Science.gov

Sample records for adaptive immune functions

  1. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  2. Bridging innate NK cell functions with adaptive immunity.

    PubMed

    Marcenaro, Emanuela; Carlomagno, Simona; Pesce, Silvia; Moretta, Alessandro; Sivori, Simona

    2011-01-01

    Killer Ig-like receptors (KIRs) are major human NK receptors displaying either inhibitory or activating functions which recognize allotypic determinants of HLA-class I molecules. Surprisingly, NK cell treatment with CpG-ODN (TLR9 ligands) results in selective down-modulation of KIR3DL2, its co-internalization with CpG-ODN and its translocation to TLR9-rich early endosomes. This novel KIR-associated function may offer clues to better understand the possible role of certain KIRs and also emphasizes the involvement of NK cells in the course of microbial infections. NK cells are involved not only in innate immune responses against viruses and tumors but also participate in the complex network of cell-to cell interaction that leads to the development of adaptive immune responses. In this context the interaction of NK cells with DC appears to play a crucial role in the acquisition of CCR7, a chemokine receptor that enables NK cells to migrate towards lymph nodes in response to CCL19 and/or CCL21. Analysis of NK cell clones revealed that KIR-mismatched but not KIR-matched NK cells acquire CCR7. These data have important implications in haploidentical haematopoietic stem cell transplantation (HSCT), in which KIR-mismatched NK cells may acquire the ability to migrate to secondary lymphoid compartments (SLCs), where they can kill recipient's antigen presenting cells (APCs) and T cells thus preventing graft versus host (and host vs. graft) reactions. PMID:21842364

  3. Innate lymphoid cell function in the context of adaptive immunity.

    PubMed

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  4. Adaptive immunity in the liver.

    PubMed

    Shuai, Zongwen; Leung, Miranda Wy; He, Xiaosong; Zhang, Weici; Yang, Guoxiang; Leung, Patrick Sc; Eric Gershwin, M

    2016-05-01

    The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver. PMID:26996069

  5. Adaptive immunity in the liver

    PubMed Central

    Shuai, Zongwen; Leung, Miranda WY; He, Xiaosong; Zhang, Weici; Yang, Guoxiang; Leung, Patrick SC; Eric Gershwin, M

    2016-01-01

    The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver. PMID:26996069

  6. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  7. Adaptive Immunity in Schizophrenia: Functional Implications of T Cells in the Etiology, Course and Treatment.

    PubMed

    Debnath, Monojit

    2015-12-01

    Schizophrenia is a severe and highly complex neurodevelopmental disorder with an unknown etiopathology. Recently, immunopathogenesis has emerged as one of the most compelling etiological models of schizophrenia. Over the past few years considerable research has been devoted to the role of innate immune responses in schizophrenia. The findings of such studies have helped to conceptualize schizophrenia as a chronic low-grade inflammatory disorder. Although the contribution of adaptive immune responses has also been emphasized, however, the precise role of T cells in the underlying neurobiological pathways of schizophrenia is yet to be ascertained comprehensively. T cells have the ability to infiltrate brain and mediate neuro-immune cross-talk. Conversely, the central nervous system and the neurotransmitters are capable of regulating the immune system. Neurotransmitter like dopamine, implicated widely in schizophrenia risk and progression can modulate the proliferation, trafficking and functions of T cells. Within brain, T cells activate microglia, induce production of pro-inflammatory cytokines as well as reactive oxygen species and subsequently lead to neuroinflammation. Importantly, such processes contribute to neuronal injury/death and are gradually being implicated as mediators of neuroprogressive changes in schizophrenia. Antipsychotic drugs, commonly used to treat schizophrenia are also known to affect adaptive immune system; interfere with the differentiation and functions of T cells. This understanding suggests a pivotal role of T cells in the etiology, course and treatment of schizophrenia and forms the basis of this review. PMID:26162591

  8. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  9. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    PubMed

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression. PMID:26884167

  10. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    PubMed Central

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  11. Adaptive Immune Regulation of Mammary Postnatal Organogenesis.

    PubMed

    Plaks, Vicki; Boldajipour, Bijan; Linnemann, Jelena R; Nguyen, Nguyen H; Kersten, Kelly; Wolf, Yochai; Casbon, Amy-Jo; Kong, Niwen; van den Bijgaart, Renske J E; Sheppard, Dean; Melton, Andrew C; Krummel, Matthew F; Werb, Zena

    2015-09-14

    Postnatal organogenesis occurs in an immune competent environment and is tightly controlled by interplay between positive and negative regulators. Innate immune cells have beneficial roles in postnatal tissue remodeling, but roles for the adaptive immune system are currently unexplored. Here we show that adaptive immune responses participate in the normal postnatal development of a non-lymphoid epithelial tissue. Since the mammary gland (MG) is the only organ developing predominantly after birth, we utilized it as a powerful system to study adaptive immune regulation of organogenesis. We found that antigen-mediated interactions between mammary antigen-presenting cells and interferon-γ (IFNγ)-producing CD4+ T helper 1 cells participate in MG postnatal organogenesis as negative regulators, locally orchestrating epithelial rearrangement. IFNγ then affects luminal lineage differentiation. This function of adaptive immune responses, regulating normal development, changes the paradigm for studying players of postnatal organogenesis and provides insights into immune surveillance and cancer transformation. PMID:26321127

  12. Brucella evasion of adaptive immunity.

    PubMed

    Martirosyan, Anna; Gorvel, Jean-Pierre

    2013-02-01

    The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system. PMID:23374122

  13. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system.

    PubMed

    Comerford, Iain; Harata-Lee, Yuka; Bunting, Mark D; Gregor, Carly; Kara, Ervin E; McColl, Shaun R

    2013-06-01

    The chemokine receptor CCR7 and its ligands CCL19 and CCL21 control a diverse array of migratory events in adaptive immune function. Most prominently, CCR7 promotes homing of T cells and DCs to T cell areas of lymphoid tissues where T cell priming occurs. However, CCR7 and its ligands also contribute to a multitude of adaptive immune functions including thymocyte development, secondary lymphoid organogenesis, high affinity antibody responses, regulatory and memory T cell function, and lymphocyte egress from tissues. In this survey, we summarise the role of CCR7 in adaptive immunity and describe recent progress in understanding how this axis is regulated. In particular we highlight CCX-CKR, which scavenges both CCR7 ligands, and discuss its emerging significance in the immune system. PMID:23587803

  14. Endocannabinoid signalling in innate and adaptive immunity

    PubMed Central

    Chiurchiù, Valerio; Battistini, Luca; Maccarrone, Mauro

    2015-01-01

    The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments. PMID:25585882

  15. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  16. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    PubMed

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life. PMID:26423359

  17. Vitamin A and immune function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin A deficiency increases the risk of death from infectious diseases in infants and young children in areas of the world where vitamin A deficiency is common. This increased risk apparently results from impaired innate and adaptive immune function. Retinoic acid is the major metabolite of vit...

  18. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  19. Adaptive immune resistance: How cancer protects from immune attack

    PubMed Central

    Ribas, Antoni

    2015-01-01

    Adaptive immune resistance is a process where the cancer changes its phenotype in response to a cytotoxic or pro-inflammatory immune response, thereby evading it. This adaptive process is triggered by the specific recognition of cancer cells by T cells, which leads to the production of immune-activating cytokines. Cancers then hijack mechanisms developed to limit inflammatory and immune responses and protect themselves from the T cell attack. Inhibiting adaptive immune resistance is the mechanistic basis of responses to PD-1 or PD-L1 blocking antibodies, and may be of relevance for the development of other cancer immunotherapy strategies. PMID:26272491

  20. Inflammatory bowel disease related innate immunity and adaptive immunity

    PubMed Central

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD. PMID:27398134

  1. Invariant natural killer T cells: bridging innate and adaptive immunity

    PubMed Central

    Parekh, Vrajesh V.; Wu, Lan

    2013-01-01

    Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system. PMID:20734065

  2. Diversity of immune strategies explained by adaptation to pathogen statistics

    PubMed Central

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M.

    2016-01-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations—differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  3. Diversity of immune strategies explained by adaptation to pathogen statistics.

    PubMed

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M

    2016-08-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations-differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  4. Powering the Immune System: Mitochondria in Immune Function and Deficiency

    PubMed Central

    Walker, Melissa A.; Sims, Katherine B.; Walter, Jolan E.; Traggiai, Elisabetta

    2014-01-01

    Mitochondria are critical subcellular organelles that are required for several metabolic processes, including oxidative phosphorylation, as well as signaling and tissue-specific processes. Current understanding of the role of mitochondria in both the innate and adaptive immune systems is expanding. Concurrently, immunodeficiencies arising from perturbation of mitochondrial elements are increasingly recognized. Recent observations of immune dysfunction and increased incidence of infection in patients with primary mitochondrial disorders further support an important role for mitochondria in the proper function of the immune system. Here we review current findings. PMID:25309931

  5. The origins of vertebrate adaptive immunity

    PubMed Central

    Litman, Gary W.; Rast, Jonathan P.; Fugmann, Sebastian D.

    2010-01-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been considered to occur by acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of preexisting systems are the major source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity. PMID:20651744

  6. The origins of vertebrate adaptive immunity.

    PubMed

    Litman, Gary W; Rast, Jonathan P; Fugmann, Sebastian D

    2010-08-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been thought to occur by the acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of pre-existing systems are the main source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity. PMID:20651744

  7. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    PubMed Central

    Curtale, Graziella; Citarella, Franca

    2013-01-01

    Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response. PMID:23975170

  8. Innate and Adaptive Immune Regulation During Chronic Viral Infections

    PubMed Central

    Zuniga, Elina I.; Macal, Monica; Lewis, Gavin M.; Harker, James A.

    2015-01-01

    Chronic viral infections represent a unique challenge to the infected host. Persistently replicating viruses outcompete or subvert the initial antiviral response, allowing the establishment of chronic infections that result in continuous stimulation of both the innate and adaptive immune compartments. This causes a profound reprogramming of the host immune system, including attenuation and persistent low levels of type I interferons, progressive loss (or exhaustion) of CD8+ T cell functions, and specialization of CD4+ T cells to produce interleukin-21 and promote antibody-mediated immunity and immune regulation. Epigenetic, transcriptional, posttranscriptional, and metabolic changes underlie this adaptation or recalibration of immune cells to the emerging new environment in order to strike an often imperfect balance between the host and the infectious pathogen. In this review we discuss the common immunological hallmarks observed across a range of different persistently replicating viruses and host species, the underlying molecular mechanisms, and the biological and clinical implications. PMID:26958929

  9. Host adaptive immunity alters gut microbiota.

    PubMed

    Zhang, Husen; Sparks, Joshua B; Karyala, Saikumar V; Settlage, Robert; Luo, Xin M

    2015-03-01

    It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1(-/-) mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1(-) mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium Akkermansia muciniphila was highly enriched in Rag1(-/-) mice compared with the wild type. This enrichment was suppressed when Rag1(-/-) mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1(-/-) mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota's composition and diversity. PMID:25216087

  10. Innate and Adaptive Immunity in Atherosclerosis

    PubMed Central

    Packard, René R. S.; Lichtman, Andrew H.; Libby, Peter

    2010-01-01

    Atherosclerosis, a chronic inflammatory disorder, involves both the innate and adaptive arms of the immune response that mediate the initiation, progression, and ultimate thrombotic complications of atherosclerosis. Most fatal thromboses, which may manifest as acute myocardial infarction or ischemic stroke, result from frank rupture or superficial erosion of the fibrous cap overlying the atheroma, processes that occur in inflammatorily active, rupture-prone plaques. Appreciation of the inflammatory character of atherosclerosis has led to the application of C-reactive protein as a biomarker of cardiovascular risk, and the characterization of the anti-inflammatory and immunomodulatory actions of the statin class of drugs. An improved understanding of the pathobiology of atherosclerosis and further studies of its immune mechanisms provide avenues for the development of future strategies directed toward better risk stratification of patients as well as the identification of novel anti-inflammatory therapies. This review retraces leukocyte subsets involved in innate and adaptive immunity and their contributions to atherogenesis. PMID:19449008

  11. Adaptive transfer functions

    SciTech Connect

    Goulding, J.R. )

    1991-01-01

    This paper details the approach and methodology used to build adaptive transfer functions in a feed-forward Back-Propagation neural network, and provides insight into the structure dependent properties of using non-scaled analog inputs. The results of using adaptive transfer functions are shown to outperform conventional architectures in the implementation of a mechanical power transmission gearbox design expert system knowledge base. 4 refs., 4 figs., 1 tab.

  12. Exercise, nutrition and immune function.

    PubMed

    Gleeson, Michael; Nieman, David C; Pedersen, Bente K

    2004-01-01

    Strenuous bouts of prolonged exercise and heavy training are associated with depressed immune cell function. Furthermore, inadequate or inappropriate nutrition can compound the negative influence of heavy exertion on immunocompetence. Dietary deficiencies of protein and specific micronutrients have long been associated with immune dysfunction. An adequate intake of iron, zinc and vitamins A, E, B6 and B12 is particularly important for the maintenance of immune function, but excess intakes of some micronutrients can also impair immune function and have other adverse effects on health. Immune system depression has also been associated with an excess intake of fat. To maintain immune function, athletes should eat a well-balanced diet sufficient to meet their energy requirements. An athlete exercising in a carbohydrate-depleted state experiences larger increases in circulating stress hormones and a greater perturbation of several immune function indices. Conversely, consuming 30-60 g carbohydrate x h(-1) during sustained intensive exercise attenuates rises in stress hormones such as cortisol and appears to limit the degree of exercise-induced immune depression. Convincing evidence that so-called 'immune-boosting' supplements, including high doses of antioxidant vitamins, glutamine, zinc, probiotics and Echinacea, prevent exercise-induced immune impairment is currently lacking. PMID:14971437

  13. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  14. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  15. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    PubMed Central

    Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585

  16. Mitochondria in the regulation of innate and adaptive immunity

    PubMed Central

    Weinberg, Samuel E.; Sena, Laura A.; Chandel, Navdeep S.

    2015-01-01

    Summary Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses. PMID:25786173

  17. Antibody Fc: Linking Adaptive and Innate Immunity

    PubMed Central

    Reichert, Janice M.

    2014-01-01

    Antibody Fc: Linking Adaptive and Innate Immunity, edited by Margaret E. Ackerman and Falk Nimmerjahn and published by Academic Press, provides a highly detailed examination of the involvement of the antibody Fc in mechanisms critical to both innate and adaptive immune responses. Despite a recent increase in format diversity, most marketed antibodies are full-length IgG molecules and the majority of the commercial clinical pipeline of antibody therapeutics is composed of Fc-containing IgG molecules, which underscores the importance of understanding how the Fc domain affects biological responses. The book is divided into six sections that include a total of 20 chapters. In order of their appearance, the sections provide extensive coverage of effector mechanisms, effector cells, Fc receptors, variability of the Fc domain, genetic associations, and evolving areas.

  18. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies. PMID:26102534

  19. Adaptive immunity to murine skin commensals

    PubMed Central

    Shen, Wei; Li, Wenqing; Hixon, Julie A.; Bouladoux, Nicolas; Belkaid, Yasmine; Dzutzev, Amiran; Durum, Scott K.

    2014-01-01

    The adaptive immune system provides critical defense against pathogenic bacteria. Commensal bacteria have begun to receive much attention in recent years, especially in the gut where there is growing evidence of complex interactions with the adaptive immune system. In the present study, we observed that commensal skin bacteria are recognized by major populations of T cells in skin-draining lymph nodes of mice. Recombination activating gene 1 (Rag1)−/− mice, which lack adaptive immune cells, contained living skin-derived bacteria and bacterial sequences, especially mycobacteria, in their skin-draining lymph nodes. T cells from skin-draining lymph nodes of normal mice were shown, in vitro, to specifically recognize bacteria of several species that were grown from Rag1−/− lymph nodes. T cells from skin-draining lymph nodes, transferred into Rag1−/− mice proliferated in skin-draining lymph nodes, expressed a restricted T-cell receptor spectrotype and produced cytokines. Transfer of T cells into Rag1−/− mice had the effect of reducing bacterial sequences in skin-draining lymph nodes and in skin itself. Antibacterial effects of transferred T cells were dependent on IFNγ and IL-17A. These studies suggest a previously unrecognized role for T cells in controlling skin commensal bacteria and provide a mechanism to account for cutaneous infections and mycobacterial infections in T-cell–deficient patients. PMID:25002505

  20. Innate and adaptive immunity in inflammatory bowel disease.

    PubMed

    Geremia, Alessandra; Biancheri, Paolo; Allan, Philip; Corazza, Gino R; Di Sabatino, Antonio

    2014-01-01

    Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). The exact cause of IBD remains unknown. Available evidence suggests that an abnormal immune response against the microorganisms of the intestinal flora is responsible for the disease in genetically susceptible individuals. The adaptive immune response has classically been considered to play a major role in the pathogenesis of IBD. However, recent advances in immunology and genetics have clarified that the innate immune response is equally as important in inducing gut inflammation in these patients. In particular, an altered epithelial barrier function contributes to intestinal inflammation in patients with UC, while aberrant innate immune responses, such as antimicrobial peptide production, innate microbial sensing and autophagy are particularly associated to CD pathogenesis. On the other hand, besides T helper cell type (Th)1 and Th2 immune responses, other subsets of T cells, namely Th17 and regulatory T (Treg) cells, are likely to play a role in IBD. However, given the complexity and probably the redundancy of pathways leading to IBD lesions, and the fact that Th17 cells may also have protective functions, neutralization of IL-17A failed to induce any improvement in CD. Studying the interactions between various constituents of the innate and adaptive immune systems will certainly open new horizons in the knowledge about the immunologic mechanisms implicated in gut inflammation. PMID:23774107

  1. Marathon training and immune function.

    PubMed

    Nieman, David C

    2007-01-01

    Many components of the immune system exhibit adverse change after marathon-type exertion. These immune changes occur in several compartments of the immune system and body (e.g. the skin, upper respiratory tract mucosal tissue, lung, peritoneal cavity, blood and muscle). Of all immune cells, natural killer (NK) cells, neutrophils and macrophages (of the innate immune system) exhibit the greatest changes in response to marathon competition, both in terms of numbers and function. Many mechanisms appear to be involved, including exercise-induced changes in stress hormone and cytokine concentrations, body temperature changes, increases in blood flow and dehydration. During this 'open window' of immune dysfunction (which may last between 3 and 72 hours, depending on the immune measure), viruses and bacteria may gain a foothold, increasing the risk of subclinical and clinical infection. Of the various nutritional and pharmacological countermeasures to marathon-induced immune perturbations that have been evaluated thus far, ingestion of carbohydrate beverages during intense and prolonged exercise has emerged as the most effective. However, carbohydrate ingestion during a marathon attenuates increases in plasma cytokines and stress hormones, but is largely ineffective against changes in other immune components including suppression of NK and T-cell function, and salivary IgA output. Other countermeasures, such as glutamine, antioxidant supplements and ibuprofen, have had disappointing results and thus the search for companion agents to carbohydrate continues. PMID:17465622

  2. The effects of ozone on immune function.

    PubMed Central

    Jakab, G J; Spannhake, E W; Canning, B J; Kleeberger, S R; Gilmour, M I

    1995-01-01

    A review of the literature reveals that ozone (O3) exposure can either suppress or enhance immune responsiveness. These disparate effects elicited by O3 exposure depend, in large part, on the experimental design used, the immune parameters examined as well as the animal species studied. Despite the apparent contradictions, a general pattern of response to O3 exposure can be recognized. Most studies indicate that continuous O3 exposure leads to an early (days 0-3) impairment of immune responsiveness followed, with continued exposures, by a form of adaptation to O3 that results in a re-establishment of the immune response. The effects of O3 exposure on the response to antigenic stimulation also depend on the time at which O3 exposure occurred. Whereas O3 exposure prior to immunization is without effect on the response to antigen, O3 exposure subsequent to immunization suppresses the response to antigen. Although most studies have focused on immune responses in the lung, numerous investigators have provided functional and anatomical evidence to support the hypothesis that O3 exposure can have profound effects on systemic immunity. PMID:7614952

  3. The effects of ozone on immune function.

    PubMed

    Jakab, G J; Spannhake, E W; Canning, B J; Kleeberger, S R; Gilmour, M I

    1995-03-01

    A review of the literature reveals that ozone (O3) exposure can either suppress or enhance immune responsiveness. These disparate effects elicited by O3 exposure depend, in large part, on the experimental design used, the immune parameters examined as well as the animal species studied. Despite the apparent contradictions, a general pattern of response to O3 exposure can be recognized. Most studies indicate that continuous O3 exposure leads to an early (days 0-3) impairment of immune responsiveness followed, with continued exposures, by a form of adaptation to O3 that results in a re-establishment of the immune response. The effects of O3 exposure on the response to antigenic stimulation also depend on the time at which O3 exposure occurred. Whereas O3 exposure prior to immunization is without effect on the response to antigen, O3 exposure subsequent to immunization suppresses the response to antigen. Although most studies have focused on immune responses in the lung, numerous investigators have provided functional and anatomical evidence to support the hypothesis that O3 exposure can have profound effects on systemic immunity. PMID:7614952

  4. Vitamin D regulation of immune function.

    PubMed

    Bikle, Daniel D

    2011-01-01

    Although the best known actions of vitamin D involve its regulation of bone mineral homeostasis, vitamin D exerts its influence on many physiologic processes. One of these processes is the immune system. Both the adaptive and innate immune systems are impacted by the active metabolite of vitamin D, 1,25(OH)(2)D. These observations have important implications for understanding the predisposition of individuals with vitamin D deficiency to infectious diseases such as tuberculosis as well as to autoimmune diseases such as type 1 diabetes mellitus and multiple sclerosis. However, depending on the disease process not all actions of vitamin D may be beneficial. In this review, I examine the regulation by 1,25(OH)(2)D of immune function, then assess the evidence implicating vitamin D deficiency in human disease resulting from immune dysfunction. PMID:21419265

  5. Multifaceted interactions between adaptive immunity and the central nervous system.

    PubMed

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  6. Human neutrophil elastase inhibitors in innate and adaptive immunity.

    PubMed

    Fitch, P M; Roghanian, A; Howie, S E M; Sallenave, J-M

    2006-04-01

    Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response. PMID:16545094

  7. Control of commensal microbiota by the adaptive immune system.

    PubMed

    Zhang, Husen; Luo, Xin M

    2015-01-01

    The symbiotic relationship between the mammalian host and gut microbes has fascinated many researchers in recent years. Use of germ-free animals has contributed to our understanding of how commensal microbes affect the host. Immunodeficiency animals lacking specific components of the mammalian immune system, on the other hand, enable studying of the reciprocal function-how the host controls which microbes to allow for symbiosis. Here we review the recent advances and discuss our perspectives of how to better understand the latter, with an emphasis on the effects of adaptive immunity on the composition and diversity of gut commensal bacteria. PMID:25901893

  8. Nanoengineering of Immune Cell Function

    PubMed Central

    Shen, Keyue; Milone, Michael C.; Dustin, Michael L.; Kam, Lance C.

    2010-01-01

    T lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies. PMID:21562611

  9. Adaptive Transfer Function Networks

    SciTech Connect

    Goulding, J.R. |

    1993-06-01

    Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.

  10. Adaptive Transfer Function Networks

    SciTech Connect

    Goulding, J.R. Portland State Univ., OR . Dept. of Electrical Engineering)

    1993-01-01

    Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.

  11. Zinc in innate and adaptive tumor immunity

    PubMed Central

    2010-01-01

    Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493

  12. Exercise and immune function. Recent developments.

    PubMed

    Nieman, D C; Pedersen, B K

    1999-02-01

    Comparison of immune function in athletes and nonathletes reveals that the adaptive immune system is largely unaffected by athletic endeavour. The innate immune system appears to respond differentially to the chronic stress of intensive exercise, with natural killer cell activity tending to be enhanced while neutrophil function is suppressed. However, even when significant changes in the level and functional activity of immune parameters have been observed in athletes, investigators have had little success in linking these to a higher incidence of infection and illness. Many components of the immune system exhibit change after prolonged heavy exertion. During this 'open window' of altered immunity (which may last between 3 and 72 hours, depending on the parameter measured), viruses and bacteria may gain a foothold, increasing the risk of subclinical and clinical infection. However, no serious attempt has been made by investigators to demonstrate that athletes showing the most extreme post-exercise immunosuppression are those that contract an infection during the ensuing 1 to 2 weeks. This link must be established before the 'open window' theory can be wholly accepted. The influence of nutritional supplements, primarily zinc, vitamin C, glutamin and carbohydrate, on the acute immune response to prolonged exercise has been measured in endurance athletes. Vitamin C and glutamine have received much attention, but the data thus far are inconclusive. The most impressive results have been reported in the carbohydrate supplementation studies. Carbohydrate beverage ingestion has been associated with higher plasma glucose levels, an attenuated cortisol and growth hormone response, fewer perturbations in blood immune cell counts, lower granulocyte and monocyte phagocytosis and oxidative burst activity, and a diminished pro- and anti-inflammatory cytokine response. It remains to be shown whether carbohydrate supplementation diminishes the frequency of infections in the

  13. Intercellular Communication in the Adaptive Immune System

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  14. [Immune granulomatous inflammation as the body's adaptive response].

    PubMed

    Paukov, V S; Kogan, E A

    2014-01-01

    Based on their studies and literature analysis, the authors offer a hypothesis for the adaptive pattern of chronic immune granulomatous inflammation occurring in infectious diseases that are characterized by the development of non-sterile immunity. The authors' proposed hypothesis holds that not every chronic inflammation is a manifestation of failing defenses of the body exposed to a damaging factor. By using tuberculosis and leprosy as an example, the authors show the insolvency of a number of existing notions of the pathogenesis and morphogenesis of epithelioid-cell and leprous granulomas. Thus, the authors consider that resident macrophages in tuberculosis maintain their function to kill mycobacteria; thereby the immune system obtains information on the antigenic determinants of the causative agents. At the same time, by consuming all hydrolases to kill mycobacteria, the macrophage fails to elaborate new lysosomes for the capacity of the pathogens to prevent them from forming. As a result, the lysosome-depleted macrophage transforms into an epithelioid cell that, maintaining phagocytic functions, loses its ability to kill the causative agents. It is this epithelioid cell where endocytobiosis takes place. These microorganisms destroy the epithelioid cell and fall out in the area of caseating granuloma necrosis at regular intervals. Some of them phagocytize epithelioid cells to maintain non-sterile immunity; the others are killed by inflammatory macrophages. The pathogenesis and morphogenesis of leprous granuloma, its tuberculous type in particular, proceed in a fundamentally similar way. Thus, non-sterile immunity required for tuberculosis, leprosy, and, possibly, other mycobacterioses is maintained. PMID:25306624

  15. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  16. Adaptive multiconfigurational wave functions

    SciTech Connect

    Evangelista, Francesco A.

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  17. Impact of Alcohol Abuse on the Adaptive Immune System

    PubMed Central

    Pasala, Sumana; Barr, Tasha; Messaoudi, Ilhem

    2015-01-01

    Alcohol exposure, and particularly chronic heavy drinking, affects all components of the adaptive immune system. Studies both in humans and in animal models determined that chronic alcohol abuse reduces the number of peripheral T cells, disrupts the balance between different T-cell types, influences T-cell activation, impairs T-cell functioning, and promotes T-cell apoptosis. Chronic alcohol exposure also seems to cause loss of peripheral B cells, while simultaneously inducing increased production of immunoglobulins. In particular, the levels of antibodies against liver-specific autoantigens are increased in patients with alcoholic liver disease and may promote alcohol-related liver damage. Finally, chronic alcohol exposure in utero interferes with normal T-cell and B-cell development, which may increase the risk of infections during both childhood and adulthood. Alcohol’s impact on T cells and B cells increases the risk of infections (e.g., pneumonia, HIV infection, hepatitis C virus infection, and tuberculosis), impairs responses to vaccinations against such infections, exacerbates cancer risk, and interferes with delayed-type hypersensitivity. In contrast to these deleterious effects of heavy alcohol exposure, moderate alcohol consumption may have beneficial effects on the adaptive immune system, including improved responses to vaccination and infection. The molecular mechanisms underlying ethanol’s impact on the adaptive immune system remain poorly understood. PMID:26695744

  18. Crosstalk between innate and adaptive immunity in hepatitis B virus infection

    PubMed Central

    Wang, Li; Wang, Kai; Zou, Zhi-Qiang

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection. PMID:26730277

  19. Activation of the reward system boosts innate and adaptive immunity.

    PubMed

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  20. Control of innate and adaptive immunity by the inflammasome

    PubMed Central

    Ciraci, Ceren; Janczy, John R.; Sutterwala, Fayyaz S.; Cassel, Suzanne L.

    2012-01-01

    The importance of innate immunity lies not only in directly confronting pathogenic and non-pathogenic insults but also in instructing the development of an efficient adaptive immune response. The Nlrp3 inflammasome provides a platform for the activation of caspase-1 with the subsequent processing and secretion of IL-1 family members. Given the importance of IL-1 in a variety of inflammatory diseases, understanding the role of Nlrp3 inflammasome in the initiation of innate and adaptive immune responses cannot be overstated. This review examines recent advances in inflammasome biology with an emphasis on its roles in sterile inflammation and triggering of adaptive immune responses. PMID:22841804

  1. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    PubMed

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole. PMID:26573260

  2. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases.

    PubMed

    Fruci, D; Romania, P; D'Alicandro, V; Locatelli, F

    2014-08-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases. PMID:25066018

  3. TGF-β Activation and Function in Immunity

    PubMed Central

    Travis, Mark A.; Sheppard, Dean

    2014-01-01

    The cytokine TGF-β plays an integral role in regulating immune responses. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of effector and regulatory CD4+ T cell responses. Many immune and nonimmune cells can produce TGF-β, but it is always produced as an inactive complex that must be activated to exert functional effects. Thus, activation of latent TGF-β provides a crucial layer of regulation that controls TGF-β function. In this review, we highlight some of the important functional roles for TGF-β in immunity, focusing on its context-specific roles in either dampening or promoting T cell responses. We also describe how activation of TGF-β controls its function in the immune system, with a focus on the key roles for members of the integrin family in this process. PMID:24313777

  4. Contributions of neutrophils to the adaptive immune response in autoimmune disease

    PubMed Central

    Pietrosimone, Kathryn M; Liu, Peng

    2016-01-01

    Neutrophils are granulocytic cytotoxic leukocytes of the innate immune system that activate during acute inflammation. Neutrophils can also persist beyond the acute phase of inflammation to impact the adaptive immune response during chronic inflammation. In the context of the autoimmune disease, neutrophils modulating T and B cell functions by producing cytokines and chemokines, forming neutrophil extracellular traps, and acting as or priming antigen presentation cells. Thus, neutrophils are actively involved in chronic inflammation and tissue damage in autoimmune disease. Using rheumatoid arthritis as an example, this review focuses on functions of neutrophils in adaptive immunity and the therapeutic potential of these cells in the treatment of autoimmune disease and chronic inflammation. PMID:27042404

  5. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    NASA Astrophysics Data System (ADS)

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  6. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  7. Functional Classification of Immune Regulatory Proteins

    SciTech Connect

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.; Fiser, Andras

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving the class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.

  8. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi.

    PubMed

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G; Joosten, Leo A B

    2016-09-01

    We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease. PMID:27101991

  9. Innate and Adaptive Immune Response to Fungal Products and Allergens.

    PubMed

    Williams, P Brock; Barnes, Charles S; Portnoy, Jay M

    2016-01-01

    Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions. PMID:26755096

  10. The Microbiome, Systemic Immune Function, and Allotransplantation.

    PubMed

    Nellore, Anoma; Fishman, Jay A

    2016-01-01

    Diverse effects of the microbiome on solid organ transplantation are beginning to be recognized. In allograft recipients, microbial networks are disrupted by immunosuppression, nosocomial and community-based infectious exposures, antimicrobial therapies, surgery, and immune processes. Shifting microbial patterns, including acute infectious exposures, have dynamic and reciprocal interactions with local and systemic immune systems. Both individual microbial species and microbial networks have central roles in the induction and control of innate and adaptive immune responses, in graft rejection, and in ischemia-reperfusion injury. Understanding the diverse interactions between the microbiome and the immune system of allograft recipients may facilitate clinical management in the future. PMID:26656674

  11. CD98 at the crossroads of adaptive immunity and cancer

    PubMed Central

    Cantor, Joseph M.; Ginsberg, Mark H.

    2012-01-01

    Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer. PMID:22499670

  12. Aryl Hydrocarbon Receptor Control of Adaptive Immunity

    PubMed Central

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation. PMID:23908379

  13. Recognition of additional roles for immunoglobulin domains in immune function

    PubMed Central

    Cannon, John P.; Dishaw, Larry J.; Haire, Robert N.; Litman, Ronda T.; Ostrov, David A.; Litman, Gary W.

    2010-01-01

    Characterization of immune receptors found in phylogenetically disparate species at the genetic, structural and functional levels has provided unique insight into the evolutionary acquisition of immune function. The roles of variable- and intermediate-type immunoglobulin (Ig) domains in direct recognition of ligands and other functions are far wider than previously anticipated. Common mechanisms of multigene family diversification and expansion as well as unique adaptations that relate to function continue to provide unique insight into the numerous patterns, processes and complex interactions that regulate the host response to infectious challenge. PMID:20004115

  14. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    PubMed

    da Rocha Junior, Laurindo Ferreira; Dantas, Andréa Tavares; Duarte, Angela Luzia Branco Pinto; de Melo Rego, Moacyr Jesus Barreto; Pitta, Ivan da Rocha; Pitta, Maira Galdino da Rocha

    2013-01-01

    Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPAR γ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPAR γ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPAR γ has also been associated with B cells. The present review addresses these issues by placing PPAR γ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity. PMID:23983678

  15. AID and APOBECs span the gap between innate and adaptive immunity

    PubMed Central

    Moris, Arnaud; Murray, Shannon; Cardinaud, Sylvain

    2014-01-01

    The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others’ work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies. PMID:25352838

  16. Use of genetically modified bacteria to modulate adaptive immunity.

    PubMed

    Bueno, Susan M; González, Pablo A; Kalergis, Alexis M

    2009-06-01

    Infectious diseases caused by virulent bacteria are a significant cause of morbidity and mortality worldwide, especially in developing countries. However, attenuated strains derived from pathogenic bacteria, such as Salmonella, are highly immunogenic and can be used as vaccines to promote immunity against parental pathogenic bacteria strains. Further, they can be genetically manipulated to either express foreign antigens or deliver exogenous DNA, in order to induce immunity against other pathogens or antigens. Contrarily, specific structural modifications in attenuated Salmonella have allowed the generation of strains that can be well tolerated by the immune system and reduce inflammatory responses. It is thought that those strains could be considered as vectors to promote specific immune tolerance for certain auto-antigens or allergens and reduce unwanted or self-reactive immune responses. In addition, some structural features of Salmonella can contribute to defining the nature and type of polarization of the adaptive immune response induced after immunization, which can be considered as a tool to modulate antigen-specific immunity. In this article we discuss recent advances in the understanding of immune system modulation by molecular components of bacteria and their exploitation for the rational induction of pathogen immunity or antigen-specific tolerance. PMID:19519362

  17. Adaptive immunity and histopathology in frog virus 3-infected Xenopus

    SciTech Connect

    Robert, Jacques . E-mail: robert@mail.rochester.edu; Morales, Heidi; Buck, Wayne; Cohen, Nicholas; Marr, Shauna; Gantress, Jennifer

    2005-02-20

    Xenopus has been used as an experimental model to evaluate the contribution of adaptive cellular immunity in amphibian host susceptibility to the emerging ranavirus FV3. Conventional histology and immunohistochemistry reveal that FV3 has a strong tropism for the proximal tubular epithelium of the kidney and is rarely disseminated elsewhere in Xenopus hosts unless their immune defenses are impaired or developmentally immature as in larvae. In such cases, virus is found widespread in most tissues. Adults, immunocompromised by depletion of CD8{sup +} T cells or by sub-lethal {gamma}-irradiation, show increased susceptibility to FV3 infection. Larvae and irradiated (but not normal) adults can be cross-infected through water by infected adult conspecifics (irradiated or not). The natural MHC class I deficiency and the absence of effect of anti-CD8 treatment on both larval CD8{sup +} T cells and larval susceptibility to FV3 are consistent with an inefficient CD8{sup +} T cell effector function during this developmental period.

  18. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase

    PubMed Central

    Odobasic, Dragana; Kitching, A. Richard; Holdsworth, Stephen R.

    2016-01-01

    Neutrophils are no longer seen as leukocytes with a sole function of being the essential first responders in the removal of pathogens at sites of infection. Being armed with numerous pro- and anti-inflammatory mediators, these phagocytes can also contribute to the development of various autoimmune diseases and can positively or negatively regulate the generation of adaptive immune responses. In this review, we will discuss how myeloperoxidase, the most abundant neutrophil granule protein, plays a key role in the various functions of neutrophils in innate and adaptive immunity. PMID:26904693

  19. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  20. On the evolutionary origin of the adaptive immune system--the adipocyte hypothesis.

    PubMed

    van Niekerk, Gustav; Engelbrecht, Anna-Mart

    2015-04-01

    Jawless vertebrates utilize a form of adaptive immunity that is functionally based on molecular effectors that are completely different from those of vertebrates. This observation raises an intriguing question: why did vertebrates, representing only 5% of all animals, twice evolve a system as complex as adaptive immunity? Theories aimed at identifying a selective pressure that would 'drive' the development of an adaptive immune system (AIS) fail to explain why invertebrates would not similarly develop an AIS. We argue that an AIS can only be implemented in a certain physiological context, i.e., that an AIS represents an unevolvable trait for invertebrates. The immune system is functionally integrated with other systems; therefore a preexisting physiological innovation unique to vertebrates may have acted as the prerequisite infrastructure that allowed the development of an AIS. We propose that future efforts should be directed toward identifying the evolutionary release that allowed the development of an adaptive immune system in vertebrates. In particular, the advent of specialized adipocytes might have expanded the metabolic scope of vertebrates, allowing the opportunistic incorporation of an AIS. However, physiological innovations, unique to (or more developed in) vertebrates, support the implementation of an AIS. Thus, understanding the interaction between systems (e.g. neural-immune-adipose connection) may illuminate our understanding regarding the perplexing immunological dimorphism within the animal kingdom. PMID:25698354

  1. Immune function during space flight.

    PubMed

    Sonnenfeld, Gerald; Shearer, William T

    2002-10-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers. PMID:12361785

  2. Immune function during space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Shearer, William T.

    2002-01-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  3. Oxazolone-Induced Contact Hypersensitivity Reduces Lymphatic Drainage but Enhances the Induction of Adaptive Immunity

    PubMed Central

    Aebischer, David; Willrodt, Ann-Helen; Halin, Cornelia

    2014-01-01

    Contact hypersensitivity (CHS) induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC) migration to draining lymph nodes (dLNs). On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA) was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH) response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40) and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function. PMID:24911791

  4. [Vitamin C and immune function].

    PubMed

    Ströhle, Alexander; Hahn, Andreas

    2009-02-01

    The immune system is strongly influenced by the intake of nutrients. For a long time there has been a controversy whether vitamin C can contribute to the prevention and therapy of the common cold. Several cells of the immune system can indeed accumulate vitamin C and need the vitamin to perform their task, especially phagocytes and t-cells. Thus a vitamin C deficiency results in a reduced resistance against certain pathogens whilst a higher supply enhances several immune system parameters. With regard to the common cold different studies including meta-analyses underline that the prophylactic intake of vitamin C may slightly reduce the duration of the illness in healthy persons but does not affect its incidence and severity. Supplementation of vitamin C is most effective in cases of physical strain or insufficient intake of the vitamin. With regard to the therapy of the common cold the application of vitamin C alone is without clinical effects. PMID:19263912

  5. Physiological and pathophysiological functions of SOCE in the immune system

    PubMed Central

    Shaw, Patrick J.; Feske, Stefan

    2013-01-01

    Calcium signals play a critical role in many cell-type specific effector functions during innate and adaptive immune responses. The predominant mechanism to raise intracellular [Ca2+] used by most immune cells is store-operated Ca2+ entry (SOCE), whereby the depletion of endoplasmic reticulum (ER) Ca2+ stores triggers the influx of extracellular Ca2+. SOCE in immune cells is mediated by the highly Ca2+ selective Ca2+-release-activated Ca2+ (CRAC) channel, encoded by ORAI1, ORAI2 and ORAI3 genes. ORAI proteins are activated by stromal interaction molecules (STIM) 1 and 2, which act as sensors of ER Ca2+ store depletion. The importance of SOCE mediated by STIM and ORAI proteins for immune function is evident from the immunodeficiency and autoimmunity in patients with mutations in STIM1 and ORAI1 genes. These patients and studies in gene-targeted mice have revealed an essential role for ORAI/STIM proteins in the function of several immune cells. This review focuses on recent advances made towards understanding the role of SOCE in immune cells with an emphasis on the immune dysregulation that results from defects in SOCE in human patients and transgenic mice. PMID:22202035

  6. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  7. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis.

    PubMed

    Ait-Oufella, Hafid; Sage, Andrew P; Mallat, Ziad; Tedgui, Alain

    2014-05-01

    Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity. PMID:24812352

  8. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  9. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    PubMed Central

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  10. Regulation of intestinal homeostasis by innate and adaptive immunity.

    PubMed

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis. PMID:22962437

  11. Links between innate and adaptive immunity via type I interferon.

    PubMed

    Le Bon, Agnes; Tough, David F

    2002-08-01

    Type I interferon (IFN-alpha/beta) is expressed rapidly following exposure to a wide variety of infectious agents and plays a key role in innate control of virus replication. Recent studies have demonstrated that dendritic cells both produce IFN-alpha/beta and undergo maturation in response to IFN-alpha/beta. Moreover, IFN-alpha/beta has been shown to potently enhance immune responses in vivo through the stimulation of dendritic cells. These findings indicate that IFN-alpha/beta serves as a signal linking innate and adaptive immunity. PMID:12088676

  12. Prohibitin in Adipose and Immune Functions.

    PubMed

    Ande, Sudharsana R; Nguyen, K Hoa; Nyomba, B L Grégoire; Mishra, Suresh

    2016-08-01

    Prohibitin (PHB) was discovered in a quest to find genes with antiproliferative functions. However, the attribute of PHB that is responsible for its antiproliferative function remains elusive. Meanwhile, recent studies have established PHB as a pleiotropic protein with roles in metabolism, immunity, and senescence. PHB has cell compartment-specific functions, acting as a scaffolding protein in mitochondria, an adaptor molecule in membrane signaling, and a transcriptional coregulator in the nucleus. However, it remains unclear whether different functions and locations of PHB are interrelated or independent from each other, or if PHB works in a tissue-specific manner. Here, we discuss new findings on the role of PHB in adipose-immune interaction and an unexpected role in sex differences in adipose and immune functions. PMID:27312736

  13. Foreign DNA capture during CRISPR–Cas adaptive immunity

    PubMed Central

    Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.; Engelman, Alan N.; Doudna, Jennifer A.

    2015-01-01

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40 base pair (bp) lengths into clustered regularly interspaced short palindromic repeats (CRISPR) loci as spacer segments1–6. The universally conserved Cas1–Cas2 integrase complex catalyzes spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases7–13. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33 nucleotide (nt) protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′–OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo2–4. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  14. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  15. Control of the Adaptive Immune Response by Tumor Vasculature

    PubMed Central

    Mauge, Laetitia; Terme, Magali; Tartour, Eric; Helley, Dominique

    2014-01-01

    The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy. PMID:24734218

  16. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    PubMed Central

    Pashov, Anastas; Monzavi-Karbassi, Bejatolah; Raghava, Gajendra P. S.; Kieber-Emmons, Thomas

    2010-01-01

    Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC) in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies. PMID:20617150

  17. Problematic Internet Usage and Immune Function.

    PubMed

    Reed, Phil; Vile, Rebecca; Osborne, Lisa A; Romano, Michela; Truzoli, Roberto

    2015-01-01

    Problematic internet use has been associated with a variety of psychological comorbidities, but it relationship with physical illness has not received the same degree of investigation. The current study surveyed 505 participants online, and asked about their levels of problematic internet usage (Internet Addiction Test), depression and anxiety (Hospital Anxiety and Depression Scales), social isolation (UCLA Loneliness Questionnaire), sleep problems (Pittsburgh Sleep Quality Index), and their current health - General Health Questionnaire (GHQ-28), and the Immune Function Questionnaire. The results demonstrated that around 30% of the sample displayed mild or worse levels of internet addiction, as measured by the IAT. Although there were differences in the purposes for which males and females used the internet, there were no differences in terms of levels of problematic usage between genders. The internet problems were strongly related to all of the other psychological variables such as depression, anxiety, social-isolation, and sleep problems. Internet addiction was also associated with reduced self-reported immune function, but not with the measure of general health (GHQ-28). This relationship between problematic internet use and reduced immune function was found to be independent of the impact of the co-morbidities. It is suggested that the negative relationship between level of problematic internet use and immune function may be mediated by levels of stress produced by such internet use, and subsequent sympathetic nervous activity, which related to immune-supressants, such as cortisol. PMID:26244339

  18. Problematic Internet Usage and Immune Function

    PubMed Central

    Reed, Phil; Vile, Rebecca; Osborne, Lisa A.; Romano, Michela; Truzoli, Roberto

    2015-01-01

    Problematic internet use has been associated with a variety of psychological comorbidities, but it relationship with physical illness has not received the same degree of investigation. The current study surveyed 505 participants online, and asked about their levels of problematic internet usage (Internet Addiction Test), depression and anxiety (Hospital Anxiety and Depression Scales), social isolation (UCLA Loneliness Questionnaire), sleep problems (Pittsburgh Sleep Quality Index), and their current health – General Health Questionnaire (GHQ-28), and the Immune Function Questionnaire. The results demonstrated that around 30% of the sample displayed mild or worse levels of internet addiction, as measured by the IAT. Although there were differences in the purposes for which males and females used the internet, there were no differences in terms of levels of problematic usage between genders. The internet problems were strongly related to all of the other psychological variables such as depression, anxiety, social-isolation, and sleep problems. Internet addiction was also associated with reduced self-reported immune function, but not with the measure of general health (GHQ-28). This relationship between problematic internet use and reduced immune function was found to be independent of the impact of the co-morbidities. It is suggested that the negative relationship between level of problematic internet use and immune function may be mediated by levels of stress produced by such internet use, and subsequent sympathetic nervous activity, which related to immune-supressants, such as cortisol. PMID:26244339

  19. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  20. Type B coxsackieviruses and their interactions with the innate and adaptive immune systems

    PubMed Central

    Kemball, Christopher C; Alirezaei, Mehrdad; Whitton, J Lindsay

    2011-01-01

    Coxsackieviruses are important human pathogens, and their interactions with the innate and adaptive immune systems are of particular interest. Many viruses evade some aspects of the innate response, but coxsackieviruses go a step further by actively inducing, and then exploiting, some features of the host cell response. Furthermore, while most viruses encode proteins that hinder the effector functions of adaptive immunity, coxsackieviruses and their cousins demonstrate a unique capacity to almost completely evade the attention of naive CD8+ T cells. In this article, we discuss the above phenomena, describe the current status of research in the field, and present several testable hypotheses regarding possible links between virus infection, innate immune sensing and disease. PMID:20860480

  1. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism.

    PubMed

    Fessler, Michael B

    2015-08-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  2. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  3. Adaptive memory: thinking about function.

    PubMed

    Bell, Raoul; Röer, Jan P; Buchner, Axel

    2015-07-01

    Rating the relevance of words for the imagined situation of being stranded in the grasslands without survival material leads to exceptionally good memory for these words. This survival processing effect has received much attention because it promises to elucidate the evolutionary foundations of memory. However, the proximate mechanisms of the survival processing effect have to be identified before informed speculations about its adaptive function are possible. Here, we test and contrast 2 promising accounts of the survival processing effect. According to the 1st account, the effect is the consequence of the prioritized processing of threat-related information. According to the 2nd account, thinking about the relevance of items for survival stimulates thinking about object function, which is a particularly elaborate form of encoding. Experiment 1 showed that the emotional properties of the survival scenario, as manipulated by the negative or positive framing of the scenario, did not influence recall. A focus on threat at encoding led to worse recall than a focus on function. The latter finding was replicated in Experiment 2, which further showed that focusing on threat did not lead to a memory advantage over a pleasantness control condition. The beneficial effect of inducing a functional focus at encoding even surpasses that of the standard survival processing instruction. Together, the results support the theory that thinking about function is an important component of the survival processing effect. PMID:25419817

  4. Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function

    PubMed Central

    Del Prete, Annalisa; Shao, Wen-Hai; Mitola, Stefania; Santoro, Giuseppe; Sozzani, Silvano; Haribabu, Bodduluri

    2007-01-01

    Trafficking of dendritic cells (DCs) to peripheral tissues and to secondary lymphoid organs depends on chemokines and lipid mediators. Here, we show that bone marrow–derived DCs (BM-DCs) express functional leukotriene B4 (LTB4) receptors as observed in dose-dependent chemotaxis and calcium mobilization responses. LTB4, at low concentrations, promoted the migration of immature and mature DCs to CCL19 and CCL21, which was associated with a rapid (30-minute) increase of CCR7 expression at the membrane level. At longer incubation times (6 hours), gene array analysis revealed a promoting role of LTB4, showing a significant increase of CCR7 and CCL19 mRNA levels. BM-DCs cultured from BLT1−/− or BLT1/2−/− mice showed a normal phenotype, but in vivo BLT1/2−/−DCs showed dramatic decrease in migration to the draining lymph nodes relative to wild-type (WT) DCs. Consistent with these observations, BLT1/2−/− mice showed a reduced response in a model of 2,4-dinitro-fluorobenzene (DNFB)–induced contact hypersensitivity. Adoptive transfer of 2,4-dinitrobenzene sulfonic acid (DNBS)–pulsed DCs directly implicated the defect in DC migration to lymph node with the defect in contact hypersensitivity. These results provide strong evidence for a role of LTB4 in regulating DC migration and the induction of adaptive immune responses. PMID:16985179

  5. Durable antitumor responses to CD47 blockade require adaptive immune stimulation.

    PubMed

    Sockolosky, Jonathan T; Dougan, Michael; Ingram, Jessica R; Ho, Chia Chi M; Kauke, Monique J; Almo, Steven C; Ploegh, Hidde L; Garcia, K Christopher

    2016-05-10

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47-SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  6. Macrophages in homeostatic immune function.

    PubMed

    Jantsch, Jonathan; Binger, Katrina J; Müller, Dominik N; Titze, Jens

    2014-01-01

    Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders. PMID:24847274

  7. Macrophages in homeostatic immune function

    PubMed Central

    Jantsch, Jonathan; Binger, Katrina J.; Müller, Dominik N.; Titze, Jens

    2014-01-01

    Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders. PMID:24847274

  8. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  9. Adaptive immune response during hepatitis C virus infection

    PubMed Central

    Larrubia, Juan Ramón; Moreno-Cubero, Elia; Lokhande, Megha Uttam; García-Garzón, Silvia; Lázaro, Alicia; Miquel, Joaquín; Perna, Cristian; Sanz-de-Villalobos, Eduardo

    2014-01-01

    Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed. PMID:24707125

  10. The microbiota in adaptive immune homeostasis and disease.

    PubMed

    Honda, Kenya; Littman, Dan R

    2016-07-01

    In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota-host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy. PMID:27383982

  11. Policing of gut microbiota by the adaptive immune system.

    PubMed

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-01-01

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery. PMID:26867587

  12. Diversity Against Adversity: How Adaptive Immune System Evolves Potent Antibodies

    NASA Astrophysics Data System (ADS)

    Heo, Muyoung; Zeldovich, Konstantin B.; Shakhnovich, Eugene I.

    2011-07-01

    Adaptive immunity is an amazing mechanism, whereby new protein functions—affinity of antibodies (Immunoglobulins) to new antigens—evolve through mutation and selection in a matter of a few days. Despite numerous experimental studies, the fundamental physical principles underlying immune response are still poorly understood. In considerable departure from past approaches, here, we propose a microscopic multiscale model of adaptive immune response, which consists of three essential players: The host cells, viruses, and B-cells in Germinal Centers (GC). Each moiety carries a genome, which encodes proteins whose stability and interactions are determined from their sequences using laws of Statistical Mechanics, providing an exact relationship between genomic sequences and strength of interactions between pathogens and antibodies and antibodies and host proteins (autoimmunity). We find that evolution of potent antibodies (the process known as Affinity Maturation (AM)) is a delicate balancing act, which has to reconcile the conflicting requirements of protein stability, lack of autoimmunity, and high affinity of antibodies to incoming antigens. This becomes possible only when antibody producing B cells elevate their mutation rates (process known as Somatic Hypermutation (SHM)) to fall into a certain range—not too low to find potency increasing mutations but not too high to destroy stable Immunoglobulins and/or already achieved affinity. Potent antibodies develop through clonal expansion of initial B cells expressing marginally potent antibodies followed by their subsequent affinity maturation through mutation and selection. As a result, in each GC the population of mature potent Immunoglobulins is monoclonal being ancestors of a single cell from initial (germline) pool. We developed a simple analytical theory, which provides further rationale to our findings. The model and theory reveal the molecular factors that determine the efficiency of affinity maturation

  13. Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection

    PubMed Central

    Khan, Nargis; Vidyarthi, Aurobind; Javed, Shifa; Agrewala, Javed N.

    2016-01-01

    T cells play a cardinal role in imparting protection against Mycobacterium tuberculosis (Mtb). However, ample time is required before T-cells are able to evoke efficient effector responses in the lung, where the mycobacterium inflicts disease. This delay in T cells priming, which is termed as lag phase, provides sufficient time for Mtb to replicate and establish itself within the host. In contrast, innate immunity efficiently curb the growth of Mtb during initial phase of infection through several mechanisms. Pathogen recognition by innate cells rapidly triggers a cascade of events, such as apoptosis, autophagy, inflammasome formation and nitric oxide production to kill intracellular pathogens. Furthermore, bactericidal mechanisms such as autophagy and apoptosis, augment the antigen processing and presentation, thereby contributing substantially to the induction of adaptive immunity. This manuscript highlights the role of innate immune mechanisms in restricting the survival of Mtb during lag phase. Finally, this article provides new insight for designing immuno-therapies by targeting innate immune mechanisms to achieve optimum immune response to cure TB. PMID:27014247

  14. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  15. Autophagy and the immune function in aging.

    PubMed

    Cuervo, Ana Maria; Macian, Fernando

    2014-08-01

    Just when you thought that you had heard it all about autophagy-the conserved cellular process that mediates turnover of cellular constituents in the lysosomes - studies keep coming out highlighting new types of autophagy, new functions for autophagy or even new autophagy-independent roles for the proteins associated with this process. The field of immunology has been riding the autophagic wave since the beginning of its revival; first due to its role in the host defense against pathogens, and more recently through the better understanding of the unique characteristics and functions of different autophagic pathways in immune cells. Here, we describe some of these new functions that are tightening the connection between autophagy and acquired or innate immunity and their malfunctioning with age. PMID:24929664

  16. Adaptive immunity does not strongly suppress spontaneous tumors in a Sleeping Beauty model of cancer

    PubMed Central

    Rogers, Laura M.; Olivier, Alicia K.; Meyerholz, David K.; Dupuy, Adam J.

    2013-01-01

    The tumor immunosurveillance hypothesis describes a process by which the immune system recognizes and suppresses the growth of transformed cancer cells. A variety of epidemiological and experimental evidence supports this hypothesis. Nevertheless, there are a number of conflicting reports regarding the degree of immune protection conferred, the immune cell types responsible for protection, and the potential contributions of immunosuppressive therapies to tumor induction. The purpose of this study was to determine whether the adaptive immune system actively suppresses tumorigenesis in a Sleeping Beauty (SB) mouse model of cancer. SB transposon mutagenesis was performed in either a wild-type or immunocompromised (Rag2-null) background. Tumor latency and multiplicity were remarkably similar in both immune cohorts, suggesting that the adaptive immune system is not efficiently suppressing tumor formation in our model. Exceptions included skin tumors, which displayed increased multiplicity in wild-type animals, and leukemias, which developed with shorter latency in immune-deficient mice. Overall tumor distribution was also altered such that tumors affecting the gastrointestinal tract were more frequent and hemangiosarcomas were less frequent in immune-deficient mice compared to wild-type mice. Finally, genetic profiling of transposon-induced mutations identified significant differences in mutation prevalence for a number of genes, including Uba1. Taken together, these results indicate that B- and T-cells function to shape the genetic profile of tumors in various tumor types, despite being ineffective at clearing SB-induced tumors. This study represents the first forward genetic screen designed to examine tumor immunosurveillance mechanisms. PMID:23475219

  17. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  18. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning. PMID:26581919

  19. Immune regulation of epithelial cell function: Implications for GI pathologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mammalian immune system is a complex and dynamic network that recognizes, responds, and adapts to numerous foreign and self molecules. CD4+ T cells orchestrate adaptive immune responses, and upon stimulation by antigen, naive CD4+ T cells proliferate and differentiate into various T cell subsets...

  20. Microbiota activation and regulation of innate and adaptive immunity

    PubMed Central

    Alexander, Katie L.; Targan, Stephan R.; Elson, Charles O.

    2014-01-01

    Summary The human host has co-evolved with the collective of bacteria species, termed microbiota, in a complex fashion that affects both innate and adaptive immunity. Differential regulation of regulatory T-cell and effector T-cell responses are a direct result of specific microbial species present within the gut, and this relationship is subject is dysregulation during inflammation and disease. The microbiota varies widely between individuals and has a profound effect on how one reacts to various environmental stimuli, particularly if a person is genetically predisposed to an immune-mediated inflammatory disorder such as inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC). Approximately half of all CD patients have elevated antibodies to CBir1, a microbiota flagellin common to mice and humans, demonstrating flagellins as immunodominant antigens in the intestines. This review focuses on the use of flagellins as probes to study microbiota specific responses in the context of health and disease as well as probes of innate and adaptive responses employed by the host to deal with the overwhelming bacterial presence of the microbiota. PMID:24942691

  1. Cancer therapy with trifunctional antibodies: linking innate and adaptive immunity.

    PubMed

    Hess, Juergen; Ruf, Peter; Lindhofer, Horst

    2012-01-01

    Trifunctional antibodies (trAbs) are promising novel anticancer biologics with a particular mode of action capable of linking innate with adaptive immunity. Based on their unique structure, trifunctional IgG-like heterodimeric antibodies, consisting of nonhuman mouse and rat immunoglobulin halves are able to redirect T lymphocytes, as well as accessory cells, to the tumor site. This recruitment of immune cells is accompanied by cellular activation events elicited by anti-CD3, as well as Fcγ-receptor engagement of trAbs supported by a proinflammatory Th1-biased cytokine milieu. All necessary immunological factors required for long-term vaccination-like effects are stimulated along trAb-mediated therapeutic interventions. Thus, the concerted interplay of antibody-dependent cellular cytotoxicity plus the polyclonal T-cell cytotoxicity and Fcγ-receptor-driven induction of long-lasting immune responses after the initial tumor cell elimination represent the major hallmarks of trAb-mediated treatment of malignant diseases. PMID:22149036

  2. Nutrition, immune function and health of dairy cattle.

    PubMed

    Ingvartsen, K L; Moyes, K

    2013-03-01

    The large increase in milk yield and the structural changes in the dairy industry have caused major changes in the housing, feeding and management of the dairy cow. However, while large improvements have occurred in production and efficiency, the disease incidence, based on veterinary records, does not seem to be improved. Earlier reviews have covered critical periods such as the transition period in the cow and its influence on health and immune function, the interplay between the endocrine system and the immune system and nutrition and immune function. Knowledge on these topics is crucial for our understanding of disease risk and our effort to develop health and welfare improving strategies, including proactive management for preventing diseases and reducing the severity of diseases. To build onto this the main purpose of this review will therefore be on the effect of physiological imbalance (PI) on immune function, and to give perspectives for prevention of diseases in the dairy cow through nutrition. To a large extent, the health problems during the periparturient period relate to cows having difficulty in adapting to the nutrient needs for lactation. This may result in PI, a situation where the regulatory mechanisms are insufficient for the animals to function optimally leading to a high risk of a complex of digestive, metabolic and infectious problems. The risk of infectious diseases will be increased if the immune competence is reduced. Nutrition plays a pivotal role in the immune response and the effect of nutrition may be directly through nutrients or indirectly by metabolites, for example, in situations with PI. This review discusses the complex relationships between metabolic status and immune function and how these complex interactions increase the risk of disease during early lactation. A special focus will be placed on the major energetic fuels currently known to be used by immune cells (i.e. glucose, non-esterified fatty acids, beta

  3. Immune Adaptation to Environmental Influence: The Case of NK Cells and HCMV.

    PubMed

    Rölle, Alexander; Brodin, Petter

    2016-03-01

    The immune system of an individual human is determined by heritable traits and a continuous process of adaptation to a broad variety of extrinsic, non-heritable factors such as viruses, bacteria, dietary components and more. Cytomegalovirus (CMV) successfully infects the majority of the human population and establishes latency, thereby exerting a life-long influence on the immune system of its host. CMV has been shown to influence the majority of immune parameters in healthy individuals. Here we focus on adaptive changes induced by CMV in subsets of Natural Killer (NK) cells, changes that question our very definition of adaptive and innate immunity by suggesting that adaptations of immune cells to environmental influences occur across the entire human immune system and not restricted to the classical adaptive branch of the immune system. PMID:26869205

  4. Apical Organelle Secretion by Toxoplasma Controls Innate and Adaptive Immunity and Mediates Long-Term Protection.

    PubMed

    Sloves, Pierre-Julien; Mouveaux, Thomas; Ait-Yahia, Saliha; Vorng, Han; Everaere, Laetitia; Sangare, Lamba Omar; Tsicopoulos, Anne; Tomavo, Stanislas

    2015-11-01

    Apicomplexan parasites have unique apical rhoptry and microneme secretory organelles that are crucial for host infection, although their role in protection against Toxoplasma gondii infection is not thoroughly understood. Here, we report a novel function of the endolysosomal T. gondii sortilin-like receptor (TgSORTLR), which mediates trafficking to functional apical organelles and their subsequent secretion of virulence factors that are critical to the induction of sterile immunity against parasite reinfection. We further demonstrate that the T. gondii armadillo repeats-only protein (TgARO) mutant, which is deficient only in apical secretion of rhoptries, is also critical in mounting protective immunity. The lack of TgSORTLR and TgARO proteins completely inhibited T-helper 1-dependent adaptive immunity and compromised the function of natural killer T-cell-mediated innate immunity. Our findings reveal an essential role for apical secretion in promoting sterile protection against T. gondii and provide strong evidence for rhoptry-regulated discharge of antigens as a key effector for inducing protective immunity. PMID:25910629

  5. Parasitism, host immune function, and sexual selection.

    PubMed

    Møller, A P; Christe, P; Lux, E

    1999-03-01

    Parasite-mediated sexual selection may arise as a consequence of 1) females avoiding mates with directly transmitted parasites, 2) females choosing less-parasitized males that provide parental care of superior quality, or 3) females choosing males with few parasites in order to obtain genes for parasite resistance in their offspring. Studies of specific host-parasite systems and comparative analyses have revealed both supportive and conflicting evidence for these hypotheses. A meta-analysis of the available evidence revealed a negative relationship between parasite load and the expression of male secondary sexual characters. Experimental studies yielded more strongly negative relationships than observations did, and the relationships were more strongly negative for ectoparasites than for endoparasites. There was no significant difference in the magnitude of the negative effect for species with and without male parental care, or between behavioral and morphological secondary sexual characters. There was a significant difference between studies based on host immune function and those based on parasite loads, with stronger effects for measures of immune function, suggesting that the many negative results from previous analyses of parasite-mediated sexual selection may be explained because relatively benign parasites were studied. The multivariate analyses demonstrating strong effect sizes of immune function in relation to the expression of secondary sexual characters, and for species with male parental care as compared to those without, suggest that parasite resistance may be a general determinant of parasite-mediated sexual selection. PMID:10081812

  6. Inhibition of immune functions by antiviral drugs.

    PubMed Central

    Heagy, W; Crumpacker, C; Lopez, P A; Finberg, R W

    1991-01-01

    Immune functions were evaluated in vitro for PBMC isolated from healthy donors and cultured with the antiviral agents, 3'-azido-3'-deoxythymidine (AZT), ribavirin, ganciclovir, 2'3'-dideoxyinosine (ddI), or acyclovir. To identify methods for assessing the effects of antiviral drugs on immune cells, the PBMC response to mitogens, Con A, or phytohemagglutinin was evaluated from measurements of [3H]thymidine and [14C]-leucine incorporation, cell growth, cellular RNA, DNA, and protein levels, and the PBMC proliferative cycle (i.e., progression from G0----G1----S----G2 + M). At clinically relevant concentrations, AZT, ribavirin, or ganciclovir diminished PBMC responsiveness to mitogen. The numbers of proliferating cells in G1, S, and G2 + M phases of the cell cycle, DNA content, and [3H]thymidine uptake were decreased in cultures treated with AZT, ribavirin, or ganciclovir. AZT or ribavirin but not ganciclovir reduced RNA and protein in the cultures and inhibited cell growth. Whereas AZT, ribavirin, or ganciclovir were antiproliferative, ddI or acyclovir had little, if any, effect on PBMC mitogenesis. The inhibitory effects of antivirals on immune cells may contribute to the immune deterioration observed in patients following prolonged use of the drugs. PMID:1904068

  7. Type I Interferon Receptor Deficiency in Dendritic Cells Facilitates Systemic Murine Norovirus Persistence Despite Enhanced Adaptive Immunity

    PubMed Central

    Nice, Timothy J.; Osborne, Lisa C.; Tomov, Vesselin T.; Artis, David; Wherry, E. John; Virgin, Herbert W.

    2016-01-01

    In order for a virus to persist, there must be a balance between viral replication and immune clearance. It is commonly believed that adaptive immunity drives clearance of viral infections and, thus, dysfunction or viral evasion of adaptive immunity is required for a virus to persist. Type I interferons (IFNs) play pleiotropic roles in the antiviral response, including through innate control of viral replication. Murine norovirus (MNoV) replicates in dendritic cells (DCs) and type I IFN signaling in DCs is important for early control of MNoV replication. We show here that the non-persistent MNoV strain CW3 persists systemically when CD11c positive DCs are unable to respond to type I IFN. Persistence in this setting is associated with increased early viral titers, maintenance of DC numbers, increased expression of DC activation markers and an increase in CD8 T cell and antibody responses. Furthermore, CD8 T cell function is maintained during the persistent phase of infection and adaptive immune cells from persistently infected mice are functional when transferred to Rag1-/- recipients. Finally, increased early replication and persistence are also observed in mixed bone marrow chimeras where only half of the CD11c positive DCs are unable to respond to type I IFN. These findings demonstrate that increased early viral replication due to a cell-intrinsic innate immune deficiency is sufficient for persistence and a functional adaptive immune response is not sufficient for viral clearance. PMID:27327515

  8. Type I Interferon Receptor Deficiency in Dendritic Cells Facilitates Systemic Murine Norovirus Persistence Despite Enhanced Adaptive Immunity.

    PubMed

    Nice, Timothy J; Osborne, Lisa C; Tomov, Vesselin T; Artis, David; Wherry, E John; Virgin, Herbert W

    2016-06-01

    In order for a virus to persist, there must be a balance between viral replication and immune clearance. It is commonly believed that adaptive immunity drives clearance of viral infections and, thus, dysfunction or viral evasion of adaptive immunity is required for a virus to persist. Type I interferons (IFNs) play pleiotropic roles in the antiviral response, including through innate control of viral replication. Murine norovirus (MNoV) replicates in dendritic cells (DCs) and type I IFN signaling in DCs is important for early control of MNoV replication. We show here that the non-persistent MNoV strain CW3 persists systemically when CD11c positive DCs are unable to respond to type I IFN. Persistence in this setting is associated with increased early viral titers, maintenance of DC numbers, increased expression of DC activation markers and an increase in CD8 T cell and antibody responses. Furthermore, CD8 T cell function is maintained during the persistent phase of infection and adaptive immune cells from persistently infected mice are functional when transferred to Rag1-/- recipients. Finally, increased early replication and persistence are also observed in mixed bone marrow chimeras where only half of the CD11c positive DCs are unable to respond to type I IFN. These findings demonstrate that increased early viral replication due to a cell-intrinsic innate immune deficiency is sufficient for persistence and a functional adaptive immune response is not sufficient for viral clearance. PMID:27327515

  9. The Basic Immune Simulator: An agent-based model to study the interactions between innate and adaptive immunity

    PubMed Central

    Folcik, Virginia A; An, Gary C; Orosz, Charles G

    2007-01-01

    Background We introduce the Basic Immune Simulator (BIS), an agent-based model created to study the interactions between the cells of the innate and adaptive immune system. Innate immunity, the initial host response to a pathogen, generally precedes adaptive immunity, which generates immune memory for an antigen. The BIS simulates basic cell types, mediators and antibodies, and consists of three virtual spaces representing parenchymal tissue, secondary lymphoid tissue and the lymphatic/humoral circulation. The BIS includes a Graphical User Interface (GUI) to facilitate its use as an educational and research tool. Results The BIS was used to qualitatively examine the innate and adaptive interactions of the immune response to a viral infection. Calibration was accomplished via a parameter sweep of initial agent population size, and comparison of simulation patterns to those reported in the basic science literature. The BIS demonstrated that the degree of the initial innate response was a crucial determinant for an appropriate adaptive response. Deficiency or excess in innate immunity resulted in excessive proliferation of adaptive immune cells. Deficiency in any of the immune system components increased the probability of failure to clear the simulated viral infection. Conclusion The behavior of the BIS matches both normal and pathological behavior patterns in a generic viral infection scenario. Thus, the BIS effectively translates mechanistic cellular and molecular knowledge regarding the innate and adaptive immune response and reproduces the immune system's complex behavioral patterns. The BIS can be used both as an educational tool to demonstrate the emergence of these patterns and as a research tool to systematically identify potential targets for more effective treatment strategies for diseases processes including hypersensitivity reactions (allergies, asthma), autoimmunity and cancer. We believe that the BIS can be a useful addition to the growing suite of in

  10. Impact of nutrition on immune function and the inflammatory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The review utilizes data on three micronutrients (vitamin A, zinc and iron), anthropometrically defined undernutrition (stunting, wasting and underweight) and obesity to evaluate the effect on immune function, recovery of immune function in response to nutritional interventions, related health outco...

  11. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails. PMID:23439366

  12. Impaired immune function in Gulf War Illness

    PubMed Central

    Whistler, Toni; Fletcher, Mary Ann; Lonergan, William; Zeng, Xiao-R; Lin, Jin-Mann; LaPerriere, Arthur; Vernon, Suzanne D; Klimas, Nancy G

    2009-01-01

    Background Gulf War Illness (GWI) remains a serious health consequence for at least 11,000 veterans of the first Gulf War in the early 1990s. Our understanding of the health consequences that resulted remains inadequate, and this is of great concern with another deployment to the same theater of operations occurring now. Chronic immune cell dysfunction and activation have been demonstrated in patients with GWI, although the literature is not uniform. We exposed GWI patients and matched controls to an exercise challenge to explore differences in immune cell function measured by classic immune assays and gene expression profiling. Methods This pilot study enrolled 9 GWI cases identified from the Department of Veterans Affairs GWI registry, and 11 sedentary control veterans who had not been deployed to the Persian Gulf and were matched to cases by sex, body mass index (BMI) and age. We measured peripheral blood cell numbers, NK cytotoxicity, cytokines and expression levels of 20,000 genes immediately before, immediately after and 4 hours following a standard bicycle ergometer exercise challenge. Results A repeated-measures analysis of variance revealed statistically significant differences for three NK cell subsets and NK cytotoxicity between cases and controls (p < 0.05). Linear regression analysis correlating NK cell numbers to the gene expression profiles showed high correlation of genes associated with NK cell function, serving as a biologic validation of both the in vitro assays and the microarray platform. Intracellular perforin levels in NK and CD8 T-cells trended lower and showed a flatter profile in GWI cases than controls, as did the expression levels of the perforin gene PRF1. Genes distinguishing cases from controls were associated with the glucocorticoid signaling pathway. Conclusion GWI patients demonstrated impaired immune function as demonstrated by decreased NK cytotoxicity and altered gene expression associated with NK cell function. Pro

  13. The role of complement in inflammation and adaptive immunity.

    PubMed

    Barrington, R; Zhang, M; Fischer, M; Carroll, M C

    2001-04-01

    Major advances in our understanding of the immunobiology of complement were made within the past 5 years primarily due to the development of gene-targeting technology. New strains of mice bearing specific deficiencies in serum complement proteins or their receptors were developed using this approach. Characterization of these mice has provided new and exciting insights into the biology of the complement system. In this review, we discuss recent results on two important aspects of the complement system, i) host protection and inflammation, and ii) regulation of B lymphocytes of adaptive immunity. While these two roles appear distinct, they are linked. We discuss how natural antibody and classical pathway complement work together in host protection against bacterial infection on the one hand but, on the other, they co-operate to induce inflammation as observed in reperfusion injury. Significantly, the lymphocytes that produce natural antibody, the B-1 lymphocytes, are regulated in part by the complement system. PMID:11414363

  14. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  15. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis--a Fairy Tale No More.

    PubMed

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that lymphoid neo-genesis takes place in the adventitia of atherosclerotic vessels, leading to the formation of tertiary lymphoid organs where an adaptive immune response can be mounted. Whereas the mechanisms orchestrating the formation of these organs are becoming better understood, their impact on atherosclerosis progression remains unclear. Several potential therapeutic strategies against atherosclerosis, such as protective vaccination against atherosclerosis antigens or inhibiting the activation of proatherogenic B cells, have been proposed based on our improving knowledge of the role of the immune system in atherosclerosis. These strategies have shown success in preclinical studies, giving hope that they will lead to clinical applications. PMID:26605642

  16. Immune Function and Reactivation of Latent Viruses

    NASA Technical Reports Server (NTRS)

    Butel, Janet S.

    1999-01-01

    A major concern associated with long-duration space flight is the possibility of infectious diseases posing an unacceptable medical risk to crew members. One major hypothesis addressed in this project is that space flight will cause alterations in the immune system that will allow latent viruses that are endogenous in the human population to reactivate and shed to higher levels than normal, which may affect the health of crew members. The second major hypothesis being examined is that the effects of space flight will alter the mucosal immune system, the first line of defense against many microbial infections, including herpesviruses, polyomaviruses, and gastroenteritis viruses, rendering crew members more susceptible to virus infections across the mucosa. We are focusing the virus studies on the human herpesviruses and polyomaviruses, important pathogens known to establish latent infections in most of the human population. Both primary infection and reactivation from latent infection with these groups of viruses (especially certain herpesviruses) can cause a variety of illnesses that result in morbidity and, occasionally, mortality. Both herpesviruses and polyomaviruses have been associated with human cancer, as well. Effective vaccines exist for only one of the eight known human herpesviruses and available antivirals are of limited use. Whereas normal individuals display minimal consequences from latent viral infections, events which alter immune function (such as immunosuppressive therapy following solid organ transplantation) are known to increase the risk of complications as a result of viral reactivations.

  17. Brazilian green propolis improves immune function in aged mice

    PubMed Central

    Gao, Weina; Wu, Jianquan; Wei, Jingyu; Pu, Lingling; Guo, Changjiang; Yang, Jijun; Yang, Ming; Luo, Haiji

    2014-01-01

    Aging weakened innate and adaptive immunity both quantitatively and qualitatively. Some components in propolis could stimulate immune function in young animals or cultured immune cells in vitro. Few studies had been carried out in the aged. The present study was to evaluate the effects of Brazilian green propolis supplementation on the immunological parameters in aged mice. Eighty Kunming mice, aged 15–18 months, were randomly assigned to the control and three experimental groups supplemented with different doses (83.3, 157.4 and 352.9 mg/kg.bw respectively) of Brazilian green propolis. The experiment lasted for 4 weeks. Contents of total polyphenol, flavonoid, cinnamic acid and artepillin-C in Brazilian green propolis were analyzed. Splenic NK cytotoxic, T lymphocyte proliferation and antibody generation cells, as well as the phagocytosis of peritoneal macrophages, ear swelling, and serum contents of IgG, IgM, hemolysin and cytokines were measured. After 4 weeks of treatment, the phagocytosis of peritoneal macrophages was enhanced in 157.4 mg/kg and 352.9 mg/kg groups. Ear swelling increased in all propolis treatmented groups. Antibodies specific to sheep erythrocytes were higher in the groups receiving 157.4 and 352.9 mg/kg.bw than that of control group. IgG level dramatically increased in the groups receiving 83.3 and 157.4 mg/kg.bw in comparison to the control group. These results indicate that administration of Brazilian green propolis have a positive effect on innate and adaptive immunity in aged mice. PMID:25120274

  18. Alertness function of thalamus in conflict adaptation.

    PubMed

    Wang, Xiangpeng; Zhao, Xiaoyue; Xue, Gui; Chen, Antao

    2016-05-15

    Conflict adaptation reflects the ability to improve current conflict resolution based on previously experienced conflict, which is crucial for our goal-directed behaviors. In recent years, the roles of alertness are attracting increasing attention when discussing the generation of conflict adaptation. However, due to the difficulty of manipulating alertness, very limited progress has been made in this line. Inspired by that color may affect alertness, we manipulated background color of experimental task and found that conflict adaptation significantly presented in gray and red backgrounds but did not in blue background. Furthermore, behavioral and functional magnetic resonance imaging results revealed that the modulation of color on conflict adaptation was implemented through changing alertness level. In particular, blue background eliminated conflict adaptation by damping the alertness regulating function of thalamus and the functional connectivity between thalamus and inferior frontal gyrus (IFG). In contrast, in gray and red backgrounds where alertness levels are typically high, the thalamus and the right IFG functioned normally and conflict adaptations were significant. Therefore, the alertness function of thalamus is determinant to conflict adaptation, and thalamus and right IFG are crucial nodes of the neural circuit subserving this ability. Present findings provide new insights into the neural mechanisms of conflict adaptation. PMID:26908318

  19. Adaptive Confidence Bands for Nonparametric Regression Functions

    PubMed Central

    Cai, T. Tony; Low, Mark; Ma, Zongming

    2014-01-01

    A new formulation for the construction of adaptive confidence bands in non-parametric function estimation problems is proposed. Confidence bands are constructed which have size that adapts to the smoothness of the function while guaranteeing that both the relative excess mass of the function lying outside the band and the measure of the set of points where the function lies outside the band are small. It is shown that the bands adapt over a maximum range of Lipschitz classes. The adaptive confidence band can be easily implemented in standard statistical software with wavelet support. Numerical performance of the procedure is investigated using both simulated and real datasets. The numerical results agree well with the theoretical analysis. The procedure can be easily modified and used for other nonparametric function estimation models. PMID:26269661

  20. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria

    PubMed Central

    Barroso-Batista, João; Demengeot, Jocelyne; Gordo, Isabel

    2015-01-01

    Co-evolution between the mammalian immune system and the gut microbiota is believed to have shaped the microbiota's astonishing diversity. Here we test the corollary hypothesis that the adaptive immune system, directly or indirectly, influences the evolution of commensal species. We compare the evolution of Escherichia coli upon colonization of the gut of wild-type and Rag2−/− mice, which lack lymphocytes. We show that bacterial adaptation is slower in immune-compromised animals, a phenomenon explained by differences in the action of natural selection within each host. Emerging mutations exhibit strong beneficial effects in healthy hosts but substantial antagonistic pleiotropy in immune-deficient mice. This feature is due to changes in the composition of the gut microbiota, which differs according to the immune status of the host. Our results indicate that the adaptive immune system influences the tempo and predictability of E. coli adaptation to the mouse gut. PMID:26615893

  1. The function of immunoglobulin A in immunity.

    PubMed

    Woof, Jenny M; Kerr, Michael A

    2006-01-01

    The vast surfaces of the gastrointestinal, respiratory, and genitourinary tracts represent major sites of potential attack by invading micro-organisms. Immunoglobulin A (IgA), as the principal antibody class in the secretions that bathe these mucosal surfaces, acts as an important first line of defence. IgA, also an important serum immunoglobulin, mediates a variety of protective functions through interaction with specific receptors and immune mediators. The importance of such protection is underlined by the fact that certain pathogens have evolved mechanisms to compromise IgA-mediated defence, providing an opportunity for more effective invasion. IgA function may also be perturbed in certain disease states, some of which are characterized by deposition of IgA in specific tissues. This review details current understanding of the roles played by IgA in both health and disease. PMID:16362985

  2. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    PubMed

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  3. Opioid System Modulates the Immune Function: A Review

    PubMed Central

    Liang, Xuan; Liu, Renyu; Chen, Chunhua; Ji, Fang; Li, Tianzuo

    2016-01-01

    Opioid receptors and their ligands produce powerful analgesia that is effective in perioperative period and chronic pain managements accompanied with various side effects including respiratory depression, constipation and addiction etc. Opioids can also interfere with the immune system, not only participating in the function of the immune cells, but also modulating innate and acquired immune responses. The traditional notion of opioids is immunosuppressive. Recent studies indicate that the role of opioid receptors on immune function is complicated, working through various different mechanisms. Different opioids or opioids administrations show various effects on the immune system: immunosuppressive, immunostimulatory, or dual effect. It is important to elucidate the relationship between opioids and immune function, since immune system plays critical role in various physiological and pathophysiological processes, including the inflammation, tumor growth and metastasis, drug abuse, and so on. This review article tends to have an overview of the recent work and perspectives on opioids and the immune function. PMID:26985446

  4. Complex Adaptive Immunity to Enteric Fevers in Humans: Lessons Learned and the Path Forward

    PubMed Central

    Sztein, Marcelo B.; Salerno-Goncalves, Rosangela; McArthur, Monica A.

    2014-01-01

    Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, and S. Paratyphi A and B, causative agents of paratyphoid fever, are major public health threats throughout the world. Although two licensed typhoid vaccines are currently available, they are only moderately protective and immunogenic necessitating the development of novel vaccines. A major obstacle in the development of improved typhoid, as well as paratyphoid vaccines is the lack of known immunological correlates of protection in humans. Considerable progress has been made in recent years in understanding the complex adaptive host responses against S. Typhi. Although the induction of S. Typhi-specific antibodies (including their functional properties) and memory B cells, as well as their cross-reactivity with S. Paratyphi A and S. Paratyphi B has been shown, the role of humoral immunity in protection remains undefined. Cell mediated immunity (CMI) is likely to play a dominant role in protection against enteric fever pathogens. Detailed measurements of CMI performed in volunteers immunized with attenuated strains of S. Typhi have shown, among others, the induction of lymphoproliferation, multifunctional type 1 cytokine production, and CD8+ cytotoxic T-cell responses. In addition to systemic responses, the local microenvironment of the gut is likely to be of paramount importance in protection from these infections. In this review, we will critically assess current knowledge regarding the role of CMI and humoral immunity following natural S. Typhi and S. Paratyphi infections, experimental challenge, and immunization in humans. We will also address recent advances regarding cross-talk between the host’s gut microbiota and immunization with attenuated S. Typhi, mechanisms of systemic immune responses, and the homing potential of S. Typhi-specific B- and T-cells to the gut and other tissues. PMID:25386175

  5. Tamoxifen persistently disrupts the humoral adaptive immune response of gilthead seabream (Sparus aurata L.).

    PubMed

    Rodenas, M C; Cabas, I; Abellán, E; Meseguer, J; Mulero, V; García-Ayala, A

    2015-12-01

    There is increasing concern about the possible effect of pharmaceutical compounds may have on the fish immune system. Bath exposition of 17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives, altered the immune response of the gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost. Tamoxifen (Tmx) is a selective estrogen-receptor modulator used in hormone replacement therapy, the effects of which are unknown in fish immunity. This study aims to investigate the effects of dietary administration of EE2 (5 μg/g food) and Tmx (100 μg/g food) on the immune response of gilthead seabream, and the capacity of the immune system to recover its functionality after a recovery period. The results show for the first time the reversibility of the effect of EE2 and Tmx on the fish immune response. Tmx promoted a transient alteration in hepatic vitellogenin gene expression of a different magnitude to that produced by EE2. Both, EE2 and Tmx inhibited the induction of interleukin-1β gene expression while reversed the inhibition of ROI production in leukocytes following vaccination. However, none of these effects were observed after ceasing EE2 and Tmx exposure. EE2 and Tmx stimulated the antibody response of vaccinated fish although Tmx, but not EE2, altered the antibody response and modulated the percentage of IgM(+) B lymphocytes of vaccinated fish during the recovery phase. Taken together, our results suggest that EE2 and Tmx might alter the capacity of fish to appropriately respond to infection and show that Tmx has a long-lasting effect on humoral adaptive immunity. PMID:26234710

  6. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    PubMed

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  7. Genome complexity in the coelacanth is reflected in its adaptive immune system

    USGS Publications Warehouse

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  8. Intense exercise training and immune function.

    PubMed

    Gleeson, Michael; Williams, Clyde

    2013-01-01

    Regular moderate exercise reduces the risk of infection compared with a sedentary lifestyle, but very prolonged bouts of exercise and periods of intensified training are associated with increased infection risk. In athletes, a common observation is that symptoms of respiratory infection cluster around competitions, and even minor illnesses such as colds can impair exercise performance. There are several behavioral, nutritional and training strategies that can be adopted to limit exercise-induced immunodepression and minimize the risk of infection. Athletes and support staff can avoid transmitting infections by avoiding close contact with those showing symptoms of infection, by practicing good hand, oral and food hygiene and by avoiding sharing drinks bottles and cutlery. Medical staff should consider appropriate immunization for their athletes particularly when travelling to international competitions. The impact of intensive training stress on immune function can be minimized by getting adequate sleep, minimizing psychological stress, avoiding periods of dietary energy restriction, consuming a well-balanced diet that meets energy and protein needs, avoiding deficiencies of micronutrients (particularly iron, zinc, and vitamins A, D, E, B6 and B12), ingesting carbohydrate during prolonged training sessions, and consuming - on a daily basis - plant polyphenol containing supplements or foodstuffs and Lactobacillus probiotics. PMID:23899753

  9. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances.

    PubMed

    Haapakoski, Rita; Ebmeier, Klaus P; Alenius, Harri; Kivimäki, Mika

    2016-04-01

    The inflammation theory of depression, proposed over 20years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced 'omics' technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. PMID:26631274

  10. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances

    PubMed Central

    Haapakoski, Rita; Ebmeier, Klaus P.; Alenius, Harri; Kivimäki, Mika

    2016-01-01

    The inflammation theory of depression, proposed over 20 years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced ‘omics’ technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. PMID:26631274

  11. Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense.

    PubMed

    Price, Aryn A; Grakoui, Arash; Weiss, David S

    2016-04-01

    Clustered, regularly interspaced, short palindromic repeats - CRISPR-associated (CRISPR-Cas) systems - are sequence-specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense. PMID:26852268

  12. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma.

    PubMed

    Schmudde, Inken; Laumonnier, Yves; Köhl, Jörg

    2013-02-01

    Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions. PMID:23694705

  13. Administration of DNA Encoding the Interleukin-27 Gene Augments Antitumour Responses through Non-adaptive Immunity.

    PubMed

    Li, Q; Sato, A; Shimozato, O; Shingyoji, M; Tada, Y; Tatsumi, K; Shimada, H; Hiroshima, K; Tagawa, M

    2015-10-01

    DNA-mediated immunization of a tumour antigen is a possible immunotherapy for cancer, and interleukin (IL)-27 has diverse functions in adaptive immunity. In this study, we examined whether IL-27 DNA administration enhanced antitumour effects in mice vaccinated with DNA encoding a putative tumour antigen, β-galactosidase (β-gal). An intramuscular injection of cardiotoxin before DNA administration facilitated the exogenous gene expression. In mice received β-gal and IL-27 DNA, growth of β-gal-positive P815 tumours was retarded and survival of the mice was prolonged. Development of β-gal-positive Colon 26 tumours was suppressed by vaccination of β-gal DNA and further inhibited by additional IL-27 DNA administration or IL-12 family cytokines. Nevertheless, a population of β-gal-specific CD8(+) T cells did not increase, and production of anti-β-gal antibody was not enhanced by IL-27 DNA administration. Spleen cells from mice bearing IL-27-expressing Colon 26 tumours showed greater YAC-1-targeted cytotoxicity although CD3(-)/DX5(+) natural killer (NK) cell numbers remained unchanged. Recombinant IL-27 enhanced YAC-1-targeted cytotoxicity of IL-2-primed splenic NK cells and augmented a phosphorylation of signal transducer and activator of transcription 3 and an expression of perforin. These data collectively indicate that IL-27 DNA administration activates NK cells and augments vaccination effects of DNA encoding a tumour antigen through non-adaptive immune responses. PMID:26095954

  14. Pain's Impact on Adaptive Functioning

    ERIC Educational Resources Information Center

    Breau, L. M.; Camfield, C. S.; McGrath, P. J.; Finley, G. A.

    2007-01-01

    Background: Pain interferes with the functioning of typical children, but no study has examined its effect on children with pre-existing intellectual disabilities (ID). Methods: Caregivers of 63 children observed their children for 2-h periods and recorded in 1-week diaries: pain presence, cause, intensity and duration. Caregivers also recorded…

  15. Interferon-λ: immune functions at barrier surfaces and beyond

    PubMed Central

    Lazear, Helen M.; Nice, Timothy J.; Diamond, Michael S.

    2015-01-01

    SUMMARY When type III interferon (IFN-λ; also known as interleukin-28 (IL-28) and IL-29) was discovered in 2003, its antiviral function was expected to be analogous to the type I IFNs (IFN-α and IFN-β), via the induction of IFN-stimulated genes (ISGs). While IFN-λ stimulates expression of antiviral ISGs preferentially in cells of epithelial origin, recent studies have defined additional antiviral mechanisms in other cell types and tissues. Models of viral infection using mice lacking IFN-λ signaling and single nucleotide polymorphism (SNP) associations with human disease have expanded our understanding of the contribution of IFN-λ to the antiviral response at anatomic barriers and the immune response beyond these barriers. In this review, we highlight recent insights into the functions of IFN-λ, including its ability to restrict virus spread into the brain and to clear chronic viral infections in the gastrointestinal tract. We also discuss how IFN-λ modulates innate and adaptive immunity, autoimmunity, and tumor progression and its possible therapeutic applications in human disease. PMID:26200010

  16. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection

    PubMed Central

    Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu

    2014-01-01

    The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268

  17. Bacterial Adaptation through Loss of Function

    PubMed Central

    Donnell, Zachary N.; Liu, Julia C.; Tavazoie, Saeed

    2013-01-01

    The metabolic capabilities and regulatory networks of bacteria have been optimized by evolution in response to selective pressures present in each species' native ecological niche. In a new environment, however, the same bacteria may grow poorly due to regulatory constraints or biochemical deficiencies. Adaptation to such conditions can proceed through the acquisition of new cellular functionality due to gain of function mutations or via modulation of cellular networks. Using selection experiments on transposon-mutagenized libraries of bacteria, we illustrate that even under conditions of extreme nutrient limitation, substantial adaptation can be achieved solely through loss of function mutations, which rewire the metabolism of the cell without gain of enzymatic or sensory function. A systematic analysis of similar experiments under more than 100 conditions reveals that adaptive loss of function mutations exist for many environmental challenges. Drawing on a wealth of examples from published articles, we detail the range of mechanisms through which loss-of-function mutations can generate such beneficial regulatory changes, without the need for rare, specific mutations to fine-tune enzymatic activities or network connections. The high rate at which loss-of-function mutations occur suggests that null mutations play an underappreciated role in the early stages of adaption of bacterial populations to new environments. PMID:23874220

  18. Natural Interferon α/β–Producing Cells Link Innate and Adaptive Immunity

    PubMed Central

    Kadowaki, Norimitsu; Antonenko, Svetlana; Lau, Johnson Yiu-Nam; Liu, Yong-Jun

    2000-01-01

    Innate immune responses to pathogens critically impact the development of adaptive immune responses. However, it is not completely understood how innate immunity controls the initiation of adaptive immunities or how it determines which type of adaptive immunity will be induced to eliminate a given pathogen. Here we show that viral stimulation not only triggers natural interferon (IFN)-α/β–producing cells (IPCs) to produce vast amounts of antiviral IFN-α/β but also induces these cells to differentiate into dendritic cells (DCs). IFN-α/β and tumor necrosis factor α produced by virus-activated IPCs act as autocrine survival and DC differentiation factors, respectively. The virus-induced DCs stimulate naive CD4+ T cells to produce IFN-γ and interleukin (IL)-10, in contrast to IL-3–induced DCs, which stimulate naive CD4+ T cells to produce T helper type 2 cytokines IL-4, IL-5, and IL-10. Thus, IPCs may play two master roles in antiviral immune responses: directly inhibiting viral replication by producing large amounts of IFN-α/β, and subsequently triggering adaptive T cell–mediated immunity by differentiating into DCs. IPCs constitute a critical link between innate and adaptive immunity. PMID:10899908

  19. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes.

    PubMed

    Toben, Catherine; Baune, Bernhard T

    2015-12-01

    Historically the monoaminergic neurotransmitter system, in particular the serotonergic system, was seen as being responsible for the pathophysiology of major depressive disorder (MDD). With the advent of psychoneuroimmunology an important role of the immune system in the interface between the central nervous systems (CNS) and peripheral organ systems has emerged. In addition to the well-characterised neurobiological activities of cytokines, T cell function in the context of depression has been neglected so far. In this review we will investigate the biological roles of T cells in depression. Originally it was thought that the adaptive immune arm including T lymphocytes was excluded from the CNS. It is now clear that peripheral naïve T cells not only carry out continuous surveillance within the brain but also maintain neural plasticity. Furthermore animal studies demonstrate that regulatory T lymphocytes can provide protection against maladaptive behavioural responses associated with depression. Psychogenic stress as a major inducer of depression can lead to transient trafficking of T lymphocytes into the brain stimulating the secretion of certain neurotrophic factors and cytokines. The separate and combined mechanism of CD4 and CD8 T cell activation is likely to determine the response pattern of CNS specific neurokines and neurotrophins. Under chronic stress-induced neuroinflammatory conditions associated with depression, T cell responses may become maladaptive and can be involved in neurodegeneration. Additionally, intracellular adhesion and MHC molecule expression as well as glucocorticoid receptor expression within the brain may play a role in determining T lymphocyte functionality in depression. Taken together, T lymphocyte mechanisms, which confer susceptibility or resilience to MDD, are not yet fully understood. Further insight into the cellular and molecular mechanisms which balance the adaptive and maladaptive roles of T lymphocytes may provide a better

  20. Impact of vitamin D on immune function: lessons learned from genome-wide analysis

    PubMed Central

    Chun, Rene F.; Liu, Philip T.; Modlin, Robert L.; Adams, John S.; Hewison, Martin

    2014-01-01

    Immunomodulatory responses to the active form of vitamin D (1,25-dihydroxyvitamin D, 1,25D) have been recognized for many years, but it is only in the last 5 years that the potential role of this in normal human immune function has been recognized. Genome-wide analyses have played a pivotal role in redefining our perspective on vitamin D and immunity. The description of increased vitamin D receptor (VDR) and 1α-hydroxylase (CYP27B1) expression in macrophages following a pathogen challenge, has underlined the importance of intracrine vitamin D as key mediator of innate immune function. It is now clear that both macrophages and dendritic cells (DCs) are able to respond to 25-hydroxyvitamin D (25D), the major circulating vitamin D metabolite, thereby providing a link between the function of these cells and the variations in vitamin D status common to many humans. The identification of hundreds of primary 1,25D target genes in immune cells has also provided new insight into the role of vitamin D in the adaptive immune system, such as the modulation of antigen-presentation and T cells proliferation and phenotype, with the over-arching effects being to suppress inflammation and promote immune tolerance. In macrophages 1,25D promotes antimicrobial responses through the induction of antibacterial proteins, and stimulation of autophagy and autophagosome activity. In this way variations in 25D levels have the potential to influence both innate and adaptive immune responses. More recent genome-wide analyses have highlighted how cytokine signaling pathways can influence the intracrine vitamin D system and either enhance or abrogate responses to 25D. The current review will discuss the impact of intracrine vitamin D metabolism on both innate and adaptive immunity, whilst introducing the concept of disease-specific corruption of vitamin D metabolism and how this may alter the requirements for vitamin D in maintaining a healthy immune system in humans. PMID:24795646

  1. Impact of vitamin D on immune function: lessons learned from genome-wide analysis.

    PubMed

    Chun, Rene F; Liu, Philip T; Modlin, Robert L; Adams, John S; Hewison, Martin

    2014-01-01

    Immunomodulatory responses to the active form of vitamin D (1,25-dihydroxyvitamin D, 1,25D) have been recognized for many years, but it is only in the last 5 years that the potential role of this in normal human immune function has been recognized. Genome-wide analyses have played a pivotal role in redefining our perspective on vitamin D and immunity. The description of increased vitamin D receptor (VDR) and 1α-hydroxylase (CYP27B1) expression in macrophages following a pathogen challenge, has underlined the importance of intracrine vitamin D as key mediator of innate immune function. It is now clear that both macrophages and dendritic cells (DCs) are able to respond to 25-hydroxyvitamin D (25D), the major circulating vitamin D metabolite, thereby providing a link between the function of these cells and the variations in vitamin D status common to many humans. The identification of hundreds of primary 1,25D target genes in immune cells has also provided new insight into the role of vitamin D in the adaptive immune system, such as the modulation of antigen-presentation and T cells proliferation and phenotype, with the over-arching effects being to suppress inflammation and promote immune tolerance. In macrophages 1,25D promotes antimicrobial responses through the induction of antibacterial proteins, and stimulation of autophagy and autophagosome activity. In this way variations in 25D levels have the potential to influence both innate and adaptive immune responses. More recent genome-wide analyses have highlighted how cytokine signaling pathways can influence the intracrine vitamin D system and either enhance or abrogate responses to 25D. The current review will discuss the impact of intracrine vitamin D metabolism on both innate and adaptive immunity, whilst introducing the concept of disease-specific corruption of vitamin D metabolism and how this may alter the requirements for vitamin D in maintaining a healthy immune system in humans. PMID:24795646

  2. Ebolavirus evolves in human to minimize the detection by immune cells by accumulating adaptive mutations.

    PubMed

    Ramaiah, Arunachalam; Arumugaswami, Vaithilingaraja

    2016-06-01

    The current outbreak of Zaire ebolavirus (EBOV) lasted longer than the previous outbreaks and there is as yet no proven treatment or vaccine available. Understanding host immune pressure and associated EBOV immune evasion that drive the evolution of EBOV is vital for diagnosis as well as designing a highly effective vaccine. The aim of this study was to deduce adaptive selection pressure acting on each amino acid sites of EBOV responsible for the recent 2014 outbreak. Multiple statistical methods employed in the study include SLAC, FEL, REL, IFEL, FUBAR and MEME. Results show that a total of 11 amino acid sites from sGP and ssGP, and 14 sites from NP, VP40, VP24 and L proteins were inferred as positively and negatively selected, respectively. Overall, the function of 11 out of 25 amino acid sites under selection pressure exactly found to be involved in T cell and B-cell epitopes. We identified that the EBOV had evolved through purifying selection pressure, which is a predictor that is known to aid the virus to adapt better to the human host and subsequently reduce the efficiency of existing immunity. Furthermore, computational RNA structure prediction showed that the three synonymous nucleotide mutations in NP gene altered the RNA secondary structure and optimal base-pairing energy, implicating a possible effect on genome replication. Here, we have provided evidence that the EBOV strains involved in the recent 2014 outbreak have evolved to minimize the detection by T and B cells by accumulating adaptive mutations to increase the survival fitness. PMID:27366764

  3. Essential Role for Neutrophils in Pathogenesis and Adaptive Immunity in Chlamydia caviae Ocular Infections ▿

    PubMed Central

    Lacy, H. Marie; Bowlin, Anne K.; Hennings, Leah; Scurlock, Amy M.; Nagarajan, Uma M.; Rank, Roger G.

    2011-01-01

    Trachoma, the world's leading cause of preventable blindness, is produced by chronic ocular infection with Chlamydia trachomatis, an obligate intracellular bacterium. While many studies have focused on immune mechanisms for trachoma during chronic stages of infection, less research has targeted immune mechanisms in primary ocular infections, events that could impact chronic responses. The goal of this study was to investigate the function of neutrophils during primary chlamydial ocular infection by using the guinea pig model of Chlamydia caviae inclusion conjunctivitis. We hypothesized that neutrophils help modulate the adaptive response and promote host tissue damage. To test these hypotheses, guinea pigs with primary C. caviae ocular infections were depleted of neutrophils by using rabbit antineutrophil antiserum, and immune responses and immunopathology were evaluated during the first 7 days of infection. Results showed that neutrophil depletion dramatically decreased ocular pathology, both clinically and histologically. The adaptive response was also altered, with increased C. caviae-specific IgA titers in tears and serum and decreased numbers of CD4+ and CD8+ T cells in infected conjunctivae. Additionally, there were changes in conjunctival chemokines and cytokines, such as increased expression of IgA-promoting interleukin-5 and anti-inflammatory transforming growth factor β, along with decreased expression of T cell-recruiting CCL5 (RANTES). This study, the first to investigate the role of neutrophils in primary chlamydial ocular infection, indicates a previously unappreciated role for neutrophils in modulating the adaptive response and suggests a prominent role for neutrophils in chlamydia-associated ocular pathology. PMID:21402767

  4. Essential role for neutrophils in pathogenesis and adaptive immunity in Chlamydia caviae ocular infections.

    PubMed

    Lacy, H Marie; Bowlin, Anne K; Hennings, Leah; Scurlock, Amy M; Nagarajan, Uma M; Rank, Roger G

    2011-05-01

    Trachoma, the world's leading cause of preventable blindness, is produced by chronic ocular infection with Chlamydia trachomatis, an obligate intracellular bacterium. While many studies have focused on immune mechanisms for trachoma during chronic stages of infection, less research has targeted immune mechanisms in primary ocular infections, events that could impact chronic responses. The goal of this study was to investigate the function of neutrophils during primary chlamydial ocular infection by using the guinea pig model of Chlamydia caviae inclusion conjunctivitis. We hypothesized that neutrophils help modulate the adaptive response and promote host tissue damage. To test these hypotheses, guinea pigs with primary C. caviae ocular infections were depleted of neutrophils by using rabbit antineutrophil antiserum, and immune responses and immunopathology were evaluated during the first 7 days of infection. Results showed that neutrophil depletion dramatically decreased ocular pathology, both clinically and histologically. The adaptive response was also altered, with increased C. caviae-specific IgA titers in tears and serum and decreased numbers of CD4(+) and CD8(+) T cells in infected conjunctivae. Additionally, there were changes in conjunctival chemokines and cytokines, such as increased expression of IgA-promoting interleukin-5 and anti-inflammatory transforming growth factor β, along with decreased expression of T cell-recruiting CCL5 (RANTES). This study, the first to investigate the role of neutrophils in primary chlamydial ocular infection, indicates a previously unappreciated role for neutrophils in modulating the adaptive response and suggests a prominent role for neutrophils in chlamydia-associated ocular pathology. PMID:21402767

  5. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    PubMed

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field. PMID:27115249

  6. EFFECTS OF OZONE ON IMMUNE FUNCTION

    EPA Science Inventory

    A review of the literature reveals that ozone (O3) exposure can either suppress or enhance immune responsiveness. hese disparate effects elicited by O3 exposure depend, in large part, on the experimental design utilized, the immune parameters examined as well as the animal specie...

  7. Standard of hygiene and immune adaptation in newborn infants.

    PubMed

    Kallionpää, Henna; Laajala, Essi; Öling, Viveka; Härkönen, Taina; Tillmann, Vallo; Dorshakova, Natalya V; Ilonen, Jorma; Lähdesmäki, Harri; Knip, Mikael; Lahesmaa, Riitta

    2014-11-01

    The prevalence of immune-mediated diseases, such as allergies and type 1 diabetes, is on the rise in the developed world. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from infants born in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economic conditions). The whole blood transcriptome of Finnish and Estonian neonates differed from their Karelian counterparts, suggesting exposure to toll-like receptor (TLR) ligands and a more matured immune response in infants born in Karelia. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation in accordance with the surrounding microbial milieu. PMID:25245264

  8. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense system ...

  9. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity.

    PubMed

    Roghanian, Ali; Williams, Steven E; Sheldrake, Tara A; Brown, Tom I; Oberheim, Karen; Xing, Zhou; Howie, Sarah E M; Sallenave, Jean-Michel

    2006-05-01

    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies. PMID:16424380

  10. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    PubMed

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  11. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    PubMed Central

    Ma, Yan-Hui; Cheng, Wei-Zhi; Gong, Fang; Ma, An-Lun; Yu, Qi-Wen; Zhang, Ji-Ying; Hu, Chao-Ying; Chen, Xue-Hua; Zhang, Dong-Qing

    2008-01-01

    AIM: To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance. METHODS: In this study, an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5 × 105 cells) into BALB/c mice. The experimental treatment was orally administered with ACML-55 or PBS, followed by the inoculation of colon cancer cell line CT26. Intracellular cytokine staining was used to detect IFN-γ production by tumor antigen specific CD8+ T cells. FACS analysis was employed to profile composition and activation of CD4+, CD8+, γδ T and NK cells. RESULTS: Our results showed, compared to PBS treated mice, ACML-55 treatment significantly delayed colon cancer development in colon cancer -bearing Balb/c mice in vivo. Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells, and increased the number of tumor Ag specific CD8+ T cells. It was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells. Interestingly, ACML-55 treatment also showed increased cell number of NK, and γδT cells, indicating the role of ACML-55 in activation of innate lymphocytes. CONCLUSION: Our results demonstrate that ACML-55 therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses. PMID:18785279

  12. Adaptive Neurotechnology for Making Neural Circuits Functional .

    NASA Astrophysics Data System (ADS)

    Jung, Ranu

    2008-03-01

    Two of the most important trends in recent technological developments are that technology is increasingly integrated with biological systems and that it is increasingly adaptive in its capabilities. Neuroprosthetic systems that provide lost sensorimotor function after a neural disability offer a platform to investigate this interplay between biological and engineered systems. Adaptive neurotechnology (hardware and software) could be designed to be biomimetic, guided by the physical and programmatic constraints observed in biological systems, and allow for real-time learning, stability, and error correction. An example will present biomimetic neural-network hardware that can be interfaced with the isolated spinal cord of a lower vertebrate to allow phase-locked real-time neural control. Another will present adaptive neural network control algorithms for functional electrical stimulation of the peripheral nervous system to provide desired movements of paralyzed limbs in rodents or people. Ultimately, the frontier lies in being able to utilize the adaptive neurotechnology to promote neuroplasticity in the living system on a long-time scale under co-adaptive conditions.

  13. The influence of season, photoperiod, and pineal melatonin on immune function.

    PubMed

    Nelson, R J; Demas, G E; Klein, S L; Kriegsfeld, L J

    1995-11-01

    In addition to the well-documented seasonal cycles of mating and birth, there are also significant seasonal cycles of illness and death among many animal populations. Challenging winter conditions (i.e., low ambient temperature and decreased food availability) can directly induce death via hypothermia, starvation, or shock. Coping with these challenges can also indirectly increase morbidity and mortality by increasing glucocorticoid secretion, which can compromise immune function. Many environmental challenges are recurrent and thus predictable; animals could enhance survival, and presumably increase fitness, if they could anticipate immunologically challenging conditions in order to cope with these seasonal threats to health. The annual cycle of changing photoperiod provides an accurate indicator of time of year and thus allows immunological adjustments prior to the deterioration of conditions. Pineal melatonin codes day length information. Short day lengths enhance several aspects of immune function in laboratory studies, and melatonin appears to mediate many of the enhanced immunological effects of photoperiod. Generally, field studies report compromised immune function during the short days of autumn and winter. The conflict between laboratory and field data is addressed with a multifactor approach. The evidence for seasonal fluctuations in lymphatic tissue size and structure, as well as immune function and disease processes, is reviewed. The role of pineal melatonin and the hormones regulated by melatonin is discussed from an evolutionary and adaptive functional perspective. Finally, the clinically significance of seasonal fluctuations in immune function is presented. Taken together, it appears that seasonal fluctuations in immune parameters, mediated by melatonin, could have profound effects on the etiology and progression of diseases in humans and nonhuman animals. An adaptive functional perspective is critical to gain insights into the interaction among

  14. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  15. Immune function of Chinese formula Qingwen Baidu granule in broilers

    PubMed Central

    Fu, Shijun; Xu, Qianqian; Zhang, Zhimei; Wang, Yanping; Shen, Zhiqiang

    2015-01-01

    This study was to investigate the effects of Qingwen Baidu granules on the antibody level, immune organ index and the lymphocyte transformation of broilers. Hy-line variety white cocks of 30 days were used to evaluate the antibody titer of Newcastle Disease in each serum group, and MTT method was used to determine the T lymphocyte proliferation, and organ weighing methods to measure the immune organ index 21 days after immunization. The results showed that Qingwen Baidu granules could prolong the residue time in the body, improve the lymphocyte conversion ratio, increase the bursa, thymus and spleen index and promote immune organ development. These results suggested that Qingwen Baidu granules could improve the serum Newcastle disease antibody level, improve peripheral blood lymphocyte proliferation, enhance the cellular immune function, and elevate the immune organ index and growth, in order to raise the immune function in chicken. The above demonstrates that the Qingwen Baidu granules have significant effects on the cytoimmunity and humoral immunity, and the potentiation of the immune function in broilers. PMID:26557027

  16. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    PubMed Central

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  17. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells.

    PubMed

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E

    2016-05-01

    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system. PMID:25941086

  18. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    NASA Astrophysics Data System (ADS)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  19. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  20. Natural environmental impacts on teleost immune function.

    PubMed

    Makrinos, Daniel L; Bowden, Timothy J

    2016-06-01

    The environment in which teleosts exist can experience considerable change. Short-term changes can occur in relation to tidal movements or adverse weather events. Long-term changes can be caused by anthropogenic impacts such as climate change, which can result in changes to temperature, acidity, salinity and oxygen capacity of aquatic environments. These changes can have important impacts on the physiology of an animal, including its immune system. This can have consequences on the well-being of the animal and its ability to protect against pathogens. This review will look at recent investigations of these types of environmental change on the immune response in teleosts. PMID:26973022

  1. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Nita-Lazar, Mihai; Banerjee, Aditi; Pasek, Marta; Shridhar, Surekha; Guha, Prasun; Fernández-Robledo, José A.

    2012-01-01

    Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation. PMID:22811679

  2. Training Effects on Immune Function in Judoists

    PubMed Central

    Lee, Namju; Kim, Jongkyu; Hyung, Gu Am; Park, Jeong Hun; Kim, Sung Jin; Kim, Han Byeol; Jung, Han Sang

    2015-01-01

    Background: It has been reported that high intensity long term training in elite athletes may increase risk of immune function. Objectives: This study is to examine training effects on immunoglobulin and changes of physiological stress and physical fitness level induced by increased cold stress during 12-week winter off-season training in elite Judoists. Patients and Methods: Twenty-nine male participants (20 ± 1 years) were assigned to only Judo training (CG, n = 9), resistance training combined with Judo training (RJ, n = 10), and interval training combined with Judo training (IJ, n = 10). Blood samples collected at rest, immediately after all-out exercise, and 30-minute recovery period were analyzed for testing IgA, IgG, and IgM, albumin and catecholamine levels. Results: VO2max and anaerobic mean power in IJ (P < 0.05) and anaerobic power in RJ (P < 0.05) were significantly increased after 12-week training compared to CG. There was no significant interaction effect (group × period) in albumin after 12-week training; however, there was a significant interaction effect (group × period) in epinephrine after 12-week training (F (4, 52) = 3.216, P = 0.002) and immediately after all-out exercise and at 30-minute recovery (F (2, 26) = 14.564, P = 0.008). There was significantly higher changes in epinephrine of RJ compared to IJ at 30-minute recovery (P = 0.045). There was a significant interaction effect (group × period) in norepinephrine after 12-week training (F (4, 52) = 8.141, P < 0.0001), at rest and immediately after all-out exercise (F (2, 26) = 9.570, P = 0.001), and immediately after all-out exercise and at 30-minute recovery (F (2, 26) = 8.862, P = 0.001). Conclusions: Winter off-season training of IJ increased physical fitness level as well as physical stress induced by overtraining. Along with increased physical stress, all groups showed reduced trend of IgA; however, there was no group difference based on different training methods. PMID:26448852

  3. Gut microbiota, immune development and function.

    PubMed

    Bengmark, Stig

    2013-03-01

    The microbiota of Westerners is significantly reduced in comparison to rural individuals living a similar lifestyle to our Paleolithic forefathers but also to that of other free-living primates such as the chimpanzee. The great majority of ingredients in the industrially produced foods consumed in the West are absorbed in the upper part of small intestine and thus of limited benefit to the microbiota. Lack of proper nutrition for microbiota is a major factor under-pinning dysfunctional microbiota, dysbiosis, chronically elevated inflammation, and the production and leakage of endotoxins through the various tissue barriers. Furthermore, the over-comsumption of insulinogenic foods and proteotoxins, such as advanced glycation and lipoxidation molecules, gluten and zein, and a reduced intake of fruit and vegetables, are key factors behind the commonly observed elevated inflammation and the endemic of obesity and chronic diseases, factors which are also likely to be detrimental to microbiota. As a consequence of this lifestyle and the associated eating habits, most barriers, including the gut, the airways, the skin, the oral cavity, the vagina, the placenta, the blood-brain barrier, etc., are increasingly permeable. Attempts to recondition these barriers through the use of so called 'probiotics', normally applied to the gut, are rarely successful, and sometimes fail, as they are usually applied as adjunctive treatments, e.g. in parallel with heavy pharmaceutical treatment, not rarely consisting in antibiotics and chemotherapy. It is increasingly observed that the majority of pharmaceutical drugs, even those believed to have minimal adverse effects, such as proton pump inhibitors and anti-hypertensives, in fact adversely affect immune development and functions and are most likely also deleterious to microbiota. Equally, it appears that probiotic treatment is not compatible with pharmacological treatments. Eco-biological treatments, with plant-derived substances, or

  4. Modulation of host adaptive immunity by hRSV proteins.

    PubMed

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  5. Stochastic stage-structured modeling of the adaptive immune system

    SciTech Connect

    Chao, D. L.; Davenport, M. P.; Forrest, S.; Perelson, Alan S.,

    2003-01-01

    We have constructed a computer model of the cytotoxic T lymphocyte (CTL) response to antigen and the maintenance of immunological memory. Because immune responses often begin with small numbers of cells and there is great variation among individual immune systems, we have chosen to implement a stochastic model that captures the life cycle of T cells more faithfully than deterministic models. Past models of the immune response have been differential equation based, which do not capture stochastic effects, or agent-based, which are computationally expensive. We use a stochastic stage-structured approach that has many of the advantages of agent-based modeling but is more efficient. Our model can provide insights into the effect infections have on the CTL repertoire and the response to subsequent infections.

  6. Modulation of host adaptive immunity by hRSV proteins

    PubMed Central

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  7. Does Exercise Alter Immune Function and Respiratory Infections?

    ERIC Educational Resources Information Center

    Nieman, David C.

    2001-01-01

    This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…

  8. Epigenetic and immune function profiles associated with posttraumatic stress disorder

    PubMed Central

    Uddin, Monica; Aiello, Allison E.; Wildman, Derek E.; Koenen, Karestan C.; Pawelec, Graham; de los Santos, Regina; Goldmann, Emily; Galea, Sandro

    2010-01-01

    The biologic underpinnings of posttraumatic stress disorder (PTSD) have not been fully elucidated. Previous work suggests that alterations in the immune system are characteristic of the disorder. Identifying the biologic mechanisms by which such alterations occur could provide fundamental insights into the etiology and treatment of PTSD. Here we identify specific epigenetic profiles underlying immune system changes associated with PTSD. Using blood samples (n = 100) obtained from an ongoing, prospective epidemiologic study in Detroit, the Detroit Neighborhood Health Study, we applied methylation microarrays to assay CpG sites from more than 14,000 genes among 23 PTSD-affected and 77 PTSD-unaffected individuals. We show that immune system functions are significantly overrepresented among the annotations associated with genes uniquely unmethylated among those with PTSD. We further demonstrate that genes whose methylation levels are significantly and negatively correlated with traumatic burden show a similar strong signal of immune function among the PTSD affected. The observed epigenetic variability in immune function by PTSD is corroborated using an independent biologic marker of immune response to infection, CMV—a typically latent herpesvirus whose activity was significantly higher among those with PTSD. This report of peripheral epigenomic and CMV profiles associated with mental illness suggests a biologic model of PTSD etiology in which an externally experienced traumatic event induces downstream alterations in immune function by reducing methylation levels of immune-related genes. PMID:20439746

  9. Adaptive functional systems: Learning with chaos

    NASA Astrophysics Data System (ADS)

    Komarov, M. A.; Osipov, G. V.; Burtsev, M. S.

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.

  10. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    USGS Publications Warehouse

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  11. Validation of Procedures for Monitoring Crewmember Immune Function SDBI-1900, SMO-015 - Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Nehlsen-Cannarella, Sandra; Morukov, Boris; Pierson, Duane; Sams, Clarence

    2007-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk from prolonged immune dysregulation during space flight are not yet determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight condition. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flight-compatible immune monitoring strategy. Characterization of the clinical risk and the development of a monitoring strategy are necessary prerequisite activities prior to validating countermeasures. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers immune system. Pre-flight, in-flight and post-flight assessments of immune status, immune function, viral reactivation and physiological stress will be performed. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter landing day assessments. The overall status of the immune system during flight (activation

  12. A cascade reaction network mimicking the basic functional steps of acquired immune response

    PubMed Central

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-01-01

    Biological systems use complex ‘information processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS which we call Adaptive Immune Response Simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system which responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner which is superficially similar to the most basic responses of the vertebrate acquired immune system, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices. PMID:26391084

  13. Transferred interbacterial antagonism genes augment eukaryotic innate immune function

    PubMed Central

    Chou, Seemay; Daugherty, Matthew D.; Peterson, S. Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L.; Fritz-Laylin, Lillian K.; Ferrin, Michael A.; Harding, Brittany N.; Jacobs-Wagner, Christine; Yang, X. Frank; Vollmer, Waldemar; Malik, Harmit S.

    2015-01-01

    Horizontal gene transfer (HGT) allows organisms to rapidly acquire adaptive traits1. Though documented instances of HGT from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option2. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce anti-bacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system (T6SS)3. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years via purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the etiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for facile co-option by eukaryotic innate immune systems. PMID:25470067

  14. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    PubMed Central

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  15. Predictors of immune function in space flight

    NASA Astrophysics Data System (ADS)

    Shearer, William T.; Zhang, Shaojie; Reuben, James M.; Lee, Bang-Ning; Butel, Janet S.

    2007-02-01

    Of all of the environmental conditions of space flight that might have an adverse effect upon human immunity and the incidence of infection, space radiation stands out as the single-most important threat. As important as this would be on humans engaged in long and deep space flight, it obviously is not possible to plan Earth-bound radiation and infection studies in humans. Therefore, we propose to develop a murine model that could predict the adverse effects of space flight radiation and reactivation of latent virus infection for humans. Recent observations on the effects of gamma and latent virus infection demonstrate latent virus reactivation and loss of T cell mediated immune responses in a murine model. We conclude that using this small animal method of quantitating the amounts of radiation and latent virus infection and resulting alterations in immune responses, it may be possible to predict the degree of immunosuppression in interplanetary space travel for humans. Moreover, this model could be extended to include other space flight conditions, such as microgravity, sleep deprivation, and isolation, to obtain a more complete assessment of space flight risks for humans.

  16. Flavonoids and immune function in human: a systematic review.

    PubMed

    Peluso, Ilaria; Miglio, Cristiana; Morabito, Giuseppa; Ioannone, Francesca; Serafini, Mauro

    2015-01-01

    Flavonoids, through a modulation of immune function, have been suggested to be involved in the role played by plant foods in disease prevention. We performed a systematic search in the MEDLINE database to review the effect of flavonoid-rich foods and flavonoids supplements on immune function. A total of 58 studies, were identified as suitable: 41 addressed in vivo proinflammatory cytokines and 15 measured ex vivo markers of immune function. According to our findings and on the basis of single food items, the number of studies in humans is limited and, for galenic supplements, only quercetin has been investigated. More evidences are needed to clarify the role of flavonoids as modulator of immune function in humans. PMID:24915384

  17. The placenta in toxicology. Part II: Systemic and local immune adaptations in pregnancy.

    PubMed

    Svensson-Arvelund, Judit; Ernerudh, Jan; Buse, Eberhard; Cline, J Mark; Haeger, Jan-Dirk; Dixon, Darlene; Markert, Udo R; Pfarrer, Christiane; De Vos, Paul; Faas, Marijke M

    2014-01-01

    During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic changes are induced by contact of maternal blood with placental factors and include enhanced innate immunity with increased activation of granulocytes and nonclassical monocytes. Although a bias toward T helper (Th2) and regulatory T cell (Treg) immunity has been associated with healthy pregnancy, the relationship between different circulating Th cell subsets is not straightforward. Instead, these adaptations appear most evidently at the fetal-maternal interface, where for instance Tregs are enriched and promote fetal tolerance. Also innate immune cells, that is, natural killer cells and macrophages, are enriched, constituting the majority of decidual leukocytes. These cells not only contribute to immune regulation but also aid in establishing the placenta by promoting trophoblast recruitment and angiogenesis. Thus, proper interaction between leukocytes and placental trophoblasts is necessary for normal placentation and immune adaptation. Consequently, spontaneous maladaptation or interference of the immune system with toxic substances may be important contributing factors for the development of pregnancy complications such as preeclampsia, preterm labor, and recurrent miscarriages. PMID:23531796

  18. Plasma polychlorinated biphenyl concentrations and immune function in postmenopausal women

    SciTech Connect

    Spector, June T.; De Roos, Anneclaire J.; Ulrich, Cornelia M.; Sheppard, Lianne; Sjoedin, Andreas; Wener, Mark H.; Wood, Brent; and others

    2014-05-01

    Background: Polychlorinated biphenyl (PCB) exposure has been associated with non-Hodgkin lymphoma in several studies, and the immune system is a potential mediator. Objectives: We analyzed associations of plasma PCBs with immune function measures. We hypothesized that higher plasma PCB concentrations are associated with lower immune function cross-sectionally, and that increases in PCB concentrations over a one year period are associated with decreases in immune function. Methods: Plasma PCB concentrations and immune function [natural killer (NK) cell cytotoxicity and PHA-induced T-lymphocyte proliferation (PHA-TLP)] were measured at baseline and one year in 109 postmenopausal overweight women participating in an exercise intervention study in the Seattle, Washington (USA) area. Mixed models, with adjustment for body mass index and other potential confounders, were used to estimate associations of PCBs with immune function cross-sectionally and longitudinally. Results: Associations of PCBs with immune function measures differed across groups of PCBs (e.g., medium- and high-chlorinated and dioxin-like [mono-ortho-substituted]) and by the time frame for the comparison (cross-sectional vs. longitudinal). Higher concentrations of medium- and high-chlorinated PCBs were associated with higher PHA-TLP cross-sectionally but not longitudinally. The mean decrease in 0.5 µg/mL PHA-TLP/50.0 pmol/g-lipid increase in dioxin-like PCBs over one year was 51.6 (95% confidence interval 2.7, 100.5; P=0.039). There was no association between plasma PCBs and NK cytotoxicity. Conclusions: These results do not provide strong evidence of impaired cellular immunity from PCB exposure. Larger longitudinal studies with greater variability in PCB exposures are needed to further examine temporal associations of PCBs with immune function. - Highlights: • Plasma PCBs and immune function were measured in 109 women at baseline and one year. • Immune measures included T lymphocyte proliferation

  19. Bifurcation into functional niches in adaptation.

    PubMed

    White, Justin S; Adami, Christoph

    2004-01-01

    One of the central questions in evolutionary biology concerns the dynamics of adaptation and diversification. This issue can be addressed experimentally if replicate populations adapting to identical environments can be investigated in detail. We have studied 501 such replicas using digital organisms adapting to at least two fundamentally different functional niches (survival strategies) present in the same environment: one in which fast replication is the way to live, and another where exploitation of the environment's complexity leads to complex organisms with longer life spans and smaller replication rates. While these two modes of survival are closely analogous to those expected to emerge in so-called r and K selection scenarios respectively, the bifurcation of evolutionary histories according to these functional niches occurs in identical environments, under identical selective pressures. We find that the branching occurs early, and leads to drastic phenotypic differences (in fitness, sequence length, and gestation time) that are permanent and irreversible. This study confirms an earlier experimental effort using microorganisms, in that diversification can be understood at least in part in terms of bifurcations on saddle points leading to peak shifts, as in the picture drawn by Sewall Wright. PMID:15107226

  20. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation.

    PubMed

    Siggs, Owen M; Miosge, Lisa A; Daley, Stephen R; Asquith, Kelly; Foster, Paul S; Liston, Adrian; Goodnow, Christopher C

    2015-03-15

    Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies. PMID:25662996

  1. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2008-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) from prolonged immune dysregulation during exploration-class space flight has not yet been determined, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. Each of the clinical events resulting from immune dysfunction has the potential to impact mission critical objectives during exploration-class missions. To date, precious little in-flight immune data has been generated to assess this phenomenon. The majority of recent flight immune studies have been post-flight assessments, which may not accurately reflect the in-flight status of immunity as it resolves over prolonged flight. There are no procedures currently in place to monitor immune function or its effect on crew health. The objective of this Supplemental Medical Objective (SMO) is to develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. This SMO will assess immunity, latent viral reactivation and physiological stress during both short and long duration flights. Upon completion, it is expected that any clinical risks resulting from the adverse effects of space flight on the human immune system will have been determined. In addition, a flight-compatible immune monitoring strategy will have been developed with which countermeasures validation could be performed. This study will determine, to the best level allowed by current technology, the in-flight status of crewmembers' immune systems. The in-flight samples will allow a distinction between legitimate in-flight alterations and the physiological stresses of landing and readaptation which are believed to alter R+0 assessments. The overall status of the immune system during flight

  2. Modulatory Effects of Antidepressant Classes on the Innate and Adaptive Immune System in Depression.

    PubMed

    Eyre, H A; Lavretsky, H; Kartika, J; Qassim, A; Baune, B T

    2016-05-01

    Current reviews exploring for unique immune-modulatory profiles of antidepressant classes are limited by focusing mainly on cytokine modulation only and neglecting other aspects of the innate and adaptive immune system. These reviews also do not include recent comparative clinical trials, immune-genetic studies and therapeutics with unique neurotransmitter profiles (e. g., agomelatine). This systematic review extends the established literature by comprehensively reviewing the effects of antidepressants classes on both the innate and adaptive immune system. Antidepressants appear, in general, to reduce pro-inflammatory factor levels, particularly C-reactive protein (CRP), tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We caution against conclusions as to which antidepressant possesses the greater anti-inflammatory effect, given the methodological heterogeneity among studies and the small number of comparative studies. The effects of antidepressant classes on adaptive immune factors are complex and poorly understood, and few studies have been conducted. Methodological heterogeneity is high among these studies (e. g., length of study, cohort characteristics, dosage used and immune marker analysis). We recommend larger, comparative studies - in clinical and pre-clinical populations. PMID:26951496

  3. FcRn: The architect behind the immune and non-immune functions of IgG and albumin

    PubMed Central

    Pyzik, Michal; Rath, Timo; Lencer, Wayne I.; Baker, Kristi

    2015-01-01

    The neonatal Fc receptor (FcRn) belongs to the extensive and functionally divergent family of MHC molecules. Contrary to classical MHC family members, FcRn possesses little diversity and is unable to present antigens. Instead, through its capacity to bind IgG and albumin with high affinity at low pH, it regulates the serum half-lives of both of these proteins. In addition, FcRn plays important role in immunity at mucosal and systemic sites through both its ability to affect the lifespan of IgG as well as its participation in innate and adaptive immune responses. Even though the details of its biology are still emerging, the property of FcRn to rescue albumin and IgG from early degradation represents an attractive approach to alter the plasma half-life of pharmaceuticals. Here, we will review some of the most novel aspects of FcRn biology, both immune as well as non-immune, and provide some examples of FcRn-based therapies. PMID:25934922

  4. Immune functions of immunoglobulin Y isolated from egg yolk of hens immunized with various infectious bacteria.

    PubMed

    Sugita-Konishi, Y; Shibata, K; Yun, S S; Hara-Kudo, Y; Yamaguchi, K; Kumagai, S

    1996-05-01

    We studied the immune functions of IgY obtained from hens immunized with a mixture of formalin-treated pathogenic bacteria. The IgY inhibited the growth of Pseudomonas aeruginosa, the production of Staphylococcus aureus enterotoxin-A, and adhesion of Salmonella enteritidis to cultured human intestinal cells (Caco 2). The results indicated that IgY specific for plural bacteria has effects useful toward prevention of bacterial diseases. PMID:8704318

  5. The interplay between the microbiome and the adaptive immune response in cancer development

    PubMed Central

    Russo, Edda; Taddei, Antonio; Ringressi, Maria Novella; Ricci, Federica; Amedei, Amedeo

    2016-01-01

    The data from different studies suggest a bacterial role in cancer genesis/progression, often modulating the local immune response. This is particularly so at the mucosal level where the bacterial presence is strong and the immune system is highly reactive. The epithelial surfaces of the body, such as the skin and mucosa, are colonized by a vast number of microorganisms, which represent the so-called normal microbiome. Normally the microbiome does not cause a proinflammatory response because the immune system has developed different strategies for the tolerance of commensal bacteria, but when these mechanisms are impaired or new pathogenic bacteria are introduced into this balanced system, the immune system reacts to the microbiome and can trigger tumor growth in the intestine. In this review, we discuss the potential role of the bacterial microbiome in carcinogenesis, focusing on the direct and indirect immune adaptive mechanisms, that the bacteria can modulate in different ways. PMID:27366226

  6. Complement activation pathways: a bridge between innate and adaptive immune responses in asthma.

    PubMed

    Wills-Karp, Marsha

    2007-07-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, is no exception. The emerging paradigm is that C3a production at the airway surface serves as a common pathway for the induction of Th2-mediated inflammatory responses to a variety of environmental triggers of asthma (i.e., allergens, pollutants, viral infections, cigarette smoke). In contrast, C5a plays a dual immunoregulatory role by protecting against the initial development of a Th2-polarized adaptive immune response via its ability to induce tolerogenic dendritic cell subsets. On the other hand, C5a drives type 2-mediated inflammatory responses once inflammation ensues. Thus, alterations in the balance of generation of the various components of the complement pathway either due to environmental exposure changes or genetic alterations in genes of the complement cascade may underlie the recent rise in asthma prevalence in westernized countries. PMID:17607007

  7. Functional genomic analysis of the Drosophila immune response.

    PubMed

    Valanne, Susanna

    2014-01-01

    Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species. PMID:23707784

  8. Aging and immune function: a possible role for growth hormone.

    PubMed

    Gelato, M C

    1996-01-01

    Elderly individuals have four to five times the case rate of cancer, tuberculosis and herpes zoster and six to seven times the fatality rate from pneumonia compared to young adults. This may be causally related to two changes that occur with aging, i.e. decreased growth hormone (GH)/insulin-like growth factor-1 (IGF-1) production and decreased immune function. Data from our laboratory as well as others have shown that, based on either GH secretory dynamics or IGF-1 levels, approximately 40% of adults aged 60 and older are GH deficient. In the same population of subjects, immune function decreases such that there is a decline in cell-mediated and humoral immune responsiveness. Some of these immune deficits have been shown to be reversed in humans and primates by GH and/or IGF-1 treatment. This paper will review some of these data. PMID:8742118

  9. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children

    PubMed Central

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-01-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles–mumps–rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3–5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  10. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    PubMed

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  11. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity

    PubMed Central

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W.; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis. PMID:26317499

  12. Ecological adaptation determines functional mammalian olfactory subgenomes

    PubMed Central

    Hayden, Sara; Bekaert, Michaël; Crider, Tess A.; Mariani, Stefano; Murphy, William J.; Teeling, Emma C.

    2010-01-01

    The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families. PMID:19952139

  13. Roles for major histocompatibility complex glycosylation in immune function

    PubMed Central

    Ryan, Sean O.

    2013-01-01

    The major histocompatibility complex (MHC) glycoprotein family, also referred to as human leukocyte antigens, present endogenous and exogenous antigens to T lymphocytes for recognition and response. These molecules play a central role in enabling the immune system to distinguish self from non-self, which is the basis for protective immunity against pathogenic infections and disease while at the same time representing a serious obstacle for tissue transplantation. All known MHC family members, like the majority of secreted, cell surface, and other immune-related molecules, carry asparagine (N)-linked glycans. The immune system has evolved increasing complexity in higher-order organisms along with a more complex pattern of protein glycosylation, a relationship that may contribute to immune function beyond the early protein quality control events in the endoplasmic reticulum that are commonly known. The broad MHC family maintains peptide sequence motifs for glycosylation at sites that are highly conserved across evolution, suggesting importance, yet functional roles for these glycans remain largely elusive. In this review, we will summarize what is known about MHC glycosylation and provide new insight for additional functional roles for this glycoprotein modification in mediating immune responses. PMID:22461020

  14. Robust, Adaptive Functional Regression in Functional Mixed Model Framework

    PubMed Central

    Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.

    2012-01-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient

  15. Generation of Individual Diversity: A Too Neglected Fundamental Property of Adaptive Immune System

    PubMed Central

    Muraille, Eric

    2014-01-01

    The fitness gains resulting from development of the adaptive immune system (AIS) during evolution are still the subject of hot debate. A large random repertoire of antigenic receptors is costly to develop and could be the source of autoimmune reactions. And yet, despite their drawbacks, AIS-like systems seem to have been independently acquired in several phyla of metazoans with very different anatomies, longevities, and lifestyles. This article is a speculative attempt to explore the selective pressures, which favored this striking convergent evolution. It is well known that the AIS enables an organism to produce a specific immune response against all natural or artificial antigenic structures. However, it is frequently neglected that this response is highly variable among individuals. In practice, each individual possesses a “private” adaptive immune repertoire. This individualization of immune defenses implies that invasion and escape immune mechanisms developed by pathogens will certainly not always be successful as the specific targets and organization of the immune response are somewhat unpredictable. In a population, where individuals display heterogeneous immune responses to infection, the probability that a pathogen is able to infect all individuals could be reduced compared to a homogeneous population. This suggests that the individual diversity of the immune repertoire is not a by-product of the AIS but of its fundamental properties and could be in part responsible for repeated selection and conservation of the AIS during metazoan evolution. The capacity of the AIS to improve the management of cooperative or parasitic symbiotic relationships at the individual level could be a secondary development due to its progressive integration into the innate immune system. This hypothesis constitutes a new scenario for AIS emergence and explains the selection of MHC restriction and MHC diversification. PMID:24860570

  16. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  17. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    PubMed Central

    Bullens, Dominique M. A.; Decraene, Ann; Seys, Sven; Dupont, Lieven J.

    2013-01-01

    Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A), called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases. PMID:23401702

  18. Structure-informed insights for NLR functioning in plant immunity.

    PubMed

    Sukarta, Octavina C A; Slootweg, Erik J; Goverse, Aska

    2016-08-01

    To respond to foreign invaders, plants have evolved a cell autonomous multilayered immune system consisting of extra- and intracellular immune receptors. Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) mediate recognition of pathogen effectors inside the cell and trigger a host specific defense response, often involving controlled cell death. NLRs consist of a central nucleotide-binding domain, which is flanked by an N-terminal CC or TIR domain and a C-terminal leucine-rich repeat domain (LRR). These multidomain proteins function as a molecular switch and their activity is tightly controlled by intra and inter-molecular interactions. In contrast to metazoan NLRs, the structural basis underlying NLR functioning as a pathogen sensor and activator of immune responses in plants is largely unknown. However, the first crystal structures of a number of plant NLR domains were recently obtained. In addition, biochemical and structure-informed analyses revealed novel insights in the cooperation between NLR domains and the formation of pre- and post activation complexes, including the coordinated activity of NLR pairs as pathogen sensor and executor of immune responses. Moreover, the discovery of novel integrated domains underscores the structural diversity of NLRs and provides alternative models for how these immune receptors function in plants. In this review, we will highlight these recent advances to provide novel insights in the structural, biochemical and molecular aspects involved in plant NLR functioning. PMID:27208725

  19. Th17 Cell Plasticity and Functions in Cancer Immunity

    PubMed Central

    Guéry, Leslie; Hugues, Stéphanie

    2015-01-01

    Th17 cells represent a particular subset of T helper lymphocytes characterized by high production of IL-17 and other inflammatory cytokines. Th17 cells participate in antimicrobial immunity at mucosal and epithelial barriers and particularly fight against extracellular bacteria and fungi. While a role for Th17 cells in promoting inflammation and autoimmune disorders has been extensively and elegantly demonstrated, it is still controversial whether and how Th17 cells influence tumor immunity. Although Th17 cells specifically accumulate in many different types of tumors compared to healthy tissues, the outcome might however differ from a tumor type to another. Th17 cells were consequently associated with both good and bad prognoses. The high plasticity of those cells toward cells exhibiting either anti-inflammatory or in contrast pathogenic functions might contribute to Th17 versatile functions in the tumor context. On one hand, Th17 cells promote tumor growth by inducing angiogenesis (via IL-17) and by exerting themselves immunosuppressive functions. On the other hand, Th17 cells drive antitumor immune responses by recruiting immune cells into tumors, activating effector CD8+ T cells, or even directly by converting toward Th1 phenotype and producing IFN-γ. In this review, we are discussing the impact of the tumor microenvironment on Th17 cell plasticity and function and its implications in cancer immunity. PMID:26583099

  20. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    PubMed Central

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708

  1. Genotype and gene expression associations with immune function in Drosophila.

    PubMed

    Sackton, Timothy B; Lazzaro, Brian P; Clark, Andrew G

    2010-01-01

    It is now well established that natural populations of Drosophila melanogaster harbor substantial genetic variation associated with physiological measures of immune function. In no case, however, have intermediate measures of immune function, such as transcriptional activity of immune-related genes, been tested as mediators of phenotypic variation in immunity. In this study, we measured bacterial load sustained after infection of D. melanogaster with Serratia marcescens, Providencia rettgeri, Enterococcus faecalis, and Lactococcus lactis in a panel of 94 third-chromosome substitution lines. We also measured transcriptional levels of 329 immune-related genes eight hours after infection with E. faecalis and S. marcescens in lines from the phenotypic tails of the test panel. We genotyped the substitution lines at 137 polymorphic markers distributed across 25 genes in order to test for statistical associations among genotype, bacterial load, and transcriptional dynamics. We find that genetic polymorphisms in the pathogen recognition genes (and particularly in PGRP-LC, GNBP1, and GNBP2) are most significantly associated with variation in bacterial load. We also find that overall transcriptional induction of effector proteins is a significant predictor of bacterial load after infection with E. faecalis, and that a marker upstream of the recognition gene PGRP-SD is statistically associated with variation in both bacterial load and transcriptional induction of effector proteins. These results show that polymorphism in genes near the top of the immune system signaling cascade can have a disproportionate effect on organismal phenotype due to the amplification of minor effects through the cascade. PMID:20066029

  2. CsBAFF, a Teleost B Cell Activating Factor, Promotes Pathogen-Induced Innate Immunity and Vaccine-Induced Adaptive Immunity

    PubMed Central

    Sun, Yun; Sun, Li

    2015-01-01

    B cell activating factor (BAFF) is a member of the tumor necrosis factor family that is known to play an important role in B cell activation, proliferation, and differentiation in mammals. However, studies of BAFF in teleosts are very limited and its function, in particular that under in vivo conditions, is essentially unknown. In this study, we conducted in vivo as well as in vitro functional analyses of a BAFF homologue (CsBAFF) from the teleost fish tongue sole (Cynoglossus semilaevis). CsBAFF is composed of 261 residues and shares moderate sequence identities with known BAFFs of other teleosts. CsBAFF expression was most abundant in immune organs and was upregulated during bacterial infection. Purified recombinant CsBAFF (rCsBAFF) bound to tongue sole lymphocytes and promoted cellular proliferation and survival. The results of an in vivo study showed that CsBAFF overexpression in tongue sole significantly enhanced macrophage activation and reduced bacterial infection in fish tissues, whereas knockdown of CsBAFF expression resulted in increased bacterial dissemination and colonization in fish tissues. Furthermore, vaccination studies showed that CsBAFF enhanced the immunoprotection of a DNA vaccine and augmented the production of specific serum antibodies. Taken together, these results provide the first in vivo evidence to indicate that teleost BAFF is an immunostimulator that significantly contributes to the innate antibacterial immune response and vaccine-induced adaptive immune response. PMID:26295165

  3. Growth hormone-insulinlike growth factor I and immune function.

    PubMed

    Gelato, M C

    1993-04-01

    Growth hormone (GH) and insulinlike growth factor I (IGF-I) may be part of a neuroendocrine immune axis that stimulates cellular proliferation of primary lymphoid organs (bone marrow, thymus) as well as stimulates activation of peripheral lymphocytes and macrophages to enhance specific immune responses. GH can also stimulate production of thymic hormones and cytokines, and in this way impact on immune function. It is not clear whether GH and IGF-I act independently or whether the action of GH is mediated by local production of IGF-I by lymphocytes. Both GH and IGF-I and their receptors are present in lymphocytes. Thus, cells of the immune system may be important targets of the GH-IGF-I axis. PMID:18407143

  4. PESTICIDE EXPOSURE AND IMMUNE FUNCTION AMONG TODDLERS

    EPA Science Inventory

    Response to vaccination may be a sensitive indicator of immunollogic health in young children. Toddlers residing in an intenseive agricultural area along the US/Mexican border were enrolled in a pilot study investigating immunologic function and pesticide exposure by multiple ...

  5. Recognition of Extracellular Bacteria by NLRs and Its Role in the Development of Adaptive Immunity

    PubMed Central

    Ferrand, Jonathan; Ferrero, Richard Louis

    2013-01-01

    Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs), whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR) family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins, and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types. PMID:24155747

  6. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    PubMed

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo. PMID:26766427

  7. Essential Function for the Nuclear Protein Akirin2 in B Cell Activation and Humoral Immune Responses.

    PubMed

    Tartey, Sarang; Matsushita, Kazufumi; Imamura, Tomoko; Wakabayashi, Atsuko; Ori, Daisuke; Mino, Takashi; Takeuchi, Osamu

    2015-07-15

    Akirin2, an evolutionarily conserved nuclear protein, is an important factor regulating inflammatory gene transcription in mammalian innate immune cells by bridging the NF-κB and SWI/SNF complexes. Although Akirin is critical for Drosophila immune responses, which totally rely on innate immunity, the mammalian NF-κB system is critical not only for the innate but also for the acquired immune system. Therefore, we investigated the role of mouse Akirin2 in acquired immune cells by ablating Akirin2 function in B lymphocytes. B cell-specific Akirin2-deficient (Cd19(Cre/+)Akirin2(fl/fl)) mice showed profound decrease in the splenic follicular (FO) and peritoneal B-1, but not splenic marginal zone (MZ), B cell numbers. However, both Akirin2-deficient FO and MZ B cells showed severe proliferation defect and are prone to undergo apoptosis in response to TLR ligands, CD40, and BCR stimulation. Furthermore, B cell cycling was defective in the absence of Akirin2 owing to impaired expression of genes encoding cyclin D and c-Myc. Additionally, Brg1 recruitment to the Myc and Ccnd2 promoter was severely impaired in Akirin2-deficient B cells. Cd19(Cre/+)Akirin2(fl/fl) mice showed impaired in vivo immune responses to T-dependent and -independent Ags. Collectively, these results demonstrate that Akirin2 is critical for the mitogen-induced B cell cycle progression and humoral immune responses by controlling the SWI/SNF complex, further emphasizing the significant function of Akirin2 not only in the innate, but also in adaptive immune cells. PMID:26041538

  8. Sublingual vaccination induces mucosal and systemic adaptive immunity for protection against lung tumor challenge.

    PubMed

    Singh, Shailbala; Yang, Guojun; Schluns, Kimberly S; Anthony, Scott M; Sastry, K Jagannadha

    2014-01-01

    Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA) metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer) for harnessing the adjuvant potential of natural killer T (NKT) cells, which effectively bridge innate and adaptive arms of the immune system. The protective efficacy of immunization with OVA plus aGalCer was antigen-specific as immunized mice challenged with parental B16 tumors lacking OVA expression were not protected. Multiple sublingual immunizations in the presence, but not in the absence of aGalCer, resulted in repeated activation of NKT cells in the draining lymph nodes, spleens, and lungs of immunized animals concurrent with progressively increasing OVA-specific CD8+ T cell responses as well as serum IgG and vaginal IgA levels. Furthermore, sublingual administration of the antigen only in the presence of the aGalCer adjuvant effectively boosted the OVA-specific immune responses. These results support potential clinical utility of sublingual route of vaccination with aGalCer-for prevention of pulmonary metastases. PMID:24599269

  9. Harnessing the natural Drosophila-parasitoid model for integrating insect immunity with functional venomics

    PubMed Central

    Heavner, Mary E.; Hudgins, Adam D.; Rajwani, Roma; Morales, Jorge; Govind, Shubha

    2014-01-01

    Drosophila species lack most hallmarks of adaptive immunity yet are highly successful against an array of natural microbial pathogens and metazoan enemies. When attacked by figitid parasitoid wasps, fruit flies deploy robust, multi-faceted innate immune responses and overcome many attackers. In turn, parasitoids have evolved immunosuppressive strategies to match, and more frequently to overcome, their hosts. We present methods to examine the evolutionary dynamics underlying anti-parasitoid host defense by teasing apart the specialized immune-modulating venoms of figitid parasitoids and, in turn, possibly delineating the roles of individual venom molecules. This combination of genetic, phylogenomic, and "functional venomics" methods in the Drosophila-parasitoid model should allow entomologists and immunologists to tackle important outstanding questions with implications across disciplines and to pioneer translational applications in agriculture and medicine. PMID:25642411

  10. Modulation of host immunity by HIV may be partly achieved through usurping host autonomic functions.

    PubMed

    Yun, A Joon; Lee, Patrick Y; Bazar, Kimberly A

    2004-01-01

    Modulation of host immunity has been observed in human immunodeficiency virus (HIV) infections. HIV is believed to influence host immunity through a variety of mechanisms including direct effects on host T cell survival, indirect effects on cytokine profile through modulation of immune cells, and modulation of endocrine functions that affect immunity such as steroids. We hypothesize that HIV infection may also alter host immunity through modulation of host sympatho-vagal balance. Specifically, we propose that HIV drives autonomic balance towards sympathetic bias, which can contribute to a T helper (Th)2 type immunity. A variety of paraviral syndromes associated with HIV infection such as QT prolongation, cachexia, cardiomyopathy, and lipodystrophy are consistent with evidence of autonomic dysfunction. Immunomodulatory effects of autonomic dysfunction toward Th2 bias are presented. A plausible mechanism by which HIV can influence autonomic balance through hypothalamic manipulation is offered. Shift to Th2 dominance is associated with HIV disease progression and can be viewed as a viral adaptation to promote its own survival. Autonomic remodeling by HIV may exemplify this phenomenon. Our hypothesis has implications for treatment of HIV and its associated syndromes. PMID:15236804

  11. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  12. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints

    PubMed Central

    Koyama, Shohei; Akbay, Esra A.; Li, Yvonne Y.; Herter-Sprie, Grit S.; Buczkowski, Kevin A.; Richards, William G.; Gandhi, Leena; Redig, Amanda J.; Rodig, Scott J.; Asahina, Hajime; Jones, Robert E.; Kulkarni, Meghana M.; Kuraguchi, Mari; Palakurthi, Sangeetha; Fecci, Peter E.; Johnson, Bruce E.; Janne, Pasi A.; Engelman, Jeffrey A.; Gangadharan, Sidharta P.; Costa, Daniel B.; Freeman, Gordon J.; Bueno, Raphael; Hodi, F. Stephen; Dranoff, Glenn; Wong, Kwok-Kin; Hammerman, Peter S.

    2016-01-01

    Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade. PMID:26883990

  13. Exercising in environmental extremes : a greater threat to immune function?

    PubMed

    Walsh, Neil P; Whitham, Martin

    2006-01-01

    Athletes, military personnel, fire fighters, mountaineers and astronauts may be required to perform in environmental extremes (e.g. heat, cold, high altitude and microgravity). Exercising in hot versus thermoneutral conditions (where core temperature is > or = 1 degrees C higher in hot conditions) augments circulating stress hormones, catecholamines and cytokines with associated increases in circulating leukocytes. Studies that have clamped the rise in core temperature during exercise (by exercising in cool water) demonstrate a large contribution of the rise in core temperature in the leukocytosis and cytokinaemia of exercise. However, with the exception of lowered stimulated lymphocyte responses after exercise in the heat, and in exertional heat illness patients (core temperature > 40 degrees C), recent laboratory studies show a limited effect of exercise in the heat on neutrophil function, monocyte function, natural killer cell activity and mucosal immunity. Therefore, most of the available evidence does not support the contention that exercising in the heat poses a greater threat to immune function (vs thermoneutral conditions). From a critical standpoint, due to ethical committee restrictions, most laboratory studies have evoked modest core temperature responses (< 39 degrees C). Given that core temperature during exercise in the field often exceeds levels associated with fever and hyperthermia (approximately 39.5 degrees C) field studies may provide an opportunity to determine the effects of severe heat stress on immunity. Field studies may also provide insight into the possible involvement of immune modulation in the aetiology of exertional heat stroke (core temperature > 40.6 degrees C) and identify the effects of acclimatisation on neuroendocrine and immune responses to exercise-heat stress. Laboratory studies can provide useful information by, for example, applying the thermal clamp model to examine the involvement of the rise in core temperature in the

  14. Synthesizing within-host and population-level selective pressures on viral populations: the impact of adaptive immunity on viral immune escape

    PubMed Central

    Volkov, Igor; Pepin, Kim M.; Lloyd-Smith, James O.; Banavar, Jayanth R.; Grenfell, Bryan T.

    2010-01-01

    The evolution of viruses to escape prevailing host immunity involves selection at multiple integrative scales, from within-host viral and immune kinetics to the host population level. In order to understand how viral immune escape occurs, we develop an analytical framework that links the dynamical nature of immunity and viral variation across these scales. Our epidemiological model incorporates within-host viral evolutionary dynamics for a virus that causes acute infections (e.g. influenza and norovirus) with changes in host immunity in response to genetic changes in the virus population. We use a deterministic description of the within-host replication dynamics of the virus, the pool of susceptible host cells and the host adaptive immune response. We find that viral immune escape is most effective at intermediate values of immune strength. At very low levels of immunity, selection is too weak to drive immune escape in recovered hosts, while very high levels of immunity impose such strong selection that viral subpopulations go extinct before acquiring enough genetic diversity to escape host immunity. This result echoes the predictions of simpler models, but our formulation allows us to dissect the combination of within-host and transmission-level processes that drive immune escape. PMID:20335194

  15. Modulation of APC Function and Anti-Tumor Immunity by Anti-Cancer Drugs

    PubMed Central

    Martin, Kea; Schreiner, Jens; Zippelius, Alfred

    2015-01-01

    Professional antigen-presenting cells (APCs), such as dendritic cells (DCs), are central to the initiation and regulation of anti-cancer immunity. However, in the immunosuppressive environment within a tumor APCs may antagonize anti-tumor immunity by inducing regulatory T cells (Tregs) or anergy of effector T cells due to lack of efficient costimulation. Hence, in an optimal setting, anti-cancer drugs have the power to reduce tumor size and thereby may induce the release of tumor antigens and, at the same time, modulate APC function toward efficient priming of antigen-specific effector T cells. Selected cytotoxic agents may revert APC dysfunction either by directly maturing DCs or through induction of immunogenic tumor cell death. Furthermore, specific cytotoxic agents may support adaptive immunity by selectively depleting regulatory subsets, such as Tregs or myeloid-derived suppressor cells. Perspectively, this will allow developing effective combination strategies with novel immunotherapies to exert complementary pressure on tumors via direct toxicity as well as immune activation. We, here, review our current knowledge on the capacity of anti-cancer drugs to modulate APC functions to promote durable anti-cancer immune responses. PMID:26483791

  16. TLR9 Signaling Is Required for Generation of the Adaptive Immune Protection in Cryptococcus neoformans-Infected Lungs

    PubMed Central

    Zhang, Yanmei; Wang, Fuyuan; Bhan, Urvashi; Huffnagle, Gary B.; Toews, Galen B.; Standiford, Theodore J.; Olszewski, Michal A.

    2010-01-01

    To determine whether TLR9 signaling contributes to the development of the adaptive immune response to cryptococcal infection, wild-type (TLR9+/+) and TLR9 knockout (TLR9−/−) BALB/c mice were infected intratracheally with 104 C. neoformans 52D. We evaluated 1) organ microbial burdens, 2) pulmonary leukocyte recruitment, 3) pulmonary and systemic cytokine induction, and 4) macrophage activation profiles. TLR9 deletion did not affect pulmonary growth during the innate phase, but profoundly impaired pulmonary clearance during the adaptive phase of the immune response (a 1000-fold difference at week 6). The impaired clearance in TLR9−/− mice was associated with: 1) significantly reduced CD4+, CD8+ T cell, and CD19+ B cell recruitment into the lungs; 2) defects in Th polarization indicated by altered cytokine responses in the lungs, lymphonodes, and spleen; and 3) diminished macrophage accumulation and altered activation profile, including robust up-regulation of Arg1 and FIZZ1 (indicators of alternative activation) and diminished induction of inducible nitric oxide synthase (an indicator of classical activation). Histological analysis revealed defects in granuloma formation and increased numbers of intracellular yeast residing within macrophages in the lungs of TLR9−/− mice. We conclude that TLR9 signaling plays an important role in the development of robust protective immunity, proper recruitment and function of effector cells (lymphocytes and macrophages), and, ultimately, effective cryptococcal clearance from the infected lungs. PMID:20581055

  17. EFFECTS OF NICKEL ON IMMUNE FUNCTION IN THE RAT

    EPA Science Inventory

    The immunotoxic potential of NiCl2 was evaluated in Fischer 344 rats following a single intramuscular injection at doses ranging from 10 to 20 mg/kg. Twenty-four hours following treatment, selected cellular and humoral immune function parameters were examined. Significant (P>0.05...

  18. Disclosure of Traumas and Immune Function: Health Implications for Psychotherapy.

    ERIC Educational Resources Information Center

    Pennebaker, James W.; And Others

    1988-01-01

    Assigned 50 healthy undergraduates the task of writing about either traumatic experiences or superficial topics for four consecutive days. Examination of cellular-immune system function and health center visits suggests that confronting traumatic experiences was physically beneficial. Discusses implications of such active confrontation of…

  19. CYCLOPHOSPHAMIDE EFFECTS ON IMMUNE FUNCTION OF EUROPEAN STARLINGS

    EPA Science Inventory

    Cyclophosphamide (CY) is a widely used immunosuppressive and chemotherapeutic agent. t is a potent immunotoxicant that suppresses some aspects of immune function in most animals in which it has been researched. n this study, CY suppressed immunological endpoints measured in starl...

  20. EFFECTS OF SELENIUM ON MALLARD DUCK REPRODUCTION AND IMMUNE FUNCTION

    EPA Science Inventory

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. Our objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of a...

  1. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  2. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    SciTech Connect

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  3. Structural Basis of Evasion of Cellular Adaptive Immunity by HIV-1 Nef

    PubMed Central

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-01-01

    The HIV-1 protein Nef inhibits antigen presentation by class I MHC (MHC-I). Here the mechanism of this activity is revealed by the crystal structure of a protein complex consisting of Nef, the MHC-I cytoplasmic domain (MHC-I CD), and the μ1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-μ1 interface encompassing the cargo-recognition site of μ1 and the proline rich strand of Nef. The Nef C-terminus induces a novel conformational change in μ1, while the N-terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on μ1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity. PMID:22705789

  4. Effects of stress on immune function: the good, the bad, and the beautiful.

    PubMed

    Dhabhar, Firdaus S

    2014-05-01

    Although the concept of stress has earned a bad reputation, it is important to recognize that the adaptive purpose of a physiological stress response is to promote survival during fight or flight. While long-term stress is generally harmful, short-term stress can be protective as it prepares the organism to deal with challenges. This review discusses the immune effects of biological stress responses that can be induced by psychological, physiological, or physical (including exercise) stressors. We have proposed that short-term stress is one of the nature's fundamental but under-appreciated survival mechanisms that could be clinically harnessed to enhance immunoprotection. Short-term (i.e., lasting for minutes to hours) stress experienced during immune activation enhances innate/primary and adaptive/secondary immune responses. Mechanisms of immuno-enhancement include changes in dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function as well as local and systemic production of cytokines. In contrast, long-term stress suppresses or dysregulates innate and adaptive immune responses by altering the Type 1-Type 2 cytokine balance, inducing low-grade chronic inflammation, and suppressing numbers, trafficking, and function of immunoprotective cells. Chronic stress may also increase susceptibility to some types of cancer by suppressing Type 1 cytokines and protective T cells and increasing regulatory/suppressor T cell function. Here, we classify immune responses as being protective, pathological, or regulatory, and discuss "good" versus "bad" effects of stress on health. Thus, short-term stress can enhance the acquisition and/or expression of immunoprotective (wound healing, vaccination, anti-infectious agent, anti-tumor) or immuno-pathological (pro-inflammatory, autoimmune) responses. In contrast, chronic stress can suppress protective immune responses and/or exacerbate pathological immune responses. Studies such as the ones discussed

  5. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D

    PubMed Central

    Wei, Ran; Christakos, Sylvia

    2015-01-01

    Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of vitamin D receptors in the different tissues and cells and, with regard to the immune system, whether or not vitamin D plays a role in the normal immune response and in modifying immune mediated diseases. In this article findings indicating that vitamin D is a key factor regulating both innate and adaptive immunity are reviewed with a focus on the molecular mechanisms involved. In addition, the physiological significance of vitamin D action, as suggested by in vivo studies in mouse models is discussed. Together, the findings indicate the importance of 1,25(OH)2D3 as a regulator of key components of the immune system. An understanding of the mechanisms involved will lead to potential therapeutic applications for the treatment of immune mediated diseases. PMID:26404359

  6. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    PubMed Central

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  7. Seminal fluid and immune adaptation for pregnancy--comparative biology in mammalian species.

    PubMed

    Schjenken, J E; Robertson, S A

    2014-09-01

    Seminal fluid delivered to the female reproductive tract at coitus not only promotes the survival and fertilizing capacity of spermatozoa, but also contains potent signalling agents that influence female reproductive physiology to improve the chances of conception and reproductive success. Male to female seminal fluid signalling occurs in rodents, domestic and livestock animals, and all other mammals examined to date. Seminal plasma is instrumental in eliciting the female response, by provision of cytokines and prostaglandins synthesized in the male accessory glands. These agents bind to receptors on target cells in the cervix and uterus, activating changes in gene expression leading to functional adaptations in the female tissues. Sperm also interact with female tract cells, although the molecular basis of this interaction is not yet defined. The consequences are increased sperm survival and fertilization rates, conditioning of the female immune response to tolerate semen and the conceptus, and molecular and cellular changes in the endometrium that facilitate embryo development and implantation. Studies in porcine, equine, bovine, ovine and canine species all show evidence of male-female signalling function for seminal fluid. There are variations between species that relate to their different reproductive strategies and behaviours, particularly the site of seminal fluid deposition and female reproductive tract anatomy. Although the details of the molecular mechanisms require more study, the available data are consistent with both the sperm and plasma fractions of seminal fluid acting in a synergistic fashion to activate inflammation-like responses and downstream female tract changes in each of these species. Insight into the biological function and molecular basis of seminal fluid signalling in the female will inform new interventions and management practices to support optimal reproductive outcomes in domestic, livestock and endangered animal species. PMID

  8. Disrupting Immune Regulation Incurs Transient Costs in Male Reproductive Function

    PubMed Central

    Belloni, Virginia; Sorci, Gabriele; Paccagnini, Eugenio; Guerreiro, Romain; Bellenger, Jérôme; Faivre, Bruno

    2014-01-01

    Background Immune protection against pathogenic organisms has been shown to incur costs. Previous studies investigating the cost of immunity have mostly focused on the metabolic requirements of immune maintenance and activation. In addition to these metabolic costs, the immune system can induce damage to the host if the immune response is mis-targeted or over-expressed. Given its non-specific nature, an over-expressed inflammatory response is often associated with substantial damage for the host. Here, we investigated the cost of an over-expressed inflammatory response in the reproductive function of male mice. Methodology/Principal Findings We experimentally blocked the receptors of an anti-inflammatory cytokine (IL-10) in male mice exposed to a mild inflammatory challenge, with each treatment having an appropriate control group. The experiment was conducted on two age classes, young (3 month old) and old (15 month old) mice, to assess any age-related difference in the cost of a disrupted immune regulation. We found that the concomitant exposure to an inflammatory insult and the blockade of IL-10 induced a reduction in testis mass, compared to the three other groups. The frequency of abnormal sperm morphology was also higher in the group of mice exposed to the inflammatory challenge but did not depend on the blockade of the IL-10. Conclusions Our results provide evidence that immune regulation confers protection against the risk of inflammation-induced infertility during infection. They also suggest that disruption of the effectors involved in the regulation of the inflammatory response can have serious fitness consequences even under mild inflammatory insult and benign environmental conditions. PMID:24400103

  9. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Sams, Clarence

    2010-01-01

    The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. To date, 18 short duration (now completed) and 8 long-duration crewmembers have completed the study. The long-duration phase of this study is ongoing. For this presentation, the final data set for the short duration subjects will be discussed.

  10. Ion channels and transporters in lymphocyte function and immunity

    PubMed Central

    Feske, Stefan; Skolnik, Edward Y.; Prakriya, Murali

    2013-01-01

    Preface Lymphocyte function is regulated by a network of ion channels and transporters in the plasma membrane of T and B cells. They modulate the cytoplasmic concentrations of diverse cations such as calcium, magnesium and zinc, which function as second messengers to regulate critical lymphocyte effector functions including cytokine production, differentiation and cytotoxicity. The repertoire of ion conducting proteins includes calcium release-activated calcium (CRAC) channels, P2X receptors, transient receptor potential (TRP) channels, potassium channels as well as magnesium and zinc transporters. This review discusses the roles of several ions channels and transporters in lymphocyte function and immunity. PMID:22699833

  11. The innate immune function of airway epithelial cells in inflammatory lung disease.

    PubMed

    Hiemstra, Pieter S; McCray, Paul B; Bals, Robert

    2015-04-01

    The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed. PMID:25700381

  12. The innate immune function of airway epithelial cells in inflammatory lung disease

    PubMed Central

    Hiemstra, Pieter S.; McCray, Paul B.; Bals, Robert

    2016-01-01

    The airway epithelium is now considered central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as a first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. In the review, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, COPD and cystic fibrosis, are discussed. PMID:25700381

  13. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems.

    PubMed

    Geenen, V

    2012-01-01

    The immune system may be considered as a sensory organ able to respond to different kinds of danger signals that are not detected by nervous cells. The immune response is not autonomous but also regulated by the central and peripheral nervous system, as well as by neuropeptides, vitamin D and neuroendocrine axes such as the corticotrope, somatotrope, thyrotrope and gonadotrope axes. During evolution, the thymus emerged concomitantly with recombinase-dependent adaptive immunity as an'immune brain' or a'master class' highly specialized in the orchestration of central immunological self-tolerance. This was an absolute requirement for survival of species because of the high risk of autotoxicity inherent to the stochastic generation of extreme diversity characterizing this novel adaptive type of immune defenses against non-self. The thymus now appears to be an obligatory intersection for the integrated evolution of the major systems of cell-to-cell signalling, the nervous, endocrine and immune systems. The presentation of many self-peptides by thymic major histocompatibility complex (MHC) proteins is controlled by the autoimmune regulator (AIRE) gene/protein and is responsible for the clonal deletion of self-reactive T cells. In the same time, by still unexplained mechanisms, MHC presentation of the same self-peptides in the thymus promotes the generation of self-specific FOXP3+ CD4+CD25+ natural regulatory T cells (nTreg) that are able to inhibit in periphery self-reactive CD4+ and CD8+ T cells having escaped the thymus censorship. Moreover, a thymus dysfunction is more and more established as the primary event driving the development of organ-specific autoimmunity, which is the tribute paid, mainly by mankind, for the preservation of self against non-self. Our novel knowledge about thymus physiology and physiopathology already serves as the basis for the development of various innovative and efficient immunomodulating strategies in pharmacology. PMID:22897070

  14. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    PubMed Central

    Lang, Pierre Olivier; Aspinall, Richard

    2015-01-01

    Vitamin D (VitD), which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response. PMID:25803545

  15. The "sweet" side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation.

    PubMed

    Inforzato, Antonio; Reading, Patrick C; Barbati, Elisa; Bottazzi, Barbara; Garlanda, Cecilia; Mantovani, Alberto

    2012-01-01

    Innate immunity represents the first line of defense against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a non-redundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the crossroad between innate immunity, inflammation, and female fertility. The human PTX3 protein contains a single N-glycosylation site that is fully occupied by complex type oligosaccharides, mainly fucosylated and sialylated biantennary glycans. Glycosylation has been implicated in a number of PTX3 activities, including neutralization of influenza viruses, modulation of the complement system, and attenuation of leukocyte recruitment. Therefore, this post translational modification might act as a fine tuner of PTX3 functions in native immunity and inflammation. Here we review the studies on PTX3, with emphasis on the glycan-dependent mechanisms underlying pathogen recognition and crosstalk with other components of the innate immune system. PMID:23316195

  16. The adaptive immune response does not influence hantavirus disease or persistence in the Syrian hamster.

    PubMed

    Prescott, Joseph; Safronetz, David; Haddock, Elaine; Robertson, Shelly; Scott, Dana; Feldmann, Heinz

    2013-10-01

    Pathogenic New World hantaviruses cause severe disease in humans characterized by a vascular leak syndrome, leading to pulmonary oedema and respiratory distress with case fatality rates approaching 40%. Hantaviruses infect microvascular endothelial cells without conspicuous cytopathic effects, indicating that destruction of the endothelium is not a mechanism of disease. In humans, high levels of inflammatory cytokines are present in the lungs of patients that succumb to infection. This, along with other observations, suggests that disease has an immunopathogenic component. Currently the only animal model available to study hantavirus disease is the Syrian hamster, where infection with Andes virus (ANDV), the primary agent of disease in South America, results in disease that closely mimics that seen in humans. Conversely, inoculation of hamsters with a passaged Sin Nombre virus (SNV), the virus responsible for most cases of disease in North America, results in persistent infection with high levels of viral replication. We found that ANDV elicited a stronger innate immune response, whereas SNV elicited a more robust adaptive response in the lung. Additionally, ANDV infection resulted in significant changes in the blood lymphocyte populations. To determine whether the adaptive immune response influences infection outcome, we depleted hamsters of CD4(+) and CD8(+) T cells before infection with hantaviruses. Depletion resulted in inhibition of virus-specific antibody responses, although the pathogenesis and replication of these viruses were unaltered. These data show that neither hantavirus replication, nor pathogenesis caused by these viruses, is influenced by the adaptive immune response in the Syrian hamster. PMID:23600567

  17. Effects of stress associated with weaning on the adaptive immune system in pigs.

    PubMed

    Kick, A R; Tompkins, M B; Flowers, W L; Whisnant, C S; Almond, G W

    2012-02-01

    This study was designed to investigate the effects of weaning age on specific components of the adaptive immune system in pigs. Twenty-three crossbred pigs were randomly assigned to 1 of 3 treatments: weaning at 14 (14D, n = 8), 21 (21D, n = 7), or 28 (28D, n = 8) d of age. Peripheral blood samples, obtained when pigs were 13, 15, 20, 22, 27, 29, and 35 d of age, were analyzed for peripheral blood cell percentages and concentrations of neutrophils, lymphocytes, T cell subsets, mature B cells, and plasma cortisol concentrations. For each of the 3 groups, weaning increased plasma cortisol concentrations (P < 0.001) and reduced BW percentage change (P < 0.017). Lymphocyte concentrations displayed a treatment effect for the 14D (P = 0.074) and 28D (P = 0.014) groups. Albeit inconsistent, lymphocyte concentrations were less in weaned pigs on the day after weaning than in pigs remaining on the sow or weaned at a younger age. Specifically, mature B cells (CD21(+)) and CD4(+)CD8(+) cells decreased (P < 0.05) after weaning at 28 d of age. Other differences occurred among treatments; however, the differences apparently were not associated with weaning. Based upon the immunological measures used in the present study, there was not an explicit benefit to the adaptive immune system for any weaning age. Early weaning did not negatively affect the adaptive immunological competence of pigs as determined by changes in populations of immune cells. PMID:21926316

  18. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis

    PubMed Central

    Khounlotham, Manirath; Kim, Wooki; Peatman, Eric; Nava, Porfirio; Medina-Contreras, Oscar; Addis, Caroline; Koch, Stefan; Fournier, Benedicte; Nusrat, Asma; Denning, Timothy L.; Parkos, Charles A.

    2012-01-01

    SUMMARY Mice lacking Junctional Adhesion Molecule A (JAM-A, encoded by F11r) exhibit enhanced intestinal epithelial permeability, bacterial translocation, and elevated colonic lymphocyte numbers, yet do not develop colitis. To investigate the contribution of adaptive immune compensation in response to increased intestinal epithelial permeability, we examined the susceptibility of F11r-/-Rag1-/- mice to acute colitis. Although negligible contributions of adaptive immunity in F11r-/-Rag1-/- mice were observed, F11r-/-Rag1-/- mice exhibited increased microflora-dependent colitis. Elimination of T cell subsets and cytokine analyses revealed a protective role for TGF-β-producing CD4+ T cells in F11r-/- mice. Additionally, loss of JAM-A resulted in elevated mucosal and serum IgA that was dependent upon CD4+ T cells and TGF-β. Absence of IgA in F11r+/+Igha-/- mice did not affect disease whereas F11r-/-Igha-/- mice displayed markedly increased susceptibility to acute injury induced colitis. These data establish a role for adaptive immune mediated protection from acute colitis under conditions of intestinal epithelial barrier compromise. PMID:22981539

  19. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease

    PubMed Central

    Allen Reish, Heather E.; Standaert, David G.

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses. PMID:25588354

  20. An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors

    PubMed Central

    Takashima, Eizo; Williams, Marni; Eiglmeier, Karin; Pain, Adrien; Guelbeogo, Wamdaogo M.; Gneme, Awa; Brito-Fravallo, Emma; Holm, Inge; Lavazec, Catherine; Sagnon, N’Fale; Baxter, Richard H.; Riehle, Michelle M.; Vernick, Kenneth D.

    2015-01-01

    Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with

  1. An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors.

    PubMed

    Mitri, Christian; Bischoff, Emmanuel; Takashima, Eizo; Williams, Marni; Eiglmeier, Karin; Pain, Adrien; Guelbeogo, Wamdaogo M; Gneme, Awa; Brito-Fravallo, Emma; Holm, Inge; Lavazec, Catherine; Sagnon, N'Fale; Baxter, Richard H; Riehle, Michelle M; Vernick, Kenneth D

    2015-12-01

    Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with

  2. Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli.

    PubMed

    Duffy, Darragh; Rouilly, Vincent; Libri, Valentina; Hasan, Milena; Beitz, Benoit; David, Mikael; Urrutia, Alejandra; Bisiaux, Aurélie; Labrie, Samuel T; Dubois, Annick; Boneca, Ivo G; Delval, Cécile; Thomas, Stéphanie; Rogge, Lars; Schmolz, Manfred; Quintana-Murci, Lluis; Albert, Matthew L

    2014-03-20

    Standardization of immunophenotyping procedures has become a high priority. We have developed a suite of whole-blood, syringe-based assay systems that can be used to reproducibly assess induced innate or adaptive immune responses. By eliminating preanalytical errors associated with immune monitoring, we have defined the protein signatures induced by (1) medically relevant bacteria, fungi, and viruses; (2) agonists specific for defined host sensors; (3) clinically employed cytokines; and (4) activators of T cell immunity. Our results provide an initial assessment of healthy donor reference values for induced cytokines and chemokines and we report the failure to release interleukin-1α as a common immunological phenotype. The observed naturally occurring variation of the immune response may help to explain differential susceptibility to disease or response to therapeutic intervention. The implementation of a general solution for assessment of functional immune responses will help support harmonization of clinical studies and data sharing. PMID:24656047

  3. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  4. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  5. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  6. MAP of F1 and V antigens from Yersinia pestis astride innate and adaptive immune response.

    PubMed

    Rai, Reeta; Das, Baijnath; Choudhary, Nageshwar; Talukdar, Ayantika; Rao, Donthamsetty Nageswara

    2015-10-01

    Yersinia pestis, a causative agent of plague, has a plethora of armors to fight against major components of innate immunity and survive within host cells. Dendritic cells and macrophages are important antigen presenting cells for effective immune response. This report is focused on the changes in DC activation and TLR2 and TLR4 expression on macrophages induced by MAP of F1 and V antigens of Y. pestis. F1 and V MAPs bear potential synthetic T and B cell epitopes from F1 and V protein respectively. We evaluated these parameters in DC's isolated from spleen and lamina propria and macrophages isolated from peritoneal lavage of mice after intranasal immunization. F1 MAP and V MAP significantly increased the expression of CD80 and CD86 on CD11c(+) dendritic cells isolated from spleen and lamina propria as well as intracellular IL-12 levels. Similarly, in macrophages derived from peritoneal cavity, the above formulation enhanced TLR2 and TLR4 expression. Again after in vitro stimulation with F1 and V MAP these macrophages produced significantly high IL12 and TNFα. The study clearly indicates involvement of DC and macrophages for efficient antigen presentation to immune cells. From this study we conclude that F1MAP and VMAP ameliorate innate immune mechanism. These two synthetic constructs exert their effect via TLR2 and TLR4, leading to the production of proinflammatory cytokines by macrophages and are able to increase DC activation, that could be helpful in generation of adaptive immunity as well as is important strong immune response. PMID:26188288

  7. Nonlinear functional approximation with networks using adaptive neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1992-01-01

    A novel mathematical framework for the rapid learning of nonlinear mappings and topological transformations is presented. It is based on allowing the neuron's parameters to adapt as a function of learning. This fully recurrent adaptive neuron model (ANM) has been successfully applied to complex nonlinear function approximation problems such as the highly degenerate inverse kinematics problem in robotics.

  8. Glutamine supplementation and immune function during heavy load training.

    PubMed

    Song, Qing-Hua; Xu, Rong-Mei; Zhang, Quan-Hai; Shen, Guo-Qing; Ma, Ming; Zhao, Xin-Ping; Guo, Yan-Hua; Wang, Yi

    2015-05-01

    Athletes with heavy training loads are prone to infectious illnesses, suggesting that their training may suppress immune function. This study sought to determine whether supplementation with the amino acid glutamine, which supports immune health, alters immune function in athletes during heavy load training. 24 athletes were randomly assigned to either an experimental group (n = 12) or a control group (n = 12). Athletes exercised using heavy training loads for 6 weeks. Athletes in the experimental group took 10 g glutamine orally once a day beginning 3 weeks after initial testing, while athletes in the control group were given a placebo. Immune function was assessed by measuring the following immunity markers: CD4⁺ and CD8⁺ T cell counts, serum IgA, IgG, and IgM levels, and natural killer (NK) cell activity both before and after the completion of training. The percentages of circulating CD8⁺ T cells were significantly different before (39.13 ± 5.87%) and after (26.63 ± 3.95%) training in the experimental group (p < 0.05). Although CD8⁺ T cell percentages in the control group were similar before (38.57 ± 5.79%) and after (37.21 ± 5.58%) training, the post-training CD8⁺ T cell percentages were significantly different between the two groups (p < 0.05). The ratios of CD4⁺/CD8⁺ cells in the experimental group were significantly different before (0.91 ± 0.14) and after (1.39 ± 0.19) training (p < 0.05). The CD4⁺/CD8⁺ ratios in the control group were similar before (0.93 Â ± 0.15) and after (0.83 ± 0.11) training, but the post-training CD4⁺T/CD8⁺ T cell ratio was higher in the experimental group than in the control group (p < 0.05). NK cell activity was also significantly different between the two groups after training (experimental, 25.21 ± 3.12 vs. control, 20.21 ± 2.59; p < 0.05). However, no differences were observed in serum IgA, IgG, or IgM levels. Thus, glutamine supplementation may be able to restore immune function and reduce the

  9. The Effect of Maternal Helminth Infection on Maternal and Neonatal Immune Function and Immunity to Tuberculosis

    PubMed Central

    Gebreegziabiher, Dawit; Desta, Kassu; Desalegn, Girmay; Howe, Rawleigh; Abebe, Markos

    2014-01-01

    Background M. tuberculosis and helminth infection each affects one third of the world population. Helminth infections down regulate cell mediated immune responses and this may contribute to lower efficacy of BCG vaccination and higher prevalence of tuberculosis. Objective To determine the effect of maternal helminth infection on maternal and neonatal immune function and immunity to TB. Methods In this cross sectional study, eighty five pregnant women were screened for parasitic and latent TB infections using Kato-Katz and QFT-GIT tests, respectively. IFN-γ and IL-4 ELISpot on Cord blood Mononuclear Cells, and total IgE and TB specific IgG ELISA on cord blood plasma was performed to investigate the possible effect of maternal helminth and/or latent TB co-infection on maternal and neonatal immune function and immunity to TB. Result The prevalence of helminth infections in pregnant women was 27% (n = 23), with Schistosoma mansoni the most common helminth species observed (20% of women were infected). Among the total of 85 study participants 25.8% were QFT-GIT positive and 17% had an indeterminate result. The mean total IgE value of cord blood was significantly higher in helminth positive than negative women (0.76 vs 0.47, p = 0.042). Cross placental transfer of TB specific IgG was significantly higher in helminth positive (21.9±7.9) than negative (12.3±5.1), p = 0.002) Latent TB Infection positive participants. The IFN-γ response of CBMCs to ESAT-6/CFP-10 cocktail (50 vs 116, p = 0.018) and PPD (58 vs 123, p = 0.02) was significantly lower in helminth positive than negative participants. There was no significant difference in IL-4 response of CBMCs between helminth negative and positive participants. Conclusions Maternal helminth infection had a significant association with the IFN-γ response of CBMCs, total IgE and cross placental transfer of TB specific IgG. Therefore, further studies should be conducted to determine the effect of these

  10. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity

    PubMed Central

    Wong, Chinn Yi; Mifsud, Edin J.; Edenborough, Kathryn M.; Sekiya, Toshiki; Tan, Amabel C. L.; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J.; Doherty, Peter C.; Kelso, Anne; Brown, Lorena E.; Jackson, David C.

    2015-01-01

    ABSTRACT The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8+ T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8+ T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. PMID:26507227

  11. Osteopontin Expression in Acute Immune Response Mediates Hippocampal Synaptogenesis and Adaptive Outcome Following Cortical Brain Injury

    PubMed Central

    Chan, Julie L.; Reeves, Thomas M.; Phillips, Linda L.

    2014-01-01

    Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult rats received unilateral entorhinal cortex lesion (UEC) modeling adaptive synaptic plasticity. Over the first week postinjury, hippocampal OPN protein and mRNA were assayed and histology performed. At 1–2d, OPN protein increased up to 51 fold, and was localized within activated, mobilized glia. OPN transcript also increased over 50 fold, predominantly within reactive microglia. OPN fragments known to be derived from MMP proteolysis were elevated at 1d, consistent with prior reports of UEC glial activation and enzyme production. Postinjury minocycline immunosuppression attenuated MMP-9 gelatinase activity, which was correlated with reduction of neutrophil gelatinase-associated lipocalin (LCN2) expression, and reduced OPN fragment generation. The antibiotic also attenuated removal of synapsin-1 positive axons from the deafferented zone. OPN KO mice subjected to UEC had similar reduction of hippocampal MMP-9 activity, as well as lower synapsin-1 breakdown over the deafferented zone. MAP1B and N-cadherin, surrogates of cytoarchitecture and synaptic adhesion, were not affected. OPN KO mice with UEC exhibited time dependent cognitive deficits during the synaptogenic phase of recovery. This study demonstrates that OPN can mediate immune response during TBI synaptic repair, positively influencing synapse reorganization and functional recovery. PMID:25151457

  12. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    MedlinePlus

    ... for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  13. Comparative transcriptome analyses of seven anurans reveal functions and adaptations of amphibian skin

    PubMed Central

    Huang, Li; Li, Jun; Anboukaria, Housseni; Luo, Zhenhua; Zhao, Mian; Wu, Hua

    2016-01-01

    Animal skin, which is the tissue that directly contacts the external surroundings, has evolved diverse functions to adapt to various environments. Amphibians represent the transitional taxon from aquatic to terrestrial life. Exploring the molecular basis of their skin function and adaptation is important to understand the survival and evolutionary mechanisms of vertebrates. However, comprehensive studies on the molecular mechanisms of skin functions in amphibians are scarce. In this study, we sequenced the skin transcriptomes of seven anurans belonging to three families and compared the similarities and differences in expressed genes and proteins. Unigenes and pathways related to basic biological processes and special functions, such as defense, immunity, and respiration, were enriched in functional annotations. A total of 108 antimicrobial peptides were identified. The highly expressed genes were similar in species of the same family but were different among families. Additionally, the positively selected orthologous groups were involved in biosynthesis, metabolism, immunity, and defense processes. This study is the first to generate extensive transcriptome data for the skin of seven anurans and provides unigenes and pathway candidates for further studies on amphibian skin function and adaptation. PMID:27040083

  14. Comparative transcriptome analyses of seven anurans reveal functions and adaptations of amphibian skin.

    PubMed

    Huang, Li; Li, Jun; Anboukaria, Housseni; Luo, Zhenhua; Zhao, Mian; Wu, Hua

    2016-01-01

    Animal skin, which is the tissue that directly contacts the external surroundings, has evolved diverse functions to adapt to various environments. Amphibians represent the transitional taxon from aquatic to terrestrial life. Exploring the molecular basis of their skin function and adaptation is important to understand the survival and evolutionary mechanisms of vertebrates. However, comprehensive studies on the molecular mechanisms of skin functions in amphibians are scarce. In this study, we sequenced the skin transcriptomes of seven anurans belonging to three families and compared the similarities and differences in expressed genes and proteins. Unigenes and pathways related to basic biological processes and special functions, such as defense, immunity, and respiration, were enriched in functional annotations. A total of 108 antimicrobial peptides were identified. The highly expressed genes were similar in species of the same family but were different among families. Additionally, the positively selected orthologous groups were involved in biosynthesis, metabolism, immunity, and defense processes. This study is the first to generate extensive transcriptome data for the skin of seven anurans and provides unigenes and pathway candidates for further studies on amphibian skin function and adaptation. PMID:27040083

  15. Epigenetic Control of Immunity

    PubMed Central

    Busslinger, Meinrad; Tarakhovsky, Alexander

    2014-01-01

    Immunity relies on the heterogeneity of immune cells and their ability to respond to pathogen challenges. In the adaptive immune system, lymphocytes display a highly diverse antigen receptor repertoire that matches the vast diversity of pathogens. In the innate immune system, the cell's heterogeneity and phenotypic plasticity enable flexible responses to changes in tissue homeostasis caused by infection or damage. The immune responses are calibrated by the graded activity of immune cells that can vary from yeast-like proliferation to lifetime dormancy. This article describes key epigenetic processes that contribute to the function of immune cells during health and disease. PMID:24890513

  16. Influence of Photoperiod on Hormones, Behavior, and Immune Function

    PubMed Central

    Walton, James C.; Weil, Zachary M.; Nelson, Randy J.

    2011-01-01

    Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally- appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival. PMID:21156187

  17. Effect of age and pregnancy status on adaptive immune responses of Canadian Holstein replacement heifers.

    PubMed

    Hine, B C; Cartwright, S L; Mallard, B A

    2011-02-01

    Selection for production traits with little or no emphasis on health traits has led to an increase in the incidence of disease in Canadian dairy herds. We describe here a patented protocol for estimating the breeding value for immune responsiveness in heifers that combines measures of both cell-mediated (CM) and antibody-mediated (AM) immune responses (IR). The ability of putative type 1 and type 2 antigens used to induce CMIR and AMIR, respectively, was assessed in replacement Holstein heifers, and the effects of age and pregnancy on type 1 and type 2 IR bias were estimated. Results demonstrated that the type 1 and type 2 antigens induced polarized type 1 and type 2 responses in heifers regardless of age and pregnancy status, and can therefore be used to identify animals with superior overall immune responsiveness. However, age and pregnancy status had significant effects on adaptive IR profiles, highlighting the need for appropriate statistical modeling of such effects when ranking animals on their ability to mount CM and AMIR. Responses became increasingly type 1 biased as heifers approached 12 mo of age, from which point, responses then became increasingly type 2 biased with age and length of gestation. Knowledge of how age and pregnancy influence the dynamics of type 1 and type 2 IR bias is expected to improve our ability to select animals with enhanced immune responsiveness and aid in the development of effective vaccines through strategic targeting of vaccine components to recipients. PMID:21257066

  18. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    PubMed

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  19. Cellular senescence impact on immune cell fate and function.

    PubMed

    Vicente, Rita; Mausset-Bonnefont, Anne-Laure; Jorgensen, Christian; Louis-Plence, Pascale; Brondello, Jean-Marc

    2016-06-01

    Cellular senescence occurs not only in cultured fibroblasts, but also in undifferentiated and specialized cells from various tissues of all ages, in vitro and in vivo. Here, we review recent findings on the role of cellular senescence in immune cell fate decisions in macrophage polarization, natural killer cell phenotype, and following T-lymphocyte activation. We also introduce the involvement of the onset of cellular senescence in some immune responses including T-helper lymphocyte-dependent tissue homeostatic functions and T-regulatory cell-dependent suppressive mechanisms. Altogether, these data propose that cellular senescence plays a wide-reaching role as a homeostatic orchestrator. PMID:26910559

  20. A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation

    PubMed Central

    Shahriyari, Leili

    2016-01-01

    There is an old hypothesis that metastasis is the result of migration of tumor cells from the tumor to a distant site. In this article, we propose another mechanism for metastasis, for cancers that are initiated at the site of chronic inflammation. We suggest that cells at the site of chronic inflammation might become adapted to the inflammatory process, and these adaptations may lead to the initiation of an inflammatory tumor. For example, in an inflammatory tumor immune cells might be adapted to send signals of proliferation or angiogenesis, and epithelial cells might be adapted to proliferation (like inactivation of tumor suppressor genes). Therefore, we hypothesize that metastasis could be the result of an inflammatory process by adapted cells, especially adapted immune cells at the site of inflammation, as well as the migration of tumor cells with the help of activated platelets, which travel between sites of inflammation.  If this hypothesis is correct, then any treatment causing necrotic cell death may not be a good solution. Because necrotic cells in the tumor micro-environment or anywhere in the body activate the immune system to initiate the inflammatory process, and the involvement of adapted immune cells in the inflammatory processes leads to the formation and progression of tumors. Adapted activated immune cells send more signals of proliferation and/or angiogenesis than normal cells. Moreover, if there were adapted epithelial cells, they would divide at a much higher rate in response to the proliferation signals than normal cells. Thus, not only would the tumor come back after the treatment, but it would also grow more aggressively. PMID:27158448

  1. The B-cell antigen receptor integrates adaptive and innate immune signals

    PubMed Central

    Otipoby, Kevin L.; Waisman, Ari; Derudder, Emmanuel; Srinivasan, Lakshmi; Franklin, Andrew; Rajewsky, Klaus

    2015-01-01

    B cells respond to antigens by engagement of their B-cell antigen receptor (BCR) and of coreceptors through which signals from helper T cells or pathogen-associated molecular patterns are delivered. We show that the proliferative response of B cells to the latter stimuli is controlled by BCR-dependent activation of phosphoinositidyl 3-kinase (PI-3K) signaling. Glycogen synthase kinase 3β and Foxo1 are two PI-3K-regulated targets that play important roles, but to different extents, depending on the specific mitogen. These results suggest a model for integrating signals from the innate and the adaptive immune systems in the control of the B-cell immune response. PMID:26371314

  2. The diversity-generating benefits of a prokaryotic adaptive immune system.

    PubMed

    van Houte, Stineke; Ekroth, Alice K E; Broniewski, Jenny M; Chabas, Hélène; Ashby, Ben; Bondy-Denomy, Joseph; Gandon, Sylvain; Boots, Mike; Paterson, Steve; Buckling, Angus; Westra, Edze R

    2016-04-21

    Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms. PMID:27074511

  3. Porcine reproductive and respiratory syndrome virus replication and quasispecies evolution in pigs that lack adaptive immunity.

    PubMed

    Chen, Nanhua; Dekkers, Jack C M; Ewen, Catherine L; Rowland, Raymond R R

    2015-01-01

    The replication of porcine reproductive and respiratory syndrome virus (PRRSV) was studied in a line of pigs possessing a severe combined immunodeficiency (SCID). Real-time RT-PCR revealed a unique course of infection for the SCID group. During the course of infection, viremia was initially significantly lower than normal littermates, but by 21 days was significantly elevated. Deep sequencing of the viral structural genes at days 11 and 21 identified seven amino acid substitutions in both normal and SCID pigs. The most significant change was a W99R substitution in GP2, which was present in the inoculum at a frequency of 35%, but eventually disappeared from all pigs regardless of immune status. Therefore, amino acid substitutions that appear during acute infection are likely the result of the adaptation of the virus to replication in pigs and not immune selection. PMID:25451069

  4. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation.

    PubMed

    Tough, David F

    2004-02-01

    Type I interferon (IFN-alpha/beta) is expressed rapidly after infection and plays a key role in innate defense against pathogens. Recent studies have shown that a connection exists between IFN-alpha/beta and antigen-presenting dendritic cells (DCs) at two levels. Firstly, a specific DC precursor, the plasmacytoid pre-DC (p-preDC), was identified as a cell type able to secrete very high amounts of IFN-alpha/beta following stimulation with infectious agents. Secondly, IFN-alpha/beta has been shown to act as a differentiation/maturation factor for DCs. These findings will be discussed in association with evidence indicating that IFN-alpha/beta can enhance and modulate immune responses in vivo. Taken together, the available data suggest that IFN-alpha/beta serves as a link between the innate response to infection and the adaptive immune response. PMID:15101709

  5. Functions of IL-15 in Anti-Viral Immunity: Multiplicity and Variety

    PubMed Central

    Verbist, Katherine C.; Klonowski, Kimberly D.

    2012-01-01

    An effective immune response to an invading viral pathogen requires the combined actions of both innate and adaptive immune cells. For example, NK cells and cytotoxic CD8 T cells are capable of the direct engagement of infected cells and the mediation of antiviral responses. Both NK and CD8 T cells depend on common gamma chain (γc) cytokine signals for their development and homeostasis. The γc cytokine IL-15 is very well characterized for its role in promoting the development and homeostasis of NK cells and CD8 T cells, but emerging literature suggests that IL-15 mediates the anti-viral responses of these cell populations during an active immune response. Both NK cells and CD8 T cells must become activated, migrate to sites of infection, survive at those sites, and expand in order to maximally exert effector functions, and IL-15 can modulate each of these processes. This review focuses on the functions of IL-15 in the regulation of multiple aspects of NK and CD8 T cell biology, investigates the mechanisms by which IL-15 may exert such diverse functions, and discusses how these different facets of IL-15 biology may be therapeutically exploited to combat viral diseases. PMID:22704694

  6. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    PubMed

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  7. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation

    PubMed Central

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  8. Staphylococcal toxic shock syndrome: superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression.

    PubMed

    Kulhankova, Katarina; King, Jessica; Salgado-Pabón, Wilmara

    2014-08-01

    Infectious diseases caused by Staphylococcus aureus present a significant clinical and public health problem. S. aureus causes some of the most severe hospital-associated and community-acquired illnesses. Specifically, it is the leading cause of infective endocarditis and osteomyelitis, and the second leading cause of sepsis in the USA. While pathogenesis of S. aureus infections is at the center of current research, many questions remain about the mechanisms underlying staphylococcal toxic shock syndrome (TSS) and associated adaptive immune suppression. Both conditions are mediated by staphylococcal superantigens (SAgs)-secreted staphylococcal toxins that are major S. aureus virulence factors. Toxic shock syndrome toxin-1 (TSST-1) is the SAg responsible for almost all menstrual TSS cases in the USA. TSST-1, staphylococcal enterotoxin B and C are also responsible for most cases of non-menstrual TSS. While SAgs mediate all of the hallmark features of TSS, such as fever, rash, hypotension, and multi-organ dysfunction, they are also capable of enhancing the toxic effects of endogenous endotoxin. This interaction appears to be critical in mediating the severity of TSS and related mortality. In addition, interaction between SAgs and the host immune system has been recognized to result in a unique form of adaptive immune suppression, contributing to poor outcomes of S. aureus infections. Utilizing rabbit models of S. aureus infective endocarditis, pneumonia and sepsis, and molecular genetics techniques, we aim to elucidate the mechanisms of SAg and endotoxin synergism in the pathogenesis of TSS, and examine the cellular and molecular mechanisms underlying SAg-mediated immune dysfunction. PMID:24816557

  9. Reviving function in CD4+ T cells adapted to persistent systemic antigen.

    PubMed

    Noval Rivas, Magali; Weatherly, Kathleen; Hazzan, Marc; Vokaer, Benoit; Dremier, Sarah; Gaudray, Florence; Goldman, Michel; Salmon, Isabelle; Braun, Michel Y

    2009-10-01

    In bone marrow-transplanted patients, chronic graft-versus-host disease is a complication that results from the persistent stimulation of recipient minor histocompatibility Ag (mHA)-specific T cells contained within the graft. In this study, we developed a mouse model where persistent stimulation of donor T cells by recipient's mHA led to multiorgan T cell infiltration. Exposure to systemic mHA, however, deeply modified T cell function and chronically stimulated T cells developed a long-lasting state of unresponsiveness, or immune adaptation, characterized by their inability to mediate organ immune damages in vivo. However, analysis of the gene expression profile of adapted CD4+ T cells revealed the specific coexpression of genes known to promote differentiation and function of Th1 effector cells as well as genes coding for proteins that control T cell activity, such as cell surface-negative costimulatory molecules and regulatory cytokines. Strikingly, blockade of negative costimulation abolished T cell adaptation and stimulated strong IFN-gamma production and severe multiorgan wasting disease. Negative costimulation was also shown to control lethal LPS-induced toxic shock in mice with adapted T cells, as well as the capacity of adapted T cells to reject skin graft. Our results demonstrate that negative costimulation is the molecular mechanism used by CD4+ T cells to adapt their activity in response to persistent antigenic stimulation. The effector function of CD4+ T cells that have adapted to chronic Ag presentation can be activated by stimuli strong enough to overcome regulatory signals delivered to the T cells by negative costimulation. PMID:19734216

  10. Tube Is an IRAK-4 Homolog in a Toll Pathway Adapted for Development and Immunity

    PubMed Central

    Towb, Par; Huaiyu, Sun; Wasserman, Steven A.

    2009-01-01

    Acting through the Pelle and IRAK family of protein kinases, Toll receptors mediate innate immune responses in animals ranging from insects to humans. In flies, the Toll pathway also functions in patterning of the syncytial embryo and requires Tube, a Drosophila-specific adaptor protein lacking a catalytic domain. Here we provide evidence that the Tube, Pelle, and IRAK proteins originated from a common ancestral gene. Following gene duplication, IRAK-4, Tube-like kinases, and Tube diverged from IRAK-1, Pelle, and related kinases. Remarkably, the function of Tube and Pelle in Drosophila embryos can be reconstituted in a chimera modeled on the predicted progenitor gene. In addition, a divergent property of downstream transcription factors was correlated with developmental function. Together, these studies reveal previously unrecognized parallels in Toll signaling in fly and human innate immunity and shed light on the evolution of pathway organization and function. PMID:19498957

  11. Adaptive dynamic networks as models for the immune system and autocatalytic sets

    SciTech Connect

    Farmer, J.D.; Kauffman, S.A.; Packard, N.H.; Perelson, A.S.

    1986-04-01

    A general class of network models is described that can be used to present complex adaptive systems. These models have two purposes: On a practical level they are closely based on real biological phenomena, and are intended to model detailed aspects of them. On a more general level, however, they provide a framework to address broader questions concerning evolution, pattern recognition, and other properties of living systems. This paper concentrates on the more general level, illustrating the basic concepts with two examples, a model of the immune system and a model for the spontaneous emergence of autocatalytic sets in a chemically reactive polymer soup. 10 refs., 3 figs.

  12. Adaptive function allocation reduces performance costs of static automation

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja; Mouloua, Mustapha; Molloy, Robert; Hilburn, Brian

    1993-01-01

    Adaptive automation offers the option of flexible function allocation between the pilot and on-board computer systems. One of the important claims for the superiority of adaptive over static automation is that such systems do not suffer from some of the drawbacks associated with conventional function allocation. Several experiments designed to test this claim are reported in this article. The efficacy of adaptive function allocation was examined using a laboratory flight-simulation task involving multiple functions of tracking, fuel-management, and systems monitoring. The results show that monitoring inefficiency represents one of the performance costs of static automation. Adaptive function allocation can reduce the performance cost associated with long-term static automation.

  13. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia.

    PubMed

    Hsu, Peter; Nanan, Ralph Kay Heinrich

    2014-01-01

    Maternal immune tolerance of the fetus is indispensable for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal-maternal interface - the decidua, the site of implantation, and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, pre-eclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages) make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3(+) regulatory T cells are crucial for ensuring immune tolerance toward the semi-allogeneic fetus. Additionally, another population of CD4(+)HLA-G(+) suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy. PMID:24734032

  14. Surgical trauma and immune functional changes following major lung resection.

    PubMed

    Ng, Calvin S H; Lau, Kelvin K W

    2015-02-01

    Video-assisted thoracic surgery (VATS) has evolved greatly over the last two decades. VATS major lung resection for early stage non-small cell lung carcinoma (NSCLC) has been shown to result in less postoperative pain, less pulmonary dysfunction postoperatively, shorter hospital stay, and better patient tolerance to adjuvant chemotherapy compared with patients who underwent thoracotomy. Several recent studies have even reported improved long-term survival in those who underwent VATS major lung resection for early stage NSCLC when compared with open technique. Interestingly, the immune status and autologous tumor killing ability of lung cancer patients have previously been associated with long-term survival. VATS major lung resection can result in an attenuated postoperative inflammatory response. Furthermore, the minimal invasive approach better preserve patients' postoperative immune function, leading to higher circulating natural killer and T cells numbers, T cell oxidative activity, and levels of immunochemokines such as insulin growth factor binding protein 3 following VATS compared with thoracotomy. Apart from host immunity, the angiogenic environment following surgery may also have a role in determining cancer recurrence and possibly survival. Whether differences in immunological and biochemical mediators contribute significantly towards improved clinical outcomes following VATS major lung resection for lung cancer remains to be further investigated. Future studies will also need to address whether the reduced access trauma from advanced thoracic surgical techniques, such as single-port VATS, can further attenuate the postoperative inflammatory response. PMID:25829712

  15. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease.

    PubMed

    Rizzetto, Lisa; De Filippo, Carlotta; Cavalieri, Duccio

    2014-11-01

    Human holobiomes are networks of mutualistic interactions between human cells and complex communities of bacteria and fungi that colonize the human body. The immune system must tolerate colonization with commensal bacteria and fungi but defend against invasion by either organism. Molecular ecological surveys of the human prokaryotic microbiota performed to date have revealed a remarkable degree of bacterial diversity and functionality. However, there is a dearth of information regarding the eukaryotic composition of the microbiota. In this review, we describe the ecology and the human niches of our fungal "fellow travelers" in both health and disease, discriminating between passengers, colonizers, and pathogens based on the interaction of these fungi with the human immune system. We conclude by highlighting the need to reconsider the etiology of many fungal and immune-related diseases in the context of the crosstalk between the human system and its resident microbial communities. PMID:25257052

  16. Validation of Procedures for Monitoring Crewmember Immune Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2009-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation, however the nature of the phenomenon as it equilibrates over longer flights has not been determined. This dysregulation may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. The clinical risk (if any) for exploration-class space flight is unknown, but may include increased incidence of infection, allergy, hypersensitivity, hematological malignancy or altered wound healing. The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles (RNA, intracellular, secreted), viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. This study is currently ongoing. To date, 10 short duration and 5 long-duration crewmembers have completed the study. Technically, the study is progressing well. In-flight blood samples are being collected, and returned for analysis, including functional assays that require live cells. For all in-flight samples to date, sample viability has been acceptable. Preliminary data (n = 4/7; long/short duration, respectively) indicate that distribution of most peripheral leukocyte subsets is largely unaltered during flight. Exceptions include elevated T cells, reduced B/NK cells, increased memory T cells and increased central memory CD8+ T cells. General T cell function, early blastogenesis response to mitogenic stimulation, is markedly

  17. [Adaptation of thyroid function to excess iodine].

    PubMed

    Aurengo, Andre; Leenhardt, Laurence; Aurengo, Helyett

    2002-10-26

    NORMALLY: The production of thyroid hormones is normally stable, despite iodine supplies that may vary widely and even on sudden excess iodine. The metabolism of iodine is characterised by adapted thyroid uptake, the requirements varying on the age and physiological status of the individual (pregnancy, breastfeeding) and by insufficient supplies in several areas in France. IN THE CASE OF EXCESS: The mechanisms that permit the thyroid to adapt to a sudden or chronic excess of iodine are immature in the newborn and sometimes deficient in adults, and may lead to iodine-induced dysthyroidism. Thanks to the recent progress made in thyroid physiology, these mechanisms are now better known. PATHOLOGICAL IMPACT: Iodine-induced hyperthyroidisms in a healthy or pathological thyroid are frequent. They are predominantly related to amiodarone. Iodine-related hypothyroidism frequently appears in cases of pre-existing thyroid diseases (asymptomatic autoimmune thyroiditis, for example). They are frequent in the newborn, notably in the premature. The iodine prophylaxis organised in Poland following the Tchernobyl accident led to very few pathological consequences in adults or children. PMID:12448332

  18. A candidate multimodal functional genetic network for thermal adaptation

    PubMed Central

    Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D.

    2014-01-01

    Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other

  19. A candidate multimodal functional genetic network for thermal adaptation.

    PubMed

    Wollenberg Valero, Katharina C; Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D

    2014-01-01

    Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other

  20. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  1. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses.

    PubMed

    Aravindhan, Vivekanandhan; Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  2. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    PubMed Central

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  3. Within-host co-evolution of chronic viruses and the adaptive immune system

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  4. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.

    PubMed

    Stevens, Natalie E; Hatjopolous, Antoinette; Fraser, Cara K; Alsharifi, Mohammed; Diener, Kerrilyn R; Hayball, John D

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  5. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses

    PubMed Central

    Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  6. MyD88-Dependent Silencing of Transgene Expression During the Innate and Adaptive Immune Response to Helper-Dependent Adenovirus

    PubMed Central

    Suzuki, Masataka; Cerullo, Vincenzo; Bertin, Terry K.; Cela, Racel; Clarke, Christian; Guenther, Margaretha; Brunetti-Pierri, Nicola

    2010-01-01

    Abstract Activation of the host innate immune response after systemic administration of adenoviral vectors constitutes a principal impediment to successful clinical gene replacement therapies. Although helper-dependent adenoviruses (HDAds) lack all viral functional genes, systemic administration of a high dose of HDAd still elicits a potent innate immune response in host animals. Toll-like receptors (TLRs) are innate receptors that sense microbial products and trigger the maturation of antigen-presenting cells and cytokine production via MyD88-dependent signaling (except TLR3). Here we show that mice lacking MyD88 exhibit a dramatic reduction in proinflammatory cytokines after intravenous injection of a high dose of HDAd, and show significantly reduced induction of the adaptive immune response when compared with wild-type and TLR2-deficient mice. Importantly, MyD88–/– mice also show significantly higher and longer sustained transgene expression than do wild-type mice. Chromatin immunoprecipitation studies using wild-type and MyD88-deficient primary mouse embryonic fibroblasts showed significant MyD88-dependent transcriptional silencing of the HDAd-encoded transgenes. Our results demonstrate that MyD88 signaling, activated by systemic delivery of HDAd, initiates an innate immune response that suppresses transgene expression at the transcriptional level before initiation of the adaptive immune response. PMID:19824822

  7. Fast adaptive estimation of multidimensional psychometric functions.

    PubMed

    DiMattina, Christopher

    2015-01-01

    Recently in vision science there has been great interest in understanding the perceptual representations of complex multidimensional stimuli. Therefore, it is becoming very important to develop methods for performing psychophysical experiments with multidimensional stimuli and efficiently estimating psychometric models that have multiple free parameters. In this methodological study, I analyze three efficient implementations of the popular Ψ method for adaptive data collection, two of which are novel approaches to psychophysical experiments. Although the standard implementation of the Ψ procedure is intractable in higher dimensions, I demonstrate that my implementations generalize well to complex psychometric models defined in multidimensional stimulus spaces and can be implemented very efficiently on standard laboratory computers. I show that my implementations may be of particular use for experiments studying how subjects combine multiple cues to estimate sensory quantities. I discuss strategies for speeding up experiments and suggest directions for future research in this rapidly growing area at the intersection of cognitive science, neuroscience, and machine learning. PMID:26200886

  8. Lymphocyte-derived ACh regulates local innate but not adaptive immunity

    PubMed Central

    Reardon, Colin; Duncan, Gordon S.; Brüstle, Anne; Brenner, Dirk; Tusche, Michael W.; Olofsson, Peder S.; Rosas-Ballina, Mauricio; Tracey, Kevin J.; Mak, Tak W.

    2013-01-01

    Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils. PMID:23297238

  9. Innate and Adaptive Anti-HIV Immune Responses in the Female Reproductive Tract

    PubMed Central

    Rodriguez-Garcia, Marta; Patel, Mickey V.; Wira, Charles R.

    2012-01-01

    The mucosal surface of the female reproductive tract (FRT) is the primary site of transmission for a plethora of sexually transmitted infections, including human immunodeficiency virus (HIV), that represent a significant burden upon womens' health worldwide. However, fundamental aspects of innate and adaptive immune protection against HIV infection in the FRT are poorly understood. The FRT immune system is regulated by the cyclical changes of the sex hormones estradiol and progesterone across the menstrual cycle, which as we have hypothesized, leads to the creation of a window of vulnerability during the secretory stage of the menstrual cycle, when the risk of HIV transmission is increased. The goal of this review is to summarize the multiple levels of protection against HIV infection in the FRT, the contribution of different cell types including epithelial cells, macrophages, T cells, and dendritic cells to this, and their regulation by estradiol and progesterone. Understanding the unique immune environment in the FRT will allow for the potential development of novel therapeutic interventions such as vaccines and microbicides that may reduce or prevent HIV transmission in women. PMID:23432874

  10. Adaptive maternal immune deviations as a ground for autism spectrum disorders development in children.

    PubMed

    Poletaev, Alexander B; Poletaeva, Alina A; Pukhalenko, Alexander I; Zamaleeva, Roza S; Cherepanova, Natalia A; Frizin, Dmitry V

    2014-01-01

    Autism is a vexed problem today. Overall, there is a high frequency of birth children (1:80 - 1:150) with late diagnosed autism spectrum disorders (ASD) and this trend is getting progressively stronger. The causes for the currently increased frequency of ASD and the pathogenesis of ASD are not fully understood yet. One of the most likely mechanisms inducing ASD may be a maternal immune imprinting. This phenomenon is based on transplacental translocation of maternal antibodies of IgG class and, as a consequence, on the epigenetic "tuning" of immune system of the fetus and child. This mechanism provides development of child's anti-infection resistance before meeting with microorganisms, but it can be also a cause of inborn pathology including the ASD appearance. The quantitative changes in maternal blood serum autoantibodies depend on a specific microbial population, or are induced by environmental chemical pollutants in association with some individual features of the maternal metabolism. These immune changes are adaptive in most cases for the maternal organism, but can be pathogenic for the fetus in some cases. We discuss in the present paper the possibilities to predict the risk from abnormal development of nervous system in fetus and early diagnosis of ASD in high-risk group of children. PMID:25181843

  11. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases.

    PubMed

    Knight, Ellie T; Liu, Jenny; Seymour, Gregory J; Faggion, Clovis M; Cullinan, Mary P

    2016-06-01

    Plaque-induced periodontal diseases occur in response to the accumulation of dental plaque. Disease manifestation and progression is determined by the nature of the immune response to the bacterial complexes in plaque. In general, predisposing factors for these periodontal diseases can be defined as those factors which retain or hinder the removal of plaque and, depending upon the nature of the immune response to this plaque, the disease will either remain stable and not progress or it may progress and result in chronic periodontitis. In contrast, modifying factors can be defined as those factors that alter the nature or course of the inflammatory lesion. These factors do not cause the disease but rather modify the chronic inflammatory response, which, in turn, is determined by the nature of the innate and adaptive immune responses and the local cytokine and inflammatory mediator networks. Chronic inflammation is characterized by vascular, cellular and repair responses within the tissues. This paper will focus on how common modifying factors, such as smoking, stress, hormonal changes, diabetes, metabolic syndrome and HIV/AIDS, influence each of these responses, together with treatment implications. As treatment planning in periodontics requires an understanding of the etiology and pathogenesis of the disease, it is important for all modifying factors to be taken into account. For some of these, such as smoking, stress and diabetic control, supportive health behavior advice within the dental setting should be an integral component for overall patient management. PMID:27045429

  12. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes

    PubMed Central

    Scharsack, Jörn P; Kalbe, Martin; Harrod, Chris; Rauch, Gisep

    2007-01-01

    Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers. PMID:17426014

  13. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    PubMed Central

    Meyer, Manuela F; Lehmann, Marc; Cornberg, Markus; Wiegand, Johannes; Manns, Michael P; Klade, Christoph; Wedemeyer, Heiner

    2007-01-01

    Spontaneous clearance of hepatitis C virus (HCV) has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV. PMID:17562015

  14. Enhancing Functional Performance using Sensorimotor Adaptability Training Programs

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.

  15. Prefrontal executive function and adaptive behavior in complex environments.

    PubMed

    Koechlin, Etienne

    2016-04-01

    The prefrontal cortex (PFC) subserves higher cognitive abilities such as planning, reasoning and creativity. Here we review recent findings from both empirical and theoretical studies providing new insights about these cognitive abilities and their neural underpinnings in the PFC as overcoming key adaptive limitations in reinforcement learning. We outline a unified theoretical framework describing the PFC function as implementing an algorithmic solution approximating statistically optimal, but computationally intractable, adaptive processes. The resulting PFC functional architecture combines learning, planning, reasoning and creativity processes for balancing exploitation and exploration behaviors and optimizing behavioral adaptations in uncertain, variable and open-ended environments. PMID:26687618

  16. Effects of selenium on mallard duck reproduction and immune function

    SciTech Connect

    Whiteley, P.L.; Yuill, T.M.; Fairbrother, A.

    1989-11-01

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. The objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of adult mallards were exposed for 95-99 days on streams with sodium selenite-treated water at 10 and 30 ppb, or on untreated streams. Selenium biomagnified through the food chain to the ducks. Disease resistance was decreased in ducklings hatched on the streams and challenged with duck hepatitis virus 1 (DHV1) when 15-days old. Liver selenium concentrations for these ducklings on the 10 and 30 ppb streams was 3.6 and 7.6 ppm dry weight, respectively. Mortality of ducklings purchased when 7-days old, exposed to selenium for 14 days, and challenged when 22-days old was not affected. However, their selenium exposure was lower (liver selenium 4.1 ppm dry weight for the 30 ppb stream). Five parameters of immune function were measured in adult ducks. Phagocytosis of killed Pasteurella multocida by blood heterophils and monocytes, and blood monocyte concentrations were higher in adult males following 84 days exposure to 30 ppb selenium. Their liver selenium concentrations were 11.1 ppm dry weight after 95-99 days exposure.

  17. Mucosal immune function comparison between amenorrheic and eumenorrheic distance runners.

    PubMed

    Shimizu, Kazuhiro; Suzuki, Natsumi; Nakamura, Mariko; Aizawa, Katsuji; Imai, Tomoko; Suzuki, Satomi; Eda, Nobuhiko; Hanaoka, Yukichi; Nakao, Kikuko; Suzuki, Naoto; Mesaki, Noboru; Kono, Ichiro; Akama, Takao

    2012-05-01

    This study examined the effects of amenorrhea on mucosal immune function and susceptibility to upper respiratory tract infection (URTI) in elite female distance runners. Based on their menstrual cycles during the prior year, 21 elite, collegiate, female distance runners were designated as eumenorrheic runners (ERs; n = 8; 19.9 ± 0.8 years) or amenorrheic runners (ARs; n n = 13; 20.0 ± 0.3 years). Resting saliva and blood samples were collected in the morning. The secretory immunoglobulin A (SIgA) concentration was measured using enzyme-linked immunosorbent assay. The SIgA secretion rate was calculated. Serum 17β-estradiol concentrations and serum progesterone concentrations were measured using radioimmunoassay. Subjects reported the appearance of URTI symptoms (sore throat, headache, runny nose, coughing, or fever), if any, during the prior month. The serum estradiol concentration and salivary SIgA secretion rate were significantly lower for ARs than for ERs (p < 0.05). Serum progesterone concentration was not significantly different between groups. Higher frequencies of headache, runny nose, coughing, and fever were observed in ARs than in ERs. Results show that athletic amenorrhea with low estrogen might accelerate downregulation of mucosal immune function in athletes and enhance susceptibility to infection. PMID:22516912

  18. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    PubMed Central

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  19. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    PubMed

    Fricke, G Matthew; Letendre, Kenneth A; Moses, Melanie E; Cannon, Judy L

    2016-03-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  20. Interleukin-33 and Mast Cells Bridge Innate and Adaptive Immunity: From the Allergologist’s Perspective

    PubMed Central

    Jang, Tae Young; Kim, Young Hyo

    2015-01-01

    Interleukin (IL) 33, a member of the IL-1 superfamily, is an “alarmin” protein and is secreted in its active form from damaged cells undergoing necrotic cell death. Mast cells are one of the main effector cell types in allergic disorders. They secrete a variety of mediators, including T helper 2 cytokines. As mast cells have high-affinity IgE receptors (FcεRI) on their surface, they can capture circulating IgE. IgE-bound mast cells degranulate large amounts of histamine, heparin, and proteases when they encounter antigens. As IL-33 is an important mediator of innate immunity and mast cells play an important role in adaptive immune responses, interactions between the two could link innate and adaptive immunity. IL-33 promotes the adhesion of mast cells to laminin, fibronectin, and vitronectin. IL-33 increases the expression of adhesion molecules, such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in endothelial cells, thus enhancing mast cell adhesion to blood vessel walls. IL-33 stimulates mast cell proliferation by activating the ST2/Myd88 pathway; increases mast cell survival by the activation of survival proteins such as Bcl-XL; and promotes the growth, development, and maturation of mast cell progenitors. IL-33 is also involved in the activation of mature mast cells and production of different proinflammatory cytokines. The interaction of IL-33 and mast cells could have important clinical implications in the field of clinical urology. Epithelial dysfunction and mast cells could play an important role in the pathogenesis of interstitial cystitis. Urinary levels of IL-33 significantly increase in patients with interstitial cystitis. In addition, the number of mast cells significantly increase in the urinary bladders of patients with interstitial cystitis. Therefore, inhibition of mast cell activation and degranulation in response to increase in IL-33 is a potential therapeutic target in the treatment of interstitial cystitis

  1. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  2. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  3. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  4. Function approximation using adaptive and overlapping intervals

    SciTech Connect

    Patil, R.B.

    1995-05-01

    A problem common to many disciplines is to approximate a function given only the values of the function at various points in input variable space. A method is proposed for approximating a function of several to one variable. The model takes the form of weighted averaging of overlapping basis functions defined over intervals. The number of such basis functions and their parameters (widths and centers) are automatically determined using given training data and a learning algorithm. The proposed algorithm can be seen as placing a nonuniform multidimensional grid in the input domain with overlapping cells. The non-uniformity and overlap of the cells is achieved by a learning algorithm to optimize a given objective function. This approach is motivated by the fuzzy modeling approach and a learning algorithms used for clustering and classification in pattern recognition. The basics of why and how the approach works are given. Few examples of nonlinear regression and classification are modeled. The relationship between the proposed technique, radial basis neural networks, kernel regression, probabilistic neural networks, and fuzzy modeling is explained. Finally advantages and disadvantages are discussed.

  5. IL-33 in T Cell Differentiation, Function, and Immune Homeostasis.

    PubMed

    Peine, Michael; Marek, Roman M; Löhning, Max

    2016-05-01

    Recent studies have highlighted a role for the alarmin interleukin (IL)-33 in CD4(+) and CD8(+) T cell activation and function, and have also revealed important distinctions. The IL-33 receptor ST2 is constitutively and abundantly expressed on T-helper-2 (Th2) and GATA-3(+) regulatory T cells in a GATA-3- and STAT5-dependent manner. Upon activation, Th1 and cytotoxic T cells express ST2 transiently, driven by T-bet and/or STAT4. We review these findings here, and critically examine evidence indicating that IL-33 enhances the differentiation and functionality of various T cell subsets through positive feedback loops involving lineage-specifying transcription factors. In this context, we discuss how quantitative and qualitative differences in ST2 expression between effector and GATA-3(+) regulatory T cells may contribute to immune homeostasis, and outline important areas of future inquiry. PMID:27055914

  6. Development of immune organs and functioning in humans and test animals: Implications for immune intervention studies.

    PubMed

    Kuper, C Frieke; van Bilsen, Jolanda; Cnossen, Hilde; Houben, Geert; Garthoff, Jossie; Wolterbeek, Andre

    2016-09-01

    A healthy immune status is mostly determined during early life stages and many immune-related diseases may find their origin in utero and the first years of life. Therefore, immune health optimization may be most effective during early life. This review is an inventory of immune organ maturation events in relation to developmental timeframes in minipig, rat, mouse and human. It is concluded that time windows of immune organ development in rodents can be translated to human, but minipig reflects the human timeframes better; however the lack of prenatal maternal-fetal immune interaction in minipig may cause less responsiveness to prenatal intervention. It is too early to conclude which immune parameters are most appropriate, because there are not enough comparative immune parameters. Filling these gaps will increase the predictability of results observed in experimental animals, and guide future intervention studies by assessing relevant parameters in the right corresponding developmental time frames. PMID:27282947

  7. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    PubMed Central

    Schuster, Philipp; Boscheinen, Jan Bernardin; Tennert, Karin; Schmidt, Barbara

    2011-01-01

    In 1999, two independent groups identified plasmacytoid dendritic cells (PDC) as major type I interferon- (IFN-) producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought. PMID:22312349

  8. Immune Responses in Neonates

    PubMed Central

    Basha, Saleem; Surendran, Naveen; Pichichero, Michael

    2015-01-01

    Neonates have little immunological memory and a developing immune system, which increases their vulnerability to infectious agents. Recent advances in understanding of neonatal immunity indicate that both innate and adaptive responses are dependent on precursor frequency of lymphocytes, antigenic dose and mode of exposure. Studies in neonatal mouse models and human umbilical cord blood cells demonstrate the capability of neonatal immune cells to produce immune responses similar to adults in some aspects but not others. This review focuses mainly on the developmental and functional mechanisms of the human neonatal immune system. In particular, the mechanism of innate and adaptive immunity and the role of neutrophils, antigen presenting cells, differences in subclasses of T lymphocytes (Th1, Th2, Tregs) and B cells are discussed. In addition, we have included the recent developments in neonatal mouse immune system. Understanding neonatal immunity is essential to development of therapeutic vaccines to combat newly emerging infectious agents. PMID:25088080

  9. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    PubMed

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers. PMID:26792800

  10. Endorphins may function in heat adaptation.

    PubMed Central

    Holaday, J W; Wei, E; Loh, H H; Li, C H

    1978-01-01

    Administration of the opiate antagonist naloxone to rats after acute or chronic heat exposure precipitates an increase in colonic temperature, an increase in escape attempts, and a decrease in body weight. These changes are accompanied by signs associated with hyperthermia such as salivation, diarrhea, and an abnormal extended posture. Although brain endorphin involvement is possible, hypophysectomy diminishes the intensity and magnitude of these naloxone effects, indicating that the naloxone effect in intact animals may be due to a functional antagonism of pituitary endorphins. These observations suggest that endorphins attenuate physiological responses to thermal and noxious stimuli triggered in common neuroanatomical pathways by heat. Images PMID:275863

  11. Adaptive, associative, and self-organizing functions in neural computing.

    PubMed

    Kohonen, T

    1987-12-01

    This paper contains an attempt to describe certain adaptive and cooperative functions encountered in neural networks. The approach is a compromise between biological accuracy and mathematical clarity. two types of differential equation seem to describe the basic effects underlying the information of these functions: the equation for the electrical activity of the neuron and the adaptation equation that describes changes in its input connectivities. Various phenomena and operations are derivable from them: clustering of activity in a laterally interconnected nework; adaptive formation of feature detectors; the autoassociative memory function; and self-organized formation of ordered sensory maps. The discussion tends to reason what functions are readily amenable to analytical modeling and which phenomena seem to ensue from the more complex interactions that take place in the brain. PMID:20523469

  12. Adaptive and intellectual functioning in autistic and nonautistic retarded children.

    PubMed

    Carpentieri, S; Morgan, S B

    1996-12-01

    This study examined the relationship between adaptive functioning on the Vineland Adaptive Behaviour Scale (VABS) and intellectual functioning on the Stanford-Binet Intelligence Scale, 4th edition (SB-IV) in autistic children and nonautistic retarded children of comparable CA and SB-IV composite score (IQ). The autistic group had lower scores than the retarded group in VABS adaptive composite, Socialization domain, and Communication domain, and SB-IV Verbal Reasoning area. VABS domain scores yielded higher classification rates than the SB-IV area scores in discriminating the two groups. Correlations between the two measures were much higher for the autistic group than for the retarded group. Results support the conclusion that the cognitive impairment in autism is reflected in greater impairment in adaptive behaviors than in mental retardation without autism. PMID:8986847

  13. Steroidogenesis in the skin: implications for local immune functions

    PubMed Central

    Slominski, Andrzej; Zbytek, Bazej; Nikolakis, Georgios; Manna, Pulak R.; Skobowiat, Cezary; Zmijewski, Michal; Li, Wei; Janjetovic, Zorica; Postlethwaite, Arnold; Zouboulis, Christos C.; Tuckey, Robert C.

    2013-01-01

    The skin has developed a hierarchy of systems that encompasses the skin immune and local steroidogenic activities in order to protect the body against the external environment and biological factors and to maintain local homeostasis. Most recently it has been established that skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids, androgens and estrogens either from precursors of systemic origin or, alternatively, through the conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone and estradiol. Their local production can be regulated by locally produced corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis, dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and estrogens affect functions of the epidermis and adnexal structures as well as local immune activity. Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune diseases. The cutaneous steroidogenic system can also have systemic effects, which are emphasized by significant skin contribution to circulating androgens and/or estrogens. Furthermore, local activity of CYP11A1 can produce novel 7 -steroids and secosteroids that are biologically active. Therefore, modulation of local steroidogenic activity may serve as a new therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose activity can affect its functions and the development of local or systemic inflammatory or

  14. Capture-related stressors impair immune system function in sablefish

    USGS Publications Warehouse

    Lupes, S.C.; Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2006-01-01

    The sablefish Anoplopoma fimbria is a valuable North Pacific Ocean species that, when not targeted in various commercial fisheries, is often a part of discarded bycatch. Predictions of the survival of discarded fish are dependent on understanding how a fish responds to stressful conditions. Our objective was to describe the immunological health of sablefish exposed to capture stressors. In laboratory experiments designed to simulate the capture process, we subjected sablefish to various stressors that might influence survival: towing in a net, hooking, elevated seawater and air temperatures, and air exposure time. After stress was imposed, the in vitro mitogen-stimulated proliferation of sablefish leukocytes was used to evaluate the function of the immune system in an assay we validated for this species. The results demonstrated that regardless of fishing gear type, exposure to elevated seawater temperature, or time in air, the leukocytes from stressed sablefish exhibited significantly diminished proliferative responses to the T-cell mitogen, concanavalin A, or the B-cell mitogen, lipopolysaccharide. There was no difference in the immunological responses associated with seawater or air temperature. The duration and severity of the capture stressors applied in our study were harsh enough to induce significantly elevated levels of plasma cortisol and glucose, but there was no difference in the magnitude of levels among stressor treatments. These data suggest that immunological suppression occurs in sablefish subjected to capture-related stressors. The functional impairment of the immune system after capture presents a potential reason why delayed mortality is possible in discarded sablefish. Further studies are needed to determine whether delayed mortality in discarded sablefish can be caused by increased susceptibility to infectious agents resulting from stressor-mediated immunosuppression.

  15. Immune response of mice to non-adapted avian influenza A virus.

    PubMed

    Stropkovská, A; Mikušková, T; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-12-01

    Human infections with avian influenza A viruses (IAVs) without or with clinical symptoms of disease were recently reported from several continents, mainly in high risk groups of people, who came into the contact with infected domestic birds or poultry. It was shown that avian IAVs are able to infect humans directly without previous adaptation, however, their ability to replicate and to cause a disease in this new host can differ. No spread of these avian IAVs among humans has been documented until now, except for one case described in Netherlands in the February of 2003 in people directly involved in handling IAV (H7N7)-infected poultry. The aim of our work was to examine whether a low pathogenic avian IAV can induce a virus-specific immune response of biological relevancy, in spite of its restricted replication in mammals. As a model we used a low pathogenic virus A/Duck/Czechoslovakia/1956 (H4N6) (A/Duck), which replicated well in MDCK cells and produced plaques on cell monolayers, but was unable to replicate productively in mouse lungs. We examined how the immune system of mice responds to the intranasal application of this non-adapted avian virus. Though we did not prove the infectious virus in lungs of mice following A/Duck application even after its multiple passaging in mice, we detected virus-specific vRNA till day 8 post infection. Moreover, we detected virus-specific mRNA and de novo synthesized viral nucleoprotein (NP) and membrane protein (M1) in lungs of mice on day 2 and 4 after exposure to A/Duck. Virus-specific antibodies in sera of these mice were detectable by ELISA already after a single intranasal dose of A/Duck virus. Not only antibodies specific to the surface glycoprotein hemagglutinin (HA) were induced, but also antibodies specific to the NP and M1 of IAV were detected by Western blot and their titers increased after the second exposure of mice to this virus. Importantly, antibodies neutralizing virus A/Duck were proved in mouse

  16. Combination Therapy With Reovirus and Anti-PD-1 Blockade Controls Tumor Growth Through Innate and Adaptive Immune Responses.

    PubMed

    Rajani, Karishma; Parrish, Christopher; Kottke, Timothy; Thompson, Jill; Zaidi, Shane; Ilett, Liz; Shim, Kevin G; Diaz, Rosa-Maria; Pandha, Hardev; Harrington, Kevin; Coffey, Matt; Melcher, Alan; Vile, Richard

    2016-02-01

    Oncolytic reovirus can be delivered both systemically and intratumorally, in both preclinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and antitumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive antitumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (P < 0.01) or anti-PD-1 therapy alone. In vitro immune analysis demonstrated that checkpoint inhibition improved the ability of NK cells to kill reovirus-infected tumor cells, reduced T(reg) activity, and increased the adaptive CD8(+) T-cell-dependent antitumor T-cell response. PD-1 blockade also enhanced the antiviral immune response but through effector mechanisms which overlapped with but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus viroimmunotherapy. PMID:26310630

  17. Immune adaptive response induced by Bicotylophora trachinoti (Monogenea: Diclidophoridae) infestation in pompano Trachinotus marginatus (Perciformes: Carangidae).

    PubMed

    Chaves, I S; Luvizzotto-Santos, R; Sampaio, L A N; Bianchini, A; Martínez, P E

    2006-09-01

    Fish have developed protective strategies against monogeneans through immunological responses. In this study, immune adaptive response to parasites was analysed in the pompano Trachinotus marginatus infested by Bicotylophora trachinoti. Hosts were pre-treated with formalin and after 10 days assigned to one of the following experimental treatments: (1) fish infested with remaining eggs of B. trachinoti; (2) fish infested with remaining eggs of B. trachinoti and experimentally re-infested by exposure to T. marginatus heavily infested with B. trachinoti. Samples were collected at 0, 15, and 30 days. Gills were dissected to check the presence of B. trachinoti. Blood was collected for haematological and biochemical assays. Spleen and head-kidney were dissected for phagocytosis assay. The spleen-somatic index was also calculated. Re-infested fish showed a faster and higher parasite infestation than infested ones. The parasite mean abundance at 15 days was 24.86+/-13.32 and 11.67+/-8.57 for re-infested and infested fish, respectively. In both groups, hosts showed an immune adaptive response to parasite infestation that was marked by an increased number of leukocytes. Also, phagocytosis (%) in spleen and head-kidney cells was stimulated after parasite infestation (92.50+/-3.73 and 66.00+/-9.54, respectively), becoming later depressed (77.39+/-6.69 and 53.23+/-9.14, respectively). These results support the hypothesis that monogenean infestation induces a biphasic response of the non-specific defence mechanisms in the pompano T. marginatus. This response is marked by an initial stimulation followed by a later depression of the non-specific defence mechanisms. PMID:16483796

  18. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells

    PubMed Central

    Luo, Yuchun; Cai, Xiangna; Liu, Sucai; Wang, Sen; Nold-Petry, Claudia A.; Nold, Marcel F.; Bufler, Philip; Norris, David; Dinarello, Charles A.; Fujita, Mayumi

    2014-01-01

    IL-1 family member IL-37 limits innate inflammation in models of colitis and LPS-induced shock, but a role in adaptive immunity remains unknown. Here, we studied mice expressing human IL-37b isoform (IL-37tg) subjected to skin contact hypersensitivity (CHS) to dinitrofluorobenzene. CHS challenge to the hapten was significantly decreased in IL-37tg mice compared with wild-type (WT) mice (−61%; P < 0.001 at 48 h). Skin dendritic cells (DCs) were present and migrated to lymph nodes after antigen uptake in IL-37tg mice. When hapten-sensitized DCs were adoptively transferred to WT mice, antigen challenge was greatly impaired in mice receiving DCs from IL-37tg mice compared with those receiving DCs from WT mice (−60%; P < 0.01 at 48 h). In DCs isolated from IL-37tg mice, LPS-induced increase of MHC II and costimulatory molecule CD40 was reduced by 51 and 31%, respectively. In these DCs, release of IL-1β, IL-6, and IL-12 was reduced whereas IL-10 secretion increased (37%). Consistent with these findings, DCs from IL-37tg mice exhibited a lower ability to stimulate syngeneic and allogeneic naive T cells as well as antigen-specific T cells and displayed enhanced induction of T regulatory (Treg) cells (86%; P < 0.001) in vitro. Histological analysis of CHS skin in mice receiving hapten-sensitized DCs from IL-37tg mice revealed a marked reduction in CD8+ T cells (−74%) but an increase in Treg cells (2.6-fold). Together, these findings reveal that DCs expressing IL-37 are tolerogenic, thereby impairing activation of effector T-cell responses and inducing Treg cells. IL-37 thus emerges as an inhibitor of adaptive immunity. PMID:25294929

  19. The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence

    PubMed Central

    Mehra, Smriti; Foreman, Taylor W.; Didier, Peter J.; Ahsan, Muhammad H.; Hudock, Teresa A.; Kissee, Ryan; Golden, Nadia A.; Gautam, Uma S.; Johnson, Ann-Marie; Alvarez, Xavier; Russell-Lodrigue, Kasi E.; Doyle, Lara A.; Roy, Chad J.; Niu, Tianhua; Blanchard, James L.; Khader, Shabaana A.; Lackner, Andrew A.; Sherman, David R.

    2015-01-01

    Rationale: Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia. Objectives: To understand DosR's contribution in the persistence of M. tuberculosis, we compared the phenotype of various DosR regulon mutants and a complemented strain to M. tuberculosis in macaques, which faithfully model M. tuberculosis infection. Methods: We measured clinical and microbiologic correlates of infection with M. tuberculosis relative to mutant/complemented strains in the DosR regulon, studied lung pathology and hypoxia, and compared immune responses in lung using transcriptomics and flow cytometry. Measurements and Main Results: Despite being able to replicate initially, mutants in DosR regulon failed to persist or cause disease. On the contrary, M. tuberculosis and a complemented strain were able to establish infection and tuberculosis. The attenuation of pathogenesis in animals infected with the mutants coincided with the appearance of a Th1 response and organization of hypoxic lesions wherein M. tuberculosis expressed dosR. The lungs of animals infected with the mutants (but not the complemented strain) exhibited early transcriptional signatures of T-cell recruitment, activation, and proliferation associated with an increase of T cells expressing homing and proliferation markers. Conclusions: Delayed adaptive responses, a hallmark of M. tuberculosis infection, not only lead to persistence but also interfere with the development of effective antituberculosis vaccines. The DosR regulon therefore modulates both the magnitude and the timing of adaptive immune responses in response to hypoxia in vivo, resulting in persistent infection. Hence, DosR regulates key aspects of the M. tuberculosis life cycle and limits lung pathology. PMID:25730547

  20. Fueling Immunity: Insights into Metabolism and Lymphocyte Function

    PubMed Central

    Pearce, Erika L.; Poffenberger, Maya C.; Chang, Chih-Hao; Jones, Russell G.

    2015-01-01

    Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to changing environmental conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. Research on tumor cell metabolism has provided valuable insight into metabolic pathways important for cell proliferation and the influence of metabolites themselves on signal transduction and epigenetic programming. In this Review, we highlight emerging concepts regarding metabolic reprogramming in proliferating cells and discuss their potential impact on T cell fate and function. PMID:24115444

  1. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    SciTech Connect

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  2. IL-15 Prevents Apoptosis, Reverses Innate and Adaptive Immune Dysfunction, and Improves Survival in Sepsis

    PubMed Central

    Inoue, Shigeaki; Unsinger, Jacqueline; Davis, Christopher G.; Muenzer, Jared T.; Ferguson, Thomas A.; Chang, Katherine; Osborne, Dale F.; Clark, Andrew T.; Coopersmith, Craig M.; McDunn, Jonathan E.; Hotchkiss, Richard S.

    2010-01-01

    L-15 is a pluripotent antiapoptotic cytokine that signals to cells of both the innate and adaptive immune system and is regarded as a highly promising immunomodulatory agent in cancer therapy. Sepsis is a lethal condition in which apoptosis-induced depletion of immune cells and subsequent immunosuppression are thought to contribute to morbidity and mortality. This study tested the ability of IL-15 to block apoptosis, prevent immunosuppression, and improve survival in sepsis. Mice were made septic using cecal ligation and puncture or Pseudomonas aeruginosa pneumonia. The experiments comprised a 2×2 full factorial design with surgical sepsis versus sham and IL-15 versus vehicle. In addition to survival studies, splenic cellularity, canonical markers of activation and proliferation, intracellular pro- and antiapoptotic Bcl-2 family protein expression, and markers of immune cell apoptosis were evaluated by flow cytometry. Cytokine production was examined both in plasma of treated mice and splenocytes that were stimulated ex vivo. IL-15 blocked sepsis-induced apoptosis of NK cells, dendritic cells, and CD8 T cells. IL-15 also decreased sepsis-induced gut epithelial apoptosis. IL-15 therapy increased the abundance of antiapoptotic Bcl-2 while decreasing proapoptotic Bim and PUMA. IL-15 increased both circulating IFN-γ, as well as the percentage of NK cells that produced IFN-γ. Finally, IL-15 increased survival in both cecal ligation and puncture and P. aeruginosa pneumonia. In conclusion, IL-15 prevents two immunopathologic hallmarks of sepsis, namely, apoptosis and immunosuppression, and improves survival in two different models of sepsis. IL-15 represents a potentially novel therapy of this highly lethal disorder. PMID:20026737

  3. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis.

    PubMed

    Inoue, Shigeaki; Unsinger, Jacqueline; Davis, Christopher G; Muenzer, Jared T; Ferguson, Thomas A; Chang, Katherine; Osborne, Dale F; Clark, Andrew T; Coopersmith, Craig M; McDunn, Jonathan E; Hotchkiss, Richard S

    2010-02-01

    IL-15 is a pluripotent antiapoptotic cytokine that signals to cells of both the innate and adaptive immune system and is regarded as a highly promising immunomodulatory agent in cancer therapy. Sepsis is a lethal condition in which apoptosis-induced depletion of immune cells and subsequent immunosuppression are thought to contribute to morbidity and mortality. This study tested the ability of IL-15 to block apoptosis, prevent immunosuppression, and improve survival in sepsis. Mice were made septic using cecal ligation and puncture or Pseudomonas aeruginosa pneumonia. The experiments comprised a 2 x 2 full factorial design with surgical sepsis versus sham and IL-15 versus vehicle. In addition to survival studies, splenic cellularity, canonical markers of activation and proliferation, intracellular pro- and antiapoptotic Bcl-2 family protein expression, and markers of immune cell apoptosis were evaluated by flow cytometry. Cytokine production was examined both in plasma of treated mice and splenocytes that were stimulated ex vivo. IL-15 blocked sepsis-induced apoptosis of NK cells, dendritic cells, and CD8 T cells. IL-15 also decreased sepsis-induced gut epithelial apoptosis. IL-15 therapy increased the abundance of antiapoptotic Bcl-2 while decreasing proapoptotic Bim and PUMA. IL-15 increased both circulating IFN-gamma, as well as the percentage of NK cells that produced IFN-gamma. Finally, IL-15 increased survival in both cecal ligation and puncture and P. aeruginosa pneumonia. In conclusion, IL-15 prevents two immunopathologic hallmarks of sepsis, namely, apoptosis and immunosuppression, and improves survival in two different models of sepsis. IL-15 represents a potentially novel therapy of this highly lethal disorder. PMID:20026737

  4. Unusual association of amyotrophic lateral sclerosis and myasthenia gravis: A dysregulation of the adaptive immune system?

    PubMed

    Del Mar Amador, Maria; Vandenberghe, Nadia; Berhoune, Nawel; Camdessanché, Jean-Philippe; Gronier, Sophie; Delmont, Emilien; Desnuelle, Claude; Cintas, Pascal; Pittion, Sophie; Louis, Sarah; Demeret, Sophie; Lenglet, Timothée; Meininger, Vincent; Salachas, François; Pradat, Pierre-François; Bruneteau, Gaëlle

    2016-06-01

    Myasthenia gravis is an autoimmune disorder affecting neuromuscular junctions that has been associated with a small increased risk of amyotrophic lateral sclerosis (ALS). Here, we describe a retrospective series of seven cases with a concomitant diagnosis of ALS and myasthenia gravis, collected among the 18 French reference centers for ALS in a twelve year period. After careful review, only six patients strictly met the diagnostic criteria for both ALS and myasthenia gravis. In these patients, limb onset of ALS was reported in five (83%) cases. Localization of myasthenia gravis initial symptoms was ocular in three (50%) cases, generalized in two (33%) and bulbar in one (17%). Median delay between onset of the two conditions was 19 months (6-319 months). Anti-acetylcholine receptor antibodies testing was positive in all cases. All patients were treated with riluzole and one had an associated immune-mediated disease. In the one last ALS case, the final diagnosis was false-positivity for anti-acetylcholine receptor antibodies. The co-occurrence of ALS and myasthenia gravis is rare and requires strict diagnostic criteria. Its demonstration needs thoughtful interpretation of electrophysiological results and exclusion of false positivity for myasthenia gravis antibody testing in some ALS cases. This association may be triggered by a dysfunction of adaptive immunity. PMID:27102004

  5. Influence of Phthalates on in vitro Innate and Adaptive Immune Responses

    PubMed Central

    Hansen, Juliana Frohnert; Nielsen, Claus Henrik; Brorson, Marianne Møller; Frederiksen, Hanne; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh; Bendtzen, Klaus; Feldt-Rasmussen, Ulla

    2015-01-01

    Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL)-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF)-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo. PMID:26110840

  6. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    NASA Astrophysics Data System (ADS)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B–B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  7. Fanconi Anemia Proteins Function in Mitophagy and Immunity.

    PubMed

    Sumpter, Rhea; Sirasanagandla, Shyam; Fernández, Álvaro F; Wei, Yongjie; Dong, Xiaonan; Franco, Luis; Zou, Zhongju; Marchal, Christophe; Lee, Ming Yeh; Clapp, D Wade; Hanenberg, Helmut; Levine, Beth

    2016-05-01

    Fanconi anemia (FA) pathway genes are important tumor suppressors whose best-characterized function is repair of damaged nuclear DNA. Here, we describe an essential role for FA genes in two forms of selective autophagy. Genetic deletion of Fancc blocks the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral encephalitis. Fanconi anemia complementation group C (FANCC) protein interacts with Parkin, is required in vitro and in vivo for clearance of damaged mitochondria, and decreases mitochondrial reactive oxygen species (ROS) production and inflammasome activation. The mitophagy function of FANCC is genetically distinct from its role in genomic DNA damage repair. Moreover, additional genes in the FA pathway, including FANCA, FANCF, FANCL, FANCD2, BRCA1, and BRCA2, are required for mitophagy. Thus, members of the FA pathway represent a previously undescribed class of selective autophagy genes that function in immunity and organellar homeostasis. These findings have implications for understanding the pathogenesis of FA and cancers associated with mutations in FA genes. PMID:27133164

  8. Stromal cell contributions to the homeostasis and functionality of the immune system

    PubMed Central

    Mueller, Scott N.; Germain, Ronald N.

    2009-01-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance, and effective development of adaptive immunity take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in multiple aspects of immune cell migration, activation and survival. In this Review, we summarize our current understanding of lymphoid compartment stromal cells, examine their possible heterogeneity, discuss how these cells contribute to immune homeostasis and the efficient initiation of adaptive immunity, and highlight how targeting of these elements by some pathogens can influence the host response. PMID:19644499

  9. Regulation and function of innate and adaptive interleukin-17-producing cells

    PubMed Central

    Hirota, Keiji; Ahlfors, Helena; Duarte, João H; Stockinger, Brigitta

    2012-01-01

    Interleukin-17 (IL-17)-mediated immune responses play a crucial role in the mucosal host defence against microbial and fungal pathogens. However, the chronic activation of IL-17-producing T helper cells can cause autoimmune disease. In addition, recent studies have highlighted key roles of innate cell-mediated IL-17 responses in various inflammatory settings. Besides inflammation, there have also been intriguing findings regarding the involvement of IL-17 responses in the pathogenesis of cardiovascular diseases and tumour formation. Here, we discuss the latest discoveries in regulation and function of innate and adaptive IL-17-producing cells. PMID:22193778

  10. Adaptive Immune Responses Elicited by Baculovirus and Impacts on Subsequent Transgene Expression In Vivo

    PubMed Central

    Luo, Wen-Yi; Lin, Shih-Yeh; Lo, Kai-Wei; Lu, Chia-Hsin; Hung, Chang-Lin; Chen, Chi-Yuan; Chang, Chien-Chung

    2013-01-01

    Baculovirus (BV) is a promising gene therapy vector and typically requires readministration because BV mediates transient expression. However, how the prime-boost regimen triggers BV-specific adaptive responses and their impacts on BV readministration, transgene expression, and therapeutic/vaccine efficacy remain unknown. Here we unraveled that BV injection into BALB/c mice induced the production of BV-specific antibodies, including IgG1 and IgG2a, which could neutralize BV by antagonizing the envelope protein gp64 and impede BV-mediated transgene expression. Moreover, humans did not possess preexisting anti-BV antibodies. BV injection also elicited BV-specific Th1 and Th2 responses as well as CD4+ and CD8+ T cell responses. gp64 was a primary immunogen to activate the antibody and CD8+ T cell response, with its peptide at positions 457 to 465 (peptide 457-465) being the major histocompatibility complex (MHC) class I epitope to stimulate CD8+ T cell and cytotoxic responses. Nonetheless, a hybrid Sleeping Beauty-based BV enabled long-term expression for >1 year by a single injection, indicating that the T cell responses did not completely eradicate BV-transduced cells and implicating the potential of this hybrid BV vector for gene therapy. These data unveil that BV injection triggers adaptive immunity and benefit rational design of BV administration schemes for gene therapy and vaccination. PMID:23408634

  11. Identification and immune functional characterization of pigeon TLR7.

    PubMed

    Xiong, Dan; Song, Li; Pan, Zhiming; Chen, Xiang; Geng, Shizhong; Jiao, Xinan

    2015-01-01

    Toll-like receptor 7 (TLR7) is activated by single-stranded RNA and synthetic imidazoquinoline components, and induces interferon production. In this study, we cloned the TLR7 gene from King pigeon (Columba livia). The TLR7 open reading frame is 3144 bp and encodes a 1047-amino acid protein, consisting of a canonical TLR composition with 15 leucine-rich repeats (LRRs). Amino acid-inserting modifications were found at position 15 of LRR2, LRR11, LRR13, and LRR14 and position 10 of LRR10. The tissue distribution of pigeon TLR7 suggests that immune-associated tissues, especially the spleen and liver, have high TLR7 expression. HEK293T cells transfected with pigeon TLR7 plasmid responded to the agonist R848, indicating a functional TLR7 homolog. Following R848 stimulation of pigeon peripheral blood mononuclear cells, the levels of IFN-γ, IL-6, IL-8, CCL5, and IL-10 mRNA, assessed using quantitative real-time PCR, were significantly up-regulated. After Newcastle disease virus vaccine strain LaSota inoculation and agonist R848 injection, the level of TLR7 mRNA in the spleen of pigeons increased significantly in the R848-injected group, but decreased in the LaSota-inoculated group at three day post-infection (d.p.i.). The mRNA levels of inflammatory cytokines and chemokines were significantly upregulated in both LaSota-inoculated and R848-injected groups. Triggering pigeon TLR7 leads to robust up-regulation of inflammatory cytokines and chemokines, suggesting an important role in the innate immune response. PMID:25874762

  12. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    PubMed

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. PMID:27269061

  13. Improving nonlinear modeling capabilities of functional link adaptive filters.

    PubMed

    Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio

    2015-09-01

    The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown. PMID:26057613

  14. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection

    PubMed Central

    Richner, Justin M.; Gmyrek, Grzegorz B.; Govero, Jennifer; Tu, Yizheng; van der Windt, Gerritje J. W.; Metcalf, Talibah U.; Haddad, Elias K.; Textor, Johannes; Miller, Mark J.; Diamond, Michael S.

    2015-01-01

    Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection. PMID:26204259

  15. The functional basis of adaptive evolution in chemostats

    PubMed Central

    Gresham, David; Hong, Jungeui

    2014-01-01

    Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. PMID:25098268

  16. Circulating Tumor Cells (CTC) Are Associated with Defects in Adaptive Immunity in Patients with Inflammatory Breast Cancer

    PubMed Central

    Mego, M; Gao, H; Cohen, EN; Anfossi, S; Giordano, A; Sanda, T; Fouad, TM; De Giorgi, U; Giuliano, M; Woodward, WA; Alvarez, RH; Valero, V; Ueno, NT; Hortobagyi, GN; Cristofanilli, M; Reuben, JM

    2016-01-01

    Background: Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are prognostic in primary and metastatic breast cancer. Peripheral blood (PB) immune cells contribute to an unfavorable microenvironment for CTC survival. This study aimed to correlate CTCs with the PB T-cell immunophenotypes and functions of patients with inflammatory breast cancer (IBC). Methods: This study included 65 IBC patients treated at the MD Anderson Cancer Center. PB was obtained from patients prior to starting a new line of chemotherapy for CTCs enumeration by CellSearch®, and T cell phenotype and function by flow cytometry; the results were correlated with CTCs and clinical outcome. Results: At least 1 CTC (≥1) or ≥5 CTCs was detected in 61.5% or 32.3% of patients, respectively. CTC count did not correlate with total lymphocytes; however, patients with ≥1 CTC or ≥5 CTCs had lower percentages (%) of CD3+ and CD4+ T cells compared with patients with no CTCs or <5 CTCs, respectively. Patients with ≥1 CTC had a lower percentage of T-cell receptor (TCR)-activated CD8+ T cells synthesizing TNF-α and IFN-γ and a higher percentage of T-regulatory lymphocytes compared to patients without CTCs. In multivariate analysis, tumor grade and % CD3+ T-cells were associated with ≥1 CTC, whereas ≥5 CTC was associated with tumor grade, stage, % CD3+ and % CD4+ T cells, and % TCR-activated CD8 T-cells synthesizing IL-17. Conclusions: IBC patients with CTCs in PB had abnormalities in adaptive immunity that could potentially impact tumor cell dissemination and initiation of the metastatic cascade. PMID:27326253

  17. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression

    PubMed Central

    Koelwyn, Graeme J.; Wennerberg, Erik; Demaria, Sandra; Jones, Lee W.

    2016-01-01

    Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer. PMID:26676894

  18. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens.

    PubMed

    Holtzman, Michael J

    2012-08-01

    Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease. PMID:22850884

  19. Immune-Related Functions of the Hivep Gene Family in East African Cichlid Fishes

    PubMed Central

    Diepeveen, Eveline T.; Roth, Olivia; Salzburger, Walter

    2013-01-01

    Immune-related genes are often characterized by adaptive protein evolution. Selection on immune genes can be particularly strong when hosts encounter novel parasites, for instance, after the colonization of a new habitat or upon the exploitation of vacant ecological niches in an adaptive radiation. We examined a set of new candidate immune genes in East African cichlid fishes. More specifically, we studied the signatures of selection in five paralogs of the human immunodeficiency virus type I enhancer-binding protein (Hivep) gene family, tested their involvement in the immune defense, and related our results to explosive speciation and adaptive radiation events in cichlids. We found signatures of long-term positive selection in four Hivep paralogs and lineage-specific positive selection in Hivep3b in two radiating cichlid lineages. Exposure of the cichlid Astatotilapia burtoni to a vaccination with Vibrio anguillarum bacteria resulted in a positive correlation between immune response parameters and expression levels of three Hivep loci. This work provides the first evidence for a role of Hivep paralogs in teleost immune defense and links the signatures of positive selection to host–pathogen interactions within an adaptive radiation. PMID:24142922

  20. Vitamin D and its effects on glucose homeostasis, cardiovascular function and immune function.

    PubMed

    El-Fakhri, N; McDevitt, H; Shaikh, M G; Halsey, C; Ahmed, S F

    2014-01-01

    In recent years there has been increasing interest in the non-skeletal effects of vitamin D. It has been suggested that vitamin D deficiency may influence the development of diabetes, cardiovascular dysfunction and autoimmune diseases. This review focuses on the current knowledge of the effects of vitamin D and its deficiency on cardiovascular function, glucose homeostasis and immune function, with a particular focus on children. Although, there is good evidence to show that there is an association between vitamin D deficiency and an abnormality of the above systems, there is little evidence to show that vitamin D supplementation leads to an improvement in function, especially in childhood. PMID:24776698

  1. The impact of microbial immune enteral nutrition on the patients with acute radiation enteritis in bowel function and immune status.

    PubMed

    Shao, Feng; Xin, Fu-Ze; Yang, Cheng-Gang; Yang, Dao-Gui; Mi, Yue-Tang; Yu, Jun-Xiu; Li, Guo-Yong

    2014-06-01

    The aim of the study was to investigate the effect of microbial immune enteral nutrition by microecopharmaceutics and deep sea fish oil and glutamine and Peptisorb on the patients with acute radiation enteritis in bowel function and immune status. From June 2010 to January 2013, 46 acute radiation enteritis patients in Liaocheng People's Hospital were randomized into the microbial immune enteral nutrition group and the control group: 24 patients in treatment group and 22 patients in control group. The immune microbial nutrition was given to the study group, but not to the control group. The concentration of serum albumin and prealbumin and the number of CD3 (+) T cell, CD4 (+) T cell, CD8 (+) T cell, CD4 (+)/CD8 (+) and natural killer cell of the two groups were detected on the 1, 7 and 14 days after treatment. The arm muscle circumference and triceps skinfold thickness (TSF) were recorded, and the tolerance of the two groups for enteral nutrition and intestinal symptoms was collected and then comparing the two indicators and get results. The tolerance of microbial immune enteral nutrition group about abdominal pain, bloating and diarrhea was better than the control group (P values were 0.018, 0.04 and 0.008 after 7 days; P values were 0.018, 0.015 and 0.002 after 14 days); and the cellular immune parameters were better than the control group((△) P = 0.008,([Symbol: see text]) P = 0.039, (☆) P = 0.032); No difference was found in nutrition indicators. To the patients with acute radiation enteritis, microbial immune enteral nutrition could improve the patient's immune status, and the tolerance of enteral nutrition could be better for the bowel function and the patients' rehabilitation. PMID:24366547

  2. Preschooler Sleep Patterns Related to Cognitive and Adaptive Functioning

    ERIC Educational Resources Information Center

    Keefe-Cooperman, Kathleen; Brady-Amoon, Peggy

    2014-01-01

    Research Findings: Preschoolers' sleep patterns were examined related to cognitive and adaptive functioning. The sample consisted of 874 typically developing preschool children with a mean age of 40.01 months. Parent/caregiver reports of children's sleep pattern factors, Stanford-Binet 5 intelligence scale scores, and Behavior Assessment…

  3. Hypnotizability as a Function of Repression, Adaptive Regression, and Mood

    ERIC Educational Resources Information Center

    Silver, Maurice Joseph

    1974-01-01

    Forty male undergraduates were assessed in a personality assessment session and a hypnosis session. The personality traits studied were repressive style and adaptive regression, while the transitory variable was mood prior to hypnosis. Hypnotizability was a significant interactive function of repressive style and mood, but not of adaptive…

  4. Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics.

    PubMed

    Eikenaar, Cas; Hegemann, Arne

    2016-03-01

    Animals need a well-functioning immune system to protect themselves against pathogens. The immune system, however, is costly and resource trade-offs with other demands exist. For migratory animals several (not mutually exclusive) hypotheses exist. First, migrants reduce immune function to be able to allocate resources to migration. Second, migrants boost immune function to cope with more and/or novel pathogens encountered during migration. Third, migrants reallocate resources within the immune system. We tested these hypotheses by comparing baseline immune function in resident and migratory common blackbirds (Turdus merula), both caught during the autumn migration season on the island of Helgoland, Germany. Indices of baseline innate immune function (microbial killing capacity and haptoglobin-like activity) were lower in migrants than in residents. There was no difference between the groups in total immunoglobulins, a measure of baseline acquired immune function. Our study on a short-distance avian migrant supports the hypothesis that innate immune function is compromised during migration. PMID:27029839

  5. The composition of immune cells serves as a predictor of adaptive immunity in a cohort of 50- to 74-year-old adults.

    PubMed

    Kennedy, Richard B; Simon, Whitney L; Gibson, Michael J; Goergen, Krista M; Grill, Diane E; Oberg, Ann L; Poland, Gregory A

    2016-07-01

    Influenza causes significant morbidity and mortality annually. Although vaccination offers a considerable amount of protection, it is far from perfect, especially in aging populations. This is due to age-related defects in immune function, a process called immunosenescence. To date, there are no assays or methods to predict or explain variations in an individual's level of response to influenza vaccination. In this study, we measured levels of several immune cell subsets at baseline (Day 0) and at Days 3 and 28 post-vaccination using flow cytometry. Statistical modelling was performed to assess correlations between levels of cell subsets and Day 28 immune responses - haemagglutination inhibition (HAI) assay, virus neutralizing antibody (VNA) assay, and memory B cell ELISPOT. Changes in several groups of cell types from Day 0 to Day 28 and Day 3 to Day 28 were found to be significantly associated with immune response. Baseline levels of several immune cell subsets, including B cells and regulatory T cells, were able to partially explain variation in memory B-cell ELISPOT results. Increased expression of HLA-DR on plasmacytoid dendritic cells after vaccination was correlated with increased HAI and VNA responses. Our data suggest that the expression of activation markers (HLA-DR and CD86) on various immune cell subsets, as well as the relative distribution of cell subsets, both have value in predicting immune responses to influenza vaccination in older individuals. PMID:27188667

  6. Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection.

    PubMed

    Lee, Young-Tae; Kim, Ki-Hye; Hwang, Hye Suk; Lee, Youri; Kwon, Young-Man; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Kang, Sang-Moo

    2015-11-01

    Respiratory syncytial virus (RSV) is the major leading cause of infantile viral bronchiolitis. However, cellular phenotypes contributing to the RSV protection and vaccine-enhanced disease remain largely unknown. Upon RSV challenge, we analyzed phenotypes and cellularity in the lung of mice that were naïve, immunized with formalin inactivated RSV (FI-RSV), or re-infected with RSV. In comparison with naïve and live RSV re-infected mice, the high levels of eosinophils, neutrophils, plasmacytoid and CD11b(+) dendritic cells, and IL-4(+) CD4(+) T cells were found to be contributing to pulmonary inflammation in FI-RSV immune mice despite lung viral clearance. Alveolar macrophages appeared to play differential roles in protection and inflammation upon RSV infection of different RSV immune mice. These results suggest that multiple innate and adaptive immune components differentially contribute to RSV disease and inflammation. PMID:26196232

  7. Report on Adaptive Force, A Specific Neuromuscular Function

    PubMed Central

    Hoff, Marko; Heinke, Nancy; Bittmann, Frank

    2015-01-01

    In real life motions, as well as in sports, the adaptation of the neuromuscular systems to externally applied forces plays an important role. The term Adaptive Force (AF) shall characterize the ability of the nerve-muscle-system to adapt to impacting external forces during isometric and eccentric muscle action. The focus in this paper is on the concept of this neuromuscular action, which is not yet described in this way. A measuring system was constructed and evaluated for this specific neuromuscular function, but only the main information of the evaluation of the measuring system and the preliminary reference values are mentioned here, while an article with detailed description will be published separately. This paper concentrates on the three following points: 1) What is the peculiarity of this neuromuscular function, introduced as AF? 2) Is the measuring system able to capture its specific characteristics and which phases of measurement occur? 3) It seems reasonable to discuss if AF can be distinguished and classified among the known force concepts. The article describes the measuring system and how it is able to capture special features of real life motions like submaximal intensities and the subjects’ option to react adequately on external varying forces. Furthermore, within one measurement the system records three different force qualities: the isometric submaximal Adaptive Force (AFiso), the maximal isometric Adaptive Force (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax). Each of these phases provide different and unique information on the nerve-muscle-system that are discussed in detail. Important, in terms of the Adaptive Force, seems to be the combination of conditional and coordinative abilities. This project was funded by the Federal Ministry of Economy and Technology (Project ZIM KF2262301FO9). PMID:26913155

  8. Report on Adaptive Force, A Specific Neuromuscular Function.

    PubMed

    Hoff, Marko; Schaefer, Laura; Heinke, Nancy; Bittmann, Frank

    2015-09-11

    In real life motions, as well as in sports, the adaptation of the neuromuscular systems to externally applied forces plays an important role. The term Adaptive Force (AF) shall characterize the ability of the nerve-muscle-system to adapt to impacting external forces during isometric and eccentric muscle action. The focus in this paper is on the concept of this neuromuscular action, which is not yet described in this way. A measuring system was constructed and evaluated for this specific neuromuscular function, but only the main information of the evaluation of the measuring system and the preliminary reference values are mentioned here, while an article with detailed description will be published separately. This paper concentrates on the three following points: 1) What is the peculiarity of this neuromuscular function, introduced as AF? 2) Is the measuring system able to capture its specific characteristics and which phases of measurement occur? 3) It seems reasonable to discuss if AF can be distinguished and classified among the known force concepts. The article describes the measuring system and how it is able to capture special features of real life motions like submaximal intensities and the subjects' option to react adequately on external varying forces. Furthermore, within one measurement the system records three different force qualities: the isometric submaximal Adaptive Force (AFiso), the maximal isometric Adaptive Force (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax). Each of these phases provide different and unique information on the nerve-muscle-system that are discussed in detail. Important, in terms of the Adaptive Force, seems to be the combination of conditional and coordinative abilities. This project was funded by the Federal Ministry of Economy and Technology (Project ZIM KF2262301FO9). PMID:26913155

  9. Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions.

    PubMed

    Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2014-08-21

    Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. PMID:25029354

  10. Massive expansion and functional divergence of innate immune genes in a protostome

    PubMed Central

    Zhang, Linlin; Li, Li; Guo, Ximing; Litman, Gary W.; Dishaw, Larry J.; Zhang, Guofan

    2015-01-01

    The molecules that mediate innate immunity are encoded by relatively few genes and exhibit broad specificity. Detailed annotation of the Pacific oyster (Crassostrea gigas) genome, a protostome invertebrate, reveals large-scale duplication and divergence of multigene families encoding molecules that effect innate immunity. Transcriptome analyses indicate dynamic and orchestrated specific expression of numerous innate immune genes in response to experimental challenge with pathogens, including bacteria, and a pathogenic virus. Variable expression of individual members of the multigene families encoding these genes also occurs during different types of abiotic stress (environmentally-equivalent conditions of temperature, salinity and desiccation). Multiple families of immune genes are responsive in concert to certain biotic and abiotic challenges. Individual members of expanded families of immune genes are differentially expressed under both biotic challenge and abiotic stress conditions. Members of the same families of innate immune molecules also are transcribed in developmental stage- and tissue-specific manners. An integrated, highly complex innate immune system that exhibits remarkable discriminatory properties and responses to different pathogens as well as environmental stress has arisen through the adaptive recruitment of tandem duplicated genes. The co-adaptive evolution of stress and innate immune responses appears to have an ancient origin in phylogeny. PMID:25732911

  11. Signaling of c-kit in dendritic cells influences adaptive immunity

    PubMed Central

    Ray, Prabir; Krishnamoorthy, Nandini; Oriss, Timothy B.; Ray, Anuradha

    2013-01-01

    The binding of the receptor tyrosine kinase, c-kit, to its ligand, stem cell factor (SCF), mediates numerous biological functions. Important roles for c-kit in hematopoiesis, melanogenesis, erythropoiesis, spermatogenesis, and carcinogenesis are well documented. Similarly, activation of granulocytes, mast cells, and of eosinophils in particular, by c-kit ligation has long been known to result in degranulation with concomitant release of pro-inflammatory mediators, including cytokines. However, recent work from a number of laboratories, including our own, highlights previously unappreciated functions for c-kit in immunologic processes. These novel findings strongly suggest that signaling through the c-kit–SCF axis could have a significant impact on the pathogenesis of diseases associated with an immunologic component. In our own studies, c-kit upregulation on dendritic cells via T helper (Th)2- and Th17-inducing stimuli led to c-kit activation and immune skewing toward these T helper subsets and away from Th1 responses. Others have shown that dendritic cell treatment with inhibitors of c-kit activation, such as imatinib mesylate (Gleevec), favored breaking of T-cell tolerance, skewing of responses toward production of Th1 cytokines, and activation of natural killer cells. These data all indicate that deeper understanding of, and ability to control, the c-kit–SCF axis could lead to improved treatment modalities aimed at redirecting unwanted and/or deleterious immune responses in a wide variety of conditions. PMID:20146711

  12. Functional diversity of long non-coding RNAs in immune regulation

    PubMed Central

    Geng, Hua; Tan, Xiao-Di

    2016-01-01

    Precise and dynamic regulation of gene expression is a key feature of immunity. In recent years, rapid advances in transcriptome profiling analysis have led to recognize long non-coding RNAs (lncRNAs) as an additional layer of gene regulation context. In the immune system, lncRNAs are found to be widely expressed in immune cells including monocytes, macrophages, dendritic cells (DCs), neutrophils, T cells and B cells during their development, differentiation and activation. However, the functional importance of immune-related lncRNAs is just emerging to be characterized. In this review, we discuss the up-to-date knowledge of lncRNAs in immune regulation.

  13. Population-Level Immune-Mediated Adaptation in HIV-1 Polymerase during the North American Epidemic

    PubMed Central

    Kinloch, Natalie N.; MacMillan, Daniel R.; Le, Anh Q.; Cotton, Laura A.; Bangsberg, David R.; Buchbinder, Susan; Carrington, Mary; Fuchs, Jonathan; Harrigan, P. Richard; Koblin, Beryl; Kushel, Margot; Markowitz, Martin; Mayer, Kenneth; Milloy, M. J.; Schechter, Martin T.; Wagner, Theresa; Walker, Bruce D.; Carlson, Jonathan M.; Poon, Art F. Y.

    2015-01-01

    ABSTRACT Human leukocyte antigen (HLA) class I-associated polymorphisms in HIV-1 that persist upon transmission to HLA-mismatched hosts may spread in the population as the epidemic progresses. Transmission of HIV-1 sequences containing such adaptations may undermine cellular immune responses to the incoming virus in future hosts. Building upon previous work, we investigated the extent of HLA-associated polymorphism accumulation in HIV-1 polymerase (Pol) through comparative analysis of linked HIV-1/HLA class I genotypes sampled during historic (1979 to 1989; n = 338) and modern (2001 to 2011; n = 278) eras from across North America (Vancouver, BC, Canada; Boston, MA; New York, NY; and San Francisco, CA). Phylogenies inferred from historic and modern HIV-1 Pol sequences were star-like in shape, with an inferred most recent common ancestor (epidemic founder virus) sequence nearly identical to the modern North American subtype B consensus sequence. Nevertheless, modern HIV-1 Pol sequences exhibited roughly 2-fold-higher patristic (tip-to-tip) genetic distances than historic sequences, with HLA pressures likely driving ongoing diversification. Moreover, the frequencies of published HLA-associated polymorphisms in individuals lacking the selecting HLA class I allele was on average ∼2.5-fold higher in the modern than in the historic era, supporting their spread in circulation, though some remained stable in frequency during this time. Notably, polymorphisms restricted by protective HLA alleles appear to be spreading to a greater relative extent than others, though these increases are generally of modest absolute magnitude. However, despite evidence of polymorphism spread, North American hosts generally remain at relatively low risk of acquiring an HIV-1 polymerase sequence substantially preadapted to their HLA profiles, even in the present era. IMPORTANCE HLA class I-restricted cytotoxic T-lymphocyte (CTL) escape mutations in HIV-1 that persist upon transmission may

  14. Obligate brood parasites show more functionally effective innate immune responses: An eco-immunological hypothesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Design and functionality of the immune system may play a key role in the success of invasive species. We examined the relative effectiveness of functional innate immune defenses in the brown-headed cowbird (Molothrus ater, Icteridae), an invasive avian species that has shown unusual resistance to i...

  15. Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases.

    PubMed

    Calmus, Yvon; Poupon, Raoul

    2014-10-01

    The liver is selectively enriched in innate immune cells, macrophages (Kupffer cells), natural killer, and natural killer T cells. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity that function to fight infections, limit tissue injury, and promote wound healing. The diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the mechanisms and role of the microenvironment contributing to modulation of macrophage populations is crucial for comprehension of the pathophysiology of liver injury in diverse conditions. Several studies initiated in the 1990s have shown that bile acids modulate innate and adaptive immunity. In the last decade, bile acids turned into hormones and signalling molecules involved in many metabolic and inflammatory processes. Biological properties of bile acids are thought to be mediated mainly through activation of the nuclear receptor FXR, the membrane receptor TGR5, as well as PK, ERK, MAP kinases signalling pathways. FXR and TGR5 agonists are currently under development for clinical purpose. This review analyses the mechanisms involved in the immunomodulatory effects of bile acids on the macrophage and discuss their implications in the pathophysiology of cholestasis, primary biliary cirrhosis and primary sclerosing cholangitis. PMID:25176586

  16. Function-valued adaptive dynamics and the calculus of variations.

    PubMed

    Parvinen, Kalle; Dieckmann, Ulf; Heino, Mikko

    2006-01-01

    Adaptive dynamics has been widely used to study the evolution of scalar-valued, and occasionally vector-valued, strategies in ecologically realistic models. In many ecological situations, however, evolving strategies are best described as function-valued, and thus infinite-dimensional, traits. So far, such evolution has only been studied sporadically, mostly based on quantitative genetics models with limited ecological realism. In this article we show how to apply the calculus of variations to find evolutionarily singular strategies of function-valued adaptive dynamics: such a strategy has to satisfy Euler's equation with environmental feedback. We also demonstrate how second-order derivatives can be used to investigate whether or not a function-valued singular strategy is evolutionarily stable. We illustrate our approach by presenting several worked examples. PMID:16012801

  17. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    PubMed Central

    Venugopal, Gopinath; Rao, Gopala B.; Lucius, Richard; Srikantam, Aparna; Hartmann, Susanne

    2014-01-01

    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic

  18. Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

    PubMed Central

    Lazzaro, Brian P.; Flores, Heather A.; Lorigan, James G.; Yourth, Christopher P.

    2008-01-01

    Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations. PMID:18369474

  19. Functioning, Disability, and Social Adaptation Six Months After Burn Injury.

    PubMed

    Palmu, Raimo; Partonen, Timo; Suominen, Kirsi; Vuola, Jyrki; Isometsä, Erkki

    2016-01-01

    Major injuries commonly cause long-standing functional impairment. The authors investigated the levels of and predictors for functioning, disability, and social adaptation 6 months after a burn injury. The overall level of functioning at 6 months postburn was assessed among 87 (81%) of the 107 consecutive acute adult burn patients (mean TBSA 9.7%) admitted to the Helsinki Burn Centre during an 18-month period. Social and Occupational Functioning Assessment Scale (SOFAS) was used to evaluate functioning overall, and Sheehan Disability Scale (SDS) to assess the domains of working capacity, social life, and family life. Social Adaptation Self-Evaluation Scale (SASS) was used to measure social adaptation. Structured clinical interview was used to assess mental disorders at baseline and 6 months after injury. The mean SOFAS score was 69.7 (SD = 20.8), indicating some impairment in social and occupational functioning. The strongest independent predictors of SOFAS were mental disorders during follow-up (P < .001), particularly major depressive disorder (P < .001) and delirium (P = .016), but also length of stay (P = .004) and hand burn (P = .012). Concerning disability (SDS), the authors found mild impairment in all three domains, the most in SDS work (mean 3.59, SD = 3.46). The strongest predictor of SDS was major depressive disorder during follow-up (P < .001) and of SASS personality disorders (P = .007). Six months after a burn injury, some difficulties in social and occupational functioning remained. Level of functioning was predicted strongly and consistently by mental disorders, particularly depression. Length of stay and hand burns also predicted functioning, more in a clinician's evaluation (SOFAS) than in self-reported measures (SDS and SASS). PMID:26056759

  20. Bilingual brain organization: a functional magnetic resonance adaptation study.

    PubMed

    Klein, Denise; Zatorre, Robert J; Chen, Jen-Kai; Milner, Brenda; Crane, Joelle; Belin, Pascal; Bouffard, Marc

    2006-05-15

    We used functional magnetic resonance adaptation (fMRA) to examine whether intra-voxel functional specificity may be present for first (L1)- and second (L2)-language processing. We examined within- and across-language adaptation for spoken words in English-French bilinguals who had acquired their L2 after the age of 4 years. Subjects listened to words presented binaurally through earphones. In two control conditions (one for each language), six identical words were presented to obtain maximal adaptation. The remaining six conditions each consisted of five words that were identical followed by a sixth word that differed. There were thus a total of eight experimental conditions: no-change (sixth word identical to first five); a change in meaning (different final word in L1); a change in language (final item translated into L2); a change in meaning and language (different final word in L2). The same four conditions were presented in L2. The study also included a silent baseline. At the neural level, within- and across-language word changes resulted in release from adaptation. This was true for separate analyses of L1 and L2. We saw no evidence for greater recovery from adaptation in across-language relative to within-language conditions. While many brain regions were common to L1 and L2, we did observe differences in adaptation for forward translation (L1 to L2) as compared to backward translation (L2 to L1). The results support the idea that, at the lexical level, the neural substrates for L1 and L2 in bilinguals are shared, but with some populations of neurons within these shared regions showing language-specific responses. PMID:16460968

  1. The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions.

    PubMed

    Ilangumaran, Subburaj; Villalobos-Hernandez, Alberto; Bobbala, Diwakar; Ramanathan, Sheela

    2016-06-01

    Hepatocyte growth factor (HGF) signaling via the MET receptor is essential for embryonic development and tissue repair. On the other hand, deregulated MET signaling promotes tumor progression in diverse types of cancers. Even though oncogenic MET signaling remains the major research focus, the HGF-MET axis has also been implicated in diverse aspects of immune cell development and functions. In the presence of other hematopoietic growth factors, HGF promotes the development of erythroid, myeloid and lymphoid lineage cells and thrombocytes. In monocytes and macrophages responding to inflammatory stimuli, induction of autocrine HGF-MET signaling can contribute to tissue repair via stimulating anti-inflammatory cytokine production. HGF-MET signaling can also modulate adaptive immune response by facilitating the migration of Langerhans cells and dendritic cells to draining lymph nodes. However, MET signaling has also been shown to induce tolerogenic dendritic cells in mouse models of graft-versus-host disease and experimental autoimmune encephalomyelitis. HGF-MET axis is also implicated in promoting thymopoiesis and the survival and migration of B lymphocytes. Recent studies have shown that MET signaling induces cardiotropism in activated T lymphocytes. Further understanding of the HGF-MET axis in the immune system would allow its therapeutic manipulation to improve immune cell reconstitution, restore immune homeostasis and to treat immuno-inflammatory diseases. PMID:26822708

  2. Adaptive functioning in Williams syndrome and its relation to demographic variables and family environment.

    PubMed

    Brawn, Gabrielle; Porter, Melanie

    2014-12-01

    This study assessed adaptive functioning in children and adults with Williams syndrome. The aims were to: (1) profile adaptive functioning; (2) investigate the relationship between adaptive functions and gender, CA, and IQ; (3) investigate the relationship between levels of adaptive functioning and family environment characteristics. In line with predictions: (1) there was extensive variability in adaptive functions; (2) neither gender nor IQ were significantly related to adaptive skills, but Communication skills and Interpersonal Relationship skills failed to make appropriate gains relative to same aged peers and (3) adaptive functioning was significantly related to family environment. Practical and clinical implications are discussed. PMID:25310713

  3. Geographical variation in parasitism shapes larval immune function in a phytophagous insect

    NASA Astrophysics Data System (ADS)

    Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme

    2013-12-01

    Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.

  4. Nociceptin/Orphanin FQ Suppresses Adaptive Immune Responses in Vivo and at Picomolar Levels in Vitro

    PubMed Central

    Anton, Benito; Calva, Juan C.; Acevedo, Rodolfo; Salazar, Alberto; Matus, Maura; Flores, Anabel; Martinez, Martin; Adler, Martin W.; Gaughan, John P.; Eisenstein, Toby K.

    2014-01-01

    Nociceptin/orphanin FQ (N/OFQ), added in vitro to murine spleen cells in the picomolar range, suppressed antibody formation to sheep red blood cells in a primary and a secondary plaque-forming cell (PFC) assay. The activity of the peptide was maximal at 10−12 M, with an asymmetric U-shaped dose response curve that extended activity to 10−14 M. Suppression was not blocked by pretreatment with naloxone. Specificity of the suppressive response was shown using affinity purified rabbit antibodies against two N/OFQ peptides, and with a pharmacological antagonist. Antisera against both peptides were active, in a dose related manner, in neutralizing N/OFQ -mediated immunosuppression, when the peptide was used at concentrations from 10−12.3 to 10−11.6 M. In addition, nociceptin given in vivo by osmotic pump for 48 hr suppressed the capacity of spleen cells placed ex vivo to make an anti-sheep red blood cell response. These studies show that nociceptin directly inhibits an adaptive immune response, i.e. antibody formation, both in vitro and in vivo. PMID:20119853

  5. Immunizations.

    PubMed

    Sanford, Christopher A; Jong, Elaine C

    2016-03-01

    Vaccinations are a cornerstone of the pretravel consultation. The pretravel provider should assess a traveler's past medical history, planned itinerary, activities, mode of travel, and duration of stay and make appropriate vaccine recommendations. Given that domestic vaccine-preventable illnesses are more common in international travelers than are exotic or low-income nation-associated vaccine-preventable illnesses, clinicians should first ensure that travelers are current regarding routine immunizations. Additional immunizations may be indicated in some travelers. Familiarity with geographic distribution and seasonality of infectious diseases is essential. Clinicians should be cognizant of which vaccines are live, as there exist contraindications for live vaccines. PMID:26900111

  6. A Chromosomally Encoded Virulence Factor Protects the Lyme Disease Pathogen against Host-Adaptive Immunity

    PubMed Central

    Yang, Xiuli; Coleman, Adam S.; Anguita, Juan; Pal, Utpal

    2009-01-01

    Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1) transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals. PMID:19266024

  7. Exercise and immune function: effect of ageing and nutrition.

    PubMed

    Pedersen, B K; Bruunsgaard, H; Jensen, M; Krzywkowski, K; Ostrowski, K

    1999-08-01

    Strenuous exercise is followed by lymphopenia, neutrophilia, impaired natural immunity, decreased lymphocyte proliferative responses to mitogens, a low level of secretory immunoglobulin A in saliva, but high circulating levels of pro- and anti-inflammatory cytokines. These exercise-induced immune changes may provide the physiological basis of altered resistance to infections. The mechanisms underlying exercise-induced immune changes are multifactorial and include neuroendocrinological and metabolic mechanisms. Nutritional supplementation with glutamine abolishes the exercise-induced decline in plasma glutamine, but does not influence post-exercise immune impairment. However, carbohydrate loading diminishes most exercise effects of cytokines, lymphocyte and neutrophils. The diminished neutrophilia and elastase (EC 3.4.21.37) responses to eccentric exercise in elderly subjects were enhanced to levels comparable with those of young subjects by fish oil or vitamin E supplements. However, although vitamin C supplementation may diminish the risk of contracting an infection after strenuous exercise, it is not obvious that this effect is linked to an effect of vitamin C on exercise-induced immune changes. In conclusion, it is premature to make recommendations regarding nutritional supplementation to avoid post-exercise impairment of the immune system. PMID:10604210

  8. Functional Immune Anatomy of the Liver-As an Allograft.

    PubMed

    Demetris, A J; Bellamy, C O C; Gandhi, C R; Prost, S; Nakanuma, Y; Stolz, D B

    2016-06-01

    The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system. PMID:26848550

  9. Complex effects of temperature on mosquito immune function

    PubMed Central

    Murdock, C. C.; Paaijmans, Krijn P.; Bell, Andrew S.; King, Jonas G.; Hillyer, Julián F.; Read, Andrew F.; Thomas, Matthew B.

    2012-01-01

    Over the last 20 years, ecological immunology has provided much insight into how environmental factors shape host immunity and host–parasite interactions. Currently, the application of this thinking to the study of mosquito immunology has been limited. Mechanistic investigations are nearly always conducted under one set of conditions, yet vectors and parasites associate in a variable world. We highlight how environmental temperature shapes cellular and humoral immune responses (melanization, phagocytosis and transcription of immune genes) in the malaria vector, Anopheles stephensi. Nitric oxide synthase expression peaked at 30°C, cecropin expression showed no main effect of temperature and humoral melanization, and phagocytosis and defensin expression peaked around 18°C. Further, immune responses did not simply scale with temperature, but showed complex interactions between temperature, time and nature of immune challenge. Thus, immune patterns observed under one set of conditions provide little basis for predicting patterns under even marginally different conditions. These quantitative and qualitative effects of temperature have largely been overlooked in vector biology but have significant implications for extrapolating natural/transgenic resistance mechanisms from laboratory to field and for the efficacy of various vector control tools. PMID:22593107

  10. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    PubMed Central

    Garrett, Roger A.; Shah, Shiraz A.; Erdmann, Susanne; Liu, Guannan; Mousaei, Marzieh; León-Sobrino, Carlos; Peng, Wenfang; Gudbergsdottir, Soley; Deng, Ling; Vestergaard, Gisle; Peng, Xu; She, Qunxin

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed. PMID:25764276

  11. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2.

    PubMed

    Zhu, Eric F; Gai, Shuning A; Opel, Cary F; Kwan, Byron H; Surana, Rishi; Mihm, Martin C; Kauke, Monique J; Moynihan, Kelly D; Angelini, Alessandro; Williams, Robert T; Stephan, Matthias T; Kim, Jacob S; Yaffe, Michael B; Irvine, Darrell J; Weiner, Louis M; Dranoff, Glenn; Wittrup, K Dane

    2015-04-13

    Cancer immunotherapies under development have generally focused on either stimulating T cell immunity or driving antibody-directed effector functions of the innate immune system such as antibody-dependent cell-mediated cytotoxicity (ADCC). We find that a combination of an anti-tumor antigen antibody and an untargeted IL-2 fusion protein with delayed systemic clearance induces significant tumor control in aggressive isogenic tumor models via a concerted innate and adaptive response involving neutrophils, NK cells, macrophages, and CD8(+) T cells. This combination therapy induces an intratumoral "cytokine storm" and extensive lymphocyte infiltration. Adoptive transfer of anti-tumor T cells together with this combination therapy leads to robust cures of established tumors and development of immunological memory. PMID:25873172

  12. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2

    PubMed Central

    Zhu, Eric F.; Gai, Shuning A.; Opel, Cary F.; Kwan, Byron H.; Surana, Rishi; Mihm, Martin C.; Kauke, Monique J.; Moynihan, Kelly D.; Angelini, Alessandro; Williams, Robert T.; Stephan, Matthias T.; Kim, Jacob S.; Yaffe, Michael B.; Irvine, Darrell J.; Weiner, Louis M.; Dranoff, Glenn

    2015-01-01

    Summary Cancer immunotherapies under development have generally focused on either stimulating T-cell immunity or driving antibody-directed effector functions of the innate immune system such as antibody-dependent cell-mediated cytotoxicity (ADCC). We find that a combination of an anti-tumor antigen antibody and an untargeted IL-2 fusion protein with delayed systemic clearance induces significant tumor control in aggressive isogenic tumor models via a concerted innate and adaptive response involving neutrophils, NK cells, macrophages, and CD8+ T-cells. This combination therapy induces an intratumoral “cytokine storm” and extensive lymphocyte infiltration. Adoptive transfer of anti-tumor T-cells together with this combination therapy leads to robust cures of established tumors and establishment of immunological memory. PMID:25873172

  13. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors

    PubMed Central

    Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.

    2013-01-01

    Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304

  14. Beta-glucan plus ascorbic acid in neonatal calves modulates immune functions with and without Salmonella enterica serovar Dublin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calves often succumb to Salmonella enterica, Dublin after maternal antibody protection has abated. Enhancement of innate immunity or earlier maturation of adaptive immunity to support vaccinations with dietary immune modulators may be the best option for protection during this vulnerable period. I...

  15. Gel-Trapped Lymphorganogenic Chemokines Trigger Artificial Tertiary Lymphoid Organs and Mount Adaptive Immune Responses In Vivo.

    PubMed

    Kobayashi, Yuka; Watanabe, Takeshi

    2016-01-01

    We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases, including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies, including immune-senescence during aging. PMID:27597851

  16. Gel-Trapped Lymphorganogenic Chemokines Trigger Artificial Tertiary Lymphoid Organs and Mount Adaptive Immune Responses In Vivo

    PubMed Central

    Kobayashi, Yuka; Watanabe, Takeshi

    2016-01-01

    We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases, including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies, including immune-senescence during aging. PMID:27597851

  17. Investment in constitutive immune function by North American elk experimentally maintained at two different population densities.

    PubMed

    Downs, Cynthia J; Stewart, Kelley M; Dick, Brian L

    2015-01-01

    Natural selection favors individuals that respond with effective and appropriate immune responses to macro or microparasites. Animals living in populations close to ecological carrying capacity experience increased intraspecific competition, and as a result are often in poor nutritional condition. Nutritional condition, in turn, affects the amount of endogenous resources that are available for investment in immune function. Our objective was to understand the relationship between immune function and density dependence mediated by trade-offs between immune function, nutritional condition, and reproduction. To determine how immune function relates to density-dependent processes, we quantified bacteria killing ability, hemolytic-complement activity, and nutritional condition of North American elk (Cervus elaphus) from populations maintained at experimentally high- and low-population densities. When compared with elk from the low-density population, those from the high-density population had higher bacteria killing ability and hemolytic-complement activity despite their lower nutritional condition. Similarly, when compared with adults, yearlings had higher bacteria killing ability, higher hemolytic-complement activity, and lower nutritional condition. Pregnancy status and lactational status did not change either measure of constitutive immunity. Density-dependent processes affected both nutritional condition and investment in constitutive immune function. Although the mechanism for how density affects immunity is ambiguous, we hypothesize two possibilities: (i) individuals in higher population densities and in poorer nutritional condition invested more into constitutive immune defenses, or (ii) had higher parasite loads causing higher induced immune responses. Those explanations are not mutually exclusive, and might be synergistic, but overall our results provide stronger support for the hypothesis that animals in poorer nutritional condition invest more in

  18. Investment in Constitutive Immune Function by North American Elk Experimentally Maintained at Two Different Population Densities

    PubMed Central

    Downs, Cynthia J.; Stewart, Kelley M.; Dick, Brian L.

    2015-01-01

    Natural selection favors individuals that respond with effective and appropriate immune responses to macro or microparasites. Animals living in populations close to ecological carrying capacity experience increased intraspecific competition, and as a result are often in poor nutritional condition. Nutritional condition, in turn, affects the amount of endogenous resources that are available for investment in immune function. Our objective was to understand the relationship between immune function and density dependence mediated by trade-offs between immune function, nutritional condition, and reproduction. To determine how immune function relates to density-dependent processes, we quantified bacteria killing ability, hemolytic-complement activity, and nutritional condition of North American elk (Cervus elaphus) from populations maintained at experimentally high- and low-population densities. When compared with elk from the low-density population, those from the high-density population had higher bacteria killing ability and hemolytic-complement activity despite their lower nutritional condition. Similarly, when compared with adults, yearlings had higher bacteria killing ability, higher hemolytic-complement activity, and lower nutritional condition. Pregnancy status and lactational status did not change either measure of constitutive immunity. Density-dependent processes affected both nutritional condition and investment in constitutive immune function. Although the mechanism for how density affects immunity is ambiguous, we hypothesize two possibilities: (i) individuals in higher population densities and in poorer nutritional condition invested more into constitutive immune defenses, or (ii) had higher parasite loads causing higher induced immune responses. Those explanations are not mutually exclusive, and might be synergistic, but overall our results provide stronger support for the hypothesis that animals in poorer nutritional condition invest more in

  19. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  20. Safety of Probiotic Escherichia coli Strain Nissle 1917 Depends on Intestinal Microbiota and Adaptive Immunity of the Host▿

    PubMed Central

    Gronbach, Kerstin; Eberle, Ute; Müller, Martina; Ölschläger, Tobias A.; Dobrindt, Ulrich; Leithäuser, Frank; Niess, Jan Hendrik; Döring, Gerd; Reimann, Jörg; Autenrieth, Ingo B.; Frick, Julia-Stefanie

    2010-01-01

    Probiotics are viable microorganisms that are increasingly used for treatment of a variety of diseases. Occasionally, however, probiotics may have adverse clinical effects, including septicemia. Here we examined the role of the intestinal microbiota and the adaptive immune system in preventing translocation of probiotics (e.g., Escherichia coli Nissle). We challenged C57BL/6J mice raised under germfree conditions (GF-raised C57BL/6J mice) and Rag1−/− mice raised under germfree conditions (GF-raised Rag1−/− mice) and under specific-pathogen-free conditions (SPF-raised Rag1−/− mice) with probiotic E. coli strain Nissle 1917, strain Nissle 1917 mutants, the commensal strain E. coli mpk, or Bacteroides vulgatus mpk. Additionally, we reconstituted Rag1−/− mice with CD4+ T cells. E. coli translocation and dissemination and the mortality of mice were assessed. In GF-raised Rag1−/− mice, but not in SPF-raised Rag1−/− mice or GF-raised C57BL/6J mice, oral challenge with E. coli strain Nissle 1917, but not oral challenge with E. coli mpk, resulted in translocation and dissemination. The mortality rate was significantly higher for E. coli strain Nissle 1917-challenged GF-raised Rag1−/− mice (100%; P < 0.001) than for E. coli strain Nissle 1917-challenged SPF-raised Rag1−/− mice (0%) and GF-raised C57BL/6J mice (0%). Translocation of and mortality due to strain E. coli Nissle 1917 in GF-raised Rag1−/− mice were prevented when mice were reconstituted with T cells prior to strain E. coli Nissle 1917 challenge, but not when mice were reconstituted with T cells after E. coli strain Nissle 1917 challenge. Cocolonization experiments revealed that E. coli mpk could not prevent translocation of strain E. coli Nissle 1917. Moreover, we demonstrated that neither lipopolysaccharide structure nor flagella play a role in E. coli strain Nissle 1917 translocation and dissemination. Our results suggest that if both the microbiota and adaptive immunity are

  1. Are there differences in immune function between continental and insular birds?

    PubMed Central

    Matson, Kevin D

    2006-01-01

    Generally, immune system architecture varies with different environments, which presumably reflect different pathogen pressures. Specifically, populations from relatively disease-free, oceanic islands are expected to exhibit reorganized immune systems, which might be characterized by attenuated responses, given the costs of immune function. Some insular animals exhibit an ‘island syndrome,’ including increased susceptibility to disease, and some insular populations have declined when they failed to resist infection by introduced pathogens. I measured eight indices of immune function (haemolysis, haemagglutination, concentration of haptoglobin and concentration of five leukocyte types) in 15 phylogenetically matched pairs of bird populations from North America and from the islands of Hawaii, Bermuda and the Galápagos. Immune responses were not attenuated in insular birds, and several indices, including the concentration of plasma haptoglobin, were elevated. Thus, I find no support for the specific hypothesis that depauperate parasite communities and the costs of immune defences select for reduced immune function. Instead, I suggest that life on islands leads to an apparent reorganization of immune function, which is defined by increases in defences that are innate and inducible. These increases might signal that systems of acquired humoral immunity and immunological memory are less important or dysfunctional in island populations. PMID:16928627

  2. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  3. Induction of Regulatory T Cells by Intravenous Immunoglobulin: A Bridge between Adaptive and Innate Immunity

    PubMed Central

    Kaufman, Gabriel N.; Massoud, Amir H.; Dembele, Marieme; Yona, Madelaine; Piccirillo, Ciriaco A.; Mazer, Bruce D.

    2015-01-01

    Intravenous immunoglobulin (IVIg) is a polyclonal immunoglobulin G preparation with potent immunomodulatory properties. The mode of action of IVIg has been investigated in multiple disease states, with various mechanisms described to account for its benefits. Recent data indicate that IVIg increases both the number and the suppressive capacity of regulatory T cells, a subpopulation of T cells that are essential for immune homeostasis. IVIg alters dendritic cell function, cytokine and chemokine networks, and T lymphocytes, leading to development of regulatory T cells. The ability of IVIg to influence Treg induction has been shown both in animal models and in human diseases. In this review, we discuss data on the potential mechanisms contributing to the interaction between IVIg and the regulatory T-cell compartment. PMID:26441974

  4. Seeing through VEGF: Innate and adaptive immunity in pathologic angiogenesis in the eye

    PubMed Central

    Sene, Abdoulaye; Chin-Yee, David; Apte, Rajendra S.

    2014-01-01

    The central role of VEGF signaling in regulating normal vascular development and pathological angiogenesis has been documented in multiple studies. Ocular anti-VEGF therapy is highly effective for treating a subset of patients with blinding eye disorders such as diabetic retinopathy and neovascular age-related macular degeneration (AMD). However, chronic VEGF suppression can lead to adverse effects associated with poor visual outcomes due to the loss of pro-survival and neurotrophic capacities of VEGF. In this review, we discuss emerging evidence for immune-related mechanisms that regulate ocular angiogenesis in a VEGF-independent manner. These novel molecular and cellular pathways may provide potential therapeutic avenues for a multitarget strategy, preserving the neuroprotective functions of VEGF in those patients whose disease is unresponsive to VEGF neutralization. PMID:25457617

  5. Influence of fish oil supplementation and strength training on some functional aspects of immune cells in healthy elderly women.

    PubMed

    de Lourdes Nahhas Rodacki, Cintia; Rodacki, André Luiz Felix; Coelho, Isabela; Pequito, Daniele; Krause, Maressa; Bonatto, Sandro; Naliwaiko, Katya; Fernandes, Luiz Cláudio

    2015-07-14

    Immune function changes with ageing and is influenced by physical activity (strength training, ST) and diet (fish oil, FO). The present study investigated the effect of FO and ST on the immune system of elderly women. Forty-five women (64 (sd 1.4) years) were assigned to ST for 90 d (ST; n 15), ST plus 2 g/d FO for 90 d (ST90; n 15) or 2 g/d FO for 60 d followed by ST plus FO for 90 d (ST150; n 15). Training was performed three times per week, for 12 weeks. A number of innate (zymosan phagocytosis, lysosomal volume, superoxide anion, peroxide of hydrogen) and adaptive (cluster of differentiation 4 (CD4), CD8, TNF-α, interferon-γ (IFN-γ), IL-2, IL-6 and IL-10 produced by lymphocytes) immune parameters were assessed before supplementation (base), before (pre-) and after (post-) training. ST induced no immune changes. FO supplementation caused increased phagocytosis (48 %), lysosomal volume (100 %) and the production of superoxide anion (32 %) and H₂O₂(70 %) in the ST90. Additional FO supplementation (ST150) caused no additive influence on the immune system, as ST150 and ST90 did not differ, but caused greater changes when compared to the ST (P< 0·05). FO increased CD4+ and CD8+ lymphocytes in the ST150, which remained unchanged when training was introduced. The combination of ST and FO reduced TNF-α in the ST150 from base to post-test. FO supplementation (ST150, base-pre) when combined with exercise (ST150, pre-post) increased IFN-γ, IL-2, IL-6 and IL-10 production. The immune parameters improved in response to FO supplementation; however, ST alone did not enhance the immune system. PMID:26059004

  6. [Interactions between the monogastric animal gut microbiota and the intestinal immune function--a review].

    PubMed

    Yang, Lina; Bian, Gaorui; Zhu, Weiyun

    2014-05-01

    The large numbers of microorganisms that inhabit mammalian gastro-intestine have a highly coevolved relationship with the host's health in nutrition, immunity and other aspects. There is a complex relationship between microbiota and immune system. Although they can inhibit the pathogens invade epithelial tissue, many of these microbes have functions that are critical for stimulating host intestinal immune cells such as Tregs cells, Th17 cells differentiation. However, the disorder of the intestinal flora can cause bacterial translocation, intestinal barrier dysfunction. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, though secreting a variety of immune effector cytokines such as MUC, sIgA, ITF, RegIIIgamma, and alpha-defensins. Here, we review the composition of intestinal flora on simple stomach animal and the interactions between resident microbes and the immune function. PMID:25199246

  7. [The use of Chinese traditional medicines to improve impaired immune functions in scald mice].

    PubMed

    Luo, Z H

    1993-01-01

    For the purpose of searching for immunomodulators, this experiment studied the effects of 6 kinds of Chinese traditional herbs on the restoration of the suppressed immune functions in scald mice, including cell-mediated, humoral and non-specific immunity. All control non-treated scald mice showed definite depression of immune functions in various degrees. Polygonum cuspidatum, Taraxacum officinale and Oidenlandia diffusa (wild) roxb showed immunomodulating effects as measured with 3 immunological parameters. But the effects varied according to the dosage of drugs. Rehmannia glutinosa gave definite improving effects on cell-mediated and non-specific immunity, but no significant effect on humoral immunity, while Gui Ling Gao only showed some effect on humoral immunity. PMID:8330249

  8. Less can be more: loss of MHC functional diversity can reflect adaptation to novel conditions during fish invasions

    PubMed Central

    Monzón-Argüello, Catalina; Garcia de Leaniz, Carlos; Gajardo, Gonzalo; Consuegra, Sofia

    2013-01-01

    The ability of invasive species to adapt to novel conditions depends on population size and environmental mismatch, but also on genetic variation. Away from their native range, invasive species confronted with novel selective pressures may display different levels of neutral versus functional genetic variation. However, the majority of invasion studies have only examined genetic variation at neutral markers, which may reveal little about how invaders adapt to novel environments. Salmonids are good model systems to examine adaptation to novel pressures because they have been translocated all over the world and represent major threats to freshwater biodiversity in the Southern Hemisphere, where they have become invasive. We examined patterns of genetic differentiation at seven putatively neutral (microsatellites) loci and one immune-related major histocompatibility complex (MHC class II-β) locus among introduced rainbow trout living in captivity (farmed) or under natural conditions (naturalized) in Chilean Patagonia. A significant positive association was found between differentiation at neutral and functional markers, highlighting the role of neutral evolutionary forces in shaping genetic variation at immune-related genes in salmonids. However, functional (MHC) genetic diversity (but not microsatellite diversity) decreased with time spent in the wild since introduction, suggesting that there was selection against alleles associated with captive rearing of donor populations that do not provide an advantage in the wild. Thus, although high genetic diversity may initially enhance fitness in translocated populations, it does not necessarily reflect invasion success, as adaptation to novel conditions may result in rapid loss of functional MHC diversity. PMID:24223274

  9. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  10. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses.

    PubMed

    Chiossone, Laura; Conte, Romana; Spaggiari, Grazia Maria; Serra, Martina; Romei, Cristina; Bellora, Francesca; Becchetti, Flavio; Andaloro, Antonio; Moretta, Lorenzo; Bottino, Cristina

    2016-07-01

    Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921. PMID:27015881

  11. Generalized pattern search algorithms with adaptive precision function evaluations

    SciTech Connect

    Polak, Elijah; Wetter, Michael

    2003-05-14

    In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.

  12. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity

    PubMed Central

    Ivančić-Baće, Ivana; Cass, Simon D; Wearne, Stephen J; Bolt, Edward L

    2015-01-01

    CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration. PMID:26578567

  13. Synergistic Activation of Innate and Adaptive Immune Mechanisms in the Treatment of Gonadotropin-Sensitive Tumors

    PubMed Central

    Bose, Anjali; Huhtaniemi, Ilpo; Singh, Om; Pal, Rahul

    2013-01-01

    Human chorionic gonadotropin (hCG) prolongs the secretion of progesterone from the corpus luteum, providing a critical stimulus for the sustenance of pregnancy. hCG (or individual subunits) is also secreted by a variety of trophoblastic and non-trophoblastic cancers and has been associated with poor prognosis. Early clinical studies have indicated merit in anti-hCG vaccination as potential immunotherapy, but anti-tumor efficacy is believed to be compromised by sub-optimal immunogenecity. In the present study, enhanced tumorigenesis was observed when SP2/O cells were subcutaneously injected in either male or female BALB/c x FVB/JβhCG/- F1 transgenic mice, establishing the growth-promoting effects of the gonadotropin for implanted tumors in vivo. The utility of Mycobacterium indicus pranii (MIP) was evaluated, as an innate anti-tumor immunomodulator as well as adjuvant in mice. MIP elicited the secretion of the inflammatory cytokines IFNγ, IL-6, IL-12p40, KC and TNFα from murine antigen presenting cells. When MIP was incorporated into an anti-hCG vaccine formulation previously employed in humans (a βhCG-TT conjugate adsorbed on alum), elevated T cell recall proliferative and cytokine responses to hCG, βhCG and TT were observed. MIP increased vaccine immunogenicity in mice of diverse genetic background (including in traditionally low-responder murine strains), leading to enhanced titres of bioneutralizing anti-hCG antibodies which exhibited cytotoxicity towards tumor cells. Individual administration of MIP and βhCG-TT to BALB/c mice subcutaneously implanted with SP2/O cells resulted in anti-tumor effects; significantly, immunization with βhCG-TT supplemented with MIP invoked synergistic benefits in terms of tumor volume, incidence and survival. The development of novel vaccine formulations stimulating both adaptive and innate anti-tumor immunity to induce collaborative beneficial effects may fill a niche in the adjunct treatment of hCG-sensitive tumors that are

  14. Regulation of innate immune cell function by mTOR.

    PubMed

    Weichhart, Thomas; Hengstschläger, Markus; Linke, Monika

    2015-10-01

    The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease. PMID:26403194

  15. Mathematical Model of Innate and Adaptive Immunity of Sepsis: A Modeling and Simulation Study of Infectious Disease

    PubMed Central

    Shi, Zhenzhen; Wu, Chih-Hang J.; Ben-Arieh, David; Simpson, Steven Q.

    2015-01-01

    Sepsis is a systemic inflammatory response (SIR) to infection. In this work, a system dynamics mathematical model (SDMM) is examined to describe the basic components of SIR and sepsis progression. Both innate and adaptive immunities are included, and simulated results in silico have shown that adaptive immunity has significant impacts on the outcomes of sepsis progression. Further investigation has found that the intervention timing, intensity of anti-inflammatory cytokines, and initial pathogen load are highly predictive of outcomes of a sepsis episode. Sensitivity and stability analysis were carried out using bifurcation analysis to explore system stability with various initial and boundary conditions. The stability analysis suggested that the system could diverge at an unstable equilibrium after perturbations if rt2max (maximum release rate of Tumor Necrosis Factor- (TNF-) α by neutrophil) falls below a certain level. This finding conforms to clinical findings and existing literature regarding the lack of efficacy of anti-TNF antibody therapy. PMID:26446682

  16. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles

    PubMed Central

    Sprague, Daniel L.; Elzey, Bennett D.; Crist, Scott A.; Waldschmidt, Thomas J.; Jensen, Robert J.

    2008-01-01

    Although mounting evidence indicates that platelets participate in the modulation of both innate and adaptive immunity, the mechanisms by which platelets exert these effects have not been clearly defined. The study reported herein uses a previously documented adoptive transfer model to investigate the ability of platelet-derived membrane vesicles to communicate activation signals to the B-cell compartment. The findings demonstrate for the first time that platelet-derived membrane vesicles are sufficient to deliver CD154 to stimulate antigen-specific IgG production and modulate germinal center formation through cooperation with responses elicited by CD4+ T cells. The data are consistent with the hypothesis that platelets modulate inflammation and adaptive immunity at sites distant from the location of activation and that platelet-derived membrane vesicles are sufficient to mediate the effect. PMID:18198347

  17. Human Immune Function and Microbial Pathogenesis in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Pierson, Duane J.; Ott, M.

    2006-01-01

    This oral presentation was requested by Conference conveners. The requested subject is microbial risk assessment considering changes in the human immune system during flight and microbial diversity of environmental samples aboard the International Space Station (ISS). The presentation will begin with an introduction discussing the goals and limitations of microbial risk assessment during flight. The main portion of the presentation will include changes in the immune system that have been published, historical data from microbial analyses, and initial modeling of the environmental flora aboard ISS. The presentation will conclude with future goals and techniques to enhance our ability to perform microbial risk assessment on long duration missions.

  18. Developmental Exposure to Bisphenol A Modulates Innate but Not Adaptive Immune Responses to Influenza A Virus Infection

    PubMed Central

    Roy, Anirban; Bauer, Stephen M.; Lawrence, B. Paige

    2012-01-01

    Bisphenol A (BPA) is used in numerous products, such as plastic bottles and food containers, from which it frequently leaches out and is consumed by humans. There is a growing public concern that BPA exposure may pose a significant threat to human health. Moreover, due to the widespread and constant nature of BPA exposure, not only adults but fetuses and neonates are also exposed to BPA. There is mounting evidence that developmental exposures to chemicals from our environment, including BPA, contribute to diseases late in life; yet, studies of how early life exposures specifically alter the immune system are limited. Herein we report an examination of how maternal exposure to a low, environmentally relevant dose of BPA affects the immune response to infection with influenza A virus. We exposed female mice during pregnancy and through lactation to the oral reference dose for BPA listed by the US Environmental Protection Agency, and comprehensively examined immune parameters directly linked to disease outcomes in adult offspring following infection with influenza A virus. We found that developmental exposure to BPA did not compromise disease-specific adaptive immunity against virus infection, or reduce the host’s ability to clear the virus from the infected lung. However, maternal exposure to BPA transiently reduced the extent of infection-associated pulmonary inflammation and anti-viral gene expression in lung tissue. From these observations, we conclude that maternal exposure to BPA slightly modulates innate immunity in adult offspring, but does not impair the anti-viral adaptive immune response, which is critical for virus clearance and survival following influenza virus infection. PMID:22675563

  19. Molecular interaction between natural IgG and ficolin - mechanistic insights on adaptive-innate immune crosstalk

    NASA Astrophysics Data System (ADS)

    Panda, Saswati; Zhang, Jing; Yang, Lifeng; Anand, Ganesh S.; Ding, Jeak L.

    2014-01-01

    Recently, we found that natural IgG (nIgG; a non-specific immunoglobulin of adaptive immunity) is not quiescent, but plays a crucial role in immediate immune defense by collaborating with ficolin (an innate immune protein). However, how the nIgG and ficolin interplay and what factors control the complex formation during infection is unknown. Here, we found that mild acidosis and hypocalcaemia induced by infection- inflammation condition increased the nIgG:ficolin complex formation. Hydrogen-deuterium exchange mass spectrometry delineated the binding interfaces to the CH2-CH3 region of nIgG Fc and P-subdomain of ficolin FBG domain. Infection condition exposes novel binding sites. Site-directed mutagenesis and surface plasmon resonance analyses of peptides, derived from nIgG and ficolin, defined the interacting residues between the proteins. These results provide mechanistic insights on the interaction between two molecules representing the adaptive and innate immune pathways, prompting potential development of immunomodulatory/prophylactic peptides tunable to prevailing infection conditions.

  20. Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors

    PubMed Central

    Fei, Chenjie; Pemberton, Joshua G.; Lillico, Dustin M. E.; Zwozdesky, Myron A.; Stafford, James L.

    2016-01-01

    Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s), and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs), which appear to be important regulators of several innate cellular responses via classical as well as unique

  1. Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans

    PubMed Central

    Chan, Jean L.; Matarese, Giuseppe; Shetty, Greeshma K.; Raciti, Patricia; Kelesidis, Iosif; Aufiero, Daniela; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Mantzoros, Christos S.

    2006-01-01

    To elucidate whether the role of leptin in regulating neuroendocrine and immune function during short-term starvation in healthy humans is permissive, i.e., occurs only when circulating leptin levels are below a critical threshold level, we studied seven normal-weight women during a normoleptinemic-fed state and two states of relative hypoleptinemia induced by 72-h fasting during which we administered either placebo or recombinant methionyl human leptin (r-metHuLeptin) in replacement doses. Fasting for 72 h decreased leptin levels by ≈80% from a midphysiologic (14.7 ± 2.6 ng/ml) to a low-physiologic (2.8 ± 0.3 ng/ml) level. Administration of r-metHuLeptin during fasting fully restored leptin to physiologic levels (28.8 ± 2.0 ng/ml) and reversed the fasting-associated decrease in overnight luteinizing hormone pulse frequency but had no effect on fasting-induced changes in thyroid-stimulating hormone pulsatility, thyroid and IGF-1 hormone levels, hypothalamic–pituitary–adrenal and renin–aldosterone activity. FSH and sex steroid levels were not altered. Short-term reduction of leptin levels decreased the number of circulating cells of the adaptive immune response, but r-metHuLeptin did not have major effects on their number or in vitro function. Thus, changes of leptin levels within the physiologic range have no major physiologic effects in leptin-replete humans. Studies involving more severe and/or chronic leptin deficiency are needed to precisely define the lower limit of normal leptin levels for each of leptin’s physiologic targets. PMID:16714386

  2. Trade-offs between sexual advertisement and immune function in the pied flycatcher (Ficedula hypoleuca).

    PubMed Central

    Kilpimaa, Janne; Alatalo, Rauno V.; Siitari, Heli

    2004-01-01

    Good genes models of sexual selection assume that sexual advertisement is costly and thus the level of advertisement honestly reveals heritable viability. Recently it has been suggested that an important cost of sexual advertisement might be impairment of the functioning of the immune system. In this field experiment we investigated the possible trade-offs between immune function and sexual advertisement by manipulating both mating effort and activity of immune defence in male pied flycatchers. Mating effort was increased in a non-arbitrary manner by removing females from mated males during nest building. Widowed males sustained higher haematocrit levels than control males and showed higher expression of forehead patch height, suggesting that manipulation succeeded in increasing mating effort. Males that were experimentally forced to increase mating effort had reduced humoral immune responsiveness compared with control males. In addition, experimental activation of immune defence by vaccination with novel antigens reduced the expression of male ornament dimensions. To conclude, our results indicate that causality behind the trade-off between immune function and sexual advertisement may work in both directions: sexual activity suppresses immune function but immune challenge also reduces sexual advertisement. PMID:15058434

  3. Gaucher disease gene GBA functions in immune regulation

    PubMed Central

    Liu, Jun; Halene, Stephanie; Yang, Mei; Iqbal, Jameel; Yang, Ruhua; Mehal, Wajahat Z.; Chuang, Wei-Lien; Jain, Dhanpat; Yuen, Tony; Sun, Li; Zaidi, Mone; Mistry, Pramod K.

    2012-01-01

    Inherited deficiency of acid β-glucosidase (GCase) due to biallelic mutations in the GBA (glucosidase, β, acid) gene causes the classic manifestations of Gaucher disease (GD) involving the viscera, the skeleton, and the lungs. Clinical observations point to immune defects in GD beyond the accumulation of activated macrophages engorged with lysosomal glucosylceramide. Here, we show a plethora of immune cell aberrations in mice in which the GBA gene is deleted conditionally in hematopoietic stem cells (HSCs). The thymus exhibited the earliest and most striking alterations reminiscent of impaired T-cell maturation, aberrant B-cell recruitment, enhanced antigen presentation, and impaired egress of mature thymocytes. These changes correlated strongly with disease severity. In contrast to the profound defects in the thymus, there were only limited cellular defects in peripheral lymphoid organs, mainly restricted to mice with severe disease. The cellular changes in GCase deficiency were accompanied by elevated T-helper (Th)1 and Th2 cytokines that also tracked with disease severity. Finally, the proliferation of GCase-deficient HSCs was inhibited significantly by both GL1 and Lyso-GL1, suggesting that the “supply” of early thymic progenitors from bone marrow may, in fact, be reduced in GBA deficiency. The results not only point to a fundamental role for GBA in immune regulation but also suggest that GBA mutations in GD may cause widespread immune dysregulation through the accumulation of substrates. PMID:22665763

  4. Interleukin-2 (IL-2, Proleukin) and immune function.

    PubMed

    2003-01-01

    IL-2 is an immune-based therapy that results in dramatic increases in CD4+ cell counts when used in conjunction with anti-HIV therapy. Although IL-2 has been discussed in previous issues of PI Perspective, new information warrants a further look at the product. PMID:12647677

  5. Review: Interactions between temperament, stress, and immune function in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stressors encountered by animals can pose economic problems for the livestock industry due to increased costs to the producer as well as the consumer. Stress can also adversely affect many physiological systems, including the reproductive and immune systems. In recent years, stress has been associat...

  6. Translation and adaptation of functional auditory performance indicators (FAPI)

    PubMed Central

    FERREIRA, Karina; MORET, Adriane Lima Mortari; BEVILACQUA, Maria Cecilia; JACOB, Regina de Souza Tangerino

    2011-01-01

    Work with deaf children has gained new attention since the expectation and goal of therapy has expanded to language development and subsequent language learning. Many clinical tests were developed for evaluation of speech sound perception in young children in response to the need for accurate assessment of hearing skills that developed from the use of individual hearing aids or cochlear implants. These tests also allow the evaluation of the rehabilitation program. However, few of these tests are available in Portuguese. Evaluation with the Functional Auditory Performance Indicators (FAPI) generates a child's functional auditory skills profile, which lists auditory skills in an integrated and hierarchical order. It has seven hierarchical categories, including sound awareness, meaningful sound, auditory feedback, sound source localizing, auditory discrimination, short-term auditory memory, and linguistic auditory processing. FAPI evaluation allows the therapist to map the child's hearing profile performance, determine the target for increasing the hearing abilities, and develop an effective therapeutic plan. Objective Since the FAPI is an American test, the inventory was adapted for application in the Brazilian population. Material and Methods The translation was done following the steps of translation and back translation, and reproducibility was evaluated. Four translated versions (two originals and two back-translated) were compared, and revisions were done to ensure language adaptation and grammatical and idiomatic equivalence. Results The inventory was duly translated and adapted. Conclusion Further studies about the application of the translated FAPI are necessary to make the test practicable in Brazilian clinical use. PMID:22230992

  7. Perspectives on functional adaptation of the high altitude native.

    PubMed

    Frisancho, A R

    1983-01-01

    The major physiological processes that enable humans to attain a complete acclimatization to high altitude are briefly reviewed. The available data indicate that: (a) complete acclimatization to high altitude is associated with changes of environmentally modifiable functional traits such as lung volume but not associated with the expression of genetically controlled features such as chest size; (b) as judged by measurements of maximal aerobic power, the high altitude native has attained at high altitude an adaptation that is comparable to that attained by the low altitude native at sea level; the available information suggests that such adaptation is acquired through growth and development in an hypoxic environment; at present, however, we do not know the developmental modifications that occur within each component of the oxygen transport system, such as ventilation, pulmonary diffusion, and oxygen transport, that enable a sea level native to attain a complete functional adaptation to high altitude; and (c) at comparable altitudes among high altitude natives, there are some inter-regional differences in hemopoietic response, so that the samples derived from mining regions of the Andes are characterized by higher hemoglobin concentration than those derived from non-mining areas or the Himalayas. The source of these differences remains to be investigated. PMID:6364176

  8. An Adaptive Derivative-based Method for Function Approximation

    SciTech Connect

    Tong, C

    2008-10-22

    To alleviate the high computational cost of large-scale multi-physics simulations to study the relationships between the model parameters and the outputs of interest, response surfaces are often used in place of the exact functional relationships. This report explores a method for response surface construction using adaptive sampling guided by derivative information at each selected sample point. This method is especially suitable for applications that can readily provide added information such as gradients and Hessian with respect to the input parameters under study. When higher order terms (third and above) in the Taylor series are negligible, the approximation error for this method can be controlled. We present details of the adaptive algorithm and numerical results on a few test problems.

  9. The evolved basis and adaptive functions of cognitive distortions.

    PubMed

    Gilbert, P

    1998-12-01

    This paper explores common cognitive distortions from the perspective of evolutionary psychology. It is suggested that cognitive distortions are natural consequences of using fast track defensive algorithms that are sensitive to threat. In various contexts, especially those of threat, humans evolved to think adaptively rather than logically. Hence cognitive distortions are not strictly errors in brain functioning and it can be useful to inform patients that 'negative thinking' may be dysfunctional but is a reflection of basic brain design and not personal irrationality. The evolved nature of cognitive distortions has been implicit in cognitive therapy from its early days (Beck, 1963; Ellis, 1962) but has not been fully articulated in what is now known about evolved mental processes. Many forms of cognitive distortion can be seen to use the (previously) adaptive heuristic of better safe than sorry. PMID:9875955

  10. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  11. Over-expression of superoxide dismutase obliterates the protective effect of BCG against tuberculosis by modulating innate and adaptive immune responses.

    PubMed

    Jain, Ruchi; Dey, Bappaditya; Khera, Aparna; Srivastav, Priyadarshani; Gupta, Umesh D; Katoch, V M; Ramanathan, V D; Tyagi, Anil K

    2011-10-19

    An efficient global control of tuberculosis requires development of alternative vaccination strategies that can enhance the efficacy of existing BCG vaccine. In this study, we evaluated the protective efficacy of a recombinant BCG (rBCG) vaccine over-expressing iron-cofactored superoxide dismutase (SOD-A), one of the prominent oxidative stress response proteins of Mycobacterium tuberculosis. Contrary to our expectations, over-expression of SOD-A resulted in the abrogation of BCG's ability to confer protection in guinea pig as well as in murine model. Analysis of immune responses revealed that over-expression of SOD-A by rBCG has pleiotropic effects on innate and adaptive immune responses. Macrophages infected in vitro with rBCG exhibited a marked reduction in apoptosis and microbicidal potential. In addition, rBCG vaccination of mice resulted in a reduced IFNγ and increased IL10 production when compared with the BCG vaccination. Further, we show that rBCG vaccination failed to generate an effective multi-functional CD4 T cell response. Altogether, our findings suggest that over-expression of SOD-A in BCG enhances the immuno-suppressive properties of BCG, characterized by skewing of immune responses towards Th2 type, an inefficient multi-functional T cell response and reduced apoptosis and microbicidal potential of macrophages leading to abolishment of BCG's protective efficacy. PMID:21856361

  12. TLR adaptor MyD88 is essential for pathogen control during oral toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite.

    PubMed

    Sukhumavasi, Woraporn; Egan, Charlotte E; Warren, Amy L; Taylor, Gregory A; Fox, Barbara A; Bzik, David J; Denkers, Eric Y

    2008-09-01

    TLR adaptor MyD88 activation is important in host resistance to Toxoplasma gondii during i.p. infection, but the function of this signaling pathway during oral infection, in which mucosal immunity assumes a predominant role, has not been examined. In this study, we show that MyD88(-/-) mice fail to control the parasite and succumb within 2 wk of oral infection. Early during infection, T cell IFN-gamma production, recruitment of neutrophils and induction of p47 GTPase IGTP (Irgm3) in the intestinal mucosa were dependent upon functional MyD88. Unexpectedly, these responses were MyD88-independent later during acute infection. In particular, CD4(+) T cell IFN-gamma reached normal levels independently of MyD88, despite continued absence of IL-12 in these animals. The i.p. vaccination of MyD88(-/-) mice with an avirulent T. gondii uracil auxotroph elicited robust IFN-gamma responses and protective immunity to challenge with a high virulence T. gondii strain. Our results demonstrate that MyD88 is required to control Toxoplasma infection, but that the parasite can trigger adaptive immunity without the need for this TLR adaptor molecule. PMID:18714019

  13. Sexual dimorphism in immune function changes during the annual cycle in house sparrows

    NASA Astrophysics Data System (ADS)

    Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis

    2010-10-01

    Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.

  14. Sexual dimorphism in immune function changes during the annual cycle in house sparrows.

    PubMed

    Pap, Péter László; Czirják, Gábor Arpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis

    2010-10-01

    Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows (Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions. PMID:20706704

  15. Effect of Vaginal Immunization with HIVgp140 and HSP70 on HIV-1 Replication and Innate and T Cell Adaptive Immunity in Women

    PubMed Central

    Lewis, David J. M.; Wang, Yufei; Huo, Zhiming; Giemza, Raphaela; Babaahmady, Kaboutar; Rahman, Durdana; Shattock, Robin J.; Singh, Mahavir

    2014-01-01

    ABSTRACT The international effort to prevent HIV-1 infection by vaccination has failed to develop an effective vaccine. The aim of this vaccine trial in women was to administer by the vaginal mucosal route a vaccine consisting of HIV-1 gp140 linked to the chaperone 70-kDa heat shock protein (HSP70). The primary objective was to determine the safety of the vaccine. The secondary objective was to examine HIV-1 infectivity ex vivo and innate and adaptive immunity to HIV-1. Protocol-defined female volunteers were recruited. HIV-1 CN54gp140 linked to HSP70 was administered by the vaginal route. Significant adverse reactions were not detected. HIV-1 was significantly inhibited ex vivo in postimmunization CD4+ T cells compared with preimmunization CD4+ T cells. The innate antiviral restrictive factor APOBEC3G was significantly upregulated, as were CC chemokines which induce downregulation of CCR5 in CD4+ T cells. Indeed, a significant inverse correlation between the proportion of CCR5+ T cells and the concentration of CCL-3 or CCL-5 was found. Importantly, the upregulation of APOBEC3G showed a significant inverse correlation, whereas CCR5 exhibited a trend to correlate with inhibition of HIV-1 infection (r = 0.51). Furthermore, specific CD4+ and CD8+ T cell proliferative responses were significantly increased and CD4+ T cells showed a trend to have an inverse correlation with the viral load (r = −0.60). However, HIVgp140-specific IgG or IgA antibodies were not detected. The results provide proof of concept that an innate mechanism consisting of CC chemokines, APOBEC3G, and adaptive immunity by CD4 and CD8 T cells might be involved in controlling HIV-1 infectivity following vaginal mucosal immunization in women. (This study has been registered at ClinicalTrials.gov under registration no. NCT01285141.) IMPORTANCE Vaginal immunization of women with a vaccine consisting of HIVgp140 linked to the 70-kDa heat shock protein (HSP70) elicited ex vivo significant inhibition of

  16. Surface-Micromachined Microfiltration Membranes for Efficient Isolation and Functional Immunophenotyping of Subpopulations of Immune Cells

    PubMed Central

    Oh, Boram; Lam, Raymond H. W.; Fan, Rong; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping

    2015-01-01

    An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this “bulk” assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined polydimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay (“AlphaLISA”), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples. PMID:23335389

  17. Cell therapy for Parkinson's disease: Functional role of the host immune response on survival and differentiation of dopaminergic neuroblasts.

    PubMed

    Wenker, Shirley D; Leal, María Celeste; Farías, María Isabel; Zeng, Xianmin; Pitossi, Fernando J

    2016-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder, whose cardinal pathology is the loss of dopaminergic neurons in the substantia nigra. Current treatments for PD have side effects in the long term and do not halt disease progression or regenerate dopaminergic cell loss. Attempts to compensate neuronal cell loss by transplantation of dopamine-producing cells started more than 30 years ago, leading to several clinical trials. These trials showed safety and variable efficacy among patients. In addition to variability in efficacy, several patients developed graft-induced dyskinesia. Nevertheless, they have provided a proof of concept that motor symptoms could be improved by cell transplantation. Cell transplantation in the brain presents several immunological challenges. The adaptive immune response should be abolished to avoid graft rejection by the host. In addition, the innate immune response will always be present after transplanting cells into the brain. Remarkably, the innate immune response can have dramatic effects on the survival, differentiation and proliferation of the transplanted cells, but has been hardly investigated. In this review, we analyze data on the functional effects of signals from the innate immune system on dopaminergic differentiation, survival and proliferation. Then, we discussed efforts on cell transplantation in animal models and PD patients, highlighting the immune response and the immunomodulatory treatment strategies performed. The analysis of the available data lead us to conclude that the modulation of the innate immune response after transplantation can increase the success of future clinical trials in PD by enhancing cell differentiation and survival. This article is part of a Special Issue entitled SI: PSC and the brain. PMID:26239914

  18. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions.

    PubMed

    Heissler, Sarah M; Sellers, James R

    2016-08-01

    Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions. PMID:26929436

  19. Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1

    PubMed Central

    Lebbink, Robert Jan; de Ruiter, Talitha; Adelmeijer, Jelle; Brenkman, Arjan B.; van Helvoort, Joop M.; Koch, Manuel; Farndale, Richard W.; Lisman, Ton; Sonnenberg, Arnoud; Lenting, Peter J.; Meyaard, Linde

    2006-01-01

    Collagens are the most abundant proteins in the human body, important in maintenance of tissue structure and hemostasis. Here we report that collagens are high affinity ligands for the broadly expressed inhibitory leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). The interaction is dependent on the conserved Gly-Pro-Hyp collagen repeats. Antibody cross-linking of LAIR-1 is known to inhibit immune cell function in vitro. We now show that collagens are functional ligands for LAIR-1 and directly inhibit immune cell activation in vitro. Thus far, all documented ligands for immune inhibitory receptors are membrane molecules, implying a regulatory role in cell–cell interaction. Our data reveal a novel mechanism of peripheral immune regulation by inhibitory immune receptors binding to extracellular matrix collagens. PMID:16754721

  20. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system.

    PubMed

    Vitlic, Ana; Lord, Janet M; Phillips, Anna C

    2014-06-01

    The immune response is essential for keeping an organism healthy and for defending it from different types of pathogens. It is a complex system that consists of a large number of components performing different functions. The adequate and controlled interaction between these components is necessary for a robust and strong immune response. There are, however, many factors that interfere with the way the immune response functions. Stress and ageing now consistently appear in the literature as factors that act upon the immune system in the way that is often damaging. This review focuses on the role of stress and ageing in altering the robustness of the immune response first separately, and then simultaneously, discussing the effects that emerge from their interplay. The special focus is on the psychological stress and the impact that it has at different levels, from the whole system to the individual molecules, resulting in consequences for physical health. PMID:24562499

  1. Immune Functions in Mice Lacking Clnk, an SLP-76-Related Adaptor Expressed in a Subset of Immune Cells

    PubMed Central

    Utting, Oliver; Sedgmen, Bradley J.; Watts, Tania H.; Shi, Xiaoshu; Rottapel, Robert; Iulianella, Angelo; Lohnes, David; Veillette, André

    2004-01-01

    The SLP-76 family of immune cell-specific adaptors is composed of three distinct members named SLP-76, Blnk, and Clnk. They have been implicated in the signaling pathways coupled to immunoreceptors such as the antigen receptors and Fc receptors. Previous studies using gene-targeted mice and deficient cell lines showed that SLP-76 plays a central role in T-cell development and activation. Moreover, it is essential for normal mast cell and platelet activation. In contrast, Blnk is necessary for B-cell development and activation. While the precise function of Clnk is not known, it was reported that Clnk is selectively expressed in mast cells, natural killer (NK) cells, and previously activated T-cells. Moreover, ectopic expression of Clnk was shown to rescue T-cell receptor-mediated signal transduction in an SLP-76-deficient T-cell line, suggesting that, like its relatives, Clnk is involved in the positive regulation of immunoreceptor signaling. Stimulatory effects of Clnk on immunoreceptor signaling were also reported to occur in transfected B-cell and basophil leukemia cell lines. Herein, we attempted to address the physiological role of Clnk in immune cells by the generation of Clnk-deficient mice. The results of our studies demonstrated that Clnk is dispensable for normal differentiation and function of T cells, mast cells, and NK cells. Hence, unlike its relatives, Clnk is not essential for normal immune functions. PMID:15199160

  2. Immune Function Changes during a Spaceflight-Analog Undersea Mission

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Quiniarte, Heather; Yetman, Deborah; Pierson, Duane; Sams, Clarence

    2008-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. It is attractive to utilize ground-based spaceflight analogs as appropriate to investigate this phenomenon. For spaceflight-associated immune dysregulation (SAID), the authors believe the most appropriate analogs might be NEEMO (short duration, Shuttle analog), Antarctic winter-over (long-duration, ISS analog) and the Haughton Mars Project in the Canadian Arctic (intermediate-duration). Each of these analogs replicate isolation, mission-associated stress, disrupted circadian rhythms, and other aspects of flight thought to contribute to SAID. To validate NEEMO as a flight analog with respect to SAID, a pilot study was conducted during the NEEMO-12 and 13 missions during 2007. Assays were performed that assessed immune status, physiological stress and latent viral reactivation. Blood and saliva samples were collected at pre-, mid-, and post-mission timepoints.

  3. Functional properties of flagellin as a stimulator of innate immunity

    PubMed Central

    Lu, Yuan; Swartz, James R.

    2016-01-01

    We report the development of a well-defined flagellin-based nanoparticle stimulator and also provide a new mechanism of action model explaining how flagellin-triggered innate immunity has evolved to favor localized rather than potentially debilitating systemic immune stimulation. Cell-free protein synthesis (CFPS) was used to facilitate mutational analysis and precisely orientated display of flagellin on Hepatitis B core (HBc) protein virus-like particles (VLPs). The need for product stability and an understanding of mechanism of action motivated investigations indicating that the D0 domain of flagellin is sensitive to amino acid sequence independent hydrolysis – apparently due to the need for structural flexibility during natural flagellin polymerization. When D0-stabilized flagellin was attached to HBc VLPs with the D0 domain facing outward, flagellin’s tendency to polymerize caused the VLPs to precipitate. However, attaching the D0 domain to the VLP surface produced a stable nanoparticle adjuvant. Surprisingly, attaching only 2 flagellins per VLP provided the same 1 pM potency as did VLPs with about 33 attached flagellins suggesting that the TLR5 receptor is highly effective in delivering its intracellular signal. These observations suggest that flagellin’s protease sensitivity, tendency to aggregate, and very high affinity for TLR5 receptors limit its systemic distribution to favor localized immune stimulation. PMID:26755208

  4. Regenerative function of immune system: Modulation of muscle stem cells.

    PubMed

    Saini, Jasdeep; McPhee, Jamie S; Al-Dabbagh, Sarah; Stewart, Claire E; Al-Shanti, Nasser

    2016-05-01

    Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and release high concentrations of cytokines, chemokines and growth factors into the microenvironment. These localised responses serve to attract additional immune cells which can reach in excess of 1×10(5) immune cell/mm(3) of skeletal muscle in order to orchestrate the repair process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial damage. The cytokines and growth factors released by activated T-cells play a key role in muscle satellite cell proliferation and migration, although the precise mechanisms of these interactions remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the impact of muscle wasting during ageing and disease. PMID:27039885

  5. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  6. Early alterations of the innate and adaptive immune statuses in sepsis according to the type of underlying infection

    PubMed Central

    2010-01-01

    Introduction Although major changes of the immune system have been described in sepsis, it has never been studied whether these may differ in relation to the type of underlying infection or not. This was studied for the first time. Methods The statuses of the innate and adaptive immune systems were prospectively compared in 505 patients. Whole blood was sampled within less than 24 hours of advent of sepsis; white blood cells were stained with monoclonal antibodies and analyzed though a flow cytometer. Results Expression of HLA-DR was significantly decreased among patients with severe sepsis/shock due to acute pyelonephritis and intraabdominal infections compared with sepsis. The rate of apoptosis of natural killer (NK) cells differed significantly among patients with severe sepsis/shock due to ventilator-associated pneumonia (VAP) and hospital-acquired pneumonia (HAP) compared with sepsis. The rate of apoptosis of NKT cells differed significantly among patients with severe sepsis/shock due to acute pyelonephritis, primary bacteremia and VAP/HAP compared with sepsis. Regarding adaptive immunity, absolute counts of CD4-lymphocytes were significantly decreased among patients with severe sepsis/shock due to community-acquired pneumonia (CAP) and intraabdominal infections compared with sepsis. Absolute counts of B-lymphocytes were significantly decreased among patients with severe sepsis/shock due to CAP compared with sepsis. Conclusions Major differences of the early statuses of the innate and adaptive immune systems exist between sepsis and severe sepsis/shock in relation to the underlying type of infection. These results may have a major impact on therapeutics. PMID:20504311

  7. Innate and adaptive immunity against porcine reproductive and respiratory syndrome virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of s...

  8. Adaptive radial basis function mesh deformation using data reduction

    NASA Astrophysics Data System (ADS)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  9. Prenatal cadmium exposure alters postnatal immune cell development and function

    PubMed Central

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2012-01-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl2 (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4+FoxP3+CD25+ (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8+CD223+ T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental

  10. Neonatal Immune Adaptation of the Gut and Its Role during Infections

    PubMed Central

    Chassin, Cecilia

    2013-01-01

    The intestinal tract is engaged in a relationship with a dense and complex microbial ecosystem, the microbiota. The establishment of this symbiosis is essential for host physiology, metabolism, and immune homeostasis. Because newborns are essentially sterile, the first exposure to microorganisms and environmental endotoxins during the neonatal period is followed by a crucial sequence of active events leading to immune tolerance and homeostasis. Contact with potent immunostimulatory molecules starts immediately at birth, and the discrimination between commensal bacteria and invading pathogens is essential to avoid an inappropriate immune stimulation and/or host infection. The dysregulation of these tight interactions between host and microbiota can be responsible for important health disorders, including inflammation and sepsis. This review summarizes the molecular events leading to the establishment of postnatal immune tolerance and how pathogens can avoid host immunity and induce neonatal infections and sepsis. PMID:23737810

  11. Strategies to enhance immune function for marathon runners : what can be done?

    PubMed

    Akerström, Thorbjörn C A; Pedersen, Bente K

    2007-01-01

    Marathoners are at an increased risk of developing upper respiratory tract infections (URTIs) following races and periods of hard training, which are associated with temporary changes in the immune system. The majority of the reported changes are decreases in function or concentration of certain immune cells. During this period of immune suppression, by some referred to as an 'open window' in immune function, it has been hypothesised that viruses and bacteria might gain a foothold, which would increase the risk of infections. In light of this, nutritional interventions that can enhance immune function and reduce the risk of URTIs have been sought. This paper focuses on the effect of glutamine, vitamin C, bovine colostrum and glucose. Although, some of these supplements can affect the physiological and immune changes associated with marathon racing, none of the supplements discussed have consistently been shown to reduce the risk of URTIs and therefore cannot be recommended for use as enhancers of immune function in marathon runners. PMID:17465623

  12. Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions

    NASA Astrophysics Data System (ADS)

    Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2014-07-01

    Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. Electronic supplementary information (ESI) available: Experimental section, structures of f-MWCNTs and uptake by human primary immune cells. See DOI: 10.1039/c4nr02711f

  13. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus.

    PubMed

    Loving, Crystal L; Osorio, Fernando A; Murtaugh, Michael P; Zuckermann, Federico A

    2015-09-15

    Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods

  14. The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail.

    PubMed

    Chou, Pin-Hsiang; Chang, Hao-Shuo; Chen, I-Tung; Lin, Han-You; Chen, Yi-Min; Yang, Huey-Lang; Wang, K C Han-Ching

    2009-12-01

    It has recently been suggested that Dscam (Down syndrome cell adhesion molecule), a member of the immunoglobulin superfamily (IgSF), plays an essential role in the alternative adaptive immune system of invertebrates. Here, we isolated and characterized the first shrimp Dscam from Litopenaeus vannamei. The LvDscam protein had an extracellular domain but lacked the expected transmembrane domain and cytoplasmic tail, both of which are found in all other members of the Dscam family (and may also be found in other L. vannamei Dscams that have not yet been isolated). In nervous tissue, expression levels of LvDscam were unexpectedly low. Phylogenetic analysis suggests that LvDscam is far from the Dscams found in other invertebrates. Nevertheless, the domain architecture of the extracellular region of LvDscam is similar to other invertebrate Dscams, and it exhibits the typical configuration of 10 immunoglobulin (Ig) domains, 6 fibronectin type 3 domains (FNIII) and one cell attachment sequence (RGD). Cloning and characterization of a total of 62 cDNAs from hemocytes collected from WSSV-free, WSSV-persistent and WSSV-acute-infected shrimp revealed 23 alternative amino acid sequences in the N-terminal of Ig2, 30 in the N-terminal of Ig3 and 13 in the Ig7 domain. This implies that LvDscam can potentially encode at least 8970 unique isoforms. Further analysis suggested that the LvDscam Ig2 and Ig3 regions are more functionally important than Ig7 in the shrimp's specific immune response against WSSV. We discuss how this tail-less, soluble Dscam can still play an active role in alternative adaptive immune response even while its axonal guidance functionality may be impaired. PMID:19635499

  15. Effects of Sex and Gender on Adaptation to Space: Immune System

    PubMed Central

    Crucian, Brian; Huff, Janice L.; Klein, Sabra L.; Morens, David; Murasko, Donna; Nickerson, Cheryl A.; Sonnenfeld, Gerald

    2014-01-01

    Abstract This review is focused on sex and gender effects on immunological alterations occurring during space flight. Sex differences in immune function and the outcome of inflammatory, infectious, and autoimmune diseases are well documented. The work of the Immunology Workgroup identified numerous reasons why there could be sex and/or gender differences observed during and after spaceflight, but thus far, there has been very little investigation in this area of research. In most cases, this is due to either a low total number of subjects or the minimal number of female flight crew members available for these studies. Thus, the availability of a sufficient number of female subjects to enable statistical analysis of the data has been a limiting factor. As the inclusion of female crew members has increased in the recent past, such studies should be possible in the future. It is very difficult to obtain immunologic and infectious data in small animals that can be usefully extrapolated to humans undergoing spaceflight. Thus, it is recommended by the Immunology Workgroup that a greater emphasis be placed on studying astronauts themselves, with a focus on long-term evaluations of specific, known infectious risks. PMID:25401940

  16. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour

    PubMed Central

    Farzi, Aitak; Reichmann, Florian; Holzer, Peter

    2015-01-01

    Neuropeptide Y (NPY), one of the most abundant peptides in the nervous system, exerts its effects via 5 receptor types, termed Y1, Y2, Y4, Y5 and y6. NPY’s pleiotropic functions comprise the regulation of brain activity, mood, stress coping, ingestion, digestion, metabolism, vascular and immune function. Nerve-derived NPY directly affects immune cells while NPY also acts as a paracrine and autocrine immune mediator, since immune cells themselves are capable of producing and releasing NPY. NPY is able to induce immune activation or suppression, depending on a myriad of factors such as the Y receptors activated and cell types involved. There is an intricate relationship between psychological stress, mood disorders and the immune system. While stress represents a risk factor for the development of mood disorders, it exhibits diverse actions on the immune system as well. Conversely, inflammation is regarded as an internal stressor and is increasingly recognized to contribute to the pathogenesis of mood and metabolic disorders. Intriguingly, the cerebral NPY system has been found to protect against distinct disturbances in response to immune challenge, attenuating the sickness response and preventing the development of depression. Thus, NPY plays an important homeostatic role in balancing disturbances of physiological systems caused by peripheral immune challenge. This implication is particularly evident in the brain in which NPY counteracts the negative impact of immune challenge on mood, emotional processing and stress resilience. NPY thus acts as a unique signalling molecule in the interaction of the immune system with the brain in health and disease. PMID:25545642

  17. Prenatal cadmium exposure alters postnatal immune cell development and function

    SciTech Connect

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  18. Food-Nonfood Discrimination in Ancestral Vertebrates: Gamete Cannibalism and the Origin of the Adaptive Immune System.

    PubMed

    Corcos, D

    2015-11-01

    Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity. PMID:26286030

  19. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines.

    PubMed

    Laws, Thomas R; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F; Webster, Wendy M; Debes, Amanda K; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G; Tsanava, Shota; Dyson, Edward H; Simpson, Andrew J H; Hepburn, Matthew J; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  20. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    PubMed Central

    Laws, Thomas R.; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K.; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G.; Tsanava, Shota; Dyson, Edward H.; Simpson, Andrew J. H.; Hepburn, Matthew J.; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  1. Adapting ORAP to wind plants : industry value and functional requirements.

    SciTech Connect

    Not Available

    2010-08-01

    Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.

  2. Sleep and vestibular adaptation: implications for function in microgravity

    NASA Technical Reports Server (NTRS)

    Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.

    1998-01-01

    Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.

  3. The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity

    PubMed Central

    Longman, Randy S.; Littman, Dan R.

    2016-01-01

    Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030

  4. The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases.

    PubMed

    Gardiner, Clair M; Mills, Kingston H G

    2016-08-01

    Immunological memory mediated by antigen-specific T and B cells is the foundation of adaptive immunity and is fundamental to the heightened and rapid protective immune response induced by vaccination or following re-infection with the same pathogen. While the innate immune system has classically been considered to be non-specific and devoid of memory, it now appears that it can be trained following exposure to microbes or their products and that this may confer a form of memory on innate immune cells. The evidence for immunological memory outside of T and B cells has been best established for natural killer (NK) cells, where it has been known for decades that NK cells have heighten responses following immunological re-challenge. Furthermore, recent studies have demonstrated that monocyte/macrophages, and probably dendritic cells, can be re-programmed through epigenetic modification, following exposure to pathogens or their products, resulting in heighted responses following a second stimulation. Unlike antigen-specific memory of the adaptive immune system, the second stimulation does not have to be with the same pathogen or antigen. Indirect evidence for this comes from reports on the non-specific beneficial effect of certain live vaccines, such as Bacillus Calmette Guerin (BCG) against unrelated childhood infectious diseases. It also appears that certain pathogen or pathogen-derived molecules can prime immune cells, especially macrophages, to secrete more anti-inflammatory and less pro-inflammatory cyokines, thus opening up the possibility of exploiting innate immune training as a new therapeutic approach for inflammatory diseases. PMID:26979658

  5. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    PubMed

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms. PMID:19940994

  6. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  7. The effects of panaxadiol saponins on megakaryocytic maturation and immune function in a mouse model of immune thrombocytopenia.

    PubMed

    Lin, Xiaojie; Yin, Liming; Gao, Ruilan; Liu, Qinghua; Xu, Weihong; Jiang, Xingmai; Chong, Beng Hock

    2015-05-01

    We have identified a biologically active component, panaxadiol saponins component (PDS-C), from Chinese ginseng herb extract. Panaxadiol saponins component contains five ginsenoside monomers with total purity of 92.44%. In this study, the BALB/c mouse model with immune thrombocytopenia (ITP) was established by injection of antiplatelet antibody every other day for 5 total times; the peripheral blood platelet counts steadily decreased to 20%-30% of normal levels and remained decreased for about 10 days. The antiplatelet antibody was derived from the sera of guinea pigs immunized with the platelets of BALB/c mice. Mice with ITP were treated with PDS-C at a low, a moderate, or a high dose for 10 consecutive days. We observed that the peripheral blood platelet counts of ITP mice were significantly higher than that of ITP controls (untreated) after treatment of PDS-C in a dose-dependent manner. Treatment with PDS-C also increased the mature megakaryocytes in the bone marrow of treated ITP animals with a concomitant decease of immature megakaryocyte precursors. Furthermore, macrophage phagocytosis of exogenous erythrocytes in the intra-abdominal cavity of ITP mice was inhibited by PDS-C treatment, indicating that PDS-C also could modulate immune function and may possibly prevent phagocytosis of antibody-coated platelets. Altogether, our findings suggest that PDS-C may have a dual role, promoting proliferation and differentiation of megakaryocytes, as well as modulating immune function, and it may therefore be very helpful in the treatment of ITP. PMID:25578384

  8. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    NASA Astrophysics Data System (ADS)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  9. Functions of thymic stromal lymphopoietin in immunity and disease.

    PubMed

    Zhang, Yanlu; Zhou, Baohua

    2012-06-01

    Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine expressed mainly by epithelial cells. Current studies provide compelling evidence that TSLP is capable of activating dendritic cells to promote T helper (Th) 2 immune responses. TSLP has also been shown to directly promote Th2 differentiation of naïve CD4(+) T cell and activate natural killer T cells, basophils and other innate immune cells at the initial stage of inflammation. In addition, TSLP affects B cell maturation and activation and can also influence regulatory T (Treg) cell differentiation and development. TSLP-induced Th2 responses are associated with the pathogenesis of allergic inflammatory diseases, including atopic dermatitis, asthma, and rhinitis. Based on recent findings in humans and mouse models, TSLP might also be involved in the pathogenesis of inflammatory bowel disease and progression of cancer. In this review, we will summarize our current understanding of the biology of TSLP and highlight the important issues for future investigations. PMID:22274860

  10. Single Cell Functional Proteomics for Assessing Immune Response in Cancer Therapy: Technology, Methods, and Applications

    PubMed Central

    Ma, Chao; Fan, Rong; Elitas, Meltem

    2013-01-01

    In the past decade, significant progresses have taken place in the field of cancer immunotherapeutics, which are being developed for most human cancers. New immunotherapeutics, such as Ipilimumab (anti-CTLA-4), have been approved for clinical treatment; cell-based immunotherapies such as adoptive cell transfer (ACT) have either passed the final stage of human studies (e.g., Sipuleucel-T) for the treatment of selected neoplastic malignancies or reached the stage of phase II/III clinical trials. Immunotherapetics has become a sophisticated field. Multimodal therapeutic regimens comprising several functional modules (up to five in the case of ACT) have been developed to provide focused therapeutic responses with improved efficacy and reduced side-effects. However, a major challenge remains: the lack of effective and clinically applicable immune assessment methods. Due to the complexity of antitumor immune responses within patients, it is difficult to provide comprehensive assessment of therapeutic efficacy and mechanism. To address this challenge, new technologies have been developed to directly profile the cellular immune functions and the functional heterogeneity. With the goal to measure the functional proteomics of single immune cells, these technologies are informative, sensitive, high-throughput, and highly multiplex. They have been used to uncover new knowledge of cellular immune functions and have been utilized for rapid, informative, and longitudinal monitoring of immune response in clinical anti-cancer treatment. In addition, new computational tools are required to integrate high-dimensional data sets generated from the comprehensive, single cell level measurements of patient’s immune responses to guide accurate and definitive diagnostic decision. These single cell immune function assessment tools will likely contribute to new understanding of therapy mechanism, pre-treatment stratification of patients, and ongoing therapeutic monitoring and assessment

  11. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function

    PubMed Central

    Graves, Christina L.; Harden, Scott W.; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J.; Wallet, Shannon M.

    2015-01-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. PMID:25193428

  12. Highly Dynamic Exon Shuffling in Candidate Pathogen Receptors … What if Brown Algae Were Capable of Adaptive Immunity?

    PubMed Central

    Zambounis, Antonios; Elias, Marek; Sterck, Lieven; Maumus, Florian; Gachon, Claire M.M.

    2012-01-01

    Pathogen recognition is the first step of immune reactions. In animals and plants, direct or indirect pathogen recognition is often mediated by a wealth of fast-evolving receptors, many of which contain ligand-binding and signal transduction domains, such as leucine-rich or tetratricopeptide repeat (LRR/TPR) and NB-ARC domains, respectively. In order to identify candidates potentially involved in algal defense, we mined the genome of the brown alga Ectocarpus siliculosus for homologues of these genes and assessed the evolutionary pressures acting upon them. We thus annotated all Ectocarpus LRR-containing genes, in particular an original group of LRR-containing GTPases of the ROCO family, and 24 NB-ARC–TPR proteins. They exhibit high birth and death rates, while a diversifying selection is acting on their LRR (respectively TPR) domain, probably affecting the ligand-binding specificities. Remarkably, each repeat is encoded by an exon, and the intense exon shuffling underpins the variability of LRR and TPR domains. We conclude that the Ectocarpus ROCO and NB-ARC–TPR families are excellent candidates for being involved in recognition/transduction events linked to immunity. We further hypothesize that brown algae may generate their immune repertoire via controlled somatic recombination, so far only known from the vertebrate adaptive immune systems. PMID:22144640

  13. Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging

    PubMed Central

    Whiting, Chan C.; Siebert, Janet; Newman, Aaron M.; Du, Hong-wu; Alizadeh, Ash A.; Goronzy, Jorg; Weyand, Cornelia M.; Krishnan, Eswar; Fathman, C. Garrison; Maecker, Holden T.

    2015-01-01

    While many age-associated immune changes have been reported, a comprehensive set of metrics of immune aging is lacking. Here we report data from 243 healthy adults aged 40–97, for whom we measured clinical and functional parameters, serum cytokines, cytokines and gene expression in stimulated and unstimulated PBMC, PBMC phenotypes, and cytokine-stimulated pSTAT signaling in whole blood. Although highly heterogeneous across individuals, many of these assays revealed trends by age, sex, and CMV status, to greater or lesser degrees. Age, then sex and CMV status, showed the greatest impact on the immune system, as measured by the percentage of assay readouts with significant differences. An elastic net regression model could optimally predict age with 14 analytes from different assays. This reinforces the importance of multivariate analysis for defining a healthy immune system. These data provide a reference for others measuring immune parameters in older people. PMID:26197454

  14. The Role of Adaptive Immunity in the Efficacy of Targeted Cancer Therapies.

    PubMed

    Xu, Meng Michelle; Pu, Yang; Zhang, Yuan; Fu, Yang-Xin

    2016-02-01

    Accumulating evidence indicates that the efficacy of tumor-targeted therapies relies on the host immune response, including targeted small-molecule and antibody approaches that were not previously thought to have an immune component. Here, we review the current understanding of how targeted therapies on tumor cells could have a major impact on the immune response, and how this relates to the therapeutic efficacy of these approaches. In this context, we evaluate different strategies that combine targeted therapies with immunotherapy approaches, and discuss past and ongoing clinical trials. We highlight gaps in knowledge, and argue that significant progress for combined therapies will require a better understanding of the complex interactions between immune cells, the tumor, and the tumor microenvironment (TME) in different cancer settings. PMID:26778079

  15. Opioid Drug Abuse and Modulation of Immune Function: Consequences in the Susceptibility to Opportunistic Infections

    PubMed Central

    Roy, Sabita; Ninkovic, Jana; Banerjee, Santanu; Charboneau, Richard; Das, Subhas; Dutta, Raini; Kirchner, Varvara; Koodie, Lisa; Ma, Jing; Meng, Jingjing

    2013-01-01

    Infection rate among intravenous drug users (IDU) is higher than the general public, and is the major cause of morbidity and hospitalization in the IDU population. Epidemiologic studies provide data on increased prevalence of opportunistic bacterial infections such as TB and pneumonia, and viral infections such as HIV-1 and hepatitis in the IDU population. An important component in the intravenous drug abuse population and in patients receiving medically indicated chronic opioid treatment is opioid withdrawal. Data on bacterial virulence in the context of opioid withdrawal suggest that mice undergoing withdrawal had shortened survival and increased bacterial load in response to Salmonella infection. As the body of evidence in support of opioid dependency and its immunosuppressive effects is growing, it is imperative to understand the mechanisms by which opioids exert these effects and identify the populations at risk that would benefit the most from the interventions to counteract opioid immunosuppressive effects. Thus, it is important to refine the existing animal model to closely match human conditions and to cross-validate these findings through carefully controlled human studies. Better understanding of the mechanisms will facilitate the search for new therapeutic modalities to counteract adverse effects including increased infection rates. This review will summarize the effects of morphine on innate and adaptive immunity, identify the role of the mu opioid receptor in these functions and the signal transduction activated in the process. The role of opioid withdrawal in immunosuppression and the clinical relevance of these findings will also be discussed. PMID:21789507

  16. Artificial immune system based on adaptive clonal selection for feature selection and parameters optimisation of support vector machines

    NASA Astrophysics Data System (ADS)

    Sadat Hashemipour, Maryam; Soleimani, Seyed Ali

    2016-01-01

    Artificial immune system (AIS) algorithm based on clonal selection method can be defined as a soft computing method inspired by theoretical immune system in order to solve science and engineering problems. Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in the SVM training procedure along with the feature selection significantly impacts on the classification accuracy rate. In this study, AIS based on Adaptive Clonal Selection (AISACS) algorithm has been used to optimise the SVM parameters and feature subset selection without degrading the SVM classification accuracy. Several public datasets of University of California Irvine machine learning (UCI) repository are employed to calculate the classification accuracy rate in order to evaluate the AISACS approach then it was compared with grid search algorithm and Genetic Algorithm (GA) approach. The experimental results show that the feature reduction rate and running time of the AISACS approach are better than the GA approach.

  17. Selection for brain size impairs innate, but not adaptive immune responses.

    PubMed

    Kotrschal, Alexander; Kolm, Niclas; Penn, Dustin J

    2016-03-16

    Both the brain and the immune system are energetically demanding organs, and when natural selection favours increased investment into one, then the size or performance of the other should be reduced. While comparative analyses have attempted to test this potential evolutionary trade-off, the results remain inconclusive. To test this hypothesis, we compared the tissue graft rejection (an assay for measuring innate and acquired immune responses) in guppies (Poecilia reticulata) artificially selected for large and small relative brain size. Individual scales were transplanted between pairs of fish, creating reciprocal allografts, and the rejection reaction was scored over 8 days (before acquired immunity develops). Acquired immune responses were tested two weeks later, when the same pairs of fish received a second set of allografts and were scored again. Compared with large-brained animals, small-brained animals of both sexes mounted a significantly stronger rejection response to the first allograft. The rejection response to the second set of allografts did not differ between large- and small-brained fish. Our results show that selection for large brain size reduced innate immune responses to an allograft, which supports the hypothesis that there is a selective trade-off between investing into brain size and innate immunity. PMID:26962144

  18. Selection for brain size impairs innate, but not adaptive immune responses

    PubMed Central

    Kotrschal, Alexander; Kolm, Niclas; Penn, Dustin J.

    2016-01-01

    Both the brain and the immune system are energetically demanding organs, and when natural selection favours increased investment into one, then the size or performance of the other should be reduced. While comparative analyses have attempted to test this potential evolutionary trade-off, the results remain inconclusive. To test this hypothesis, we compared the tissue graft rejection (an assay for measuring innate and acquired immune responses) in guppies (Poecilia reticulata) artificially selected for large and small relative brain size. Individual scales were transplanted between pairs of fish, creating reciprocal allografts, and the rejection reaction was scored over 8 days (before acquired immunity develops). Acquired immune responses were tested two weeks later, when the same pairs of fish received a second set of allografts and were scored again. Compared with large-brained animals, small-brained animals of both sexes mounted a significantly stronger rejection response to the first allograft. The rejection response to the second set of allografts did not differ between large- and small-brained fish. Our results show that selection for large brain size reduced innate immune responses to an allograft, which supports the hypothesis that there is a selective trade-off between investing into brain size and innate immunity. PMID:26962144

  19. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke

    PubMed Central

    2011-01-01

    Background Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the co