Sample records for adaptive humoral immune

  1. Mathematical modeling the radiation effects on humoral immunity

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    One of the biological processes affecting the carcinogenesis is a response of humoral immune system to an antigen of malignant cells. Humoral immunity involves the production of protein molecules, antibodies, which can specifically bind to a certain antigen. This body system is radiosensitive. Therefore when simulating the radiation carcinogenesis, it is important to take into account the radiation effects on humoral immunity. To this end, a model of humoral immune response in irradiated mammals is developed. It is based on conventional theories and experimental facts. The model represents a system of nonlinear differential equations whose variables are the concentrations of antigen-sensitive immuno-competent cells carrying surface receptors and their bone-marrow precursor cells, as well as the concentrations of antibody-producing cells, antibodies, and an antigen. The dose of acute exposure and the dose rate of chronic exposure are the variable parameters in our approach. The model quantitatively reproduces the dynamics of the humoral immune response to the T-independent antigen (capsular antigen of Pasteurella pestis) in nonirradiated mammals (CBA mice). The model simulates the processes of the damage and recovery of the system of humoral immunity after acute exposure and predicts an adaptation of this system to low-level long-term chronic irradiation. These results give evidence that the developed model, after the appropriate identification, can be incorporated into a model of radiation carcinogenesis in humans. Together with a model of cellular immunity, such joined model will give capability to estimate the risk of radiation carcinogenesis for cosmonauts and astronauts on long space missions such as a voyage to Mars or a lunar colony.

  2. Mathematical modeling the radiation effects on humoral immunity

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.

    A mathematical model of humoral immune response in nonirradiated and irradiated mammals is developed. It is based on conventional theories and experimental facts in this field. The model is a system of nonlinear differential equations which describe the dynamics of concentrations of antibody and antigen molecules, immunocompetent B lymphocytes, and the rest blood lymphocytes, as well as the bone-marrow lymphocyte precursors. The interaction of antigen molecules with antibodies and with antibody-like receptors on immunocompetent cells is also incorporated. The model quantitatively reproduces the dynamics of the humoral immune response to the T-independent antigen (capsular antigen of plague microbe) in nonirradiated mammals (CBA mice). It describes the peculiarities of the humoral immune response in CBA mice exposed to acute radiation before or after introducing antigen. The model predicts an adaptation of humoral immune system to low dose rate chronic irradiation in the result of which the intensity of immune response relaxes to a new, lower than normal, stable level. The mechanisms of this phenomenon are revealed. The results obtained show that the developed model, after the appropriate identification, can be used to predict the effects of acute and low-level long-term irradiation on the system of humoral immunity in humans. Employment of the mathematical model identified in the proper way should be important in estimating the radiation risk for cosmonauts and astronauts on long space missions such as a voyage to Mars or a lunar colony.

  3. Costimulatory Function of Cd58/Cd2 Interaction in Adaptive Humoral Immunity in a Zebrafish Model.

    PubMed

    Shao, Tong; Shi, Wei; Zheng, Jia-Yu; Xu, Xiao-Xiao; Lin, Ai-Fu; Xiang, Li-Xin; Shao, Jian-Zhong

    2018-01-01

    CD58 and CD2 have long been known as a pair of reciprocal adhesion molecules involved in the immune modulations of CD8 + T and NK-mediated cellular immunity in humans and several other mammals. However, the functional roles of CD58 and CD2 in CD4 + T-mediated adaptive humoral immunity remain poorly defined. Moreover, the current functional observations of CD58 and CD2 were mainly acquired from in vitro assays, and in vivo investigation is greatly limited due to the absence of a Cd58 homology in murine models. In this study, we identified cd58 and cd2 homologs from the model species zebrafish ( Danio rerio ). These two molecules share conserved structural features to their mammalian counterparts. Functionally, cd58 and cd2 were significantly upregulated on antigen-presenting cells and Cd4 + T cells upon antigen stimulation. Blockade or knockdown of Cd58 and Cd2 dramatically impaired the activation of antigen-specific Cd4 + T and mIgM + B cells, followed by the inhibition of antibody production and host defense against bacterial infections. These results indicate that CD58/CD2 interaction was required for the full activation of CD4 + T-mediated adaptive humoral immunity. The interaction of Cd58 with Cd2 was confirmed by co-immunoprecipitation and functional competitive assays by introducing a soluble Cd2 protein. This study highlights a new costimulatory mechanism underlying the regulatory network of adaptive immunity and makes zebrafish an attractive model organism for the investigation of CD58/CD2-mediated immunology and disorders. It also provides a cross-species understanding of the evolutionary history of costimulatory signals from fish to mammals as a whole.

  4. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells

    PubMed Central

    Sintes, Jordi; Polentarutti, Nadia; Walland, A. Cooper; Yeiser, John R.; Cunha, Cristina; Lacerda, João F.; Salvatori, Giovanni; Blander, J. Magarian

    2016-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation–related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell–independent and T cell–dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens. PMID:27621420

  5. Humoral immunity and autism spectrum disorders.

    PubMed

    Fluegge, Keith

    2017-05-01

    Abnormal immune activation, particularly of a humoral nature, has consistently been described in the etiopathogenesis of autism spectrum disorders (ASD). In this journal, Mead and Ashwood (2015) reviewed immune abnormalities in autism and linked them to severity of classic autistic symptoms. However, there remains a lack of clarity as to how environmental risk factors in ASD may contribute to such immunophenotypes. The evidence presented herein highlights these immune deficits of a humoral nature in ASD. Moreover, aligned with prior research showing a link between chronic air pollution and suppression of humoral immunity, the author of this commentary has proposed that environmental exposure to pervasive air pollutants, particularly nitrous oxide (N 2 O), may target several anti-inflammatory biomarkers, including alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibition and stimulation of kappa opioid receptor (KOR) activity. Given that these physiological targets, in particular, may promote the oft-noted humoral immunophenotypes in ASD, including B cell survival and muted antibody responses, this correspondence supports an existing line of evidence that air pollution, and particularly exposure to environmental N 2 O, may be an important etiological risk factor in ASD. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Protective and destructive immunity in the periodontium: Part 1--innate and humoral immunity and the periodontium.

    PubMed

    Teng, Y-T A

    2006-03-01

    Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.

  7. Regulation of humoral immunity by complement.

    PubMed

    Carroll, Michael C; Isenman, David E

    2012-08-24

    The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Humoral immune response of the small-spotted catshark, Scyliorhinus canicula.

    PubMed

    Crouch, Kathryn; Smith, Lauren E; Williams, Rebecca; Cao, Wei; Lee, Mike; Jensen, Allan; Dooley, Helen

    2013-05-01

    Cartilaginous fishes are the oldest group in which an adaptive immune system based on immunoglobulin-superfamily members is found. This manuscript compares humoral immune function in small-spotted catshark (Scyliorhinus canicula) with that described for spiny dogfish (Squalus acanthias), another member of the Squalomorphi superorder, and nurse shark, the model for humoral immunity in elasmobranchs and a member of the Galeomorphi superorder. Although small-spotted catshark and nurse shark are separated by over 200 million years we found that immunoglobulin isoforms are well conserved between the two species. However, the plasma protein profile of small-spotted catshark was most similar to that of spiny dogfish, with low levels of pentameric IgM, and IgNAR present as a multimer in plasma rather than a monomer. We show that an antigen-specific monomeric IgM response, with a profile similar to that described previously for nurse sharks, can be raised in small-spotted catshark. Lacking polyclonal or monoclonal antibody reagents for detecting catshark IgNAR we investigated phage-display and recombinant Fc-fusion protein expression as alternative methods to look for an antigen-specific response for this isotype. However, we could find no evidence of an antigen-specific IgNAR in the animals tested using either of these techniques. Thus, unlike nurse sharks where antigen-specific monomeric IgM and IgNAR appear together, it seems there may be a temporal or complete 'uncoupling' of these isotypes during a humoral response in the small-spotted catshark. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Immunological tools for the assessment of both humoral and cellular immune responses in Foxes (Vulpes vulpes) using ovalbumin and cholera toxin B as an antigenic model.

    PubMed

    Rolland-Turner, Magali; Farre, Guillaume; Muller, Delphine; Rouet, Nelly; Boue, Franck

    2004-10-22

    The immune response in the fox (Vulpes vulpes), despite the success of the oral rabies vaccine is not well characterized, and specific immunological tools are needed. To investigate both the humoral and cellular immune response, we used ovalbumin (OVA) and cholera toxin B (CTB) as an antigenic model to set-up ELISA and ELISPOT antibodies secreting cells (ASC) assays in the fox model. Identification of antibodies that cross-react with fox immunoglobulin was performed by Western blot, and their use was adapted for both the ELISA and ELISPOT ASC assay. The humoral and cellular specific immune responses were assessed after intra-muscular or intra-nasal immunization. Intra-muscular immunization resulted in the development of both cellular and humoral anti-OVA and anti-CTB responses in peripheral blood mononuclear cells (PBMCs). Immunization via the intra-nasal route resulted in the development of a cellular and humoral response against CTB in PBMCs. This immune response was confirmed using splenocytes from immunized animals by ELISPOT assay at euthanasia. Females immunized via the intra-nasal route developed specific anti-CTB IgM, IgA and IgG in vaginal fluids after the initial boost (day 26) showing that mucosal immunization produces a vaginal immune response in foxes. These immunological tools developed here are now available to be adapted to other antigenic models to facilitate further immune studies in foxes.

  11. Group selection for adaptation to multiple-hen cages: humoral immune response.

    PubMed

    Hester, P Y; Muir, W M; Craig, J V

    1996-11-01

    A selected line of White Leghorns, which has shown improved survivability and reduced feather loss in large multiple-hen cages, was evaluated for humoral immune response to SRBC under both stressed and unstressed conditions. Three lines of chickens (selected, control, and commercial) were housed in either single- (1 hen) or multiple-hen cages (12 hens, social competition) and subjected to a cold ambient temperature (0 C) at 33 wk of age and to two heating episodes (38 C) at 44 wk of age. Each hen was challenged intravenously with 1 mL of a 7% saline suspension of SRBC at the time that cold exposure was initiated. Hens subjected to high ambient temperatures had been exposed previously to a cold temperature, but were not challenged with SRBC until 16 to 18 h following the end of the second heating episode. Exposure to cold caused immunosuppression in single-caged hens, but not in hens in colony cages. Single- vs colony-caged hens of the control environment challenged with SRBC at 33 wk of age had similar primary hemagglutinin responses to SRBC. Hens subjected to heat experienced immunosuppression at 9 and 12 d following challenge to SRBC when compared to the controls. Hens of multiple-bird cages challenged with antigen at 44 wk of age had a significantly lower hemagglutinin response to SRBC than those reared in single-bird cages. The three lines of genetic stock had similar primary hemagglutinin responses to SRBC; the interactions of genetic stock with cage size or environmental temperature were not significant. It was concluded that genetically selecting hens for survival in multiple-hen cages did not affect their humoral immune response to SRBC.

  12. DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques.

    PubMed

    Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D; LaBranche, Celia; Montefiori, David C; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D; Reed, Steven G; Sardesai, Niranjan Y; Venzon, David J; Valentin, Antonio; Pavlakis, George N; Felber, Barbara K

    2014-01-01

    We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.

  13. Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies.

    PubMed

    Rockenstein, Edward; Ostroff, Gary; Dikengil, Fusun; Rus, Florentina; Mante, Michael; Florio, Jazmin; Adame, Anthony; Trinh, Ivy; Kim, Changyoun; Overk, Cassia; Masliah, Eliezer; Rissman, Robert A

    2018-01-24

    Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-β1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies. SIGNIFICANCE STATEMENT We

  14. Eosinophils: important players in humoral immunity.

    PubMed

    Berek, C

    2016-01-01

    Eosinophils perform numerous tasks. They are involved in inflammatory reactions associated with innate immune defence against parasitic infections and are also involved in pathological processes in response to allergens. Recently, however, it has become clear that eosinophils also play crucial non-inflammatory roles in the generation and maintenance of adaptive immune responses. Eosinophils, being a major source of the plasma cell survival factor APRIL (activation and proliferation-induced ligand), are essential not only for the long-term survival of plasma cells in the bone marrow, but also for the maintenance of these cells in the lamina propria which underlies the gut epithelium. At steady state under non-inflammatory conditions eosinophils are resident cells of the gastrointestinal tract, although only few are present in the major organized lymphoid tissue of the gut - the Peyer's patches (PP). Surprisingly, however, lack of eosinophils abolishes efficient class-switching of B cells to immunoglobulin (Ig)A in the germinal centres of PP. Thus, eosinophils are required to generate and to maintain mucosal IgA plasma cells, and as a consequence their absence leads to a marked reduction of IgA both in serum and in the gut-associated lymphoid tissues (GALT). Eosinophils thus have an essential part in long-term humoral immune protection, as they are crucial for the longevity of antibody-producing plasma cells in the bone marrow and, in addition, for gut immune homeostasis. © 2015 British Society for Immunology.

  15. Effects of sodium fluoride on blood cellular and humoral immunity in mice.

    PubMed

    Guo, Hongrui; Kuang, Ping; Luo, Qin; Cui, Hengmin; Deng, Huidan; Liu, Huan; Lu, Yujiao; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Li, Yinglun; Wang, Xun; Zhao, Ling

    2017-10-17

    Exposure to high fluorine can cause toxicity in human and animals. Currently, there are no systematic studies on effects of high fluorine on blood cellular immunity and humoral immunity in mice. We evaluated the alterations of blood cellular immunity and humoral immunity in mice by using flow cytometry and ELISA. In the cellular immunity, we found that sodium fluoride (NaF) in excess of 12 mg/Kg resulted in a significant decrease in the percentages of CD3 + , CD3 + CD4 + , CD3 + CD8 + T lymphocytes in the peripheral blood. Meanwhile, serum T helper type 1 (Th1) cytokines including interleukin (IL)-2, interferon (IFN)-γ, tumor necrosis factor (TNF), and Th2 cytokines including IL-4, IL-6, IL-10, and Th17 cytokine (IL-17A) contents were decreased. In the humoral immunity, NaF reduced the peripheral blood percentages of CD19 + B lymphocytes and serum immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM). The above results show that NaF can reduce blood cellular and humoral immune function in mice, providing an excellent animal model for clinical studies on immunotoxicity-related fluorosis.

  16. Dissecting polyclonal vaccine-induced humoral immunity against HIV using Systems Serology

    PubMed Central

    Chung, Amy W.; Kumar, Manu P.; Arnold, Kelly B.; Yu, Wen Han; Schoen, Matthew K.; Dunphy, Laura J.; Suscovich, Todd J.; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E.; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E.; McElrath, M. Juliana; Schuitemaker, Hanneke; Pau, Maria G.; Baden, Lindsey R.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.; Lauffenburger, Douglas A.; Alter, Galit

    2017-01-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc-functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine-trials. Each vaccine regimen induced a unique humoral “Fc-fingerprint”. Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  17. The cellular and humoral immunity assay in patients with complicated urolithiasis.

    PubMed

    Ceban, E; Banov, P; Galescu, A; Tanase, D

    2017-01-01

    Especially complicated, renal lithiasis contributes to the general inflammatory syndrome development that interferes with nonspecific, humoral and cellular immune system. The surgical treatment of nephrolithiasis is closely related to drug therapy of urinary infection, one of the reasons being the reduction of the immune status. The work is performed by evaluating the immunological status preoperatively in 58 patients with complicated lithiasis. The analysis of the status in these patients demonstrated that complicated urolithiasis results in significant changes in the immune system, these changes being expressed at the cellular and humoral level of immunity.

  18. Missing the target: DNAk is a dominant epitope in the humoral immune response of channel catfish (Ictalurus punctatus) to Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Vaccination remains a viable alternative for bacterial disease protection in fish; however additional work is required to understand the mechanisms of adaptive immunity in the channel catfish. To assess the humoral immune response to Flavobacterium columnare; a group of channel catfish were first im...

  19. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.

    PubMed

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M; Casadevall, Arturo; Flynn, JoAnne

    2014-12-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection

    PubMed Central

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M.; Casadevall, Arturo; Flynn, JoAnne

    2014-01-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. PMID:25458990

  1. Immune response and histology of humoral rejection in kidney transplantation.

    PubMed

    González-Molina, Miguel; Ruiz-Esteban, Pedro; Caballero, Abelardo; Burgos, Dolores; Cabello, Mercedes; Leon, Miriam; Fuentes, Laura; Hernandez, Domingo

    2016-01-01

    The adaptive immune response forms the basis of allograft rejection. Its weapons are direct cellular cytotoxicity, identified from the beginning of organ transplantation, and/or antibodies, limited to hyperacute rejection by preformed antibodies and not as an allogenic response. This resulted in allogenic response being thought for decades to have just a cellular origin. But the experimental studies by Gorer demonstrating tissue damage in allografts due to antibodies secreted by B lymphocytes activated against polymorphic molecules were disregarded. The special coexistence of binding and unbinding between antibodies and antigens of the endothelial cell membranes has been the cause of the delay in demonstrating the humoral allogenic response. The endothelium, the target tissue of antibodies, has a high turnover, and antigen-antibody binding is non-covalent. If endothelial cells are attacked by the humoral response, immunoglobulins are rapidly removed from their surface by shedding and/or internalization, as well as degrading the components of the complement system by the action of MCP, DAF and CD59. Thus, the presence of complement proteins in the membrane of endothelial cells is transient. In fact, the acute form of antibody-mediated rejection was not demonstrated until C4d complement fragment deposition was identified, which is the only component that binds covalently to endothelial cells. This review examines the relationship between humoral immune response and the types of acute and chronic histological lesion shown on biopsy of the transplanted organ. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Selenium Supplementation Restores Innate and Humoral Immune Responses in Footrot-Affected Sheep

    PubMed Central

    Hall, Jean A.; Vorachek, William R.; Stewart, Whitney C.; Gorman, M. Elena; Mosher, Wayne D.; Pirelli, Gene J.; Bobe, Gerd

    2013-01-01

    Dietary selenium (Se) alters whole-blood Se concentrations in sheep, dependent upon Se source and dosage administered, but little is known about effects on immune function. We used footrot (FR) as a disease model to test the effects of supranutritional Se supplementation on immune function. To determine the effect of Se-source (organic Se-yeast, inorganic Na-selenite or Na-selenate) and Se-dosage (1, 3, 5 times FDA-permitted level) on FR severity, 120 ewes with and 120 ewes without FR were drenched weekly for 62 weeks with different Se sources and dosages (30 ewes/treatment group). Innate immunity was evaluated after 62 weeks of supplementation by measuring neutrophil bacterial killing ability. Adaptive immune function was evaluated by immunizing sheep with keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. At baseline, FR-affected ewes had lower whole-blood and serum-Se concentrations; this difference was not observed after Se supplementation. Se supplementation increased neutrophil bacterial killing percentages in FR-affected sheep to percentages observed in supplemented and non-supplemented healthy sheep. Similarly, Se supplementation increased KLH antibody titers in FR-affected sheep to titers observed in healthy sheep. FR-affected sheep demonstrated suppressed cell-mediated immunity at 24 hours after intradermal KLH challenge, although there was no improvement with Se supplementation. We did not consistently prevent nor improve recovery from FR over the 62 week Se-treatment period. In conclusion, Se supplementation does not prevent FR, but does restore innate and humoral immune functions negatively affected by FR. PMID:24340044

  3. Humoral immunity in heart failure.

    PubMed

    Sarkar, Amrita; Rafiq, Khadija

    2018-05-17

    Cardiovascular disease (CVD) is a class of diseases that involve disorders of heart and blood vessels, including: hypertension, coronary heart disease, cerebrovascular disease, peripheral vascular disease, which finally lead to heart failure (HF). There are several treatments available all over the world, but still CVD and heart failure became the number one problem causing death every year worldwide. Both experimental and clinical studies have shown a role for inflammation in the pathogenesis of heart failure. This seems related to an imbalance between pro-inflammatory and anti-inflammatory cytokines. Cardiac inflammation is major pathophysiological mechanism operating in the failing heart, regardless of HF aetiology. Disturbances of the cellular and humoral immune system are frequently observed in heart failure. This review describes how B-cells play specific role in the heart failure states. There is an urgent need to identify novel therapeutic targets and develop advanced therapeutic strategies to combat the syndrome of HF. Understanding and describing the elements of the humoral immunity function are essential, and may suggest potential new treatment strategies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster.

    PubMed

    Pragya, P; Shukla, A K; Murthy, R C; Abdin, M Z; Kar Chowdhuri, D

    2015-11-01

    With the advancement of human race, different anthropogenic activities have heaped the environment with chemicals that can cause alteration in the immune system of exposed organism. As a first line of barrier, the evolutionary conserved innate immunity is crucial for the health of an organism. However, there is paucity of information regarding in vivo assessment of the effect of environmental chemicals on innate immunity. Therefore, we examined the effect of a widely used environmental chemical, Cr(VI), on humoral innate immune response using Drosophila melanogaster. The adverse effect of Cr(VI) on host humoral response was characterized by decreased gene expression of antimicrobial peptides (AMPs) in the exposed organism. Concurrently, a significantly decreased transcription of humoral pathway receptors (Toll and PGRP) and triglyceride level along with inhibition of antioxidant enzyme activities were observed in exposed organism. This in turn weakened the immune response of exposed organism that was manifested by their reduced resistance against bacterial infection. In addition, overexpression of the components of humoral immunity particularly Diptericin benefits Drosophila from Cr(VI)-induced humoral immune-suppressive effect. To our knowledge, this is the first report regarding negative impact of an environmental chemical on humoral innate immune response of Drosophila along with subsequent protection by AMPs, which may provide novel insight into host-chemical interactions. Also, our data validate the utility and sensitivity of Drosophila as a model that could be used for screening the possible risk of environmental chemicals on innate immunity with minimum ethical concern that can be further extrapolated to higher organisms. © 2014 Wiley Periodicals, Inc.

  5. Q fever in pregnant goats: humoral and cellular immune responses

    PubMed Central

    2013-01-01

    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are the major source of Q fever in humans. To investigate the goat’s immune response we inoculated groups of pregnant goats via inhalation with a Dutch outbreak isolate of C. burnetii. All animals were successfully infected. Phase 1 and Phase 2 IgM- and IgG-specific antibodies were measured. Cellular immune responses were investigated by interferon-gamma, enzyme-linked immunosorbent spot test (IFN-γ Elispot), lymphocyte proliferation test (LPT) and systemic cytokines. After two weeks post inoculation (wpi), a strong anti-C. burnetii Phase 2 IgM and IgG antibody response was observed while the increase in IgM anti-Phase 1 antibodies was less pronounced. IgG anti-Phase 1 antibodies started to rise at 6 wpi. Cellular immune responses were observed after parturition. Our results demonstrated humoral and cellular immune responses to C. burnetii infection in pregnant goats. Cell-mediated immune responses did not differ enough to distinguish between Coxiella-infected and non-infected pregnant animals, whereas a strong-phase specific antibody response is detected after 2 wpi. This humoral immune response may be useful in the early detection of C. burnetii-infected pregnant goats. PMID:23915213

  6. T cell-derived Lymphotoxin is Essential for anti-HSV-1 Humoral Immune Response.

    PubMed

    Yang, Kaiting; Liang, Yong; Sun, Zhichen; Xue, Diyuan; Xu, Hairong; Zhu, Mingzhao; Fu, Yang-Xin; Peng, Hua

    2018-05-09

    B cell-derived lymphotoxin (LT) is required for the development of follicular dendritic cell clusters for the formation of primary and secondary lymphoid follicles, but the role of T cell-derived LT in antibody response has not been well demonstrated. We observed that lymphotoxin-β-receptor (LTβR) signaling is essential for optimal humoral immune response and protection against an acute HSV-1 infection. Blocking the LTβR pathway caused poor maintenance of germinal center B (GC-B) cells and follicular helper T (Tfh) cells. Using bone marrow chimeric mice and adoptive transplantation, we determined that T cell-derived LT played an indispensable role in the humoral immune response to HSV-1. Up-regulation of IFNγ by the LTβR-Ig blockade impairs the sustainability of Tfh-like cells, thus leading to an impaired humoral immune response. Our findings have identified a novel role of T cell-derived LT in the humoral immune response against HSV-1 infection. IMPORTANCE Immunocompromised people are susceptible for HSV-1 infection and lethal recurrence, which could be inhibited by anti-HSV-1 humoral immune response in the host. This study sought to explore the role of T cell-derived LT in the anti-HSV-1 humoral immune response using LT-LTβR signaling deficient mice and the LTβR-Ig blockade. The data indicate that the T cell-derived LT may play an essential role in sustaining Tfh-like cells and ensure Tfh-like cells' migration into primary or secondary follicles for further maturation. This study provides insights for vaccine development against infectious diseases. Copyright © 2018 American Society for Microbiology.

  7. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  8. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...

  9. Evasion and Interactions of the Humoral Innate Immune Response in Pathogen Invasion, Autoimmune Disease, and Cancer

    PubMed Central

    Rettig, Trisha A.; Harbin, Julie N.; Harrington, Adelaide; Dohmen, Leonie; Fleming, Sherry D.

    2015-01-01

    The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how gram positive bacteria, viruses, cancer, and the autoimmune conditions Systemic Lupus Erythematosus and Anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development. PMID:26145788

  10. Variability of whipworm infection and humoral immune response in a wild population of mole voles (Ellobius talpinus Pall.).

    PubMed

    Novikov, Eugene; Petrovski, Dmitry; Mak, Viktoria; Kondratuk, Ekaterina; Krivopalov, Anton; Moshkin, Mikhail

    2016-08-01

    Restricted mobility and spatial isolation of social units in gregarious subterranean mammals ensure good defence mechanisms against parasites, which in turn allows for a reduction of immunity components. In contrast, a parasite invasion may cause an increased adaptive immune response. Therefore, it can be expected that spatial and temporal distribution of parasites within a population will correlate with the local variability in the host's immunocompetence. To test this hypothesis, the intra-population variability of a whipworm infestation and the humoral immune response to non-replicated antigens in mole voles (Ellobius talpinus Pall.), social subterranean rodents, was estimated. Whipworm prevalence in mole voles increased from spring to autumn, and this tendency was more pronounced in settlements living in natural meadows compared to settlements in man-made meadows. However, humoral immune response was lowest in animals from natural meadows trapped in autumn. Since whipworm infestation does not directly affect the immunity of mole voles, the reciprocal tendencies in seasonal dynamics and spatial distribution of whipworm abundance and host immunocompetence may be explained by local deterioration of habitat conditions, which increases the probability of an infestation.

  11. CHANGES IN HUMORAL IMMUNITY OCCURRING DURING THE EARLY STAGES OF EXPERIMENTAL PNEUMOCOCCUS INFECTION

    PubMed Central

    Terrell, Edward E.

    1930-01-01

    A study was made of the changes in humoral immunity occurring during the early phases of experimental pneumococcus infection in the dog and cat. The methods devised by Robertson and Sia were employed to demonstrate the presence of anti-pneumococcus properties in the serum of animals naturally resistant to this micro-organism. It was found that with a generalized and overwhelming infection accompanied by early blood invasion, there was a prompt and rapid decrease in the concentration of natural humoral immune bodies which frequently disappeared entirely by the time of death. This same early diminution of humoral immune substances, opsonins, agglutinins, and pneumococcidal-promoting bodies was observed in animals that survived a moderately severe generalized infection but the concentration of immune bodies rose again with the onset of recovery. The decrease in concentration of humoral immune substances during a severe generalized infection appeared to be due to the combination of "S" substance with the normal immune bodies. When the pneumococcus infection was more localized as in the case of true lobar pneumonia a quite different sequence of events was observed to occur. Several animals, in which extensive lobar pneumonia was produced, showed the presence in quantity of humoral immune bodies in the blood throughout the course of an infection terminating fatally. These findings suggest that after the inception of pneumococcus infection in the dog and cat the chief function of natural anti-pneurnococcus substances in the blood is to limit or prevent blood invasion. When pneumococcic infection is localized these circulating antibodies appear to have little effect either in preventing the spread of the process or determining the outcome of the disease. PMID:19869701

  12. [Humoral immune diseases: Cutaneous vasculitis and auto-immune bullous dermatoses].

    PubMed

    Wechsler, Janine

    2018-02-01

    Humoral immunity is the cause of multiple diseases related to antibodies (IgA, IgG, IgM) produced by the patient. Two groups of diseases are identified. The first group is related to circulating antigen-antibody complexes. The antigens are various. They are often unknown. These immune complexes cause a vascular inflammation due to the complement fixation. Consequently, this group is dominated by inflammatory vasculitis. In the second group, the pathology is due to the fixation in situ of antibodies to a target antigen of the skin that is no more recognized by the patient. This group is represented by the auto-immune bullous dermatoses. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Humoral and cellular immunity in chromium picolinate-supplemented lambs.

    PubMed

    Dallago, B S L; McManus, C M; Caldeira, D F; Campeche, A; Burtet, R T; Paim, T P; Gomes, E F; Branquinho, R P; Braz, S V; Louvandini, H

    2013-08-01

    The effects of oral supplementation of chromium picolinate (CrPic) on humoral and cellular immunity in sheep were investigated. Twenty-four male lambs divided into four treatments and received different dosages of CrPic: placebo (0), 0.250, 0.375, and 0.500 mg of chromium/animal/day during 84 days. The base ration was Panicum maximum cv Massai hay and concentrate. Blood samples were collected fortnightly for total and differential leukocyte counts. On days 28 and 56, the lambs were challenged with chicken ovalbumin I.M. Serum samples were collected on days 46 and 74 and subjected to an indirect enzyme-linked immunosorbent assay to measure IgG anti-ovalbumin. The cell-mediated immune response was determined by a delay-type hypersensitivity test using phytohemagglutinin. CrPic did not significantly affect humoral immunity in lambs but there was a negative effect on cellular immunity (P < 0.05) as Cr supplementation increased. Therefore, the level of Cr supplementation for lambs must be better studied to address its effect on stressed animals or the possible toxic effects of Cr on the animal itself or its immune system.

  14. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination.

    PubMed

    Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.

  15. Humoral and Cellular Immunity Changed after Traumatic Brain Injury in Human Patients.

    PubMed

    Wang, Jia-Wei; Li, Jin-Ping; Song, Ying-Lun; Zhao, Qi-Huang

    2017-01-01

    Previous studies have suggested that there is a disproportionally higher risk of infection following traumatic brain injury (TBI). This predisposition to infection may be driven by a poorly understood, brain-specific response in the immune system after TBI. However, there is a lack of studies that have fully characterized TBI patients to understand the relationship between TBI and peripheral immune function. In the present study, markers for humoral immunity and cellular immunity were measured for up to 2 weeks in the peripheral blood of 37 patients with TBI in order to elucidate the time course and the type of the peripheral immune response following TBI. 12 relatively healthy individuals without TBI and other neurological diseases were enrolled into the control group. Our data indicated that TBI could induce significant changes in humoral immunity characterized by a decrease in IgG and IgM levels and an increase in the complements C3 and C4 levels in comparison with the control group. Moreover, compared with the control group, a significant reduction in peripheral blood CD3 + and CD3 + CD4 + lymphocyte counts occurred early (days 1-3) following the onset of trauma. These results provide evidence that TBI is associated with substantial changes in humoral immunity and cellular immunity, which may explain the high incidence of infection encountered in these patients. © 2017 by the Association of Clinical Scientists, Inc.

  16. Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses

    PubMed Central

    van de Sandt, Carolien E.; Kreijtz, Joost H. C. M.; Rimmelzwaan, Guus F.

    2012-01-01

    The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies. PMID:23170167

  17. Norovirus P particle efficiently elicits innate, humoral and cellular immunity.

    PubMed

    Fang, Hao; Tan, Ming; Xia, Ming; Wang, Leyi; Jiang, Xi

    2013-01-01

    Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4(+) T cell phenotypes (CD4(+) CD44(+) CD62L(+) CCR7(+)) and activated polyclonal CD4(+) T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4(+) T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+) T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4(+) T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.

  18. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  19. High-resolution definition of humoral immune response correlates of effective immunity against HIV.

    PubMed

    Alter, Galit; Dowell, Karen G; Brown, Eric P; Suscovich, Todd J; Mikhailova, Anastassia; Mahan, Alison E; Walker, Bruce D; Nimmerjahn, Falk; Bailey-Kellogg, Chris; Ackerman, Margaret E

    2018-03-26

    Defining correlates of immunity by comprehensively interrogating the extensive biological diversity in naturally or experimentally protected subjects may provide insights critical for guiding the development of effective vaccines and antibody-based therapies. We report advances in a humoral immunoprofiling approach and its application to elucidate hallmarks of effective HIV-1 viral control. Systematic serological analysis for a cohort of HIV-infected subjects with varying viral control was conducted using both a high-resolution, high-throughput biophysical antibody profiling approach, providing unbiased dissection of the humoral response, along with functional antibody assays, characterizing antibody-directed effector functions such as complement fixation and phagocytosis that are central to protective immunity. Profiles of subjects with varying viral control were computationally analyzed and modeled in order to deconvolute relationships among IgG Fab properties, Fc characteristics, and effector functions and to identify humoral correlates of potent antiviral antibody-directed effector activity and effective viral suppression. The resulting models reveal multifaceted and coordinated contributions of polyclonal antibodies to diverse antiviral responses, and suggest key biophysical features predictive of viral control. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  20. [Involvement of cellular immunity and humoral immunity in mixed allergy induced by trichloroethylene].

    PubMed

    Xu, Xinyun; Li, Xueyu; Liu, Yuefeng

    2014-12-01

    To investigate whether cellular immunity and humoral immunity are involved in trichlorethylene (TCE)-induced mixed allergy, then provide the scientific basis for the mechanism of this disease. Guinea pigs and rats were tested for this study by application of guinea pig maximization test (GPMT), the animals were randomly divided into negative control, positive control and TCE treatment groups. Animals of these groups were administrated with olive oil, 2, 4-dinitrochlorobenzene (DNCB), and TCE, respectively, by intradermal injection. After TCE administration, rat peripheral blood samples were collected by flow cytometry to detect lymphocytes CD3⁺, CD4⁺, CD8⁺. Guinea pig peripheral blood samples were collected to detect the levels of IgG, IgA, IgM, C3, C4, and the spleens were taken out from guinea pigs after various treatment, mRNA expression of GATA3, T-bet, CTLA4 and Foxp3 in lymphocytes of guinea pig spleen was detected by real-time fluorescent PCR assay. Additionally, TCE allergic dermatitis patients were selected for the study, the peripheral blood samples were collected from the TCE patients group and control group, quantitative PCR was applied to detect mRNA expression of immune-related genes Foxp3, GATA3, CTLA4, T-bet. TCE induced obvious skin allergic reaction in guinea pigs, the sensitization rate was 83.3%, IgG levels in TCE group and positive control increased significantly. Additionally, mRNA expression levels of GATA3, T-bet, CTLA4 significantly elevated in TCE group and positive control, but Foxp3 mRNA levels decreased. The lymphocytes CD3⁺ ratio in TCE group and positive control of rats was higher than that in negative control, we found that there was no statistical difference of CD4⁺, CD8⁺, CD4⁺/CD8⁺ between TCE group and negative control of rats. The mRNA expression levels of Foxp3, GATA3, CTLA4 in TCE patients increased by 115%, 97%, 241%, respectively as compared with the control, T-bet levels decreased by 47%when compared with the

  1. Humoral immune responses of experimentally Eimeria ninakholyakimovae-infected goat kids.

    PubMed

    Matos, Lorena; Muñoz, María Del Carmen; Molina, José Manuel; Ferrer, Otilia; Rodríguez, Francisco; Pérez, Davinia; López, Adassa María; Martín, Sergio; Hermosilla, Carlos; Taubert, Anja; Ruiz, Antonio

    2017-04-01

    Although cellular immune reactions seem to be crucial for protective immune responses in Eimeria spp. infections, there are also evidences on an active involvement of the humoral counterpart. In the present study, we have analyzed the humoral response of goat kids subjected to primary and challenge infections with Eimeria ninakholyakimovae. Specific levels of IgG and IgM in serum samples and IgA in the ileal mucus were estimated. In infected kids, significantly increased levels of IgG were observed from 3 weeks post infection onwards in addition to an enhancement of specific IgM and secretory IgA levels. A wide range of peptides of sporulated oocyst antigen (SOA) was recognized by specific IgG as determined by immunoblotting. However, no correlations were found between immunoglobulin levels and OPG counts after challenge infection. Overall, these data indicate a significant specific humoral response of E. ninakohlyakimovae-infected goat kids that does not seem to convey immunoprotection. Further studies should be addressed to clarify if the lack of correlation might be associated to the type of antigen used for the immunoenzimatic assays, the age of the animals or other factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cellular and humoral immune responses during tuberculosis infection: useful knowledge in the era of biological agents.

    PubMed

    Matucci, Andrea; Maggi, Enrico; Vultaggio, Alessandra

    2014-05-01

    In this review, recent insights into innate and adaptive cellular and humoral immune response to Mycobacterium tuberculosis (Mtb) are discussed and the role of specific cytokines such as tumor necrosis factor-α (TNF-α) is highlighted. According to recent findings, the immune system plays a key role in avoiding mycobacteria dissemination. The importance of different cell types (macrophages, dendritic cells, interferon-γ-producing T cells) as well as the production of proinflammatory cytokines such as interleukin 6 (IL-6), IL-12, and IL-23/IL-17 have been demonstrated. Alveolar macrophages are considered the first cells infected by Mtb during respiratory infection. Mtb proliferates within alveolar macrophages and dendritic cells and induces the release of cytokines such as TNF-α, IL-1, IL-6, and IL-12. Toll-like receptors-stimulated dendritic cells link innate and adaptive immunity by promoting polarization of effector T cells. The efficient induction of Th1 immunity is decisive in defense against Mtb. In fact, host effector immune response against Mtb is related to the presence of a Th1 response. The definition of the cellular and molecular mechanisms involved in the immune response to Mtb can be helpful in developing new preventive strategies to avoid infection relapse, particularly in patients treated with biological agents.

  3. Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination

    PubMed Central

    Voigt, Emily A.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Kennedy, Richard B.; Larrabee, Beth R.; Schaid, Daniel J.; Poland, Gregory A.

    2017-01-01

    In addition to host genetic and environmental factors, variations in immune responses to vaccination are influenced by demographic variables, such as race and sex. The influence of genetic race and sex on measles vaccine responses is not well understood, yet important for the development of much-needed improved measles vaccines with lower failure rates. We assessed associations between genetically defined race and sex with measles humoral and cellular immunity after measles vaccination in three independent and geographically distinct cohorts totaling 2,872 healthy racially diverse children, older adolescents, and young adults. We found no associations between biological sex and either humoral or cellular immunity to measles vaccine, and no correlation between humoral and cellular immunity in these study subjects. Genetically defined race was, however, significantly associated with both measles vaccine-induced humoral and cellular immune responses, with subjects genetically classified as having African-American ancestry demonstrating significantly higher antibody and cell-mediated immune responses relative to subjects of Caucasian ancestry. This information may be useful in designing novel measles vaccines that are optimally effective across human genetic backgrounds. PMID:27591105

  4. Recombinant proteins of Zaire ebolavirus induce potent humoral and cellular immune responses and protect against live virus infection in mice.

    PubMed

    Lehrer, Axel T; Wong, Teri-Ann S; Lieberman, Michael M; Humphreys, Tom; Clements, David E; Bakken, Russell R; Hart, Mary Kate; Pratt, William D; Dye, John M

    2018-05-24

    Infections with filoviruses in humans are highly virulent, causing hemorrhagic fevers which result in up to 90% mortality. In addition to natural infections, the ability to use these viruses as bioterrorist weapons is of significant concern. Currently, there are no licensed vaccines or therapeutics available to combat these infections. The pathogenesis of disease involves the dysregulation of the host's immune system, which results in impairment of the innate and adaptive immune responses, with subsequent development of lymphopenia, thrombocytopenia, hemorrhage, and death. Questions remain with regard to the few survivors of infection, who manage to mount an effective adaptive immune response. These questions concern the humoral and cellular components of this response, and whether such a response can be elicited by an appropriate prophylactic vaccine. The data reported herein describe the production and evaluation of a recombinant subunit Ebola virus vaccine candidate consisting of insect cell expressed Zaire ebolavirus (EBOV) surface glycoprotein (GP) and the matrix proteins VP24 and VP40. The recombinant subunit proteins are shown to be highly immunogenic in mice, yielding both humoral and cellular responses, as well as highly efficacious, providing up to 100% protection against a lethal challenge with live virus. These results demonstrate proof of concept for such a recombinant non-replicating vaccine candidate in the mouse model of EBOV which helps to elucidate immune correlates of protection and warrants further development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Epstein-Barr Virus-Specific Humoral Immune Responses in Health and Disease.

    PubMed

    Middeldorp, Jaap M

    2015-01-01

    Epstein-Barr virus (EBV) is widely distributed in the world and associated with a still increasing number of acute, chronic, malignant and autoimmune disease syndromes. Humoral immune responses to EBV have been studied for diagnostic, pathogenic and protective (vaccine) purposes. These studies use a range of methodologies, from cell-based immunofluorescence testing to antibody-diversity analysis using immunoblot and epitope analysis using recombinant or synthetic peptide-scanning. First, the individual EBV antigen complexes (VCA , MA, EA(D), EA(R) and EBNA) are defined at cellular and molecular levels, providing a historic overview. The characteristic antibody responses to these complexes in health and disease are described, and differences are highlighted by clinical examples. Options for EBV vaccination are briefly addressed. For a selected number of immunodominant proteins, in particular EBNA1, the interaction with human antibodies is further detailed at the epitope level, revealing interesting insights for structure, function and immunological aspects, not considered previously. Humoral immune responses against EBV-encoded tumour antigens LMP1, LMP2 and BARF1 are addressed, which provide novel options for targeted immunotherapy. Finally, some considerations on EBV-linked autoimmune diseases are given, and mechanisms of antigen mimicry are briefly discussed. Further analysis of humoral immune responses against EBV in health and disease in carefully selected patient cohorts will open new options for understanding pathogenesis of individual EBV-linked diseases and developing targeted diagnostic and therapeutic approaches.

  6. Germinal center texture entropy as possible indicator of humoral immune response: immunophysiology viewpoint.

    PubMed

    Pantic, Igor; Pantic, Senka

    2012-10-01

    In this article, we present the results indicating that spleen germinal center (GC) texture entropy determined by gray-level co-occurrence matrix (GLCM) method is related to humoral immune response. Spleen tissue was obtained from eight outbred male short-haired guinea pigs previously immunized by sheep red blood cells (SRBC). A total of 312 images from 39 germinal centers (156 GC light zone images and 156 GC dark zone images) were acquired and analyzed by GLCM method. Angular second moment, contrast, correlation, entropy, and inverse difference moment were calculated for each image. Humoral immune response to SRBC was measured using T cell-dependent antibody response (TDAR) assay. Statistically highly significant negative correlation was detected between light zone entropy and the number of TDAR plaque-forming cells (r (s) = -0.86, p < 0.01). The entropy decreased as the plaque-forming cells increased and vice versa. A statistically significant negative correlation was also detected between dark zone entropy values and the number of plaque-forming cells (r (s) = -0.69, p < 0.05). Germinal center texture entropy may be a powerful indicator of humoral immune response. This study is one of the first to point out the potential scientific value of GLCM image texture analysis in lymphoid tissue cytoarchitecture evaluation. Lymphoid tissue texture analysis could become an important and affordable addition to the conventional immunophysiology techniques.

  7. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    PubMed Central

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708

  8. Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage

    PubMed Central

    Thomas, Susan N.; Rutkowski, Joseph M.; Pasquier, Miriella; Kuan, Emma L.; Alitalo, Kari; Randolph, Gwendalyn J.; Swartz, Melody A.

    2012-01-01

    Lymphatic vessels transport interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs), yet the contribution of peripheral lymphatic drainage to adaptive immunity remains poorly understood. We examined immune responses to dermal vaccination and contact hypersensitivity (CHS) challenge in K14-VEGFR-3-Ig mice, which lack dermal lymphatic capillaries and experience markedly depressed transport of solutes and dendritic cells from the skin to draining LNs. In response to dermal immunization, K14-VEGFR-3-Ig mice produced lower antibody titers. In contrast, although delayed, T cell responses were robust after 21 days, including high levels of antigen-specific CD8+ T cells and production of IFN-γ, IL-4 and IL-10 upon restimulation. T cell-mediated CHS responses were strong in K14-VEGFR-3-Ig mice, but importantly, their ability to induce CHS tolerance in the skin was impaired. Additionally, one-year-old mice displayed multiple signs of autoimmunity. These data suggest that lymphatic drainage plays more important roles in regulating humoral immunity and peripheral tolerance than in effector T cell immunity. PMID:22844119

  9. Humoral Immune Response against Neural Antigens and Its Effects on Cognition in Lung Cancer Patients.

    PubMed

    Rybacka-Mossakowska, J; Ramlau, R; Gazdulska, J; Gołda-Gocka, I; Kozubski, W; Michalak, S

    2016-01-01

    Cognitive impairment develops as a clinical manifestation of immune-mediated indirect effects of malignancy in lung cancer patients. This study aimed to evaluate the effects of humoral immune response on cognition in lung cancer patients. Fifty-one lung cancer patients were subjected to neurological examination: Mini Mental State Examination (MMSE), Trail Making Test (TMT), and Hamilton scale. The Psychology Experiment Building Language software was used for the evaluation of digit span, simple reaction time (SRT), and choice reaction time (CRT) tests. Serum samples were tested for the presence of onconeuronal antibodies and antineural antibodies. The results demonstrate that autoantibodies were found in 31 % patients. MMSE scores were lower (26.7 ± 2.7) in seropositive patients than in seronegative subjects (28.7 ± 1.2; p = 0.013). Executive functions were also influenced by the presence of autoantibodies. The humoral immune response in lung cancer patients affected both SRT and CRT. We conclude that the humoral immune response in lung cancer patients is associated with cognitive impairment. Cognitive impairment is associated with both specific reactions against onconeuronal or antineural antigens and non-organ specific reactions against nucleosome antigens.

  10. Humoral and Cellular Response in Humans After Immunization with Influenza Vaccine

    PubMed Central

    Ruben, Frederick L.; Jackson, George G.; Gotoff, Samuel P.

    1973-01-01

    The peripheral blood lymphocyte response and hemagglutination inhibition antibody titers were measured in nine adults before and after immunization with a killed split influenza virus vaccine. Cord blood lymphocytes were tested with the influenza antigen to exclude a nonspecific mitogenic effect. All of the subjects demonstrated preexisting antibody titers and antigen recognition by lymphocytes prior to immunization. The in vitro lymphocyte response after vaccination parallels the humoral antibody response to influenza antigen. PMID:4762112

  11. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis

    PubMed Central

    Negm, Ola H.; Hamed, Mohamed R.; Dilnot, Elizabeth M.; Shone, Clifford C.; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E.; Edwards, Laura J.; Tighe, Patrick J.; Wilcox, Mark H.

    2015-01-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  12. Humoral immune response kinetics in Philander opossum and Didelphis marsupialis infected and immunized by Trypanosoma cruzi employing an immunofluorescence antibody test.

    PubMed

    Legey, A P; Pinho, A P; Chagas Xavier, S C; Leon, L L; Jansen, A M

    1999-01-01

    Philander opossum and Didelphis marsupialis considered the most ancient mammals and an evolutionary success, maintain parasitism by Trypanosoma cruzi without developing any apparent disease or important tissue lesion. In order to elucidate this well-balanced interaction, we decided to compare the humoral immune response kinetics of the two didelphids naturally and experimentally infected with T. cruzi and immunized by different schedules of parasite antigens, employing an indirect fluorescence antibody test (IFAT). Both didelphids responded with high serological titers to different immunization routes, while the earliest response occurred with the intradermic route. Serological titers of naturally infected P. opossum showed a significant individual variation, while those of D. marsupialis remained stable during the entire follow-up period. The serological titers of the experimentally infected animals varied according to the inoculated strain. Our data suggest that (1) IFAT was sensitive for follow-up of P. opossum in natural and experimental T. cruzi infections; (2) both P. opossum and D. marsupialis are able to mount an efficient humoral immune response as compared to placental mammals; (3) experimentally infected P. opossum and D. marsupialis present distinct patterns of infection, depending on the subpopulation of T. cruzi, (4) the differences observed in the humoral immune responses between P. opossum and D. marsupialis, probably, reflect distinct strategies selected by these animals during their coevolution with T. cruzi.

  13. Maternal antibody transfer can lead to suppression of humoral immunity in developing zebra finches (Taeniopygia guttata).

    PubMed

    Merrill, Loren; Grindstaff, Jennifer L

    2014-01-01

    Maternally transferred antibodies have been documented in a wide range of taxa and are thought to adaptively provide protection against parasites and pathogens while the offspring immune system is developing. In most birds, transfer occurs when females deposit immunoglobulin Y into the egg yolk, and it is proportional to the amount in the female's plasma. Maternal antibodies can provide short-term passive protection as well as specific and nonspecific immunological priming, but high levels of maternal antibody can result in suppression of the offspring's humoral immune response. We injected adult female zebra finches (Taeniopygia guttata) with one of two antigens (lipopolysaccharide [LPS] or keyhole limpet hemocyanin [KLH]) or a control and then injected offspring with LPS, KLH, or a control on days 5 and 28 posthatch to examine the impact of maternally transferred antibodies on the ontogeny of the offspring's humoral immune system. We found that offspring of females exposed to KLH had elevated levels of KLH-reactive antibody over the first 17-28 days posthatch but reduced KLH-specific antibody production between days 28 and 36. We also found that offspring exposed to either LPS or KLH exhibited reduced total antibody levels, compared to offspring that received a control injection. These results indicate that high levels of maternal antibodies or antigen exposure during development can have negative repercussions on short-term antibody production and may have long-term fitness repercussions for the offspring.

  14. Maternal Antibody Transfer Can Lead to Suppression of Humoral Immunity in Developing Zebra Finches (Taeniopygia guttata)

    PubMed Central

    Merrill, Loren; Grindstaff, Jennifer L.

    2015-01-01

    Maternally transferred antibodies have been documented in a wide range of taxa and are thought to adaptively provide protection against parasites and pathogens while the offspring immune system is developing. In most birds, transfer occurs when females deposit immunoglobulin Y into the egg yolk, and it is proportional to the amount in the female’s plasma. Maternal antibodies can provide short-term passive protection as well as specific and nonspecific immunological priming, but high levels of maternal antibody can result in suppression of the offspring’s humoral immune response. We injected adult female zebra finches (Taeniopygia guttata) with one of two antigens (lipo-polysaccharide [LPS] or keyhole limpet hemocyanin [KLH]) or a control and then injected offspring with LPS, KLH, or a control on days 5 and 28 posthatch to examine the impact of maternally transferred antibodies on the ontogeny of the offspring’s humoral immune system. We found that offspring of females exposed to KLH had elevated levels of KLH-reactive antibody over the first 17–28 days posthatch but reduced KLH-specific antibody production between days 28 and 36. We also found that offspring exposed to either LPS or KLH exhibited reduced total antibody levels, compared to offspring that received a control injection. These results indicate that high levels of maternal antibodies or antigen exposure during development can have negative repercussions on short-term antibody production and may have long-term fitness repercussions for the offspring. PMID:25244385

  15. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity

    PubMed Central

    Matar, Caline G.; Anthony, Neil R.; O’Flaherty, Brigid M.; Jacobs, Nathan T.; Priyamvada, Lalita; Engwerda, Christian R.; Speck, Samuel H.; Lamb, Tracey J.

    2015-01-01

    Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV) by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68) infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh) cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i) suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii) plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission. PMID:25996913

  16. B Cell-Intrinsic IDO1 Regulates Humoral Immunity to T Cell-Independent Antigens.

    PubMed

    Shinde, Rahul; Shimoda, Michiko; Chaudhary, Kapil; Liu, Haiyun; Mohamed, Eslam; Bradley, Jillian; Kandala, Sridhar; Li, Xia; Liu, Kebin; McGaha, Tracy L

    2015-09-01

    Humoral responses to nonproteinaceous Ags (i.e., T cell independent [TI]) are a key component of the early response to bacterial and viral infection and a critical driver of systemic autoimmunity. However, mechanisms that regulate TI humoral immunity are poorly defined. In this study, we report that B cell-intrinsic induction of the tryptophan-catabolizing enzyme IDO1 is a key mechanism limiting TI Ab responses. When Ido1(-/-) mice were immunized with TI Ags, there was a significant increase in Ab titers and formation of extrafollicular Ab-secreting cells compared with controls. This effect was specific to TI Ags, as Ido1 disruption did not affect Ig production after immunization with protein Ags. The effect of IDO1 abrogation was confined to the B cell compartment, as adoptive transfer of Ido1(-/-) B cells to B cell-deficient mice was sufficient to replicate increased TI responses observed in Ido1(-/-) mice. Moreover, in vitro activation with TLR ligands or BCR crosslinking rapidly induced Ido1 expression and activity in purified B cells, and Ido1(-/-) B cells displayed enhanced proliferation and cell survival associated with increased Ig and cytokine production compared with wild-type B cells. Thus, our results demonstrate a novel, B cell-intrinsic, role for IDO1 as a regulator of humoral immunity that has implications for both vaccine design and prevention of autoimmunity. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  18. Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity.

    PubMed

    Ovsyannikova, Inna G; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2017-10-04

    Identifying genetic polymorphisms that explain variations in humoral immunity to live measles virus vaccine is of great interest. Immunoglobulin GM (heavy chain) and KM (light chain) allotypes are genetic markers known to be associated with susceptibility to several infectious diseases. We assessed associations between GM and KM genotypes and measles vaccine humoral immunity (neutralizing antibody titers) in a combined cohort (n=1796) of racially diverse healthy individuals (age 18-41years). We did not discover any significant associations between GM and/or KM genotypes and measles vaccine-induced neutralizing antibody titers. African-American subjects had higher neutralizing antibody titers than Caucasians (1260mIU/mL vs. 740mIU/mL, p=7.10×10 -13 ), and those titers remained statistically significant (p=1.68×10 -09 ) after adjusting for age at enrollment and time since last vaccination. There were no statistically significant sex-specific differences in measles-induced neutralizing antibody titers in our study (p=0.375). Our data indicate a surprising lack of evidence for an association between GM and KM genotypes and measles-specific neutralizing antibody titers, despite the importance of these immune response genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Modulation of Adaptive Immune Responses by Bacterial Zwitterionic Polysaccharides

    PubMed Central

    Stephen, Tom Li; Groneck, Laura; Kalka-Moll, Wiltrud Maria

    2010-01-01

    The detection of pathogen-derived molecules as foreign particles by adaptive immune cells triggers T and B lymphocytes to mount protective cellular and humoral responses, respectively. Recent immunological advances elucidated that proteins and some lipids are the principle biological molecules that induce protective T cell responses during microbial infections. Polysaccharides are important components of microbial pathogens and many vaccines. However, research concerning the activation of the adaptive immune system by polysaccharides gained interest only recently. Traditionally, polysaccharides were considered to be T cell-independent antigens that did not directly activate T cells or induce protective immune responses. Here, we review several recent advances in “carbohydrate immunobiology”. A group of bacterial polysaccharides that are known as “zwitterionic polysaccharides (ZPSs)” were recently identified as potent immune modulators. The immunomodulatory effect of ZPSs required antigen processing and presentation by antigen presenting cells, the activation of CD4 T cells and subpopulations of CD8 T cells and the modulation of host cytokine responses. In this review, we also discuss the potential use of these unique immunomodulatory ZPSs in new vaccination strategies against chronic inflammatory conditions, autoimmunity, infectious diseases, allergies and asthmatic conditions. PMID:21234388

  20. The Role of B Cells and Humoral Immunity in Mycobacterium tuberculosis Infection

    PubMed Central

    Kozakiewicz, Lee; Phuah, Jiayao; Flynn, JoAnne

    2014-01-01

    Tuberculosis (TB) remains a serious threat to public health, causing 2 million deaths annually world-wide. The control of TB has been hindered by the requirement of long duration of treatment involving multiple chemotherapeutic agents, the increased susceptibility to Mycobacterium tuberculosis infection in the HIV-infected population, and the development of multi-drug resistant and extensively resistant strains of tubercle bacilli. An efficacious and cost-efficient way to control TB is the development of effective anti-TB vaccines. This measure requires thorough understanding of the immune response to M. tuberculosis. While the role of cell-mediated immunity in the development of protective immune response to the tubercle bacillus has been well established, the role of B cells in this process is not clearly understood. Emerging evidence suggests that B cells and humoral immunity can modulate the immune response to various intracellular pathogens, including M. tuberculosis. These lymphocytes form conspicuous aggregates in the lungs of tuberculous humans, non-human primates, and mice, which display features of germinal center B cells. In murine TB, it has been shown that B cells can regulate the level of granulomatous reaction, cytokine production, and the T cell response. This chapter discusses the potential mechanisms by which specific functions of B cells and humoral immunity can shape the immune response to intracellular pathogens in general, and to M. tuberculosis in particular. Knowledge of the B cell-mediated immune response to M. tuberculosis may lead to the design of novel strategies, including the development of effective vaccines, to better control TB. PMID:23468112

  1. Potential use of local and systemic humoral immune response parameters to forecast Mycoplasma hyopneumoniae associated lung lesions.

    PubMed

    Garcia-Morante, Beatriz; Segalés, Joaquim; Fraile, Lorenzo; Llardén, Gemma; Coll, Teresa; Sibila, Marina

    2017-01-01

    Immunopathological events are key for the development of enzootic pneumonia (EP), which is macroscopically observed as cranioventral pulmonary consolidation (CVPC). This study aimed to investigate the putative association between the humoral immune response against Mycoplasma hyopneumoniae (M. hyopneumoniae) and prevalence and extension of CVPC in 1) experimentally infected pigs, 2) slaughtered pigs and 3) sequentially necropsied pigs in a longitudinal study. CVPC was scored by means of the European Pharmacopoeia recommended methodology. Specific IgG, IgG1 and IgG2 antibodies were assessed in serum. In addition, mucosal IgG and IgA antibodies were analyzed in broncho-alveolar lavage fluid (BALF) from experimentally challenged pigs. The systemic humoral immune response in experimentally infected pigs was delayed in onset whereas humoral respiratory mucosal immune response appeared more rapidly but declined earlier. Although low, BALF IgG antibodies showed the highest correlation with CVPC scores (r = 0.49, p<0.05). In slaughter-aged pigs, both percentage of lungs with CVPC and mean lung lesion score were significantly higher in M. hyopneumoniae seropositive farms compared to the seronegative ones (p<0.001). Similarly, seropositive sequentially necropsied pigs showed more severe CVPC than seronegative ones. Overall, mean serological values might help to forecast prevalence and severity of EP-like lung lesions using a population based approach. Remarkably, the specific systemic humoral immune response was found to be predominated by the IgG2 subclass, suggesting a dominant Th1-mediated immune response to M. hyopneumoniae.

  2. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    PubMed

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2016-08-01

    We consider an HIV-1 dynamics model by incorporating (i) two routes of infection via, respectively, binding of a virus to a receptor on the surface of a target cell to start genetic reactions (virus-to-target infection), and the direct transmission from infected cells to uninfected cells through the concept of virological synapse in vivo (infected-to-target infection); (ii) two types of distributed-time delays to describe the time between the virus or infected cell contacts an uninfected CD4+ T cell and the emission of new active viruses; (iii) humoral immune response, where the HIV-1 particles are attacked by the antibodies that are produced from the B lymphocytes. The existence and stability of all steady states are completely established by two bifurcation parameters, R 0 (the basic reproduction number) and R 1 (the viral reproduction number at the chronic-infection steady state without humoral immune response). By constructing Lyapunov functionals and using LaSalle's invariance principle, we have proven that, if R 0 ≤ 1 , then the infection-free steady state is globally asymptotically stable, if R 1 ≤ 1 < R 0 , then the chronic-infection steady state without humoral immune response is globally asymptotically stable, and if R 1 > 1 , then the chronic-infection steady state with humoral immune response is globally asymptotically stable. We have performed numerical simulations to confirm our theoretical results.

  4. The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    PubMed Central

    Helle, François; Duverlie, Gilles; Dubuisson, Jean

    2011-01-01

    Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review. PMID:22069522

  5. The influence of mineral trioxide aggregate on adaptive immune responses to endodontic pathogens in mice.

    PubMed

    Rezende, Taia Maria Berto; Vieira, Leda Quercia; Sobrinho, Antônio Paulino Ribeiro; Oliveira, Ricardo Reis; Taubman, Martin A; Kawai, Toshihisa

    2008-09-01

    This study assessed the influence of mineral trioxide aggregate (MTA) on adaptive immune responses. BALB/c mice were immunized with heat-killed Fusobacterium nucleatum (Fn) in MTA or other control adjuvants, and serum IgG responses to Fn were measured. Either Fn- or Peptostreptococcus anaerobius (Pa)-reactive memory T cells (Tm) were preincubated in vitro with/without MTA and restimulated with Fn or Pa. Tm proliferation and cytokine production were assessed. Compared with control groups, immunoglobulin G-antibody responses were upregulated in mice immunized with Fn in MTA in a similar manner to animals immunized with Fn in Freund's adjuvant or aluminum hydroxide adjuvant. Although MTA did not affect the upregulated expression of interleukin 10, tumor necrosis factor alpha, or RANKL by Tm, it suppressed the proliferation of Pa- or Fn-Tm and inhibited their production of Th1- or Th2-signature cytokines. MTA upregulated the adaptive humoral immune responses but had little or no effect on pro- or anti-inflammatory cytokine production by Tm.

  6. Effect of nanovaccine chemistry on humoral immune response kinetics and maturation

    NASA Astrophysics Data System (ADS)

    Haughney, Shannon L.; Ross, Kathleen A.; Boggiatto, Paola M.; Wannemuehler, Michael J.; Narasimhan, Balaji

    2014-10-01

    Acute respiratory infections represent a significant portion of global morbidity and mortality annually. There is a critical need for efficacious vaccines against respiratory pathogens. To vaccinate against respiratory disease, pulmonary delivery is an attractive route because it mimics the route of natural infection and can confer both mucosal and systemic immunity. We have previously demonstrated that a single dose, intranasal vaccine based on polyanhydride nanoparticles elicited a protective immune response against Yersinia pestis for at least 40 weeks after immunization with F1-V. Herein, we investigate the effect of nanoparticle chemistry and its attributes on the kinetics and maturation of the antigen-specific serum antibody response. We demonstrate that manipulation of polyanhydride nanoparticle chemistry facilitated differential kinetics of development of antibody titers, avidity, and epitope specificity. The results provide new insights into the underlying role(s) of nanoparticle chemistry in providing long-lived humoral immunity and aid in the rational design of nanovaccine formulations to induce long-lasting and mature antibody responses.Acute respiratory infections represent a significant portion of global morbidity and mortality annually. There is a critical need for efficacious vaccines against respiratory pathogens. To vaccinate against respiratory disease, pulmonary delivery is an attractive route because it mimics the route of natural infection and can confer both mucosal and systemic immunity. We have previously demonstrated that a single dose, intranasal vaccine based on polyanhydride nanoparticles elicited a protective immune response against Yersinia pestis for at least 40 weeks after immunization with F1-V. Herein, we investigate the effect of nanoparticle chemistry and its attributes on the kinetics and maturation of the antigen-specific serum antibody response. We demonstrate that manipulation of polyanhydride nanoparticle chemistry

  7. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    PubMed Central

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix

    2017-01-01

    Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066

  8. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    PubMed

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  9. Positive regulation of humoral and innate immune responses induced by inactivated Avian Influenza Virus vaccine in broiler chickens.

    PubMed

    Abdallah, Fatma; Hassanin, Ola

    2015-12-01

    Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.

  10. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  11. Humoral and cellular immune responses after influenza vaccination in patients with postcancer fatigue

    PubMed Central

    Prinsen, Hetty; van Laarhoven, Hanneke WM; Pots, Jeanette M; Duiveman-de Boer, Tjitske; Mulder, Sasja F; van Herpen, Carla ML; Jacobs, Joannes FM; Leer, Jan Willem H; Bleijenberg, Gijs; Stelma, Foekje F; Torensma, Ruurd; de Vries, I Jolanda M

    2015-01-01

    The aim of this study was to compare humoral and cellular immune responses to influenza vaccination in cancer survivors with and without severe symptoms of fatigue. Severely fatigued (n = 15) and non-fatigued (n = 12) disease-free cancer survivors were vaccinated against seasonal influenza. Humoral immunity was evaluated at baseline and post-vaccination by a hemagglutination inhibition assay. Cellular immunity was evaluated at baseline and post-vaccination by lymphocyte proliferation and activation assays. Regulatory T cells were measured at baseline by flow cytometry and heat-shock protein 90 alpha levels by ELISA. Comparable humoral immune responses were observed in fatigued and non-fatigued patients, both pre- and post-vaccination. At baseline, fatigued patients showed a significantly diminished cellular proliferation upon virus stimulation with strain H3N2 (1414 ± 1201 counts), and a trend in a similar direction with strain H1N1 (3025 ± 2339 counts), compared to non-fatigued patients (3099 ± 2401 and 5877 ± 4604 counts, respectively). The percentage of regulatory T lymphocytes was significantly increased (4.4 ± 2.1% versus 2.4 ± 0.8%) and significantly lower amounts of interleukin 2 were detected prior to vaccination in fatigued compared to non-fatigued patients (36.3 ± 44.3 pg/ml vs. 94.0 ± 45.4 pg/ml with strain H3N2 and 28.4 ± 44.0 pg/ml versus 74.5 ± 56.1 pg/ml with strain H1N1). Pre-vaccination heat-shock protein 90 alpha concentrations, post-vaccination cellular proliferation, and post-vaccination cytokine concentrations did not differ between both groups. In conclusion, influenza vaccination is favorable for severely fatigued cancer survivors and should be recommended when indicated. However, compared to non-fatigued cancer survivors, fatigued cancer survivors showed several significant differences in immunological reactivity at baseline, which warrants further investigation. PMID:25996472

  12. Human breast milk feeding induces stronger humoral immune response than formula feeding in neonatal porcine model

    USDA-ARS?s Scientific Manuscript database

    Several studies indicate stronger humoral immune responses in breast-fed than formula-fed infants. The key to the beneficial impact of breastmilk on the gastrointestinal (GI) tract and immune system development is the interaction between diet and the gut microbiome. A more comprehensive, mechanistic...

  13. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  14. Variability in Humoral Immunity to Measles Vaccine: New Developments

    PubMed Central

    Haralambieva, Iana H.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Whitaker, Jennifer A.; Poland, Gregory A.

    2015-01-01

    Despite the existence of an effective measles vaccine, resurgence in measles cases in the United States and across Europe has occurred, including in individuals vaccinated with two doses of the vaccine. Host genetic factors result in inter-individual variation in measles vaccine-induced antibodies, and play a role in vaccine failure. Studies have identified HLA and non-HLA genetic influences that individually or jointly contribute to the observed variability in the humoral response to vaccination among healthy individuals. In this exciting era, new high-dimensional approaches and techniques including vaccinomics, systems biology, GWAS, epitope prediction and sophisticated bioinformatics/statistical algorithms, provide powerful tools to investigate immune response mechanisms to the measles vaccine. These might predict, on an individual basis, outcomes of acquired immunity post measles vaccination. PMID:26602762

  15. NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster

    PubMed Central

    Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal

    2011-01-01

    Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted. PMID:20852987

  16. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis.

    PubMed

    Silveira, Marcelle Moura; Conceição, Fabricio Rochedo; Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Da Cunha, Carlos Eduardo Pouey; Conrad, Neida Lucia; Oliveira, Patrícia Diaz de; Hartwig, Daiane Drawanz; De Leon, Priscila Marques Moura; Moreira, Ângela Nunes

    2017-02-01

    Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-β were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (P<0.05). In addition, there was a significant increase in the expression of the IL-10 in mice immunized with pTARGET/ligBrep and fed with Saccharomyces boulardii. The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.

  17. IL-2 infusion abrogates humoral immune responses in humans.

    PubMed Central

    Gottlieb, D J; Prentice, H G; Heslop, H E; Bello, C; Brenner, M K

    1992-01-01

    Although IL-2 infusion enhances cell-mediated cytotoxicity in patients with neoplastic disease, administration is paradoxically associated with a modest fall in total serum IgG and an increased risk of infection. We now show that the adverse effects of IL-2 infusion on the humoral immune system are substantial. Although IL-2 induces the B cell growth and differentiating factors IL-4 and IL-6, infusion abrogates primary antibody responses entirely and reduces secondary antibody responses 50-fold following antigen challenge. There is no evidence of the generation of cells with suppressive activity on B cells but IL-2 increases the ratio of circulating virgin:memory cells. These results may help to explain the increased rate of bacterial infection in patients receiving IL-2. As IL-2 plays a central role in the generation of an immune response, the finding that it is also sufficiently immunosuppressive to inhibit primary- and secondary-type antibody responses suggests that exploration of the underlying mechanisms may provide insights into immune system homeostasis and may offer new approaches to therapeutic immunosuppression. Images Fig. 1 PMID:1544235

  18. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus

    PubMed Central

    Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K

    2015-01-01

    The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8+ T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4+ T cells. The level of Gag-specific CD8+ and CD4+ T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins. PMID:25695657

  19. Comparison of the humoral and cellular immune responses between body and head lice following bacterial challenge.

    PubMed

    Kim, Ju Hyeon; Min, Jee Sun; Kang, Jae Soon; Kwon, Deok Ho; Yoon, Kyong Sup; Strycharz, Joseph; Koh, Young Ho; Pittendrigh, Barry Robert; Clark, J Marshall; Lee, Si Hyeock

    2011-05-01

    The differences in the immune response between body lice, Pediculus humanus humanus, and head lice, Pediculus humanus capitis, were investigated initially by measuring the proliferation rates of two model bacteria, a Gram-positive Staphylococcus aureus and a Gram-negative Escherichia coli, following challenge by injection. Body lice showed a significantly reduced immune response compared to head lice particularly to E. coli at the early stage of the immune challenge. Annotation of the body louse genome identified substantially fewer immune-related genes compared with other insects. Nevertheless, all required genetic components of the major immune pathways, except for the immune deficiency (Imd) pathway, are still retained in the body louse genome. Transcriptional profiling of representative genes involved in the humoral immune response, following bacterial challenge, revealed that both body and head lice, regardless of their developmental stages, exhibited an increased immune response to S. aureus but little to E. coli. Head lice, however, exhibited a significantly higher phagocytotic activity against E. coli than body lice, whereas the phagocytosis against S. aureus differed only slightly between body and head lice. These findings suggest that the greater immune response in head lice against E. coli is largely due to enhanced phagocytosis and not due to differences in the humoral immune response. The reduced phagocytotic activity in body lice could be responsible, in part, for their increased vector competence. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    PubMed

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    PubMed Central

    Kenmoku, Hiroyuki

    2017-01-01

    ABSTRACT Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. PMID:28250052

  2. Evaluation of the humoral immune response of children with low level lead exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigart, J.R.; Graber, C.D.

    1976-07-01

    Twelve lead-exposed children, with evidence of metabolic impairment, and seven non-lead exposed children were examined for evidence of impairment of their immunological response. There were no differences between the control group and the lead exposed group with reference to complement levels, immunoglobulins, or anamnestic response to the tetanus toxoid antigen. It remains to be demonstrated whether or not there is deficient response to primary immunization, whether other antigens are more affected by lead, or whether impairment of humoral immune response requires a more serious degree of lead intoxication.

  3. Cellular and humoral cross-immunity against two H3N2v influenza strains in presumably unexposed healthy and HIV-infected subjects.

    PubMed

    Agrati, Chiara; Castilletti, Concetta; Cimini, Eleonora; Lapa, Daniele; Quartu, Serena; Caglioti, Claudia; Lanini, Simone; Cattoli, Giovanni; Martini, Federico; Ippolito, Giuseppe; Capobianchi, Maria R

    2014-01-01

    Human cases of infection due to a novel swine-origin variant of influenza A virus subtype H3N2 (H3N2v) have recently been identified in the United States. Pre-existing humoral and cellular immunity has been recognized as one of the key factors in limiting the infection burden of an emerging influenza virus strain, contributing to restrict its circulation and to mitigate clinical presentation. Aim of this study was to assess humoral and cell-mediated cross immune responses to H3N2v in immuno-competent (healthy donors, n = 45) and immuno-compromised hosts (HIV-infected subjects, n = 46) never exposed to H3N2v influenza strain. Humoral response against i) H3N2v (A/H3N2/Ind/08/11), ii) animal vaccine H3N2 strain (A/H3N2/Min/11/10), and iii) pandemic H1N1 virus (A/H1N1/Cal/07/09) was analysed by hemagglutination inhibition assay; cell-mediated response against the same influenza strains was analysed by ELISpot assay. A large proportion of healthy and HIV subjects displayed cross-reacting humoral and cellular immune responses against two H3N2v strains, suggesting the presence of B- and T-cell clones able to recognize epitopes from emerging viral strains in both groups. Specifically, humoral response was lower in HIV subjects than in HD, and a specific age-related pattern of antibody response against different influenza strains was observed both in HD and in HIV. Cellular immune response was similar between HD and HIV groups and no relationship with age was reported. Finally, no correlation between humoral and cellular immune response was observed. Overall, a high prevalence of HD and HIV patients showing cross reactive immunity against two H3N2v strains was observed, with a slightly lower proportion in HIV persons. Other studies focused on HIV subjects at different stages of diseases are needed in order to define how cross immunity can be affected by advanced immunosuppression.

  4. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses.

    PubMed

    Liu, Hui; Jia, Zhenghu; Yang, Chengmao; Song, Mei; Jing, Zhe; Zhao, Yapu; Wu, Zhenzhou; Zhao, Liqing; Wei, Dongsheng; Yin, Zhinan; Hong, Zhangyong

    2018-06-01

    Aluminum salt (Alum) is one of the most important immune adjuvants approved for use in humans, however it is not suitable for vaccination against various chronic infectious diseases and cancers for not being able to induce cell-mediated (Th1) immunity. Here, we encapsulated an Alum colloid inside β-glucan particles (GPs), which are a type of natural particles derived from the yeast glucan shells, to prepare hybrid GP-Alum (GP-Al) adjuvant particles with a very uniform size of 2-4 μm. These hybrid particles can be used to load antigen proteins through a simple mixing procedure, and can be highly specifically targeted to antigen-presenting cells (APCs) and strongly activate dendritic cells (DCs) maturation and cytokine secretion. In an animal model, they elicit a strong Th1-biased immune response and extremely high antibody titer, and cause marked prophylactic and therapeutic effects against tumors. As Alum has been proven to be a safe adjuvant to induce strong humoral responses and β-glucans are safe for human use, this very uniform hybrid Alum particulate system could have important application as a vaccine carrier to stimulate humoral and cellular immune responses at the same time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    PubMed Central

    Sebina, Ismail; James, Kylie R.; Soon, Megan S. F.; Best, Shannon E.; Montes de Oca, Marcela; Amante, Fiona H.; Thomas, Bryce S.; Beattie, Lynette; Souza-Fonseca-Guimaraes, Fernando; Smyth, Mark J.; Hertzog, Paul J.; Hill, Geoffrey R.; Engwerda, Christian R.

    2016-01-01

    Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria. PMID:27812214

  6. Intravenous infusion of apoptotic cells simultaneously with allogeneic hematopoietic grafts alters anti-donor humoral immune responses.

    PubMed

    Perruche, Sylvain; Kleinclauss, François; Bittencourt, Marcelo de Carvalho; Paris, Dominique; Tiberghien, Pierre; Saas, Philippe

    2004-08-01

    Intravenous infusion of apoptotic donor or third-party leukocytes simultaneously with an allogeneic donor bone marrow (BM) graft favors engraftment across major histocompatibility barriers. While verifying that such apoptotic cell infusion might not also be associated with antibody (Ab)-mediated allo-immune responses, we found, rather strikingly, that apoptotic cell infusion could in fact successfully prevent a humoral allo-immunization against a BM graft in mice. Indeed, among recipients having rejected their BM graft, prior apoptotic cell infusion was associated with a near absence of Ab-mediated allo-responses, while such an immunization was frequently observed in the absence of apoptotic cell infusion. This was also observed when infusing host apoptotic cells, thus showing that the prevention of immunization was linked to the apoptotic state of the cells rather than mediated by residual anti-recipient activity. In vivo anti-transforming growth factor-beta (TGF-beta) treatment resulted in the loss of this apoptotic cell infusion-associated protective effect on humoral allo-responses. Further studies will determine whether apoptotic cell infusion, in addition to hematopoietic graft facilitation might also contribute to preventing deleterious Ab-mediated allo-responses in various transplantation settings.

  7. Polymorphisms in HLA-DPB1 Are Associated With Differences in Rubella Virus–Specific Humoral Immunity After Vaccination

    PubMed Central

    Lambert, Nathaniel D.; Haralambieva, Iana H.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Pankratz, Vernon Shane; Poland, Gregory A.

    2015-01-01

    Vaccination with live attenuated rubella virus induces a strong immune response in most individuals. However, small numbers of subjects never reach or maintain protective antibody levels, and there is a high degree of variability in immune response. We have previously described genetic polymorphisms in HLA and other candidate genes that are associated with interindividual differences in humoral immunity to rubella virus. To expand our previous work, we performed a genome-wide association study (GWAS) to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus–specific neutralizing antibodies. We identified rs2064479 in the HLA-DPB1 genetic region as being significantly associated with humoral immune response variations after rubella vaccination (P = 8.62 × 10−8). All other significant SNPs in this GWAS were located near the HLA-DPB1 gene (P ≤ 1 × 10−7). These findings demonstrate that polymorphisms in HLA-DPB1 are strongly associated with interindividual differences in neutralizing antibody levels to rubella vaccination and represent a validation of our previous HLA work. PMID:25293367

  8. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    PubMed

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Humoral Immune Response After Intravitreal But Not After Subretinal AAV8 in Primates and Patients.

    PubMed

    Reichel, Felix F; Peters, Tobias; Wilhelm, Barbara; Biel, Martin; Ueffing, Marius; Wissinger, Bernd; Bartz-Schmidt, Karl U; Klein, Reinhild; Michalakis, Stylianos; Fischer, M Dominik

    2018-04-01

    To study longitudinal changes of anti-drug antibody (ADA) titers to recombinant adeno-associated virus serotype 8 (rAAV8) capsid epitopes in nonhuman primates (NHP) and patients. Three groups of six NHP each received subretinal injections (high dose: 1 × 1012 vector genomes [vg], low dose: 1 × 1011 vg, or vehicle only). Four additional animals received intravitreal injections of the high dose (1 × 1012 vg). Three patients received 1 × 1010 vg as subretinal injections. ELISA quantified ADA levels at baseline and 1, 2, 3, 7, 28, and 90 days after surgery in NHP and at baseline and 1, 3, and 6 months after surgery in patients. Two out of 22 animals lacked ADA titers at baseline and developed low ADA titers toward the end of the study. Titers in the low-dose group stayed constant, while two of six animals from the high-dose group developed titers that rose beyond the range of the assay. All animals from the intravitreal control group showed a rise in ADA titer by day 7 that peaked at day 28. Preliminary data from the clinical trial (NCT02610582) show no humoral immune response in patients following subretinal delivery of 1 × 1010 vg. No significant induction of ADA occurred in NHP when mimicking the clinical scenario of subretinal delivery with a clinical-grade rAAV8 and concomitant immunosuppression. Likewise, clinical data showed no humoral immune response in patients. In contrast, intravitreal delivery was associated with a substantial humoral immune response. Subretinal delivery might be superior to an intravitreal application regarding immunologic aspects.

  10. Effects of Classroom Humor Climate and Acceptance of Humor Messages on Adolescents' Expressions of Humor

    ERIC Educational Resources Information Center

    Chiang, Yi-Chen; Lee, Chun-Yang; Wang, Hong-Huei

    2016-01-01

    Background: To adapt to dramatic changes from physical growth, physical development and the increasing demand of significant others, humor has been found to be an effective coping strategy. However, previous studies have found that adolescents start to express their humor styles with aggressive components which causes negative consequences, such…

  11. A novel mode of induction of the humoral innate immune response in Drosophila larvae.

    PubMed

    Kenmoku, Hiroyuki; Hori, Aki; Kuraishi, Takayuki; Kurata, Shoichiro

    2017-03-01

    Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin ; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. © 2017. Published by The Company of Biologists Ltd.

  12. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    PubMed Central

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  13. Local and systemic humoral immune response in farmed Atlantic salmon (Salmo salar L.) under a natural amoebic gill disease outbreak.

    PubMed

    Marcos-López, Mar; Espinosa Ruiz, Cristóbal; Rodger, Hamish D; O'Connor, Ian; MacCarthy, Eugene; Esteban, M Ángeles

    2017-07-01

    Amoebic gill disease (AGD), caused by the protozoan parasite Neoparamoeba perurans, is one of the most significant infectious diseases for Atlantic salmon (Salmo salar L.) mariculture. The present study investigated the humoral immune response (both local in gill mucus and systemic in serum) of farmed Atlantic salmon naturally infected with N. perurans in commercial sea pens, at two different stages of the disease and after freshwater treatment. Parameters analysed included activity of immune related enzymes (i.e. lysozyme, peroxidase, protease, anti-protease, esterase, alkaline phosphatase), IgM levels, and the terminal carbohydrate profile in the gill mucus. Overall, greater variations between groups were noted in the immune parameters determined in gill mucus than the equivalent in the serum. In gill mucus, IgM levels and peroxidase, lysozyme, esterase and protease activities were decreased in fish showing longer exposure time to the infection and higher disease severity, then showed a sequential increase after treatment. Results obtained highlight the capacity of gills to elicit a local response to the infection, indicate an impaired immune response at the later stages of the disease, and show partial reestablishment of the host immune status after freshwater treatment. In addition to providing data on the humoral response to AGD, this study increases knowledge on gill mucosal humoral immunity, since some of the parameters were analysed for the first time in gill mucus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice.

    PubMed

    Bo, Ruonan; Sun, Yaqin; Zhou, Shuzhen; Ou, Ning; Gu, Pengfei; Liu, Zhenguang; Hu, Yuanliang; Liu, Jiaguo; Wang, Deyun

    2017-01-01

    The success of subunit vaccines has been hampered by the problems of weak or short-term immunity and the lack of availability of nontoxic, potent adjuvants. It would be desirable to develop safe and efficient adjuvants with the aim of improving the cellular immune response against the target antigen. In this study, the targeting and sustained release of simple nanoliposomes containing Lycium barbarum polysaccharides (LBP) as an efficacious immune adjuvant to improve immune responses were explored. LBP liposome (LBPL) with high entrapment efficiency (86%) were obtained using a reverse-phase evaporation method and then used to encapsulate the model antigen, ovalbumin (OVA). We demonstrated that the as-synthesized liposome loaded with OVA and LBP (LBPL-OVA) was stable for 45 days and determined the encapsulation stability of OVA at 4°C and 37°C and the release profile of OVA from LBPL-OVA was investigated in pH 7.4 and pH 5.0. Further in vivo investigation showed that the antigen-specific humoral response was correlated with antigen delivery to the draining lymph nodes. The LBPL-OVA were also associated with high levels of uptake by key dendritic cells in the draining lymph nodes and they efficiently stimulated CD4 + and CD8 + T cell proliferation in vivo, further promoting antibody production. These features together elicited a significant humoral and celluar immune response, which was superior to that produced by free antigen alone.

  15. Stimulatory effects of Euphorbia cheiradenia on cell mediated immunity and humoral antibody synthesis.

    PubMed

    Amirghofran, Zahra; Azadmehr, Abbas; Bahmani, Masoud; Javidnia, Katayoun

    2008-06-01

    Studies have demonstrated that plant extracts possess various biological characteristics including immunomodulatory activity. Euphorbia cheiradenia Boiss et Hohen (Euphorbiaceae), a medicinal herb native to Iran was investigated for its immunomodulatory effects. The methanolic extract of the plant was prepared and added to mitogen-induced human peripheral blood lymphocyte cultures at different concentrations. Effect of E. cheiradenia on in vivo cell-mediated immunity was measured by delayed type hypersensitivity (DTH) reaction. The effect of the extract on humoral antibody synthesis was also measured in immunized mice treated with different extract concentrations. The stimulation index (SI) for cultures treated with 0.01 to 200 microg/ml of the extract ranged from 1.3+/-0.04 to 2.4+/-0.06, (p<0.01) showing a significant stimulatory effect of E. cheiradenia on the lymphocytes. IL-2 secreted from lymphocytes treated with the extract was significantly higher than that from the non-treated cells (p<0.001). Cell cycle analysis on mitogen-treated lymphocytes exposed to different concentrations of the extract showed an increase in the percentage of cells at G2M phase with increases in the concentration of the extract, but the results was not significant. In DTH skin test, the mean footpad thickness of all mice groups treated with 1, 50 and 100 mg/kg of the extract at 24 hours after immunization with antigen was 3.5+/-0.6 mm compared to 2.5+/-0.5 mm for the non-treated group (p=0.005). Moreover, an increase in production of specific antibody in mice immunized with different extract concentrations was also demonstrated. Results of this study showed the ability of the E. cheiradenia extract to induce proliferation of lymphocytes and enhance both cellular and humoral specific immune responses.

  16. Characterization of the Humoral Immune Response against Gnathostoma binucleatum in Patients Clinically Diagnosed with Gnathostomiasis

    PubMed Central

    Zambrano-Zaragoza, José Francisco; Durán-Avelar, Ma de Jesús; Messina-Robles, Maud; Vibanco-Pérez, Norberto

    2012-01-01

    Gnathostomiasis is an emerging systemic parasitic disease acquired by consuming raw or uncooked fresh-water fish infected with the advanced third-stage larvae of Gnathostoma spp. This disease is endemic to the Pacific region of Mexico, and one of its etiologic agents has been identified as Gnathostoma binucleatum. We characterized the humoral immune response of patients clinically diagnosed with gnathostomiasis by detecting total IgM, IgE, and IgG class and subclasses against a crude extract of the parasite by Western blotting. Our results do not show differences in the antigens recognized by IgM and IgE. However, we found that the specific humoral immune response is caused mainly by IgG, specifically IgG4. We found that 43%, 65.2%, 54.1%, and 26.3% of the patients recognize the 37-kD, 33-kD, 31-kD, and 24-kDa antigens, suggesting that the 33-kD antigen is the immunodominant antigen of G. binucleatum. PMID:22665606

  17. A humoral immune response confers protection against Haemophilus ducreyi infection.

    PubMed

    Cole, Leah E; Toffer, Kristen L; Fulcher, Robert A; San Mateo, Lani R; Orndorff, Paul E; Kawula, Thomas H

    2003-12-01

    Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. Neither naturally occurring chancroid nor experimental infection with H. ducreyi results in protective immunity. Likewise, a single inoculation of H. ducreyi does not protect pigs against subsequent infection. Accordingly, we used the swine model of chancroid infection to examine the impact of multiple inoculations on a host's immune response. After three successive inoculations with H. ducreyi, pigs developed a modestly protective immune response evidenced by the decreased recovery of viable bacteria from lesions. All lesions biopsied 2 days after the first and second inoculations contained viable H. ducreyi cells, yet only 55% of the lesions biopsied 2 days after the third inoculation did. Nearly 90% of the lesions biopsied 7 days after the first inoculation contained viable H. ducreyi cells, but this percentage dropped to only 16% after the third inoculation. Between the first and third inoculations, the average recovery of CFU from lesions decreased approximately 100-fold. The reduced recovery of bacteria corresponded directly with a fivefold increase in H. ducreyi-specific antibody titers and the emergence of bactericidal activity. These immune sera were protective when administered to naïve pigs prior to challenge with H. ducreyi. These data suggest that pigs mount an effective humoral immune response to H. ducreyi after multiple exposures to the organism.

  18. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination.

    PubMed

    Lambert, Nathaniel D; Haralambieva, Iana H; Kennedy, Richard B; Ovsyannikova, Inna G; Pankratz, Vernon Shane; Poland, Gregory A

    2015-03-15

    Vaccination with live attenuated rubella virus induces a strong immune response in most individuals. However, small numbers of subjects never reach or maintain protective antibody levels, and there is a high degree of variability in immune response. We have previously described genetic polymorphisms in HLA and other candidate genes that are associated with interindividual differences in humoral immunity to rubella virus. To expand our previous work, we performed a genome-wide association study (GWAS) to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus-specific neutralizing antibodies. We identified rs2064479 in the HLA-DPB1 genetic region as being significantly associated with humoral immune response variations after rubella vaccination (P = 8.62 × 10(-8)). All other significant SNPs in this GWAS were located near the HLA-DPB1 gene (P ≤ 1 × 10(-7)). These findings demonstrate that polymorphisms in HLA-DPB1 are strongly associated with interindividual differences in neutralizing antibody levels to rubella vaccination and represent a validation of our previous HLA work. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Assessment of humoral and cellular-mediated immune response in chickens treated with tilmicosin, florfenicol, or enrofloxacin at the time of Newcastle disease vaccination.

    PubMed

    Khalifeh, M S; Amawi, M M; Abu-Basha, E A; Yonis, I Bani

    2009-10-01

    The effect of tilmicosin, florfenicol, or enrofloxacin on humoral and cell-mediated immune response induced by Newcastle disease (ND) vaccination was evaluated in 20-wk-old specific-pathogen-free layer chickens. Humoral immunity was measured by detection of ND virus (NDV) antibody titer and anti-NDV IgG response using the hemagglutination inhibition (HI) test and ELISA, respectively, whereas cell-mediated immunity was evaluated by measurement of chicken interferon gamma (ChIFN-gamma) produced in splenocytes cell culture stimulated with concanavalin A, inactivated NDV antigen, or live attenuated La Sota strain using ELISA. Florfenicol hampered the ND antibody production measured by both HI and ELISA. Tilmicosin and enrofloxacin reduced the production of ND antibody in the first 3 wk after the last ND vaccination measured by HI test, which suggests that these antibiotics exert their effect mainly on the IgM isotype. The ND-vaccinated, but not treated group, showed an increase in ChIFN-gamma production after NDV antigen-specific stimulation above the nonstimulated cell culture, whereas this effect was masked in all the antibiotic-treated groups due to the stronger ChIFN-gamma production background value reported in the nonstimulated cell culture. In conclusion, our results showed, for the first time, that tilmicosin, florfenicol, or enrofloxacin reduced the humoral immune response and had beneficial effects on the cell-mediated immune response. In addition, we demonstrated that the combination of both inactivated and attenuated ND vaccine gave a strong immune response at both the humoral and cellular level.

  20. Ceftiofur hydrochloride affects the humoral and cellular immune response in pigs after vaccination against swine influenza and pseudorabies.

    PubMed

    Pomorska-Mól, Małgorzata; Czyżewska-Dors, Ewelina; Kwit, Krzysztof; Wierzchosławski, Karol; Pejsak, Zygmunt

    2015-10-22

    Cephalosporins are a class of antibiotics that are active against many Gram-positive and some Gram-negative bacteria. Beyond their antibacterial activity, they are reported to have various immunomodulatory properties. It has been shown that they reduce the secretion of cytokines as well as influence the humoral and cellular immune response. In the field conditions antibiotics are frequently administered at the same time as vaccines in pigs and, in the view of their potential immunomodulatory properties, it is important to examine their effect on the development and persistence of the post-vaccinal immune response. Ceftiofur is a very popular veterinary medicine third-generation cephalosporin with a broad spectrum of activity. It has been shown that it can inhibit cytokines secretion and in this way can potentially affect host immune response. The influence of ceftiofur on the immune response has not yet been investigated in pigs. In the present study we evaluated the influence of therapeutic doses of ceftiofur hydrochloride on the post-vaccinal immune response after vaccination with two model vaccines (live and inactivated). Seventy pigs were divided into five groups: control, unvaccinated (C), control vaccinated against swine influenza (SI-V), control vaccinated against pseudorabies (PR-V), vaccinated against SI during ceftiofur administration (SI-CEF) and vaccinated against PR during ceftiofur administration (PR-CEF). Pigs from SICEF and PR-CEF groups received therapeutic dose of ceftiofur for five days. Pigs from SI-CEF, PR-CEF, SIV and PR-V groups were vaccinated against SI and PR. Antibodies to PRV were determined with the use of blocking ELISA tests (IDEXX Laboratories, USA). Humoral responses to SIV were assessed based on haemagglutination inhibition assay. T-cell response was analyzed with the use of proliferation test. The concentrations of IFN- γ and IL-4 in culture supernatant were determined with the use of ELISA kits Invitrogen Corporation, USA). The

  1. Honey bee drones maintain humoral immune competence throughout all life stages in the absence of vitellogenin production.

    PubMed

    Gätschenberger, Heike; Gimple, Olaf; Tautz, Jürgen; Beier, Hildburg

    2012-04-15

    Drones are haploid male individuals whose major social function in honey bee colonies is to produce sperm and mate with a queen. In spite of their limited tasks, the vitality of drones is of utmost importance for the next generation. The immune competence of drones - as compared to worker bees - is largely unexplored. Hence, we studied humoral and cellular immune reactions of in vitro reared drone larvae and adult drones of different age upon artificial bacterial infection. Haemolymph samples were collected after aseptic and septic injury and subsequently employed for (1) the identification of immune-responsive peptides and/or proteins by qualitative proteomic analyses in combination with mass spectrometry and (2) the detection of antimicrobial activity by inhibition-zone assays. Drone larvae and adult drones responded with a strong humoral immune reaction upon bacterial challenge, as validated by the expression of small antimicrobial peptides. Young adult drones exhibited a broader spectrum of defence reactions than drone larvae. Distinct polypeptides including peptidoglycan recognition protein-S2 and lysozyme 2 were upregulated in immunized adult drones. Moreover, a pronounced nodulation reaction was observed in young drones upon bacterial challenge. Prophenoloxidase zymogen is present at an almost constant level in non-infected adult drones throughout the entire lifespan. All observed immune reactions in drones were expressed in the absence of significant amounts of vitellogenin. We conclude that drones - like worker bees - have the potential to activate multiple elements of the innate immune response.

  2. Potentiation of the humoral immune response elicited by a commercial vaccine against bovine respiratory disease by Enterococcus faecalis CECT7121.

    PubMed

    Díaz, A M; Almozni, B; Molina, M A; Sparo, M D; Manghi, M A; Canellada, A M; Castro, M S

    2018-04-10

    Vaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response. Considering veterinary vaccines are frequently tested in murine models, we have developed an immunisation schedule in BALB/c mice that allows us to study the immune response elicited by BRD vaccine. In order to evaluate a potential strategy to enhance vaccine efficacy, the adjuvant effect of Enterococcus faecalis CECT7121 on the murine specific humoral immune response elicited by a commercial vaccine against BRD was studied. Results indicate that the intragastric administration of E. faecalis CECT7121 was able to induce an increase in the specific antibody titres against the bacterial components of the BRD vaccines (P. multocida and M. haemolytica). The quality of the humoral immune response, in terms of antibody avidity, was also improved. Regarding the cellular immune response, although the BRD vaccination induced a low specific secretion of cytokines in the spleen cell culture supernatants, E. faecalis CECT7121-treated mice showed higher interferon-γ production than immunised control mice. Our results allowed us to conclude that the administration of E. faecalis CECT7121 could be employed as an adjuvant strategy to potentiate humoral immune responses.

  3. SUBCLINICAL INFECTION OF DOGS BY CANINE-ADAPTED MEASLES VIRUS EVIDENCED BY THEIR SUBSEQUENT IMMUNITY TO CANINE DISTEMPER VIRUS

    PubMed Central

    Moura, Roberto A.; Warren, Joel

    1961-01-01

    Moura, Roberto A. (Chas. Pfizer and Company, Inc., Terre Haute, Ind.) and Joel Warren. Subclinical infection of dogs by canine-adapted measles virus evidenced by their subsequent immunity to canine distemper virus. J. Bacteriol. 82:702–705. 1961.—Young dogs were inoculated with virulent measles virus which had been adapted to canine kidney or human amnion cell culture. None of the animals showed any clinical symptoms nor could virus be isolated from the blood, although measles-neutralizing and complement-fixing antibodies developed during convalescence. All dogs failed to develop antibody to canine distemper. However, when these and normal control animals were subsequently inoculated intracerebrally with virulent distemper virus, each of the controls succumbed to typical symptoms, whereas all of the measles-immune dogs survived. These results suggest that the cross-protection conferred by measles against canine distemper virus infection involves factors other than humoral antibody. The immunity persists for a considerable length of time. PMID:14476677

  4. Safety, humoral and cell-mediated immune responses to herpes zoster vaccine in subjects with diabetes mellitus.

    PubMed

    Hata, Atsuko; Inoue, Fukue; Yamasaki, Midori; Fujikawa, Jun; Kawasaki, Yukiko; Hamamoto, Yoshiyuki; Honjo, Sachiko; Moriishi, Eiko; Mori, Yasuko; Koshiyama, Hiroyuki

    2013-09-01

    To evaluate varicella zoster virus-specific cell-mediated immunity and humoral immunogenicity against the herpes zoster vaccine, which is licensed as the Live Varicella Vaccine (Oka Strain) in Japan, in elderly people with or without diabetes mellitus. A pilot study was conducted between May 2010 and November 2010 at Kitano Hospital, a general hospital in the city of Osaka in Japan. A varicella skin test, interferon-gamma enzyme-linked immunospot assay and immunoadherence hemagglutination tests were performed 0, 3, and 6 months after vaccination. Vaccine safety was also assessed using questionnaires for 42 days and development of zoster during the one-year observational period. We enrolled 10 healthy volunteers and 10 patients with diabetes mellitus aged 60-70 years. The live herpes zoster vaccine boosted virus-specific, cell-mediated and humoral immunity between elderly people, with or without diabetes. Moreover, no systemic adverse reaction was found. None of the study participants developed herpes zoster. The live herpes zoster vaccine was used safely. It effectively enhanced specific immunity to varicella zoster virus in older people with or without diabetes mellitus. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  5. TLR10 is a B-cell Intrinsic Suppressor of Adaptive Immune Responses

    PubMed Central

    Hess, Nicholas J.; Jiang, Song; Li, Xinyan; Guan, Yue; Tapping, Richard I.

    2016-01-01

    Toll-like receptors (TLRs) play a central role in the initiation of adaptive immune responses with several TLR agonists acting as known B-cell mitogens. Despite thousands of publications on TLRs, the function of TLR10 remains unknown. We have found that antibody mediated engagement of TLR10 on primary human B-cells suppresses B-cell proliferation, cytokine production and signal transduction. When challenged with either a T-independent or T-dependent antigen, TLR10 transgenic mice exhibit diminished antibody responses. Adoptive transfer of splenic B-cells into B-cell deficient mice revealed that the suppressive effects on antigen-specific humoral immune responses are entirely B-cell intrinsic. Our results demonstrate that TLR10 has a functional role within the B-cell lineage that is distinct from that of other TLR family members and may provide a potential therapeutic target for diseases characterized by dysregulated B-cell activity. PMID:27956526

  6. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection

    PubMed Central

    Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu

    2014-01-01

    The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268

  7. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    USDA-ARS?s Scientific Manuscript database

    Purpose: To evaluate and compare humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine. Methods: Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each....

  8. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    USDA-ARS?s Scientific Manuscript database

    Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were va...

  9. Impact of the blood meal on humoral immunity and microbiota in the gut of female Culicoides sonorensis

    USDA-ARS?s Scientific Manuscript database

    Although Culicoides sonorensis is an important vector of orbiviruses that cause significant disease in domestic and wild ruminants in the USA, little is known about factors contributing to midge vector competence. In other vectors such as mosquitoes, interactions between the humoral immune response,...

  10. Cocoa-enriched diets modulate intestinal and systemic humoral immune response in young adult rats.

    PubMed

    Pérez-Berezo, Teresa; Franch, Angels; Ramos-Romero, Sara; Castellote, Cristina; Pérez-Cano, Francisco J; Castell, Margarida

    2011-05-01

    Previous studies have shown that a highly enriched cocoa diet affects both intestinal and systemic immune function in young rats. The aim of this study was to elucidate whether diets containing lower amounts of cocoa could also influence the systemic and intestinal humoral immune response. Fecal and serum samples were collected during the study and, at the end, intestinal washes were obtained and mesenteric lymph nodes and small-intestine walls were excised for gene expression assessment. IgA, IgM, IgG1, IgG2a, IgG2b and IgG2c concentrations were quantified in serum whereas S-IgA and S-IgM were determined in feces and intestinal washes. Animals receiving 5 and 10% cocoa for 3 wk showed no age-related increase in serum IgG1 and IgG2a concentrations, and IgG2a values were significantly lower than those in reference animals. Serum IgM was also decreased by the 10% cocoa diet. The 5 and 10% cocoa diets dramatically reduced intestinal S-IgA concentration and modified the expression of several genes involved in IgA synthesis. A diet containing 2% cocoa had no effect on most of the studied variables. The results demonstrate the downregulatory effect of a 5% or higher cocoa diet on the systemic and intestinal humoral immune response in adult rats. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Humoral immune responses to Pneumocystis jirovecii antigens in HIV-infected and uninfected young children with pneumocystis pneumonia.

    PubMed

    Djawe, Kpandja; Daly, Kieran R; Levin, Linda; Zar, Heather J; Walzer, Peter D

    2013-01-01

    Humoral immune responses in human immunodeficiency virus (HIV)-infected and uninfected children with Pneumocystis pneumonia (PcP) are poorly understood. Consecutive children hospitalized with acute pneumonia, tachypnea, and hypoxia in South Africa were investigated for PcP, which was diagnosed by real-time polymerase chain reaction on lower respiratory tract specimens. Serum antibody responses to recombinant fragments of the carboxyl terminus of Pneumocystis jirovecii major surface glycoprotein (MsgC) were analyzed. 149 children were enrolled of whom 96 (64%) were HIV-infected. PcP occurred in 69 (72%) of HIV-infected and 14 (26%) of HIV-uninfected children. HIV-infected children with PcP had significantly decreased IgG antibodies to MsgC compared to HIV-infected patients without PcP, but had similar IgM antibodies. In contrast, HIV-uninfected children with PcP showed no change in IgG antibodies to MsgC, but had significantly increased IgM antibodies compared to HIV-uninfected children without PCP. Age was an independent predictor of high IgG antibodies, whereas PcP was a predictor of low IgG antibodies and high IgM antibodies. IgG and IgM antibody levels to the most closely related MsgC fragments were predictors of survival from PcP. Young HIV-infected children with PcP have significantly impaired humoral immune responses to MsgC, whereas HIV-uninfected children with PcP can develop active humoral immune responses. The children also exhibit a complex relationship between specific host factors and antibody levels to MsgC fragments that may be related to survival from PcP.

  12. Systemic humoral immunity in beef bulls following therapeutic vaccination against Tritrichomonas foetus.

    PubMed

    Alling, Christopher; Rae, D Owen; Ma, Xiaojie; Neumann, Laura; Lollis, L Gene; Steele, Elizabeth; Yelvington, John; Naikare, Hemant K; Walden, Heather Stockdale; Crews, John; Boughton, Raoul

    2018-05-15

    The utility of therapeutic vaccination of bulls against Tritrichomonas foetus has been advocated in previous studies, but anecdotal reports suggest this practice does not clear infections and may additionally confound diagnostic testing by reducing parasite burdens below detectable limits. The objective of this study was to characterize the systemic humoral immune response to therapeutic vaccination in T. foetus-infected bulls over a period of four months using an indirect ELISA and to compare the dynamics of this response to culture and PCR results to establish the existence of a relationship (or lack thereof) between immunization and infection status. A study population of 4- to 6-year-old T. foetus-infected beef bulls (n = 20) was divided equally into a treatment group and a control group. The treatment group received two doses of commercially prepared whole cell killed vaccine 2 weeks apart while the control group received injections of vaccine diluent. Blood samples were collected at each injection and at 4 subsequent dates every 4 weeks thereafter (i.e. 0, 2, 6, 10, 14, and 18 wks) to measure IgG 1 and IgG 2 antibody subisotype response via an indirect ELISA. Preputial smegma samples were collected at the four monthly intervals following vaccination for diagnosis of infection via InPouch™ culture, Modified Diamond's Medium (MDM) culture, and PCR. Humoral response for both IgG isotypes from week 2 through week 18 were significantly increased in vaccinates compared to controls. No significant decrease in infection prevalence was detected in the treatment group for any of the diagnostic methods used. The apparent lack of pathogen clearance during a stimulated immune response suggests that therapeutic vaccination may not be a useful T. foetus management practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen

    PubMed Central

    Arias, Mauricio A.; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin

    2011-01-01

    Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. PMID:21145913

  14. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection.

    PubMed

    Jaillon, Sébastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto

    2014-04-17

    Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Mifepristone (RU486) restores humoral and T cell-mediated immune response in endotoxin immunosuppressed mice

    PubMed Central

    Rearte, B; Maglioco, A; Balboa, L; Bruzzo, J; Landoni, V I; Laborde, E A; Chiarella, P; Ruggiero, R A; Fernández, G C; Isturiz, M A

    2010-01-01

    Sepsis and septic shock can be caused by Gram-positive and -negative bacteria and other microorganisms. In the case of Gram-negative bacteria, endotoxin, a normal constituent of the bacterial wall, also known as lipopolysaccharide (LPS), has been considered as one of the principal agents causing the undesirable effects in this critical illness. The response to LPS involves a rapid secretion of proinflammatory cytokines such as tumour necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, interferon (IFN)-γ and the concomitant induction of anti-inflammatory mediators such as IL-10, transforming growth factor (TGF)-β or glucocorticoids, which render the host temporarily refractory to subsequent lethal doses of LPS challenge in a process known as LPS or endotoxin tolerance. Although protective from the development of sepsis or systemic inflammation, endotoxin tolerance has also been pointed out as the main cause of the non-specific humoral and cellular immunosuppression described in these patients. In this report we demonstrate, using a mouse model, that mifepristone (RU486), a known glucocorticoid receptor antagonist, could play an important role in the restoration of both adaptive humoral and cellular immune response in LPS immunosuppressed mice, suggesting the involvement of endogenous glucocorticoids in this phenomenon. On the other hand, using cyclophosphamide and gemcitabine, we demonstrated that regulatory/suppressor CD4+CD25+forkhead boxP3+ and GR-1+CD11b+ cells do not play a major role in the establishment or the maintenance of endotoxin tolerance, a central mechanism for inducing an immunosuppression state. PMID:20964639

  16. Overexpression of Interleukin-7 Extends the Humoral Immune Response Induced by Rabies Vaccination.

    PubMed

    Li, Yingying; Zhou, Ming; Luo, Zhaochen; Zhang, Yachun; Cui, Min; Chen, Huanchun; Fu, Zhen F; Zhao, Ling

    2017-04-01

    Rabies continues to present a public health threat in most countries of the world. The most efficient way to prevent and control rabies is to implement vaccination programs for domestic animals. However, traditional inactivated vaccines used in animals are costly and have relatively low efficiency, which impedes their extensive use in developing countries. There is, therefore, an urgent need to develop single-dose and long-lasting rabies vaccines. However, little information is available regarding the mechanisms underlying immunological memory, which can broaden humoral responses following rabies vaccination. In this study, a recombinant rabies virus (RABV) that expressed murine interleukin-7 (IL-7), referred to here as rLBNSE-IL-7, was constructed, and its effectiveness was evaluated in a mouse model. rLBNSE-IL-7 induced higher rates of T follicular helper (Tfh) cells and germinal center (GC) B cells from draining lymph nodes (LNs) than the parent virus rLBNSE. Interestingly, rLBNSE-IL-7 improved the percentages of long-lived memory B cells (Bmem) in the draining LNs and plasma cells (PCs) in the bone marrow (BM) for up to 360 days postimmunization (dpi). As a result of the presence of the long-lived PCs, it also generated prolonged virus-neutralizing antibodies (VNAs), resulting in better protection against a lethal challenge than that seen with rLBNSE. Moreover, consistent with the increased numbers of Bmem and PCs after a boost with rLBNSE, rLBNSE-IL-7-immunized mice promptly produced a more potent secondary anti-RABV neutralizing antibody response than rLBNSE-immunized mice. Overall, our data suggest that overexpressing IL-7 improved the induction of long-lasting primary and secondary antibody responses post-RABV immunization. IMPORTANCE Extending humoral immune responses using adjuvants is an important method to develop long-lasting and efficient vaccines against rabies. However, little information is currently available regarding prolonged immunological

  17. Humoral immune response and TLR9 gene expression in Pacific red snapper (Lutjanus peru) experimentally exposed to Aeromonas veronii.

    PubMed

    Reyes-Becerril, Martha; Angulo, Carlos; Ascencio, Felipe

    2015-02-01

    Aquaculture production of Pacific red snapper Lutjanus peru is growing rapidly in Mexico, especially in Gulf of California. As it is a relatively new aquaculture species there are few reports evaluating its immune response to pathogens. The Gram-negative bacteria Aeromonas veronii is a heterogeneous organism that causes the disease known as motile aeromonad septicemia, which is responsible for serious economic loss in seabream culture due to bacterial infections. For the purpose of this study, juvenile Pacific red snapper specimens were intraperitoneally injected with low doses of A. veronii (1 × 10(6) CFU ml(-1)). Changes in humoral immune parameters (total protein, myeloperoxidase, lisozyme and antiprotease activities and IgM levels), as well as superoxide dismutase and catalase activities, and TLR9 gene expression were evaluated 24 and 48 h after injection. Overall, the results showed an enhanced in humoral immune parameters and SOD and CAT activities in fish infected with A. veronii compared with control group at 24 or 48 h. By real time PCR assays, the basal mRNA transcripts of TLR9 showed that were highly expressed in intestine and leucocytes compared to skin, head kidney, liver and gill. Then, the mRNA expression levels of TLR9 in head kidney, skin, liver and intestine were analyzed in non-infected and experimentally infected fish 24 and 48 h after injection. A. veronii up-regulated the expression of TLR9 at 24 or 48 h of exposure in all samples analyzed except in liver. Interestingly, intestine produced the greatest increase in transcript levels upon exposure (48 h) to A. veronii. Taken together, our results suggest that low doses of A. veronii infection inducing humoral immune system and TLR9 immune gene in Pacific red snapper that can be useful in the health control of this species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Humoral Immune Responses to Pneumocystis jirovecii Antigens in HIV-Infected and Uninfected Young Children with Pneumocystis Pneumonia

    PubMed Central

    Djawe, Kpandja; Daly, Kieran R.; Walzer, Peter D.

    2013-01-01

    Background Humoral immune responses in human immunodeficiency virus (HIV)-infected and uninfected children with Pneumocystis pneumonia (PcP) are poorly understood. Methods Consecutive children hospitalized with acute pneumonia, tachypnea, and hypoxia in South Africa were investigated for PcP, which was diagnosed by real-time polymerase chain reaction on lower respiratory tract specimens. Serum antibody responses to recombinant fragments of the carboxyl terminus of Pneumocystis jirovecii major surface glycoprotein (MsgC) were analyzed. Results 149 children were enrolled of whom 96 (64%) were HIV-infected. PcP occurred in 69 (72%) of HIV-infected and 14 (26%) of HIV-uninfected children. HIV-infected children with PcP had significantly decreased IgG antibodies to MsgC compared to HIV-infected patients without PcP, but had similar IgM antibodies. In contrast, HIV-uninfected children with PcP showed no change in IgG antibodies to MsgC, but had significantly increased IgM antibodies compared to HIV-uninfected children without PCP. Age was an independent predictor of high IgG antibodies, whereas PcP was a predictor of low IgG antibodies and high IgM antibodies. IgG and IgM antibody levels to the most closely related MsgC fragments were predictors of survival from PcP. Conclusions Young HIV-infected children with PcP have significantly impaired humoral immune responses to MsgC, whereas HIV-uninfected children with PcP can develop active humoral immune responses. The children also exhibit a complex relationship between specific host factors and antibody levels to MsgC fragments that may be related to survival from PcP. PMID:24386119

  19. Evaluation of ToxA and Vibrio parahaemolyticus lysate on humoral immune response and immune-related genes in Pacific red snapper.

    PubMed

    Reyes-Becerril, Martha; Maldonado-García, Minerva; Guluarte, Crystal; León-Gallo, Amalia; Rosales-Mendoza, Sergio; Ascencio, Felipe; Hirono, Ikuo; Angulo, Carlos

    2016-09-01

    Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen.

    PubMed

    Arias, Mauricio A; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin

    2011-02-01

    Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Extract of medicinal mushroom Agaricus blazei Murill enhances the non-specific and adaptive immune activities in BALB/c mice.

    PubMed

    Ni, Wei-Ya; Wu, Ming-Fanf; Liao, Nien-Chieh; Yeh, Ming-Yang; Lu, Hsu-Feng; Hsueh, Shu-Ching; Liu, Jia-You; Huang, Yi-Ping; Chang, Chuan-Hsun; Chung, Jing-Gung

    2013-01-01

    Agaricus blazei Murill (AbM) is traditionally used against a wide range of conditions such as ulcerative colitis, Crohn's disease, foot-and-mouth disease and chronic hepatitis C infection. In this study, we evaluated the immunomodulatory effects of AbM. For the non-specific immune response experiments, a total of 40 female BALB/c mice were divided into control (group 1) and experimental (groups 2-4) groups of 10 animals each. Groups 2, 3 and 4 were orally-administered high (819 mg/kg), medium (273 mg/kg) and low (136.5 mg/kg) doses of AbM daily for six weeks and then six parameters related to non-specific immune response were detected. For the adaptive immune response experiments, 40 female mice were similarly divided into four groups. After six weeks of treatment, animals were immunized with the OVA immunogen. Two weeks later, splenocytes and sera were collected. Four parameters related to adaptive immune response were evaluated. We found that feeding mice with AbM extract increased the IgG level in serum, promoted phagocytosis of peritoneal macrophages and elevated the activity of Natural killer cells. We also found that the highest dose of AbM increased interleukin-2 (IL-2) levels in splenocytes and that a medium dose increased interferon-γ. The levels of interleukin-4 (IL-4) were reduced or unchanged. T-helper type 1 cytokine levels were increased. AbM increased the humoral immune response and also affected the cellular immune response. These results provide evidence that AbM can modulate innate and adaptive immunity.

  2. The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections.

    PubMed

    Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan

    2006-02-01

    Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.

  3. Empirical evidence of cold stress induced cell mediated and humoral immune response in common myna ( Sturnus tristis)

    NASA Astrophysics Data System (ADS)

    Sandhu, Mansur A.; Zaib, Anila; Anjum, Muhammad S.; Qayyum, Mazhar

    2015-11-01

    Common myna ( Sturnus tristis) is a bird indigenous to the Indian subcontinent that has invaded many parts of the world. At the onset of our investigation, we hypothesized that the immunological profile of myna makes it resistant to harsh/new environmental conditions. In order to test this hypothesis, a number of 40 mynas were caught and divided into two groups, i.e., 7 and 25 °C for 14 days. To determine the effect of cold stress, cell mediated and humoral immune responses were assessed. The macrophage engulfment percentage was significantly ( P < 0.05) higher at 25 °C rather than 7 °C either co-incubated with opsonized or unopsonized sheep red blood cells (SRBC). Macrophage engulfment/cell and nitric oxide production behaved in a similar manner. However, splenic cells plaque formation, heterophil to lymphocyte (H/L) ratio, and serum IgM or IgG production remained non-significant. There was a significant increase of IgG antibody production after a second immunization by SRBC. To the best of our knowledge, these findings have never been reported in the progression of this bird's invasion in frosty areas of the world. The results revealed a strengthened humoral immune response of myna and made this bird suitable for invasion in the areas of harsh conditions.

  4. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses.

    PubMed

    Kumar, Sunny; Kesharwani, Siddharth S; Kuppast, Bhimanna; Bakkari, Mohammed Ali; Tummala, Hemachand

    2017-09-10

    New and improved vaccines are needed against challenging diseases such as malaria, tuberculosis, Ebola, influenza, AIDS, and cancer. The majority of existing vaccine adjuvants lack the ability to significantly stimulate the cellular immune response, which is required to prevent the aforementioned diseases. This study designed a novel particulate based pathogen-mimicking vaccine delivery system (PMVDS) to target antigen-presenting-cells (APCs) such as dendritic cells. The uniqueness of PMVDS is that the polymer used to prepare the delivery system, Inulin Acetate (InAc), activates the innate immune system. InAc was synthesized from the plant polysaccharide, inulin. PMVDS provided improved and persistent antigen delivery to APCs as an efficient vaccine delivery system, and simultaneously, activated Toll-Like Receptor-4 (TLR-4) on APCs to release chemokine's/cytokines as an immune-adjuvant. Through this dual mechanism, PMVDS robustly stimulated both the humoral (>32 times of IgG1 levels vs alum) and the cell-mediated immune responses against the encapsulated antigen (ovalbumin) in mice. More importantly, PMVDS stimulated both cytotoxic T cells and natural killer cells of cell-mediated immunity to provide tumor (B16-ova-Melanoma) protection in around 40% of vaccinated mice and significantly delayed tumor progression in rest of the mice. PMVDS is a unique bio-active vaccine delivery technology with broader applications for vaccines against cancer and several intracellular pathogens, where both humoral and cellular immune responses are desired. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. MHC-matched induced pluripotent stem cells can attenuate cellular and humoral immune responses but are still susceptible to innate immunity in pigs.

    PubMed

    Mizukami, Yoshihisa; Abe, Tomoyuki; Shibata, Hiroaki; Makimura, Yukitoshi; Fujishiro, Shuh-hei; Yanase, Kimihide; Hishikawa, Shuji; Kobayashi, Eiji; Hanazono, Yutaka

    2014-01-01

    Recent studies have revealed negligible immunogenicity of induced pluripotent stem (iPS) cells in syngeneic mice and in autologous monkeys. Therefore, human iPS cells would not elicit immune responses in the autologous setting. However, given that human leukocyte antigen (HLA)-matched allogeneic iPS cells would likely be used for medical applications, a more faithful model system is needed to reflect HLA-matched allogeneic settings. Here we examined whether iPS cells induce immune responses in the swine leukocyte antigen (SLA)-matched setting. iPS cells were generated from the SLA-defined C1 strain of Clawn miniature swine, which were confirmed to develop teratomas in mice, and transplanted into the testes (n = 4) and ovary (n = 1) of C1 pigs. No teratomas were found in pigs on 47 to 125 days after transplantation. A Mixed lymphocyte reaction revealed that T-cell responses to the transplanted MHC-matched (C1) iPS cells were significantly lower compared to allogeneic cells. The humoral immune responses were also attenuated in the C1-to-C1 setting. More importantly, even MHC-matched iPS cells were susceptible to innate immunity, NK cells and serum complement. iPS cells lacked the expression of SLA class I and sialic acids. The in vitro cytotoxic assay showed that C1 iPS cells were targeted by NK cells and serum complement of C1. In vivo, the C1 iPS cells developed larger teratomas in NK-deficient NOG (T-B-NK-) mice (n = 10) than in NK-competent NOD/SCID (T-B-NK+) mice (n = 8) (p<0.01). In addition, C1 iPS cell failed to form teratomas after incubation with the porcine complement-active serum. Taken together, MHC-matched iPS cells can attenuate cellular and humoral immune responses, but still susceptible to innate immunity in pigs.

  6. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients

    PubMed Central

    Lendvai, Nikoletta; Gnjatic, Sacha; Ritter, Erika; Mangone, Michael; Austin, Wayne; Reyner, Karina; Jayabalan, David; Niesvizky, Ruben; Jagannath, Sundar; Bhardwaj, Nina; Chen-Kiang, Selina; Old, Lloyd J.

    2010-01-01

    The type I melanoma antigen gene (MAGE) proteins CT7 (MAGE-C1) and MAGE-A3 are commonly expressed in multiple myeloma (MM), and their expression correlates with increased plasma cell proliferation and poor clinical outcome. They belong to the cancer-testis antigen (CTAg) group of tumor-associated proteins, some of which elicit spontaneous immune responses in cancer patients. CT7 and MAGE-A3 are promising antigenic targets for therapeutic tumor vaccines in myeloma; therefore, it is critical to determine if they are immunogenic in MM patients. We analyzed cellular and humoral immune responses against CTAgs in patients with plasma cell dyscrasias: MM, monoclonal gammopathy of undetermined significance (MGUS), and Waldenström's macroglobulinemia (WM). Bone marrow lymphocytes from two of four untreated MM patients exhibited CT7-specific cellular immune responses as measured by an autologous cellular immunity assay, the first such immune response to CT7 to be reported in cancer patients. Sera from 24 patients were screened by ELISA for humoral immune responses to CTAgs. Two patients with MM demonstrated positive titers, one for MAGE-A1 and the other for SSX1. These data demonstrate that CTAgs, particularly CT7, are immunogenic in MM patients and merit further exploration as targets of immunological therapy in MM. PMID:20108890

  7. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients.

    PubMed

    Lendvai, Nikoletta; Gnjatic, Sacha; Ritter, Erika; Mangone, Michael; Austin, Wayne; Reyner, Karina; Jayabalan, David; Niesvizky, Ruben; Jagannath, Sundar; Bhardwaj, Nina; Chen-Kiang, Selina; Old, Lloyd J; Cho, Hearn Jay

    2010-01-29

    The type I melanoma antigen gene (MAGE) proteins CT7 (MAGE-C1) and MAGE-A3 are commonly expressed in multiple myeloma (MM), and their expression correlates with increased plasma cell proliferation and poor clinical outcome. They belong to the cancer-testis antigen (CTAg) group of tumor-associated proteins, some of which elicit spontaneous immune responses in cancer patients. CT7 and MAGE-A3 are promising antigenic targets for therapeutic tumor vaccines in myeloma; therefore, it is critical to determine if they are immunogenic in MM patients. We analyzed cellular and humoral immune responses against CTAgs in patients with plasma cell dyscrasias: MM, monoclonal gammopathy of undetermined significance (MGUS), and Waldenström's macroglobulinemia (WM). Bone marrow lymphocytes from two of four untreated MM patients exhibited CT7-specific cellular immune responses as measured by an autologous cellular immunity assay, the first such immune response to CT7 to be reported in cancer patients. Sera from 24 patients were screened by ELISA for humoral immune responses to CTAgs. Two patients with MM demonstrated positive titers, one for MAGE-A1 and the other for SSX1. These data demonstrate that CTAgs, particularly CT7, are immunogenic in MM patients and merit further exploration as targets of immunological therapy in MM.

  8. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity.

    PubMed

    Chen, Shasha; Cai, Chenxu; Li, Zehua; Liu, Guangao; Wang, Yuande; Blonska, Marzenna; Li, Dan; Du, Juan; Lin, Xin; Yang, Meixiang; Dong, Zhongjun

    2017-02-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (T FH ) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in T FH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient T FH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. © 2017 Chen et al.

  9. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity

    PubMed Central

    Cai, Chenxu; Liu, Guangao; Wang, Yuande; Du, Juan; Lin, Xin; Yang, Meixiang

    2017-01-01

    Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. PMID:28049627

  10. [Specific humoral immunity after single immunization with mumps vaccine: data of a 3-year follow-up].

    PubMed

    Otrashevskaia, A V; Bukin, E K; Krasil'nikov, I V; Ignat'ev, G M

    2011-01-01

    The level and spectrum of humoral specific immunity were studied in 60 volunteers immunized with Russian mumps vaccine. Specific IgG levels were measured by enzyme immunoassay (EIA) and neutralization test using the Leningrad-3 (L-3) mumps virus (MV) vaccine strain and 5 heterologous MV strains of various genotypes (A, B, C, D, and H). The maximum functional activity of antibodies was recorded at an average of 18 months postvaccination. Within 3 years after vaccination, starting at 6 months, specific IgG neutralized all 6 MV strains having varying activity in relation to the genotype. Neutralizing titers (NT) against the L-3 strain were 1.3-1.7-fold higher than those against heterologous MV strains throughout the follow-up. Despite a tendency towards lower specific IgG levels, within 3 years postvaccination, EIA IgG titers remained to be 2.5 -log, L-3 strain HT were -log, or more, and the titers against 5 heterologous MV strains were 2 -log2 or more in all the volunteers.

  11. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  12. Effect of adjuvants on the humoral immune response to congopain in mice and cattle.

    PubMed

    Kateregga, John; Lubega, George W; Lindblad, Erik B; Authié, Edith; Coetzer, Theresa Helen Taillefer; Boulangé, Alain François Vincent

    2012-05-23

    We investigated several adjuvants for their effects on the humoral immune response in both mice and cattle using the central domain of congopain (C2), the major cysteine protease of Trypanosoma congolense, as a model for developing a vaccine against animal trypanosomosis. The magnitude and sustainability of the immune response against C2 and the occurrence of a booster effect of infection, an indirect measure of the presence of memory cells, were determined by ELISA, while spectrofluorometry was used to determine and measure the presence of enzyme-inhibiting antibodies. Mice immunized with recombinant C2 in TiterMax™, Adjuphos™, purified saponin Quil A™ or Gerbu™ showed the best response according to the evaluation criteria and the latter three were chosen for the cattle vaccination study. The cattle were challenged with T. congolense four and a half months after the last booster. Cattle immunized with recombinant C2 in purified saponin Quil A™ showed the best antibody response according to the measured parameters. We identified purified saponin Quil A™ as a good adjuvant for immunizations with C2. The results from this study will be useful in future attempts to develop an effective anti-disease vaccine against African trypanosomosis.

  13. GABAergic neurons in cerebellar interposed nucleus modulate cellular and humoral immunity via hypothalamic and sympathetic pathways.

    PubMed

    Lu, Jian-Hua; Wang, Xiao-Qin; Huang, Yan; Qiu, Yi-Hua; Peng, Yu-Ping

    2015-06-15

    Our previous work has shown that cerebellar interposed nucleus (IN) modulates immune function. Herein, we reveal mechanism underlying the immunomodulation. Treatment of bilateral cerebellar IN of rats with 3-mercaptopropionic acid (3-MP), a glutamic acid decarboxylase antagonist that reduces γ-aminobutyric acid (GABA) synthesis, enhanced cellular and humoral immune responses to bovine serum albumin, whereas injection of vigabatrin, a GABA-transaminase inhibitor that inhibits GABA degradation, in bilateral cerebellar IN attenuated the immune responses. The 3-MP or vigabatrin administrations in the cerebellar IN decreased or increased hypothalamic GABA content and lymphoid tissues' norepinephrine content, respectively, but did not alter adrenocortical or thyroid hormone levels in serum. In addition, a direct GABAergic projection from cerebellar IN to hypothalamus was found. These findings suggest that GABAergic neurons in cerebellar IN regulate immune system via hypothalamic and sympathetic pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of vitamin E supplementation on antioxidant defense systems and humoral immune responses in young, middle-aged and elderly Korean women.

    PubMed

    Park, Ock Jin; Kim, Hye Young P; Kim, Woo Kyung; Kim, Yeon Joong; Kim, Sook He

    2003-04-01

    Free radical-mediated oxidative stress has been implicated in the pathogenesis of numerous chronic diseases. Vitamin E is known to play an important role in the free-radical quenching process. However, clinical trials with vitamin E have yielded contrasting results in the prevention of several diseases related to oxidative stress. This study was undertaken to investigate the antioxidative and humoral immunologic effects of vitamin E supplementation in three different age groups: young (mean age 32.7 +/- 5.7 y), middle-aged (mean age 47.0 +/- 5.0 y) and elderly (67.6 +/- 4.7 y) women. Volunteer subjects were given a supplement of 400 IU dl-alpha-tocopherol acetate for 6 wk. Thiobarbituric acid reacting substances (TBARS) in the plasma significantly decreased with vitamin E supplementation. In addition, the radical scavenger activities (RSA) of red blood cells significantly increased with vitamin E supplementation in all age groups. However, humoral immune response modulation was not observed following vitamin E supplementation. Even though there is no clear indication that vitamin E supplementation is necessary to improve the humoral immune functions, vitamin E supplementation may be beneficial to all adult age groups as a preventive measure for complications related to oxidative damage.

  15. Humoral Immune Responses of White-tailed Deer (Odocoileus virginianus) to Mycobacterium bovis BCG Vaccination and Experimental Challenge with M. bovis

    USDA-ARS?s Scientific Manuscript database

    Monitoring serum antibody production kinetics to multiple mycobacterial antigens can be useful as a diagnostic tool for the detection of Mycobacterium bovis infection as well as for the characterization of disease progression and efficacy of intervention strategies in several species. Humoral immun...

  16. Humoral immune response in infectious mononucleosis. Late emergence of anti-EA(R) and the effects of corticosteroid therapy.

    PubMed

    Fleisher, G R; Collins, M; Fager, S

    1985-11-01

    The antibody response to Epstein-Barr virus (EBV) antigens in patients with infectious mononucleosis (IM) was studied to assess antibody appearance to the restricted (R) component of the early antigen (EA) complex and to determine the effect of corticosteroids on all aspects of the humoral immune response. Sixty college students with heterophil-positive clinical IM, confirmed by EBV-specific serology, were followed for a period of 4-26 weeks, Half received prednisone for six days, and the remainder received no corticosteroid therapy. Regardless of therapy, 48% of the patients developed anti-EA(R) antibodies. The response to other antigens was similar in both groups with the exception that antibodies to the EB-associated nuclear antigen (EBNA) developed later during convalescence and at lower titers in the corticosteroid-treated group. We conclude that 1) anti-EA(R) antibodies develop with considerable frequency following IM and are not a marker, as previously proposed, of unusually severe disease, and 2) corticosteroid therapy may retard the formation of anti-EBNA antibodies but it does not otherwise influence the humoral immune response to EBV.

  17. Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity.

    PubMed

    Wu, Zeguang; Sinzger, Christian; Frascaroli, Giada; Reichel, Johanna; Bayer, Carina; Wang, Li; Schirmbeck, Reinhold; Mertens, Thomas

    2013-07-01

    Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2C(hi) CD57(hi) NK cells gated on CD3(neg) CD56(dim) cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2C(hi) CD57(hi) NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2C(hi) CD57(hi) NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2C(hi) CD57(hi) NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.

  18. Specific Humoral Immune Response Induced by Propionibacterium acnes Can Prevent Actinobacillus pleuropneumoniae Infection in Mice

    PubMed Central

    Yang, Feng; Ma, Qiuyue; Huang, Jing; Ji, Qun; Zhai, Ruidong; Wang, Lei; Wang, Yu; Li, Linxi; Sun, Changjiang; Feng, Xin; Han, Wenyu

    2014-01-01

    Porcine contagious pleuropneumonia, caused by Actinobacillus pleuropneumoniae, has a major impact on economics, ecology, and animal welfare in the pig-rearing industry. Propionibacterium acnes, a facultative anaerobic Gram-positive corynebacterium, exists widely in normal healthy adult animals. We have shown previously that P. acnes can prevent A. pleuropneumoniae infections in mice and pigs. To elucidate the mechanism of this effect and to identify novel A. pleuropneumoniae vaccines, the role of anti-P. acnes antibodies in preventing infection was analyzed by indirect immunofluorescence and opsonophagocytosis assays in vitro. The role of the specific humoral immune response induced by P. acnes was confirmed in a B cell depletion mouse model. The survival rates of mice challenged with A. pleuropneumoniae exhibited a highly significant positive rank correlation with the levels of anti-P. acnes antibodies. The specific antibodies induced by P. acnes had the ability to combine with A. pleuropneumoniae and increase opsonization of A. pleuropneumoniae for phagocytosis. Furthermore, analysis in the murine B cell depletion model confirmed that the humoral immune response induced by P. acnes played an important role in resistance to A. pleuropneumoniae infection. In this study, we further elucidated the reasons that P. acnes can prevent A. pleuropneumoniae infection, which provides useful evidence for the development of heterologous vaccines for the control of porcine contagious pleuropneumonia. PMID:24429068

  19. Humoral Immunity to West Nile Virus Is Long-Lasting and Protective in the House Sparrow (Passer domesticus)

    PubMed Central

    Nemeth, Nicole M.; Oesterle, Paul T.; Bowen, Richard A.

    2009-01-01

    The house sparrow (Passer domesticus) is a common and abundant amplifying host of West Nile virus (WNV) and many survive infection and develop humoral immunity. We experimentally inoculated house sparrows with WNV and monitored duration and protection of resulting antibodies. Neutralizing antibody titers remained relatively constant for ≥ 36 months (N = 42) and provided sterilizing immunity for up to 36 months post-inoculation in 98.6% of individuals (N = 72). These results imply that immune house sparrows are protected from WNV infection for multiple transmission seasons. Additionally, individuals experiencing WNV-associated mortality reached significantly higher peak viremia titers than survivors, and mortality during acute infection was significantly higher in caged versus free-flight sparrows. A better understanding of the long-term immunity and mortality rates in birds is valuable in interpreting serosurveillance and diagnostic data and modeling transmission and disease dynamics. PMID:19407139

  20. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors.

    PubMed

    Sobarzo, Ariel; Stonier, Spencer W; Herbert, Andrew S; Ochayon, David E; Kuehne, Ana I; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M; Lobel, Leslie

    2016-05-11

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections.

  1. Effect of adjuvants on the humoral immune response to congopain in mice and cattle

    PubMed Central

    2012-01-01

    Background We investigated several adjuvants for their effects on the humoral immune response in both mice and cattle using the central domain of congopain (C2), the major cysteine protease of Trypanosoma congolense, as a model for developing a vaccine against animal trypanosomosis. The magnitude and sustainability of the immune response against C2 and the occurrence of a booster effect of infection, an indirect measure of the presence of memory cells, were determined by ELISA, while spectrofluorometry was used to determine and measure the presence of enzyme-inhibiting antibodies. Results Mice immunized with recombinant C2 in TiterMax™, Adjuphos™, purified saponin Quil A™ or Gerbu™ showed the best response according to the evaluation criteria and the latter three were chosen for the cattle vaccination study. The cattle were challenged with T. congolense four and a half months after the last booster. Cattle immunized with recombinant C2 in purified saponin Quil A™ showed the best antibody response according to the measured parameters. Conclusions We identified purified saponin Quil A™ as a good adjuvant for immunizations with C2. The results from this study will be useful in future attempts to develop an effective anti-disease vaccine against African trypanosomosis. PMID:22621378

  2. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    PubMed

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of Chronic Viral Infection on T-Cell Dependent Humoral Immune Response.

    PubMed

    Rodriguez, Stéphane; Roussel, Mikaël; Tarte, Karin; Amé-Thomas, Patricia

    2017-01-01

    During the last decades, considerable efforts have been done to decipher mechanisms supported by microorganisms or viruses involved in the development, differentiation, and function of immune cells. Pathogens and their associated secretome as well as the continuous inflammation observed in chronic infection are shaping both innate and adaptive immunity. Secondary lymphoid organs are functional structures ensuring the mounting of adaptive immune response against microorganisms and viruses. Inside these organs, germinal centers (GCs) are the specialized sites where mature B-cell differentiation occurs leading to the release of high-affinity immunoglobulin (Ig)-secreting cells. Different steps are critical to complete B-cell differentiation process, including proliferation, somatic hypermutations in Ig variable genes, affinity-based selection, and class switch recombination. All these steps require intense interactions with cognate CD4 + helper T cells belonging to follicular helper lineage. Interestingly, pathogens can disturb this subtle machinery affecting the classical adaptive immune response. In this review, we describe how viruses could act directly on GC B cells, either through B-cell infection or by their contribution to B-cell cancer development and maintenance. In addition, we depict the indirect impact of viruses on B-cell response through infection of GC T cells and stromal cells, leading to immune response modulation.

  4. Cancer immunoediting by the innate immune system in the absence of adaptive immunity

    PubMed Central

    O’Sullivan, Timothy; Saddawi-Konefka, Robert; Vermi, William; Koebel, Catherine M.; Arthur, Cora; White, J. Michael; Uppaluri, Ravi; Andrews, Daniel M.; Ngiow, Shin Foong; Teng, Michele W.L.; Smyth, Mark J.; Schreiber, Robert D.

    2012-01-01

    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3′methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2−/−, and RAG2−/−x γc−/− mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2−/−x γc−/− mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting. PMID:22927549

  5. Humoral immune response to measles and varicella vaccination in former very low birth weight preterm infants.

    PubMed

    Ferreira, Carolina Schlindwein Mariano; Perin, Maria Cristina Abrão Aued; Moraes-Pinto, Maria Isabel de; Simão-Gurge, Raquel Maria; Goulart, Ana Lucia; Weckx, Lily Yin; Dos Santos, Amélia Miyashiro Nunes

    Immune response to vaccination in infants born prematurely may be lower than in infants born at full-term. Some clinical factors might be associated with humoral immune response. The objectives of this study were to compare the immune response to measles and varicella vaccination in infants born prematurely with those born at full-term and to analyze factors associated with measles and varicella antibody levels. Prospective study including two groups of infants aged 12 months. One group of infants born prematurely with birth-weight <1500g and who were in follow-up at the outpatient clinic for preterm infants at the institution and other group of infants born at full-term. Infants with malformations, primary immunodeficiency diseases, born to HIV-positive mothers or who had received plasma or immunoglobulin transfusions five months before or three weeks after vaccination were excluded. Plasma antibodies were measured by ELISA and factors associated with antibody levels were assessed by linear regression. Sixty-five premature and 56 full-term infants were included. The percentage of immune individuals after vaccination against measles (100% vs. 100%) and varicella (92.5% vs. 93.2%) were similar in both groups, as well as the antibody levels against measles (2.393 vs. 2.412UI/mL; p=0.970) and varicella (0.551 vs. 0.399UI/mL; p=0.114). Use of antenatal corticosteroids decreased measles antibody levels whereas breastfeeding for more than six months increased varicella antibody levels. Humoral responses to measles and varicella were similar between infants born prematurely and full-term infants. Measles antibody levels were negatively associated with antenatal corticosteroid use; varicella antibodies were positively associated with prolonged breastfeeding. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster.

    PubMed

    Herren, Jeremy K; Lemaitre, Bruno

    2011-09-01

    Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts harboured by several Drosophila species. Their long-term survival requires not only evasion of host immunity, but also that Spiroplasma does not have a net detrimental effect on host fitness. These requirements provide the central framework for interactions between host and endosymbiont. We use Drosophila melaogaster as a model to unravel aspects of the mechanistic basis of endosymbiont-host immune interactions. Here we show that Spiroplasma does not activate an immune response in Drosophila and is not susceptible to either the cellular or humoral arms of the Drosophila immune system. We gain unexpected insight into host factors that can promote Spiroplasma growth by showing that activation of Toll and Imd immune pathways actually increases Sprioplasma titre. Spiroplasma-mediated protection is not observed for variety of fungal and bacterial pathogens and Spiroplasma actually increases susceptibility of Drosophila to certain Gram-negative pathogens. Finally, we show that the growth of endosymbiotic Spiroplasma is apparently self-regulated, as suggested by the unhindered proliferation of non-endosymbiotic Spiroplasma citri in fly haemolymph. © 2011 Blackwell Publishing Ltd.

  7. Humoral and Innate Antiviral Immunity as Tools to Clear Persistent HIV Infection.

    PubMed

    Ferrari, Guido; Pollara, Justin; Tomaras, Georgia D; Haynes, Barton F

    2017-03-15

    Human immunodeficiency virus (HIV) type 1 uses the CD4 molecule as its principal receptor to infect T cells. HIV-1 integrates its viral genome into the host cell, leading to persistent infection wherein HIV-1 can remain transcriptionally silent in latently infected CD4+ T cells. On reactivation of replication-competent provirus, HIV-1 envelope glycoproteins (Env) are expressed and accumulate on the cell surface, allowing infected cells to be detected and targeted by endogenous immune responses or immune interventions. HIV-1 Env-specific antibodies have the potential to bind HIV-1 cell surface Env and promote elimination of infected CD4+ T cells by recruiting cytotoxic effector cells, such as natural killer cells, monocytes, and polymorphonuclear cells. Harnessing humoral and innate cellular responses has become one focus of research to develop innovative strategies to recruit and redirect cytotoxic effector cells to eliminate the HIV-1 latently infected CD4+ T-cell reservoir. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  8. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors

    PubMed Central

    Sobarzo, Ariel; Stonier, Spencer W.; Herbert, Andrew S.; Ochayon, David E.; Kuehne, Ana I.; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C.; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M.; Lobel, Leslie

    2016-01-01

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000–2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections. PMID:27187443

  9. Failure of orally administered attenuated goose parvovirus strain B to induce a humoral immune response in adult geese.

    PubMed

    Kisary, J; Kelemen, M

    1981-01-01

    Two-month-old geese responded with the production of virus neutralising antibodies against virulent goose parvovirus strain B administered either per os or intramuscularly. They were shedding the virus within a short period after exposure. Humoral immune response in geese of the same age was induced by the attenuated goose parvovirus strain B only by intramuscular injection but not with per os administration.

  10. Vaccination with a feline immunodeficiency virus multiepitopic peptide induces cell-mediated and humoral immune responses in cats, but does not confer protection.

    PubMed Central

    Flynn, J N; Cannon, C A; Neil, J C; Jarrett, O

    1997-01-01

    Cats were immunized with a 46-residue multiepitopic synthetic peptide of feline immunodeficiency virus (FIV) comprising immunodominant epitopes present in the third variable domain of the envelope glycoprotein, transmembrane glycoprotein (TM), and p24 Gag core protein, using Quil A as an adjuvant. All vaccinated cats developed a humoral response which recognized the synthetic peptide immunogen and the intact viral core and envelope proteins. A FIV Gag- and Env-specific effector cytotoxic T-lymphocyte response was also detected in the peripheral blood of vaccinated cats, which peaked at week 30. This response appeared to be major histocompatibility complex restricted. Epitope mapping studies revealed that both the cellular and humoral immune responses were directed principally to a peptide within the TM glycoprotein, CNQNQFFCK. However, vaccination did not confer protection when cats were challenged with the Petaluma isolate of FIV at week 35. PMID:9311839

  11. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata

    PubMed Central

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C.; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M.; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  12. Contribution of physiologists to the identification of the humoral component of immunity in the 19th century

    PubMed Central

    Lahaie, Yves-Marie

    2017-01-01

    ABSTRACT The history of antimicrobial humoral immunity usually focuses on the works of the German school at the end of the 19th century, born in the tradition of chemistry and disinfection. Starting from an old quarrel of priority about serotherapy between Emil von Behring (1854–1917) and the French physiologists Charles Richet (1850–1935) and Jules Héricourt (1850–1938), we first confirm that the latter stated the principle of serotherapy in 1888 and put it into practice before the seminal Behring's article in 1890, observing several adverse effects of this new immunotherapy. We also find that researchers who can be considered heirs of the French school of Physiology founded by Claude Bernard (1813–1878) also investigated the field of humoral immunity in the 1870–1880s. Maurice Raynaud (1834–1881), Auguste Chauveau (1827–1917), and eventually Charles Richet applied the experimental method of Claude Bernard to the young field of microbiology, illustrating a movement called by Jacques Léonard “physiologization of the pasteurism.” However, the contribution of physiologists in this field started before Louis Pasteur, leading to the conclusion that physiologists and chemists synergistically contributed to the birth of bacteriology and immunology. PMID:28557665

  13. Rapid Link of Innate Immune Signal to Adaptive Immunity by Brain–Fat Axis

    PubMed Central

    Kim, Min Soo; Yan, Jingqi; Wu, Wenhe; Zhang, Guo; Zhang, Yalin; Cai, Dongsheng

    2015-01-01

    Innate immunity signals induced by pathogen/damage-associated molecular patterns are essential for adaptive immune responses, but it is unclear if the brain plays a role in this process. Here we show that while tumor necrosis factor (TNF) quickly increased in the brain of mice following bacterial infection, intra-brain TNF delivery mimicked bacterial infection to rapidly increase peripheral lymphocytes, especially in the spleen and fat. Multiple mouse models revealed that hypothalamic responses to TNF were accountable for this increase of peripheral lymphocytes in response to bacterial infection. Finally, hypothalamic induction of lipolysis was found to mediate the brain's action in promoting this increase in peripheral adaptive immune response. Thus, the brain-fat axis is important for rapidly linking innate immunity to adaptive immunity. PMID:25848866

  14. Innate control of adaptive immunity: Beyond the three-signal paradigm

    PubMed Central

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-01-01

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987

  15. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Giardiasis in mice: analysis of humoral and cellular immune responses to Giardia muris.

    PubMed

    Anders, R F; Roberts-Thomson, I C; Mitchell, G F

    1982-01-01

    Humoral and cellular immune responses have been evaluated in two inbred strains of mice which differ markedly in their susceptibility to infection with Giardia muris. Serum IgG and IgA antibody levels and IgA levels in intestinal washes were determined by a solid-phase radioimmunoassay using G. muris antigen prepared by sonication of trophozoites, while cell-mediated immunity was assessed by a radiometric ear-assay for delayed-type hypersensitivity. Following infection of BALB/c mice (resistant) and C3H/He mice (susceptible), the IgG and IgA antibody levels in serum progressively increased over the period of study with C3H/He mice having significantly higher titres of IgA antibodies than BALB/c late in the infection. Systemic immunization with G. muris trophozoites resulted in high titres of IgG antibodies in the serum. IgA antibodies were detected in intestinal washes 2 weeks after infection with a subsequent fall in levels in BALB/c mice but a progressive increase levels in C3H/He mice. Prior immunization resulted in IgA antibodies being detected earlier in the intestinal washings after a challenge infection. Delayed-type hypersensitivity to G. muris antigens could not be detected during an infection but a positive response was elicited following antigen priming in mice pretreated with cyclophosphamide. The immune responses evaluated in this study were assessed using a whole G. muris trophozoite sonicate and variations in the quantitative aspects of the responses did not account for observed differences in the course of infection in the two strains of mice.

  17. The German Version of the Humor Styles Questionnaire: Psychometric Properties and Overlap With Other Styles of Humor

    PubMed Central

    Ruch, Willibald; Heintz, Sonja

    2016-01-01

    The Humor Styles Questionnaire (HSQ; Martin et al., 2003) is one of the most frequently used questionnaires in humor research and has been adapted to several languages. The HSQ measures four humor styles (affiliative, self-enhancing, aggressive, and self-defeating), which should be adaptive or potentially maladaptive to psychosocial well-being. The present study analyzes the internal consistency, factorial validity, and factorial invariance of the HSQ on the basis of several German-speaking samples combined (total N = 1,101). Separate analyses were conducted for gender (male/female), age groups (16–24, 25–35, >36 years old), and countries (Germany/Switzerland). Internal consistencies were good for the overall sample and the demographic subgroups (.80–.89), with lower values obtained for the aggressive scale (.66–.73). Principal components and confirmatory factor analyses mostly supported the four-factor structure of the HSQ. Weak factorial invariance was found across gender and age groups, while strong factorial invariance was supported across countries. Two subsamples also provided self-ratings on ten styles of humorous conduct (n = 344) and of eight comic styles (n = 285). The four HSQ scales showed small to large correlations to the styles of humorous conduct (-.54 to .65) and small to medium correlations to the comic styles (-.27 to .42). The HSQ shared on average 27.5–35.0% of the variance with the styles of humorous conduct and 13.0–15.0% of the variance with the comic styles. Thus–despite similar labels–these styles of humorous conduct and comic styles differed from the HSQ humor styles. PMID:27547259

  18. Profiling the humoral immune response of acute and chronic Q fever by protein microarray.

    PubMed

    Vigil, Adam; Chen, Chen; Jain, Aarti; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Pablo, Jozelyn; Hendrix, Laura R; Samuel, James E; Felgner, Philip L

    2011-10-01

    Antigen profiling using comprehensive protein microarrays is a powerful tool for characterizing the humoral immune response to infectious pathogens. Coxiella burnetii is a CDC category B bioterrorist infectious agent with worldwide distribution. In order to assess the antibody repertoire of acute and chronic Q fever patients we have constructed a protein microarray containing 93% of the proteome of Coxiella burnetii, the causative agent of Q fever. Here we report the profile of the IgG and IgM seroreactivity in 25 acute Q fever patients in longitudinal samples. We found that both early and late time points of infection have a very consistent repertoire of IgM and IgG response, with a limited number of proteins undergoing increasing or decreasing seroreactivity. We also probed a large collection of acute and chronic Q fever patient samples and identified serological markers that can differentiate between the two disease states. In this comparative analysis we confirmed the identity of numerous IgG biomarkers of acute infection, identified novel IgG biomarkers for acute and chronic infections, and profiled for the first time the IgM antibody repertoire for both acute and chronic Q fever. Using these results we were able to devise a test that can distinguish acute from chronic Q fever. These results also provide a unique perspective on isotype switch and demonstrate the utility of protein microarrays for simultaneously examining the dynamic humoral immune response against thousands of proteins from a large number of patients. The results presented here identify novel seroreactive antigens for the development of recombinant protein-based diagnostics and subunit vaccines, and provide insight into the development of the antibody response.

  19. Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children: A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution.

    PubMed

    Abdel-Azim, Hisham; Elshoury, Amro; Mahadeo, Kris M; Parkman, Robertson; Kapoor, Neena

    2017-09-01

    Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4 + T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights

  20. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model.

    PubMed

    Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K P; Fong, Wing-Ping

    2017-02-01

    In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.

  1. Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen.

    PubMed

    Sordo, Yusmel; Suárez, Marisela; Caraballo, Rosalina; Sardina, Talía; Brown, Emma; Duarte, Carlos; Lugo, Joanna; Gil, Lázaro; Perez, Danny; Oliva, Ayme; Vargas, Milagros; Santana, Elaine; Valdés, Rodolfo; Rodríguez, María Pilar

    2018-03-01

    The development of subunit vaccines against classical swine fever is a desirable goal, because it allows discrimination between vaccinated and infected animals. In this study, humoral and cellular immune response elicited in inbred BALB/c mice by immunization with a recombinant classical swine fever virus (CSFV) E2 protein fused to porcine CD154 antigen (E2CD154) was assessed. This model was used as a predictor of immune response in swine. Mice were immunized with E2CD154 emulsified in Montanide ISA50V2 or dissolved in saline on days 1 and 21. Another group received E2His antigen, without CD154, in the same adjuvant. Montanide ISA50V2 or saline served as negative controls for each experimental group. Animals immunized with 12.5 and 2.5 μg/dose of E2CD154 developed the highest titers (>1:2000) of CSFV neutralizing antibodies. Moreover, CSFV specific splenocyte gamma-interferon production, measured after seven and twenty-eight days of immunization, was significantly higher in mice immunized with 12.5 μg of E2CD154. As a conclusion, E2CD154 emulsified in Montanide ISA50 V2 was able to induce a potent humoral and an early cellular immune response in inbred BALB/c mice. Therefore, this immunogen might be an appropriate candidate to elicit immune response in swine, control CSF disease and to eliminate CSFV in swine. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  2. EPSAH, an exopolysaccharide from Aphanothece halophytica GR02, improves both cellular and humoral immunity as a novel polysaccharide adjuvant.

    PubMed

    Zhu, Lei; Zhang, Fan; Yang, Li-Jun; Ge, Yang; Wei, Qing-Fang; Ou, Yu

    2016-07-01

    EPSAH is an exopolysaccharide from Aphanothece halophytica GR02. The present study was designed to evaluate its toxicity and adjuvant potential in the specific cellular and humoral immune responses in ovalbumin (OVA) in mice. EPSAH did not cause any mortality and side effects when the mice were administered subcutaneously twice at the dose of 50 mg·kg(-1). Hemolytic activity in vitro indicated that EPSAH was non-hemolytic. Splenocyte proliferation in vitro was assayed with different concentrations of EPSAH. The mice were immunized subcutaneously with OVA 0.1 mg alone or with OVA 0.1 mg dissolved in saline containing Alum (0.2 mg) or EPSAH (0.2, 0.4, or 0.8 mg) on Day 1 and 15. Two weeks later, splenocyte proliferation, natural killer (NK) cell activity, production of cytokines IL-2 from splenocytes, and serum OVA-specific antibody titers were measured. Phagocytic activity, production of pro-inflammatory cytokines IL-1 and IL-12 in mice peritoneal macrophages were also determined. EPSAH showed a dose-dependent stimulating effect on mitogen-induced proliferation. The Con A-, LPS-, and OVA-induced splenocyte proliferation and the serum OVA-specific IgG, IgG1, and IgG2a antibody titers in the immunized mice were significantly enhanced. EPSAH also significantly promoted the production of Th1 cytokine IL-2. Besides, EPSAH remarkably increased the killing activities of NK cells from splenocytes in the immunized mice. In addition, EPSAH enhanced phagocytic activity and the generation of pro-inflammatory cytokines IL-1 and IL-12 in macrophages. These results indicated that EPSAH had a strong potential to increase both cellular and humoral immune responses, particularly promoting the development of Th1 polarization. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  3. Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home.

    PubMed

    Lockitch, G; Singh, V K; Puterman, M L; Godolphin, W J; Sheps, S; Tingle, A J; Wong, F; Quigley, G

    1987-11-01

    Abnormalities of humoral and cell-mediated immunity have been described in Down syndrome but reported findings have been inconsistent. Confounding factors have included age, institutional versus home life, hepatitis B antigenemia, and zinc deficiency. To clarify this problem, we studied 64 children with Down syndrome (DS) compared with an age-matched control group. All children had always lived at home. All the DS children were negative for hepatitis B surface antigen. Serum zinc concentration in the DS group was on average 12 micrograms/dl lower than age-matched control children. They also had significantly lower levels of immunoglobulin M, total lymphocyte count, T and B lymphocytes, and T helper and suppressor cells. In vitro lymphocyte response to phytohemagglutinin and concanavalin A was significantly reduced at all ages in the DS group. Lymphocyte response to pokeweed mitogen increased with age in control children but decreased in the DS children. By 18 yr, the mean response for DS was 60000 cpm lower than controls. The DS group had significantly higher concentrations of immunoglobulins A and G than controls and the difference increased with age. Complement fractions C3 and C4 were also higher in the DS group at all ages. The number of HNK-1 positive cells was higher in the DS group than controls at all ages. When hepatitis and institutionalization are excluded as confounding factors, DS children still differ in both humoral and cell-mediated immunity from an age-matched control group.

  4. T7 phage displaying latent membrane protein 1 of Epstein-Barr virus elicits humoral and cellular immune responses in rats.

    PubMed

    Gao, J; Liu, Z; Huang, M; Li, X; Wang, Z

    2011-01-01

    The latent membrane protein 1 (LMP1) encoded by Epstein-Barr virus (EBV) has become a potential target in EBV-associated tumor prevention and treatment due to its multiple biological effects. In this study, the recombinant T7 phage displaying full-length LMP1 protein was cloned and used as an immunogen to immunize rats. Results of flow cytometry, Western blot analysis, and ELISA confirmed that both humoral and cellular immune responses were elicited in the immunized rats. Our data suggested that T7 phage was an efficient antigen carrier. The recombinant T7-LMP1 phage reconstitutes the antigenic and immunogenic properties of LMP1 and can serve as a vaccine against EBV.

  5. Antiparasite treatments reduce humoral immunity and impact oxidative status in raptor nestlings

    PubMed Central

    Hanssen, Sveinn Are; Bustnes, Jan Ove; Schnug, Lisbeth; Bourgeon, Sophie; Johnsen, Trond Vidar; Ballesteros, Manuel; Sonne, Christian; Herzke, Dorte; Eulaers, Igor; Jaspers, Veerle L B; Covaci, Adrian; Eens, Marcel; Halley, Duncan J; Moum, Truls; Ims, Rolf Anker; Erikstad, Kjell Einar

    2013-01-01

    Parasites are natural stressors that may have multiple negative effects on their host as they usurp energy and nutrients and may lead to costly immune responses that may cause oxidative stress. At early stages, animals may be more sensitive to infectious organisms because of their rapid growth and partly immature immune system. The objective of this study was to explore effects of parasites by treating chicks of two raptor species (northern goshawk Accipiter gentilis and white-tailed sea eagle Haliaeetus albicilla) against both endoparasites (internal parasites) and ectoparasites (external parasites). Nests were either treated against ectoparasites by spraying with pyrethrin or left unsprayed as control nests. Within each nest, chicks were randomly orally treated with either an antihelminthic medication (fenbendazole) or sterile water as control treatment. We investigated treatment effects on plasma (1) total antioxidant capacity TAC (an index of nonenzymatic circulating antioxidant defenses), (2) total oxidant status TOS (a measure of plasmatic oxidants), and (3) immunoglobulin levels (a measure of humoral immune function). Treatment against ectoparasites led to a reduction in circulating immunoglobulin plasma levels in male chicks. TOS was higher when not receiving any parasite reduction treatment and when receiving both endo- and ectoparasitic reduction treatment compared with receiving only one treatment. TAC was higher in all treatment groups, when compared to controls. Despite the relatively low sample size, this experimental study suggests complex but similar relationships between treatment groups and oxidative status and immunoglobulin levels in two raptor species. PMID:24455145

  6. Effect of cesium radioisotope on humoral immune status in Ukrainian children with clinical symptoms of irritable bowel syndrome related to Chernobyl disaster.

    PubMed

    Sheikh Sajjadieh, M R; Kuznetsova, L V; Bojenko, V B

    2011-02-01

    The aim of this study is to determine humoral immune status in Ukrainian children with clinical symptoms of irritable bowel syndrome 23 years after the Chernobyl disaster. The test population consisted of 95 participants: 75 rural patients aged 4-18, who lived in a contaminated area exposed to natural environmental radiation (falling under three groups) and 20 healthy urban participants from Kiev aged 5-15 as a control group. Internal radiation activity has been measured by gamma-ray spectrometry. B-lymphocytes population was analyzed with monoclonal antibody against antigen CD22(+). Serum immunoglobulins were evaluated by enzyme-linked immunosorbent assay (ELISA) method. p < 0.05 was considered significant. The percentage of CD22(+) in study groups is increased significantly in comparison to control group at p < 0.05. Reduced serum immunoglobulins levels have developed in the majority of the participants. Humoral immune status of study groups with clinical symptom of irritable bowel syndrome residing in a contaminated area has changed.

  7. Novel Adaptive and Innate Immunity Targets in Hypertension

    PubMed Central

    Abais-Battad, Justine M.; Dasinger, John Henry; Fehrenbach, Daniel J.; Mattson, David L.

    2017-01-01

    Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy. PMID:28336371

  8. Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination.

    PubMed

    Haralambieva, Iana H; Kennedy, Richard B; Simon, Whitney L; Goergen, Krista M; Grill, Diane E; Ovsyannikova, Inna G; Poland, Gregory A

    2018-01-01

    MicroRNAs are important mediators of post-transcriptional regulation of gene expression through RNA degradation and translational repression, and are emerging biomarkers of immune system activation/response after vaccination. We performed Next Generation Sequencing (mRNA-Seq) of intracellular miRNAs in measles virus-stimulated B and CD4+ T cells from high and low antibody responders to measles vaccine. Negative binomial generalized estimating equation (GEE) models were used for miRNA assessment and the DIANA tool was used for gene/target prediction and pathway enrichment analysis. We identified a set of B cell-specific miRNAs (e.g., miR-151a-5p, miR-223, miR-29, miR-15a-5p, miR-199a-3p, miR-103a, and miR-15a/16 cluster) and biological processes/pathways, including regulation of adherens junction proteins, Fc-receptor signaling pathway, phosphatidylinositol-mediated signaling pathway, growth factor signaling pathway/pathways, transcriptional regulation, apoptosis and virus-related processes, significantly associated with neutralizing antibody titers after measles vaccination. No CD4+ T cell-specific miRNA expression differences between high and low antibody responders were found. Our study demonstrates that miRNA expression directly or indirectly influences humoral immunity to measles vaccination and suggests that B cell-specific miRNAs may serve as useful predictive biomarkers of vaccine humoral immune response.

  9. Humor in psychiatric healing.

    PubMed

    Saper, B

    1988-01-01

    The oft-quoted aphorism that "laughter is the best medicine" is examined. Specifically, three big drops in the shower of claims regarding the benefits of humor in treating physical and mental disorders are evaluated. First, studies of the effects of mirth and laughter on the physiology of the body reveal both good and bad news. The meager evidence of the salutary effects of positive emotions on the cardiovascular, respiratory, immune and neuroendocrine systems, though apparently supportable on more or less scientific, rational and subjective grounds, needs much better verification from more extensive, replicable, and empirical research. Second, despite numerous claims, in the context of behavioral or psychosomatic medicine, that a joyful, optimistic, or humorous attitude can render a salubrious effect, almost to the extent of preventing illness and curing physical disease, the jury is still out and issuing dire warnings regarding too ready acceptance of this largely anecdotal evidence. Much careful "clinical trial" research needs to be mounted to determine the conditions under which humor works best, if at all. The type of patient, the kind of humor, the type and severity of illness, the psychosocial contexts-all of these factors should be considered. Third, the infusion of humor into psychotherapy is great news for some therapists and awful news for others. A number of more balanced approaches point up the probability that when mirth is incorporated into therapy judiciously, appropriately, and meaningfully it can be of value.

  10. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    PubMed Central

    Bhakta, Gajadhar; Nurcombe, Victor; Maitra, Amarnath; Shrivastava, Anju

    2014-01-01

    The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein)-encapsulated PEGylated (meaning polyethylene glycol coated) magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles) for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-? and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP). Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi) nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation. PMID:24936399

  11. Tissue adaptation: Implications for gut immunity and tolerance

    PubMed Central

    2017-01-01

    Tissue adaptation is an intrinsic component of immune cell development, influencing both resistance to pathogens and tolerance. Chronically stimulated surfaces of the body, in particular the gut mucosa, are the major sites where immune cells traffic and reside. Their adaptation to these environments requires constant discrimination between natural stimulation coming from harmless microbiota and food, and pathogens that need to be cleared. This review will focus on the adaptation of lymphocytes to the gut mucosa, a highly specialized environment that can help us understand the plasticity of leukocytes arriving at various tissue sites and how tissue-related factors operate to shape immune cell fate and function. PMID:28432200

  12. Innate immunity in vertebrates: an overview.

    PubMed

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  13. A T-cell-dependent humoral immune response is preserved during the administration of the nerve agent pre-treatment pyridostigmine bromide in a murine model.

    PubMed

    Griffiths, Gareth D; Telford, Gary; Hooi, Doreen S W; Cook, David L; Wilkinson, Lucy J; Green, Christopher A; Pritchard, David I

    2005-03-01

    Immune regulation, either via the autonomic nervous system or by a proposed "non-neuronal" cholinergic system, suggests that the immune system may be susceptible to perturbation by compounds affecting cholinergic function. Here, the current UK and US nerve agent pre-treatment, pyridostigmine bromide (PB) and the related anti-acetylcholinesterase (AChE) compounds physostigmine (PHY) and BW284c51 were tested for their ability to affect mouse splenocyte function in vitro. In addition, PB, at a dose equivalent to that received during pre-treatment for nerve agent poisoning, was tested for its effect on a T-cell-dependent humoral response to antigen in vivo in the mouse. None of the anti-AChEs tested affected concanavalin A (Con A)-, anti-CD3- or lipopolysaccharide LPS-driven splenocyte proliferation, in vitro, at concentrations expected to give effective nerve agent pre-treatment. However, higher concentrations (>100 microM) particularly of PHY caused some inhibition of the proliferative responses. In vivo, PB or saline was administered via 28-day mini-osmotic pumps to give a 25-40% inhibition of whole blood AChE in the PB-treated animals. During PB or saline administration, primary and secondary doses (i.p.) of sheep red blood cells (SRBC) were given and the humoral response determined by monitoring anti-SRBC IgM and IgG levels. Splenocytes isolated from the experimental animals were also examined for their proliferative and cytokine responses to stimulation. No remarkable effects of PB were seen during the period of AChE inhibition on the humoral immune response. However, a modest elevation in IL-2 and IFN(gamma) in Con A-stimulated lymphocytes was seen in PB-treated animals following pump removal. Overall these data suggest that, in vivo, the SRBC stimulated T-cell-dependent immune response is unaffected by the administration of PB at pre-treatment doses.

  14. Evaluation of humoral immunity and protective efficacy of biofilm producing Staphylococcus aureus bacterin-toxoid prepared from a bovine mastitis isolate in rabbit

    PubMed Central

    A., Raza; G., Muhammad; S. U., Rahman; I., Rashid; K., Hanif; A., Atta; S., Sharif

    2015-01-01

    Mastitis is a one of the major diseases of dairy animals. Staphylococcus aureus is the most common microorganism associated with this dairy scourge. Cure rates of mastitis associated with this pathogen are appallingly low. Biofilm is an important virulence factor and immunogenic structure of S. aureus that makes it resistant to phagocytosis and antibiotics. Reports on the efficacy of vaccine prepared from a biofilm producing S. aureus are infrequent. The present study was designed to evaluate the role of a bacterin-toxoid prepared from a strong biofilm producing S. aureus in effective immunization of rabbits. The strong biofilm producing S. aureus selected from 64 isolates of staphylococci was used to prepare bacterin-toxoid and aluminum hydroxide gel was added as an adjuvant. The vaccine was evaluated in rabbits by challenge protection assay and humoral immune response. The mortality rates in control and vaccinated groups were 80% and 10% at day 7 post challenge and 100% and 20% at day 15 post challenge, respectively. Serum antibody titer (GMT) was significantly higher (294.0) in vaccinated group as compared to control group of rabbits (2.63) at day 45. The results showed that the vaccine has significantly elicited humoral immune response in rabbit and developed protective efficacy against new infections. PMID:27175154

  15. Integration of Immune Cell Populations, mRNA-Seq, and CpG Methylation to Better Predict Humoral Immunity to Influenza Vaccination: Dependence of mRNA-Seq/CpG Methylation on Immune Cell Populations

    PubMed Central

    Zimmermann, Michael T.; Kennedy, Richard B.; Grill, Diane E.; Oberg, Ann L.; Goergen, Krista M.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Poland, Gregory A.

    2017-01-01

    The development of a humoral immune response to influenza vaccines occurs on a multisystems level. Due to the orchestration required for robust immune responses when multiple genes and their regulatory components across multiple cell types are involved, we examined an influenza vaccination cohort using multiple high-throughput technologies. In this study, we sought a more thorough understanding of how immune cell composition and gene expression relate to each other and contribute to interindividual variation in response to influenza vaccination. We first hypothesized that many of the differentially expressed (DE) genes observed after influenza vaccination result from changes in the composition of participants’ peripheral blood mononuclear cells (PBMCs), which were assessed using flow cytometry. We demonstrated that DE genes in our study are correlated with changes in PBMC composition. We gathered DE genes from 128 other publically available PBMC-based vaccine studies and identified that an average of 57% correlated with specific cell subset levels in our study (permutation used to control false discovery), suggesting that the associations we have identified are likely general features of PBMC-based transcriptomics. Second, we hypothesized that more robust models of vaccine response could be generated by accounting for the interplay between PBMC composition, gene expression, and gene regulation. We employed machine learning to generate predictive models of B-cell ELISPOT response outcomes and hemagglutination inhibition (HAI) antibody titers. The top HAI and B-cell ELISPOT model achieved an area under the receiver operating curve (AUC) of 0.64 and 0.79, respectively, with linear model coefficients of determination of 0.08 and 0.28. For the B-cell ELISPOT outcomes, CpG methylation had the greatest predictive ability, highlighting potentially novel regulatory features important for immune response. B-cell ELISOT models using only PBMC composition had lower

  16. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV

    PubMed Central

    Carbone, Javier

    2016-01-01

    Abstract The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection. PMID:26900990

  17. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV.

    PubMed

    Carbone, Javier

    2016-03-01

    The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection.

  18. Loss of Humoral and Cellular Immunity to Invasive Nontyphoidal Salmonella during Current or Convalescent Plasmodium falciparum Infection in Malawian Children.

    PubMed

    Nyirenda, Tonney S; Nyirenda, James T; Tembo, Dumizulu L; Storm, Janet; Dube, Queen; Msefula, Chisomo L; Jambo, Kondwani C; Mwandumba, Henry C; Heyderman, Robert S; Gordon, Melita A; Mandala, Wilson L

    2017-07-01

    Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the humoral and cellular immunity of the host to NTS, which increases the susceptibility of the host to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi, and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria negative, and nonfebrile malaria negative. Levels of Salmonella enterica serovar Typhimurium-specific serum bactericidal activity (SBA) and whole-blood bactericidal activity (WBBA), complement C3 deposition, and neutrophil respiratory burst activity (NRBA) were measured. Levels of SBA with respect to S Typhimurium were reduced in febrile P. falciparum -infected children (median, -0.20 log10 [interquartile range {IQR}, -1.85, 0.32]) compared to nonfebrile malaria-negative children (median, -1.42 log10 [IQR, -2.0, -0.47], P = 0.052). In relation to SBA, C3 deposition on S Typhimurium was significantly reduced in febrile P. falciparum -infected children (median, 7.5% [IQR, 4.1, 15.0]) compared to nonfebrile malaria-negative children (median, 29% [IQR, 11.8, 48.0], P = 0.048). WBBA with respect to S Typhimurium was significantly reduced in febrile P. falciparum -infected children (median, 0.25 log10 [IQR, -0.73, 1.13], P = 0.0001) compared to nonfebrile malaria-negative children (median, -1.0 log10 [IQR, -1.68, -0.16]). In relation to WBBA, S Typhimurium-specific NRBA was reduced in febrile P. falciparum -infected children (median, 8.8% [IQR, 3.7, 20], P = 0.0001) compared to nonfebrile malaria-negative children (median, 40.5% [IQR, 33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to S Typhimurium in children during malaria episodes, which may explain the increased risk of iNTS observed

  19. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  20. Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination

    PubMed Central

    Haralambieva, Iana H.; Kennedy, Richard B.; Simon, Whitney L.; Goergen, Krista M.; Grill, Diane E.; Ovsyannikova, Inna G.

    2018-01-01

    Background MicroRNAs are important mediators of post-transcriptional regulation of gene expression through RNA degradation and translational repression, and are emerging biomarkers of immune system activation/response after vaccination. Methods We performed Next Generation Sequencing (mRNA-Seq) of intracellular miRNAs in measles virus-stimulated B and CD4+ T cells from high and low antibody responders to measles vaccine. Negative binomial generalized estimating equation (GEE) models were used for miRNA assessment and the DIANA tool was used for gene/target prediction and pathway enrichment analysis. Results We identified a set of B cell-specific miRNAs (e.g., miR-151a-5p, miR-223, miR-29, miR-15a-5p, miR-199a-3p, miR-103a, and miR-15a/16 cluster) and biological processes/pathways, including regulation of adherens junction proteins, Fc-receptor signaling pathway, phosphatidylinositol-mediated signaling pathway, growth factor signaling pathway/pathways, transcriptional regulation, apoptosis and virus-related processes, significantly associated with neutralizing antibody titers after measles vaccination. No CD4+ T cell-specific miRNA expression differences between high and low antibody responders were found. Conclusion Our study demonstrates that miRNA expression directly or indirectly influences humoral immunity to measles vaccination and suggests that B cell-specific miRNAs may serve as useful predictive biomarkers of vaccine humoral immune response. PMID:29381765

  1. Cheetahs have a stronger constitutive innate immunity than leopards

    PubMed Central

    Heinrich, Sonja K.; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á.; Wachter, Bettina

    2017-01-01

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science. PMID:28333126

  2. Cheetahs have a stronger constitutive innate immunity than leopards.

    PubMed

    Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina

    2017-03-23

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.

  3. Immune response during space flight.

    PubMed

    Criswell-Hudak, B S

    1991-01-01

    The health status of an astronaut prior to and following space flight has been a prime concern of NASA throughout the Apollo series of lunar landings, Skylab, Apollo-Soyuz Test Projects (ASTP), and the new Spacelab-Shuttle missions. Both humoral and cellular immunity has been studied using classical clinical procedures. Serum proteins show fluctuations that can be explained with adaptation to flight. Conversely, cellular immune responses of lymphocytes appear to be depressed in both in vivo as well as in vitro. If this depression in vivo and in vitro is a result of the same cause, then man's adaptation to outer space living will present interesting challenges in the future. Since the cause may be due to reduced gravity, perhaps the designs of the experiments for space flight will offer insights at the cellular levels that will facilitate development of mechanisms for adaptation. Further, if the aging process is viewed as an adaptational concept or model and not as a disease process then perhaps space flight could very easily interact to supply some information on our biological time clocks.

  4. The rise and fall of long-lived humoral immunity: terminal differentiation of plasma cells in health and disease

    PubMed Central

    O'Connor, Brian P.; Gleeson, Michael W.; Noelle, Randolph J.; Erickson, Loren D.

    2010-01-01

    Summary Long-lived humoral immune responses are a hallmark of thymus-dependent immunity. The cellular basis for enduring antibody-mediated immunity is long-lived memory B cells and plasma cells (PCs). Both of these cell populations acquire longevity as a result of antigen-specific, CD40–dependent, cognate interactions with helper T cells within germinal centers (GCs). At the molecular level, defined functional domains of CD40 control the post-GC fate of B cells. PC precursors that emerge from these GC reactions are highly proliferative and terminally differentiate to end-stage cells within the bone marrow (BM). The striking phenotypic similarities between the PC precursors and the putative malignant cell in multiple myeloma (MM) suggests that MM may result from the transformation of PC precursors. Within the domain of autoimmune disease, recent studies have shown that dysregulated migration of PCs to the BM may impact immune homeostasis and the development of lupus. Understanding the processes of normal PC differentiation will provide strategic insights into identifying therapeutic targets for the treatment of differentiated B-cell disorders. PMID:12846808

  5. Eimeria maxima recombinant Gam82 gametocyte antigen vaccine protects against coccidiosis and augments humoral and cell-mediated immunity.

    PubMed

    Jang, Seung I; Lillehoj, Hyun S; Lee, Sung Hyen; Lee, Kyung Woo; Park, Myeong Seon; Cha, Sung-Rok; Lillehoj, Erik P; Subramanian, B Mohana; Sriraman, R; Srinivasan, V A

    2010-04-09

    Intestinal infection with Eimeria, the etiologic agent of avian coccidiosis, stimulates protective immunity to subsequent colonization by the homologous parasite, while cross-protection against heterologous species is poor. As a first step toward the development of a broad specificity Eimeria vaccine, this study was designed to assess a purified recombinant protein from Eimeria maxima gametocytes (Gam82) in stimulating immunity against experimental infection with live parasites. Following Gam82 intramuscular immunization and oral parasite challenge, body weight gain, fecal oocyst output, lesion scores, serum antibody response, and cytokine production were assessed to evaluate vaccination efficacy. Animals vaccinated with Gam82 and challenged with E. maxima showed lower oocyst shedding and reduced intestinal pathology compared with non-vaccinated and parasite-challenged animals. Gam82 vaccination also stimulated the production of antigen-specific serum antibodies and induced greater levels of IL-2 and IL-15 mRNAs compared with non-vaccinated controls. These results demonstrate that the Gam82 recombinant protein protects against E. maxima and augments humoral and cell-mediated immunity. Published by Elsevier Ltd.

  6. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus.

    PubMed

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-04-21

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  7. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    PubMed Central

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  8. Adaptive Immunity to Fungi

    PubMed Central

    Wüthrich, Marcel; Deepe, George S.; Klein, Bruce

    2013-01-01

    Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue. PMID:22224780

  9. Amplifying IFN-γ Signaling in Dendritic Cells by CD11c-Specific Loss of SOCS1 Increases Innate Immunity to Infection while Decreasing Adaptive Immunity.

    PubMed

    Alice, Alejandro F; Kramer, Gwen; Bambina, Shelly; Baird, Jason R; Bahjat, Keith S; Gough, Michael J; Crittenden, Marka R

    2018-01-01

    Although prophylactic vaccines provide protective humoral immunity against infectious agents, vaccines that elicit potent CD8 T cell responses are valuable tools to shape and drive cellular immunity against cancer and intracellular infection. In particular, IFN-γ-polarized cytotoxic CD8 T cell immunity is considered optimal for protective immunity against intracellular Ags. Suppressor of cytokine signaling (SOCS)1 is a cross-functional negative regulator of TLR and cytokine receptor signaling via degradation of the receptor-signaling complex. We hypothesized that loss of SOCS1 in dendritic cells (DCs) would improve T cell responses by accentuating IFN-γ-directed immune responses. We tested this hypothesis using a recombinant Listeria monocytogenes vaccine platform that targets CD11c + DCs in mice in which SOCS1 is selectively deleted in all CD11c + cells. Unexpectedly, in mice lacking SOCS1 expression in CD11c + cells, we observed a decrease in CD8 + T cell response to the L. monocytogenes vaccine. NK cell responses were also decreased in mice lacking SOCS1 expression in CD11c + cells but did not explain the defect in CD8 + T cell immunity. We found that DCs lacking SOCS1 expression were functional in driving Ag-specific CD8 + T cell expansion in vitro but that this process was defective following infection in vivo. Instead, monocyte-derived innate TNF-α and inducible NO synthase-producing DCs dominated the antibacterial response. Thus, loss of SOCS1 in CD11c + cells skewed the balance of immune response to infection by increasing innate responses while decreasing Ag-specific adaptive responses to infectious Ags. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. One Minute Ultraviolet Exposure Inhibits Toxoplasma gondii Tachyzoite Replication and Cyst Conversion without Diminishing Host Humoral-Mediated Immune Response

    PubMed Central

    Kannan, Geetha; Prandovszky, Emese; Steinfeldt, Curtis B.; Gressitt, Kristin L.; Yang, ChunXia; Yolken, Robert H.; Severance, Emily G.; Jones-Brando, Lorraine; Pletnikov, Mikhail V.

    2015-01-01

    We developed a protocol to inactivate Toxoplasma gondii (T. gondii) tachyzoites employing 1 minute of ultraviolet (UV) exposure. We show that this treatment completely inhibited parasite replication and cyst formation in vitro and in vivo but did not affect the induction of a robust IgG response in mice. We propose that our protocol can be used to study the contribution of the humoral immune response to rodent behavioral alterations following T. gondii infection. PMID:25131777

  11. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.

    PubMed

    Bielinska, Anna U; Makidon, Paul E; Janczak, Katarzyna W; Blanco, Luz P; Swanson, Benjamin; Smith, Douglas M; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F; Baker, James R

    2014-03-15

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.

  12. A Recombinant Trivalent Fusion Protein F1-LcrV-HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis.

    PubMed

    Verma, Shailendra K; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1-LcrV and F1-LcrV-HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1-LcrV and F1-LcrV-HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it's isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1-LcrV-HSP70(II) sera in comparison to anti-F1-LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1-LcrV-HSP(II) immunized mice in comparison to F1-LcrV. Both F1-LcrV and F1-LcrV-HSP70(II) provided 100% protection. Our research findings suggest that F1-LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model.

  13. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses.

    PubMed

    Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2009-07-01

    The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.

  14. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae.

    PubMed

    Teng, Zi-Wen; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Fang, Qi; Ye, Gong-Yin

    2016-02-01

    The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Human adaptive immune system Rag2-/-gamma(c)-/- mice.

    PubMed

    Chicha, Laurie; Tussiwand, Roxane; Traggiai, Elisabetta; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G

    2005-06-01

    Although many biologic principles are conserved in mice and humans, species-specific differences exist, for example, in susceptibility and response to pathogens, that often do not allow direct implementation of findings in experimental mice to humans. Research in humans, however, for ethical and practical reasons, is largely restricted to in vitro assays that lack components and the complexity of a living organism. To nevertheless study the human hematopoietic and immune system in vivo, xenotransplantation assays have been developed that substitute human components to small animals. Here, we summarize our recent findings that transplantation of human cord blood CD34(+) cells to newborn Rag2(-/-)gamma(c)(-/-) mice leads to de novo development of major functional components of the human adaptive immune system. These human adaptive immune system Rag2(-/-)gamma(c)(-/-) (huAIS-RG) mice can now be used as a technically straightforward preclinical model to evaluate in vivo human adaptive immune system development as well as immune responses, for example, to vaccines or live infectious pathogens.

  16. Glycans from avian influenza virus are recognized by chicken dendritic cells and are targets for the humoral immune response in chicken.

    PubMed

    de Geus, Eveline D; Tefsen, Boris; van Haarlem, Daphne A; van Eden, Willem; van Die, Irma; Vervelde, Lonneke

    2013-12-01

    To increase our understanding of the interaction between avian influenza virus and its chicken host, we identified receptors for putative avian influenza virus (AIV) glycan determinants on chicken dendritic cells. Chicken dendritic cells (DCs) were found to recognize glycan determinants containing terminal αGalNAc, Galα1-3Gal, GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ (chitotriose) and Galα1-2Gal. Infection of chicken dendritic cells with either low pathogenic (LP) or highly pathogenic (HP) AIV results in elevated mRNA expression of homologs of the mouse C-type lectins DEC205 and macrophage mannose receptor (MMR), whereas expression levels of the human dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) homolog remained unchanged. Following uptake and subsequent presentation of avian influenza virus by DCs, adaptive immunity, including humoral immune responses are induced. We have investigated the antibody responses against virus glycan epitopes after avian influenza virus infection. Using glycan micro-array analysis we showed that chicken contained antibodies that predominantly recognize terminal Galα1-3Gal-R, chitotriose and Fucα1-2Galβ1-4GlcNAc-R (H-type 2). After influenza-infection, glycan array analysis showed that both levels and repertoire of glycan-recognizing antibodies decreased. However, analysis of the sera by ELISA indicated that the levels of different isotypes of anti-glycan Abs against specific glycan antigens was increased after influenza-infection, suggesting that the presentation of the glycan antigens and iso-type of the Abs are critical parameters to take into account when measuring anti-glycan Abs. This novel approach in avian influenza research may contribute to the development of a broad spectrum vaccine and improves our mechanistic understanding of innate and adaptive responses to glycans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  18. Very Good Medicine: Indigenous Humor and Laughter

    ERIC Educational Resources Information Center

    Mala, Cynthia Lindquist

    2016-01-01

    Humor is not only instinctive and a basic human need, but it also is very good medicine. Laughter boosts the immune system, lowers blood pressure, reduces stress hormones, and is linked to healthy functioning organs. [This article was written with Mylo Redwater Smith.

  19. Cellular and humoral immunity after vaccination or natural mumps infection.

    PubMed

    Terada, Kihei; Hagihara, Kimiko; Oishi, Tomohiro; Miyata, Ippei; Akaike, Hiroto; Ogita, Satoko; Ohno, Naoki; Ouchi, Kazunobu

    2017-08-01

    This study measured cell-mediated immunity (CMI) and serum antibody to clarify the basis of breakthrough after vaccination and reinfection after mumps. From a pool of 54 college students, 17 seronegative subjects and 14 subjects with intermediate level of antibodies against mumps were vaccinated with a monovalent mumps vaccine, and CMI was assessed using interferon-γ release assay. CMI positivity according to pre-existing antibody level, defined as titer <2.0 index units, negative; 2.0-3.9 index units, intermediate; and ≥4.0 index units, positive, was 8/17 (47.1%), 9/14 (64.3%) and 19/23 (82.6%) before vaccination, respectively. Of the 17 seronegative subjects, seven (41.2%) had a history of vaccination and/or natural infection, four (57.1%) of whom were CMI positive or intermediate. Ten (71%) of 14 subjects with intermediate antibody level had a history of vaccination or natural infection, eight (80%) of whom were CMI positive or intermediate. After vaccination the interferon (IFN)-γ and antibody titers increased significantly, but seven (41.2%) of the 17 seronegative subjects and 13 (92.9%) of the 14 intermediate-level subjects tested positive for both antibody and CMI. In a comparison of the natural infection group (confirmed as IgG seropositive and/or CMI positive without vaccination) versus the vaccination group, IgG antibody titer (mean ± SD) was 14.4 ± 8.0 versus 3.6 ± 2.4 index units (P < 0.01) and IFN-γ was 122.7 ± 90.0 pg/mL versus 59.5 ± 37.8 pg/mL (P > 0.05), respectively. Vaccination or even natural mumps infection did not always induce both cellular and humoral immunity. © 2017 Japan Pediatric Society.

  20. Loss of Humoral and Cellular Immunity to Invasive Nontyphoidal Salmonella during Current or Convalescent Plasmodium falciparum Infection in Malawian Children

    PubMed Central

    Nyirenda, James T.; Tembo, Dumizulu L.; Storm, Janet; Dube, Queen; Msefula, Chisomo L.; Jambo, Kondwani C.; Mwandumba, Henry C.; Heyderman, Robert S.; Gordon, Melita A.

    2017-01-01

    ABSTRACT Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the humoral and cellular immunity of the host to NTS, which increases the susceptibility of the host to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi, and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria negative, and nonfebrile malaria negative. Levels of Salmonella enterica serovar Typhimurium-specific serum bactericidal activity (SBA) and whole-blood bactericidal activity (WBBA), complement C3 deposition, and neutrophil respiratory burst activity (NRBA) were measured. Levels of SBA with respect to S. Typhimurium were reduced in febrile P. falciparum-infected children (median, −0.20 log10 [interquartile range {IQR}, −1.85, 0.32]) compared to nonfebrile malaria-negative children (median, −1.42 log10 [IQR, −2.0, −0.47], P = 0.052). In relation to SBA, C3 deposition on S. Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 7.5% [IQR, 4.1, 15.0]) compared to nonfebrile malaria-negative children (median, 29% [IQR, 11.8, 48.0], P = 0.048). WBBA with respect to S. Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 0.25 log10 [IQR, −0.73, 1.13], P = 0.0001) compared to nonfebrile malaria-negative children (median, −1.0 log10 [IQR, −1.68, −0.16]). In relation to WBBA, S. Typhimurium-specific NRBA was reduced in febrile P. falciparum-infected children (median, 8.8% [IQR, 3.7, 20], P = 0.0001) compared to nonfebrile malaria-negative children (median, 40.5% [IQR, 33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to S. Typhimurium in children during malaria episodes, which may explain the

  1. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity

    PubMed Central

    Hedi, Harizi

    2004-01-01

    5-lipoxygenase (5-LO) pathway is the major source of potent proinflammatory leukotrienes (LTs) issued from the metabolism of arachidonic acid (AA), and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC)-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity. PMID:15240920

  2. Humoral and cell-mediated immune responses to influenza vaccination in equine metabolic syndrome (EMS) horses.

    PubMed

    Elzinga, Sarah; Reedy, Stephanie; Barker, Virginia D; Chambers, Thomas M; Adams, Amanda A

    2018-05-01

    > 0.05) humoral immune responses as measured by HI titers or IgG antibody isotypes to influenza vaccination. There was an effect of metabolic status on CMI responses, with influenza vaccinated EMS horses having lower gene expression of IFN-γ (P = 0.02) and IL-2 (P = 0.01) compared to vaccinated non-EMS control horses. Given these results, it appears that while metabolic status does not influence humoral responses to an inactivated influenza vaccine in horses, horses with EMS appear to have a reduced CMI response to vaccination compared to metabolically normal, non-EMS control horses. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Leptospiral Proteins Recognized during the Humoral Immune Response to Leptospirosis in Humans

    PubMed Central

    Guerreiro, Hygia; Croda, Júlio; Flannery, Brendan; Mazel, Mary; Matsunaga, James; Reis, Mitermayer Galvão; Levett, Paul N.; Ko, Albert I.; Haake, David A.

    2001-01-01

    Leptospirosis is an emerging zoonosis caused by pathogenic spirochetes belonging to the genus Leptospira. An understanding of leptospiral protein expression regulation is needed to develop new immunoprotective and serodiagnostic strategies. We used the humoral immune response during human leptospirosis as a reporter of protein antigens expressed during infection. Qualitative and quantitative immunoblot analysis was performed using sera from 105 patients from Brazil and Barbados. Sera from patients with other diseases and healthy individuals were evaluated as controls. Seven proteins, p76, p62, p48, p45, p41, p37, and p32, were identified as targets of the humoral response during natural infection. In both acute and convalescent phases of illness, antibodies to lipopolysaccharide were predominantly immunoglobulin M (IgM) while antibodies to proteins were exclusively IgG. Anti-p32 reactivity had the greatest sensitivity and specificity: positive reactions were observed in 37 and 84% of acute- and convalescent-phase sera, respectively, while only 5% of community control individuals demonstrated positive reactions. Six immunodominant antigens were expressed by all pathogenic leptospiral strains tested; only p37 was inconsistently expressed. Two-dimensional immunoblots identified four of the seven infection-associated antigens as being previously characterized proteins: LipL32 (the major outer membrane lipoprotein), LipL41 (a surface-exposed outer membrane lipoprotein), and heat shock proteins GroEL and DnaK. Fractionation studies demonstrated LipL32 and LipL41 reactivity in the outer membrane fraction and GroEL and DnaK in the cytoplasmic fraction, while p37 appeared to be a soluble periplasmic protein. Most of the other immunodominant proteins, including p48 and p45, were localized to the inner membrane. These findings indicate that leptospiral proteins recognized during natural infection are potentially useful for serodiagnosis and may serve as targets for vaccine

  4. Leptospiral proteins recognized during the humoral immune response to leptospirosis in humans.

    PubMed

    Guerreiro, H; Croda, J; Flannery, B; Mazel, M; Matsunaga, J; Galvão Reis, M; Levett, P N; Ko, A I; Haake, D A

    2001-08-01

    Leptospirosis is an emerging zoonosis caused by pathogenic spirochetes belonging to the genus Leptospira. An understanding of leptospiral protein expression regulation is needed to develop new immunoprotective and serodiagnostic strategies. We used the humoral immune response during human leptospirosis as a reporter of protein antigens expressed during infection. Qualitative and quantitative immunoblot analysis was performed using sera from 105 patients from Brazil and Barbados. Sera from patients with other diseases and healthy individuals were evaluated as controls. Seven proteins, p76, p62, p48, p45, p41, p37, and p32, were identified as targets of the humoral response during natural infection. In both acute and convalescent phases of illness, antibodies to lipopolysaccharide were predominantly immunoglobulin M (IgM) while antibodies to proteins were exclusively IgG. Anti-p32 reactivity had the greatest sensitivity and specificity: positive reactions were observed in 37 and 84% of acute- and convalescent-phase sera, respectively, while only 5% of community control individuals demonstrated positive reactions. Six immunodominant antigens were expressed by all pathogenic leptospiral strains tested; only p37 was inconsistently expressed. Two-dimensional immunoblots identified four of the seven infection-associated antigens as being previously characterized proteins: LipL32 (the major outer membrane lipoprotein), LipL41 (a surface-exposed outer membrane lipoprotein), and heat shock proteins GroEL and DnaK. Fractionation studies demonstrated LipL32 and LipL41 reactivity in the outer membrane fraction and GroEL and DnaK in the cytoplasmic fraction, while p37 appeared to be a soluble periplasmic protein. Most of the other immunodominant proteins, including p48 and p45, were localized to the inner membrane. These findings indicate that leptospiral proteins recognized during natural infection are potentially useful for serodiagnosis and may serve as targets for vaccine

  5. Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine.

    PubMed

    Hashemi, Hamidreza; Bamdad, Taravat; Jamali, Abbas; Pouyanfard, Somayeh; Mohammadi, Masoumeh Gorgian

    2010-02-01

    Phage display is based on expressing peptides as a fusion to one of the phage coat proteins. To date, many vaccine researches have been conducted to display immunogenic peptides or mimotopes of various pathogens and tumors on the surface of filamentous bacteriophages. In recent years as a new approach to application of phages, recombinant bacteriophage lambda particles were used as DNA delivery vehicles to mammalian cells. In this study, recombinant filamentous phage whole particles were used for vaccination of mice. BALB/c mice were inoculated with filamentous phage particles containing expression cassette of Herpes simplex virus 1 (HSV-1) glycoprotein D that has essential roles in the virus attachment and entry. Both humoral and cellular immune responses were measured in the immunized mice and compared to conventional DNA vaccination. A dose-response relationship was observed in both arms of immune responses induced by recombinant filamentous phage inoculation. The results were similar to those from DNA vaccination. Filamentous phages can be considered as suitable alternative candidate vaccines because of easier and more cost-effective production and purification over plasmid DNA or bacteriophage lambda particles. 2009 Elsevier B.V. All rights reserved.

  6. Orange-spotted grouper Epinephelus coioides that have encountered low salinity stress have decreased cellular and humoral immune reactions and increased susceptibility to Vibrio alginolyticus.

    PubMed

    Chen, Yu-Yuan; Cheng, Ann-Chang; Cheng, Shao-An; Chen, Jiann-Chu

    2018-06-18

    Orange-spotted grouper Epinephelus coioides reared at 34‰ and 27 °C were abruptly transferred to 6‰, 20‰ and 34‰ (control) and examined for innate cellular and humoral parameters after 3-96 h. Total leucocyte count (TLC), respiratory burst (RB), phagocytic activity (PA), alternative complement pathway (ACP) and lysozyme activity were significantly decreased 3-6 h, 3-6 h, 3-96 h, 3-96 h and 3-96 h, respectively after transferal into 6‰ salinity. TLC, RB and PA significantly increased after 3-48 h, 3-96 h and 3-24 h, respectively, with recovery of TLC and PA after 96 h and 48-96 h, whereas ACP and lysozyme activity significantly decreased 3-96 h after being transferred to 20‰. In another experiment, grouper reared at 34‰ and 27 °C were injected with Vibrio alginolyticus grown in tryptic soy broth (TSB) at 2.3 × 10 9  colony-forming units (cfu) fish -1 and then transferred to 6‰, 20‰ and 34‰ (control). The cumulative mortalities of V. alginolyticus-injected fish held in 6‰ were significantly higher than in injected fish held at 20‰ and 34‰. It was concluded that grouper E. coioides encountering a 34‰-6‰ salinity drop stress exhibited a depression in immunity as evidenced by decreased cellular and humoral parameters and increased susceptibility to V. alginolyticus. Grouper encountering a salinity stress drop from 34‰ to 20‰, however, exhibited decreased humoral immune parameters but also increased TLC and cellular immune parameters, indicating immunomodulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. CD98 at the crossroads of adaptive immunity and cancer

    PubMed Central

    Cantor, Joseph M.; Ginsberg, Mark H.

    2012-01-01

    Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer. PMID:22499670

  8. The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity.

    PubMed

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-04-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system; this article covers adaptive immunity. Clinical relevance: Dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  9. Adaptive Immunity to Cryptococcus neoformans Infections

    PubMed Central

    Mukaremera, Liliane; Nielsen, Kirsten

    2017-01-01

    The Cryptococcus neoformans/Cryptococcus gattii species complex is a group of fungal pathogens with different phenotypic and genotypic diversity that cause disease in immunocompromised patients as well as in healthy individuals. The immune response resulting from the interaction between Cryptococcus and the host immune system is a key determinant of the disease outcome. The species C. neoformans causes the majority of human infections, and therefore almost all immunological studies focused on C. neoformans infections. Thus, this review presents current understanding on the role of adaptive immunity during C. neoformans infections both in humans and in animal models of disease. PMID:29333430

  10. Immune and stress responses in oysters with insights on adaptation.

    PubMed

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    PubMed

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  12. Impairment of the humoral and CD4+ T cell responses in HTLV-1-infected individuals immunized with tetanus toxoid

    PubMed Central

    Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P.; Grassi, Maria Fernanda R.; Carvalho, Edgar M.

    2016-01-01

    T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4+ T cells expressing IFN-γ, TNF and IL-10 in response to TT were lower in the (HC) than in the controls. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it’s necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4+ T cell immune responses after vaccination. PMID:27282836

  13. Altered cellular and humoral immunity to varicella-zoster virus in patients with autoimmune diseases.

    PubMed

    Rondaan, Christien; de Haan, Aalzen; Horst, Gerda; Hempel, J Cordelia; van Leer, Coretta; Bos, Nicolaas A; van Assen, Sander; Bijl, Marc; Westra, Johanna

    2014-11-01

    Patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and granulomatosis with polyangiitis (Wegener's) (GPA) have a 3-20-fold increased risk of herpes zoster compared to the general population. The aim of this study was to evaluate if susceptibility is due to decreased levels of cellular and/or humoral immunity to the varicella-zoster virus (VZV). A cross-sectional study of VZV-specific immunity was performed in 38 SLE patients, 33 GPA patients, and 51 healthy controls. Levels of IgG and IgM antibodies to VZV were measured using an in-house glycoprotein enzyme-linked immunosorbent assay (ELISA). Cellular responses to VZV were determined by interferon-γ (IFNγ) enzyme-linked immunospot (ELISpot) assay and carboxyfluorescein succinimidyl ester (CFSE) dye dilution proliferation assay. Levels of IgG antibodies to VZV were increased in SLE patients as compared to healthy controls, but levels of IgM antibodies to VZV were not. Antibody levels in GPA patients did not differ significantly from levels in healthy controls. In response to stimulation with VZV, decreased numbers of IFNγ spot-forming cells were found among SLE patients (although not GPA patients) as compared to healthy controls. Proliferation of CD4+ T cells in response to stimulation with VZV was decreased in SLE patients but not GPA patients. SLE patients have increased levels of IgG antibodies against VZV, while cellular immunity is decreased. In GPA patients, antibody levels as well as cellular responses to VZV were comparable to those in healthy controls. These data suggest that increased prevalence of herpes zoster in SLE patients is due to a poor cellular response. Vaccination strategies should aim to boost cellular immunity against VZV. Copyright © 2014 by the American College of Rheumatology.

  14. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    PubMed Central

    Ortolani, Claudio; del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Artico, Marco; Papa, Stefano

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view. PMID:28078307

  15. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types.

    PubMed

    Zhang, Ting; Xu, Yufei; Qiao, Liang; Wang, Youchun; Wu, Xueling; Fan, Dongsheng; Peng, Qinglin; Xu, Xuemei

    2010-04-26

    Both Human Papillomavirus (HPV) type 16/18 bivalent vaccine and type 16/18/6/11 quadrivalent vaccine have been proved to be safe and effective, and licensed for public use. However, these two vaccines do not quite match the distribution of HPV types in China, Southeast Asia and Latin America, where HPV 58 is highly prevalent. Here we produced three types of virus-like particles (VLPs) in baculovirus expression system, formulated a trivalent vaccine containing HPV 16, 18, and 58 L1 VLPs and examined its in vitro neutralizing titers. This vaccine could induce high level and long-term humoral immunity against the component types. But immune interference was observed when comparing type specific neutralizing antibody levels induced by trivalent vaccine to those by corresponding monovalent vaccines. This kind of interference would become more obvious when formulating more types of VLPs into multivalent vaccines, but could be greatly overcome by decreasing the antigen dosage and adding a proper adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination.

    PubMed

    Kongsgaard, Michael; Bassi, Maria R; Rasmussen, Michael; Skjødt, Karsten; Thybo, Søren; Gabriel, Mette; Hansen, Morten Bagge; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Buus, Soren; Stryhn, Anette

    2017-04-06

    Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination. Although most vaccinees responded to a booster vaccination, both the humoral and cellular immune responses observed following booster vaccination were strikingly reduced compared to primary responses. This suggests that pre-existing immunity efficiently controls booster inoculums of YF-17D. In a situation with epidemic outbreaks, one could argue that a more efficient use of a limited supply of the vaccine would be to focus on primary vaccinations.

  17. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies. Copyright © 2015. Published by Elsevier Ltd.

  18. Effect of nutrient density on production performance, egg quality and humoral immune response of brown laying (Dahlem Red) hens in the tropics.

    PubMed

    Panda, Arun Kumar; Rao, Savaram Venkata Rama; Raju, Mantena Venkata Lakshmi Narasimha; Niranjan, Matam; Reddy, Maddula Ramkoti

    2012-02-01

    A study was conducted to evaluate the effect of various concentrations of metabolizable energy (ME) with graded incremental levels of crude protein (CP) and essential amino acids (lysine and methionine) on production performance, egg quality and humoral immune response of Dahlem Red laying hens. Four experimental diets based on maize-soybean meal-deoiled rice bran were prepared. Diet 1 was fed as a control diet containing 2,600 kcal ME/kg, 15% CP, 0.75% Lys and 0.36% Met, and in the other three diets (D2, D3 and D4), concentrations of the above nutrients were increased by 2.5%, 5.0% and 7.5%, respectively. The levels of Ca (3.5%) and available P (0.32) were constant in all the diets. Each diet was offered ad libitum from 28 to 40 weeks of age to eight replicates containing six birds in each replicate. The egg production, egg weight and egg mass (in grams of egg per hen per day) were not affected by increasing the nutrient density up to 7.5% (2,795 kcal ME/kg diet) compared to the control group (2,600 ME/kg diet). However, feed consumption and feed efficiency (in grams of egg per gram of feed) were influenced by the variation in the nutrient density of diets. As the nutrient density increased by 5% (2,730 ME/kg diet), birds consumed significantly (P < 0.001) less feed. The birds in the 7.5% higher density group produced significantly (P < 0.05) higher egg mass per unit feed consumption compared to the control diet. Increasing nutrient density up to 7.5% had no effect on relative weight of albumen, yolk or shell. The Haugh unit, yolk colour and shell thickness were also not affected due to variation in the nutrient density. The humoral immune response measured at 34 and 40 weeks was progressively improved by increasing the nutrient density up to 5%. Increasing the nutrient density beyond 5% in the diet had no further influence on the humoral immune response. Based on the results of the present study, it can be concluded that Dahlem Red laying hens required 2,795 kcal

  19. Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep.

    PubMed

    Manoj, Sharmila; Griebel, Philip J; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2003-01-15

    CD40-CD154 interactions play an important role in regulating humoral and cell-mediated immune responses. Recently, these interactions have been exploited for the development of therapeutic and preventive treatments. The objective of this study was to test the ability of bovine CD154 to target a plasmid-encoded Ag to CD40-expressing APCs. To achieve this, a plasmid coding for bovine CD154 fused to a truncated secreted form of bovine herpesvirus 1 glycoprotein D (tgD), pSLIAtgD-CD154, was constructed. The chimeric tgD-CD154 was expressed in vitro in COS-7 cells and reacted with both glycoprotein D- and CD154-specific Abs. Both tgD and tgD-CD154 were capable of binding to epithelial cells, whereas only tgD-CD154 bound to B cells. Furthermore, dual-labeling of ovine PBMCs revealed that tgD-CD154 was bound by primarily B cells. The functional integrity of the tgD-CD154 chimera was confirmed by the induction of both IL-4-dependent B cell proliferation and tgD-specific lymphoproliferative responses in vitro. Finally, sheep immunized with pSLIAtgD-CD154 developed a more rapid primary tgD-specific Ab response and a significantly stronger tgD-specific secondary response when compared with animals immunized with pSLIAtgD and control animals. Similarly, virus-neutralizing Ab titers were significantly higher after secondary immunization with pSLIAtgD-CD154. These results demonstrate that using CD154 to target plasmid-expressed Ag can significantly enhance immune responses induced by a DNA vaccine.

  20. Adaptive immune education by gut microbiota antigens.

    PubMed

    Zhao, Qing; Elson, Charles O

    2018-05-01

    Host-microbiota mutualism has been established during long-term co-evolution. A diverse and rich gut microbiota plays an essential role in the development and maturation of the host immune system. Education of the adaptive immune compartment by gut microbiota antigens is important in establishing immune balance. In particular, a critical time frame immediately after birth provides a 'window of opportunity' for the development of lymphoid structures, differentiation and maturation of T and B cells and, most importantly, establishment of immune tolerance to gut commensals. Depending on the colonization niche, antigen type and metabolic property of different gut microbes, CD4 T-cell responses vary greatly, which results in differentiation into distinct subsets. As a consequence, certain bacteria elicit effector-like immune responses by promoting the production of pro-inflammatory cytokines such as interferon-γ and interleukin-17A, whereas other bacteria favour the generation of regulatory CD4 T cells and provide help with gut homeostasis. The microbiota have profound effects on B cells also. Gut microbial exposure leads to a continuous diversification of B-cell repertoire and the production of T-dependent and -independent antibodies, especially IgA. These combined effects of the gut microbes provide an elegant educational process to the adaptive immune network. Contrariwise, failure of this process results in a reduced homeostasis with the gut microbiota, and an increased susceptibility to various immune disorders, both inside and outside the gut. With more definitive microbial-immune relations waiting to be discovered, modulation of the host gut microbiota has a promising future for disease intervention. © 2018 John Wiley & Sons Ltd.

  1. Emerging Concepts of Adaptive Immunity in Leprosy

    PubMed Central

    Sadhu, Soumi; Mitra, Dipendra Kumar

    2018-01-01

    Leprosy is a chronic intracellular infection caused by the acid-fast bacillus, Mycobacterium leprae. The disease chiefly affects the skin, peripheral nerves, mucosa of the upper respiratory tract, and the eyes. The damage to peripheral nerves results in sensory and motor impairment with characteristic deformities and disability. Presently, the disease remains concentrated in resource-poor countries in tropical and warm temperate regions with the largest number of cases reported from India. Even though innate immunity influences the clinical manifestation of the disease, it is the components of adaptive immune system which seem to tightly correlate with the characteristic spectrum of leprosy. M. leprae-specific T cell anergy with bacillary dissemination is the defining feature of lepromatous leprosy (LL) patients in contrast to tuberculoid leprosy (TT) patients, which is characterized by strong Th1-type cell response with localized lesions. Generation of Th1/Th2-like effector cells, however, cannot wholly explain the polarized state of immunity in leprosy. A comprehensive understanding of the role of various regulatory T cells, such as Treg and natural killer T cells, in deciding the polarized state of T cell immunity is crucial. Interaction of these T cell subsets with effector T cells like Th1 (IFN-γ dominant), Th2 (interluekin-4 dominant), and Th17 (IL-17+) cells through various regulatory cytokines and molecules (programmed death-1/programmed death ligand-1) may constitute key events in dictating the state of immune polarization, thus controlling the clinical manifestation. Studying these important components of the adaptive immune system in leprosy patients is essential for better understanding of immune function, correlate(s) the immunity and mechanism(s) of its containment. PMID:29686668

  2. Allelic Dependent Expression of an Activating Fc receptor on B cells Enhances Humoral Immune Responses

    PubMed Central

    Li, Xinrui; Wu, Jianming; Ptacek, Travis; Redden, David T; Brown, Elizabeth E; Alarcón, Graciela S; Ramsey-Goldman, Rosalind; Petri, Michelle A; Reveille, John D.; Kaslow, Richard A; Kimberly, Robert P; Edberg, Jeffrey C

    2014-01-01

    B cells are pivotal regulators of acquired immune responses and recent work in both experimental murine models and humans has demonstrated that subtle changes in the regulation of B cell function can significantly alter immunological responses. The balance of negative and positive signals in maintaining an appropriate B cell activation threshold is critical in B lymphocyte immune tolerance and autoreactivity. FcγRIIb (CD32B), the only recognized Fcγ receptor on B cells, provides IgG-mediated negative modulation through a tyrosine-based inhibition motif which down-regulates B cell receptor initiated signaling. These properties make FcγRIIb a promising target for antibody-based therapy. Here we report the discovery of allele-dependent expression of the activating FcγRIIc on B cells. Identical to FcγRIIb in the extracellular domain, FcγRIIc has a tyrosine-based activation motif in its cytoplasmic domain. In both human B cells and in B cells from mice transgenic for human FcγRIIc, FcγRIIc expression counterbalances the negative feedback of FcγRIIb and enhances humoral responses to immunization in mice and to BioThrax® vaccination in a human Anthrax vaccine trial. Moreover, the FCGR2C-ORF allele is associated with the risk of development of autoimmunity in humans. FcγRIIc expression on B cells challenges the prevailing paradigm of uni-directional negative feedback by IgG immune complexes via the inhibitory FcγRIIb, is a previously unrecognized determinant in human antibody/autoantibody responses, and opens the opportunity for more precise personalized use of B cell targeted antibody-based therapy. PMID:24353158

  3. Evaluation of humoral immunity profiles to identify heart recipients at risk for development of severe infections: A multicenter prospective study.

    PubMed

    Sarmiento, Elizabeth; Jaramillo, Maria; Calahorra, Leticia; Fernandez-Yañez, Juan; Gomez-Sanchez, Miguel; Crespo-Leiro, Maria G; Paniagua, Maria; Almenar, Luis; Cebrian, Monica; Rabago, Gregorio; Levy, Beltran; Segovia, Javier; Gomez-Bueno, Manuel; Lopez, Javier; Mirabet, Sonia; Navarro, Joaquin; Rodriguez-Molina, Juan Jose; Fernandez-Cruz, Eduardo; Carbone, Javier

    2017-05-01

    New biomarkers are necessary to improve detection of the risk of infection in heart transplantation. We performed a multicenter study to evaluate humoral immunity profiles that could better enable us to identify heart recipients at risk of severe infections. We prospectively analyzed 170 adult heart recipients at 8 centers in Spain. Study points were before transplantation and 7 and 30 days after transplantation. Immune parameters included IgG, IgM, IgA and complement factors C3 and C4, and titers of specific antibody to pneumococcal polysaccharide antigens (anti-PPS) and to cytomegalovirus (CMV). To evaluate potential immunologic mechanisms leading to IgG hypogammaglobulinemia, before heart transplantation we assessed serum B-cell activating factor (BAFF) levels using enzyme-linked immunoassay. The clinical follow-up period lasted 6 months. Clinical outcome was need for intravenous anti-microbials for therapy of infection. During follow-up, 53 patients (31.2%) developed at least 1 severe infection. We confirmed that IgG hypogammaglobulinemia at Day 7 (defined as IgG <600 mg/dl) is a risk factor for infection in general, bacterial infections in particular, and CMV disease. At Day 7 after transplantation, the combination of IgG <600 mg/dl + C3 <80 mg/dl was more strongly associated with the outcome (adjusted odds ratio 7.40; 95% confidence interval 1.48 to 37.03; p = 0.014). We found that quantification of anti-CMV antibody titers and lower anti-PPS antibody concentrations were independent predictors of CMV disease and bacterial infections, respectively. Higher pre-transplant BAFF levels were a risk factor of acute cellular rejection. Early immunologic monitoring of humoral immunity profiles proved useful for the identification of heart recipients who are at risk of severe infection. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  4. The innate and adaptive immune response to avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  5. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  6. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.

  8. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    PubMed Central

    Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585

  9. Innate and Adaptive Immunity to Mucorales.

    PubMed

    Ghuman, Harlene; Voelz, Kerstin

    2017-09-05

    Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50-100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system's failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis.

  10. Induction of the immune response suppression in mice inoculated with Candida albicans.

    PubMed

    Valdez, J C; Mesón, D E; Sirena, A; de Petrino, S F; Eugenia, M; de Jorrat, B B; de Valdex, M G

    1986-03-01

    There is a controversy in respect to the immunological response (humoral or cellular) concerning the defense against Candida albicans. Candidosis would induce sub-populations of suppressor cells in the host cell-immune response. This report tries to show the effect of different doses of C. albicans (alive or heat-killed) on the expression of cell-mediated and humoral immunity. The effect upon cell immunity was determined by inoculating different lots of singeneic mice, doses of varied concentration of C. albicans and checking for delayed-type hipersensitivity (D.T.H.). D.T.H. was also controlled in syngeneic normal mice which had previously been injected with inoculated mice spleen cells. Humoral immunity was assayed by measuring the induced blastogenesis by Pokeweed Mitogen on spleen mononuclear cells with different doses of C. albicans. Results obtained show that the different doses gave origin to: Suppression of humoral and cell response (10(8) alive); Suppression of only humoral response (10(6) alive); Suppression of cell response and increase of humoral response (10(9) dead); Increase of both responses (10(8) dead).

  11. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  12. Impairment of the humoral and CD4(+) T cell responses in HTLV-1-infected individuals immunized with tetanus toxoid.

    PubMed

    Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P; Grassi, Maria Fernanda R; Carvalho, Edgar M

    2016-08-01

    T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls (UC) with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4(+) T cells expressing IFN-γ, TNF-α and IL-10 in response to TT were lower in the HC than in the UC. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it's necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4(+) T cell immune responses after vaccination. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion.

    PubMed

    He, Li-Xia; Ren, Jin-Wei; Liu, Rui; Chen, Qi-He; Zhao, Jian; Wu, Xin; Zhang, Zhao-Feng; Wang, Jun-Bo; Pettinato, Giuseppe; Li, Yong

    2017-10-01

    Traditionally used as a restorative medicine, ginseng (Panax ginseng Meyer) has been the most widely used and acclaimed herb in Chinese communities for thousands of years. To investigate the immune-modulating activity of ginseng oligopeptides (GOP), 420 healthy female BALB/c mice were intragastrically administered distilled water (control), whey protein (0.15 g per kg body weight (BW)), and GOP 0.0375, 0.075, 0.15, 0.3 and 0.6 g per kg BW for 30 days. Blood samples from mice were collected from the ophthalmic venous plexus and then sacrificed by cervical dislocation. Seven assays were conducted to determine the immunomodulatory effects of GOP on innate and adaptive immune responses, followed by flow cytometry to investigate spleen T lymphocyte sub-populations, multiplex sandwich immunoassays to investigate serum cytokine and immunoglobulin levels, and ELISA to investigate intestinally secreted immunoglobulin to study the mechanism of GOP affecting the immune system. Our results showed that GOP was able to enhance innate and adaptive immune responses in mice by improving cell-mediated and humoral immunity, macrophage phagocytosis capacity and NK cell activity. Notably, the use of GOP revealed a better immune-modulating activity compared to whey protein. We conclude that the immune-modulating activity might be due to the increased macrophage phagocytosis capacity and NK cell activity, and the enhancement of T and Th cells, as well as IL-2, IL-6 and IL-12 secretion and IgA, IgG1 and IgG2b production. These results indicate that GOP could be considered a good candidate that may improve immune functions if used as a dietary supplement, with a dosage that ranges from 0.3 to 0.6 g per kg BW.

  14. Critical Role of SAP in Progression and Reactivation but Not Maintenance of T Cell-Dependent Humoral Immunity

    PubMed Central

    2013-01-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (TFH) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway. PMID:23319045

  15. Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-03-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.

  16. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  17. The effect of feed supplementation with zinc chelate and zinc sulphate on selected humoral and cell-mediated immune parameters and cytokine concentration in broiler chickens.

    PubMed

    Jarosz, Łukasz; Marek, Agnieszka; Grądzki, Zbigniew; Kwiecień, Małgorzata; Kalinowski, Marcin

    2017-06-01

    The ability of poultry to withstand infectious disease caused by bacteria, viruses or protozoa depends upon the integrity of the immune system. Zinc is important for proper functioning of heterophils, mononuclear phagocytes and T lymphocytes. Numerous data indicate that the demand for zinc in poultry is not met in Poland due to its low content in feeds of vegetable origin. The aim of the study was to determine the effect of supplementation of inorganic (ZnSO 4 and ZnSO 4 + phytase enzyme), and organic forms of zinc (Zn with glycine and Zn with glycine and phytase enzyme) on selected parameters of the cellular and humoral immune response in broiler chickens by evaluating the percentage of CD3 + CD4 + , CD3 + CD8 + , CD25 + , MHC Class II, and BU-1 + lymphocytes, the phagocytic activity of monocytes and heterophils, and the concentration of IL-2, IL-10 and TNF-α in the peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. Phagocytic activity in whole blood was performed using the commercial Phagotest kit (ORPEGEN-Pharma, Immuniq, Poland). The results showed that supplementation with zinc chelates causes activation of the cellular and humoral immune response in poultry, helping to maintain the balance between the Th1 and Th2 response and enhancing resistance to infections. In contrast with chelates, the use of zinc in the form of sulphates has no immunomodulatory effect and may contribute to the development of local inflammatory processes in the digestive tract, increasing susceptibility to infection. Copyright © 2016. Published by Elsevier Ltd.

  18. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    PubMed

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens.

  19. Evolution of complement as an effector system in innate and adaptive immunity.

    PubMed

    Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina

    2003-01-01

    For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.

  20. CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response.

    PubMed

    Liu, Zhaoqun; Zhou, Zhi; Wang, Lingling; Qiu, Limei; Zhang, Huan; Wang, Hao; Song, Linsheng

    2016-11-01

    We have now cloned an alpha-1 adrenergic receptor (A1AR) from the cDNA library of oyster Crassostrea gigas, designating as CgA1AR-1. The full length of CgA1AR-1 was 1149 bp and it encodes a protein of 382 amino acids containing a 7 transmembrane domain, whose putative topology was similar to the A1ARs in higher organisms and shared similarity of 19% with mammalian A1ARs according to the phylogenic analysis. After cell transfection of CgA1AR-1 into HEK293T cells and the incubation with its specific agonist norepinephrine (NE), the concentration of second messenger Ca 2+ increased significantly (p < 0.05). But, this increasing of Ca 2+ could be inhibited by adding A1AR antagonist DOX. Tissue distribution assays using qRT-PCR suggested that CgA1AR-1 mRNA was ubiquitously expressed in all the major tissues of oyster. LPS stimulation could induce the up-regulation of CgA1AR-1 mRNA in haemocytes from 12 h to 24 h post stimulation. Moreover, the blocking of CgA1AR-1 by DOX before LPS stimulation affected the mRNA expression of oyster TNF (CGI_10005109 and CGI_10006440) in haemocytes, resulting in the rise of haemocyte phagocytic rate and apoptosis index. In addition to cellular immunity, CgA1AR-1 was also involved in humoral immunity of oyster. Inhibition of CgA1AR-1 with DOX could repress the up-regulation of LZY and SOD activities caused by LPS stimulation. These results suggested that CgA1AR-1 acted as an α-1 adrenergic receptor in cetacholaminergic neuroendocrine-immune network mediating both cellular and humoral immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Innate and Adaptive Immunity to Mucorales

    PubMed Central

    Ghuman, Harlene

    2017-01-01

    Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50–100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system’s failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis. PMID:29371565

  2. Induction of innate immune signatures following polyepitope protein-glycoprotein B-TLR4&9 agonist immunization generates multifunctional CMV-specific cellular and humoral immunity

    PubMed Central

    Dasari, Vijayendra; Smith, Corey; Schuessler, Andrea; Zhong, Jie; Khanna, Rajiv

    2014-01-01

    Recent studies have suggested that a successful subunit human cytomegalovirus (CMV) vaccine requires improved formulation to generate broad-based anti-viral immunity following immunization. Here we report the development of a non-live protein-based vaccine strategy for CMV based on a polyepitope protein and CMV glycoprotein B (gB) adjuvanted with TLR4 and/or TLR9 agonists. The polyepitope protein includes contiguous multiple MHC class I-restricted epitopes with an aim to induce CD8+ T cell immunity, while gB is an important target for CD4+ T cell immunity and neutralizing antibodies. Optimal immunogenicity of this bivalent non-live protein vaccine formulation was dependent upon the co-administration of both the TLR4 and TLR9 agonist, which was associated with the activation of innate immune signatures and the influx of different DC subsets including plasmacytoid DCs and migratory CD8-DEC205+CD103-CD326- langerin-negative dermal DCs into the draining lymph nodes. Furthermore these professional antigen presenting cells also expressed IL-6, IL-12p70, TNFα, and IFNα which play a crucial role in the activation of adaptive immunity. In summary, this study provides a novel platform technology in which broad-based anti-CMV immune responses upon vaccination can be maximized by co-delivery of viral antigens and TLR4 and 9 agonists which induce activation of innate immune signatures and promote potent antigen acquisition and cross-presentation by multiple DC subsets. PMID:24463331

  3. Genetic adaptation of the antibacterial human innate immunity network.

    PubMed

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  4. Caspase-1 inhibitor regulates humoral responses in experimental autoimmune myasthenia gravis via IL-6- dependent inhibiton of STAT3.

    PubMed

    Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng

    2017-08-24

    We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Organization of an optimal adaptive immune system

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra; Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from a diverse set of pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. I will discuss a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters and individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens. I will show that the optimal repertoires can be reached by dynamics that describes the competitive binding of antigens by receptors, and selective amplification of stimulated receptors.

  6. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    PubMed Central

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  7. Evaluation of the immune response in Shitou geese (Anser anser domesticus) following immunization with GPV-VP1 DNA-based and live attenuated vaccines.

    PubMed

    Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li

    2014-01-01

    Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.

  8. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform

    PubMed Central

    Bumgardner, Sara A.; Zhang, Lin; LaVoy, Alora S.; Frank, Chad B.; Kajikawa, Akinobu; Klaenhammer, Todd R.

    2018-01-01

    Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform. PMID:29734365

  9. Humor and laughter in persons with cognitive impairment and their caregivers.

    PubMed

    Liptak, Amy; Tate, Judith; Flatt, Jason; Oakley, Mary Ann; Lingler, Jennifer

    2014-03-01

    The purpose of this study was to describe humor and laughter in persons with cognitive impairment (PWCI) and caregivers who were recalling a shared experience in a focus group. Twenty participants attended an Art Engagement Activity at the Andy Warhol Art Museum, which included a guided tour and an art project. All PWCI had medically diagnosed cognitive disorders and all caregiver participants did not. Four focus groups were conducted and transcripts of audio-recorded sessions were transferred to a qualitative software program. Words, phrases, and episodes of humor and laughter were used to construct codes, which were refined during group analysis using constant comparison. Humor and laughter were present in all four focus groups. Emerging themes of humor included silliness, sarcasm, and commenting about hardships of dementia. Laughter was identified in segments with and without humor. Some PWCI were unable to follow social cues. Humor and laughter played a role in creating a safe social environment. PWCI were able to engage in humor during social interactions, yet some had difficulty recognizing social cues. Further study may reveal roles of humor and laughter in adaptation to cognitive decline and holistic interventions for improved quality of life.

  10. The cellular lesion of humoral rejection: predominant recruitment of monocytes to peritubular and glomerular capillaries.

    PubMed

    Fahim, T; Böhmig, G A; Exner, M; Huttary, N; Kerschner, H; Kandutsch, S; Kerjaschki, D; Bramböck, A; Nagy-Bojarszky, K; Regele, H

    2007-02-01

    Accumulation of inflammatory cells within capillaries is a common morphologic feature of humoral renal allograft rejection and is most easily appreciated if it occurs in glomeruli. The aim of our study was to determine the amount and composition of immune cells within glomeruli and peritubular capillaries (PTC) in cellular and humoral allograft rejection. Immunofluorescent double-labeling for CD31 and CD3 or CD68 was used for phenotyping and enumerating immune cells within glomeruli and PTC. The major findings are: (1) accumulation of immune cells in PTC is far more common than it would be anticipated based on the assessment by conventional histology; (2) it is not the absolute number of immune cells accumulating within capillaries, but rather the composition of the intracapillary cell population that distinguishes humoral rejection from cellular rejection and (3) in C4d positive biopsies a predominantly monocytic cell population accumulates not only within glomeruli but also within PTC. The median value of monocyte/T-cell ratio within PTC was 2.3 in C4d positive biopsies but only 1 (p = 0.0008) in C4d negative biopsies. Given their prominent presence within capillaries and their extensive biological versatility monocytes might contribute to the capillary damage observed in acute and chronic allograft rejection.

  11. Genetic adaptation of the antibacterial human innate immunity network

    PubMed Central

    2011-01-01

    Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response. PMID:21745391

  12. Increased Biodiversity in the Environment Improves the Humoral Response of Rats

    PubMed Central

    Pi, Cinthia; Allott, Emma H.; Ren, Daniel; Poulton, Susan; Lee, S. Y. Ryan; Perkins, Sarah; Everett, Mary Lou; Holzknecht, Zoie E.; Lin, Shu S.; Parker, William

    2015-01-01

    Previous studies have compared the immune systems of wild and of laboratory rodents in an effort to determine how laboratory rodents differ from their naturally occurring relatives. This comparison serves as an indicator of what sorts of changes might exist between modern humans living in Western culture compared to our hunter-gatherer ancestors. However, immunological experiments on wild-caught animals are difficult and potentially confounded by increased levels of stress in the captive animals. In this study, the humoral immune responses of laboratory rats in a traditional laboratory environment and in an environment with enriched biodiversity were examined following immunization with a panel of antigens. Biodiversity enrichment included colonization of the laboratory animals with helminths and co-housing the laboratory animals with wild-caught rats. Increased biodiversity did not apparently affect the IgE response to peanut antigens following immunization with those antigens. However, animals housed in the enriched biodiversity setting demonstrated an increased mean humoral response to T-independent and T-dependent antigens and increased levels of “natural” antibodies directed at a xenogeneic protein and at an autologous tissue extract that were not used as immunogens. PMID:25853852

  13. Host Immune Response to Influenza A Virus Infection.

    PubMed

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  14. Comparison of the immune responses in BALB/c mice following immunization with DNA-based and live attenuated vaccines delivered via different routes.

    PubMed

    Cai, Ming-sheng; Deng, Shu-xuan; Li, Mei-li

    2013-02-18

    The objective of this study was to compare immune responses induced in BALB/c mice following immunization with pcDNA-GPV-VP2 DNA by gene gun bombardment (6 μg) or by intramuscular (im) injection (100 μg) with the responses to live attenuated vaccine by im injection (100 μl). pcDNA3.1 (+) and physiological saline were used as controls. Peripheral blood samples were collected at 3, 7, 14, 21, 28, 35, 49, 63, 77 and 105 d after immunization. T lymphocyte proliferation was analyzed by MTT assay and enumeration of CD4(+), and CD8(+) T cell populations in peripheral blood was performed by flow cytometric analysis. Indirect ELISA was used to detect IgG levels. Cellular and humoral responses were induced by pcDNA-GPV-VP2 DNA and live virus vaccines. No differences were observed in T cell proliferation and CD8(+) T cell responses induced by the genetic vaccine regardless of the route of delivery. However, CD4(+) T cell responses and humoral immunity were enhanced in following gene gun immunization compared with im injection of the genetic vaccine. Cellular and humoral immunity was enhanced in following gene gun delivery of the genetic vaccine compared with the live attenuated vaccine. In conclusion, the pcDNA-GPV-VP2 DNA vaccine induced enhanced cellular and humoral immunity compared with that induced by the live attenuated vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Durable antitumor responses to CD47 blockade require adaptive immune stimulation

    PubMed Central

    Sockolosky, Jonathan T.; Dougan, Michael; Ingram, Jessica R.; Ho, Chia Chi M.; Kauke, Monique J.; Almo, Steven C.; Ploegh, Hidde L.; Garcia, K. Christopher

    2016-01-01

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47–SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  16. Linking innate to adaptive immunity through dendritic cells.

    PubMed

    Steinman, Ralph M

    2006-01-01

    The function of dendritic cells (DCs) in linking innate to adaptive immunity is often summarized with two terms. DCs are sentinels, able to capture, process and present antigens and to migrate to lymphoid tissues to select rare, antigen-reactive T cell clones. DCs are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. The type of DC and the type of maturation induced by different stimuli influences the immunological outcome, such as the differentiation of Thl vs. Th2 T cells. Here we summarize the contributions of DCs to innate defences, particularly the production of immune enhancing cytokines and the activation of innate lymphocytes. Then we outline three innate features of DCs that influence peripheral tolerance and lead to adaptive immunity: a specialized endocytic system for antigen capture and processing, location and movements in vivo, and maturation in response to an array of stimuli. A new approach to the analysis of DC biology is to target antigens selectively to maturing DCs in vivo. This leads to stronger, more prolonged and broader (many immunogenic peptides) immunity by both T cells and B cells.

  17. Relationships between Humor Styles and Family Functioning in Parents of Children with Disabilities

    ERIC Educational Resources Information Center

    Rieger, Alicja; McGrail, J. Patrick

    2015-01-01

    The humor styles and family functioning of parents of children with disabilities are understudied subjects. This study seeks to shed quantitative light on these areas. Seventy-two parents of children with disabilities completed the "Family Adaptability and Cohesion Evaluation Scales" (FACES IV) and the "Humor Styles…

  18. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    PubMed Central

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  19. A nonproliferating parvovirus vaccine vector elicits sustained, protective humoral immunity following a single intravenous or intranasal inoculation.

    PubMed

    Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter

    2004-02-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.

  20. A Nonproliferating Parvovirus Vaccine Vector Elicits Sustained, Protective Humoral Immunity following a Single Intravenous or Intranasal Inoculation

    PubMed Central

    Palmer, Gene A.; Brogdon, Jennifer L.; Constant, Stephanie L.; Tattersall, Peter

    2004-01-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th1 immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4+ T cells. PMID:14722265

  1. T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation

    PubMed Central

    Whitacre, James M.; Lin, Joseph; Harding, Angus

    2011-01-01

    Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338

  2. Impact of Malaria Preexposure on Antiparasite Cellular and Humoral Immune Responses after Controlled Human Malaria Infection

    PubMed Central

    Obiero, Joshua M.; Shekalaghe, Seif; Hermsen, Cornelus C.; Mpina, Maxmillian; Bijker, Else M.; Roestenberg, Meta; Teelen, Karina; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Daubenberger, Claudia A.; Hoffman, Stephen L.; Abdulla, Salim

    2015-01-01

    To understand the effect of previous malaria exposure on antiparasite immune responses is important for developing successful immunization strategies. Controlled human malaria infections (CHMIs) using cryopreserved Plasmodium falciparum sporozoites provide a unique opportunity to study differences in acquisition or recall of antimalaria immune responses in individuals from different transmission settings and genetic backgrounds. In this study, we compared antiparasite humoral and cellular immune responses in two cohorts of malaria-naive Dutch volunteers and Tanzanians from an area of low malarial endemicity, who were subjected to the identical CHMI protocol by intradermal injection of P. falciparum sporozoites. Samples from both trials were analyzed in parallel in a single center to ensure direct comparability of immunological outcomes. Within the Tanzanian cohort, we distinguished one group with moderate levels of preexisting antibodies to asexual P. falciparum lysate and another that, based on P. falciparum serology, resembled the malaria-naive Dutch cohort. Positive P. falciparum serology at baseline was associated with a lower parasite density at first detection by quantitative PCR (qPCR) after CHMI than that for Tanzanian volunteers with negative serology. Post-CHMI, both Tanzanian groups showed a stronger increase in anti-P. falciparum antibody titers than Dutch volunteers, indicating similar levels of B-cell memory independent of serology. In contrast to the Dutch, Tanzanians failed to increase P. falciparum-specific in vitro recall gamma interferon (IFN-γ) production after CHMI, and innate IFN-γ responses were lower in P. falciparum lysate-seropositive individuals than in seronegative individuals. In conclusion, positive P. falciparum lysate serology can be used to identify individuals with better parasite control but weaker IFN-γ responses in circulating lymphocytes, which may help to stratify volunteers in future CHMI trials in areas where malaria is

  3. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer

    PubMed Central

    Gu-Trantien, Chunyan; Migliori, Edoardo; de Wind, Alexandre; Brohée, Sylvain; Garaud, Soizic; Noël, Grégory; Dang Chi, Vu Luan; Lodewyckx, Jean-Nicolas; Naveaux, Céline; Duvillier, Hugues; Larsimont, Denis

    2017-01-01

    T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5–) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment. PMID:28570278

  4. Assessment of selected biochemical parameters and humoral immune response of Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.

    PubMed

    La Grange, Louis J; Mukaratirwa, Samson

    2014-08-21

    Fifteen crocodiles were randomly divided into three groups of five animals. They represented high-infection, medium-infection and low-infection groups of 642 larvae/kg, 414 larvae/kg and 134 larvae/kg bodyweight, respectively. The parameters assessed were blood glucose, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and alanine transaminase (ALT). The humoral immune response to Trichinella zimbabwensis infection was evaluated in all three groups by an indirect ELISA method. The results showed deviations from normal parameters of blood glucose, CPK, LDH, AST and ALT when compared with reported levels in uninfected reptiles. Contrary to studies involving mammals, hypoglycaemia was not observed in the infected groups in this study. Peak values of blood glucose were reached on post-infection (PI) Day 49, Day 42 and Day 35 in the high-infection, medium-infection and low-infection groups, respectively. Peak values of LDH and AST were observed on PI Day 56, Day 49 and Day 42 in the high-infection, medium-infection and low-infection groups, respectively. Peak values of CPK were observed on Day 35 PI in all three groups. Peak ALT values were reached on Day 56 in the high-infection group and on Day 28 PI in both the medium-infection and low-infection groups. No correlations between the biochemical parameters and infection intensity were observed. Peak antibody titres were reached on Day 49 PI in the medium-infection group, and on Day 42 PI in both the high-infection and low-infection groups. Infection intensity could not be correlated with the magnitude of the humoral immune response or time to sero-conversion. Results from this study were in agreement with results reported in mammals infected with other Trichinella species and showed that antibody titres could not be detected indefinitely.

  5. Immune function trade-offs in response to parasite threats.

    PubMed

    Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W

    2017-04-01

    Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Humor.

    PubMed

    Woodbury-Fariña, Michel A; Antongiorgi, Joalex L

    2014-12-01

    Humor has not been taken as seriously as it should be. Humor has many positive effects in the daily lives of patients and clinicians need to take advantage of these. Many indices of stress are attenuated and this serves to improve the therapeutic alliance. Freudian, rational emotive therapy, and kleinian views are presented, as well as examples of how to use playful therapy. In addition, advice on how to develop humor is given. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Fish immunity to scuticociliate parasites.

    PubMed

    Piazzon, María Carla; Leiro, José; Lamas, Jesús

    2013-10-01

    Some species of scuticociliates (Ciliophora) behave as facultative parasites and produce severe mortalities in cultured fish. Pathogenic scuticociliates can cause surface lesions and can also penetrate inside the body, where they feed on tissue and proliferate in the blood and most internal organs, killing the host in a few days. In this review, we describe the current knowledge on the protective role of fish cellular and humoral immune responses against these parasites. Immune humoral factors, especially complement, are of particular importance in defending fish against these ciliates. However, knowledge about how the fish immune system responds to scuticociliates is scant, and the cellular and molecular events that occur during the response are not known. We also describe the possible mechanisms used by scuticociliates to avoid or resist the defensive reaction of the host. For example, the release of proteases can help parasites enter fish tissues and impair the fish cellular and humoral responses. Several vaccine formulations containing scuticociliates have induced a good antibody response and protection in fish immunized and challenged with homologous strains of particular species. However, protection was not achieved in fish immunized and challenged with heterologous strains, and the antigens involved in protection and the antigenic differences between heterologous strains have not yet been determined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Single-Dose Hepatitis A Immunization: 7.5-Year Observational Pilot Study in Nicaraguan Children to Assess Protective Effectiveness and Humoral Immune Memory Response.

    PubMed

    Mayorga, Orlando; Bühler, Silja; Jaeger, Veronika K; Bally, Seraina; Hatz, Christoph; Frösner, Gert; Protzer, Ulrike; Van Damme, Pierre; Egger, Matthias; Herzog, Christian

    2016-11-15

     Universal 2-dose hepatitis A virus (HAV) vaccination of toddlers effectively controls hepatitis A. High vaccine costs, however, impede implementation in endemic countries. To test single-dose vaccination as a possible alternative, we initiated an observational, longitudinal study in Nicaragua, to assess protective effectiveness and-through challenge vaccination-humoral immune memory response.  After a 2003 serosurvey, 130 originally seronegative children received one dose of virosomal HAV vaccine in 2005, followed by yearly serological and clinical assessments until 2012. After 7.5 years, a vaccine booster was administered. Concurrent antibody screening of patients presenting with hepatitis symptoms documented persistent HAV circulation in the communities studied.  Between serosurvey and vaccination, 25 children contracted hepatitis A subclinically (>8000 mIU/mL anti-HAV). In the remaining 105 children, immunization resulted in anti-HAV levels of 17-572 mIU/mL. Based on the ≥15% annual infection risk, an estimated 60% of children were exposed to HAV encounters during follow-up. No child presented with hepatitis symptoms. Serological breakthrough infection (7106 mIU/mL) was documented in 1 child, representing an estimated protective effectiveness of 98.3% (95% confidence interval, 87.9-99.8). Boosting elicited an average 29.7-fold increase of anti-HAV levels.  In children living in hyperendemic settings, a single dose of virosomal HAV vaccine is sufficient to activate immune memory and may provide long-term protection. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909).

    PubMed

    Minang, Jacob T; Inglefield, Jon R; Harris, Andrea M; Lathey, Janet L; Alleva, David G; Sweeney, Diane L; Hopkins, Robert J; Lacy, Michael J; Bernton, Edward W

    2014-11-28

    NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity. Copyright © 2014 The Authors

  10. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses.

    PubMed

    Wu, Gongqing; Xu, Li; Yi, Yunhong

    2016-06-01

    Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. Humor and laughter in persons with cognitive impairment and their caregivers

    PubMed Central

    Liptak, Amy; Tate, Judith; Flatt, Jason; Oakley, Mary Ann; Lingler, Jennifer

    2014-01-01

    Purpose The purpose of this study was to describe humor and laughter in persons with cognitive impairment (PWCI) and caregivers who were recalling a shared experience in a focus group. Design Twenty participants attended an Art Engagement Activity at the Andy Warhol Art Museum, which included a guided tour and an art project. All PWCI had medically diagnosed cognitive disorders and all caregiver participants did not. Four focus groups were conducted and transcripts of audio-recorded sessions were transferred to a qualitative software program. Methods Words, phrases and episodes of humor and laughter were used to construct codes, which were refined during group analysis using constant comparison. Findings Humor and laughter were present in all four focus groups. Emerging themes of humor included silliness, sarcasm and commenting about hardships of dementia. Laughter was identified in segments with and without humor. Some PWCI were unable to follow social cues. Conclusions Humor and laughter played a role in creating a safe social environment. PWCI were able to engage in humor during social interactions, yet some had difficulty recognizing social cues. Further study may reveal roles of humor and laughter in adaptation to cognitive decline and holistic interventions for improved quality of life. PMID:23926217

  12. To Be or Not To Be Humorous? Cross Cultural Perspectives on Humor

    PubMed Central

    Yue, Xiaodong; Jiang, Feng; Lu, Su; Hiranandani, Neelam

    2016-01-01

    Humor seems to manifest differently in Western and Eastern cultures, although little is known about how culture shapes humor perceptions. The authors suggest that Westerners regard humor as a common and positive disposition; the Chinese regard humor as a special disposition particular to humorists, with controversial aspects. In Study 1, Hong Kong participants primed with Western culture evaluate humor more positively than they do when primed with Chinese culture. In Study 2a, Canadians evaluate humor as being more important in comparison with Chinese participants. In Study 2b, Canadians expect ordinary people to possess humor, while Chinese expect specialized comedians to be humorous. The implications and limitations are discussed. PMID:27757091

  13. Distinctive TLR7 signaling, type I IFN production, and attenuated innate and adaptive immune responses to yellow fever virus in a primate reservoir host.

    PubMed

    Mandl, Judith N; Akondy, Rama; Lawson, Benton; Kozyr, Natalia; Staprans, Silvija I; Ahmed, Rafi; Feinberg, Mark B

    2011-06-01

    Why cross-species transmissions of zoonotic viral infections to humans are frequently associated with severe disease when viruses responsible for many zoonotic diseases appear to cause only benign infections in their reservoir hosts is unclear. Sooty mangabeys (SMs), a reservoir host for SIV, do not develop disease following SIV infection, unlike nonnatural HIV-infected human or SIV-infected rhesus macaque (RM) hosts. SIV infections of SMs are characterized by an absence of chronic immune activation, in association with significantly reduced IFN-α production by plasmacytoid dendritic cells (pDCs) following exposure to SIV or other defined TLR7 or TLR9 ligands. In this study, we demonstrate that SM pDCs produce significantly less IFN-α following ex vivo exposure to the live attenuated yellow fever virus 17D strain vaccine, a virus that we show is also recognized by TLR7, than do RM or human pDCs. Furthermore, in contrast to RMs, SMs mount limited activation of innate immune responses and adaptive T cell proliferative responses, along with only transient antiviral Ab responses, following infection with yellow fever vaccine 17D strain. However, SMs do raise significant and durable cellular and humoral immune responses comparable to those seen in RMs when infected with modified vaccinia Ankara, a virus whose immunogenicity does not require TLR7/9 recognition. Hence, differences in the pattern of TLR7 signaling and type I IFN production by pDCs between primate species play an important role in determining their ability to mount and maintain innate and adaptive immune responses to specific viruses, and they may also contribute to determining whether disease follows infection.

  14. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy.

    PubMed

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L

    2016-01-01

    Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. Copyright © 2015. Published by Elsevier Inc.

  15. Without Adaptive Immunity, There's a Cost to Responding STAT.

    PubMed

    Brown, Eric M; Xavier, Ramnik J

    2018-04-03

    The relative contributions of innate and adaptive immune mechanisms in responding to the intestinal microbiota during ontogeny are largely unknown. A recent study in Nature by Mao et al. (2018) elegantly dissects the role of each cell type in the intestine and further describes the metabolic cost to innate immunity. Copyright © 2018. Published by Elsevier Inc.

  16. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity.

    PubMed

    Cissé, Yasmine M; Russart, Kathryn L G; Nelson, Randy J

    2017-03-31

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.

  17. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    PubMed Central

    Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901

  18. Induction of protective immunity against toxoplasmosis in mice by immunization with Toxoplasma gondii RNA.

    PubMed

    Dimier-Poisson, Isabelle; Aline, Fleur; Bout, Daniel; Mévélec, Marie-Noëlle

    2006-03-06

    Toxoplasma gondii enters the mucosal surfaces of the host, and so immunity at these sites is of major interest. Due to the compartmentalization of the immune response, systemic immunization does not induce high levels of immunity at mucosal surfaces. Intranasal immunization has been shown to be very effective in inducing both systemic and mucosal immune responses. Immunization with mRNA can induce both humoral and cell-mediated immune responses, both of which are important in conferring immunity to T. gondii. The efficacy of RNA vaccination by the nasal route with T. gondii RNA was evaluated. We assessed the percentage of cumulative survival after an oral challenge with a lethal dose of T. gondii cysts (40 cysts), and the number of brain cysts following a challenge with a sublethal dose of T. gondii 76 K cysts (15 cysts). Vaccinated mice were found to be significantly better protected than non-immunized mice after a challenge with a lethal dose of cysts; and a challenge with a sublethal dose also resulted in fewer brain cysts than in non-immunized mice. Sera and intestinal secretions of immunized mice recognized T. gondii antigens, suggesting that a specific humoral immune response may occur. Moreover, a specific lymphoproliferative response observed in cervical lymph nodes may confer protection. These preliminary findings suggest that RNA vaccination by a mucosal route could be feasible.

  19. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.

    PubMed

    Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm

    2017-07-01

    All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1 - zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.

  20. Chronic grouped social restriction triggers long-lasting immune system adaptations.

    PubMed

    Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei

    2017-05-16

    Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.

  1. Personality, Humor Styles and Happiness: Happy People Have Positive Humor Styles

    PubMed Central

    Ford, Thomas E.; Lappi, Shaun K.; Holden, Christopher J.

    2016-01-01

    The present study examined the relationships between four personality traits, humor styles, and happiness. Replicating previous research, happiness was positively correlated with four personality traits: extraversion, locus of control, self-esteem, and optimism. Further, happiness positively related to self-enhancing and affiliative humor styles; it related negatively to self-defeating and aggressive humor styles. Thus, happy people habitually engage in positive uses of humor and avoid engaging in negative uses of humor in daily life. We also found support for our hypothesis. People high in extraversion, locus of control, self-esteem, and optimism are happier because they engage in positive humor in daily life. PMID:27547251

  2. Antibacterial Immune Competence of Honey Bees (Apis mellifera) Is Adapted to Different Life Stages and Environmental Risks

    PubMed Central

    Gätschenberger, Heike; Azzami, Klara; Tautz, Jürgen; Beier, Hildburg

    2013-01-01

    The development of all honey bee castes proceeds through three different life stages all of which encounter microbial infections to a various extent. We have examined the immune strength of honey bees across all developmental stages with emphasis on the temporal expression of cellular and humoral immune responses upon artificial challenge with viable Escherichia coli bacteria. We employed a broad array of methods to investigate defence strategies of infected individuals: (a) fate of bacteria in the haemocoel; (b) nodule formation and (c) induction of antimicrobial peptides (AMPs). Newly emerged adult worker bees and drones were able to activate efficiently all examined immune reactions. The number of viable bacteria circulating in the haemocoel of infected bees declined rapidly by more than two orders of magnitude within the first 4–6 h post-injection (p.i.), coinciding with the occurrence of melanised nodules. Antimicrobial activity, on the other hand, became detectable only after the initial bacterial clearance. These two temporal patterns of defence reactions very likely represent the constitutive cellular and the induced humoral immune response. A unique feature of honey bees is that a fraction of worker bees survives the winter season in a cluster mostly engaged in thermoregulation. We show here that the overall immune strength of winter bees matches that of young summer bees although nodulation reactions are not initiated at all. As expected, high doses of injected viable E.coli bacteria caused no mortality in larvae or adults of each age. However, drone and worker pupae succumbed to challenge with E.coli even at low doses, accompanied by a premature darkening of the pupal body. In contrast to larvae and adults, we observed no fast clearance of viable bacteria and no induction of AMPs but a rapid proliferation of E.coli bacteria in the haemocoel of bee pupae ultimately leading to their death. PMID:23799099

  3. Let's Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse.

    PubMed

    Bennett, Kaila M; Rooijakkers, Suzan H M; Gorham, Ronald D

    2017-01-01

    The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement.

  4. Playing Hide and Seek: How Glycosylation of the Influenza Virus Hemagglutinin Can Modulate the Immune Response to Infection

    PubMed Central

    Tate, Michelle D.; Job, Emma R.; Deng, Yi-Mo; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Reading, Patrick C.

    2014-01-01

    Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity. PMID:24638204

  5. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    PubMed Central

    Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological

  6. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats.

    PubMed

    Sundareswaran, Loganathan; Srinivasan, Sakthivel; Wankhar, Wankupar; Sheeladevi, Rathinasamy

    Noise acts as a stressor and is reported to have impact on individual health depending on nature, type, intensity and perception. Modern medicine has no effective drugs or cure to prevent its consequences. Being an environmental stressor noise cannot be avoided; instead minimizing its exposure or consuming anti-stressor and adaptogens from plants can be considered. The present study was carried out to evaluate the anti-stressor, adaptogen and immunostimulatory activity of Scoparia dulcis against noise-induced stress in Wistar rat models. Noise stress in rats was created by broadband white noise generator, 100 dB A/4 h daily/15 days and S. dulcis (200 mg/kg b.w.) was administered orally. 8 groups of rats were used consisting of 6 animals each; 4 groups for unimmunized and 4 groups for immunized. For immunization, sheep red blood cells (5 × 10 9  cells/ml) were injected intraperitoneally. Sub-acute noise exposed rats showed a significant increase in corticosterone and IL-4 levels in both immunized and unimmunized rats whereas lymphocytes, antibody titration, soluble immune complex, IL-4 showed a marked increase with a significant decrease in IL-2, TNF-α, IFN-γ cytokines only in unimmunized rats. Immunized noise exposed rats presented increased leukocyte migration index and decreased foot pad thickness, IL-2, TNF-α, IFN-γ with no changes in the lymphocytes. S. dulcis (SD) has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  7. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice.

    PubMed

    Lv, Jin; Zhang, Ying-Ying; Lu, Xun; Zhang, Hao; Wei, Lin; Gao, Jun; Hu, Bin; Hu, Wen-Wei; Hu, Dun-Zhong; Jia, Na; Feng, Xin

    2017-03-01

    The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  8. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection.

    PubMed

    Fanales-Belasio, Emanuele; Moretti, Sonia; Fiorelli, Valeria; Tripiciano, Antonella; Pavone Cossut, Maria R; Scoglio, Arianna; Collacchi, Barbara; Nappi, Filomena; Macchia, Iole; Bellino, Stefania; Francavilla, Vittorio; Caputo, Antonella; Barillari, Giovanni; Magnani, Mauro; Laguardia, Maria Elena; Cafaro, Aurelio; Titti, Fausto; Monini, Paolo; Ensoli, Fabrizio; Ensoli, Barbara

    2009-03-01

    Tat is an early regulatory protein that plays a major role in human HIV-1 replication and AIDS pathogenesis, and therefore, it represents a key target for the host immune response. In natural infection, however, Abs against Tat are produced only by a small fraction (approximately 20%) of asymptomatic individuals and are rarely seen in progressors, suggesting that Tat may possess properties diverting the adaptive immunity from generating humoral responses. Here we show that a Th1-type T cell response against Tat is predominant over a Th2-type B cell response in natural HIV-1 infection. This is likely due to the capability of Tat to selectively target and very efficiently enter CD1a-expressing monocyte-derived dendritic cells (MDDC), which represent a primary target for the recognition and response to virus Ag. Upon cellular uptake, Tat induces MDDC maturation and Th1-associated cytokines and beta-chemokines production and polarizes the immune response in vitro to the Th1 pattern through the transcriptional activation of TNF-alpha gene expression. This requires the full conservation of Tat transactivation activity since neither MDDC maturation nor TNF-alpha production are found with either an oxidized Tat, which does not enter MDDC, or with a Tat protein mutated in the cysteine-rich region (cys22 Tat), which enters MDDC as the wild-type Tat but is transactivation silent. Consistently with these data, inoculation of monkeys with the native wild-type Tat induced a predominant Th1 response, whereas cys22 Tat generated mostly Th2 responses, therefore providing evidence that Tat induces a predominant Th1 polarized adaptive immune response in the host.

  9. Immune modulation following immunization with polyvalent vaccines in dogs.

    PubMed

    Strasser, Alois; May, Bettina; Teltscher, Andrea; Wistrela, Eva; Niedermüller, Hans

    2003-08-15

    A decline in T-cell-mediated immunity and transient state of immunosuppression after immunization has been reported in dogs. Nevertheless, dogs are still routinely vaccinated with polyvalent live vaccines and severe disease does not generally occur. In order to investigate these effects on the canine immune system and to elucidate possible mechanisms we determined the following immune parameters in the blood of 33 clinically sound German shepherd dogs before and after standard vaccination with a polyvalent vaccine against distemper, parvovirus, viral hepatitis, leptospirosis, kennel cough and rabies: white and differential blood cell count, the serum concentrations and/or activities of IL-1, IL-2, IFN-gamma, TNF-alpha, neopterin and IgG, natural killer (NK) cell activity, bactericidal activity and complement hemolytic activity, lymphocyte proliferation test (LPT) and nitroblue tetrazolium test (NBT). Our major findings were that significant postvaccinal decreases in T-cell mitogenic response to PHA and in neutrophil function and neopterin serum concentration were accompanied by simultaneous increase in plasma IgG and hemolytic complement activity. This suggests a transient shift in the balance between cell-mediated and humoral (T(H)1/T(H)2) immunity rather than immunosuppression. These results do not imply that dogs should not receive live vaccines, as the response to vaccines just seems to create a state of altered homeostasis when immunization elicits protection by humoral and cell-mediated immunity. However, these recognized compromises of immune function should be considered and vaccines still be applied only in healthy animals and strictly according to the rules and regulations given by the manufacturer.

  10. Neuropsychology of humor: an introduction. Part II. Humor and the brain.

    PubMed

    Derouesné, Christian

    2016-09-01

    Impairment of the perception or comprehension of humor is observed in patients with focal brain lesions in both hemispheres, but mainly in the right frontal lobe. Studies by functional magnetic resonance imaging in healthy subjects show that humor is associated with activation of two main neural systems in both hemispheres. The detection and resolution of incongruity, cognitive groundings of humor, are associated with activation of the medial prefrontal and temporoparietal cortex, and the humor appreciation with activation of the orbito-frontal and insular cortex, amygdala and the brain reward system. However, activation of these areas is not humor-specific and can be observed in various cognitive or emotional processes. Event-related potential studies confirm the involvement of both hemispheres in humor processing, and suggest that left prefrontal area is associated with joke comprehension and right prefrontal area with the resolution stage. Humor thus appears to be a complex and dynamic functional process involving, on one hand, two specialized but not specific neural systems linked to humor apprehension and appreciation, and, on the other hand, multiple interconnected functional brain networks including neural patterns underlying the moral framework and belief system, acquired by conditioning or imitation during the cognitive development and social interactions of the individual, and more distributed systems associated with the analysis of the current context of humor occurrence. Disturbances of the sense of humor could then result from focal brain alterations localized in one or two of the specialized areas underlying the comprehension or appreciation of humor, or from perturbations of the network interconnectivity in non-focal brain disorders such as Alzheimer's disease or schizophrenia.

  11. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  12. Humor in Educational Contexts.

    ERIC Educational Resources Information Center

    Gurtler, Leo

    Humor can be a crucial factor of learning environments and of communication. Recent investigations of humor in educational settings mostly focus on learning performance. This paper shifts the attention to the enhancement of social climate through humor. Humor can be an element to solve critical social situations. To develop humor, it is necessary…

  13. Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre

    PubMed Central

    Gregorek, H; Chrzanowska, K H; Michałkiewicz, J; Syczewska, M; Madaliński, K

    2002-01-01

    During an 8-year period of observation, defects of immune responses were characterized and monitored in 40 of 50 Polish children with Nijmegen breakage syndrome referred to the Children's Memorial Health Institute in Warsaw. The following parameters were determined at diagnosis: (1) concentrations of serum IgM, IgG, IgA; (2) concentrations of IgG subclasses; and (3) lymphocyte subpopulations. In addition, naturally acquired specific antibodies against Streptococcus pneumoniae were determined in 20 patients with a history of recurrent respiratory infections. During follow-up, total serum immunoglobulins and IgG subclasses were monitored systematically in 17 patients who did not receive immunomodulatory therapy. Moreover, anti-HBs antibody response was measured after vaccination of 20 children against HBV. We found that the immune deficiency in NBS is profound, highly variable, with a tendency to progress over time. Systematic monitoring of the humoral response, despite good clinical condition, is essential for early medical intervention. PMID:12390322

  14. Immunoblot detection of class-specific humoral immune response to outer membrane proteins isolated from Salmonella typhi in humans with typhoid fever.

    PubMed Central

    Ortiz, V; Isibasi, A; García-Ortigoza, E; Kumate, J

    1989-01-01

    The studies reported here were undertaken to assess the ability of the outer membrane proteins (OMPs) of Salmonella typhi to induce a humoral immune response in humans with typhoid fever. OMPs were isolated with the nonionic detergent Triton X-100 and were found to be contaminated with approximately 4% lipopolysaccharide. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns showed protein bands with molecular size ranges from 17 to 70 kilodaltons; the major groups of proteins were those that correspond to the porins and OmpA of gram-negative bacteria. Rabbit antiserum to OMPs or to S. typhi recognized OMPs after absorption with lipopolysaccharide. Sera from patients with typhoid fever contained immunoglobulin M antibodies which reacted with a protein of 28 kilodaltons and immunoglobulin G antibodies which reacted mainly with the porins, as determined by immunoblotting. These results indicate that the porins are the major immunogenic OMPs from S. typhi and that the immune response induced in the infection could be related to the protective status. Images PMID:2768450

  15. Humoral immune responses induced by Kudoa sp. (Myxosporea: Multivalvulida) in BALB/c mice: oral administration, immunization and cross-reactions with Myxobolus aeglefini (Myxosporea: Bivalvulida).

    PubMed

    Martínez de Velasco, Gonzalo; Cuéllar, Carmen

    2003-01-01

    The majority of Kudoa species infect the somatic muscle of fish, establishing cysts. Because there is no effective method to detect infected fish without destroying them, these parasitized fish reach the consumer. The elevated humoral responses detected previously by us in BALB/c mice immunized with Kudoa sp. pseudocyst extracts showed the possible immunopathological effects in man from the ingestion of Kudoa-infected fish. In this work, the high IgG1 and IgE levels induced by the oral administration of Kudoa pseudocysts to BALB/c mice confirmed the allergenic nature of some of their components. An alternative way of preparing the soluble extract by using a FastPrep' shaker indicated the inconvenience of using sonication to prepare the Kudoa sp. extract. IgG+M, IgG, IgG3 and IgA cross-reactions of Kudoa sp. with another myxosporean, Myxobolus aeglefini, were found.

  16. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    PubMed Central

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  17. Complement factor H in host defense and immune evasion.

    PubMed

    Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J

    2017-05-01

    Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.

  18. Humoral Immunity to AAV-6, 8, and 9 in Normal and Dystrophic Dogs

    PubMed Central

    Shin, Jin-Hong; Yue, Yongping; Smith, Bruce

    2012-01-01

    Abstract Adeno-associated virus (AAV)-6, 8, and 9 are promising gene-delivery vectors for testing novel Duchenne muscular dystrophy gene therapy in the canine model. Humoral immunity greatly influences in vivo AAV transduction. However, neutralizing antibodies to AAV-6, 8, and 9 have not been systemically examined in normal and dystrophic dogs. To gain information on the seroprevalence of antibodies to AAV-6, 8, and 9, we measured neutralizing antibody titers using an in vitro transduction inhibition assay. We examined 72 naive serum samples and 26 serum samples obtained from dogs that had received AAV gene transfer. Our data demonstrated that AAV-6 neutralizing antibody was the most prevalent antibody in dogs irrespective of age, gender, disease status (dystrophic or not), and prior parvovirus vaccination history. Surprisingly, high-level anti-AAV-6 antibody was detected at birth in newborn puppies. Further, a robust antibody response was induced in affected, but not normal newborn dogs following systemic AAV gene transfer. Taken together, our data have provided an important baseline on the seroprevalence of AAV-6, 8, and 9 neutralizing antibodies in normal and Duchenne muscular dystrophy dogs. These results will help guide translational AAV gene-therapy studies in dog models of muscular dystrophy. PMID:22040468

  19. Humoral immunity to AAV-6, 8, and 9 in normal and dystrophic dogs.

    PubMed

    Shin, Jin-Hong; Yue, Yongping; Smith, Bruce; Duan, Dongsheng

    2012-03-01

    Adeno-associated virus (AAV)-6, 8, and 9 are promising gene-delivery vectors for testing novel Duchenne muscular dystrophy gene therapy in the canine model. Humoral immunity greatly influences in vivo AAV transduction. However, neutralizing antibodies to AAV-6, 8, and 9 have not been systemically examined in normal and dystrophic dogs. To gain information on the seroprevalence of antibodies to AAV-6, 8, and 9, we measured neutralizing antibody titers using an in vitro transduction inhibition assay. We examined 72 naive serum samples and 26 serum samples obtained from dogs that had received AAV gene transfer. Our data demonstrated that AAV-6 neutralizing antibody was the most prevalent antibody in dogs irrespective of age, gender, disease status (dystrophic or not), and prior parvovirus vaccination history. Surprisingly, high-level anti-AAV-6 antibody was detected at birth in newborn puppies. Further, a robust antibody response was induced in affected, but not normal newborn dogs following systemic AAV gene transfer. Taken together, our data have provided an important baseline on the seroprevalence of AAV-6, 8, and 9 neutralizing antibodies in normal and Duchenne muscular dystrophy dogs. These results will help guide translational AAV gene-therapy studies in dog models of muscular dystrophy.

  20. Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks

    PubMed Central

    Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S.; Kuehne, Ana I.; Stonier, Spencer W.; Ochayon, David E.; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C.; Lutwama, Julius Julian; Dye, John M.; Yavelsky, Victoria; Lobel, Leslie

    2015-01-01

    Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda—Gulu 2000–2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1–649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1–649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for

  1. Immune memory to Sudan virus: comparison between two separate disease outbreaks.

    PubMed

    Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S; Kuehne, Ana I; Stonier, Spencer W; Ochayon, David E; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C; Lutwama, Julius Julian; Dye, John M; Yavelsky, Victoria; Lobel, Leslie

    2015-01-06

    Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda-Gulu 2000-2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1-649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1-649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses.

  2. Flow of Aqueous Humor

    MedlinePlus

    ... National Glaucoma Research Home Flow of Aqueous Humor Flow of Aqueous Humor Most, but not all, forms ... aqueous humor) produced by the eye's ciliary body flows out freely (follow blue arrow). Aqueous humor flows ...

  3. Depression, family and cellular immunity: Influence of family relationships and cellular immunity on the severity of depression.

    PubMed

    Zdanowicz, Nicolas; Reynaert, Christine; Jacques, Denis; Tordeurs, David; Lepiece, Brice; Maury, Julien

    2015-09-01

    Exposure to stress activates the hypothalamic-pituitary-adrenal axis through the release of catecholamines, which modify humoral and cellular immunity. On the one hand, this psycho-immunological theory makes it possible to forge links between immunity and depression. On the other hand, we know that family determinants are an important variable in the model of vulnerability to depression. Our study weighs the influence of cellular immunity and family relations on the severity of depression. 498 inpatients with major depressive disorder were enrolled in an open-label trial. In addition to a socio-demographic questionnaire, they completed Olsen's FACES III and the Beck Depression Inventory (BDI). Flow cytometry was used to assess lymphocyte subsets. In terms of immunity, there are correlations between the BDI and percentages of CD3 (p=0.015; r=-0.112), CD4 (p<0.000; r=-0.175), CD4/CD8 (p=0.045; r=-0.093) and CD16 and 56 (p=0.014; r=0.113). In terms of family relationships, there is a correlation between the BDI and family of origin, both for cohesion (p=0.007; r=-0.169) and adaptability (p=0.035; r=-0.133) measures. With respect to the relationship between family dynamics and immunity, there are correlations between adaptability in the family of origin and CD3 (p=0.04; r=0.094) and CD4 (p=0.044; r=0.093). A logistic regression model for family variables explained 11.4% of the BDI, compared to 12.7% for immune variables, while a model including the two explained 16%. While both the family and immunity can explain the BDI, it is surprising they have a greater effect in combination than individually. This suggests that the psycho-immunological theory should look at the relation between immunity and family life, notably in relation to the family of origin.

  4. Augmentation of humoral and cellular immunity in response to Tetanus and Diphtheria toxoids by supercritical carbon dioxide extracts of Hippophae rhamnoides L. leaves.

    PubMed

    Jayashankar, Bindhya; Singh, Divya; Tanwar, Himanshi; Mishra, K P; Murthy, Swetha; Chanda, Sudipta; Mishra, Jigni; Tulswani, R; Misra, K; Singh, S B; Ganju, Lilly

    2017-03-01

    Hippophae rhamnoides L. commonly known as Seabuckthorn (SBT), a wild shrub of family Elaegnacea, has extensively used for treating various ailments like skin diseases, jaundice, asthma, lung troubles. SBT leaves have been reported to possess several pharmacological properties including immunomodulatory, antioxidant, anti-inflammatory, antimicrobial and tissue regeneration etc. The present study was undertaken to evaluate the adjuvant property of supercritical carbon dioxide extracts (SCEs 300ET and 350ET) of SBT leaves in balb/c mice immunized with Tetanus and Diphtheria toxoids. The dynamic changes in the immune response were measured in terms of humoral and cell-mediated immune responses. We have seen the effect of SCEs on immunoglobulin subtypes and secondary immune response generation. In addition, the effect of SCEs on antigen specific cellular immunity was evaluated. Our results show that SCEs 300ET and 350ET significantly enhanced antibody titers in response to both TT and DT antigens. The secondary immune response generated was significantly increased in case of TT immunized animals. SCEs also enhanced cytokine levels (IFN-γ, IL-4, TNF-α and IL-1β) and increased lymphoproliferation. Besides, both SCEs did not show any toxic effects. Therefore, the study suggests that SCEs are safe and have potent immunostimulatory activity and hence, seems to be a promising balanced Th1 and Th2 directing immunological adjuvant for various veterinary as well as human vaccines. Copyright © 2017. Published by Elsevier B.V.

  5. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates

    PubMed Central

    Sunyer, Oriol J.

    2016-01-01

    Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates. PMID:26537384

  6. Effects of subclinical inflammation on C-reactive protein and haptoglobin levels as well as specific humoral immunity in dogs vaccinated against canine distemper and parvovirus.

    PubMed

    Romiszewski, Przemysław; Kostro, Krzysztof; Lisiecka, Urszula

    2018-03-05

    The aim of the present study was to assess the effects of subclinical inflammation on specific humoral immunity in dogs vaccinated with Nobivac® DHP based on serum levels of CRP and Hp. Dogs from the group I were administered Nobivac® DHP, the vaccine against distemper, infectious hepatitis and parvovirus whereas group II animals received subcutaneous turpentine oil to induce subclinical inflammation, followed by Nobivac® DHP after 24 h. Animals in group III received only turpentine oil in the way and amount identical to that as in group II. Nobivac DHP relatively poorly induced the immune inflammatory response showing good immunogenic properties, which was evidenced by only a double increase in mean CRP and Hp levels associated with antigenic stimulation in group I. In group II, serum neutralization (SN) and haemagglutination inhibition (HI) results were quite closely correlated with serum levels of CPR and Hp. Our findings suggest that the efficacy of vaccinations in dogs can be significantly affected by subclinical inflammations, which is indicated by a correlation between serum CRP and Hp levels versus antibody titres for canine distemper and parvovirus in both experimental groups of dogs (group I and II). The correlation of mean CRP and Hp values in dogs with subclinical inflammation and after vaccination with the kinetics of increasing antibody titres against distemper and parvovirus in group II dogs reflects the severity of inflammatory response and the extent of specific humoral immunity. Routine determinations of serum CRP and Hp levels as the indices of inflammation severity can be the essential biochemical markers for assessment of dogs' health in the period preceding specific immunoprophylaxis and efficacy of the vaccine.

  7. Assessment of humoral and cell-mediated immune response to measles-mumps-rubella vaccine viruses among patients with asthma.

    PubMed

    Yoo, Kwang Ha; Agarwal, Kanishtha; Butterfield, Michael; Jacobson, Robert M; Poland, Gregory A; Juhn, Young J

    2010-01-01

    Little is known about the influence of asthma status on humoral and cell-mediated immune responses to measles-mumps-rubella (MMR) vaccine viruses. We compared the virus-specific IgG levels and lymphoproliferative response of peripheral blood mononuclear cells to MMR vaccine viruses between asthmatic and nonasthmatic patients. The study subjects included 342 healthy children aged 12-18 years who had received two doses of the MMR vaccine. We ascertained asthma status by applying predetermined criteria. Of the 342 subjects, 230 were available for this study of whom 25 were definite asthmatic patients (10.9%) and the rest of subjects were nonasthmatic patients. The mean of the log-transformed lymphoproliferative responses between definite asthma and nonasthma who had a family history of asthma were for measles, 0.92 ± 0.31 versus 1.54 ± 0.17 (p = 0.125); for mumps, 0.98 ± 0.64 versus 2.20 ± 0.21 (p = 0.035); and for rubella, 0.12 ± 0.37 versus 0.97 ± 0.16 (p = 0.008), respectively, adjusting for the duration between the first MMR vaccination and determination of the immune responses. There were no such differences among children without a family history of asthma. MMR virus-specific IgG levels were not different between study subjects with or without asthma. The study findings suggest asthmatic patients may have a suboptimal cell-mediated immune response to MMR vaccine viruses and a family history of asthma modifies this effect.

  8. Immune Privilege and Eye-Derived T-Regulatory Cells.

    PubMed

    Keino, Hiroshi; Horie, Shintaro; Sugita, Sunao

    2018-01-01

    Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF- β ), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2 α ), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.

  9. [Immune response to live influenza vaccine].

    PubMed

    Naĭkhin, A N; Rekstin, A R; Barantseva, I B; Donina, S A; Desheva, Iu A; Grigor'eva, E P; Kiseleva, I V; Rudenko, L G

    2002-01-01

    Priority data on the induction, by using a Russian live cold-adapted reassortant influenza vaccine (LIV), of the cellular and humoral immunity with regard for attenuation and genetic reassortment of vaccine stains as well as with regard for the age of vaccinated persons and the production of Th1 (IFNY, IL-2) and Th2 (IL-4) cytokine markers in vitro are presented. It was demonstrated in vivo that a pathogenic virus of the A group by far more actively induced the lymphocyte apoptosis as compared with attenuated genetically reassorted stains. Unlike the influenza pathogenic virus, the genetically attenuated and reassorted strain did not produce any negative effects on the induction of cellular immunity. A comparative study of the LIV immunogenic properties in vaccinated persons showed an advantage of LIV over inactivated influenza vaccine (IIV) in stimulating the cellular and local immunity in the elderly. Unlike IIV, LIV induced an active and balanced immune response developing due to Th1 and Th2 activation. LIV was found to stimulate well enough the production of IFN and IL-2 in both young and old persons.

  10. The Dark Side of Humor: DSM-5 Pathological Personality Traits and Humor Styles

    PubMed Central

    Zeigler-Hill, Virgil; McCabe, Gillian A.; Vrabel, Jennifer K.

    2016-01-01

    Basic personality traits (e.g., extraversion) have been found to be associated with the humor styles that individuals employ. In the present study, we were interested in determining whether pathological personality traits were also associated with humor styles. We examined the associations between the pathological personality traits captured by the Personality Inventory for the DSM-5 (PID-5) and humor styles in a sample of college students (N = 594). Negative affectivity and detachment were negatively associated with the affiliative and self-enhancing humor styles. Antagonism was positively associated with the aggressive humor style but negatively associated with the affiliative humor style. Disinhibition was positively associated with the aggressive humor style, whereas disinhibition and psychoticism were both positively associated with the self-defeating humor style. Discussion focuses on the implications of these findings and how they can expand our understanding of the connections between the darker aspects of personality and humor. PMID:27547254

  11. Let’s Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse

    PubMed Central

    Bennett, Kaila M.; Rooijakkers, Suzan H. M.; Gorham, Ronald D.

    2017-01-01

    The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement. PMID:28197139

  12. Noninfectious X4 but not R5 human immunodeficiency virus type 1 virions inhibit humoral immune responses in human lymphoid tissue ex vivo

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Wendy; Sylwester, Andrew W.; Grivel, Jean-Charles; Lifson, Jeffrey D.; Margolis, Leonid B.

    2004-01-01

    Ex vivo human immunodeficiency virus type 1 (HIV-1) infection of human lymphoid tissue recapitulates some aspects of in vivo HIV-1 infection, including a severe depletion of CD4(+) T cells and suppression of humoral immune responses to recall antigens or to polyclonal stimuli. These effects are induced by infection with X4 HIV-1 variants, whereas infection with R5 variants results in only mild depletion of CD4(+) T cells and no suppression of immune responses. To study the mechanisms of suppression of immune responses in this ex vivo system, we used aldrithiol-2 (AT-2)-inactivated virions that have functional envelope glycoproteins but are not infectious and do not deplete CD4(+) T cells in human lymphoid tissues ex vivo. Nevertheless, AT-2-inactivated X4 (but not R5) HIV-1 virions, even with only a brief exposure, inhibit antibody responses in human lymphoid tissue ex vivo, similarly to infectious virus. This phenomenon is mediated by soluble immunosuppressive factor(s) secreted by tissue exposed to virus.

  13. Human T lymphotropic virus type II infection and humoral responses to pneumococcal polysaccharide and tetanus toxoid vaccines.

    PubMed

    Jarvis, Gary A; Janoff, Edward N; Cheng, Hui; Devita, Deborah; Fasching, Claudine; McCulloch, Charles E; Murphy, Edward L

    2005-04-15

    Infection with human T lymphotropic virus type II (HTLV-II) has been linked to an increased incidence of bacterial pneumonia. To determine whether HTLV-II infection is associated with impaired humoral immune responses, we immunized a cohort of HTLV-II-infected subjects and matched uninfected control subjects with 23-valent pneumococcal polysaccharide and tetanus toxoid vaccines. The pneumococcal polysaccharide vaccine elicited comparable and significant increases in concentrations of IgG against all 5 serotypes tested at 1 and 6 months after immunization in both groups. The avidity and opsonophagocytic functions of the anticapsular IgG were similar. The concentrations of tetanus toxoid-specific IgG also increased comparably and significantly over time in both groups. Thus, HTLV-II-infected persons develop robust humoral responses to potentially protective polysaccharide and protein vaccines.

  14. Three Decades Investigating Humor and Laughter: An Interview With Professor Rod Martin.

    PubMed

    Martin, Rod; Kuiper, Nicholas A

    2016-08-01

    Since the start of the 21st century, the investigation of various psychological aspects of humor and laughter has become an increasingly prominent topic of research. This growth can be attributed, in no small part, to the pioneering and creative work on humor and laughter conducted by Professor Rod Martin. Dr. Martin's research interests in humor and laughter began in the early 1980s and continued throughout his 32 year long career as a professor of clinical psychology at the University of Western Ontario. During this time, Dr. Martin published numerous scholarly articles, chapters, and books on psychological aspects of humor and laughter. Professor Martin has just retired in July 2016, and in the present interview he recounts a number of research highlights of his illustrious career. Dr. Martin's earliest influential work, conducted while he was still in graduate school, stemmed from an individual difference perspective that focused on the beneficial effects of sense of humor on psychological well-being. This research focus remained evident in many of Professor Martin's subsequent investigations, but became increasingly refined as he developed several measures of different components of sense of humor, including both adaptive and maladaptive humor styles. In this interview, Dr. Martin describes the conceptualization, development and use of the Humor Styles Questionnaire, along with suggestions for future research and development. In doing so, he also discusses the three main components of humor (i.e., cognitive, emotional and interpersonal), as well as the distinctions and similarities between humor and laughter. Further highlights of this interview include Professor Martin's comments on such diverse issues as the genetic versus environmental loadings for sense of humor, the multifaceted nature of the construct of humor, and the possible limitations of teaching individuals to use humor in a beneficial manner to cope with stress and enhance their social and

  15. Three Decades Investigating Humor and Laughter: An Interview With Professor Rod Martin

    PubMed Central

    Martin, Rod; Kuiper, Nicholas A.

    2016-01-01

    Since the start of the 21st century, the investigation of various psychological aspects of humor and laughter has become an increasingly prominent topic of research. This growth can be attributed, in no small part, to the pioneering and creative work on humor and laughter conducted by Professor Rod Martin. Dr. Martin’s research interests in humor and laughter began in the early 1980s and continued throughout his 32 year long career as a professor of clinical psychology at the University of Western Ontario. During this time, Dr. Martin published numerous scholarly articles, chapters, and books on psychological aspects of humor and laughter. Professor Martin has just retired in July 2016, and in the present interview he recounts a number of research highlights of his illustrious career. Dr. Martin’s earliest influential work, conducted while he was still in graduate school, stemmed from an individual difference perspective that focused on the beneficial effects of sense of humor on psychological well-being. This research focus remained evident in many of Professor Martin’s subsequent investigations, but became increasingly refined as he developed several measures of different components of sense of humor, including both adaptive and maladaptive humor styles. In this interview, Dr. Martin describes the conceptualization, development and use of the Humor Styles Questionnaire, along with suggestions for future research and development. In doing so, he also discusses the three main components of humor (i.e., cognitive, emotional and interpersonal), as well as the distinctions and similarities between humor and laughter. Further highlights of this interview include Professor Martin’s comments on such diverse issues as the genetic versus environmental loadings for sense of humor, the multifaceted nature of the construct of humor, and the possible limitations of teaching individuals to use humor in a beneficial manner to cope with stress and enhance their social and

  16. The Relational Humor Inventory: Functions of Humor in Close Relationships.

    ERIC Educational Resources Information Center

    DeKoning, E.; Weiss, R. L.

    2002-01-01

    This study describes the development of a self-report measure of functional humor in relationships. People were asked to report on their own and their partner's use of humor in the marriage. The Relational Humor Inventory proved to be a useful instrument for tapping important positive and negative relationship behaviors. (Contains 30 references, 4…

  17. Vaccine-associated enhanced respiratory disease does not interfere with the adaptive immune response following challenge with pandemic A/H1N1 2009

    USDA-ARS?s Scientific Manuscript database

    Background. The implications of sequential prime and challenge with mismatched influenza A viruses is a concern in mammals including humans. We evaluated the ability of pigs affected with vaccine associated enhanced respiratory disease (VAERD) to generate a humoral immune response against the hetero...

  18. The ecology of immune state in a wild mammal, Mus musculus domesticus.

    PubMed

    Abolins, Stephen; Lazarou, Luke; Weldon, Laura; Hughes, Louise; King, Elizabeth C; Drescher, Paul; Pocock, Michael J O; Hafalla, Julius C R; Riley, Eleanor M; Viney, Mark

    2018-04-01

    The immune state of wild animals is largely unknown. Knowing this and what affects it is important in understanding how infection and disease affects wild animals. The immune state of wild animals is also important in understanding the biology of their pathogens, which is directly relevant to explaining pathogen spillover among species, including to humans. The paucity of knowledge about wild animals' immune state is in stark contrast to our exquisitely detailed understanding of the immunobiology of laboratory animals. Making an immune response is costly, and many factors (such as age, sex, infection status, and body condition) have individually been shown to constrain or promote immune responses. But, whether or not these factors affect immune responses and immune state in wild animals, their relative importance, and how they interact (or do not) are unknown. Here, we have investigated the immune ecology of wild house mice-the same species as the laboratory mouse-as an example of a wild mammal, characterising their adaptive humoral, adaptive cellular, and innate immune state. Firstly, we show how immune variation is structured among mouse populations, finding that there can be extensive immune discordance among neighbouring populations. Secondly, we identify the principal factors that underlie the immunological differences among mice, showing that body condition promotes and age constrains individuals' immune state, while factors such as microparasite infection and season are comparatively unimportant. By applying a multifactorial analysis to an immune system-wide analysis, our results bring a new and unified understanding of the immunobiology of a wild mammal.

  19. Current understanding of HIV-1 and T-cell adaptive immunity: progress to date.

    PubMed

    Mohan, Teena; Bhatnagar, Santwana; Gupta, Dablu L; Rao, D N

    2014-08-01

    The cellular immune response to human immunodeficiency virus (HIV) has different components originating from both the adaptive and innate immune systems. HIV cleverly utilizes the host machinery to survive by its intricate nature of interaction with the host immune system. HIV evades the host immune system at innate ad adaptive, allows the pathogen to replicate and transmit from one host to another. Researchers have shown that HIV has multipronged effects especially on the adaptive immunity, with CD4(+) cells being the worst effect T-cell populations. Various analyses have revealed that, the exposure to HIV results in clonal expansion and excessive activation of the immune system. Also, an abnormal process of differentiation has been observed suggestive of an alteration and blocks in the maturation of various T-cell subsets. Additionally, HIV has shown to accelerate immunosenescence and exhaustion of the overtly activated T-cells. Apart from causing phenotypic changes, HIV has adverse effects on the functional aspect of the immune system, with evidences implicating it in the loss of the capacity of T-cells to secrete various antiviral cytokines and chemokines. However, there continues to be many aspects of the immune- pathogenesis of HIV that are still unknown and thus required further research in order to convert the malaise of HIV into a manageable epidemic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Humor. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Elkind, David; Parr, Jerry; Duffy, Vincent; Strader, Bill; Stephens, Karen

    2000-01-01

    Presents five articles on humor in early child care: (1) "What Makes Young Children Laugh?" (David Elkind); (2) "Humor as a Tool in the Workplace" (Jerry Parr); (3) "Vincent's Vignettes" (Vincent Duffy); (4) "Family Humor" (Bill Strader); and (5) "Books to Tickle Funny Bones" (Karen Stephens). (SD)

  1. A viral-vectored RSV vaccine induces long-lived humoral immunity in cotton rats.

    PubMed

    Grieves, Jessica L; Yin, Zhiwei; Garcia-Sastre, Adolfo; Mena, Ignacio; Peeples, Mark E; Risman, Heidi P; Federman, Hannah; Sandoval, Marvin J; Durbin, Russell K; Durbin, Joan E

    2018-05-17

    Human respiratory syncytial virus (RSV) is the leading cause of lower airway disease in infants worldwide and repeatedly infects immunocompetent individuals throughout life. Severe lower airway RSV infection during infancy can be life-threatening, but is also associated with important sequelae including development of asthma and recurrent wheezing in later childhood. The basis for the inadequate, short-lived adaptive immune response to RSV infection is poorly understood, but it is widely recognized that RSV actively antagonizes Type I interferon (IFN) production. In addition to the induction of the anti-viral state, IFN production during viral infection is critical for downstream development of robust, long-lived immunity. Based on the hypothesis that a vaccine that induced robust IFN production would be protective, we previously constructed a Newcastle disease virus-vectored vaccine that expresses the F glycoprotein of RSV (NDV-F) and demonstrated that vaccinated mice had reduced lung viral loads and an enhanced IFN-γ response after RSV challenge. Here we show that vaccination also protected cotton rats from RSV challenge and induced long-lived neutralizing antibody production, even in RSV immune animals. Finally, pulmonary eosinophilia induced by RSV infection of unvaccinated cotton rats was prevented by vaccination. Overall, these data demonstrate enhanced protective immunity to RSV F when this protein is presented in the context of an abortive NDV infection. Copyright © 2018. Published by Elsevier Ltd.

  2. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    PubMed Central

    Itoh, Arata; Ridgway, William M

    2017-01-01

    Type 1 diabetes (T1D) is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs). Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD) spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase), the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody) have shown partial successes (e.g., prolonged C peptide preservation) but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR) 4-stimulating lipopolysaccharide [LPS]) dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic antigen-presenting cells (APCs) that mediate decreased adaptive T-cell responses. Here, we review our current knowledge and suggest future prospects for targeting innate

  3. Emerging concepts on the role of innate immunity in the prevention and control of HIV infection.

    PubMed

    Ackerman, Margaret E; Dugast, Anne-Sophie; Alter, Galit

    2012-01-01

    While neutralizing antibodies can provide sterilizing protection from HIV infection via their variable domains, the antibody constant domain provides a functional link between innate and adaptive immunity and offers a means to harness the potent antiviral properties of a wide spectrum of innate immune effector cells. There has been a growing appreciation of the role of these effector mechanisms across fields from cancer immunotherapy to autoimmunity and infectious disease, as well as speculation that this mechanism may be responsible for the protection observed in the RV144 HIV vaccine trial. This review summarizes these extraneutralizing humoral immune activities, progress in defining the importance of these effector mechanisms during progression in HIV infection, and the potential impact that such vaccine-induced immune responses may have on protection from infection.

  4. Reprint of "fish immunity to scuticociliate parasites".

    PubMed

    Piazzon, María Carla; Leiro, José; Lamas, Jesús

    2014-04-01

    Some species of scuticociliates (Ciliophora) behave as facultative parasites and produce severe mortalities in cultured fish. Pathogenic scuticociliates can cause surface lesions and can also penetrate inside the body, where they feed on tissue and proliferate in the blood and most internal organs, killing the host in a few days. In this review, we describe the current knowledge on the protective role of fish cellular and humoral immune responses against these parasites. Immune humoral factors, especially complement, are of particular importance in defending fish against these ciliates. However, knowledge about how the fish immune system responds to scuticociliates is scant, and the cellular and molecular events that occur during the response are not known. We also describe the possible mechanisms used by scuticociliates to avoid or resist the defensive reaction of the host. For example, the release of proteases can help parasites enter fish tissues and impair the fish cellular and humoral responses. Several vaccine formulations containing scuticociliates have induced a good antibody response and protection in fish immunized and challenged with homologous strains of particular species. However, protection was not achieved in fish immunized and challenged with heterologous strains, and the antigens involved in protection and the antigenic differences between heterologous strains have not yet been determined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of a polysaccharide from Poria cocos on humoral response in mice immunized by H1N1 influenza and HBsAg vaccines.

    PubMed

    Wu, Yajun; Li, Shuai; Li, Haixia; Zhao, Chunzhi; Ma, Hao; Zhao, Xiunan; Wu, Junhua; Liu, Kunlu; Shan, Junjie; Wang, Yuxia

    2016-10-01

    Poria cocos has a long history of medicinal use in China. Polysaccharides and their derivatives in the medicine exhibit many beneficial biological activities including anticancer, anti-inflammatory, antioxidant and antiviral activities. In this study, a new polysaccharide (PCP-II) was isolated from sclerotium of Poria cocos. Its physico-chemical characters were identified and its adjuvant activity was investigated in mice co-immunized with H1N1 influenza vaccine and hepatitis B surface antigen (HBsAg). The results revealed that PCP-II has a molecular weight of 29.0kDa. It was composed of fucose, mannose, glucose and galactose in molar ration of 1.00:1.63:0.16:6.29 respectively. Pharmacological data demonstrated that PCP-II increased antigen-specific antibody levels in mice immunized with influenza vaccine. PCP-II also elicited anti-HBsAg antibodies at significantly higher titers and generated robust and durable immunity compared to mice immunized with HBsAg-alum following two administrations. PCP-II improved proliferation of splenocytes, stimulated IL-12p70 and TNF-α productions in dendritic cells and macrophages respectively. These results suggested that PCP-II-adjuvanted vaccines enhanced humoral and cellular immunity. PCP-II could be developed as an efficacious adjuvant in human and animal vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. High Prevalence of Both Humoral and Cellular Immunity to Zaire ebolavirus among Rural Populations in Gabon

    PubMed Central

    Mahlakõiv, Tanel; Nkoghe, Dieudonné; Padilla, Cindy; Souris, Marc; Ollomo, Benjamin; Gonzalez, Jean-Paul; De Lamballerie, Xavier; Kazanji, Mirdad; Leroy, Eric M.

    2010-01-01

    To better understand Zaire ebolavirus (ZEBOV) circulation and transmission to humans, we conducted a large serological survey of rural populations in Gabon, a country characterized by both epidemic and non epidemic regions. The survey lasted three years and covered 4,349 individuals from 220 randomly selected villages, representing 10.7% of all villages in Gabon. Using a sensitive and specific ELISA method, we found a ZEBOV-specific IgG seroprevalence of 15.3% overall, the highest ever reported. The seroprevalence rate was significantly higher in forested areas (19.4%) than in other ecosystems, namely grassland (12.4%), savannah (10.5%), and lakeland (2.7%). No other risk factors for seropositivity were found. The specificity of anti-ZEBOV IgG was confirmed by Western blot in 138 individuals, and CD8 T cells from seven IgG+ individuals were shown to produce IFN-γ after ZEBOV stimulation. Together, these findings show that a large fraction of the human population living in forested areas of Gabon has both humoral and cellular immunity to ZEBOV. In the absence of identified risk factors, the high prevalence of “immune” persons suggests a common source of human exposure such as fruits contaminated by bat saliva. These findings provide significant new insights into ZEBOV circulation and human exposure, and raise important questions as to the human pathogenicity of ZEBOV and the existence of natural protective immunization. PMID:20161740

  7. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed Central

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  8. Antiglioma Immunological Memory in Response to Conditional Cytotoxic/Immune-Stimulatory Gene Therapy: Humoral and Cellular Immunity Lead to Tumor Regression

    PubMed Central

    Muhammad, A.K.M. Ghulam; Candolfi, Marianela; King, Gwendalyn D.; Yagiz, Kader; Foulad, David; Mineharu, Yohei; Kroeger, Kurt M.; Treuer, Katherine A.; Nichols, W. Stephen; Sanderson, Nicholas S.; Yang, Jieping; Khayznikov, Maksim; Van Rooijen, Nico; Lowenstein, Pedro R.; Castro, Maria G.

    2009-01-01

    Purpose Glioblastoma multiforme is a deadly primary brain cancer. Because the tumor kills due to recurrences, we tested the hypothesis that a new treatment would lead to immunological memory in a rat model of recurrent glioblastoma multiforme. Experimental Design We developed a combined treatment using an adenovirus (Ad) expressing fms-like tyrosine kinase-3 ligand (Flt3L), which induces the infiltration of immune cells into the tumor microenvironment, and an Ad expressing herpes simplex virus-1–thymidine kinase (TK), which kills proliferating tumor cells in the presence of ganciclovir. Results This treatment induced immunological memory that led to rejection of a second glioblastoma multiforme implanted in the contralateral hemisphere and of an extracranial glioblastoma multiforme implanted intradermally. Rechallenged long-term survivors exhibited anti-glioblastoma multiforme–specific T cells and displayed specific delayed-type hypersensitivity. Using depleting antibodies, we showed that rejection of the second tumor was dependent on CD8+ T cells. Circulating anti-glioma antibodies were observed when glioblastoma multiforme cells were implanted intradermally in naïve rats or in long-term survivors. However, rats bearing intracranial glioblastoma multiforme only exhibited circulating antitumoral antibodies upon treatment with Ad-Flt3L + Ad-TK. This combined treatment induced tumor regression and release of the chromatin-binding protein high mobility group box 1 in two further intracranial glioblastoma multiforme models, that is, Fisher rats bearing intracranial 9L and F98 glioblastoma multiforme cells. Conclusions Treatment with Ad-Flt3L + Ad-TK triggered systemic anti–glioblastoma multiforme cellular and humoral immune responses, and anti–glioblastoma multiforme immunological memory. Release of the chromatin-binding protein high mobility group box 1 could be used as a noninvasive biomarker of therapeutic efficacy for glioblastoma multiforme. The robust

  9. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    PubMed

    Slike, Bonnie M; Creegan, Matthew; Marovich, Mary; Ngauy, Viseth

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10-20 years post vaccination. This contrasted with a comparator group of adults, ages 35-49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112-3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  10. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations

    PubMed Central

    Slike, Bonnie M.; Creegan, Matthew

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5–10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10–20 years post vaccination. This contrasted with a comparator group of adults, ages 35–49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112–3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program. PMID:28046039

  11. Partial reconstitution of humoral immunity and fewer infections in patients with chronic lymphocytic leukemia treated with ibrutinib.

    PubMed

    Sun, Clare; Tian, Xin; Lee, Yuh Shan; Gunti, Sreenivasulu; Lipsky, Andrew; Herman, Sarah E M; Salem, Dalia; Stetler-Stevenson, Maryalice; Yuan, Constance; Kardava, Lela; Moir, Susan; Maric, Irina; Valdez, Janet; Soto, Susan; Marti, Gerald E; Farooqui, Mohammed Z; Notkins, Abner L; Wiestner, Adrian; Aue, Georg

    2015-11-05

    Chronic lymphocytic leukemia (CLL) is characterized by immune dysregulation, often including hypogammaglobulinemia, which contributes to a high rate of infections and morbidity. Ibrutinib, a covalent inhibitor of Bruton tyrosine kinase (BTK), inhibits B-cell receptor signaling and is an effective, US Food and Drug Administration (FDA)-approved treatment of CLL. Inactivating germline mutations in BTK cause a severe B-cell defect and agammaglobulinemia. Therefore, we assessed the impact of ibrutinib on immunoglobulin levels, normal B cells, and infection rate in patients with CLL treated with single-agent ibrutinib on a phase 2 investigator-initiated trial. Consistent with previous reports, immunoglobulin G (IgG) levels remained stable during the first 6 months on treatment, but decreased thereafter. In contrast, there were a transient increase in IgM and a sustained increase in IgA (median increase 45% at 12 months, P < .0001). To distinguish the effects on clonal B cells from normal B cells, we measured serum free light chains (FLCs). In κ-clonal CLL cases, clonal (κ) FLCs were elevated at baseline and normalized by 6 months. Nonclonal (λ) FLCs, which were often depressed at baseline, increased, suggesting the recovery of normal B cells. Consistently, we observed normal B-cell precursors in the bone marrow and an increase in normal B-cell numbers in the peripheral blood. Patients with superior immune reconstitution, as defined by an increase in serum IgA of ≥50% from baseline to 12 months, had a significantly lower rate of infections (P = .03). These data indicate that ibrutinib allows for a clinically meaningful recovery of humoral immune function in patients with CLL. This trial was registered at www.clinicaltrials.gov as #NCT015007330.

  12. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.

    PubMed

    Goswami, Meghali; Prince, Gabrielle; Biancotto, Angelique; Moir, Susan; Kardava, Lela; Santich, Brian H; Cheung, Foo; Kotliarov, Yuri; Chen, Jinguo; Shi, Rongye; Zhou, Huizhi; Golding, Hana; Manischewitz, Jody; King, Lisa; Kunz, Lauren M; Noonan, Kimberly; Borrello, Ivan M; Smith, B Douglas; Hourigan, Christopher S

    2017-07-10

    Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy.

  13. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia.

    PubMed

    Pomié, Céline; Blasco-Baque, Vincent; Klopp, Pascale; Nicolas, Simon; Waget, Aurélie; Loubières, Pascale; Azalbert, Vincent; Puel, Anthony; Lopez, Frédéric; Dray, Cédric; Valet, Philippe; Lelouvier, Benjamin; Servant, Florence; Courtney, Michael; Amar, Jacques; Burcelin, Rémy; Garidou, Lucile

    2016-06-01

    To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.

  14. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    PubMed Central

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  15. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens.

    PubMed

    Pourhossein, Zohreh; Qotbi, Ali Ahmad Alaw; Seidavi, Alireza; Laudadio, Vito; Centoducati, Gerardo; Tufarelli, Vincenzo

    2015-01-01

    This experiment was conducted to evaluate the effects of different levels of sweet orange (Citrus sinensis) peel extract (SOPE) on humoral immune system responses in broiler chickens. Three hundred 1-day broilers (Ross-308) were randomly allocated to treatments varying in supplemental SOPE added in the drinking water. The experimental groups consisted of three treatments fed for 42 days as follows: a control treatment without feed extract, a treatment containing 1000 ppm of SOPE and a treatment containing 1250 ppm of SOPE. All treatments were isocaloric and isonitrogenous. Broilers were vaccinated with Newcastle disease virus (NDV), avian influenza (AI), infectious bursal disease (IBD) and infectious bronchitis virus (IBV) vaccines. Antibody titer response to sheep red blood cells (SRBC) was higher in the group fed 1250 ppm of SOPE (P < 0.05) as well as for immunoglobulin G (IgG) and IgM. Similarly, antibody titer responses to all vaccines were constantly elevated (P < 0.05) by SOPE enrichment in a dose-dependent manner. Relative weights of spleen and bursa of Fabricius were unaffected by treatments. Dietary SOPE supplementation may improve the immune response and diseases resistance, indicating that it can constitute a useful additive in broiler feeding. Thus, supplying SOPE in rations may help to improve relative immune response in broiler chickens. © 2014 Japanese Society of Animal Science.

  16. Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens.

    PubMed

    Koppad, Sanganagouda; Raj, G Dhinakar; Gopinath, V P; Kirubaharan, J John; Thangavelu, A; Thiagarajan, V

    2011-12-01

    Calcium phosphate (CaP) particles were coupled with inactivated Newcastle disease virus (NDV) vaccine. The surface morphology of CaP particles coupled to NDV was found to be spherical, smooth and with a tendency to agglomerate. The mean (± SE) size of CaP particles was found 557.44 ± 18.62 nm. The mean percent encapsulation efficiency of CaP particles coupled to NDV assessed based on total protein content and haemagglutination (HA) activity in eluate was found to be 10.72 ± 0.89 and 12.50 ± 2.09, respectively. The humoral and cell mediated immune responses induced by CaP coupled NDV vaccine were assessed in comparison to a commercial live vaccine (RDV 'F'). CaP coupled NDV vaccine elicited prolonged haemagglutination inhibition (HI) and enzyme linked immunosorbent assay (ELISA) titres in the serum even at fourth and fifth week post-vaccination (PV), unlike RDV 'F' inoculated chickens whose titres declined to insignificant levels by this time. CaP coupled NDV vaccine could stimulate HI antibodies in tracheal washings and tears from second and first week PV, respectively. IgA ELISA antibodies were also seen in tracheal washings of these birds from third week PV and in tears from second week PV. CaP coupled NDV vaccine elicited cell mediated immune responses (CMI) from two to four weeks PV. The stimulation indices obtained after stimulation with specific antigen was not significantly different between CaP coupled antigen and live NDV virus except on first week PV. However, CaP coupled antigen did not cause suppression of lympo proliferation as indicated by statistically similar responses to mitogen, concanavalin A between the two groups. Overall, CaP coupled NDV vaccine elicited stronger and prolonged immune responses in comparison to the commercial live vaccine. No increase in the serum calcium and phosphorous levels were seen in CaP coupled NDV vaccine inoculated chickens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Polymicrobial sepsis and non-specific immunization induce adaptive immunosuppression to a similar degree.

    PubMed

    Schmoeckel, Katrin; Mrochen, Daniel M; Hühn, Jochen; Pötschke, Christian; Bröker, Barbara M

    2018-01-01

    Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen "overload" by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness.

  18. Polymicrobial sepsis and non-specific immunization induce adaptive immunosuppression to a similar degree

    PubMed Central

    Hühn, Jochen; Pötschke, Christian

    2018-01-01

    Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen “overload” by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness. PMID:29415028

  19. Self-Deprecating Humor Versus Other-Deprecating Humor in Health Messages

    PubMed Central

    LEE, JI YOUNG; SLATER, MICHAEL D.; TCHERNEV, JOHN

    2016-01-01

    Humor is sometimes employed in health messages. However, little is known about contingencies under which different types of humor may or may not be effective. This experiment crossed humorous vs. non-humorous and self- vs. other-deprecating messages about binge drinking, and tested how differences in personal investment in alcohol use moderates the effects of such messages on college binge drinkers. Results showed significant three-way interaction effects on subjective norms and behavioral intentions largely consistent with hypotheses. Assessment of significant differences in the interactions indicated that for binge drinkers who weren’t high in personal investment in alcohol use, other-deprecating humor tended to reduce their perceived subjective norms about the acceptability of binge drinking behavior and their behavioral intentions. The effect of the experimental manipulation on subjective norms among these binge drinkers was shown to mediate the effect on intentions to binge drink in the future. Theoretical and practical implications are discussed. PMID:26020507

  20. Ly49 Receptors: Innate and Adaptive Immune Paradigms

    PubMed Central

    Rahim, Mir Munir A.; Tu, Megan M.; Mahmoud, Ahmad Bakur; Wight, Andrew; Abou-Samra, Elias; Lima, Patricia D. A.; Makrigiannis, Andrew P.

    2014-01-01

    The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity. PMID:24765094

  1. The effect of beta-hydroxy-beta-methylbutyrate (HMB) on selected parameters of humoral immunity in calves.

    PubMed

    Wójcik, R; Małaczewska, J; Siwicki, A K; Miciński, J; Zwierzchowski, G

    2014-01-01

    The objective of this study was to evaluate the effect of HMB on selected parameters of the humoral immunity in calves. The experiment was performed on 14 calves aged 30 +/- 2 days, divided into two equal groups of control (group K) and experimental (group H) animals. The feed administered to the experimental calves was supplemented with HMB at 40 mg/kg BW, whereas the control calves were administered standard farm-made feed without supplementation. Blood was sampled from the jugular vein immediately before the experiment (day 0) and on experimental days 15, 30 and 60 to determine the following immunological parameters: total protein levels, gammaglobulin levels, lysozyme activity and ceruloplasmin activity. An analysis of the results obtained revealed a significant increase (p < 0.05; p < 0.01; p < 0.001 respectively) in gammaglobulin levels and lysozyme activity throughout the entire experimental period, an increase (p < 0.05; p < 0.01 respectively) in ceruloplasmin activity on experimental days 15 and 30, but no changes in serum total protein levels of calves administered HMB as compared to those found in the control group.

  2. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis

    PubMed Central

    Stoll, Matthew L

    2011-01-01

    The immune system can be divided into the innate and adaptive arms. Historically, most of the research into the pathogenesis of spondyloarthritis (SpA) and other types of chronic arthritis focused on the adaptive immune system. Recently, the pendulum has shifted, and much current work in SpA focuses on innate immunity. Herein, I summarize evidence demonstrating that both the innate and the adaptive arms of the immune system are involved in the pathogenesis of SpA, propose a mechanism in which both arms interact to maintain chronic arthritis, and discuss potential research directions. PMID:21269576

  3. The Immune System of HIV-Exposed Uninfected Infants.

    PubMed

    Abu-Raya, Bahaa; Kollmann, Tobias R; Marchant, Arnaud; MacGillivray, Duncan M

    2016-01-01

    Infants born to human immunodeficiency virus (HIV) infected women are HIV-exposed but the majority remains uninfected [i.e., HIV-exposed uninfected (HEU)]. HEU infants suffer greater morbidity and mortality from infections compared to HIV-unexposed (HU) peers. The reason(s) for these worse outcomes are uncertain, but could be related to an altered immune system state. This review comprehensively summarizes the current literature investigating the adaptive and innate immune system of HEU infants. HEU infants have altered cell-mediated immunity, including impaired T-cell maturation with documented hypo- as well as hyper-responsiveness to T-cell activation. And although prevaccination vaccine-specific antibody levels are often lower in HEU than HU, most HEU infants mount adequate humoral immune response following primary vaccination with diphtheria toxoid, haemophilus influenzae type b, whole cell pertussis, measles, hepatitis B, tetanus toxoid, and pneumococcal conjugate vaccines. However, HEU infants are often found to have lower absolute neutrophil counts as compared to HU infants. On the other hand, an increase of innate immune cytokine production and expression of co-stimulatory markers has been noted in HEU infants, but this increase appears to be restricted to the first few weeks of life. The immune system of HEU children beyond infancy remains largely unexplored.

  4. That's not funny! - But it should be: effects of humorous emotion regulation on emotional experience and memory.

    PubMed

    Kugler, Lisa; Kuhbandner, Christof

    2015-01-01

    Previous research has shown that humorous reappraisal can reduce elicited negative emotions, suggesting that humor may be a functional strategy to cope with emotionally negative situations. However, the effect of humorous reappraisal on later memory about the emotion-eliciting situation is currently unknown, although this is crucial for more adaptive responding in future situations. To address this issue, we examined the effects of humorous reappraisal on both emotional experience and memory, compared to non-humorous rational reappraisal and a non-reappraisal control condition. Replicating previous findings, humorous reappraisal reduced evoked negative valence and arousal levels very effectively, and the down-regulation of experienced negative emotions was even more pronounced after humorous compared to rational reappraisal. Regarding later memory for emotion-eliciting stimuli, both humorous and rational reappraisal reduced free recall, but recognition memory was unaffected, with memory strength being stronger after humorous than after rational reappraisal. These results indicate that humor seems to be indeed an optimal strategy to cope with negative situations because humor can help us to feel better when confronted with negative stimuli, but still allows us to retrieve stimulus information later when afforded to do so by the presence of appropriate contextual features.

  5. Resiliency and the Ability to Detect Cartoon Humor

    ERIC Educational Resources Information Center

    Killlon, Jessica B.; Torres, Aurora

    2017-01-01

    The Connor Davidson Resilience Scale was developed to measure resiliency, an individual's ability to positively adapt to stressful or adverse situations. Resilient individuals have close and secure relationships, have a strong sense of purpose, know when to turn to others for help, and find humor in situations. The focus of this study was on the…

  6. Quantification of the humoral immune response and hemoplasma blood and tissue loads in cats coinfected with 'Candidatus Mycoplasma haemominutum' and feline leukemia virus.

    PubMed

    Wolf-Jäckel, Godelind A; Cattori, Valentino; Geret, Catrina P; Novacco, Marilisa; Meli, Marina L; Riond, Barbara; Boretti, Felicitas S; Lutz, Hans; Hofmann-Lehmann, Regina

    2012-08-01

    'Candidatus Mycoplasma haemominutum' (CMhm) is a hemotropic mycoplasma (aka hemoplasma) of domestic cats and wild felids. In a transmission study, we exposed eight specified pathogen-free cats to blood from Iberian lynxes (Lynx pardinus) infected with CMhm. The cats were coinfected with feline leukemia virus (FeLV) from an Iberian lynx or with a prototype FeLV. The goal of the present study was to quantify the humoral immune response to CMhm and to identify potential target tissues and sequestration sites. Antibodies were measured by a recombinant antigen-based enzyme-linked immunosorbent assay, and blood and tissue loads were quantified using real-time PCR. Seven out of eight cats became CMhm-infected; all of these cats seroconverted between 3 and 13 weeks after inoculation. Antibody levels correlated with the CMhm blood loads. The peak CMhm blood loads were inversely correlated with the incubation period. PCR-positive results were found in all 24 tissues tested but not for all samples. Although all tissues were PCR-positive in one cat euthanized ten weeks after infection, many tissues tested negative in six cats euthanized at week 20 after infection. In several cats, the spleen, lung, liver, heart and aorta contained more copies than expected given the tissue's blood supply, but most tissues contained fewer copies than expected. In conclusion, this is the first study to quantify the humoral immune response and tissue loads in CMhm-FeLV-coinfected cats. The tissue loads appeared to correlate with the duration of infection and with the blood loads, but no evidence of significant CMhm tissue sequestration was found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An evolutionary perspective on the systems of adaptive immunity.

    PubMed

    Müller, Viktor; de Boer, Rob J; Bonhoeffer, Sebastian; Szathmáry, Eörs

    2018-02-01

    We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to 'learn' by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system - the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the 'Big Bang' of

  8. In kittiwakes food availability partially explains the seasonal decline in humoral immunocompetence

    USGS Publications Warehouse

    Gasparini, J.; Roulin, A.; Gill, V.A.; Hatch, Shyla A.; Boulinier, T.

    2006-01-01

    1. The immune system plays an important role in fitness, and interindividual variation in immunocompetence is due to several factors including food supply. 2. Seasonal variation in food resources may therefore explain why immunocompetence in bird nestlings usually declines throughout the breeding season, with chicks born early in the season receiving more food than chicks born later, and thereby possibly developing a more potent immune system. Although there are studies supporting this hypothesis, none has been experimental. 3. We performed an experiment in the kittiwake Rissa tridactyla by manipulating the food supply of pairs that were left to produce a first brood, and of pairs that were induced to produce a late replacement brood. 4. If food supply mediates, at least partially, seasonal variations in chick immunocompetence, non-food-supplemented chicks would show a stronger seasonal decline in immunocompetence than food-supplemented chicks. 5. Food supplementation improved humoral immunocompetence (the production of immunoglobulins Y), but not T-cell immunocompetence (phytohaemagglutinin, PHA response). T-cell immunocompetence of food-supplemented and non-food- supplemented chicks decreased through the season but to a similar extent, whereas the humoral immunocompetence of non-food-supplemented chicks decreased more strongly than that of food-supplemented chicks. 6. Our results suggest that the seasonal decline in humoral immunocompetence can be explained, at least partly, by variations in food supply throughout the breeding season. ?? 2006 British Ecological Society.

  9. Monitoring of early humoral immunity to identify lung recipients at risk for development of serious infections: A multicenter prospective study.

    PubMed

    Sarmiento, Elizabeth; Cifrian, Jose; Calahorra, Leticia; Bravo, Carles; Lopez, Sonia; Laporta, Rosalia; Ussetti, Piedad; Sole, Amparo; Morales, Carmen; de Pablos, Alicia; Jaramillo, Maria; Ezzahouri, Ikram; García, Sandra; Navarro, Joaquin; Lopez-Hoyos, Marcos; Carbone, Javier

    2018-04-06

    Infection is still a leading cause of death during the first year after lung transplantation. We performed a multicenter study among teaching hospitals to assess monitoring of early humoral immunity as a means of identifying lung recipients at risk of serious infections. We prospectively analyzed 82 adult lung recipients at 5 centers in Spain. Data were collected before transplantation and at 7 and 30 days after transplantation. Biomarkers included IgG, IgM, IgA, complement factors C3 and C4, titers of antibodies to pneumococcal polysaccharide antigens (IgG, IgA, IgM) and antibodies to cytomegalovirus (IgG), and serum B-cell activating factor (BAFF) levels. The clinical follow-up period lasted 6 months. Clinical outcomes were bacterial infections requiring intravenous anti-microbial agents, cytomegalovirus (CMV) disease, and fungal infections requiring therapy. We found that 33 patients (40.2%) developed at least 1 serious bacterial infection, 8 patients (9.8%) had CMV disease, and 10 patients (12.2%) had fungal infections. Lower IgM antibody levels against pneumococcal polysaccharide antigens at Day 7 (defined as <5 mg/dl) were a risk factor for serious bacterial infection (adjusted odds ratio [OR] 3.96; 95% confidence interval [CI] 1.39 to 11.26; p = 0.0099). At Day 7 after transplantation, IgG hypogammaglobulinemia (defined as IgG <600 mg/dl) was associated with a higher risk of CMV disease (after adjustment for CMV mismatch: OR 8.15; 95% CI 1.27 to 52.55; p = 0.028) and fungal infection (adjusted OR 8.03, 95% CI 1.51 to 42.72; p = 0.015). Higher BAFF levels before transplantation were associated with a higher rate of development of serious bacterial infection and acute cellular rejection. Early monitoring of specific humoral immunity parameters proved useful for the identification of lung recipients who are at risk of serious infections. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights

  10. Gelatin-specific humoral and cellular immune responses in children with immediate- and nonimmediate-type reactions to live measles, mumps, rubella, and varicella vaccines.

    PubMed

    Kumagai, T; Yamanaka, T; Wataya, Y; Umetsu, A; Kawamura, N; Ikeda, K; Furukawa, H; Kimura, K; Chiba, S; Saito, S; Sugawara, N; Kurimoto, F; Sakaguchi, M; Inouye, S

    1997-07-01

    This study was designed to investigate the development of both cellular and humoral immune responses to gelatin in patients with vaccine-related immediate and nonimmediate reactions. Our purpose was to define the nature of the responses in the different clinical states. Six patients with immediate reactions and 21 patients with nonimmediate reactions after inoculation of various live vaccines were studied. Measurement of gelatin-specific IgE was performed in all subjects. Gelatin-specific T-cell responses detected by an in vitro lymphocyte proliferation assay and by an assay for IL-2 responsiveness were investigated to compare the immune response in patients with the two types of reaction. All six patients with immediate reactions had IgE responses to gelatin, whereas none of the 21 patients with nonimmediate reactions had any anti-gelatin IgE. All of the six patients with immediate reactions and 17 of the 21 patients with nonimmediate reactions exhibited positive T-lymphocyte responses specific to gelatin. Immediate and nonimmediate reactions are caused by different types of allergy to gelatin, and cell-mediated immunity to gelatin may play an important role in the pathogenesis of nonimmediate reactions.

  11. Humoral and mucosal immune responses in meagre (Argyrosomus regius) juveniles fed diets with varying inclusion levels of carob seed germ meal.

    PubMed

    Guardiola, Francisco Antonio; Barroso, Carolina; Enes, Paula; Couto, Ana; Díaz-Rosales, Patricia; Afonso, António; Kanashiro, Erika; Peres, Helena; Matos, Elisabete; Oliva-Teles, Aires; Pousão-Ferreira, Pedro; Costas, Benjamín

    2018-05-18

    Many studies have assessed the effects of incorporation of plant feedstuffs in fish diets on growth performance, whereas few studies have addressed the effects of fish meal replacement by plant protein sources on fish immune parameters. Thus, the aim of this study was to evaluate the effects on immune response of different inclusion levels of carob seed germ meal (CSGM) as partial replacement for fish meal in diets for meagre (Argyrosomus regius) juveniles. Fish were fed four experimental diets with increased CSGM inclusion levels [0% (control), 7.5% (CSGM7.5), 15% (CSGM15) and 22.5% (CSGM22.5)]. After 1, 2, and 8 weeks of feeding fish were sampled to determine haematological profile and several humoral parameters in plasma and intestine. Results showed that dietary inclusion of CSGM did not negatively affect the immune parameters of meagre. In addition, total numbers of red and white blood cells, as well as thrombocytes, lymphocytes, monocytes, and neutrophils counts were not affected by dietary treatments. All parameters evaluated in plasma were unaffected by dietary CSGM inclusion after 1 and 2 weeks of feeding, with only the haemolytic complement activity showing an increase in fish fed diets with CSGM after 1 week and in fish fed CSGM22.5 diet after 2 weeks. Regarding the innate immune parameters analysed in the intestine, it could be highlighted the increase in alkaline phosphatase and antiprotease activities in fish fed the diet with the higher inclusion of CSGM at 8 weeks. Overall, results suggest that high dietary CSGM inclusion do not compromise immune status or induce an inflammatory response in meagre juveniles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Immunomodulatory impression of anti and pro-inflammatory cytokines in relation to humoral immunity in human scabies

    PubMed Central

    Abd El-Aal, Amany Ahmed; Hassan, Marwa Adel; Gawdat, Heba Ismail; Ali, Meran Ahmed; Barakat, Manal

    2016-01-01

    The chief manifestations of scabies are mediated through hypersensitivity-like reactions and immune responses which are so far not well understood and remain poorly characterized. The aim of this study is to investigate the role of inflammatory cytokines in relation to humoral immunity in patients with scabies. Serum levels of total IgE, specific IgG, IL-10, IL-6, INF-γ, and TNF-α were investigated in a cross-sectional study including 37 patients with manifestations suggestive of scabies and serologically positive for anti-Sarcoptes IgG, in addition to 20 healthy controls. The median value of total IgE was 209 (range, 17–1219 IU/mL), reflecting its wide range within cases. IL-10 showed significant higher levels (287 ± 139) in cases than in controls (17.4 ± 11.32). A positive correlation was reported between total IgE and severity of manifestations (r = 0.429, P <0.005). A significant positive correlation was observed between total IgE and both IgG and IL-6. On the contrary, a negative correlation was recorded between IL-6 and TNF-α which makes us suggested anti-inflammatory rather than pro-inflammatory effect of IL-6. Moreover, a negative correlation was noticed between the anti-inflammatory cytokine IL-10 and severity of manifestations, specific IgG, total IgE, and INF-γ. Therefore, the current study theorized a regulatory role of IL-10 in inflammatory responses of scabietic patients suggesting further future analysis of its therapeutic potential. PMID:26813861

  13. Immunomodulatory impression of anti and pro-inflammatory cytokines in relation to humoral immunity in human scabies.

    PubMed

    Abd El-Aal, Amany Ahmed; Hassan, Marwa Adel; Gawdat, Heba Ismail; Ali, Meran Ahmed; Barakat, Manal

    2016-06-01

    The chief manifestations of scabies are mediated through hypersensitivity-like reactions and immune responses which are so far not well understood and remain poorly characterized. The aim of this study is to investigate the role of inflammatory cytokines in relation to humoral immunity in patients with scabies. Serum levels of total IgE, specific IgG, IL-10, IL-6, INF-γ, and TNF-α were investigated in a cross-sectional study including 37 patients with manifestations suggestive of scabies and serologically positive for anti-Sarcoptes IgG, in addition to 20 healthy controls. The median value of total IgE was 209 (range, 17-1219 IU/mL), reflecting its wide range within cases. IL-10 showed significant higher levels (287 ±: 139) in cases than in controls (17.4 ± 11.32). A positive correlation was reported between total IgE and severity of manifestations (r = 0.429, P <0.005). A significant positive correlation was observed between total IgE and both IgG and IL-6. On the contrary, a negative correlation was recorded between IL-6 and TNF-α which makes us suggested anti-inflammatory rather than pro-inflammatory effect of IL-6. Moreover, a negative correlation was noticed between the anti-inflammatory cytokine IL-10 and severity of manifestations, specific IgG, total IgE, and INF-γ. Therefore, the current study theorized a regulatory role of IL-10 in inflammatory responses of scabietic patients suggesting further future analysis of its therapeutic potential. © The Author(s) 2016.

  14. Fast-track surgery improves postoperative clinical recovery and cellular and humoral immunity after esophagectomy for esophageal cancer.

    PubMed

    Chen, Lantao; Sun, Lixin; Lang, Yaoguo; Wu, Jun; Yao, Lei; Ning, Jinfeng; Zhang, Jinfeng; Xu, Shidong

    2016-07-11

    Our aim was to investigate the influence of FTS on human cellular and humoral immunity using a randomized controlled clinical study in esophageal cancer patients. Between October 2013 and December 2014, 276 patients with esophageal cancer in our department were enrolled in the study. The patients were randomized into two groups: FTS pathway group and conventional pathway group. The postoperative hospital stay, hospitalization expenditure, and postoperative complications were recorded. The markers of inflammatory and immune function were measured before operation as well as on the 1st, 3rd, and 7th postoperative days (POD), including serum level of interleukin-6 (IL-6), C-reactive protein (CRP), serum globulin, immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA) and lymphocyte subpopulations (CD3 lymphocytes, CD4 lymphocytes, CD8 lymphocytes and the CD4/CD8 ratio) in the patients between the two groups. In all, 260 patients completed the study: 128 in the FTS group and 132 in the conventional group. We found implementation of FTS pathway decreases postoperative length of stay and hospital charges (P < 0.05). In addition, inflammatory reactions, based on IL-6 and CRP levels, were less intense following FTS pathway compared to conventional pathway on POD1 and POD3 (P < 0.05). On POD1 and POD3, the levels of IgG, IgA, CD3 lymphocytes, CD4 lymphocytes and the CD4/CD8 ratio in FTS group were significantly higher than those in control group (All P < 0.05). However, there were no differences in the level of IgM and CD8 lymphocytes between the two groups. FTS improves postoperative clinical recovery and effectively inhibited release of inflammatory factors via the immune system after esophagectomy for esophageal cancer. ChiCTR-TRC-13003562 , the date of registration: August 29, 2013.

  15. Partial reconstitution of humoral immunity and fewer infections in patients with chronic lymphocytic leukemia treated with ibrutinib

    PubMed Central

    Sun, Clare; Tian, Xin; Lee, Yuh Shan; Gunti, Sreenivasulu; Lipsky, Andrew; Herman, Sarah E. M.; Salem, Dalia; Stetler-Stevenson, Maryalice; Yuan, Constance; Kardava, Lela; Moir, Susan; Maric, Irina; Valdez, Janet; Soto, Susan; Marti, Gerald E.; Farooqui, Mohammed Z.; Notkins, Abner L.; Aue, Georg

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by immune dysregulation, often including hypogammaglobulinemia, which contributes to a high rate of infections and morbidity. Ibrutinib, a covalent inhibitor of Bruton tyrosine kinase (BTK), inhibits B-cell receptor signaling and is an effective, US Food and Drug Administration (FDA)-approved treatment of CLL. Inactivating germline mutations in BTK cause a severe B-cell defect and agammaglobulinemia. Therefore, we assessed the impact of ibrutinib on immunoglobulin levels, normal B cells, and infection rate in patients with CLL treated with single-agent ibrutinib on a phase 2 investigator-initiated trial. Consistent with previous reports, immunoglobulin G (IgG) levels remained stable during the first 6 months on treatment, but decreased thereafter. In contrast, there were a transient increase in IgM and a sustained increase in IgA (median increase 45% at 12 months, P < .0001). To distinguish the effects on clonal B cells from normal B cells, we measured serum free light chains (FLCs). In κ-clonal CLL cases, clonal (κ) FLCs were elevated at baseline and normalized by 6 months. Nonclonal (λ) FLCs, which were often depressed at baseline, increased, suggesting the recovery of normal B cells. Consistently, we observed normal B-cell precursors in the bone marrow and an increase in normal B-cell numbers in the peripheral blood. Patients with superior immune reconstitution, as defined by an increase in serum IgA of ≥50% from baseline to 12 months, had a significantly lower rate of infections (P = .03). These data indicate that ibrutinib allows for a clinically meaningful recovery of humoral immune function in patients with CLL. This trial was registered at www.clinicaltrials.gov as #NCT015007330. PMID:26337493

  16. Regulation of bone by the adaptive immune system in arthritis

    PubMed Central

    2011-01-01

    Studies on the immune regulation of osteoclasts in rheumatoid arthritis have promoted the new research field of 'osteoimmunology', which investigates the interplay between the skeletal and immune systems at the molecular level. Accumulating evidence lends support to the theory that bone destruction associated with rheumatoid arthritis is caused by the enhanced activity of osteoclasts, resulting from the activation of a unique helper T cell subset, 'Th17 cells'. Understanding the interaction between osteoclasts and the adaptive immune system in rheumatoid arthritis and the molecular mechanisms of Th17 development will lead to the development of potentially effective therapeutic strategies. PMID:21635718

  17. Cryotherapy with concurrent CpG oligonucleotide treatment controls local tumor recurrence and modulates HER2/neu immunity.

    PubMed

    Veenstra, Jesse J; Gibson, Heather M; Littrup, Peter J; Reyes, Joyce D; Cher, Michael L; Takashima, Akira; Wei, Wei-Zen

    2014-10-01

    Percutaneous cryoablation is a minimally invasive procedure for tumor destruction, which can potentially initiate or amplify antitumor immunity through the release of tumor-associated antigens. However, clinically efficacious immunity is lacking and regional recurrences are a limiting factor relative to surgical excision. To understand the mechanism of immune activation by cryoablation, comprehensive analyses of innate immunity and HER2/neu humoral and cellular immunity following cryoablation with or without peritumoral CpG injection were conducted using two HER2/neu(+) tumor systems in wild-type (WT), neu-tolerant, and SCID mice. Cryoablation of neu(+) TUBO tumor in BALB/c mice resulted in systemic immune priming, but not in neu-tolerant BALB NeuT mice. Cryoablation of human HER2(+) D2F2/E2 tumor enabled the functionality of tumor-induced immunity, but secondary tumors were refractory to antitumor immunity if rechallenge occurred during the resolution phase of the cryoablated tumor. A step-wise increase in local recurrence was observed in WT, neu-tolerant, and SCID mice, indicating a role of adaptive immunity in controlling residual tumor foci. Importantly, local recurrences were eliminated or greatly reduced in WT, neu tolerant, and SCID mice when CpG was incorporated in the cryoablation regimen, showing significant local control by innate immunity. For long-term protection, however, adaptive immunity was required because most SCID mice eventually succumbed to local tumor recurrence even with combined cryoablation and CpG treatment. This improved understanding of the mechanisms by which cryoablation affects innate and adaptive immunity will help guide appropriate combination of therapeutic interventions to improve treatment outcomes. ©2014 American Association for Cancer Research.

  18. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design

    PubMed Central

    Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2014-01-01

    In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186

  19. Yersinia pestis IS1541 transposition provides for escape from plague immunity.

    PubMed

    Cornelius, Claire A; Quenee, Lauriane E; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf

    2009-05-01

    Yersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity. Here we asked whether Y. pestis generates mutations that enable bacterial escape from protective immunity and isolated a variant with an IS1541 insertion in caf1A encoding the F1 outer membrane usher. The caf1A::IS1541 insertion prevented assembly of F1 pili and provided escape from plague immunity via F1-specific antibodies without a reduction in virulence in mouse models of bubonic or pneumonic plague. F1-specific antibodies interfere with Y. pestis type III transport of effector proteins into host cells, an inhibitory effect that was overcome by the caf1A::IS1541 insertion. These findings suggest a model in which IS1541 insertion into caf1A provides for reversible changes in envelope structure, enabling Y. pestis to escape from adaptive immune responses and plague immunity.

  20. Deciphering CD30 ligand biology and its role in humoral immunity

    PubMed Central

    Kennedy, Mary K; Willis, Cynthia R; Armitage, Richard J

    2006-01-01

    Ligands and receptors in the tumour necrosis factor (TNF) and tumour necrosis factor receptor (TNFR) superfamilies have been the subject of extensive investigation over the past 10–15 years. For certain TNFR family members, such as Fas and CD40, some of the consequences of receptor ligation were predicted before the identification and cloning of their corresponding ligands through in vitro functional studies using agonistic receptor-specific antibodies. For other members of the TNFR family, including CD30, cross-linking the receptor with specific antibodies failed to yield many clues about the functional significance of the relevant ligand–receptor interactions. In many instances, the subsequent availability of TNF family ligands in the form of recombinant protein facilitated the determination of biological consequences of interactions with their relevant receptor in both in vitro and in vivo settings. In the case of CD30 ligand (CD30L; CD153), definition of its biological role remained frustratingly elusive. Early functional studies using CD30L+ cells or agonistic CD30-specific antibodies logically focused attention on cell types that had been shown to express CD30, namely certain lymphoid malignancies and subsets of activated T cells. However, it was not immediately clear how the reported activities from these in vitro studies relate to the biological activity of CD30L in the more complex whole animal setting. Recently, results from in vivo models involving CD30 or CD30L gene disruption, CD30L overexpression, or pharmacological blockade of CD30/CD30L interactions have begun to provide clues about the role played by CD30L in immunological processes. In this review we consider the reported biology of CD30L and focus on results from several recent studies that point to an important role for CD30/CD30L interactions in humoral immune responses. PMID:16771849

  1. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy

    PubMed Central

    Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J

    2017-01-01

    A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy. PMID:28193698

  2. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy.

    PubMed

    Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J; Gallego-Ortega, David

    2017-04-01

    A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy. © 2017 The authors.

  3. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    PubMed

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact

  4. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia

    PubMed Central

    Peterson, Christopher W.; Kiem, Hans-Peter

    2017-01-01

    ABSTRACT Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the “Berlin patient” remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we

  5. No evidence of local adaptation of immune responses to Gyrodactylus in three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Robertson, Shaun; Bradley, Janette E; MacColl, Andrew D C

    2017-01-01

    Parasitism represents one of the most widespread lifestyles in the animal kingdom, with the potential to drive coevolutionary dynamics with their host population. Where hosts and parasites evolve together, we may find local adaptation. As one of the main host defences against infection, there is the potential for the immune response to be adapted to local parasites. In this study, we used the three-spined stickleback and its Gyrodactylus parasites to examine the extent of local adaptation of parasite infection dynamics and the immune response to infection. We took two geographically isolated host populations infected with two distinct Gyrodactylus species and performed a reciprocal cross-infection experiment in controlled laboratory conditions. Parasite burdens were monitored over the course of the infection, and individuals were sampled at multiple time points for immune gene expression analysis. We found large differences in virulence between parasite species, irrespective of host, and maladaptation of parasites to their sympatric host. The immune system responded to infection, with a decrease in expression of innate and Th1-type adaptive response genes in fish infected with the less virulent parasite, representing a marker of a possible resistance mechanism. There was no evidence of local adaptation in immune gene expression levels. Our results add to the growing understanding of the extent of host-parasite local adaptation, and demonstrate a systemic immune response during infection with a common ectoparasite. Further immunological studies using the stickleback-Gyrodactylus system can continue to contribute to our understanding of the function of the immune response in natural populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    PubMed

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  7. The effect of pre-laying maternal immunization on offspring growth and immunity differs across experimentally altered postnatal rearing conditions in a wild songbird.

    PubMed

    Martyka, Rafał; Śliwińska, Ewa B; Martyka, Mirosław; Cichoń, Mariusz; Tryjanowski, Piotr

    2018-01-01

    Prenatal antibody transfer is an immune-mediated maternal effect by which females can shape postnatal offspring resistance to pathogens and parasites. Maternal antibodies passed on to offspring provide primary protection to neonates against diverse pathogenic antigens, but they may also affect offspring growth and influence the development of an offspring's own immune response. The effects of maternal antibodies on offspring performance commonly require that the disease environment experienced by a mother prior to breeding matches the environment encountered by her offspring after hatching/birth. However, other circumstances, like postnatal rearing conditions that affect offspring food availability, may also determine the effects of maternal antibodies on offspring growth and immunity. To date, knowledge about how prenatal immune-mediated maternal effects interact with various postnatal rearing conditions to affect offspring development and phenotype in wild bird population remains elusive. Here we experimentally studied the interactive effects of pre-laying maternal immunization with a bacterial antigen (lipopolysaccharide) and post-hatching rearing conditions, altered by brood size manipulation, on offspring growth and humoral immunity of wild great tits ( Parus major ). We found that maternal immunization and brood size manipulation interactively affected the growth and specific humoral immune response of avian offspring. Among nestlings reared in enlarged broods, only those that originated from immunized mothers grew better and were heavier at fledging stage compared to those that originated from non-immunized mothers. In contrast, no such effects were observed among nestlings reared in non-manipulated (control) broods. Moreover, offspring of immunized females had a stronger humoral immune response to lipopolysaccharide during postnatal development than offspring of non-immunized females, but only when the nestling was reared in control broods. This study

  8. Immune System and Kidney Transplantation.

    PubMed

    Shrestha, Badri Man

    2017-01-01

    The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.

  9. Safety and persistence of the humoral and cellular immune responses induced by 2 doses of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine administered to infants, children and adolescents: Two open, uncontrolled studies.

    PubMed

    Garcia-Sicilia, José; Arístegui, Javier; Omeñaca, Félix; Carmona, Alfonso; Tejedor, Juan C; Merino, José M; García-Corbeira, Pilar; Walravens, Karl; Bambure, Vinod; Moris, Philippe; Caplanusi, Adrian; Gillard, Paul; Dieussaert, Ilse

    2015-01-01

    In children, 2 AS03-adjuvanted A(H1N1)pdm09 vaccine doses given 21 days apart were previously shown to induce a high humoral immune response and to have an acceptable safety profile up to 42 days following the first vaccination. Here, we analyzed the persistence data from 2 open-label studies, which assessed the safety, and humoral and cell-mediated immune responses induced by 2 doses of this vaccine. The first study was a phase II, randomized trial conducted in 104 children aged 6-35 months vaccinated with the A(H1N1)pdm09 vaccine containing 1.9 µg haemagglutinin antigen (HA) and AS03B (5.93 mg tocopherol) and the second study, a phase III, non-randomized trial conducted in 210 children and adolescents aged 3-17 years vaccinated with the A(H1N1)pdm09 vaccine containing 3.75 µg HA and AS03A (11.86 mg tocopherol). Approximately one year after the first dose, all children with available data were seropositive for haemagglutinin inhibition and neutralising antibody titres, but a decline in geometric mean antibody titres was noted. The vaccine induced a cell-mediated immune response in terms of antigen-specific CD4(+) T-cells, which persisted up to one year post-vaccination. The vaccine did not raise any safety concern, though these trials were not designed to detect rare events. In conclusion, 2 doses of the AS03-adjuvanted A(H1N1)pdm09 vaccine at 2 different dosages had a clinically acceptable safety profile, and induced high and persistent humoral and cell-mediated immune responses in children aged 6-35 months and 3-17 years. These studies have been registered at www.clinicaltrials.gov NCT00971321 and NCT00964158.

  10. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  11. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice.

    PubMed

    Cibulski, Samuel Paulo; Silveira, Fernando; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; dos Santos, Helton Fernandes; Yendo, Anna Carolina; de Costa, Fernanda; Fett-Neto, Arthur Germano; Gosmann, Grace; Roehe, Paulo Michel

    2016-04-01

    A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Policing of gut microbiota by the adaptive immune system.

    PubMed

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-02-12

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery.

  13. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus?

    PubMed Central

    Deligne, Claire; Milcent, Benoît; Josseaume, Nathalie; Teillaud, Jean-Luc; Sibéril, Sophie

    2017-01-01

    Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens. PMID:28855903

  14. That’s not funny! – But it should be: effects of humorous emotion regulation on emotional experience and memory

    PubMed Central

    Kugler, Lisa; Kuhbandner, Christof

    2015-01-01

    Previous research has shown that humorous reappraisal can reduce elicited negative emotions, suggesting that humor may be a functional strategy to cope with emotionally negative situations. However, the effect of humorous reappraisal on later memory about the emotion-eliciting situation is currently unknown, although this is crucial for more adaptive responding in future situations. To address this issue, we examined the effects of humorous reappraisal on both emotional experience and memory, compared to non-humorous rational reappraisal and a non-reappraisal control condition. Replicating previous findings, humorous reappraisal reduced evoked negative valence and arousal levels very effectively, and the down-regulation of experienced negative emotions was even more pronounced after humorous compared to rational reappraisal. Regarding later memory for emotion-eliciting stimuli, both humorous and rational reappraisal reduced free recall, but recognition memory was unaffected, with memory strength being stronger after humorous than after rational reappraisal. These results indicate that humor seems to be indeed an optimal strategy to cope with negative situations because humor can help us to feel better when confronted with negative stimuli, but still allows us to retrieve stimulus information later when afforded to do so by the presence of appropriate contextual features. PMID:26379608

  15. Building Resilience through Humor.

    ERIC Educational Resources Information Center

    Berg, Debra Vande; Van Brockern, Steve

    1995-01-01

    Research on resilience suggests that a sense of humor helps to stress-proof children in conflict. Reports on a workshop for educators and youth workers convened to explore ways humor is being used to foster positive development and resilience with troubled youth. Describes applications of humor front-line professionals report as useful in their…

  16. Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections

    PubMed Central

    Cho, Ju Hyun; Lee, Janice; Lafarge, Marie-Céline; Kocks, Christine; Ferrandon, Dominique

    2011-01-01

    Background Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. Methodology/Principal Findings In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different Gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival – independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. Conclusions/Significance Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen. PMID:21390224

  17. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    PubMed

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of

  18. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    PubMed

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  19. The humoral immune response to recombinant nucleocapsid antigen of canine distemper virus in dogs vaccinated with attenuated distemper virus or DNA encoding the nucleocapsid of wild-type virus.

    PubMed

    Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A

    2001-06-01

    This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.

  20. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates.

    PubMed

    Kaufman, Jim

    2018-04-26

    The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.

  1. Induction of humoral immune response in piglets after perinatal or post-weaning immunization against porcine circovirus type-2 or keyhole limpet hemocyanin

    PubMed Central

    Law, Jessica; McCorkell, Robert; Muench, Greg; Wynne-Edwards, Katherine; Schaetzl, Hermann M.; Solis, Cristina; Nourozieh, Narges; Waeckerlin, Regula; Eschbaumer, Michael; Horsman, Shawn; Czub, Markus

    2017-01-01

    The objective of this study was to test the hypothesis that porcine circovirus type-2 (PCV2) vaccination is efficacious when administered in the first week of life. Three groups of pigs were vaccinated with Circumvent either early (at the end of week 1), late (at the end of week 4), or not at all. All 3 groups were later challenged intranasally with PCV2 (at the end of week 5). Two other groups were immunized with keyhole limpet hemocyanin (KLH) as a novel antigen at the end of either week 1 or week 4. Weight, PCV2 genome copy number in serum and saliva, anti-KLH antibody titer, and serum PCV2-neutralizing antibodies were measured weekly. Early PCV2 vaccination or KLH antigen exposure resulted in earlier humoral responses that were slower to develop than in older piglets, yet converged with the responses to later vaccination within 5 wk. Both groups of vaccinated piglets had periods of higher PCV2-neutralizing antibody titers and lower viral levels shortly after weaning and PCV2 challenge, thus supporting the recent labelling of 1 Canadian PCV2 vaccine for use in week 1 and suggesting that early PCV2 vaccination can reduce piglet handling without compromising vaccine efficacy. PMID:28154456

  2. B-cell development and pneumococcal immunity in vertically acquired HIV infection.

    PubMed

    Eisen, Sarah; Hayden, Clare; Young, Carmel J; Gilson, Richard; Jungmann, Eva; Jacobsen, Marianne C; Poulsom, Hannah; Goldblatt, David; Klein, Nigel J; Baxendale, Helen E

    2016-07-31

    Many children with HIV infection now survive into adulthood. This study explored the impact of vertically acquired HIV in the era of antiretroviral therapy on the development of humoral immunity. Natural and vaccine-related immunity to pneumococcus and B-cell phenotype was characterized and compared in three groups of young adults: those with vertically-acquired infection, those with horizontally acquired infection and healthy controls. Serotype-specific pneumococcal (Pnc) immunoglobulin M and G concentrations before and up to 1 year post-Pnc polysaccharide (Pneumovax) immunization were determined, and opsonophagocytic activity was analysed. B-cell subpopulations and dynamic markers of B-cell signalling, turnover and susceptibility to apoptosis were evaluated by flow cytometry. HIV-infected patients showed impaired natural Pnc immunity and reduced humoral responses to immunization with Pneumovax; this was greatest in those viraemic at time of the study. Early-life viral control before the age of 10 years diminished these changes. Expanded populations of abnormally activated and immature B-cells were seen in both HIV-infected cohorts. Vertically infected patients were particularly vulnerable to reductions in marginal zone and switched memory populations. These aberrations were reduced in patients with early-life viral control. In children with HIV, damage to B-cell memory populations and impaired natural and vaccine immunity to pneumococcus is evident in early adult life. Sustained viral control from early childhood may help to limit this effect and optimize humoral immunity in adult life.

  3. Phleum pratense pollen starch granules induce humoral and cell-mediated immune responses in a rat model of allergy.

    PubMed

    Motta, A; Peltre, G; Dormans, J A M A; Withagen, C E T; Lacroix, G; Bois, F; Steerenberg, P A

    2004-02-01

    Timothy grass (Phleum pratense) pollen allergens are an important cause of allergic symptoms. However, pollen grains are too large to penetrate the deeper airways. Grass pollen is known to release allergen-bearing starch granules (SG) upon contact with water. These granules can create an inhalable allergenic aerosol capable of triggering an early asthmatic response and are implicated in thunderstorm-associated asthma. We studied the humoral (IgE) and bronchial lymph node cells reactivities to SG from timothy grass pollen in pollen-sensitized rats. Brown-Norway rats were sensitized (day 0) and challenged (day 21) intratracheally with intact pollen and kept immunized by pollen intranasal instillation by 4 weeks intervals during 3 months. Blood and bronchial lymph nodes were collected 7 days after the last intranasal challenge. SG were purified from fresh timothy grass pollen using 5 microm mesh filters. To determine the humoral response (IgE) to SG, we developed an original ELISA inhibition test, based on competition between pollen allergens and purified SG. The cell-mediated response to SG in the bronchial lymph node cells was determined by measuring the uptake of [3H]thymidine in a proliferation assay. An antibody response to SG was induced, and purified SG were able to inhibit the IgE ELISA absorbance by 45%. Pollen extract and intact pollen gave inhibitions of 55% and 52%, respectively. A cell-mediated response was also found, as pollen extract, intact pollen and SG triggered proliferation of bronchial lymph node cells. It was confirmed that timothy grass pollen contains allergen-loaded SG, which are released upon contact with water. These granules were shown to be recognized by pollen-sensitized rats sera and to trigger lymph node cell proliferation in these rats. These data provide new arguments supporting the implication of grass pollen SG in allergic asthma.

  4. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    PubMed

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis

    PubMed Central

    Gurung, Ratna B.; Purdie, Auriol C.; Whittington, Richard J.; Begg, Douglas J.

    2014-01-01

    Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate. PMID:25077074

  6. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma

    PubMed Central

    Daley, Donnele; Mani, Vishnu R.; Mohan, Navyatha; Akkad, Neha; Savadkar, Shivraj; Lee, Ki Buom; Torres-Hernandez, Alejandro; Aykut, Berk; Diskin, Brian; Wang, Wei; Farooq, Mohammad S.; Mahmud, Arif I.; Werba, Gregor; Morales, Eduardo J.; Lall, Sarah; Rubin, Amanda G.; Berman, Matthew E.; Hundeyin, Mautin

    2017-01-01

    The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance, which enables disease to progress unabated by adaptive immunity. However, the drivers of this tolerogenic program are incompletely defined. In this study, we found that NLRP3 promotes expansion of immune-suppressive macrophages in PDA. NLRP3 signaling in macrophages drives the differentiation of CD4+ T cells into tumor-promoting T helper type 2 cell (Th2 cell), Th17 cell, and regulatory T cell populations while suppressing Th1 cell polarization and cytotoxic CD8+ T cell activation. The suppressive effects of NLRP3 signaling were IL-10 dependent. Pharmacological inhibition or deletion of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD complex), or caspase-1 protected against PDA and was associated with immunogenic reprogramming of innate and adaptive immunity within the TME. Similarly, transfer of PDA-entrained macrophages or T cells from NLRP3−/− hosts was protective. These data suggest that targeting NLRP3 holds the promise for the immunotherapy of PDA. PMID:28442553

  7. Humor and College Adjustment: The Predictive Nature of Humor, Academic Achievement, Authoritative Parenting Styles on the Initial Adjustment of Male and Female First-Year College Students

    ERIC Educational Resources Information Center

    Hickman, Gregory P.; Andrews, David W.

    2003-01-01

    A self-report questionnaire on academic achievement, birth order, and family structure; the Student Adaptation to College Questionnaire; the Parental Authority Questionnaire; and the Coping Humor Scale were administered to 257 first-year college students. Researchers examined the relationships among (a) authoritative parenting style, (b) family…

  8. Disruption of IL-21 Signaling Affects T Cell-B Cell Interactions and Abrogates Protective Humoral Immunity to Malaria

    PubMed Central

    Pérez-Mazliah, Damián; Ng, Dorothy Hui Lin; Freitas do Rosário, Ana Paula; McLaughlin, Sarah; Mastelic-Gavillet, Béatris; Sodenkamp, Jan; Kushinga, Garikai; Langhorne, Jean

    2015-01-01

    Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses. PMID:25763578

  9. Abnormal humoral immune response to influenza vaccination in pediatric type-1 human immunodeficiency virus infected patients receiving highly active antiretroviral therapy.

    PubMed

    Montoya, Carlos J; Toro, Maria F; Aguirre, Carlos; Bustamante, Alberto; Hernandez, Mariluz; Arango, Liliana P; Echeverry, Marta; Arango, Ana E; Prada, Maria C; Alarcon, Herminia del P; Rojas, Mauricio

    2007-06-01

    Given that highly active antiretroviral therapy (HAART) has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1)-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI) antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40) against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.

  10. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    PubMed Central

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  11. Serum and vitreous humor antibody titers in and isolation of Leptospira interrogans from horses with recurrent uveitis.

    PubMed

    Wollanke, B; Rohrbach, B W; Gerhards, H

    2001-09-15

    To measure antibody titers against Leptospira interrogans in serum and vitreous humor and determine the prevalence of L interrogans in vitreous humor of horses with recurrent uveitis. Cross-sectional study. 242 horses (270 eyes) with recurrent uveitis undergoing vitrectomy and 39 control horses (54 eyes) without any history or clinical signs of recurrent uveitis undergoing euthanasia or enucleation for unrelated reasons. Serum and vitreous humor were tested for antibodies against 13 serovars of L interrogans. Vitreous humor was submitted for leptospiral culture; isolates were typed to the serogroup level. Leptospira interrogans was isolated from vitreous humor from 120/229 (52%) horses (126/252 [50%] eyes) with recurrent uveitis but was not isolated from vitreous humor from 36 eyes of 21 control horses. Duration of recurrent uveitis was > or = 1 year for 45 of the 120 (38%) horses from which the organism was isolated. Geometric mean antibody titers against L interrogans in the vitreous humor and serum of horses with recurrent uveitis were 1:1,332 and 1:186, respectively. Only 91 of 120 (76%) horses from which the organism was isolated had a 4-fold or greater difference between serum and vitreous humor antibody titers. Results suggest that persistent ocular infection with L interrogans is common in horses with recurrent uveitis. A 4-fold increase in vitreous humor versus serum antibody titers may not be a sensitive test for the diagnosis of L interrogans-induced recurrent uveitis. We hypothesize that the immune component of recurrent uveitis can be directly induced and maintained by persistent infection of the eye with L interrogans.

  12. Lifelong memory responses perpetuate humoral TH2 immunity and anaphylaxis in food allergy.

    PubMed

    Jiménez-Saiz, Rodrigo; Chu, Derek K; Mandur, Talveer S; Walker, Tina D; Gordon, Melissa E; Chaudhary, Roopali; Koenig, Joshua; Saliba, Sarah; Galipeau, Heather J; Utley, Adam; King, Irah L; Lee, Kelvin; Ettinger, Rachel; Waserman, Susan; Kolbeck, Roland; Jordana, Manel

    2017-12-01

    A number of food allergies (eg, fish, shellfish, and nuts) are lifelong, without any disease-transforming therapies, and unclear in their underlying immunology. Clinical manifestations of food allergy are largely mediated by IgE. Although persistent IgE titers have been attributed conventionally to long-lived IgE + plasma cells (PCs), this has not been directly and comprehensively tested. We sought to evaluate mechanisms underlying persistent IgE and allergic responses to food allergens. We used a model of peanut allergy and anaphylaxis, various knockout mice, adoptive transfer experiments, and in vitro assays to identify mechanisms underlying persistent IgE humoral immunity over almost the entire lifespan of the mouse (18-20 months). Contrary to conventional paradigms, our data show that clinically relevant lifelong IgE titers are not sustained by long-lived IgE + PCs. Instead, lifelong reactivity is conferred by allergen-specific long-lived memory B cells that replenish the IgE + PC compartment. B-cell reactivation requires allergen re-exposure and IL-4 production by CD4 T cells. We define the half-lives of antigen-specific germinal centers (23.3 days), IgE + and IgG 1 + PCs (60 and 234.4 days, respectively), and clinically relevant cell-bound IgE (67.3 days). These findings can explain lifelong food allergies observed in human subjects as the consequence of allergen exposures that recurrently activate memory B cells and identify these as a therapeutic target with disease-transforming potential. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Cell-to-cell transmission of retroviruses: Innate immunity and interferon-induced restriction factors

    PubMed Central

    Jolly, Clare

    2011-01-01

    It has been known for some time that retroviruses can disseminate between immune cells either by conventional cell-free transmission or by directed cell-to-cell spread. Over the past few years there has been increasing interest in how retroviruses may use cell-to-cell spread to promote more rapid infection kinetics and circumvent humoral immunity. Effective humoral immune responses are intimately linked with innate immunity and the interplay between retroviruses and innate immunity is a rapidly expanding area of research that has been advanced considerably by the identification of cellular restriction factors that provide barriers to retroviral infection. The effect of innate immunity and restriction factors on retroviral cell-to-cell spread has been comparatively little studied; however recent work suggests this maybe changing. Here I will review some recent advances in what is a budding area of retroviral research. PMID:21247613

  14. The role of host immune cells and Borrelia burgdorferi antigens in the etiology of Lyme disease.

    PubMed

    Verhaegh, Dennis; Joosten, Leo A B; Oosting, Marije

    2017-06-01

    Lyme disease is a zoonosis caused by infection with bacteria belonging to the Borrelia burgdorferi species after the bite of an infected tick. Even though an infection by this bacterium can be effectively treated with antibiotics, when the infection stays unnoticed B. burgdorferi can persist and chronic post-treatment Lyme disease syndrome is able to develop. Although a cellular and humoral response is observed after an infection with the Borrelia bacteria, these pathogens are still capable to stay alive. Several immune evasive mechanisms have been revealed and explained and much work has been put into the understanding of the contribution of the innate and adaptive immune response. This review provides an overview with the latest findings regarding the cells of the innate and adaptive immune systems, how they recognize contribute and mediate in the killing of the B. burgdorferi spirochete. Moreover, this review also elaborates on the antigens that are expressed by on the spirochete. Since antigens drive the adaptive and, indirectly, the innate response, this review will discuss briefly the most important antigens that are described to date. Finally, there will be a brief elaboration on the escape mechanisms of B. burgdorferi with a focus on tick salivary proteins and spirochete antigens.

  15. Insights on adaptive and innate immunity in canine leishmaniosis.

    PubMed

    Hosein, Shazia; Blake, Damer P; Solano-Gallego, Laia

    2017-01-01

    Canine leishmaniosis (CanL) is caused by the parasite Leishmania infantum and is a systemic disease, which can present with variable clinical signs, and clinicopathological abnormalities. Clinical manifestations can range from subclinical infection to very severe systemic disease. Leishmaniosis is categorized as a neglected tropical disease and the complex immune responses associated with Leishmania species makes therapeutic treatments and vaccine development challenging for both dogs and humans. In this review, we summarize innate and adaptive immune responses associated with L. infantum infection in dogs, and we discuss the problems associated with the disease as well as potential solutions and the future direction of required research to help control the parasite.

  16. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease

    PubMed Central

    Allen Reish, Heather E.; Standaert, David G.

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses. PMID:25588354

  17. Who Benefits From Humor-Based Positive Psychology Interventions? The Moderating Effects of Personality Traits and Sense of Humor

    PubMed Central

    Wellenzohn, Sara; Proyer, René T.; Ruch, Willibald

    2018-01-01

    The evidence for the effectiveness of humor-based positive psychology interventions (PPIs; i.e., interventions aimed at enhancing happiness and lowering depressive symptoms) is steadily increasing. However, little is known about who benefits most from them. We aim at narrowing this gap by examining whether personality traits and sense of humor moderate the long-term effects of humor-based interventions on happiness and depressive symptoms. We conducted two placebo-controlled online-intervention studies testing for moderation effects. In Study 1 (N = 104) we tested for moderation effects of basic personality traits (i.e., psychoticism, extraversion, and neuroticism) in the three funny things intervention, a humor-based PPI. In Study 2 (N = 632) we tested for moderation effects of the sense of humor in five different humor-based interventions. Happiness and depressive symptoms were assessed before and after the intervention, as well as after 1, 3, and 6 months. In Study 2, we assessed sense of humor before and 1 month after the intervention to investigate if changes in sense of humor go along with changes in happiness and depressive symptoms. We found moderating effects only for extraversion. Extraverts benefitted more from the three funny things intervention than introverts. For neuroticism and psychoticism no moderation effects were found. For sense of humor, no moderating effects were found for the effectiveness of the five humor-based interventions tested in Study 2. However, changes in sense of humor from pretest to the 1-month follow-up predicted changes in happiness and depressive symptoms. Taking a closer look, the playful attitude- and sense of humor-subscales predicted changes in happiness and depression for up to 6 months. Overall, moderating effects for personality (i.e., extraversion) were found, but none for sense of humor at baseline. However, increases in sense of humor during and after the intervention were associated with the interventions

  18. Who Benefits From Humor-Based Positive Psychology Interventions? The Moderating Effects of Personality Traits and Sense of Humor.

    PubMed

    Wellenzohn, Sara; Proyer, René T; Ruch, Willibald

    2018-01-01

    The evidence for the effectiveness of humor-based positive psychology interventions (PPIs; i.e., interventions aimed at enhancing happiness and lowering depressive symptoms) is steadily increasing. However, little is known about who benefits most from them. We aim at narrowing this gap by examining whether personality traits and sense of humor moderate the long-term effects of humor-based interventions on happiness and depressive symptoms. We conducted two placebo-controlled online-intervention studies testing for moderation effects. In Study 1 ( N = 104) we tested for moderation effects of basic personality traits (i.e., psychoticism, extraversion, and neuroticism) in the three funny things intervention, a humor-based PPI. In Study 2 ( N = 632) we tested for moderation effects of the sense of humor in five different humor-based interventions. Happiness and depressive symptoms were assessed before and after the intervention, as well as after 1, 3, and 6 months. In Study 2, we assessed sense of humor before and 1 month after the intervention to investigate if changes in sense of humor go along with changes in happiness and depressive symptoms. We found moderating effects only for extraversion. Extraverts benefitted more from the three funny things intervention than introverts. For neuroticism and psychoticism no moderation effects were found. For sense of humor, no moderating effects were found for the effectiveness of the five humor-based interventions tested in Study 2. However, changes in sense of humor from pretest to the 1-month follow-up predicted changes in happiness and depressive symptoms. Taking a closer look, the playful attitude- and sense of humor-subscales predicted changes in happiness and depression for up to 6 months. Overall, moderating effects for personality (i.e., extraversion) were found, but none for sense of humor at baseline. However, increases in sense of humor during and after the intervention were associated with the interventions

  19. Innate immunity of fish (overview).

    PubMed

    Magnadóttir, Bergljót

    2006-02-01

    The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.

  20. Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins.

    PubMed

    Gangadhara, Sailaja; Kwon, Young-Man; Jeeva, Subbiah; Quan, Fu-Shi; Wang, Baozhong; Moss, Bernard; Compans, Richard W; Amara, Rama Rao; Jabbar, M Abdul; Kang, Sang-Moo

    2017-12-19

    Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.

  1. Immune Efficacy of a Genetically Engineered Vaccine against Lymphocystis Disease Virus: Analysis of Different Immunization Strategies

    PubMed Central

    Zheng, Fengrong; Sun, Xiuqin; Wu, Xing'an; Liu, Hongzhan; Li, Jiye; Wu, Suqi; Zhang, Jinxing

    2011-01-01

    Here, we report the construction of a vaccine against lymphocystis disease virus (LCDV) using nucleic acid vaccination technology. A fragment of the major capsid protein encoding gene from an LCDV isolated from China (LCDV-cn) was cloned into an eukaryotic expression vector pEGFP-N2, yielding a recombinant plasmid pEGFP-N2-LCDV-cn0.6 kb. This plasmid was immediately expressed after liposomal transfer into the Japanese flounder embryo cell line. The recombinant plasmid was inoculated into Japanese flounder via two routes (intramuscular injection and hypodermic injection) at three doses (0.1, 5, and 15 μg), and then T-lymphopoiesis in different tissues and antibodies raised against LCDV were evaluated. The results indicated that this recombinant plasmid induced unique humoral or cell-mediated immune responses depending on the inoculation route and conferred immune protection. Furthermore, the humoral immune responses and protective effects were significantly increased at higher vaccine doses via the two injection routes. Plasmid pEGFP-N2-LCDV0.6 kb is therefore a promising vaccine candidate against LCDV in Japanese flounder. PMID:21789044

  2. Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques.

    PubMed

    Sui, Yongjun; Zhu, Qing; Gagnon, Susan; Dzutsev, Amiran; Terabe, Masaki; Vaccari, Monica; Venzon, David; Klinman, Dennis; Strober, Warren; Kelsall, Brian; Franchini, Genoveffa; Belyakov, Igor M; Berzofsky, Jay A

    2010-05-25

    Adjuvant effects on innate as well as adaptive immunity may be critical for inducing protection against mucosal HIV and simian immunodeficiency virus (SIV) exposure. We therefore studied effects of Toll-like receptor agonists and IL-15 as mucosal adjuvants on both innate and adaptive immunity in a peptide/poxvirus HIV/SIV mucosal vaccine in macaques, and made three critical observations regarding both innate and adaptive correlates of protection: (i) adjuvant-alone without vaccine antigen impacted the intrarectal SIVmac251 challenge outcome, correlating with surprisingly long-lived APOBEC3G (A3G)-mediated innate immunity; in addition, even among animals receiving vaccine with adjuvants, viral load correlated inversely with A3G levels; (ii) a surprising threshold-like effect existed for vaccine-induced adaptive immunity control of viral load, and only antigen-specific polyfunctional CD8(+) T cells correlated with protection, not tetramer(+) T cells, demonstrating the importance of T-cell quality; (iii) synergy was observed between Toll-like receptor agonists and IL-15 for driving adaptive responses through the up-regulation of IL-15Ralpha, which can present IL-15 in trans, as well as for driving the innate A3G response. Thus, strategic use of molecular adjuvants can provide better mucosal protection through induction of both innate and adaptive immunity.

  3. The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells.

    PubMed

    Harizi, H; Gualde, N

    2005-06-01

    The innate immune response is essentially the first line of defense against an invading pathogen. Through specialized receptors, known as pattern recognition receptors, especially Toll-like receptors, specialized cells of myeloid origin, including macrophages and dendritic cells (DCs) are able to phagocytose microorganisms and induce an innate inflammatory response. Although B and T lymphocytes recognize tissue antigens with high specificity, they are unable to initiate immune responses. The decision to activate an appropriate immune response is made by unique DC, the most professional antigen-presenting cells (APCs) which control the responses of several types of lymphocytes and play central role in the transition between innate and adaptive immunity. Increased secretion of inflammatory endogenous mediators such as cytokines and arachidonic acid-derived lipid mediators, also termed eicosanoids, can activate APC, particularly DC, which in turn induce an adaptive immune response. There is an increasing evidence that eicosanoids play an important role in connecting innate and adaptive immunity by acting on cells of both systems. Prostanoids, a major class of eicosanoids, have a great impact on inflammatory and immune responses. PGE(2) is one of the best known and most well-characterized prostanoids in terms of immunomodulation. Although cytokines are known as key regulators of immunity, eicosanoids, including PGE(2), PGD(2), LTB(4), and LTC(4), may also affect cells of immune system by modulating cytokine release, cell differentiation, survival, migration, antigen presentation, and apoptosis. By acting on various aspects of immune and inflammatory reactions, these lipid mediators emerge as key regulators of the crosstalk between innate and adaptive immunity.

  4. Investigating the Effect of Humor Communication Skills Training on Pro-Social and Anti-Social Humor Styles, Cognitive Learning, Self-Efficacy, Motivation, and Humor Use

    ERIC Educational Resources Information Center

    Vela, Lori E.

    2013-01-01

    Humor is an important aspect of interpersonal interactions as it is linked to the development and maintenance of relationships (Merolla, 2006). The purpose of this dissertation was to test the effect of a humor communication skills training program on the ability to minimize anti-social humor (i.e., aggressive, self-defeating) and enhance…

  5. Humor and Its Relationship to Needs.

    ERIC Educational Resources Information Center

    Breme, Frederick Jay

    In this exploratory study of humor, it was hypothesized that responses to humorous material are related to each person's needs. Form B of the IPAT Humor Test of Personality and the Stern Activities Index were administered to 276 volunteer college students as measures of humor preference and needs, respectively. The results of the study suggest…

  6. Effects of dietary yeast autolysate (Saccharomyces cerevisiae) on performance, egg traits, egg cholesterol content, egg yolk fatty acid composition and humoral immune response of laying hens.

    PubMed

    Yalçin, Sakine; Yalçin, Suzan; Cakin, Kemal; Eltan, Onder; Dağaşan, Levent

    2010-08-15

    The objective of this study was to determine the effects of dietary yeast autolysate on performance, egg traits, egg cholesterol content, egg yolk fatty acid composition, lipid oxidation of egg yolk, some blood parameters and humoral immune response of laying hens during a 16 week period. A total of 225 Hyline Brown laying hens, 22 weeks of age, were allocated equally to one control group and four treatment groups. Yeast autolysate (Saccharomyces cerevisiae, InteWall) was used at levels of 1, 2, 3 and 4 g kg(-1) in the diets of the first, second, third and fourth treatment groups respectively. Dietary treatments did not significantly affect body weight, feed intake and egg traits. Yeast autolysate supplementation increased egg production (P < 0.001) and egg weight (P < 0.001) and improved feed efficiency (P < 0.05). Yeast autolysate at levels of 2, 3 and 4 g kg(-1) decreased egg yolk cholesterol level as mg g(-1) yolk (P < 0.01) and blood serum levels of cholesterol and triglyceride (P < 0.05) and increased antibody titres to sheep red blood cells (P < 0.01). Total saturated fatty acids and the ratio of saturated/unsaturated fatty acids increased (P < 0.01) and total monounsaturated fatty acids (P < 0.001) decreased with yeast autolysate supplementation. Dietary yeast autolysate at levels of 2, 3 and 4 g kg(-1) had beneficial effects on performance, egg cholesterol content and humoral immune response. It is concluded that 2 g kg(-1) yeast autolysate will be enough to have beneficial effects in laying hens. Copyright (c) 2010 Society of Chemical Industry.

  7. The major histocompatibility complex class Ib molecule HLA-E at the interface between innate and adaptive immunity.

    PubMed

    Sullivan, L C; Clements, C S; Rossjohn, J; Brooks, A G

    2008-11-01

    The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-E is the least polymorphic of all the MHC class I molecules and acts as a ligand for receptors of both the innate and the adaptive immune systems. The recognition of self-peptides complexed to HLA-E by the CD94-NKG2A receptor expressed by natural killer (NK) cells represents a crucial checkpoint for immune surveillance by NK cells. However, HLA-E can also be recognised by the T-cell receptor expressed by alphabeta CD8 T cells and therefore can play a role in the adaptive immune response to invading pathogens. The recent resolution of HLA-E in complex with both innate and adaptive ligands has provided insight into the dual role of this molecule in immunity.

  8. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults

    PubMed Central

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n = 38) or IM 15 μg (n = 42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine. PMID:25483667

  9. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults.

    PubMed

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n=38) or IM 15 μg (n=42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine.

  10. Neural correlates of humor detection and appreciation.

    PubMed

    Moran, Joseph M; Wig, Gagan S; Adams, Reginald B; Janata, Petr; Kelley, William M

    2004-03-01

    Humor is a uniquely human quality whose neural substrates remain enigmatic. The present report combined dynamic, real-life content and event-related functional magnetic resonance imaging (fMRI) to dissociate humor detection ("getting the joke") from humor appreciation (the affective experience of mirth). During scanning, subjects viewed full-length episodes of the television sitcoms Seinfeld or The Simpsons. Brain activity time-locked to humor detection moments revealed increases in left inferior frontal and posterior temporal cortices, whereas brain activity time-locked to moments of humor appreciation revealed increases in bilateral regions of insular cortex and the amygdala. These findings provide evidence that humor depends critically upon extant neural systems important for resolving incongruities (humor detection) and for the expression of affect (humor appreciation).

  11. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

    PubMed

    Wang, Chong; Zheng, Xuexing; Gai, Weiwei; Wong, Gary; Wang, Hualei; Jin, Hongli; Feng, Na; Zhao, Yongkun; Zhang, Weijiao; Li, Nan; Zhao, Guoxing; Li, Junfu; Yan, Jinghua; Gao, Yuwei; Hu, Guixue; Yang, Songtao; Xia, Xianzhu

    2017-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation.

    PubMed

    Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard

    2018-02-01

    Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Suppression of secondary immune response by antilymphocyte serum: time relationship between immunization and administration of antilymphocyte serum.

    PubMed Central

    Reuben, C; Sundaram, K; Phondke, G P

    1979-01-01

    The effect of antilymphocyte serum (ALS) on the secondary humoral immune response to sheep erythrocytes (SRBC) in rats was studied by the Jerne plaque assay technique. Its effect was also studied on the delayed hypersensitivity (DH) response to SRBC by the foot pad swelling test. ALS(N), which was prepared against lymphocytes from normal rats, had no effect on the secondary humoral and cellular response or on the primary cellular response, when administered postantigenically. ALS(I), which was raised against lymph node cells from SRBC immunized rats produced significant immunosuppression of the secondary response to SRBC when administered either before or after the antigenic injections. In the case of DH, ALS(I) behaved just like ALS(N) having no effect on the secondary response and suppressing the primary only when administered prior to the antigen. PMID:369994

  14. Humoral immunity in tuberculin skin test anergy and its role in high-risk persons exposed to active tuberculosis.

    PubMed

    Encinales, Liliana; Zuñiga, Joaquin; Granados-Montiel, Julio; Yunis, Maria; Granados, Julio; Almeciga, Ingrid; Clavijo, Olga; Awad, Carlos; Collazos, Vilma; Vargas-Rojas, María Inés; Bañales-Mendez, José Luis; Vazquez-Castañeda, Lilia; Stern, Joel N; Romero, Viviana; Fridkis-Hareli, Masha; Frindkis-Hareli, Masha; Terreros, Daniel; Fernandez-Viña, Marcelo; Yunis, Edmond J

    2010-02-01

    The most common test to identify latent tuberculosis is the tuberculin skin test that detects T cell responses of delayed type hypersensitivity type IV. Since it produces false negative reactions in active tuberculosis or in high-risk persons exposed to tuberculosis patients as shown in this report, we studied antibody profiles to explain the anergy of such responses in high-risk individuals without active infection. Our results showed that humoral immunity against tuberculin, regardless of the result of the tuberculin skin test is important for protection from active tuberculosis and that the presence of high antibody titers is a more reliable indicator of infection latency suggesting that latency can be based on the levels of antibodies together with in vitro proliferation of peripheral blood mononuclear cells in the presence of the purified protein derivative. Importantly, anti-tuberculin IgG antibody levels mediate the anergy described herein, which could also prevent reactivation of disease in high-risk individuals with high antibody titers. Such anti-tuberculin IgG antibodies were also found associated with blocking and/or stimulation of in vitro cultures of PBMC with tuberculin. In this regard, future studies need to establish if immune responses to Mycobacterium tuberculosis can generate a broad spectrum of reactions either toward Th1 responses favoring stimulation by cytokines or by antibodies and those toward diminished responses by Th2 cytokines or blocking by antibodies; possibly involving mechanisms of antibody dependent protection from Mtb by different subclasses of IgG. Published by Elsevier Ltd.

  15. Genome complexity in the coelacanth is reflected in its adaptive immune system

    USGS Publications Warehouse

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  16. Cellular and humoral immune responses to a tetanus toxoid booster in perinatally HIV-1-infected children and adolescents receiving highly active antiretroviral therapy (HAART).

    PubMed

    Ching, Natascha; Deville, Jaime G; Nielsen, Karin A; Ank, Bonnie; Wei, Lian S; Sim, Myung Shin; Wolinsky, Steven M; Bryson, Yvonne J

    2007-01-01

    Human immunodeficiency virus type 1 (HIV-1) infected children treated with highly active antiretroviral therapy (HAART) may develop a significant reduction of plasma viremia associated with an increase in CD4+ T-cell counts. Functional capacity of this reconstituted immune system in response to recall antigens is important to maintain protective immunity to vaccine-preventable diseases. We therefore determined cellular and humoral immune responses to tetanus toxoid (TT) booster in perinatally HIV-1-infected children and adolescents receiving HAART. Immune responses were prospectively evaluated pre- and post-tetanus booster using lymphocyte proliferation assay (LPA) stimulation index (SI > or = 3.0) and tetanus antibody (TAb > or = 0.15) in 15 patients. The median interval from primary tetanus immunization series was 6 years (range 2-12 years). We compared patients by their virological response to HAART (complete responders, CR, n=7; incomplete responders, ICR, n=8). There were no significant differences in median age 12.6 years (CR: 12.9; ICR: 10.6) or median CD4 T-cell pre-booster (CR: 35%/819; ICR: 26%/429) between groups. Tetanus LPA responses were observed in one patient prior to booster and in seven patients post-booster. In contrast, 38% of patients had protective TAb pre-booster, but 92% developed protective TAb post-booster. All of the CR and 5/6 ICR patients developed protective TAb. HIV-1-infected children and adolescents had modest LPA responses to tetanus following booster, similar to HIV-1-infected adults. However, the majority of patients developed protective TAb levels after booster and maintained the response. Shorter intervals may need to be considered for TT immunization boosters in HIV-1-infected pediatric patients, as only 38% had protective TAb at baseline.

  17. Immune transfer studies in canine allogeneic marrow graft donor-recipient pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosse-Wilde, H.; Krumbacher, K.; Schuening, F.D.

    1986-07-01

    Transfer of immunity occurring with bone marrow grafting was studied using the dog as a preclinical model. Allogeneic bone marrow transplantation (BMT) was performed between DLA-identical beagle litter-mates. The donors were immunized with tetanus toxoid (TT) or sheep red blood cells (SRBC), and their humoral response was monitored by hemagglutination. The recipients of bone marrow from TT-immunized donors showed a marked increase of antibody titer one week posttransplantation, while in the recipients of marrow from SRBC immunized donors the antibody titers were considerably lower. Within the following 60 days the antibody titers in both groups diminished gradually to pregrafting levels.more » Control experiments in which cell-free plasma from donors immunized with TT and SRBC respectively was transfused indicated that the initial rise of specific antibody titers after marrow grafting is likely to be due to a passive transfer of humoral immunity. A single challenge of these marrow graft recipients with the respective antigen 15-18 weeks posttransplantation led to a secondary type of humoral immune response. It could be demonstrated that transfer of memory against TT or SRBC was independent from the actual antibody titer and the time of vaccination of the donor. One dog was immunized with TT after serving as marrow donor. When the donor had shown an antibody response, a peripheral blood leukocytes (PBL) transfusion was given to his chimera. Subsequent challenge of the latter resulted in a secondary type of specific antibody response. This indicates that specific cellular-bound immunological memory can be transferred after BMT from the donor to his allogeneic bone marrow chimera by transfusion of peripheral blood leukocytes. The data may be of importance in clinical BMT to protect patients during the phase of reduced immune reactivity by transfer of memory cells.« less

  18. The Relationship Between Humor Styles and Forgiveness

    PubMed Central

    Hampes, William

    2016-01-01

    Research has shown that a factor in a victim’s forgiveness of an offender is the victim’s ability to make more positive, or at least less negative, attributions of the offender’s behavior and that perspective-taking can be a factor in facilitating that process. Self-enhancing humor has been found to be positively correlated with perspective-taking empathy and aggressive humor found to be negatively correlated with perspective-taking empathy. Therefore it was predicted that self-enhancing humor would be positively correlated with forgiveness and aggressive humor negatively correlated with forgiveness. The Humor Styles Questionnaire, the Absence of Negative and Presence of Positive subscales of the Forgiveness Scale, and the Forgiveness Likelihood Scale were administered to 112 college undergraduates. Self-enhancing humor was significantly and positively correlated with all of the forgiveness measures, aggressive humor and self-defeating humor were significantly and negatively correlated with some of the forgiveness measures and affiliative humor was not significantly correlated with any of the forgiveness measures. The results were interpreted in terms of previous findings for humor styles, perspective-taking empathy, depression, self-esteem and anxiety. Future research involving the extent to which other personality variables, such as perspective-taking empathy, mediate the relationship between self-enhancing humor and forgiveness was suggested. PMID:27547252

  19. Cellular Immune Response to Cytomegalovirus Infection After Renal Transplantation

    PubMed Central

    Linnemann, Calvin C.; Kauffman, Carol A.; First, M. Roy; Schiff, Gilbert M.; Phair, John P.

    1978-01-01

    A prospective study of 15 patients who received renal transplants defined the effect of renal transplantation on the cellular immune response to cytomegalovirus infection. Of 15 patients, 14 developed cytomegalovirus infection, usually in the first 2 months after transplantation, and all infections were accompanied by a normal humoral immune response. After the initiation of immunosuppressive therapy and transplantation, there was a general depression of lymphocyte transformation, as reflected in the response to phytohemagglutinin, accompanied by a specific defect in cellular immunity, as indicated by lymphocyte transformation to cytomegalovirus antigen. Eleven patients had cellular immunity to cytomegalovirus before transplantation, and all of these became negative in the first month after transplantation. In subsequent months, only 6 of the 14 study patients with cytomegalovirus infection developed specific cellular immune responses to cytomegalovirus. This occurred most often in patients who had severe febrile illnesses in association with infection. The specific cellular immune response which developed in the posttransplant period did not persist in three of the patients. This study demonstrates the dissociation of the humoral and cellular immune response to cytomegalovirus infection in renal transplant patients and indicates the importance of the loss of cellular immunity in the appearance of infection. Previously infected patients lost their cell-mediated immunity and had reactivation infections despite the presence of serum antibody. PMID:215541

  20. Using Humor in Physical Education

    ERIC Educational Resources Information Center

    Barney, David; Christenson, Robert

    2013-01-01

    Humor can be extremely beneficial in everyday life, whether giving or receiving it. It can be used to lighten the mood, give encouragement, or make corrections. Humor in physical education is no exception. Physical educators can use humor as a teaching tool and to create an environment for students to acquire the knowledge to practice a lifetime…

  1. [Immune granulomatous inflammation as the body's adaptive response].

    PubMed

    Paukov, V S; Kogan, E A

    2014-01-01

    Based on their studies and literature analysis, the authors offer a hypothesis for the adaptive pattern of chronic immune granulomatous inflammation occurring in infectious diseases that are characterized by the development of non-sterile immunity. The authors' proposed hypothesis holds that not every chronic inflammation is a manifestation of failing defenses of the body exposed to a damaging factor. By using tuberculosis and leprosy as an example, the authors show the insolvency of a number of existing notions of the pathogenesis and morphogenesis of epithelioid-cell and leprous granulomas. Thus, the authors consider that resident macrophages in tuberculosis maintain their function to kill mycobacteria; thereby the immune system obtains information on the antigenic determinants of the causative agents. At the same time, by consuming all hydrolases to kill mycobacteria, the macrophage fails to elaborate new lysosomes for the capacity of the pathogens to prevent them from forming. As a result, the lysosome-depleted macrophage transforms into an epithelioid cell that, maintaining phagocytic functions, loses its ability to kill the causative agents. It is this epithelioid cell where endocytobiosis takes place. These microorganisms destroy the epithelioid cell and fall out in the area of caseating granuloma necrosis at regular intervals. Some of them phagocytize epithelioid cells to maintain non-sterile immunity; the others are killed by inflammatory macrophages. The pathogenesis and morphogenesis of leprous granuloma, its tuberculous type in particular, proceed in a fundamentally similar way. Thus, non-sterile immunity required for tuberculosis, leprosy, and, possibly, other mycobacterioses is maintained.

  2. Prostaglandin E2 Levels of Aqueous and Vitreous Humor in Ketorolac 0.4% and Nepafenac 0.1% Administered Healthy Rabbits.

    PubMed

    Acar, Ugur; Acar, Damla Erginturk; Tanriverdi, Cafer; Acar, Mutlu; Ozdemir, Ozdemir; Erikci, Acelya; Ornek, Firdevs

    2017-06-01

    To compare the lowering effects of ketorolac 0.4% and nepafenac 0.1% on aqueous and vitreous humor prostaglandin E 2 (PGE 2 ) levels in rabbits. Ketorolac and nepafenac ophthalmic solutions were administered to the right eyes of 24 healthy rabbits after randomized division into two groups. The left eyes of these rabbits were considered as controls for the two groups. On the 4th day of the experiment, the samples were taken from the aqueous and vitreous humors of the rabbits bilaterally, and PGE 2 levels were measured by an enzyme immune assay kit. Ketorolac and nepafenac achieved a statistically significant decrease (p<0.001, for each) in PGE 2 levels in the aqueous (11.75 ± 6.15 and 14.75 ± 7.60 pg/mL, respectively) and the vitreous humor (6.58 ± 4.62 and 9.83 ± 4.55 pg/mL, respectively). Both ketorolac and nepafenac inhibited PGE 2 levels in both the aqueous and vitreous humors of rabbits. Although PGE 2 -lowering effects were similar in the aqueous humor, nepafenac seemed to be more potent than ketorolac in the vitreous humor.

  3. Psychometric Comparisons of Benevolent and Corrective Humor across 22 Countries: The Virtue Gap in Humor Goes International

    PubMed Central

    Heintz, Sonja; Ruch, Willibald; Platt, Tracey; Pang, Dandan; Carretero-Dios, Hugo; Dionigi, Alberto; Argüello Gutiérrez, Catalina; Brdar, Ingrid; Brzozowska, Dorota; Chen, Hsueh-Chih; Chłopicki, Władysław; Collins, Matthew; Ďurka, Róbert; Yahfoufi, Najwa Y. El; Quiroga-Garza, Angélica; Isler, Robert B.; Mendiburo-Seguel, Andrés; Ramis, TamilSelvan; Saglam, Betül; Shcherbakova, Olga V.; Singh, Kamlesh; Stokenberga, Ieva; Wong, Peter S. O.; Torres-Marín, Jorge

    2018-01-01

    Recently, two forms of virtue-related humor, benevolent and corrective, have been introduced. Benevolent humor treats human weaknesses and wrongdoings benevolently, while corrective humor aims at correcting and bettering them. Twelve marker items for benevolent and corrective humor (the BenCor) were developed, and it was demonstrated that they fill the gap between humor as temperament and virtue. The present study investigates responses to the BenCor from 25 samples in 22 countries (overall N = 7,226). The psychometric properties of the BenCor were found to be sufficient in most of the samples, including internal consistency, unidimensionality, and factorial validity. Importantly, benevolent and corrective humor were clearly established as two positively related, yet distinct dimensions of virtue-related humor. Metric measurement invariance was supported across the 25 samples, and scalar invariance was supported across six age groups (from 18 to 50+ years) and across gender. Comparisons of samples within and between four countries (Malaysia, Switzerland, Turkey, and the UK) showed that the item profiles were more similar within than between countries, though some evidence for regional differences was also found. This study thus supported, for the first time, the suitability of the 12 marker items of benevolent and corrective humor in different countries, enabling a cumulative cross-cultural research and eventually applications of humor aiming at the good. PMID:29479326

  4. The Therapeutic Effect of Anti-HER2/neu Antibody Depends on Both Innate and Adaptive Immunity

    PubMed Central

    Park, SaeGwang; Jiang, Zhujun; Mortenson, Eric D.; Deng, Liufu; Radkevich-Brown, Olga; Yang, Xuanming; Sattar, Husain; Wang, Yang; Brown, Nicholas K.; Greene, Mark; Liu, Yang; Tang, Jie; Wang, Shengdian; Fu, Yang-Xin

    2010-01-01

    SUMMARY Anti-HER2/neu antibody therapy is reported to mediate tumor regression by interrupting oncogenic signals and/or inducing FcR-mediated cytotoxicity. Here, we demonstrate that the mechanisms of tumor regression by this therapy also require the adaptive immune response. Activation of innate immunity and T cells, initiated by antibody treatment, was necessary. Intriguingly, the addition of chemotherapeutic drugs, while capable of enhancing the reduction of tumor burden, could abrogate antibody-initiated immunity leading to decreased resistance to re-challenge or earlier relapse. Increased influx of both innate and adaptive immune cells into the tumor microenvironment by a selected immunotherapy further enhanced subsequent antibody-induced immunity, leading to increased tumor eradication and resistance to re-challenge. Therefore, this study proposes a model and strategy for anti-HER2/neu antibody-mediated tumor clearance. PMID:20708157

  5. Genetic Polymorphisms in Host Antiviral Genes: Associations with Humoral and Cellular Immunity to Measles Vaccine

    PubMed Central

    Haralambieva, Iana H.; Ovsyannikova, Inna G.; Umlauf, Benjamin J.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2014-01-01

    Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-value<0.20. In conclusion, our findings strongly point to genetic variants/genes, involved in antiviral sensing and antiviral control, as critical determinants, differentially modulating the adaptive immune responses to live attenuated measles vaccine in Caucasians and African

  6. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  7. Instructional scientific humor in the secondary classroom

    NASA Astrophysics Data System (ADS)

    Wizner, Francine

    This study is an examination of the manner in which educators employ scientific content humor and how that humor is perceived by their students. Content humor is a useful strategy in drawing the attention of students and improving their receptivity toward scientific information. It is also a useful tool in combating the growing distractions of the electronic classroom. Previous studies have found that humor has a positive effect on knowledge, memory, and understanding. However, few studies have been conducted below the undergraduate level and mainly quantitative measures of student recall have been used to measure learning. This study employed multiple data sources to determine how two secondary biology teachers used humor in order to explain scientific concepts and how their students perceived their teachers' use of scientific instructional humor. Evidence of student humor reception was collected from four students in each of the two classes. All of the scientific instructional humor used in the studied classrooms was cognitive in nature, varying among factual, procedural, conceptual, and metacognitive knowledge. Teachers tended to use dialogic forms of humor. Their scientific humor reflected everyday experiences, presented queries, poked fun at authority, and asked students to search out new perspectives and perform thought experiments. Teachers were the primary actors in performing the humorous events. The events were sometimes physical exaggerations of words or drawings, and they occurred for the purpose of establishing rapport or having students make connections between scientific concepts and prior knowledge. Student perceptions were that teachers did employ humor toward instructional objectives that helped their learning. Helping students become critical thinkers is a trademark of science teachers. Science teachers who take the risk of adopting some attributes of comedians may earn the reward of imparting behaviors on their students like critical thinking

  8. Comparative evaluation of aqueous humor viscosity.

    PubMed

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P < 0.0001). The aqueous humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  9. [Evaluation of immunogenicity and safety of 2 immunizations with allantoic intranasal live influenza vaccine Ultragrivac].

    PubMed

    Shishkina, L N; Mazurkova, N A; Ternovoĭ, V A; Bulychev, L E; Tumanov, Iu V; Skarnovich, M O; Kabanov, A S; Ryndiuk, N N; Kuzubov, V I; Mironov, A N; Stavskiĭ, E A; Drozdov, I G

    2011-01-01

    Evaluate reactogenicity, safety and immunogenicity in phase 2 clinical trials of 2 immunization schedules with Ultragrivac--an allantoic intranasal life influenza vaccine based on A/17/ duck/Potsdam/86/92 [17/H5] reassortant strain. 4 groups of volunteers participated in the study: group 1--40 individuals were vaccinated twice with a 10 day interval; group 2--40 individuals were vaccinated twice with a 21 day interval; group 3 (control)--10 individuals received placebo twice with a 10 day interval; group 4 (control)--10 individuals received placebo twice with a 21 day interval. Local (secretory IgA), cellular and humoral immune response were evaluated. Humoral immunity was evaluated by the intensity of increase of geometric mean antibody titers against 2 influenza virus strains A/17/duck/Potsdam/86/92 [17/H5] and A/chicken/Suzdalka/Nov-1 1/2005 (H5N1), and by the level of significant (4 times or more) antibody seroconversions after the vaccination. After the use of Ultragrivac the level of secretory IgA in the nasal cavity of vaccinated volunteers in the groups with revaccination intervals of 10 and 21 days increased significantly. The second immunization with 10 or 21 day intervals significantly increased postvaccinal humoral immune response. Humoral immune response induction after 2 vaccinations with 10 day interval was no less effective than with 21 day interval. Ultragrivac allantoic intranasal live influenza vaccine is areactogenic, harmless for vaccinated individuals, safe for those around, and has immunogenic properties against not only homologous virus A(H5N2), but also against influenza strain A(H5N1).

  10. CRISPR adaptive immune systems of Archaea

    PubMed Central

    Vestergaard, Gisle; Garrett, Roger A; Shah, Shiraz A

    2014-01-01

    CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein sequences and gene synteny of the interference modules. With few exceptions, they could be assigned to the universal Type I or Type III systems. For Type I, subtypes I-A, I-B, and I-D dominate but the data support the division of subtype I-B into two subtypes, designated I-B and I-G. About 70% of the Type III systems fall into the universal subtypes III-A and III-B but the remainder, some of which are phyla-specific, diverge significantly in Cas protein sequences, and/or gene synteny, and they are classified separately. Furthermore, a few CRISPR systems that could not be assigned to Type I or Type III are categorized as variant systems. Criteria are presented for assigning newly sequenced archaeal CRISPR systems to the different subtypes. Several accessory proteins were identified that show a specific gene linkage, especially to Type III interference modules, and these may be cofunctional with the CRISPR systems. Evidence is presented for extensive exchange having occurred between adaptation and interference modules of different archaeal CRISPR systems, indicating the wide compatibility of the functionally diverse interference complexes with the relatively conserved adaptation modules. PMID:24531374

  11. Attitude Toward Humor in Patients Experiencing Depressive Symptoms

    PubMed Central

    Bokarius, Anna; Ha, Khanh; Poland, Russell; Bokarius, Vladimir; Rapaport, Mark H.

    2011-01-01

    Objective: This study measures the correlation between disposition to humor and level of depression to investigate openness to humorous interventions for the treatment of depression. Design, Participants, and Measurement: Individuals (n=200) with depression received questionnaires to assess their sense of humor and attitude toward humor using the Svebak's Humor Questionnaire and a disposition toward humor questionnaire. The correlation between Svebak's Humor Questionnaire scores and Quick Inventory of Depressive Symptomatology-Self Report scores was then measured. Results were further analyzed by race, age, and gender to assess any emerging trends within those groups. Results: Svebak's Humor Questionnaire mean scores remained high across gender, race, and age. However, there was not a statistically significant correlation between the level of depression and sense of humor (r=−0.22). The only significant relationship noted was between disposition toward humor and depression was for subjects aged 70 and older (r=−0.83). Conclusion: Though with certain limitations, these data provide preliminary support for the possibility that an appreciation of humor would persist despite symptoms of major depressive disorder. Clinicians could consider humor as part of an intervention in the treatment of depressive symptoms. The determination of the type of humor and manner of integrating it into therapy would require further study. PMID:22010061

  12. Future directions in bladder cancer immunotherapy: towards adaptive immunity

    PubMed Central

    Smith, Sean G; Zaharoff, David A

    2016-01-01

    The clinical management of bladder cancer has not changed significantly in several decades. In particular, intravesical bacillus Calmette–Guérin (BCG) immunotherapy has been a mainstay for high-risk nonmuscle invasive bladder cancer since the late 1970s/early 1980s. This is despite the fact that bladder cancer has the highest recurrence rates of any cancer and BCG immunotherapy has not been shown to induce a tumor-specific immune response. We and others have hypothesized that immunotherapies capable of inducing tumor-specific adaptive immunity are needed to impact bladder cancer morbidity and mortality. This article summarizes the preclinical and clinical development of bladder cancer immunotherapies with an emphasis on the last 5 years. Expected progress in the near future is also discussed. PMID:26860539

  13. Future directions in bladder cancer immunotherapy: towards adaptive immunity.

    PubMed

    Smith, Sean G; Zaharoff, David A

    2016-01-01

    The clinical management of bladder cancer has not changed significantly in several decades. In particular, intravesical bacillus Calmette-Guérin (BCG) immunotherapy has been a mainstay for high-risk nonmuscle invasive bladder cancer since the late 1970s/early 1980s. This is despite the fact that bladder cancer has the highest recurrence rates of any cancer and BCG immunotherapy has not been shown to induce a tumor-specific immune response. We and others have hypothesized that immunotherapies capable of inducing tumor-specific adaptive immunity are needed to impact bladder cancer morbidity and mortality. This article summarizes the preclinical and clinical development of bladder cancer immunotherapies with an emphasis on the last 5 years. Expected progress in the near future is also discussed.

  14. Immunomodulator-based enhancement of anti smallpox immune responses.

    PubMed

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  15. Humor in the Classroom: The Effects of Integrated Humor on Student Learning

    ERIC Educational Resources Information Center

    Bolkan, San; Griffin, Darrin J.; Goodboy, Alan K.

    2018-01-01

    This study was conducted to examine the impact of integrated humor on direct measures of students' ability to retain and transfer information from educational lessons. In two experiments, participants were randomly exposed to either a lesson with humorous examples or standard examples and were subsequently asked to take tests on the material. Data…

  16. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  17. SUPPRESSION OF HUMORAL IMMUNE RESPONSES BY 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN INTERCALATED IN SMECTITE CLAY

    PubMed Central

    Boyd, Stephen A.; Johnston, Cliff T.; Pinnavaia, Thomas J.; Kaminski, Norbert E.; Teppen, Brian J.; Li, Hui; Khan, Bushra; Crawford, Robert B.; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L.F.

    2018-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. PMID:21994089

  18. [The protective role of postvaccinal immunity in mumps in children].

    PubMed

    Zheleznikova, G F; Ivanova, V V; Bekhtereva, M K; Gnilevskaia, Z U; Monakhova, N E; Novozhilova, E V; Goleva, O V; Sizemov, A N

    2000-01-01

    The immunological study of children with infectious parotitis (IP) without complications and with such complications as pancreatitis, meningitis or orchitis in the glandular form was carried out. In accordance with the previously proposed principle, 4 types of immune response (IR) were established on the basis of differences in initial resistance and the IR profile: cell-mediated immunity (types I and III) and humoral immunity (types II and IV). The patients included nonvaccinated children, as well as children vaccinated on epidemic indications, 3-6, 7-9, 10 and more years before infection. The comparative analysis of the number of IP cases with and without complications in the groups of children, divided according to their immunization history and the type of IR, revealed that postvaccinal immunity in children vaccinated on epidemic indications (less than a month ago) or 3-6 years before infection had protective potential, sufficient for the prevention of complicated forms of IP. Immunity obtained 7-9 years ago was effective for the protection from IP complications only in cell-mediated, but not humoral IR. Postvaccinal immunity obtained more than 10 years ago did not ensure the decrease in the occurrence of complicated forms of IP (in comparison with that in nonvaccinated patients) in children with any type of IR.

  19. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination

    PubMed Central

    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian

    2002-01-01

    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853

  20. Effects of chemotherapy on immune responses in dogs with cancer.

    PubMed

    Walter, Claudia U; Biller, Barbara J; Lana, Susan E; Bachand, Annette M; Dow, Steven W

    2006-01-01

    Chemotherapy is assumed to be immunosuppressive; yet to the authors' knowledge, the effects of common chemotherapy protocols on adaptive immune responses in dogs with cancer have not been fully evaluated. Therefore, a study was conducted to evaluate the effects of 2 common chemotherapy protocols on T- and B-cell numbers and humoral immune responses to de novo vaccination in dogs with cancer. Twenty-one dogs with cancer (12 with lymphoma, 9 with osteosarcoma) were enrolled in a prospective study to assess effects of doxorubicin versus multi-drug chemotherapy on adaptive immunity. Numbers of circulating T and B cells were assessed by flow cytometry, and antibody responses to de novo vaccination were assessed before, during, and after chemotherapy. The T- and B-cell numbers before treatment also were compared with those of healthy, age-matched, control dogs. Prior to treatment, dogs with cancer had significantly fewer (P < .05) CD4+ T cells and CD8+ T cells than did healthy dogs. Doxorubicin treatment did not cause a significant decrease in T- or B-cell numbers, whereas treatment with combination chemotherapy caused a significant and persistent decrease in B-cell numbers. Antibody titers after vaccination were not significantly different between control and chemotherapy-treated dogs. These findings suggest that chemotherapy may have less impact on T-cell numbers and ability to mount antibody responses in dogs with cancer than was previously anticipated, though dogs with lymphoma or osteosarcoma appear to be relatively T-cell deficient before initiation of chemotherapy.

  1. Humoral responses to independent vaccinations are correlated in healthy boosted adults

    PubMed Central

    Garman, Lori; Vineyard, Amanda J.; Crowe, Sherry R.; Harley, John B.; Spooner, Christina E.; Collins, Limone C.; Nelson, Michael R.; Engler, Renata J.M.; James, Judith A.

    2015-01-01

    Background Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults. Methods Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1,465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses. Results Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001). Conclusions Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections. PMID:25140930

  2. Humoral responses to independent vaccinations are correlated in healthy boosted adults.

    PubMed

    Garman, Lori; Vineyard, Amanda J; Crowe, Sherry R; Harley, John B; Spooner, Christina E; Collins, Limone C; Nelson, Michael R; Engler, Renata J M; James, Judith A

    2014-09-29

    Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults. Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses. Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001). Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease.

    PubMed

    Qu, Baoxi; Rosenberg, Roger N; Li, Liping; Boyer, Philip J; Johnston, Stephen A

    2004-12-01

    The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid

  4. Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus

    Treesearch

    James McNeil; Diana Cox-Foster; James Slavicek; Kelli Hoover

    2010-01-01

    How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its...

  5. Alterations in adaptive immunity persist during long-duration spaceflight.

    PubMed

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8 + T-cell maturation. A reduction in general T-cell function (both CD4 + and CD8 + ) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4 + T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions.

  6. Humor in Autism and Asperger Syndrome

    ERIC Educational Resources Information Center

    Lyons, Viktoria; Fitzgerald, Michael

    2004-01-01

    Research has shown that individuals with autism and Asperger syndrome are impaired in humor appreciation, although anecdotal and parental reports provide some evidence to the contrary. This paper reviews the cognitive and affective processes involved in humor and recent neurological findings. It examines humor expression and understanding in…

  7. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity

    PubMed Central

    Liu, Qingjun; Zhou, Hong; Langdon, Wallace Y; Zhang, Jian

    2014-01-01

    Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING finger E3 ubiquitin-protein ligase, has been demonstrated to play a crucial role in establishing the threshold for T-cell activation and controlling peripheral T-cell tolerance via multiple mechanisms. Accumulating evidence suggests that Cbl-b also regulates innate immune responses and plays an important role in host defense to pathogens. Understanding the signaling pathways regulated by Cbl-b in innate and adaptive immune cells is therefore essential for efficient manipulation of Cbl-b in emerging immunotherapies for human disorders such as autoimmune diseases, allergic inflammation, infections, and cancer. In this article, we review the latest developments in the molecular structural basis of Cbl-b function, the regulation of Cbl-b expression, the signaling mechanisms of Cbl-b in immune cells, as well as the biological function of Cbl-b in physiological and pathological immune responses in animal models and human diseases. PMID:24875217

  8. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.

    PubMed

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Guo, Qingcheng; Gu, Nana; Zhang, Dapeng; Qian, Weizhu; Dai, Jianxin; Hou, Sheng; Wang, Hao; Guo, Yajun

    The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical "don't find me" signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the "don't eat me" signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using "Knobs-into-holes" technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.

  9. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge.

    PubMed

    Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B

    2015-01-01

    Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4(+) T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins.

  10. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    PubMed Central

    Lang, Pierre Olivier; Aspinall, Richard

    2015-01-01

    Vitamin D (VitD), which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response. PMID:25803545

  11. [Positive aspects of old ages - humor of seniors].

    PubMed

    Mareš, Jiří

    2015-01-01

    This survey study has five parts. In the first part two conceptual approaches to humor are characterized. One considers "the comic" to be an umbrella concept, and humor is only one of its rather positive forms. The other comes out from the umbrella concept "humor", and distinguishes between various forms of humor including the negative ones. Three main theories of humor are presented: theory of superiority, theory of incongruity, and a relief theory. The second part introduces humor in the elderly and draws the attention to the fact that we know relatively little about humor in old age because most research has been carried out in children, adolescents or adults in productive age. The third part of the study describes the process of diagnostics of humor in the elderly. For example, within the qualitative methods, in-depth interviews with seniors or analyses of their diary entries are used. Within quantitative methods, questionnaires are used, and this study presents the survey of seven most frequent ones applied in the studies of humor in the elderly. In the context of mixed methods, understanding of humor in young and seniors, or understanding of humor in relatively healthy seniors and seniors after stroke are compared. The fourth part of the study presents the Gelkopfs model on relationship between humor, treatment and cure of patients. The fifth part of the study demonstrates the options how to use humor to improve the mental state of the elderly (by means of individual or group interventions).

  12. Humorous Relations: Attentiveness, Pleasure and Risk

    ERIC Educational Resources Information Center

    Mayo, Cris

    2014-01-01

    This article focuses on the structures of humor and joke telling that require particular kinds of attentiveness and particular relationships between speaker and audience, or more specifically, between classmates. First, I will analyze the pedagogical and relational preconditions that are necessary for humor to work. If humor is to work well, the…

  13. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  14. Induction of protective and therapeutic antitumor immunity by a DNA vaccine with C3d as a molecular adjuvant.

    PubMed

    Xu, Gui-lian; Zhang, Ke-qin; Guo, Bo; Zhao, Ting-ting; Yang, Fei; Jiang, Man; Wang, Qing-hong; Shang, Yu-hang; Wu, Yu-zhang

    2010-10-18

    Although the critical role of complement component C3d as a molecular adjuvant in preventing virus infection is well established, its role in cancer therapies is unclear. In this study, we have engineered a DNA vaccine that expresses extracellular region of murine VEGFR-2 (FLK1(265-2493)) and 3 copies of C3d (C3d3), a component of complement as a molecular adjuvant, designed to increase antitumor immunity. VEGFR-2 has a more restricted expression on endothelial cells and is upregulated once these cells proliferate during angiogenesis in the tumor vasculature. Immunization of mice with vector encoding FLK1(265-2493) alone generated only background levels of anti-VEGFR-2 antibodies and slight inhibitory effect on tumor growth. However, the addition of C3d3 to the vaccine construct significantly augmented the anti-VEGFR-2 humoral immune response and inhibited the tumor growth. The antitumor activity induced by vaccination with vector encoding FLK1(265-2493)-C3d3 fusion protein was also demonstrated via growth inhibition of established tumors following passive transfer of immune serum from vaccinated mice. Our results suggest that vaccination with vector encoding FLK1(265-2493) with C3d3 as a molecular adjuvant induces adaptive humoral activity, which is directed against the murine VEGFR-2 and can significantly inhibit tumor growth, and that administration of C3d as a molecular adjuvant to increase antibodies levels to VEGFR-2 may provide an alternative treatment modality for cancer therapies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Humor as aggression: effects of motivation on hostility expressed in humor appreciation.

    PubMed

    Weinstein, Netta; Hodgins, Holley S; Ostvik-White, Elin

    2011-06-01

    In 4 studies, the authors examined the hypothesis that relative to primed autonomy motivation, primed control would increase enjoyment of hostile (compared with nonhostile) humor as assessed by self-reported enjoyment and aversiveness and by nonverbal behavior. Results confirmed the hypothesis. Furthermore, initial state hostility moderated the effect such that high-hostility participants who were primed with control motivation especially enjoyed hostile humor. The 2 final studies showed that the effect was mediated by implicit aggression such that the combination of high initial state hostility and control priming led to implicit aggression, which in turn resulted in hostile humor enjoyment. Results are interpreted in terms of the effects of autonomy versus control motivation on intrapersonal self-regulatory processes, which influence interpersonal functioning. 2011 APA, all rights reserved

  16. Humor styles moderate borderline personality traits and suicide ideation.

    PubMed

    Meyer, Neil A; Helle, Ashley C; Tucker, Raymond P; Lengel, Gregory J; DeShong, Hilary L; Wingate, LaRicka R; Mullins-Sweatt, Stephanie N

    2017-03-01

    The way individuals use humor to interact interpersonally has been associated with general personality, depression, and suicidality. Certain humor styles may moderate the risk for suicide ideation (SI) in individuals who are high in specific risk factors (e.g., thwarted belongingness, perceived burdensomeness). Previous research suggests a relationship between humor styles and borderline personality disorder (BPD) and an increased risk of suicidality and suicide completion in individuals with BPD. Participants (n =176) completed measures of BPD traits, SI, and humor styles. It was hypothesized that BPD traits would be positively correlated with negative humor styles and negatively correlated with positive humor styles, and that humor styles would significantly moderate BPD traits and SI. Results showed that BPD traits were negatively correlated with self-enhancing humor styles and positively correlated with self-defeating humor styles, but that they were not significantly correlated with affiliative or aggressive humor styles. Bootstrapping analyses demonstrated that the affiliative, self-enhancing, and self-defeating humor styles significantly moderated BPD traits and SI, while the aggressive humor style did not. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Grieving With Humor: A Correlational Study on Sense of Humor and Professional Grief in Palliative Care Nurses.

    PubMed

    Robalo Nunes, Inês; José, Helena; Capelas, Manuel Luís

    The aim of this study was to explore the relationship between humor and professional grief. Findings confirm that these are not independent phenomena. Using humor as a coping mechanism emerged as a response to death-related work. Likewise, positive attitudes toward humor seem to alleviate the distress associated with end-of-life care.

  18. Human perinatal immunity in physiological conditions and during infection.

    PubMed

    van Well, Gijs T J; Daalderop, Leonie A; Wolfs, Tim; Kramer, Boris W

    2017-12-01

    The intrauterine environment was long considered sterile. However, several infectious threats are already present during fetal life. This review focuses on the postnatal immunological consequences of prenatal exposure to microorganisms and related inflammatory stimuli. Both the innate and adaptive immune systems of the fetus and neonate are immature, which makes them highly susceptible to infections. There is good evidence that prenatal infections are a primary cause of preterm births. Additionally, the association between antenatal inflammation and adverse neonatal outcomes has been well established. The lung, gastrointestinal tract, and skin are exposed to amniotic fluid during pregnancy and are probable targets of infection and subsequent inflammation during pregnancy. We found a large number of studies focusing on prenatal infection and the host response. Intrauterine infection and fetal immune responses are well studied, and we describe clinical data on cellular, cytokine, and humoral responses to different microbial challenges. The link to postnatal immunological effects including immune paralysis and/or excessive immune activation, however, turned out to be much more complicated. We found studies relating prenatal infectious or inflammatory hits to well-known neonatal diseases such as respiratory distress syndrome, bronchopulmonary dysplasia, and necrotizing enterocolitis. Despite these data, a direct link between prenatal hits and postnatal immunological outcome could not be undisputedly established. We did however identify several unresolved topics and propose questions for further research.

  19. Adaptive Immune Responses following Senecavirus A Infection in Pigs.

    PubMed

    Maggioli, Mayara F; Lawson, Steve; de Lima, Marcelo; Joshi, Lok R; Faccin, Tatiane C; Bauermann, Fernando V; Diel, Diego G

    2018-02-01

    Senecavirus A (SVA), an emerging picornavirus of swine, causes vesicular disease (VD) that is clinically indistinguishable from foot-and-mouth disease (FMD) in pigs. Many aspects of SVA interactions with the host and the host immune responses to infection, however, remain unknown. In the present study, humoral and cellular immune responses to SVA were evaluated following infection in pigs. We show that SVA infection elicited an early and robust virus-neutralizing (VN) antibody response, which coincided and was strongly correlated with VP2- and VP3-specific IgM responses. Notably, the neutralizing antibody (NA) responses paralleled the reduction of viremia and resolution of the disease. Analysis of the major porcine T-cell subsets revealed that during the acute/clinical phase of SVA infection (14 days postinfection [p.i.]), T-cell responses were characterized by an increased frequency of αβ T cells, especially CD4 + T cells, which were first detected by day 7 p.i. and increased in frequency until day 14 p.i. Additionally, the frequency of CD8 + and double-positive CD4 + CD8 + T cells (effector/memory T cells) expressing interferon gamma (IFN-γ) or proliferating in response to SVA antigen stimulation increased after day 10 p.i. Results presented here show that SVA elicits B- and T-cell activation early upon infection, with IgM antibody levels being correlated with early neutralizing activity against the virus and peak B- and T-cell responses paralleling clinical resolution of the disease. The work provides important insights into the immunological events that follow SVA infection in the natural host. IMPORTANCE Senecavirus A (SVA) has recently emerged in swine, causing outbreaks of vesicular disease (VD) in major swine-producing countries around the world, including the United States, Brazil, China, Thailand, and Colombia. Notably, SVA-induced disease is clinically indistinguishable from other high-consequence VDs of swine, such as FMD, swine vesicular disease

  20. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease.

    PubMed

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-09-21

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date.

  1. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease

    PubMed Central

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-01-01

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date. PMID:28934123

  2. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    PubMed Central

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  3. Humor, Philosophy and Education

    ERIC Educational Resources Information Center

    Morreall, John

    2014-01-01

    This article begins by examining the bad reputation humor traditionally had in philosophy and education. Two of the main charges against humor--that it is hostile and irresponsible--are linked to the Superiority Theory. That theory is critiqued and two other theories of laughter are presented--the Relief Theory and the Incongruity Theory. In the…

  4. Anti-Donor Immune Responses Elicited by Allogeneic Mesenchymal Stem Cells and Their Extracellular Vesicles: Are We Still Learning?

    PubMed Central

    Lohan, Paul; Treacy, Oliver; Griffin, Matthew D.; Ritter, Thomas; Ryan, Aideen E.

    2017-01-01

    Mesenchymal stromal cells (MSC) have been used to treat a broad range of disease indications such as acute and chronic inflammatory disorders, autoimmune diseases, and transplant rejection due to their potent immunosuppressive/anti-inflammatory properties. The breadth of their usage is due in no small part to the vast quantity of published studies showing their ability to modulate multiple immune cell types of both the innate and adaptive immune response. While patient-derived (autologous) MSC may be the safer choice in terms of avoiding unwanted immune responses, factors including donor comorbidities may preclude these cells from use. In these situations, allogeneic MSC derived from genetically unrelated individuals must be used. While allogeneic MSC were initially believed to be immune-privileged, substantial evidence now exists to prove otherwise with multiple studies documenting specific cellular and humoral immune responses against donor antigens following administration of these cells. In this article, we will review recent published studies using non-manipulated, inflammatory molecule-activated (licensed) and differentiated allogeneic MSC, as well as MSC extracellular vesicles focusing on the immune responses to these cells and whether or not such responses have an impact on allogeneic MSC-mediated safety and efficacy. PMID:29225601

  5. Alterations in adaptive immunity persist during long-duration spaceflight

    PubMed Central

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716

  6. Methods to study Drosophila immunity.

    PubMed

    Neyen, Claudine; Bretscher, Andrew J; Binggeli, Olivier; Lemaitre, Bruno

    2014-06-15

    Innate immune mechanisms are well conserved throughout evolution, and many theoretical concepts, molecular pathways and gene networks are applicable to invertebrate model organisms as much as vertebrate ones. Drosophila immunity research benefits from an easily manipulated genome, a fantastic international resource of transgenic tools and over a quarter century of accumulated techniques and approaches to study innate immunity. Here we present a short collection of ways to challenge the fruit fly immune system with various pathogens and parasites, as well as read-outs to assess its functions, including cellular and humoral immune responses. Our review covers techniques for assessing the kinetics and efficiency of immune responses quantitatively and qualitatively, such as survival analysis, bacterial persistence, antimicrobial peptide gene expression, phagocytosis and melanisation assays. Finally, we offer a toolkit of Drosophila strains available to the research community for current and future research. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Plasma zinc's alter ego is a low-molecular-weight humoral factor.

    PubMed

    Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H

    2013-09-01

    Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (<1 mg Zn/kg) or zinc-adequate (35 mg Zn/kg, pair-fed) adult male rats, and zinc levels were manipulated to distinguish direct and indirect effects of plasma zinc. Gene expression changes were analyzed by microarray and qPCR, and incubation of VSMCs with blood plasma from zinc-deficient rats strongly changed the expression of >2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.

  8. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System

    PubMed Central

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497

  9. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    PubMed

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  10. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    PubMed

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  11. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) challenged by Vibrio parahaemolyticus reveals unique immune-related genes.

    PubMed

    Qin, Zhendong; Babu, V Sarath; Wan, Quanyuan; Zhou, Meng; Liang, Risheng; Muhammad, Asim; Zhao, Lijuan; Li, Jun; Lan, Jiangfeng; Lin, Li

    2018-06-01

    Pacific white shrimp (Litopenaeus vannamei) is an important cultural species worldwide. However, Vibrio spp. infections have caused a great economic loss in Pacific white shrimp culture industry. The immune responses of Pacific white shrimp to the Vibrio spp. is not fully characterized. In this study, the transcriptomic profiles of L. vannamei hemocytes were explored by injecting with or without Vibrio parahaemolyticus. Totally, 42,632 high-quality unigenes were obtained from RNAseq data. Comparative genome analysis showed 2258 differentially expressed genes (DEGs) following the Vibrio challenge, including 1017 up-regulated and 1241 down-regulated genes. Eight DEGs were randomly selected for further validation by quantitative real-time RT-PCR (qRT-PCR) and the results showed that are consistent with the RNA-seq data. Due to the lack of predictable adaptive immunity, shrimps rely on an innate immune system to defend themselves against invading microbes by recognizing and clearing them through humoral and cellular immune responses. Here we focused our studies on the humoral immunity, five genes (SR, MNK, CTL3, GILT, and ALFP) were selected from the transcriptomic data, which were significantly up-regulated by V. parahaemolyticus infection. These genes were widely expressed in six different tissues and were up-regulated by both Gram negative bacteria (V. parahaemolyticus) and Gram positive bacteria (Staphylococcus aureus). To further extend our studies, we knock-down those five genes by dsRNA in L. vannamei and analyzed the functions of specific genes against V. parahaemolyticus and S. aureus by bacterial clearance analysis. We found that the ability of L. vannamei was significantly reduced in bacterial clearance when treated with those specific dsRNA. These results indicate that those five genes play essential roles in antibacterial immunity and have its specific functions against different types of pathogens. The obtained data will shed a new light on the immunity

  12. A clinically parameterized mathematical model of Shigella immunity to inform vaccine design

    PubMed Central

    Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.; Sztein, Marcelo B.

    2018-01-01

    We refine and clinically parameterize a mathematical model of the humoral immune response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and Monte Carlo simulations for parameter estimation, we fit our model to human immune data from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and B-cell responses against Shigella′s lipopolysaccharide (LPS) and O-membrane proteins (OMP) were recorded. The clinically grounded model is used to mathematically investigate which key immune mechanisms and bacterial targets confer immunity against Shigella and to predict which humoral immune components should be elicited to create a protective vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low efficacy and demonstrates that at a group level a humoral immune response induced by EcSf2a-2 vaccine or wild-type challenge against Shigella′s LPS or OMP does not appear sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine or wild-type challenge data. Using sensitivity analysis, we explore which model parameter values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and identify four key parameter groups as potential vaccine targets or immune correlates: 1) the rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that memory B cells (BM) differentiate into antibody-secreting cells (ASC), 3) the rate at which antibodies are produced by activated ASC, and 4) the Shigella-specific BM carrying capacity. This paper underscores the need for a multifaceted approach in ongoing efforts to design an effective Shigella vaccine. PMID:29304144

  13. A clinically parameterized mathematical model of Shigella immunity to inform vaccine design.

    PubMed

    Davis, Courtney L; Wahid, Rezwanul; Toapanta, Franklin R; Simon, Jakub K; Sztein, Marcelo B

    2018-01-01

    We refine and clinically parameterize a mathematical model of the humoral immune response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and Monte Carlo simulations for parameter estimation, we fit our model to human immune data from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and B-cell responses against Shigella's lipopolysaccharide (LPS) and O-membrane proteins (OMP) were recorded. The clinically grounded model is used to mathematically investigate which key immune mechanisms and bacterial targets confer immunity against Shigella and to predict which humoral immune components should be elicited to create a protective vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low efficacy and demonstrates that at a group level a humoral immune response induced by EcSf2a-2 vaccine or wild-type challenge against Shigella's LPS or OMP does not appear sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine or wild-type challenge data. Using sensitivity analysis, we explore which model parameter values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and identify four key parameter groups as potential vaccine targets or immune correlates: 1) the rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that memory B cells (BM) differentiate into antibody-secreting cells (ASC), 3) the rate at which antibodies are produced by activated ASC, and 4) the Shigella-specific BM carrying capacity. This paper underscores the need for a multifaceted approach in ongoing efforts to design an effective Shigella vaccine.

  14. Characterization of humoral immune responses to chlamydial HSP60, CPAF, and CT795 in inflammatory and severe trachoma.

    PubMed

    Skwor, Troy; Kandel, Ram Prasad; Basravi, Sunniya; Khan, Aslam; Sharma, Bassant; Dean, Deborah

    2010-10-01

    Chlamydia trachomatis (Ct) remains the leading global cause of preventable blindness. There are limited data on humoral immune responses in trachoma. Evaluating these responses is important for understanding host-pathogen interactions and informing vaccine design. Antibodies to chlamydial heat shock protein 60 (cHSP60) have been associated with infertility and trachomatous scarring. Other proteins, including chlamydial protease-associated factor (CPAF) and a hypothetical protein unique to the family Chlamydiaceae, CT795, elicit strong immune responses in urogenital infections, but their role in trachomatous disease is unknown. This study was conducted to expand on previous cHSP60 findings and evaluate the association of CPAF and CT795 antibodies with ocular Ct infection and disease. Clinical trachoma grading was performed, and conjunctival samples were obtained from individuals with trachomatous trichiasis (TT; one or more inturned eyelashes) or inflammatory trachoma without trichiasis and control subjects without disease, all of whom resided in trachoma-endemic regions of Nepal. Ct infection was determined using commercial PCR. IgG and IgA tear antibodies against cHSP60, CT795, and CPAF fusion proteins were measured by quantitative ELISA. Significantly higher IgG antibody levels were found against cHSP60, CPAF, and CT795 in the inflammatory cases compared with levels in the controls (P < 0.005 for all three). Ct infection was independently associated with IgG antibodies against all three immunogens in the inflammatory cases but not in the controls (P = 0.025, P = 0.03 and P = 0.017, respectively). Only IgG antibodies against CPAF were significantly elevated among the TT cases (P = 0.013). Among individuals with trachoma, IgG antibody responses to CPAF are likely to be both a marker and risk factor for inflammatory trachoma and severe trachomatous disease.

  15. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants

    PubMed Central

    Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J.; Shih, J. Wai-Kuo

    2017-01-01

    Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-γ-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biasedpathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-γ demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins. PMID:18675871

  16. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants.

    PubMed

    Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J; Shih, J Wai-Kuo

    2008-10-09

    Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-gamma-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biased pathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-gamma demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins.

  17. Equine neonates have attenuated humoral and cell-mediated immune responses to a killed adjuvanted vaccine compared to adult horses.

    PubMed

    Ryan, Clare; Giguère, Steeve

    2010-12-01

    The objectives of this study were to compare relative vaccine-specific serum immunoglobulin concentrations, vaccine-specific lymphoproliferative responses, and cytokine profiles of proliferating lymphocytes between 3-day-old foals, 3-month-old foals, and adult horses after vaccination with a killed adjuvanted vaccine. Horses were vaccinated intramuscularly twice at 3-week intervals with a vaccine containing antigens from bovine viral respiratory pathogens to avoid interference from maternal antibody. Both groups of foals and adult horses responded to the vaccine with a significant increase in vaccine-specific IgGa and IgG(T) concentrations. In contrast, only adult horses and 3-month-old foals mounted significant vaccine-specific total IgG, IgGb, and IgM responses. Vaccine-specific concentrations of IgM and IgG(T) were significantly different between all groups, with the highest concentrations occurring in adult horses, followed by 3-month-old foals and, finally, 3-day-old foals. Only the adult horses mounted significant vaccine-specific lymphoproliferative responses. Baseline gamma interferon (IFN-γ) and interleukin-4 (IL-4) concentrations were significantly lower in 3-day-old foals than in adult horses. Vaccination resulted in a significant decrease in IFN-γ concentrations in adult horses and a significant decrease in IL-4 concentrations in 3-day-old foals. After vaccination, the ratio of IFN-γ/IL-4 in both groups of foals was significantly higher than that in adult horses. The results of this study indicate that the humoral and lymphoproliferative immune responses to this killed adjuvanted vaccine are modest in newborn foals. Although immune responses improve with age, 3-month-old foals do not respond with the same magnitude as adult horses.

  18. Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice

    PubMed Central

    Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan

    2018-01-01

    Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526

  19. In vivo immunoprotective role of Indigofera tinctoria and Scoparia dulcis aqueous extracts against chronic noise stress induced immune abnormalities in Wistar albino rats.

    PubMed

    Madakkannu, Boothapandi; Ravichandran, Ramanibai

    2017-01-01

    Indigofera tinctoria and Scoparia dulcis are being widely used in Indian folk medicine for the treatment of various disorders. Environmental noise pollution is thought to be an important factor for many health problems and it causes immune abnormalities. In the present study immune-regulating potential of I. tinctoria and S. dulcis aqueous extracts on innate and adaptive immune system of wistar albino rats was evaluated during normal and chronic noise induced stress conditions. The results demonstrated that both I. tinctoria and S. dulcis aqueous extracts (200 mg/kg b.w) showed immunostimulant effect on both innate and adaptive immune response of wistar albino rat compared to control group under normal condition. The noise stress (100 dB for 1 h, 20 days) induced animals showed suppressive effects on immune response by decreasing macrophage phagocytosis, antibody secretion by spleen cells, humoral immune response, proliferation of lymphocytes, cytotoxicity, TNF α expression, granzyme B and perforin expression in splenic NK cells. Similarly, noise stress also caused DNA damage in tissues. However, the suppressed effects induced by noise stress on rat immune system were significantly prevented by oral administration of both I. tinctoria and S. dulcis aqueous extracts. Considering all these results it is suggested that the selected medicinal plant's aqueous extracts have the potential to prevent the effects of noise stress induced rat immune system and explore a strong immunostimulant potential applicable to clinical practices.

  20. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer's disease.

    PubMed

    Lim, Charles; Hammond, Christine J; Hingley, Susan T; Balin, Brian J

    2014-12-24

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder in which infection with Chlamydia pneumoniae (Cpn) has been associated. Cpn is an obligate intracellular respiratory pathogen that may enter the central nervous system (CNS) following infection and trafficking of monocytes through the blood-brain barrier. Following this entry, these cells may secrete pro-inflammatory cytokines and chemokines that have been identified in the AD brain, which have been thought to contribute to AD neurodegeneration. The objectives of this work were: (i) to determine if Cpn infection influences monocyte gene transcript expression at 48 hours post-infection and (ii) to analyze whether pro-inflammatory cytokines are produced and secreted from these cells over 24 to 120 hours post-infection. Gene transcription was analyzed by RT-PCR using an innate and adaptive immunity microarray with 84 genes organized into 5 functional categories: inflammatory response, host defense against bacteria, antibacterial humoral response, septic shock, and cytokines, chemokines and their receptors. Statistical analysis of the results was performed using the Student's t-test. P-values ≤ 0.05 were considered to be significant. ELISA was performed on supernatants from uninfected and Cpn-infected THP1 monocytes followed by statistical analysis with ANOVA. When Cpn-infected THP1 human monocytes were compared to control uninfected monocytes at 48 hours post-infection, 17 genes were found to have a significant 4-fold or greater expression, and no gene expression was found to be down-regulated. Furthermore, cytokine secretion (IL-1β, IL-6, IL-8) appears to be maintained for an extended period of infection. Utilizing RT-PCR and ELISA techniques, our data demonstrate that Cpn infection of THP1 human monocytes promotes an innate immune response and suggests a potential role in the initiation of inflammation in sporadic/late-onset Alzheimer's disease.

  1. Sense of Humor Preferred

    ERIC Educational Resources Information Center

    Barden, Dennis M.

    2007-01-01

    Humor is a powerful tool. It can disarm an adversary. It can leaven the purposefully self-aggrandizing nature of a job interview. Perhaps most important, it can serve as a window to personality in the same way that a resume is a window to experience. In this article, the author emphasizes the value of having a sense of humor. He emphasizes that it…

  2. Asymmetric T lymphocyte division in the initiation of adaptive immune responses.

    PubMed

    Chang, John T; Palanivel, Vikram R; Kinjyo, Ichiko; Schambach, Felix; Intlekofer, Andrew M; Banerjee, Arnob; Longworth, Sarah A; Vinup, Kristine E; Mrass, Paul; Oliaro, Jane; Killeen, Nigel; Orange, Jordan S; Russell, Sarah M; Weninger, Wolfgang; Reiner, Steven L

    2007-03-23

    A hallmark of mammalian immunity is the heterogeneity of cell fate that exists among pathogen-experienced lymphocytes. We show that a dividing T lymphocyte initially responding to a microbe exhibits unequal partitioning of proteins that mediate signaling, cell fate specification, and asymmetric cell division. Asymmetric segregation of determinants appears to be coordinated by prolonged interaction between the T cell and its antigen-presenting cell before division. Additionally, the first two daughter T cells displayed phenotypic and functional indicators of being differentially fated toward effector and memory lineages. These results suggest a mechanism by which a single lymphocyte can apportion diverse cell fates necessary for adaptive immunity.

  3. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    PubMed

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  4. Development of a human adaptive immune system in cord blood cell-transplanted mice.

    PubMed

    Traggiai, Elisabetta; Chicha, Laurie; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G

    2004-04-02

    Because ethical restrictions limit in vivo studies of the human hemato-lymphoid system, substitute human to small animal xenotransplantation models have been employed. Existing models, however, sustain only limited development and maintenance of human lymphoid cells and rarely produce immune responses. Here we show that intrahepatic injection of CD34+ human cord blood cells into conditioned newborn Rag2-/-gammac-/- mice leads to de novo development of B, T, and dendritic cells; formation of structured primary and secondary lymphoid organs; and production of functional immune responses. This provides a valuable model to study development and function of the human adaptive immune system in vivo.

  5. Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin intercalated in smectite clay.

    PubMed

    Boyd, Stephen A; Johnston, Cliff T; Pinnavaia, Thomas J; Kaminski, Norbert E; Teppen, Brian J; Li, Hui; Khan, Bushra; Crawford, Robert B; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L F

    2011-12-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. Copyright © 2011 SETAC.

  6. How sex and age affect immune responses, susceptibility to infections, and response to vaccination

    PubMed Central

    Giefing-Kröll, Carmen; Berger, Peter; Lepperdinger, Günter; Grubeck-Loebenstein, Beatrix

    2015-01-01

    Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions. PMID:25720438

  7. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances.

    PubMed

    Haapakoski, Rita; Ebmeier, Klaus P; Alenius, Harri; Kivimäki, Mika

    2016-04-03

    The inflammation theory of depression, proposed over 20years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced 'omics' technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances

    PubMed Central

    Haapakoski, Rita; Ebmeier, Klaus P.; Alenius, Harri; Kivimäki, Mika

    2016-01-01

    The inflammation theory of depression, proposed over 20 years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced ‘omics’ technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. PMID:26631274

  9. Exploring the Relationship between Humor and Aesthetic Experience

    ERIC Educational Resources Information Center

    Gordon, Mordechai

    2012-01-01

    The connection between humor and aesthetic experience has already been recognized by several thinkers and aesthetic educators. For instance, humor theorist John Morreall writes that "humor is best understood as itself a kind of aesthetic experience, equal in value at least to any other kind of aesthetic experience." For Morreall, both humor and…

  10. Laughing It Up: Native American Humor as Spiritual Tradition

    ERIC Educational Resources Information Center

    Garrett, Michael Tlanusta; Garrett, J. T.; Torres-Rivera, Edil; Wilbur, Michael; Roberts-Wilbur, Janice

    2005-01-01

    Native American humor is explored through a brief discussion of the current literature regarding the use of humor in counseling and descriptions of various forms and communication styles of Native humor as spiritual tradition. Implications for multicultural awareness in the use of humor and possible use of Native humor in counseling with Native…

  11. Chicken lines divergently selected for antibody responses to sheep red blood cells show line-specific differences in sensitivity to immunomodulation by diet. Part I: Humoral parameters.

    PubMed

    Adriaansen-Tennekes, R; de Vries Reilingh, G; Nieuwland, M G B; Parmentier, H K; Savelkoul, H F J

    2009-09-01

    Individual differences in nutrient sensitivity have been suggested to be related with differences in stress sensitivity. Here we used layer hens divergently selected for high and low specific antibody responses to SRBC (i.e., low line hens and high line hens), reflecting a genetically based differential immune competence. The parental line of these hens was randomly bred as the control line and was used as well. Recently, we showed that these selection lines differ in their stress reactivity; the low line birds show a higher hypothalamic-pituitary-adrenal (HPA) axis reactivity. To examine maternal effects and neonatal nutritional exposure on nutrient sensitivity, we studied 2 subsequent generations. This also created the opportunity to examine egg production in these birds. The 3 lines were fed 2 different nutritionally complete layer feeds for a period of 22 wk in the first generation. The second generation was fed from hatch with the experimental diets. At several time intervals, parameters reflecting humoral immunity were determined such as specific antibody to Newcastle disease and infectious bursal disease vaccines; levels of natural antibodies binding lipopolysaccharide, lipoteichoic acid, and keyhole limpet hemocyanin; and classical and alternative complement activity. The most pronounced dietary-induced effects were found in the low line birds of the first generation: specific antibody titers to Newcastle disease vaccine were significantly elevated by 1 of the 2 diets. In the second generation, significant differences were found in lipoteichoic acid natural antibodies of the control and low line hens. At the end of the observation period of egg parameters, a significant difference in egg weight was found in birds of the high line. Our results suggest that nutritional differences have immunomodulatory effects on innate and adaptive humoral immune parameters in birds with high HPA axis reactivity and affect egg production in birds with low HPA axis reactivity.

  12. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  13. A threshold theory of the humor response.

    PubMed

    Epstein, Robert; Joker, Veronica R

    2007-01-01

    The humor response has long been considered mysterious, and it is given relatively little attention in modern experimental psychology, in spite of the fact that numerous studies suggest that it has substantial benefits for mood and health. Existing theories of humor fail to account for some of the most basic humor phenomena. On most occasions when a humor response occurs, certain verbal or visual stimuli (the "setup" stimuli, which function as an establishing operation) must precede a critical stimulus (such as a "punch line" or the final panel or critical feature of a cartoon), which then occasions a sudden "revelation" or "understanding"; this revelation is often accompanied by the humor response. We suggest that the setup stimuli increase the strength of the revelatory response to a point just below the threshold of awareness and that the critical stimulus, properly designed and timed, edges the revelatory response to a point just above threshold. We also suggest that it is this threshold phenomenon that produces most instances of the humor response. We discuss these issues in the context of some notable humor of Carl Rogers and B. F. Skinner.

  14. LOL Teacher! Using Humor to Enhance Student Learning

    ERIC Educational Resources Information Center

    Terrell, Shelly

    2015-01-01

    Laughing with students can help them connect on a deeper level with the teacher and the learning. This article offers the following four strategies to incorporate humor into teaching: (1) Integrate humorous bits to boost engagement; (2) Choose humorous materials; (3) Create interest with humorous web tools and apps; and (4) Teach with silly…

  15. Immunization with excreted-secreted antigens reduces tissue cyst formation in pigs.

    PubMed

    Wang, Yanhua; Zhang, Delin; Wang, Guangxiang; Yin, Hong; Wang, Meng

    2013-11-01

    It has been demonstrated that tachyzoite-pooled excreted-secreted antigens (ESAs) of Toxoplasma gondii are highly immunogenic and can be used in vaccine development. However, most of the information regarding protective immunity induced by immunization with ESAs is derived from studies using mouse model systems. These results cannot be extrapolated to pigs due to important differences in the susceptibility and immune response mechanisms between pigs and mice. We show that the immunization of pigs with ESAs emulsified in Freund's adjuvant induced not only a humoral immune response but also a cellular response. The cellular immune response was associated with the production of IFN-γ and IL-4. The humoral immune response was mainly directed against the antigens with molecular masses between 34 and 116 kDa. After intraperitoneal challenge with 10(7) T. gondii of the Gansu Jingtai strain (GJS) of tachyzoites, the immunized pigs remained clinically normal except for a brief low-grade fever (≤40.5 °C), while the control pigs developed clinical signs of toxoplasmosis (cough, anorexia, prostration, and high fever). At necropsy, visible lesions were found at multiple locations (enlarged mesenteric lymph nodes, an enlarged spleen with focal necrosis, and enlarged lungs with miliary or focal necrosis and off-white lesions) in all of the control pigs but not in the pigs that had been immunized. We also found that immunization with ESAs reduced tissue cyst formation in the muscle (P < 0.01). Our data demonstrate that immunization with ESAs can trigger a strong immune response against T. gondii infection in pigs.

  16. GATA-3 function in innate and adaptive immunity.

    PubMed

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Counseling through the Funny Bone: Humor in Guidance.

    ERIC Educational Resources Information Center

    Smith, Meredith

    This paper examines the role that humor may play in guidance counseling. After a brief review of the literature on the physiology of laughter and the therapeutic effects of humor, the paper draws on past research to discuss the developmental stages of humor from infancy to late adolescence and adulthood, citing examples of the kinds of humor that…

  18. NK cells interactions with dendritic cells shape innate and adaptive immunity.

    PubMed

    Brilot, Fabienne; Strowig, Till; Munz, Christian

    2008-05-01

    While natural killer (NK) cells received their name from their ability to mediate spontaneous cytotoxicity, it has recently become clear that they require activation to target most transformed and infected cells. Dendritic cells (DCs) have been shown to mediate NK cell activation during innate immune responses. Surprisingly, this interaction was recently reported to be required to restrict infections by NK cells, and to take place in secondary lymphoid organs. Here we review these recent studies on NK cell interactions with DCs, discuss the molecular mechanisms underlying the cross-talk between these two innate lymphocyte populations, and out-line how DCs and NK cells synergize to enhance innate immunity against microbes and tumors as well as shape the adaptive immune system. Based on this better understanding, we propose that NK cells should be targeted for their protective functions and as an adjuvant during immunotherapy development.

  19. Drosophila immunity research on the move.

    PubMed

    Eleftherianos, Ioannis; Schneider, David

    2011-01-01

    Drosophila has been established as useful model for infectious diseases because it allows large numbers of whole animals to be studied and provides powerful genetic tools and conservation with signaling and pathogenesis mechanisms in vertebrates. During the past twenty years, significant progress has been made on the characterization of innate immune responses against various pathogenic organisms in flies (Fig. 1). In this year's Drosophila Research Conference, which was held in San Diego (March 30-April 3) and sponsored by the Genetics Society of America, the immunity and pathogenesis session comprised seven platform presentations and 34 posters that highlighted the latest advances in Drosophila infection and immunity field. The presented work covered a wide range of studies from immune signaling pathways and the molecular basis of humoral and cellular immune mechanisms to the role of endosymbionts in fly immune function and effects of immune priming. Here, we give an overview of the presented work and we explain how these findings will open new avenues in Drosophila immunity research.

  20. Innate and adaptive immunity in experimental glomerulonephritis: a pathfinder tale.

    PubMed

    Artinger, Katharina; Kirsch, Alexander H; Aringer, Ida; Moschovaki-Filippidou, Foteini; Eller, Philipp; Rosenkranz, Alexander R; Eller, Kathrin

    2017-06-01

    The role of innate and adaptive immune cells in the experimental model of nephrotoxic serum nephritis (NTS) has been rigorously studied in recent years. The model is dependent on kidney-infiltrating T helper (TH) 17 and TH1 cells, which recruit neutrophils and macrophages, respectively, and cause sustained kidney inflammation. In a later phase of disease, regulatory T cells (Tregs) infiltrate the kidney in an attempt to limit disease activity. In the early stage of NTS, lymph node drainage plays an important role in disease initiation since dendritic cells present the antigen to T cells in the T cell zones of the draining lymph nodes. This results in the differentiation and proliferation of TH17 and TH1 cells. In this setting, immune regulatory cells (Tregs), namely, CCR7-expressing Tregs and mast cells (MCs), which are recruited by Tregs via the production of interleukin-9, exert their immunosuppressive capacity. Together, these two cell populations inhibit T cell differentiation and proliferation, thereby limiting disease activity by as yet unknown mechanisms. In contrast, the spleen plays no role in immune activation in NTS, but constitutes a place of extramedullary haematopoiesis. The complex interactions of immune cells in NTS are still under investigation and might ultimately lead to targeted therapies in glomerulonephritis.