hemagglutinin (FHA), and a better serological response to native PT, detoxified PT (dPT) and FHA than the WC-PV. The induced CMI and serological response were followed over a period of 17 weeks, and were not seen to decline during this period. Further, an in vitro proliferative response to Bordetella pertussis agglutinogen 2 and 3 were demonstrated using lymphocytes from recently and not-so-recently pertussis-vaccinated adults. PMID:1797049

  18. An analysis of the humoral immune response of dogs following vaccination with irradiated infective larvae of Dirofilaria immitis.

    PubMed

    Mejia, J S; Carlow, C K

    1994-03-01

    In this study, dogs were immunized with irradiated L3 larvae of Dirofilaria immitis. Following challenge with non-irradiated L3, vaccinated dogs had an average of 71% fewer adult worms compared to non-vaccinated animals. A comparative analysis of eosinophil and antibody responses of these two groups of dogs is presented. Vaccinated dogs preferentially recognized several larval (14, 20, 30, 34, 39 kDa), adult worm (20 kDa) and microfilarial (36, 38, 71, 84 kDa) antigens. To characterize these antigens, the extent of glycosylation was assessed. The data suggest that an earlier response to these antigens may be important in the protection induced in dogs by administration of irradiated L3 of D. immitis.

  19. Do IgA antibodies to Chlamydia trachomatis have protective role in humoral immunity: a study in reactive arthritis patients.

    PubMed

    Kumar, Praveen; Bhakuni, Darshan Singh; Rastogi, Sangita

    2015-01-01

    Chlamydia trachomatis-induced genitourinary Reactive Arthritis (ReA) can serve as good model for host-pathogen interaction. However, due to poor antigen presentation, cell-mediated immunity does not contribute as anticipated. Present study aims to evaluate protective role of anti-C. trachomatis antibodies vis-a-vis inflammatory chlamydial Major Outer Membrane Protein (MOMP). Prospective study was undertaken in 30 patients with genitourinary ReA. 30 Rheumatoid Arthritis (RA) and 30 osteoarthritis patients constituted controls. Subjects found to be PCR-positive for C. trachomatis were investigated for presence of MOMP in Synovial Fluid (SF) by fluorescence assay while anti-C. trachomatis IgA/IgM antibodies were estimated in SF/venous blood by ELISA. C. trachomatis MOMP was evident by the presence of elementary bodies in SF of 9 ReA PCR-positive patients (30%; p < 0.05 versus controls). Local secretory IgA antibodies were detected in 12 (40%) patients with ReA (p < 0.0001 versus controls); among 12 patients with anti-chlamydial IgA antibodies, 9 showed the presence of both MOMP and IgA antibodies in SF. 58.3% ReA patients (7/12) with secretory IgA antibodies were also positive for circulatory IgA antibodies (p < 0.01 versus controls). Serum IgM antibodies were present in 4 ReA (13.3%) and in 1 RA (3.3%) patient, respectively. In conclusion, the present study suggests that in ReA patients with chronic, persistent C. trachomatis infection in synovium, the chlamydial MOMP is triggering factor for generating a protective immune response by inducing anti-C. trachomatis IgA antibodies in the SF of large number of patients.

  20. Humor in systemic lupus erythematosus

    PubMed Central

    Moura, Cristiano S.; Li, Rui; Lawrie, Sarah; Bar-Or, Amit; Clarke, Ann E.; Da Costa, Deborah; Banerjee, Devi; Bernatsky, Sasha; Lee, Jennifer L.; Pineau, Christian A.

    2015-01-01

    Objective Humor has neurophysiological effects influencing the release of cortisol, which may have a direct impact on the immune system. Laughter is associated with a decreased production of inflammatory cytokines both in the general population and in rheumatoid arthritis (RA). Our objective was to explore the effects of humor on serum cytokines [particularly interleukin-6 (IL-6)] and cortisol levels in systemic lupus erythematosus (SLE), after a standard intervention (120 min of visual comedy). Material and Methods We enrolled 58 females with SLE from consecutive patients assessed in the Montreal General Hospital lupus clinic. The subjects who consented to participate were randomized in a 1:1 ratio to the intervention (watching 120 min of comedy) or control group (watching a 120 min documentary). Measurements of cytokine and serum cortisol levels as well as 24-h urine cortisol were taken before, during, and after the interventions. We compared serum cytokine levels and serum and 24-h urine cortisol levels in the humor and control groups and performed regression analyses of these outcomes, adjusting for demographics and the current use of prednisone. Results There were no significant differences between the control and humor groups in demographics or clinical variables. Baseline serum levels of IL-6, IL-10, tumor necrosis factor-alpha, and B-cell activating factor were also similar in both groups. There was no evidence of a humor effect in terms of decreasing cytokine levels, although there was some suggestion of lowered cortisol secretion in the humor group based the 24-h urinary cortisol levels in a subgroup. Conclusion In contrast to what has been published for RA, we saw no clear effects of humor in altering cytokine levels in SLE, although interesting trends were seen for lower cortisol levels after humor intervention compared with the control group. PMID:27708912