Science.gov

Sample records for adaptive immune inflammation

  1. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland.

    PubMed

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  2. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    PubMed Central

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  3. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation.

    PubMed

    Fulop, T; Dupuis, G; Baehl, S; Le Page, A; Bourgade, K; Frost, E; Witkowski, J M; Pawelec, G; Larbi, A; Cunnane, S

    2016-02-01

    Aging is accompanied by many physiological changes including those in the immune system. These changes are designated as immunosenescence indicating that age induces a decrease in immune functions. However, since many years we know that some aspects are not decreasing but instead are increasing like the pro-inflammatory activity by the innate immune cells, especially by monocytes/macrophages. Recently it became evident that these cells may possess a sort of memory called trained memory sustained by epigenetic changes occurring long after even in the absence of the initiator aggressor. In this review we are reviewing evidences that such changes may occur in aging and describe the relationship between inflamm-aging and immunosenescence as an adaptation/remodelling process leading on one hand to increased inflammation and on the other to decreased immune response (immune-paralysis) mastered by the innate immune system. These changes may collectively induce a state of alertness which assure an immune response even if ultimately resulting in age-related deleterious inflammatory diseases. PMID:26472173

  4. Quercetin, Inflammation and Immunity

    PubMed Central

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-01-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  5. Quercetin, Inflammation and Immunity.

    PubMed

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  6. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation

    PubMed Central

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  7. Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response.

    PubMed

    Jaligama, Sridhar; Chen, Zaili; Saravia, Jordy; Yadav, Nikki; Lomnicki, Slawomir M; Dugas, Tammy R; Cormier, Stephania A

    2015-07-21

    The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill. PMID:26115348

  8. Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response.

    PubMed

    Jaligama, Sridhar; Chen, Zaili; Saravia, Jordy; Yadav, Nikki; Lomnicki, Slawomir M; Dugas, Tammy R; Cormier, Stephania A

    2015-07-21

    The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill.

  9. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation

    PubMed Central

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  10. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation.

    PubMed

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  11. Innate lymphoid cells in inflammation and immunity.

    PubMed

    McKenzie, Andrew N J; Spits, Hergen; Eberl, Gerard

    2014-09-18

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles throughout the duration of immune responses, participating in the transition from innate to adaptive immunity and contributing to chronic inflammation. The proximity of ILCs to epithelial surfaces and their constitutive strategic positioning in other tissues throughout the body ensures that, in spite of their rarity, ILCs are able to regulate immune homeostasis effectively. Dysregulation of ILC function might result in chronic pathologies such as allergies, autoimmunity, and inflammation. A new role for ILCs in the maintenance of metabolic homeostasis has started to emerge, underlining their importance in fundamental physiological processes beyond infection and immunity.

  12. HIF Transcription Factors, Inflammation, and Immunity

    PubMed Central

    Palazon, Asis; Goldrath, Ananda; Nizet, Victor

    2015-01-01

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors that play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity. PMID:25367569

  13. HIF transcription factors, inflammation, and immunity.

    PubMed

    Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S

    2014-10-16

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.

  14. Immune Cells and Inflammation in Diabetic Nephropathy

    PubMed Central

    Zheng, Zihan; Zheng, Feng

    2016-01-01

    Diabetic nephropathy (DN) is a serious complication of diabetes. At its core, DN is a metabolic disorder which can also manifest itself in terms of local inflammation in the kidneys. Such inflammation can then drive the classical markers of fibrosis and structural remodeling. As a result, resolution of immune-mediated inflammation is critical towards achieving a cure for DN. Many immune cells play a part in DN, including key members of both the innate and adaptive immune systems. While these cells were classically understood to primarily function against pathogen insult, it has also become increasingly clear that they also serve a major role as internal sensors of damage. In fact, damage sensing may serve as the impetus for much of the inflammation that occurs in DN, in a vicious positive feedback cycle. Although direct targeting of these proinflammatory cells may be difficult, new approaches that focus on their metabolic profiles may be able to alleviate DN significantly, especially since dysregulation of the local metabolic environment may well be responsible for triggering inflammation to begin with. In this review, the authors consider the metabolic profile of several relevant immune types and discuss their respective roles. PMID:26824038

  15. Can vitamin a mediate immunity and inflammation?

    PubMed

    Spinas, E; Saggini, A; Kritas, S K; Cerulli, G; Caraffa, A; Antinolfi, P; Pantalone, A; Frydas, A; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Conti, P

    2015-01-01

    Vitamins are natural components of foods and are organic compounds distinct from fat, carbohydrates and proteins. Vitamin A is the generic descriptor for compounds with the qualitative biological activity of retinol. Unlike beta-carotene, vitamin A is not an antioxidant and its benefit is related to possible boosting of immune reactions. The effect of vitamin A on immune function is wide-reaching and its deficiency appears to affect immunity in several ways. Innate and adaptive immune responses are affected in some way by lack of vitamin A. Retinoids seem to act on differentiation of lymphocytes, antibody production, phagocytosis of macrophages, NK, Treg, and T helper cell activity. In addition, in humans, signs of a vitamin A deficiency also include the dysregulation of cytokine/chemokine generation and release. However, excess of vitamin A has been demonstrated to have toxic effects in most species studied. Here we summarize some important effects of vitamin A in immunity and inflammation. PMID:25864736

  16. Inflammation, immunity, and Alzheimer's disease.

    PubMed

    Town, Terrence

    2010-04-01

    Few topics in the field of Alzheimer's disease (AD) research have brought about the level of excitement and interest as the role of inflammation and immunity in the pathobiology and treatment of the disease. In this special issue of the journal, experts in the field give their views on how inflammatory processes and the immune system intersect- at both etiological and treatment levels- with disease biology. Collectively, nearly three decades of work are covered in this special issue, beginning with the first epidemiologic studies that showed an inverse risk relationship between AD and use of non-steroidal anti-inflammatory drugs, and ending with "immunotherapy" approaches and recent studies examining the roles of innate immune cells including microglia and peripheral mononuclear phagocytes in AD. Despite considerable work in this area, many important questions remain concerning the nature and timing of immune/inflammatory responses in the context of AD, and at what point and how to therapeutically intervene.

  17. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  18. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  19. Inflammatory bowel disease related innate immunity and adaptive immunity

    PubMed Central

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD. PMID:27398134

  20. Environmental immune disruptors, inflammation and cancer risk

    PubMed Central

    Thompson, Patricia A.; Khatami, Mahin; Baglole, Carolyn J.; Sun, Jun; Harris, Shelley; Moon, Eun-Yi; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Brown, Dustin; Colacci, Annamaria; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth; Woodrick, Jordan; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Amedei, Amedeo; Hamid, Roslida A.; Lowe, Leroy; Guarnieri, Tiziana

    2015-01-01

    An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented. PMID:26106141

  1. Adaptive immunity to fungi.

    PubMed

    Verma, Akash; Wüthrich, Marcel; Deepe, George; Klein, Bruce

    2014-11-06

    Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases.

  2. Fruit polyphenols, immunity and inflammation.

    PubMed

    González-Gallego, Javier; García-Mediavilla, M Victoria; Sánchez-Campos, Sonia; Tuñón, María J

    2010-10-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables and beverages derived from plants. These molecules have been reported to possess a wide range of activities in the prevention of common diseases, including CHD, cancer, neurodegenerative diseases, gastrointestinal disorders and others. The effects appear to be related to the various biological/pharmacological activities of flavonoids. A large number of publications suggest immunomodulatory and anti-inflammatory properties of these compounds. However, almost all studies are in vitro studies with limited research on animal models and scarce data from human studies. The majority of in vitro research has been carried out with single flavonoids, generally aglycones, at rather supraphysiological concentrations. Few studies have investigated the anti-inflammatory effects of physiologically attainable flavonoid concentrations in healthy subjects, and more epidemiological studies and prospective randomised trials are still required. This review summarises evidence for the effects of fruit and tea flavonoids and their metabolites in inflammation and immunity. Mechanisms of effect are discussed, including those on enzyme function and regulation of gene and protein expression. Animal work is included, and evidence from epidemiological studies and human intervention trials is reviewed. Biological relevance and functional benefits of the reported effects, such as resistance to infection or exercise performance, are also discussed.

  3. Adaptive immunity to fungi.

    PubMed

    Wüthrich, Marcel; Deepe, George S; Klein, Bruce

    2012-01-01

    Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue.

  4. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns

    PubMed Central

    Gartlan, Kate H.; Krashias, George; Wegmann, Frank; Hillson, William R.; Scherer, Erin M.; Greenberg, Philip D.; Eisenbarth, Stephanie C.; Moghaddam, Amin E.; Sattentau, Quentin J.

    2016-01-01

    Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition. PMID:27005810

  5. Gut hormones: emerging role in immune activation and inflammation.

    PubMed

    Khan, W I; Ghia, J E

    2010-07-01

    Gut inflammation is characterized by mucosal recruitment of activated cells from both the innate and adaptive immune systems. In addition to immune cells, inflammation in the gut is associated with an alteration in enteric endocrine cells and various biologically active compounds produced by these cells. Although the change in enteric endocrine cells or their products is considered to be important in regulating gut physiology (motility and secretion), it is not clear whether the change plays any role in immune activation and in the regulation of gut inflammation. Due to the strategic location of enteric endocrine cells in gut mucosa, these gut hormones may play an important role in immune activation and promotion of inflammation in the gut. This review addresses the research on the interface between immune and endocrine systems in gastrointestinal (GI) pathophysiology, specifically in the context of two major products of enteric endocrine systems, namely serotonin (5-hydroxytryptamine: 5-HT) and chromogranins (Cgs), in relation to immune activation and generation of inflammation. The studies reviewed in this paper demonstrate that 5-HT activates the immune cells to produce proinflammatory mediators and by manipulating the 5-HT system it is possible to modulate gut inflammation. In the case of Cgs the scenario is more complex, as this hormone has been shown to play both proinflammatory and anti-inflammatory functions. It is also possible that interaction between 5-HT and Cgs may play a role in the modulation of immune and inflammatory responses. In addition to enhancing our understanding of immunoendocrine interaction in the gut, the data generated from the these studies may have implications in understanding the role of gut hormone in the pathogenesis of both GI and non-GI inflammatory diseases which may lead ultimately to improved therapeutic strategies in inflammatory disorders. PMID:20408856

  6. The role of neutrophils in immune dysfunction during severe inflammation.

    PubMed

    Leliefeld, Pieter H C; Wessels, Catharina M; Leenen, Luke P H; Koenderman, Leo; Pillay, Janesh

    2016-01-01

    Critically ill post-surgical, post-trauma and/or septic patients are characterised by severe inflammation. This immune response consists of both a pro- and an anti-inflammatory component. The pro-inflammatory component contributes to (multiple) organ failure whereas occurrence of immune paralysis predisposes to infections. Strikingly, infectious complications arise in these patients despite the presence of a clear neutrophilia. We propose that dysfunction of neutrophils potentially increases the susceptibility to infections or can result in the inability to clear existing infections. Under homeostatic conditions these effector cells of the innate immune system circulate in a quiescent state and serve as the first line of defence against invading pathogens. In severe inflammation, however, neutrophils are rapidly activated, which affects their functional capacities, such as chemotaxis, phagocytosis, intra-cellular killing, NETosis, and their capacity to modulate adaptive immunity. This review provides an overview of the current understanding of neutrophil dysfunction in severe inflammation. We will discuss the possible mechanisms of downregulation of anti-microbial function, suppression of adaptive immunity by neutrophils and the contribution of neutrophil subsets to immune paralysis. PMID:27005275

  7. Inflammation, immunity, and vaccines for Helicobacter pylori infection.

    PubMed

    Velin, Dominique; Straubinger, Kathrin; Gerhard, Markus

    2016-09-01

    The tight control of the innate and adaptive immune responses in the stomach mucosa during chronic Helicobacter pylori infection is of prime importance for the bacteria to persist and for the host to prevent inflammation-driven diseases. This review summarizes recent data on the roles of innate and adaptive immune responses during H. pylori/host interactions. In addition, the latest preclinical developments of H. pylori vaccines are discussed with a special focus on the clinical trial reported by Zeng et al., who provided evidence that oral vaccination significantly reduces the acquisition of natural H. pylori infection in children. PMID:27531535

  8. IAPs, regulators of innate immunity and inflammation.

    PubMed

    Estornes, Yann; Bertrand, Mathieu J M

    2015-03-01

    As indicated by their name, members of the Inhibitor of APoptosis (IAP) family were first believed to be functionally restricted to apoptosis inhibition. It is now clear that IAPs have a much wider spectrum of action, and recent studies even suggest that some of its members primarily regulate inflammatory responses. Inflammation, the first response of the immune system to infection or tissue injury, is highly regulated by ubiquitylation - a posttranslational modification of proteins with various consequences. In this review, we focus on the recently reported functions of XIAP, cIAP1 and cIAP2 as ubiquitin ligases regulating innate immunity and inflammation.

  9. Bioactive lipid mediators in skin inflammation and immunity.

    PubMed

    Kendall, Alexandra C; Nicolaou, Anna

    2013-01-01

    The skin is the primary barrier from the outside environment, protecting the host from injury, infectious pathogens, water loss and solar ultraviolet radiation. In this role, it is supported by a highly organized system comprising elements of innate and adaptive immunity, responsive to inflammatory stimuli. The cutaneous immune system is regulated by mediators such as cytokines and bioactive lipids that can initiate rapid immune responses with controlled inflammation, followed by efficient resolution. However, when immune responses are inadequate or mounted against non-infectious agents, these mediators contribute to skin pathologies involving unresolved or chronic inflammation. Skin is characterized by active lipid metabolism and fatty acids play crucial roles both in terms of structural integrity and functionality, in particular when transformed to bioactive mediators. Eicosanoids, endocannabinoids and sphingolipids are such key bioactive lipids, intimately involved in skin biology, inflammation and immunity. We discuss their origins, role and influence over various cells of the epidermis, dermis and cutaneous immune system and examine their function in examples of inflammatory skin conditions. We focus on psoriasis, atopic and contact dermatitis, acne vulgaris, wound healing and photodermatology that demonstrate dysregulation of bioactive lipid metabolism and examine ways of using this insight to inform novel therapeutics.

  10. Neural reflexes in inflammation and immunity

    PubMed Central

    2012-01-01

    The mammalian immune system and the nervous system coevolved under the influence of infection and sterile injury. Knowledge of homeostatic mechanisms by which the nervous system controls organ function was originally applied to the cardiovascular, gastrointestinal, musculoskeletal, and other body systems. Development of advanced neurophysiological and immunological techniques recently enabled the study of reflex neural circuits that maintain immunological homeostasis, and are essential for health in mammals. Such reflexes are evolutionarily ancient, dating back to invertebrate nematode worms that possess primitive immune and nervous systems. Failure of these reflex mechanisms in mammals contributes to nonresolving inflammation and disease. It is also possible to target these neural pathways using electrical nerve stimulators and pharmacological agents to hasten the resolution of inflammation and provide therapeutic benefit. PMID:22665702

  11. Zinc and its role in immunity and inflammation.

    PubMed

    Bonaventura, Paola; Benedetti, Giulia; Albarède, Francis; Miossec, Pierre

    2015-04-01

    Zinc (Zn) nutritional importance has been known for a long time, but in the last decades its importance in immune modulation has arisen. This review aims at describing the mechanisms involved in the regulation of Zn homeostasis and their effects on the immune response focusing on those which are implicated in the physiopathology of rheumatoid arthritis. Zn functions as a modulator of the immune response through its availability, which is tightly regulated by several transporters and regulators. When this mechanism is disturbed, Zn availability is reduced, altering survival, proliferation and differentiation of the cells of different organs and systems and, in particular, cells of the immune system. Zn deficiency affects cells involved in both innate and adaptive immunity at the survival, proliferation and maturation levels. These cells include monocytes, polymorphonuclear-, natural killer-, T-, and B-cells. T cell functions and the balance between the different T helper cell subsets are particularly susceptible to changes in Zn status. While acute Zn deficiency causes a decrease in innate and adaptive immunity, chronic deficiency increases inflammation. During chronic deficiency, the production of pro-inflammatory cytokines increases, influencing the outcome of a large number of inflammatory diseases, including rheumatoid arthritis. PMID:25462582

  12. Heme on innate immunity and inflammation

    PubMed Central

    Dutra, Fabianno F.; Bozza, Marcelo T.

    2014-01-01

    Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases. PMID:24904418

  13. Inflammation, Immunity, and Vaccines for Helicobacter pylori Infection.

    PubMed

    Walduck, Anna; Andersen, Leif P; Raghavan, Sukanya

    2015-09-01

    During the last year, a variety of studies have been published that increases our understanding of the basic mechanisms of immunity and inflammation in Helicobacter pylori infection and progression to gastric cancer. Innate immune regulation and epithelial cell response were covered by several studies that contribute with new insights in the host response to H. pylori infection. Also, the adaptive immune response to H. pylori and particularly the role of IL-22 have been addressed in some studies. These advances may improve vaccine development where new strategies have been published. Two major studies analyzed H. pylori genomes of 39 worldwide strains and looked at the protein profiles. In addition, multi-epitope vaccines for therapeutic use have been investigated. Studies on different adjuvants and delivery systems have also given us new insights. This review presents articles from the last year that reveal detailed insight into immunity and regulation of inflammation, the contribution of immune cells to the development of gastric cancer, and understanding mechanisms of vaccine-induced protection.

  14. Aging, inflammation, immunity and periodontal disease.

    PubMed

    Ebersole, Jeffrey L; Graves, Christina L; Gonzalez, Octavio A; Dawson, Dolph; Morford, Lorri A; Huja, Pinar Emecen; Hartsfield, James K; Huja, Sarandeep S; Pandruvada, Subramanya; Wallet, Shannon M

    2016-10-01

    The increased prevalence and severity of periodontal disease have long been associated with aging, such that this oral condition affects the majority of the adult population over 50 years of age. Although the immune system is a critical component for maintaining health, aging can be characterized by quantitative and qualitative modifications of the immune system. This process, termed 'immunosenescence', is a progressive modification of the immune system that leads to greater susceptibility to infections, neoplasia and autoimmunity, presumably reflecting the prolonged antigenic stimulation and/or stress responses that occur across the lifespan. Interestingly, the global reduction in the host capability to respond effectively to these challenges is coupled with a progressive increase in the general proinflammatory status, termed 'inflammaging'. Consistent with the definition of immunosenescence, it has been suggested that the cumulative effect of prolonged exposure of the periodontium to microbial challenge is, at least in part, a contributor to the effects of aging on these tissues. Thus, it has also been hypothesized that alterations in the function of resident immune and nonimmune cells of the periodontium contribute to the expression of inflammaging in periodontal disease. Although the majority of aging research has focused on the adaptive immune response, it is becoming increasingly clear that the innate immune compartment is also highly affected by aging. Thus, the phenomenon of immunosenescence and inflammaging, expressed as age-associated changes within the periodontium, needs to be more fully understood in this era of precision and personalized medicine and dentistry. PMID:27501491

  15. Radiation triggering immune response and inflammation.

    PubMed

    Hekim, Nezih; Cetin, Zafer; Nikitaki, Zacharenia; Cort, Aysegul; Saygili, Eyup Ilker

    2015-11-28

    Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.

  16. Sleep, immunity and inflammation in gastrointestinal disorders.

    PubMed

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-12-28

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients.

  17. Sleep, immunity and inflammation in gastrointestinal disorders

    PubMed Central

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-01-01

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients. PMID:24409051

  18. Sleep, immunity and inflammation in gastrointestinal disorders.

    PubMed

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-12-28

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients. PMID:24409051

  19. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  20. How Neutrophils Shape Adaptive Immune Responses.

    PubMed

    Leliefeld, Pieter H C; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell-cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  1. Engaging adaptive immunity with biomaterials

    PubMed Central

    Mora-Solano, Carolina; Collier, Joel H.

    2014-01-01

    Adaptive immune responses, characterized by T cells and B cells engaging and responding to specific antigens, can be raised by biomaterials containing proteins, peptides, and other biomolecules. How does one avoid, control, or exploit such responses? This review will discuss major properties and processes that influence biomaterials-directed adaptive immunity, including the physical dimensions of a material, its epitope content, and its multivalency. Selected strategies involving novel biomaterials designs will be discussed to illustrate these points of control. Specific immunological processes that biomaterials are being developed to direct will be highlighted, including minimally inflammatory scaffolds for tissue repair and immunotherapies eliciting desired B cell (antibody) responses, T cell responses, or tolerance. The continuing development of a knowledge base for specifying the strength and phenotype of biomaterials-mediated adaptive immune responses is important, not only for the engineering of better vaccines and immunotherapies, but also for managing immune responses against newer generations of increasingly biological and biomolecular materials in contexts such as tissue repair, tissue engineering, or cell delivery. PMID:24729870

  2. Diverse novel functions of neutrophils in immunity, inflammation, and beyond

    PubMed Central

    Mócsai, Attila

    2013-01-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10–20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease. PMID:23825232

  3. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  4. The Interplay between NLRs and Autophagy in Immunity and Inflammation

    PubMed Central

    Carneiro, Leticia A. M.; Travassos, Leonardo H.

    2013-01-01

    Since they were first described as cytosolic sensors of microbial molecules a decade ago, the Nod-like receptors (NLRs) have been shown to have many different and important roles in various aspects of immune and inflammatory responses, ranging from antimicrobial mechanisms to control of adaptive responses. In this review, we focus on the interplay between NLRs and autophagy, an evolutionarily conserved mechanism that is crucial for homeostasis and has recently been shown to be involved in the protective response against infections. Furthermore, the association between mutations of NLRs as well as proteins that form the autophagic machinery and inflammatory diseases such as Crohn’s disease highlight the importance of these proteins and their interactions in the regulation of inflammation. PMID:24273538

  5. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer

    PubMed Central

    Lund, Amanda W.; Medler, Terry R.; Leachman, Sancy A.; Coussens, Lisa M.

    2015-01-01

    Skin is a highly ordered immune organ that coordinates rapid responses to external insult while maintaining self-tolerance. In healthy tissue, lymphatic vessels drain fluid and coordinate local immune responses; however, environmental factors induce lymphatic vessel dysfunction, leading to lymph stasis and perturbed regional immunity. These same environmental factors drive the formation of local malignancies, which are also influenced by local inflammation. Herein, we discuss clinical and experimental evidence supporting the tenet that lymphatic vessels participate in regulation of cutaneous inflammation and immunity, are important contributors to malignancy and potential biomarkers and targets for immunotherapy. PMID:26552413

  6. Interleukin-17 and innate immunity in infections and chronic inflammation.

    PubMed

    Isailovic, Natasa; Daigo, Kenji; Mantovani, Alberto; Selmi, Carlo

    2015-06-01

    Interleukin 17 (IL-17) includes several cytokines among which IL-17A is considered as one of the major pro-inflammatory cytokine being central to the innate and adaptive immune responses. IL-17 is produced by unconventional T cells, members of innate lymphoid cells (ILCs), mast cells, as well as typical innate immune cells, such as neutrophils and macrophages located in the epithelial barriers and characterised by a rapid response to infectious agents by recruiting neutrophils as first line of defence and inducing the production of antimicrobial peptides. Th17 responses appear pivotal in chronic and acute infections by bacteria, parasites, and fungi, as well as in autoimmune and chronic inflammatory diseases, including rheumatoid arthritis, psoriasis, and psoriatic arthritis. The data discussed in this review cumulatively indicate that innate-derived IL-17 constitutes a major element in the altered immune response against self antigens or the perpetuation of inflammation, particularly at mucosal sites. New drugs targeting the IL17 pathway include brodalumab, ixekizumab, and secukinumab and their use in psoriatic disease is expected to dramatically impact our approach to this systemic condition.

  7. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma

    PubMed Central

    Kimbara, Shiro; Kondo, Shunsuke

    2016-01-01

    Pancreatic adenocarcinoma (PAC) is one of the most deadly malignant neoplasms, and the efficacy of conventional cytotoxic chemotherapy is far from satisfactory. Recent research studies have revealed that immunosuppression and inflammation are associated with oncogenesis, as well as tumor development, invasion, and metastasis in PAC. Thus, immunosuppression-related signaling, especially that involving immune checkpoint and inflammation, has emerged as novel treatment targets for PAC. However, PAC is an immune-resistant tumor, and it is still unclear whether immune checkpoint or anti-inflammation therapies would be an ideal strategy. In this article, we will review immune checkpoint and inflammation as potential targets, as well as clinical trials and the prospects for immunotherapy in PAC.

  8. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma

    PubMed Central

    Kimbara, Shiro; Kondo, Shunsuke

    2016-01-01

    Pancreatic adenocarcinoma (PAC) is one of the most deadly malignant neoplasms, and the efficacy of conventional cytotoxic chemotherapy is far from satisfactory. Recent research studies have revealed that immunosuppression and inflammation are associated with oncogenesis, as well as tumor development, invasion, and metastasis in PAC. Thus, immunosuppression-related signaling, especially that involving immune checkpoint and inflammation, has emerged as novel treatment targets for PAC. However, PAC is an immune-resistant tumor, and it is still unclear whether immune checkpoint or anti-inflammation therapies would be an ideal strategy. In this article, we will review immune checkpoint and inflammation as potential targets, as well as clinical trials and the prospects for immunotherapy in PAC. PMID:27672267

  9. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma.

    PubMed

    Kimbara, Shiro; Kondo, Shunsuke

    2016-09-01

    Pancreatic adenocarcinoma (PAC) is one of the most deadly malignant neoplasms, and the efficacy of conventional cytotoxic chemotherapy is far from satisfactory. Recent research studies have revealed that immunosuppression and inflammation are associated with oncogenesis, as well as tumor development, invasion, and metastasis in PAC. Thus, immunosuppression-related signaling, especially that involving immune checkpoint and inflammation, has emerged as novel treatment targets for PAC. However, PAC is an immune-resistant tumor, and it is still unclear whether immune checkpoint or anti-inflammation therapies would be an ideal strategy. In this article, we will review immune checkpoint and inflammation as potential targets, as well as clinical trials and the prospects for immunotherapy in PAC. PMID:27672267

  10. Immune aging, dysmetabolism, and inflammation in neurological diseases

    PubMed Central

    Deleidi, Michela; Jäggle, Madeline; Rubino, Graziella

    2015-01-01

    As we age, the immune system undergoes a process of senescence accompanied by the increased production of proinflammatory cytokines, a chronic subclinical condition named as “inflammaging”. Emerging evidence from human and experimental models suggest that immune senescence also affects the central nervous system and promotes neuronal dysfunction, especially within susceptible neuronal populations. In this review we discuss the potential role of immune aging, inflammation and metabolic derangement in neurological diseases. The discovery of novel therapeutic strategies targeting age-linked inflammation may promote healthy brain aging and the treatment of neurodegenerative as well as neuropsychiatric disorders. PMID:26089771

  11. Immunity, inflammation, and cancer: an eternal fight between good and evil

    PubMed Central

    Shalapour, Shabnam; Karin, Michael

    2015-01-01

    Cancer development and its response to therapy are strongly influenced by innate and adaptive immunity, which either promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome. Chronic inflammation promotes tumor development, progression, and metastatic dissemination, as well as treatment resistance. However, cancer development and malignant progression are also associated with accumulation of genetic alterations and loss of normal regulatory processes, which cause expression of tumor-specific antigens and tumor-associated antigens (TAAs) that can activate antitumor immune responses. Although signals that trigger acute inflammatory reactions often stimulate dendritic cell maturation and antigen presentation, chronic inflammation can be immunosuppressive. This antagonism between inflammation and immunity also affects the outcome of cancer treatment and needs to be considered when designing new therapeutic approaches. PMID:26325032

  12. Immunity, inflammation, and cancer: an eternal fight between good and evil.

    PubMed

    Shalapour, Shabnam; Karin, Michael

    2015-09-01

    Cancer development and its response to therapy are strongly influenced by innate and adaptive immunity, which either promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome. Chronic inflammation promotes tumor development, progression, and metastatic dissemination, as well as treatment resistance. However, cancer development and malignant progression are also associated with accumulation of genetic alterations and loss of normal regulatory processes, which cause expression of tumor-specific antigens and tumor-associated antigens (TAAs) that can activate antitumor immune responses. Although signals that trigger acute inflammatory reactions often stimulate dendritic cell maturation and antigen presentation, chronic inflammation can be immunosuppressive. This antagonism between inflammation and immunity also affects the outcome of cancer treatment and needs to be considered when designing new therapeutic approaches.

  13. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.

    PubMed

    Rabinovitch, Marlene; Guignabert, Christophe; Humbert, Marc; Nicolls, Mark R

    2014-06-20

    This review summarizes an expanding body of knowledge indicating that failure to resolve inflammation and altered immune processes underlie the development of pulmonary arterial hypertension. The chemokines and cytokines implicated in pulmonary arterial hypertension that could form a biomarker platform are discussed. Pre-clinical studies that provide the basis for dysregulated immunity in animal models of the disease are reviewed. In addition, we present therapies that target inflammatory/immune mechanisms that are currently enrolling patients, and discuss others in development. We show how genetic and metabolic abnormalities are inextricably linked to dysregulated immunity and adverse remodeling in the pulmonary arteries. PMID:24951765

  14. Adaptation in the innate immune system and heterologous innate immunity.

    PubMed

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  15. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression.

    PubMed

    Koelwyn, Graeme J; Wennerberg, Erik; Demaria, Sandra; Jones, Lee W

    2015-12-01

    Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer.

  16. Regulation of T Cell Immunity in Atopic Dermatitis by Microbes: The Yin and Yang of Cutaneous Inflammation

    PubMed Central

    Biedermann, Tilo; Skabytska, Yuliya; Kaesler, Susanne; Volz, Thomas

    2015-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease predominantly mediated by T helper cells. While numerous adaptive immune mechanisms in AD pathophysiology have been elucidated in detail, deciphering the impact of innate immunity in AD pathogenesis has made substantial progress in recent years and is currently a fast evolving field. As innate and adaptive immunity are intimately linked, cross-talks between these two branches of the immune system are critically influencing the resulting immune response and disease. Innate immune recognition of the cutaneous microbiota was identified to substantially contribute to immune homeostasis and shaping of protective adaptive immunity in the absence of inflammation. Disturbances in the composition of the skin microbiome with reduced microbial diversity and overabundance of Staphylococcus spp. have been shown to be associated with AD inflammation. Distinct Staphylococcus aureus associated microbial associated molecular patterns (MAMPs) binding to TLR2 heterodimers could be identified to initiate long-lasting cutaneous inflammation driven by T helper cells and consecutively local immune suppression by induction of myeloid-derived suppressor cells further favoring secondary skin infections as often seen in AD patients. Moreover dissecting cellular and molecular mechanisms in cutaneous innate immune sensing in AD pathogenesis paved the way for exploiting regulatory and anti-inflammatory pathways to attenuate skin inflammation. Activation of the innate immune system by MAMPs of non-pathogenic bacteria on AD skin alleviated cutaneous inflammation. The induction of tolerogenic dendritic cells, interleukin-10 expression and regulatory Tr1 cells were shown to mediate this beneficial effect. Thus, activation of innate immunity by MAMPs of non-pathogenic bacteria for induction of regulatory T cell phenotypes seems to be a promising strategy for treatment of inflammatory skin disorders such as AD. These new findings

  17. Platelets: bridging hemostasis, inflammation, and immunity.

    PubMed

    Jenne, C N; Urrutia, R; Kubes, P

    2013-06-01

    Although the function of platelets in the maintenance of hemostasis has been studied in great detail, more recent evidence has highlighted a central role for platelets in the host inflammatory and immune responses. Platelets by virtue of their large numbers and their ability to rapidly release a broad spectrum of immunomodulatory cytokines, chemokines, and other mediators act as circulating sentinels. Upon detection of a pathogen, platelets quickly activate and begin to drive the ensuing inflammatory response. Platelets have the ability to directly modulate the activity of neutrophils (phagocytosis, oxidative burst), endothelium (adhesion molecule and chemokine expression), and lymphocytes. Due to their diverse array of adhesion molecules and preformed chemokines, platelets are able to adhere to leukocytes and facilitate their recruitment to sites of tissue damage or infection. Furthermore, platelets directly participate in the capture and sequestration of pathogens within the vasculature. Platelet-neutrophil interactions are known to induce the release of neutrophil extracellular traps (NETs) in response to either bacterial or viral infection, and platelets have been shown to internalize pathogens, sequestering them in engulfment vacuoles. Finally, emerging data indicate that platelets also participate in the host immune response by directly killing infected cells. This review will highlight the central role platelets play in the initiation and modulation of the host inflammatory and immune responses.

  18. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation?

    PubMed

    Kulkarni, Onkar P; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury. PMID:27597803

  19. Epithelium: At the interface of innate and adaptive immune responses

    PubMed Central

    Schleimer, Robert P.; Kato, Atsushi; Kern, Robert; Kuperman, Douglas; Avila, Pedro C.

    2009-01-01

    Several diseases of the airways have a strong component of allergic inflammation in their cause, including allergic rhinitis, asthma, polypoid chronic rhinosinusitis, eosinophilic bronchitis, and others. Although the roles played by antigens and pathogens vary, these diseases have in common a pathology that includes marked activation of epithelial cells in the upper airways, the lower airways, or both. Substantial new evidence indicates an important role of epithelial cells as both mediators and regulators of innate immune responses and adaptive immune responses, as well as the transition from innate immunity to adaptive immunity. The purpose of this review is to discuss recent studies that bear on the molecular and cellular mechanisms by which epithelial cells help to shape the responses of dendritic cells, T cells, and B cells and inflammatory cell recruitment in the context of human disease. Evidence will be discussed that suggests that secreted products of epithelial cells and molecules expressed on their cell surfaces can profoundly influence both immunity and inflammation in the airways. PMID:17949801

  20. Linear ubiquitination signals in adaptive immune responses

    PubMed Central

    Ikeda, Fumiyo

    2015-01-01

    Summary Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage-type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized Tumor Necrosis Factor (TNF) -induced canonical nuclear factor-kappa B (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. PMID:26085218

  1. Adaptive Immunity in Neurodegenerative and Neuropsychological Disorders.

    PubMed

    Mosley, R Lee

    2015-12-01

    Neurodegenerative and neuropsychological disorders are becoming a greater proportion of the global disease burden; however the pathogenic mechanisms by which these disorders originate and contribute to disease progression are not well-described. Increasing evidence supports neuroinflammation as a common underlying component associated with the neuropathological processes that effect disease progression. This collection of articles explores the role of adaptive immunity in autoimmunity, neurodegeneration, neurotrauma, and psychological disorders. The section emphasizes the interactions of T cells with innate cellular responses within the CNS and the effects on neurological functions. One recurrent theme is that modified and aggregated self-proteins upregulate innate-mediated inflammation and provide a permissive environment for polarization of T cells to proinflammatory effector cells. Moreover, infiltration and reactivation of those T effector cells exacerbate neuroinflammation and oxidative stress to greater neurotoxic levels. Another recurrent theme in these disorders promotes diminished regulatory functions that reduce control over activated T effector cells and microglia, and ultimately augment proinflammatory conditions. Augmentation of regulatory control is discussed as therapeutic strategies to attenuate neuroinflammation, mitigate neurodegeneration or neuronal dysfunction, and lessen disease progression.

  2. Endocannabinoid signalling in innate and adaptive immunity

    PubMed Central

    Chiurchiù, Valerio; Battistini, Luca; Maccarrone, Mauro

    2015-01-01

    The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments. PMID:25585882

  3. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  4. Tumors STING adaptive antitumor immunity.

    PubMed

    Bronte, Vincenzo

    2014-11-20

    Immunotherapy is revolutionizing the treatment of cancer patients, but the molecular basis for tumor immunogenicity is unclear. In this issue of Immunity, Deng et al. (2014) and Woo et al. (2014) provide evidence suggesting that dendritic cells detect DNA from tumor cells via the STING-mediated, cytosolic DNA sensing pathway.

  5. Cigarette Smoke Exposure Exacerbates Lung Inflammation and Compromises Immunity to Bacterial Infection

    PubMed Central

    Lugade, Amit A.; Bogner, Paul N.; Thatcher, Thomas H.; Sime, Patricia J.; Phipps, Richard P.; Thanavala, Yasmin

    2014-01-01

    The detrimental impact of tobacco on human health is clearly recognized and despite aggressive efforts to prevent smoking, close to one billion individuals worldwide continue to smoke. People with chronic obstructive pulmonary disease (COPD) are susceptible to recurrent respiratory infections with pathogens, including non-typeable Haemophilus influenzae (NTHI), yet the reasons for this increased susceptibility are poorly understood. As mortality rapidly increases with multiple exacerbations, development of protective immunity is critical to improving patient survival. Acute NTHI infection has been studied in the context of cigarette smoke exposure, but this is the first study to investigate chronic infection and the generation of adaptive immune responses to NTHI following chronic smoke exposure. After chronic NTHI infection, mice that had previously been exposed to cigarette smoke developed increased lung inflammation and compromised adaptive immunity relative to air-exposed controls. Importantly, NTHI-specific T cells from mice exposed to cigarette smoke produced lower levels of IFN-γ and IL-4, and B cells produced reduced levels of antibodies against outer membrane lipoprotein P6, with impaired IgG1, IgG2a and IgA class-switching. However, production of IL-17, which is associated with neutrophilic inflammation, was enhanced. Interestingly, cigarette smoke exposed mice exhibited a similar defect in the generation of adaptive immunity following immunization with P6. Our study has conclusively demonstrated that cigarette smoke exposure has a profound suppressive effect on the generation of adaptive immune responses to NTHI and suggests the mechanism by which prior cigarette smoke exposure predisposes COPD patients to recurrent infections, leading to exacerbations and contributing to mortality. PMID:24752444

  6. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    PubMed

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life.

  7. Tick saliva represses innate immunity and cutaneous inflammation in a murine model of Lyme disease.

    PubMed

    Kern, Aurélie; Collin, Elody; Barthel, Cathy; Michel, Chloé; Jaulhac, Benoît; Boulanger, Nathalie

    2011-10-01

    Lyme borreliosis is an arthropod-borne disease transmitted by the Ixodes tick. This spirochetal infection is first characterized by a local cutaneous inflammation, the erythema migrans. The skin constitutes a key interface in the development of the disease. During Borrelia inoculation, tick saliva affects the innate and adaptive immunity of the vertebrate host skin. Some key mediators of innate immunity such as antimicrobial peptides (cathelicidin and defensin families) have been identified as important initiators of skin inflammation. We analyzed the role of tick saliva on integumental innate immunity using different protocols of Borrelia infection, via syringe or direct tick transmission. When syringe inoculation was used, Borrelia triggered skin inflammation with induction of CRAMP, the mouse cathelicidin, and tumor necrosis factor-alpha. However, when Borrelia was transmitted directly via the tick, we observed a significant repression of inflammatory genes, suggesting a critical role of tick saliva in skin innate immunity. For all the protocols tested, a peak of intense Borrelia multiplication occurred in the skin between days 5 and 15, before bacterial dissemination to target organs. We conclude that Borrelia pathogens specifically use the tick saliva to facilitate their transmission to the host and that the skin constitutes an essential interface in the development of Lyme disease.

  8. Adaptive immune responses to Candida albicans infection.

    PubMed

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  9. [CRISPR adaptive immunity systems of procaryotes].

    PubMed

    2012-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a newly identified prokaryotic immunity system against foreign genetic elements. In contrast to other cellular defense mechanisms (e.g. restriction-modification) CRISPR-mediated immunity is adaptive and can be programmed to protect cells against a particular bacteriophage or conjugative plasmid. In this review we describe general principles of CRISPR systems action and summarize known details of CRISPR systems from different microorganisms.

  10. MAP4K Family Kinases in Immunity and Inflammation.

    PubMed

    Chuang, Huai-Chia; Wang, Xiaohong; Tan, Tse-Hua

    2016-01-01

    MAP kinase kinase kinase kinases (MAP4Ks) belong to the mammalian Ste20-like family of serine/threonine kinases. MAP4Ks including MAP4K1/HPK1, MAP4K2/GCK, MAP4K3/GLK, MAP4K4/HGK, MAP4K5/KHS, and MAP4K6/MINK have been reported to induce JNK activation through activating the MAP3K-MAP2K cascade. The physiological roles of MAP4Ks in immunity and inflammation are largely unknown until recent studies using biochemical approaches and knockout mice. Surprisingly, JNK is not the major target of MAP4Ks in immune cells; MAP4Ks regulate immune responses through novel targets. HPK1 inhibits T-cell receptor (TCR) signaling and B-cell receptor signaling via inducing phosphorylation/ubiquitination of SLP-76 and BLNK, respectively. GLK activates TCR signaling through phosphorylating/activating PKCθ. T-cell-mediated immune responses and Th17-mediated experimental autoimmune diseases are enhanced in HPK1 knockout mice but ameliorated in GLK knockout mice. Consistently, HPK1 levels are decreased in peripheral blood mononuclear cells and T cells from patients with psoriatic arthritis and systemic lupus erythematosus (SLE), respectively. Moreover, GLK levels are increased in T cells from patients with SLE, rheumatoid arthritis, or adult-onset Still's disease; the percentages of GLK-overexpression T cells are correlated with the disease activity. In addition, HGK phosphorylates and induces TRAF2 protein degradation, leading to negative regulation of IL-6 production in resting T cells. Loss of HGK in T cells results in spontaneous systemic inflammation and type 2 diabetes in mice. HGK is also involved in cancer cell migration. To date, the phenotypes of knockout mice for GCK, KHS, and MINK have not been reported; the roles of these three MAP4Ks in immune cell signaling are discussed in this review. Taken together, MAP4K family kinases play diverse roles in immune cell signaling, immune responses, and inflammation. PMID:26791862

  11. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation

    PubMed Central

    Muralidharan, Sujatha; Mandrekar, Pranoti

    2013-01-01

    Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders. PMID:23990626

  12. Control of the Adaptive Immune Response by Tumor Vasculature

    PubMed Central

    Mauge, Laetitia; Terme, Magali; Tartour, Eric; Helley, Dominique

    2014-01-01

    The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy. PMID:24734218

  13. Understanding innate immunity and inflammation in acne: implications for management.

    PubMed

    Dreno, B; Gollnick, H P M; Kang, S; Thiboutot, D; Bettoli, V; Torres, V; Leyden, J

    2015-06-01

    Acne has long been understood to have a complex physiological basis involving several main factors: hormonally-stimulated sebum production, abnormal keratinization of the pilosebaceous duct, and an inflammatory immune response to Propionibacterium acnes. Recent studies at the molecular and cellular level have begun clarifying how all of these factors interact, and the role of the innate immune system is better appreciated. Inflammation has been demonstrated in all acne lesions - the preclinical microcomedo, comedones, inflammatory lesions, 'post-inflammatory' erythema or hyperpigmentation, and scarring. Inflammation localized to the pilosebaceous unit can be considered the defining feature of acne and should be addressed via multiple therapeutic pathways. Clinicians tend to think oral antibiotics should be used to 'calm' inflammatory acne, but there is good evidence showing that topical retinoids also have anti-inflammatory properties as a class effect. For best therapeutic outcomes, most patients with acne should be treated first line with a topical retinoid plus an antimicrobial agent, as has been demonstrated in thousands of patients involved in clinical trials and recommended by the Global Alliance to Improve Outcomes in Acne for more than a decade. Moving away from reliance on antibiotic therapy for acne is particularly important in an era of worsening antimicrobial resistance and worldwide calls to reduce antibiotic use. Improved understanding about the role of P. acnes and the innate immune system in acne should help clinicians in designing efficacious treatment strategies.

  14. Understanding innate immunity and inflammation in acne: implications for management.

    PubMed

    Dreno, B; Gollnick, H P M; Kang, S; Thiboutot, D; Bettoli, V; Torres, V; Leyden, J

    2015-06-01

    Acne has long been understood to have a complex physiological basis involving several main factors: hormonally-stimulated sebum production, abnormal keratinization of the pilosebaceous duct, and an inflammatory immune response to Propionibacterium acnes. Recent studies at the molecular and cellular level have begun clarifying how all of these factors interact, and the role of the innate immune system is better appreciated. Inflammation has been demonstrated in all acne lesions - the preclinical microcomedo, comedones, inflammatory lesions, 'post-inflammatory' erythema or hyperpigmentation, and scarring. Inflammation localized to the pilosebaceous unit can be considered the defining feature of acne and should be addressed via multiple therapeutic pathways. Clinicians tend to think oral antibiotics should be used to 'calm' inflammatory acne, but there is good evidence showing that topical retinoids also have anti-inflammatory properties as a class effect. For best therapeutic outcomes, most patients with acne should be treated first line with a topical retinoid plus an antimicrobial agent, as has been demonstrated in thousands of patients involved in clinical trials and recommended by the Global Alliance to Improve Outcomes in Acne for more than a decade. Moving away from reliance on antibiotic therapy for acne is particularly important in an era of worsening antimicrobial resistance and worldwide calls to reduce antibiotic use. Improved understanding about the role of P. acnes and the innate immune system in acne should help clinicians in designing efficacious treatment strategies. PMID:26059728

  15. Immune attack: the role of inflammation in Alzheimer disease.

    PubMed

    Heppner, Frank L; Ransohoff, Richard M; Becher, Burkhard

    2015-06-01

    The past two decades of research into the pathogenesis of Alzheimer disease (AD) have been driven largely by the amyloid hypothesis; the neuroinflammation that is associated with AD has been assumed to be merely a response to pathophysiological events. However, new data from preclinical and clinical studies have established that immune system-mediated actions in fact contribute to and drive AD pathogenesis. These insights have suggested both novel and well-defined potential therapeutic targets for AD, including microglia and several cytokines. In addition, as inflammation in AD primarily concerns the innate immune system - unlike in 'typical' neuroinflammatory diseases such as multiple sclerosis and encephalitides - the concept of neuroinflammation in AD may need refinement.

  16. The prowess of platelets in immunity and inflammation.

    PubMed

    Koenen, Rory R

    2016-09-27

    Platelets not only serve as essential haemostatic cells, they also have important roles in immune defence and inflammation. Despite not having a nucleus, platelets contain physiologically relevant amounts of RNA, which can be spliced and translated into functional proteins. In addition, platelets have the ability to bind to numerous other cells, such as leukocytes and vascular cells. During those interactions, platelets can modulate cellular responses, resulting in e. g. inflammatory activation or apoptosis. Recent studies have demonstrated that platelets can influence the outcomes of bacterial and viral infection, as well as the extent of tissue injury after ischaemia. Platelets also carry considerable amounts of cytokines and growth factors in their secretory granules, preformed for rapid secretion. Those properties in combination with the sheer amount of platelets circulating in the blood stream make them an important force in the immune response during health and disease. In this overview, recent findings concerning those interesting properties of platelets beyond haemostasis are discussed.

  17. Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby

    2015-12-07

    Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk.

  18. Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby

    2016-02-01

    Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk. PMID:26644379

  19. The leucocoyte disappearance reaction in non-immune acute inflammation.

    PubMed

    Sultan, A M; Dunn, C J; Mimms, P C; Giroud, J P; Willoughby, D A

    1978-12-01

    Injection of a variety of irritants (saline, ovalbumin, compound 48/80 and powdered glass) into the rat pleural cavity induced the disappearance of pleural leucocytes during the first two hours of the reaction. This phenomenon, termed the leucocyte disappearance reaction (LDR), was suppressed by treatment with the anticoagulants heparin and warfarin. The in-vitro incubation of normal, or inflammatory pleural leucocytes resulted in the deposition of dense interconnecting meshwork of fibrin only upon addition of fibrinogen to the culture medium. It is suggested from these results that the LDR is related to the clotting system, involving leucocyte-derived enzyme(s) analogous to those of the clotting system (e.g., tissue thromboplastin), which convert fibrogen to fibrin, resulting in cell-trapping and subsequent "disappearance" of pleural leuococytes. Similarities were observed betweeen the LDR in non-immune inflammation and the macrophage disappearance reaction of cell-mediated immunity. The significance of these phenomena in the inflammatory process, both immune and non-immune, is discussed.

  20. Long QT Syndrome: An Emerging Role for Inflammation and Immunity

    PubMed Central

    Lazzerini, Pietro Enea; Capecchi, Pier Leopoldo; Laghi-Pasini, Franco

    2015-01-01

    The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial disorder of myocardial repolarization predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes. In the latest years, inflammation and immunity have been increasingly recognized as novel factors crucially involved in modulating ventricular repolarization. In the present paper, we critically review the available information on this topic, also analyzing putative mechanisms and potential interplays with the other etiologic factors, either acquired or inherited. Accumulating data indicate inflammatory activation as a potential cause of acquired LQTS. The putative underlying mechanisms are complex but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion channels expression and function, and indirect effects resulting from an increased central nervous system sympathetic drive on the heart. Autoimmunity represents another recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that autoantibodies may affect myocardial electric properties by directly cross-reacting with the cardiomyocyte and interfering with specific ion currents as a result of molecular mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity may be also involved in modulating the clinical expression of congenital forms of LQTS, possibly triggering or enhancing electrical instability in patients who already are genetically predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may in the future represent an attractive therapeutic approach in a number of LQTS patients, thus opening new exciting avenues in antiarrhythmic therapy. PMID:26798623

  1. Novel roles of peroxiredoxins in inflammation, cancer and innate immunity

    PubMed Central

    Ishii, Tetsuro; Warabi, Eiji; Yanagawa, Toru

    2012-01-01

    Peroxiredoxins possess thioredoxin or glutathione peroxidase and chaperone-like activities and thereby protect cells from oxidative insults. Recent studies, however, reveal additional functions of peroxiredoxins in gene expression and inflammation-related biological reactions such as tissue repair, parasite infection and tumor progression. Notably, peroxiredoxin 1, the major mammalian peroxiredoxin family protein, directly interacts with transcription factors such as c-Myc and NF-κB in the nucleus. Additionally, peroxiredoxin 1 is secreted from some cells following stimulation with TGF-β and other cytokines and is thus present in plasma and body fluids. Peroxiredoxin 1 is now recognized as one of the pro-inflammatory factors interacting with toll-like receptor 4, which triggers NF-κB activation and other signaling pathways to evoke inflammatory reactions. Some cancer cells release peroxiredoxin 1 to stimulate toll-like receptor 4-mediated signaling for their progression. Interestingly, peroxiredoxins expressed in protozoa and helminth may modulate host immune responses partly through toll-like receptor 4 for their survival and progression in host. Extracellular peroxiredoxin 1 and peroxiredoxin 2 are known to enhance natural killer cell activity and suppress virus-replication in cells. Peroxiredoxin 1-deficient mice show reduced antioxidant activities but also exhibit restrained tissue inflammatory reactions under some patho-physiological conditions. Novel functions of peroxiredoxins in inflammation, cancer and innate immunity are the focus of this review. PMID:22448089

  2. Demand-adapted regulation of early hematopoiesis in infection and inflammation.

    PubMed

    Takizawa, Hitoshi; Boettcher, Steffen; Manz, Markus G

    2012-03-29

    During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.

  3. Antibody Fc: Linking Adaptive and Innate Immunity

    PubMed Central

    Reichert, Janice M.

    2014-01-01

    Antibody Fc: Linking Adaptive and Innate Immunity, edited by Margaret E. Ackerman and Falk Nimmerjahn and published by Academic Press, provides a highly detailed examination of the involvement of the antibody Fc in mechanisms critical to both innate and adaptive immune responses. Despite a recent increase in format diversity, most marketed antibodies are full-length IgG molecules and the majority of the commercial clinical pipeline of antibody therapeutics is composed of Fc-containing IgG molecules, which underscores the importance of understanding how the Fc domain affects biological responses. The book is divided into six sections that include a total of 20 chapters. In order of their appearance, the sections provide extensive coverage of effector mechanisms, effector cells, Fc receptors, variability of the Fc domain, genetic associations, and evolving areas.

  4. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies.

  5. Interplay between innate and adaptive immunity in the development of non infectious uveitis

    PubMed Central

    Willermain, François; Rosenbaum, James T; Bodaghi, Bahram; Rosenzweig, Holly L; Childers, Sarah; Behrend, Travis; Wildner, Gerhild; Dick, Andrew D

    2012-01-01

    In vertebrates, the innate and adaptive immune systems have evolved seamlessly to protect the host by rapidly responding to danger signals, eliminating pathogens and creating immunological memory as well as immunological tolerance to self. The innate immune system harnesses receptors that recognize conserved pathogen patterns and alongside the more specific recognition systems and memory of adaptive immunity, their interplay is evidenced by respective roles during generation and regulation of immune responses. The hallmark of adaptive immunity which requires engagement of innate immunity is an ability to discriminate between self and non-self (and eventually between pathogen and symbiont) as well as peripheral control mechanisms maintaining immunological health and appropriate responses. Loss of control mechanisms and/or regulation of either the adaptive or the innate immune system lead to autoimmunity and autoinflammation respectively. Although autoimmune pathways have been largely studied to date in the context of development of non-infectious intraocular inflammation, the recruitment and activation of innate immunity is required for full expression of the varied phenotypes of non-infectious uveitis. Since autoimmunity and autoinflammation implicate different molecular pathways, even though some convergence occurs, increasing our understanding of their respective roles in the development of uveitis will highlight treatment targets and influence our understanding of immune mechanisms operative in other retinal diseases. Herein, we extrapolate from the basic mechanisms of activation and control of innate and adaptive immunity to how autoinflammatory and autoimmune pathways contribute to disease development in non-infectious uveitis patients. PMID:22120610

  6. Role of Adaptive Immunity in Alcoholic Liver Disease

    PubMed Central

    Albano, Emanuele

    2012-01-01

    Stimulation of innate immunity is increasingly recognized to play an important role in the pathogenesis of alcoholic liver disease (ALD), while the contribution of adaptive immunity has received less attention. Clinical and experimental data show the involvement of Th-1 and Th-17 T-lymphocytes in alcoholic hepatitis. Nonetheless, the mechanisms by which alcohol triggers adaptive immunity are still incompletely characterized. Patients with advanced ALD have circulating IgG and T-lymphocytes recognizing epitopes derived from protein modification by hydroxyethyl free radicals and end products of lipid-peroxidation. High titers of IgG against lipid peroxidation-derived antigens are associated with an increased hepatic production of proinflammatory cytokines/chemokines. Moreover, the same antigens favor the breaking of self-tolerance towards liver constituents. In particular, autoantibodies against cytochrome P4502E1 (CYP2E1) are evident in a subset of ALD patients. Altogether these results suggest that allo- and autoimmune reactions triggered by oxidative stress might contribute to hepatic inflammation during the progression of ALD. PMID:22229098

  7. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis.

    PubMed

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo; Cosio, Manuel G; Saetta, Marina

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define "slow" or "rapid" disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression. PMID:27159038

  8. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    PubMed

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  9. Role of vitamins D, E and C in immunity and inflammation.

    PubMed

    Shaik-Dasthagirisaheb, Y B; Varvara, G; Murmura, G; Saggini, A; Caraffa, A; Antinolfi, P; Tete', S; Tripodi, D; Conti, F; Cianchetti, E; Toniato, E; Rosati, M; Speranza, L; Pantalone, A; Saggini, R; Tei, M; Speziali, A; Conti, P; Theoharides, T C; Pandolfi, F

    2013-01-01

    Inflammatory responses are operationally characterized by pain, redness, heat and swelling at the site of infection and trauma. Mast cells reside near small blood vessels and, when activated, release potent mediators involved in allergy and inflammation. Vitamin D modulates contraction, inflammation and remodeling tissue. Vitamin D deficiency has been linked to multiple diseases and several data have demonstrated a strong relationship between serum vitamin D levels and tissue function. Therapy targeting vitamin D3 signaling may provide new approaches for infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions. Mast cells are activated by oxidized lipoproteins, resulting in increased expression of inflammatory cytokines and suggesting that the reduction of oxidation of low density lipoprotein by vitamin E may also reduce mast cell activation. Vitamin C is also an anti-oxidant well-known as an anti-scurvy agent in humans. Vitamin C inhibits peroxidation of membrane phospholipids and acts as a scavenger of free radicals and is also required for the synthesis of several hormones and neurotransmitters. In humans, vitamin C reduces the duration of common cold symptoms, even if its effect is not clear. Supplementation of vitamin C improves the function of the human immune system, such as antimicrobial and natural killer cell activities, lymphocyte proliferation, chemotaxis and delayed-type hypersensitivity. Vitamin C depletion has been correlated with histaminemia which has been shown to damage endothelial-dependent vasodilation. However, the impact of these vitamins on allergy and inflammation is still not well understood. PMID:23830380

  10. Aryl Hydrocarbon Receptor Promotes RORγt+ ILCs and Controls Intestinal Immunity and Inflammation

    PubMed Central

    Qiu, Ju; Zhou, Liang

    2013-01-01

    Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptors (RORγt)+ ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt+ ILCs (e.g., lymphoid tissue inducer-LTi cells) are required for lymphoid organogenesis. In adult mice, RORγt+ ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt+ ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt+ ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells (APCs). In this review, we will focus on the development and function of RORγt+ ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. Better understanding the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases. PMID:23975386

  11. HDL in innate and adaptive immunity.

    PubMed

    Catapano, Alberico Luigi; Pirillo, Angela; Bonacina, Fabrizia; Norata, Giuseppe Danilo

    2014-08-01

    During infections or acute conditions high-density lipoproteins cholesterol (HDL-C) levels decrease very rapidly and HDL particles undergo profound changes in their composition and function. These changes are associated with poor prognosis following endotoxemia or sepsis and data from genetically modified animal models support a protective role for HDL. The same is true for some parasitic infections, where the key player appears to be a specific and minor component of HDL, namely apoL-1. The ability of HDL to influence cholesterol availability in lipid rafts in immune cells results in the modulation of toll-like receptors, MHC-II complex, as well as B- and T-cell receptors, while specific molecules shuttled by HDL such as sphingosine-1-phosphate (S1P) contribute to immune cells trafficking. Animal models with defects associated with HDL metabolism and/or influencing cell cholesterol efflux present features related to immune disorders. All these functions point to HDL as a platform integrating innate and adaptive immunity. The aim of this review is to provide an overview of the connection between HDL and immunity in atherosclerosis and beyond. PMID:24935428

  12. Innate Immunity: Orchestrating Inflammation and Resolution of Otitis Media.

    PubMed

    Kurabi, Arwa; Pak, Kwang; Ryan, Allen F; Wasserman, Stephen I

    2016-01-01

    Otitis media (OM) is a common disease in young children, accounting for more office visits and surgeries than any other pediatric condition. It is associated with an estimated cost of five billion dollars annually in the USA. Moreover, chronic and recurrent middle ear (ME) disease leads to hearing loss during critical periods of language acquisition and learning leading to delays in reaching developmental milestones and risking permanent damage to the ME and inner ear in severe cases. Therefore, research to understand the disease pathogenesis and identify new therapeutics is important. Although OM is a multifactorial disease, targeting the molecular mechanisms that drive inflammation and OM resolution is critical. In this review, we discuss the current evidence suggesting that innate immune receptors and effectors play key roles in OM by mediating both the ME inflammatory responses and recovery. PMID:26732809

  13. Therapies targeting innate immunity for fighting inflammation in atherosclerosis.

    PubMed

    Mendel, Itzhak; Yacov, Niva; Harats, Dror; Breitbart, Eyal

    2015-01-01

    Atherosclerosis is a smoldering disease of the vasculature that can lead to the occlusion of the arteries, resulting in ischemia of the heart and brain. For many years, the asserted underlying mechanism of atherosclerosis, supported by its epidemiology, was based on the "cholesterol hypothesis" that people with high blood cholesterol are at higher risk of developing cardiovascular disease. This hypothesis instigated a vigorous search for treatment that yielded the generation of statins, which specifically reduce LDL cholesterol. Since then, statins have revolutionized the way people are treated for the prevention of atherosclerosis. Nonetheless, despite this potent class of drugs, cardiovascular disease continues to be the leading cause of death in many parts of the world, suggesting that additional mechanisms are involved in disease pathogenesis. Intensive research has revealed that the atherosclerotic plaque is enriched with leukocytes, and that macrophages constitute the majority of immune cells in the lesion. Monocytes/macrophages are now recognized as the prime immune cells involved in the development of atherosclerosis and are implicated to affect the size, composition and vulnerability of the atherosclerotic plaque. While many of the macrophage-derived pro-inflammatory mechanisms associated with atherogenesis have been characterized, such as cell adhesion, cytokine production and protease secretion, there is a dearth of drugs that specifically target innate immunity for treating patients with atherosclerosis. This review presents pre-clinical studies, and in most cases following clinical trials with antagonists and agonists that have been designed to counteract inflammation in atherosclerosis and associated diseases, highlighting targets expressed predominantly in monocytes.

  14. Adaptive immune regulation in autoimmune diabetes.

    PubMed

    Ferretti, Concetta; La Cava, Antonio

    2016-03-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing pancreatic β-cells. The pathogenesis of T1D is complex and multifactorial and involves a genetic susceptibility that predisposes to abnormal immune responses in the presence of ill-defined environmental insults to the pancreatic islets. This review discusses how adaptive immunoregulatory T cells contribute to the modulation of the development and evolution of T1D, together with potential approaches that target these cells for new therapies in the disease. PMID:26631820

  15. Mast cells in allergy and autoimmunity: implications for adaptive immunity.

    PubMed

    Gregory, Gregory D; Brown, Melissa A

    2006-01-01

    As in the fashion industry, trends in a particular area of scientific investigation often are fleeting but then return with renewed and enthusiastic interest. Studies of mast cell biology are good examples of this. Although dogma once relegated mast cells almost exclusively to roles in pathological inflammation associated with allergic disease, these cells are emerging as important players in a number of other physiological processes. Consequently, they are quickly becoming the newest "trendy" cell, both within and outside the field of immunology. As sources of a large array of pro- and anti-inflammatory mediators, mast cells also express cell surface molecules with defined functions in lymphocyte activation and trafficking. Here, we provide an overview of the traditional and newly appreciated contributions of mast cells to both innate and adaptive immune responses.

  16. Inflammation, Immunity, and Hypertensive End-Organ Damage

    PubMed Central

    McMaster, William G.; Kirabo, Annet; Madhur, Meena S.; Harrison, David G.

    2015-01-01

    For more than 50 years, it has been recognized that immunity contributes to hypertension. Recent data have defined an important role of T cells and various T cell-derived cytokines in several models of experimental hypertension. These studies have shown that stimuli like angiotensin II, DOCA-salt and excessive catecholamines lead to formation of effector like T cells that infiltrate the kidney and perivascular regions of both large arteries and arterioles. There is also accumulation of monocyte/macrophages in these regions. Cytokines released from these cells, including IL-17, IFN-γ, TNFα and IL-6 promote both renal and vascular dysfunction and damage, leading to enhanced sodium retention and increased systemic vascular resistance. The renal effects of these cytokines remain to be fully defined, but include enhanced formation of angiotensinogen, increased sodium reabsorption and increased renal fibrosis. Very recent experiments have defined a link between oxidative stress and immune activation in hypertension. These have shown that hypertension is associated with formation of reactive oxygen species in dendritic cells that lead to formation of gamma ketoaldehydes, or isoketals. These rapidly adduct to protein lysines and are presented by dendritic cells as neoantigens that activate T cells and promote hypertension. Thus, cells of both the innate and adaptive immune system contribute to end-organ damage and dysfunction in hypertension. Therapeutic interventions to reduce activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of hypertension including myocardial infarction, heart failure, renal failure and stroke. PMID:25767287

  17. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  18. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities.

    PubMed

    Huang, Zhi; Rose, Aaron H; Hoffmann, Peter R

    2012-04-01

    Dietary selenium (]Se), mainly through its incorporation into selenoproteins, plays an important role in inflammation and immunity. Adequate levels of Se are important for initiating immunity, but they are also involved in regulating excessive immune responses and chronic inflammation. Evidence has emerged regarding roles for individual selenoproteins in regulating inflammation and immunity, and this has provided important insight into mechanisms by which Se influences these processes. Se deficiency has long been recognized to negatively impact immune cells during activation, differentiation, and proliferation. This is related to increased oxidative stress, but additional functions such as protein folding and calcium flux may also be impaired in immune cells under Se deficient conditions. Supplementing diets with above-adequate levels of Se can also impinge on immune cell function, with some types of inflammation and immunity particularly affected and sexually dimorphic effects of Se levels in some cases. In this comprehensive article, the roles of Se and individual selenoproteins in regulating immune cell signaling and function are discussed. Particular emphasis is given to how Se and selenoproteins are linked to redox signaling, oxidative burst, calcium flux, and the subsequent effector functions of immune cells. Data obtained from cell culture and animal models are reviewed and compared with those involving human physiology and pathophysiology, including the effects of Se levels on inflammatory or immune-related diseases including anti-viral immunity, autoimmunity, sepsis, allergic asthma, and chronic inflammatory disorders. Finally, the benefits and potential adverse effects of intervention with Se supplementation for various inflammatory or immune disorders are discussed.

  19. Intercellular Communication in the Adaptive Immune System

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  20. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation.

    PubMed

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2015-03-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease.

  1. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

    PubMed Central

    Xiao, Liang; Kirabo, Annet; Wu, Jing; Saleh, Mohamed A.; Zhu, Linjue; Wang, Feng; Takahashi, Takamune; Loperena, Roxana; Foss, Jason D.; Mernaugh, Raymond L.; Chen, Wei; Roberts, Jackson; Osborn, John W.; Itani, Hana A.; Harrison, David G.

    2015-01-01

    Rationale Inflammation and adaptive immunity plays a crucial role in the development of hypertension. Angiotensin II and likely other hypertensive stimuli activate the central nervous system and promote T cell activation and end-organ damage in peripheral tissues. Objective To determine if renal sympathetic nerves mediate renal inflammation and T cell activation in hypertension. Methods and Results Bilateral renal denervation (RDN) using phenol application to the renal arteries reduced renal norepinephrine (NE) levels and blunted angiotensin II induced hypertension. Bilateral RDN also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria and nephrinuria. Unilateral RDN, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of IL-1α, IL-1β, and IL-6 from splenic dendritic cells. NE also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T cell activation and hypertension in recipient mice. RDN prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. Conclusions Renal sympathetic nerves contribute to dendritic cell activation, subsequent T cell infiltration and end-organ damage in the kidney in the development of hypertension. PMID:26156232

  2. Antigen translocation machineries in adaptive immunity and viral immune evasion.

    PubMed

    Mayerhofer, Peter U; Tampé, Robert

    2015-03-13

    Protein homeostasis results in a steady supply of peptides, which are further degraded to fuel protein synthesis or metabolic needs of the cell. In higher vertebrates, a small fraction of the resulting peptidome, however, is translocated into the endoplasmic reticulum by the transporter associated with antigen processing (TAP). Antigenic peptides are guided to major histocompatibility complex class I (MHC I) molecules and are finally displayed on the cell surface, where they mount an adaptive immune response against viral infected or malignantly transformed cells. Here, we review the structural organization and the molecular mechanism of this specialized antigen translocon. We discuss how the ATP-binding cassette (ABC) transporter TAP communicates and cooperates within the multi-component peptide loading machinery, mediating the proper assembly and editing of kinetically stable peptide/MHC I complexes. In light of its important role within the MHC I antigen processing pathway, TAP is a prime target for viral immune evasion strategies, and we summarize how this antigen translocation machinery is sabotaged by viral factors. Finally, we compare TAP with other ABC systems that facilitate peptide translocation.

  3. Complement receptor immunoglobulin: a control point in infection and immunity, inflammation and cancer.

    PubMed

    Small, Annabelle Grace; Al-Baghdadi, Marwah; Quach, Alex; Hii, Charles; Ferrante, Antonio

    2016-01-01

    The B7 family-related protein, V-set and Ig domain (VSIG4) / Z39Ig / complement receptor immunoglobulin (CRIg), is a new player in the regulation of immunity to infection and inflammation. The unique features of this receptor as compared with classical complement receptors, CR3 and CR4, have heralded the emergence of new concepts in the regulation of innate and adaptive immunity. Its selective expression in tissue macrophages and dendritic cells has been considered of importance in host defence and in maintaining tolerance against self-antigens. Although a major receptor for phagocytosis of complement opsonised bacteria, its array of emerging functions which incorporates the immune suppressive and anti-inflammatory action of the receptor have now been realised. Accumulating evidence from mouse experimental models indicates a potential role for CRIg in protection against bacterial infection and inflammatory diseases, such as rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, and also in promotion of tumour growth. CRIg expression can be considered as a control point in these diseases, through which inflammatory mediators, including cytokines, act. The ability of CRIg to suppress cytotoxic T cell proliferation and function may underlie its promotion of cancer growth. Thus, the unique properties of this receptor open up new avenues for understanding of the pathways that regulate inflammation during infection, autoimmunity and cancer with the potential for new drug targets to be identified. While some complement receptors may be differently expressed in mice and humans, as well as displaying different properties, mouse CRIg has a structure and function similar to the human receptor, suggesting that extrapolation to human diseases is appropriate. Furthermore, there is emerging evidence in human conditions that CRIg may be a valuable biomarker in infection and immunity, inflammatory conditions and cancer prognosis. PMID:27045607

  4. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways.

    PubMed

    Perros, Frederic; Lambrecht, Bart N; Hammad, Hamida

    2011-01-01

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs. PMID:21943186

  5. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways

    PubMed Central

    2011-01-01

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs. PMID:21943186

  6. Mast Cells as Cellular Sensors in Inflammation and Immunity

    PubMed Central

    Beghdadi, Walid; Madjene, Lydia Célia; Benhamou, Marc; Charles, Nicolas; Gautier, Gregory; Launay, Pierre; Blank, Ulrich

    2011-01-01

    Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases. PMID:22566827

  7. Runx3 at the interface of immunity, inflammation and cancer.

    PubMed

    Lotem, Joseph; Levanon, Ditsa; Negreanu, Varda; Bauer, Omri; Hantisteanu, Shay; Dicken, Joseph; Groner, Yoram

    2015-04-01

    Inactivation of tumor suppressor genes (TSG) in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago claims arose that the RUNX3 member of the RUNX transcription factor family is a major TSG inactivated in gastric cancer, a postulate extended later to other cancers. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. Here we critically re-appraise this paradigm in light of recent high-throughput, quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models. Collectively, these studies unequivocally demonstrate that RUNX3 is not a bona fide cell-autonomous TSG. Accordingly, RUNX3 is not recognized as a TSG and is not included among the 2000 cancer genes listed in the "Cancer Gene Census" or "Network for Cancer Genes" repositories. In contrast, RUNX3 does play important functions in immunity and inflammation and may thereby indirectly influence epithelial tumor development. PMID:25641675

  8. STATs in cancer inflammation and immunity: a leading role for STAT3

    PubMed Central

    Yu, Hua; Pardoll, Drew; Jove, Richard

    2016-01-01

    Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-κB (NF-κB) and interleukin-6 (IL-6)–GP130–Janus kinase (JAK) pathways, and by opposing STAT1- and NF-κB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy. PMID:19851315

  9. STATs in cancer inflammation and immunity: a leading role for STAT3.

    PubMed

    Yu, Hua; Pardoll, Drew; Jove, Richard

    2009-11-01

    Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-kappaB (NF-kappaB) and interleukin-6 (IL-6)-GP130-Janus kinase (JAK) pathways, and by opposing STAT1- and NF-kappaB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy.

  10. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  11. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation.

    PubMed

    McPhee, Joseph B; Schertzer, Jonathan D

    2015-12-01

    The bacteria that inhabit us have emerged as factors linking immunity and metabolism. Changes in our microbiota can modify obesity and the immune underpinnings of metabolic diseases such as Type 2 diabetes. Obesity coincides with a low-level systemic inflammation, which also manifests within metabolic tissues such as adipose tissue and liver. This metabolic inflammation can promote insulin resistance and dysglycaemia. However, the obesity and metabolic disease-related immune responses that are compartmentalized in the intestinal environment do not necessarily parallel the inflammatory status of metabolic tissues that control blood glucose. In fact, a permissive immune environment in the gut can exacerbate metabolic tissue inflammation. Unravelling these discordant immune responses in different parts of the body and establishing a connection between nutrients, immunity and the microbiota in the gut is a complex challenge. Recent evidence positions the relationship between host gut barrier function, intestinal T cell responses and specific microbes at the crossroads of obesity and inflammation in metabolic disease. A key problem to be addressed is understanding how metabolite, immune or bacterial signals from the gut are relayed and transferred into systemic or metabolic tissue inflammation that can impair insulin action preceding Type 2 diabetes.

  12. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection.

    PubMed

    Senba, Masachika; Mori, Naoki

    2012-10-01

    Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer.

  13. The Role of Selenium in Inflammation and Immunity: From Molecular Mechanisms to Therapeutic Opportunities

    PubMed Central

    Huang, Zhi; Rose, Aaron H.

    2012-01-01

    Abstract Dietary selenium (]Se), mainly through its incorporation into selenoproteins, plays an important role in inflammation and immunity. Adequate levels of Se are important for initiating immunity, but they are also involved in regulating excessive immune responses and chronic inflammation. Evidence has emerged regarding roles for individual selenoproteins in regulating inflammation and immunity, and this has provided important insight into mechanisms by which Se influences these processes. Se deficiency has long been recognized to negatively impact immune cells during activation, differentiation, and proliferation. This is related to increased oxidative stress, but additional functions such as protein folding and calcium flux may also be impaired in immune cells under Se deficient conditions. Supplementing diets with above-adequate levels of Se can also impinge on immune cell function, with some types of inflammation and immunity particularly affected and sexually dimorphic effects of Se levels in some cases. In this comprehensivearticle, the roles of Se and individual selenoproteins in regulating immune cell signaling and function are discussed. Particular emphasis is given to how Se and selenoproteins are linked to redox signaling, oxidative burst, calcium flux, and the subsequent effector functions of immune cells. Data obtained from cell culture and animal models are reviewed and compared with those involving human physiology and pathophysiology, including the effects of Se levels on inflammatory or immune-related diseases including anti-viral immunity, autoimmunity, sepsis, allergic asthma, and chronic inflammatory disorders. Finally, the benefits and potential adverse effects of intervention with Se supplementation for various inflammatory or immune disorders are discussed. Antioxid. Redox Signal. 16, 705–743. PMID:21955027

  14. SY 17-2 INFLAMMATION, IMMUNITY AND HYPERTENSION.

    PubMed

    Harrison, David

    2016-09-01

    Hypertension remains an enormous health care burden that affects one third of the population. Despite its prevalence the cause of most cases of hypertension remains unknown. Our laboratory has defined a novel mechanism for hypertension involving adaptive immunity. We found that mice lacking lymphocytes (RAG-1 mice) develop blunted hypertensive responses to a variety of stimuli including chronic angiotensin II infusion, DOCA-salt challenge and norepinephrine infusion. Adoptive transfer of T cells, but not B cells, restores the hypertensive responses to these stimuli. Hypertension is associated with the infiltration of T cells into the kidney and vasculature, where they release cytokines, including IFN-g, IL-17A, and TNFa, which promote sodium retention, vasoconstriction and oxidative injury. Recently, we have found that angiotensin II has striking effects on dendritic cells (DCs), promoting their propensity to activate T cells. Our data indicate that angiotensin II infusion increases DC superoxide production by 5-fold and causes a striking accumulation isoketals, oxidized products of arachidonic acid in these cells. These form covalent bonds to lysines of proteins and these modified proteins become immunogenic. Several isoketal scavengers, including 2-hydroxybenzylamine (2-HOBA) prevent DC activation, the ability of DCs to stimulate T cell proliferation and prevent hypertension. This is most prevalent in monocyte-derived DCs that are CD11c/CD11b/MHCII positive. The precise mechanism for formation of these cells is under investigation. A major impetus for immune cell activation seems to be increased sympathetic outflow, stimulated by the central actions of angiotensin II. By lesioning the AV3 V region of the forebrain of mice or inactivating the NADPH oxidase in the subfornical organ using Cre Lox technology, we have prevented the central actions of angiotensin II and found that this inhibits both T cell activation and hypertension. Renal denervation likewise

  15. SY 17-2 INFLAMMATION, IMMUNITY AND HYPERTENSION.

    PubMed

    Harrison, David

    2016-09-01

    Hypertension remains an enormous health care burden that affects one third of the population. Despite its prevalence the cause of most cases of hypertension remains unknown. Our laboratory has defined a novel mechanism for hypertension involving adaptive immunity. We found that mice lacking lymphocytes (RAG-1 mice) develop blunted hypertensive responses to a variety of stimuli including chronic angiotensin II infusion, DOCA-salt challenge and norepinephrine infusion. Adoptive transfer of T cells, but not B cells, restores the hypertensive responses to these stimuli. Hypertension is associated with the infiltration of T cells into the kidney and vasculature, where they release cytokines, including IFN-g, IL-17A, and TNFa, which promote sodium retention, vasoconstriction and oxidative injury. Recently, we have found that angiotensin II has striking effects on dendritic cells (DCs), promoting their propensity to activate T cells. Our data indicate that angiotensin II infusion increases DC superoxide production by 5-fold and causes a striking accumulation isoketals, oxidized products of arachidonic acid in these cells. These form covalent bonds to lysines of proteins and these modified proteins become immunogenic. Several isoketal scavengers, including 2-hydroxybenzylamine (2-HOBA) prevent DC activation, the ability of DCs to stimulate T cell proliferation and prevent hypertension. This is most prevalent in monocyte-derived DCs that are CD11c/CD11b/MHCII positive. The precise mechanism for formation of these cells is under investigation. A major impetus for immune cell activation seems to be increased sympathetic outflow, stimulated by the central actions of angiotensin II. By lesioning the AV3 V region of the forebrain of mice or inactivating the NADPH oxidase in the subfornical organ using Cre Lox technology, we have prevented the central actions of angiotensin II and found that this inhibits both T cell activation and hypertension. Renal denervation likewise

  16. Reactive Oxygen Species Regulate Innate But Not Adaptive Inflammation in ZAP70-Mutated SKG Arthritic Mice.

    PubMed

    Guerard, Simon; Holmdahl, Rikard; Wing, Kajsa

    2016-09-01

    Polysaccharides from Saccharomyces cerevisiae can induce arthritis, ileitis, and interstitial pneumonitis in BALB/c ZAP70 (W163C)-mutant (SKG) mice via T helper 17-cell-dependent pathways. However, little is known regarding the factors influencing disease severity. We investigated mannan-induced arthritis in SKG mice and how NADPH oxidase 2-derived reactive oxygen species (ROS) regulate disease. SKG mice were highly susceptible to both IL-17-mediated T-cell-driven arthritis and T-cell-independent acute psoriasis-like dermatitis. In vivo imaging revealed more ROS in joints of arthritic SKG mice compared to wild-type mice, which links ROS and joint inflammation. Still, ROS deficiency in SKG.Ncf1(m1j/m1j) mice greatly increased severity of arthritis and dermatitis, a difference that could not be attributed to increased T-cell activation, thymic selection, or antibody production. However, when ROS production was restored in CD68(+) macrophages, inflammation reverted to baseline, demonstrating a regulatory role of macrophage-derived ROS in autoimmunity. Thus, arthritis in SKG mice is a useful model to study the role of ROS in innate-driven chronic inflammation independently of adaptive immunity. PMID:27427418

  17. Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection.

    PubMed

    Lee, Young-Tae; Kim, Ki-Hye; Hwang, Hye Suk; Lee, Youri; Kwon, Young-Man; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Kang, Sang-Moo

    2015-11-01

    Respiratory syncytial virus (RSV) is the major leading cause of infantile viral bronchiolitis. However, cellular phenotypes contributing to the RSV protection and vaccine-enhanced disease remain largely unknown. Upon RSV challenge, we analyzed phenotypes and cellularity in the lung of mice that were naïve, immunized with formalin inactivated RSV (FI-RSV), or re-infected with RSV. In comparison with naïve and live RSV re-infected mice, the high levels of eosinophils, neutrophils, plasmacytoid and CD11b(+) dendritic cells, and IL-4(+) CD4(+) T cells were found to be contributing to pulmonary inflammation in FI-RSV immune mice despite lung viral clearance. Alveolar macrophages appeared to play differential roles in protection and inflammation upon RSV infection of different RSV immune mice. These results suggest that multiple innate and adaptive immune components differentially contribute to RSV disease and inflammation.

  18. [Adaptive immune response of people living near chemically hazardous object].

    PubMed

    Petlenko, S V; Ivanov, M B; Goverdovskiĭ, Iu B; Bogdanova, E G; Golubkov, A V

    2011-10-01

    The article presents data dynamics of adaptive immune responses of people for a long time living in adverse environmental conditions caused by pollution of the environment by industrial toxic waste. It is shown that in the process of adaptation to adverse environmental factors, changes in the immune system are in the phase fluctuations of immunological parameters that are accompanied by changes in the structure of immunodependent pathology. Most sensitive to prolonged exposure to toxic compounds are the cellular mechanisms of immune protection. Violations of the structural and quantitative and functional parameters of the link of the immune system are leading to the formation of immunopathological processes.

  19. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    PubMed Central

    Bullens, Dominique M. A.; Decraene, Ann; Seys, Sven; Dupont, Lieven J.

    2013-01-01

    Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A), called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases. PMID:23401702

  20. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress.

    PubMed

    Kwak-Kim, Joanne; Bao, Shihua; Lee, Sung Ki; Kim, Joon Woo; Gilman-Sachs, Alice

    2014-08-01

    Inflammatory immune response plays a key role in reproductive failures such as multiple implantation failures (MIF), early pregnancy loss, and recurrent pregnancy losses (RPL). Cellular immune responses particularly mediated by natural killer (NK), and T cells are often dysregulated in these conditions. Excessive or inappropriate recruitment of peripheral blood NK cells to the uterus may lead to cytotoxic environment in utero, in which proliferation and differentiation of trophoblast is hampered. In addition, inadequate angiogenesis by uterine NK cells often leads to abnormal vascular development and blood flow patterns, which, in turn, leads to increased oxidative stress or ischemic changes in the invading trophoblast. T-cell abnormalities with increased Th1 and Th17 immunity, and decreased Th2 and T regulatory immune responses may play important roles in RPL and MIF. A possible role of stress in inflammatory immune response is also reviewed.

  1. Abnormal immune regulation and low-grade inflammation in IBS: does one size fit all?

    PubMed

    Schmulson, Max; Chey, William D

    2012-02-01

    Evidences suggest that there is low-grade inflammation in the colonic mucosa and/or a state of immune activation in patients with irritable bowel syndrome (IBS). Results from available studies are inconsistent mainly because of differences in measures, methodologies and study populations. In this issue, Chang et al. evaluated a comprehensive set of cytokines, immune markers and immune-related cells in patients with non post infectious IBS (non PI-IBS) and controls. The main finding was a lower expression of the mRNA of the anti-inflammatory IL-10 cytokine in the colonic mucosa of women with non PI-IBS without any differences in the cell counts. These results suggest that in non PI-IBS, there is altered immune regulation/activation without evidence of low-grade mucosal inflammation. Further, PI and non PI-IBS may be associated with different alterations in immune function/activation.

  2. Role of the microbiota in immunity and inflammation.

    PubMed

    Belkaid, Yasmine; Hand, Timothy W

    2014-03-27

    The microbiota plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally, this immune system-microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected.

  3. Role of the Microbiota in Immunity and inflammation

    PubMed Central

    Belkaid, Yasmine; Hand, Timothy

    2014-01-01

    The microbiota plays a fundamental role on the induction, training and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally this immune system–microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries overuse of antibiotics, changes in diet, and elimination of constitutive partners such as nematodes has selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. PMID:24679531

  4. Tryptophan hydroxylase-1 regulates immune tolerance and inflammation.

    PubMed

    Nowak, Elizabeth C; de Vries, Victor C; Wasiuk, Anna; Ahonen, Cory; Bennett, Kathryn A; Le Mercier, Isabelle; Ha, Dae-Gon; Noelle, Randolph J

    2012-10-22

    Nutrient deprivation based on the loss of essential amino acids by catabolic enzymes in the microenvironment is a critical means to control inflammatory responses and immune tolerance. Here we report the novel finding that Tph-1 (tryptophan hydroxylase-1), a synthase which catalyses the conversion of tryptophan to serotonin and exhausts tryptophan, is a potent regulator of immunity. In models of skin allograft tolerance, tumor growth, and experimental autoimmune encephalomyelitis, Tph-1 deficiency breaks allograft tolerance, induces tumor remission, and intensifies neuroinflammation, respectively. All of these effects of Tph-1 deficiency are independent of its downstream product serotonin. Because mast cells (MCs) appear to be the major source of Tph-1 and restoration of Tph-1 in the MC compartment in vivo compensates for the defect, these experiments introduce a fundamentally new mechanism of MC-mediated immune suppression that broadly impacts multiple arms of immunity. PMID:23008335

  5. Diversity of immune strategies explained by adaptation to pathogen statistics

    PubMed Central

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M.

    2016-01-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations—differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  6. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications

    PubMed Central

    Luo, Yueh-Hsia; Chang, Louis W.; Lin, Pinpin

    2015-01-01

    Nanomaterials, including metal-based nanoparticles, are used for various biological and medical applications. However, metals affect immune functions in many animal species including humans. Different physical and chemical properties induce different cellular responses, such as cellular uptake and intracellular biodistribution, leading to the different immune responses. The goals of this review are to summarize and discuss the innate and adaptive immune responses triggered by metal-based nanoparticles in a variety of immune system models. PMID:26125021

  7. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases.

    PubMed

    Khatami, Mahin

    2009-01-01

    Acute inflammation is a highly regulated defense mechanism of immune system possessing two well-balanced and biologically opposing arms termed apoptosis ('Yin') and wound healing ('Yang') processes. Unresolved or chronic inflammation (oxidative stress) is perhaps the loss of balance between 'Yin' and 'Yang' that would induce co-expression of exaggerated or 'mismatched' apoptotic and wound healing factors in the microenvironment of tissues ('immune meltdown'). Unresolved inflammation could initiate the genesis of many age-associated chronic illnesses such as autoimmune and neurodegenerative diseases or tumors/cancers. In this perspective 'birds' eye' view of major interrelated co-morbidity risk factors that participate in biological shifts of growth-arresting ('tumoricidal') or growth-promoting ('tumorigenic') properties of immune cells and the genesis of chronic inflammatory diseases and cancer will be discussed. Persistent inflammation is perhaps a common denominator in the genesis of nearly all age-associated health problems or cancer. Future challenging opportunities for diagnosis, prevention, and/or therapy of chronic illnesses will require an integrated understanding and identification of developmental phases of inflammation-induced immune dysfunction and age-associated hormonal and physiological readjustments of organ systems. Designing suitable cohort studies to establish the oxido-redox status of adults may prove to be an effective strategy in assessing individual's health toward developing personal medicine for healthy aging.

  8. The immune system, adaptation, and machine learning

    NASA Astrophysics Data System (ADS)

    Farmer, J. Doyne; Packard, Norman H.; Perelson, Alan S.

    1986-10-01

    The immune system is capable of learning, memory, and pattern recognition. By employing genetic operators on a time scale fast enough to observe experimentally, the immune system is able to recognize novel shapes without preprogramming. Here we describe a dynamical model for the immune system that is based on the network hypothesis of Jerne, and is simple enough to simulate on a computer. This model has a strong similarity to an approach to learning and artificial intelligence introduced by Holland, called the classifier system. We demonstrate that simple versions of the classifier system can be cast as a nonlinear dynamical system, and explore the analogy between the immune and classifier systems in detail. Through this comparison we hope to gain insight into the way they perform specific tasks, and to suggest new approaches that might be of value in learning systems.

  9. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    PubMed

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials.

  10. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    PubMed

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials. PMID:26303886

  11. Circulating and localized immune complexes in experimental mycoplasma-induced arthritis-associated ocular inflammation.

    PubMed Central

    Thirkill, C E; Tyler, N K; Roth, A M

    1992-01-01

    Ocular deposits of immune complexes are believed to contribute to the anterior segment inflammations observed in association with the human arthritides. Arthritis-related ocular inflammations may be reproduced in animals by infection with certain species of mycoplasma. To evaluate the role of immune complexes in the production of ocular lesions, we studied their involvement in the rodent model of experimental arthritis-associated ocular inflammation induced by Mycoplasma arthritidis. Sprague-Dawley rats were infected with viable concentrates of M. arthritidis and monitored for the production of related circulating and intraocular immune complexes. Circulating immune complexes were monitored by antigen capture systems, and localized intraocular complexes were identified by indirect immunohistochemistry. Polyacrylamide gel immunoblot analysis of captured complexes confirmed the antigen(s) involved as proteins derived from M. arthritidis. Indirect immunofluorescence revealed localized complexes containing mycoplasma antigens within the ciliary-iris vasculature. Concentrations of the generated complexes diminished rapidly over a 30-day period. While complex deposits within ocular tissues could represent a contributing cause to the localized anterior segment inflammation reported in this rodent model, secondary challenge with viable M. arthritidis, which reproduced high concentrations of intraocular and circulating immune complexes, failed to elicit any ocular response. Images PMID:1730469

  12. CD98 at the crossroads of adaptive immunity and cancer

    PubMed Central

    Cantor, Joseph M.; Ginsberg, Mark H.

    2012-01-01

    Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer. PMID:22499670

  13. Evolution of adaptive immunity from transposable elements combined with innate immune systems.

    PubMed

    Koonin, Eugene V; Krupovic, Mart

    2015-03-01

    Adaptive immune systems in prokaryotes and animals give rise to long-term memory through modification of specific genomic loci, such as by insertion of foreign (viral or plasmid) DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci in prokaryotes and by V(D)J recombination of immunoglobulin genes in vertebrates. Strikingly, recombinases derived from unrelated mobile genetic elements have essential roles in both prokaryotic and vertebrate adaptive immune systems. Mobile elements, which are ubiquitous in cellular life forms, provide the only known, naturally evolved tools for genome engineering that are successfully adopted by both innate immune systems and genome-editing technologies. In this Opinion article, we present a general scenario for the origin of adaptive immunity from mobile elements and innate immune systems.

  14. Avian Influenza Viruses, Inflammation, and CD8(+) T Cell Immunity.

    PubMed

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8(+) T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed.

  15. Heat Shock Proteins: Conditional Mediators of Inflammation in Tumor Immunity

    PubMed Central

    Calderwood, Stuart K.; Murshid, Ayesha; Gong, Jianlin

    2012-01-01

    Heat shock protein (HSP)-based anticancer vaccines have undergone successful preclinical testing and are now entering clinical trial. Questions still remain, however regarding the immunological properties of HSPs. It is now accepted that many of the HSPs participate in tumor immunity, at least in part by chaperoning tumor antigenic peptides, introducing them into antigen presenting cells such as dendritic cells (DC) that display the antigens on MHC class I molecules on the cell surface and stimulate cytotoxic lymphocytes (CTL). However, in order for activated CD8+ T cells to function as effective CTL and kill tumor cells, additional signals must be induced to obtain a sturdy CTL response. These include the expression of co-stimulatory molecules on the DC surface and inflammatory events that can induce immunogenic cytokine cascades. That such events occur is indicated by the ability of Hsp70 vaccines to induce antitumor immunity and overcome tolerance to tumor antigens such as mucin1. Secondary activation of CTL can be induced by inflammatory signaling through Toll-like receptors and/or by interaction of antigen-activated T helper cells with the APC. We will discuss the role of the inflammatory properties of HSPs in tumor immunity and the potential role of HSPs in activating T helper cells and DC licensing. PMID:22566956

  16. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    PubMed Central

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  17. Innate and adaptive immune responses in neurodegeneration and repair.

    PubMed

    Amor, Sandra; Woodroofe, M Nicola

    2014-03-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases.

  18. Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity.

    PubMed

    Auvynet, Constance; Rosenstein, Yvonne

    2009-11-01

    The term 'antimicrobial peptides' refers to a large number of peptides first characterized on the basis of their antibiotic and antifungal activities. In addition to their role as endogenous antibiotics, antimicrobial peptides, also called host defense peptides, participate in multiple aspects of immunity (inflammation, wound repair, and regulation of the adaptive immune system) as well as in maintaining homeostasis. The possibility of utilizing these multifunctional molecules to effectively combat the ever-growing group of antibiotic-resistant pathogens has intensified research aimed at improving their antibiotic activity and therapeutic potential, without the burden of an exacerbated inflammatory response, but conserving their immunomodulatory potential. In this minireview, we focus on the contribution of small cationic antimicrobial peptides - particularly human cathelicidins and defensins - to the immune response and disease, highlighting recent advances in our understanding of the roles of these multifunctional molecules.

  19. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.

    PubMed

    Vida, Carmen; González, Eva M; De la Fuente, Mónica

    2014-01-01

    According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.

  20. Species-specific immune responses generated by histidyl-tRNA synthetase immunization are associated with muscle and lung inflammation

    PubMed Central

    Katsumata, Yasuhiro; Ridgway, William M.; Oriss, Timothy; Gu, Xinyan; Chin, David; Wu, Yuehong; Fertig, Noreen; Oury, Tim; Vandersteen, Daniel; Clemens, Paula; Camacho, Carlos J.; Weinberg, Andrew; Ascherman, Dana P.

    2009-01-01

    Evidence implicating histidyl-tRNA synthetase (Jo-1) in the pathogenesis of the anti-synthetase syndrome includes established genetic associations linking the reproducible phenotype of muscle inflammation and interstitial lung disease with autoantibodies recognizing Jo-1. To better address the role of Jo-1-directed B and T cell responses in the context of different genetic backgrounds, we employed Jo-1 protein immunization of C57BL/6 and NOD congenic mice. Detailed analysis of early antibody responses following inoculation with human or murine Jo-1 demonstrates remarkable species-specifity, with limited cross recognition of Jo-1 from the opposite species. Complementing these results, immunization with purified peptides derived from murine Jo-1 generates B and T cells targeting species-specific epitopes contained within the amino terminal 120 amino acids of murine Jo-1. The eventual spreading of B cell epitopes that uniformly occurs 8 weeks post immunization with murine Jo-1 provides additional evidence of an immune response mediated by autoreactive, Jo-1-specific T cells. Corresponding to this self-reactivity, mice immunized with murine Jo-1 develop a striking combination of muscle and lung inflammation that replicates features of the human anti-synthetase syndrome. PMID:17826948

  1. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    PubMed

    da Rocha Junior, Laurindo Ferreira; Dantas, Andréa Tavares; Duarte, Angela Luzia Branco Pinto; de Melo Rego, Moacyr Jesus Barreto; Pitta, Ivan da Rocha; Pitta, Maira Galdino da Rocha

    2013-01-01

    Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPAR γ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPAR γ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPAR γ has also been associated with B cells. The present review addresses these issues by placing PPAR γ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity. PMID:23983678

  2. CRISPR-Based Adaptive Immune Systems

    PubMed Central

    Terns, Michael P.; Terns, Rebecca M.

    2011-01-01

    CRISPR-Cas systems are recently discovered, RNA-based immune systems that control invasions of viruses and plasmids in archaea and bacteria. Prokaryotes with CRISPR-Cas immune systems capture short invader sequences within the CRISPR loci in their genomes, and small RNAs produced from the CRISPR loci (CRISPR (cr)RNAs) guide Cas proteins to recognize and degrade (or otherwise silence) the invading nucleic acids. There are multiple variations of the pathway found among prokaryotes, each mediated by largely distinct components and mechanisms that we are only beginning to delineate. Here we will review our current understanding of the remarkable CRISPR-Cas pathways with particular attention to studies relevant to systems found in the archaea. PMID:21531607

  3. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective

    PubMed Central

    Neumann, Silke; Shields, Nicholas J.; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N.

    2015-01-01

    Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells. PMID:26690125

  4. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment.

    PubMed

    Zhong, Zhenyu; Sanchez-Lopez, Elsa; Karin, Michael

    2016-07-14

    Autophagy, a cellular waste disposal process, has well-established tumor-suppressive properties. New studies indicate that, in addition to its cell-autonomous anti-tumorigenic functions, autophagy inhibits cancer development by orchestrating inflammation and immunity. While attenuating tumor-promoting inflammation, autophagy enhances the processing and presentation of tumor antigens and thereby stimulates anti-tumor immunity. Although cancer cells can escape immunosurveillance by tuning down autophagy, certain chemotherapeutic agents with immunogenic properties may enhance anti-tumor immunity by inducing autophagic cell death. Understanding the intricate and complex relationships within this troika and how they are affected by autophagy enhancing drugs should improve the efficacy of cancer immunotherapy. PMID:27419869

  5. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective.

    PubMed

    Neumann, Silke; Shields, Nicholas J; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N

    2015-12-04

    Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer's disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.

  6. The role of adipose tissue immune cells in obesity and low-grade inflammation.

    PubMed

    Mraz, Milos; Haluzik, Martin

    2014-09-01

    Adipose tissue (AT) lies at the crossroad of nutrition, metabolism, and immunity; AT inflammation was proposed as a central mechanism connecting obesity with its metabolic and vascular complications. Resident immune cells constitute the second largest AT cellular component after adipocytes and as such play important roles in the maintenance of AT homeostasis. Obesity-induced changes in their number and activity result in the activation of local and later systemic inflammatory response, marking the transition from simple adiposity to diseases such as type 2 diabetes mellitus, arterial hypertension, and ischemic heart disease. This review has focused on the various subsets of immune cells in AT and their role in the development of AT inflammation and obesity-induced insulin resistance.

  7. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.

  8. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  9. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks.

    PubMed

    Beiter, Thomas; Hoene, Miriam; Prenzler, Frauke; Mooren, Frank C; Steinacker, Jürgen M; Weigert, Cora; Nieß, Andreas M; Munz, Barbara

    2015-01-01

    The role of inflammation in skeletal muscle adaptation to exercise is complex and has hardly been elucidated so far. While the acute inflammatory response to exercise seems to promote skeletal muscle training adaptation and regeneration, persistent, low-grade inflammation, as seen in a multitude of chronic diseases, is obviously detrimental. The regulation of cytokine production in skeletal muscle cells has been relatively well studied, yet little is known about the compensatory and anti-inflammatory mechanisms that resolve inflammation and restore tissue homeostasis. One important strategy to ensure sequential, timely and controlled resolution of inflammation relies on the regulated stability of mRNAs encoding pro-inflammatory mediators. Many key transcripts in early immune responses are characterized by the presence of AU-rich elements (AREs) in the 3'-untranslated regions of their mRNAs, allowing efficient fine-tuning of gene expression patterns at the post-transcriptional level. AREs exert their function by recruiting particular RNA-binding proteins, resulting, in most cases, in de-stabilization of the target transcripts. The best-characterized ARE-binding proteins are HuR, CUGBP1, KSRP, AUF1, and the three ZFP36 proteins, especially TTP/ZFP36. Here, we give a general introduction into the role of inflammation in the adaptation of skeletal muscle to exercise. Subsequently, we focus on potential roles of ARE-binding proteins in skeletal muscle tissue in general and specifically exercise-induced skeletal muscle remodeling. Finally, we present novel data suggesting a specific function of TTP/ZFP36 in exercise-induced skeletal muscle plasticity.

  10. CD39 and CD73 in immunity and inflammation

    PubMed Central

    Antonioli, Luca; Pacher, Pál; Vizi, E. Sylvester; Haskó, György

    2013-01-01

    The enzymatic activities of CD39 and CD73 play strategic roles in calibrating the duration, magnitude, and chemical nature of purinergic signals delivered to immune cells through the conversion of ADP/ATP to AMP and AMP to adenosine, respectively. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39/CD73 pathway changes dynamically with the pathophysiological context in which it is embedded. It is becoming increasingly appreciated that altering this catabolic machinery can change the course or dictate the outcome of several pathophysiological events, such as AIDS, autoimmune diseases, infections, atherosclerosis, ischemia-reperfusion injury, and cancer, suggesting these ecto-enzymes are novel therapeutic targets for managing a variety of disorders. PMID:23601906

  11. Targeting the adaptive immune system: new strategies in the treatment of atherosclerosis.

    PubMed

    Zarzycka, Barbara; Nicolaes, Gerry A F; Lutgens, Esther

    2015-05-01

    Atherosclerosis is a lipid-driven chronic inflammatory disease of the arterial wall. Current treatment of atherosclerosis is focused on limiting its risk factors, such as hyperlipidemia or hypertension. However, treatments that target the inflammatory nature of atherosclerosis are still under development. Discovery of novel targets involved in the inflammation of the arterial wall creates opportunities to design new therapeutics that successfully modulate atherosclerosis. Here, we review drug targets that have proven to play pivotal roles in the adaptive immune system in atherosclerosis, and we discuss their potential as novel therapeutics.

  12. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  13. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.

  14. Mitochondria in the regulation of innate and adaptive immunity.

    PubMed

    Weinberg, Samuel E; Sena, Laura A; Chandel, Navdeep S

    2015-03-17

    Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.

  15. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  16. The Gut Epithelial Receptor LRRC19 Promotes the Recruitment of Immune Cells and Gut Inflammation

    PubMed Central

    Cao, Shuisong; Su, Xiaomin; Zeng, Benhua; Yan, Hui; Huang, Yugang; Wang, Enlin; Yun, Huan; Zhang, Yuan; Liu, Feifei; Li, Wenxia; Wei, Hong; Che, Yongzhe; Yang, Rongcun

    2016-01-01

    Summary Commensal microbes are necessary for a healthy gut immune system. However, the mechanism involving these microbes that establish and maintain gut immune responses is largely unknown. Here, we have found that the gut immune receptor leucine-rich repeat (LRR) C19 is involved in host-microbiota interactions. LRRC19 deficiency not only impairs the gut immune system but also reduces inflammatory responses in gut tissues. We demonstrate that the LRRC19-associated chemokines CCL6, CCL9, CXCL9, and CXCL10 play a critical role in immune cell recruitment and intestinal inflammation. The expression of these chemokines is associated with regenerating islet-derived (REG) protein-mediated microbiotas. We also found that the expression of REGs may be regulated by gut Lactobacillus through LRRC19-mediated activation of NF-κB. Therefore, our study establishes a regulatory axis of LRRC19, REGs, altered microbiotas, and chemokines for the recruitment of immune cells and the regulation of intestinal inflammation. PMID:26776522

  17. Multiple sclerosis and fatigue: A review on the contribution of inflammation and immune-mediated neurodegeneration.

    PubMed

    Patejdl, Robert; Penner, Iris K; Noack, Thomas K; Zettl, Uwe K

    2016-03-01

    Multiple sclerosis (MS) is an immune mediated disease of the central nervous system (CNS) and the leading cause of non-traumatic disability among young and middle-aged adults in the western world. One of its most prevalent and debilitating symptoms is fatigue. Despite the general acceptance of the idea of an immune pathogenesis of MS itself, the role of autoimmunity in the course of MS-fatigue is a matter of debate. Both immune-related processes (acute inflammation, chronic inflammation, immune-mediated neurodegeneration, immune-mediated alterations of endocrine functions related to fatigue) and presumably non-immune-mediated disturbances and factors (sleep disturbances, depression, cognitive alterations, chronic infections, adverse effects of medications) contribute to the clinical picture. Data from in vitro and animal experiments has provided evidence for a role of cytokines as IL-1 and TNF-alpha. This association could not be verified directly in blood samples from humans whereas whole blood stimulation protocols gave some indirect evidence for a role of cytokines in MS-fatigue. MRI being able to detect acute and chronic immune mediated damage to the CNS could depict that global atrophy of gray or white matter does not correlate with fatigue. Rather, distinctive clusters of lesions and atrophy at different locations, mostly bifrontal or in subcortical structures, correlate specifically with fatigue. Regardless of the difficulties in pinpointing the immunogenesis of MS-fatigue, an important role of autoimmunity is strongly supported by an indirect route: A growing amount of data shows that the highly effective immunotherapeutics which have been introduced to MS-treatment over the last years effectively and sustainably stabilize and ameliorate fatigue in parallel to their dampening effects on the neuroinflammatory process. This review summarizes the existing data on the relation between inflammation, patterns of CNS-lesions and the effects of immunotherapeutics

  18. Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation

    PubMed Central

    Šedý, John; Bekiaris, Vasileios; Ware, Carl F.

    2015-01-01

    The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor–ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes), lymphotoxin-β receptor (LT-βR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs. Lymphotoxin-expressing innate-acting B cells construct microenvironments in lymphoid organs that restrict pathogen spread and initiate interferon defenses. Recent results illustrate how the communication networks formed among these cytokines and the coreceptors B and T lymphocyte attenuator (BTLA) and CD160 both inhibit and activate innate lymphoid cells (ILCs), innate γδ T cells, and natural killer (NK) cells. Understanding the role of TNFSF/TNFRSF and interacting proteins in innate cells will likely reveal avenues for future therapeutics for human disease. PMID:25524549

  19. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation?

    PubMed Central

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of “proinflammatory” cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine “inflammation”? In this review, we discuss the functions of “inflammatory” mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury.

  20. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation?

    PubMed Central

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of “proinflammatory” cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine “inflammation”? In this review, we discuss the functions of “inflammatory” mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury. PMID:27597803

  1. Roles of Innate and Adaptive Immunity in Respiratory Mycoplasmosis

    PubMed Central

    Cartner, Samuel C.; Lindsey, J. Russell; Gibbs-Erwin, Julie; Cassell, Gail H.; Simecka, Jerry W.

    1998-01-01

    Current evidence suggests that host defense in respiratory mycoplasmosis is dependent on both innate and humoral immunity. To further delineate the roles of innate and adaptive immunity in antimycoplasmal defenses, we intranasally infected C3H/HeSnJ-scid/scid (C3H-SCID), C3H/HeSnJ (C3H), C57BL/6J-scid/scid (C57-SCID), and C57BL/6N (C57BL) mice with Mycoplasma pulmonis and at 14 and 21 days postinfection performed quantitative cultures of lungs and spleens, quantification of lung lesions, and histopathologic assessments of all other major organs. We found that numbers of mycoplasmas in lungs were associated with genetic background (C3H susceptible, C57BL resistant) rather than functional state of adaptive immunity, indicating that innate immunity is the main contributor to antimycoplasmal defense of the lungs. Extrapulmonary dissemination of mycoplasmas with colonization of spleens and histologic lesions in multiple organs was a common occurrence in all mice. The absence of adaptive immune responses in severe combined immunodeficient (SCID) mice resulted in increased mycoplasmal colonization of spleens and lesions in extrapulmonary sites, particularly spleens, hearts, and joints, and also reduced lung lesion severity. The transfer of anti-M. pulmonis serum to infected C3H-SCID mice prevented extrapulmonary infection and disease, while the severity of lung lesions was restored by transfer of naive spleen cells to infected C3H-SCID mice. Collectively, our results strongly support the conclusions that innate immunity provides antimycoplasmal defense of the lungs and humoral immunity has the major role in defense against systemic dissemination of mycoplasmal infection, but cellular immune responses may be important in exacerbation of mycoplasmal lung disease. PMID:9673224

  2. Innate immunity and inflammation in ageing: a key for understanding age-related diseases

    PubMed Central

    Licastro, Federico; Candore, Giuseppina; Lio, Domenico; Porcellini, Elisa; Colonna-Romano, Giuseppina; Franceschi, Claudio; Caruso, Calogero

    2005-01-01

    The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few – have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased chance of long life survival

  3. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  4. Requirement for interleukin-1 to drive brain inflammation reveals tissue-specific mechanisms of innate immunity.

    PubMed

    Giles, James A; Greenhalgh, Andrew D; Davies, Claire L; Denes, Adam; Shaw, Tovah; Coutts, Graham; Rothwell, Nancy J; McColl, Barry W; Allan, Stuart M

    2015-02-01

    The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders.

  5. Bile acids in regulation of inflammation and immunity: friend or foe?

    PubMed

    Zhu, Ci; Fuchs, Claudia D; Halilbasic, Emina; Trauner, Michael

    2016-01-01

    Apart from their pivotal role in dietary lipid absorption and cholesterol homeostasis, bile acids (BAs) are increasingly recognised as important signalling molecules in the regulation of systemic endocrine functions. As such BAs are natural ligands for several nuclear hormone receptors and G-protein-coupled receptors. Through activating various signalling pathways, BAs not only regulate their own synthesis, enterohepatic recirculation and metabolism, but also immune homeostasis. This makes BAs attractive therapeutic agents for managing metabolic and inflammatory liver disorders. Recent experimental and clinical evidence indicates that BAs exert beneficial effects in cholestatic and metabolically driven inflammatory diseases. This review elucidates how different BAs function as pathogenetic factors and potential therapeutic agents for inflammation-driven liver diseases, focusing on their role in regulation of inflammation and immunity. PMID:27586800

  6. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response.

    PubMed

    de Brito, Cyro Alves; Goldoni, Adriana Letícia; Sato, Maria Notomi

    2009-09-01

    The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.

  7. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation.

    PubMed

    Vaday, G G; Lider, O

    2000-02-01

    Tissue injury caused by infection or physical damage evokes inflammatory reactions and events that are necessary for regaining homeostasis. Central to these events is the translocation of leukocytes, including monocytes, neutrophils, and T lymphocytes, from the vascular system, through endothelium, and into the extracellular matrix (ECM) surrounding the injured tissue. This transition from the vasculature into the site of inflammation elicits remarkable changes in leukocyte behavior as cells adhere to and migrate across ECM before carrying out their effector functions. Growing evidence suggests that, through its interactions with cytokines and degradative enzymes, the ECM microenvironment has a specialized role in providing intrinsic signals for coordinating leukocyte actions. Recent advances also reveal that enzymatic modifications to ECM moieties and cytokines induce distinctive cellular responses, and are likely part of the mechanism regulating the perpetuation or arrest of inflammation. This article reviews the findings that have elucidated the dynamic relationships among these factors and how they communicate with immune cells during inflammation. PMID:10670574

  8. Multifaceted interactions between adaptive immunity and the central nervous system.

    PubMed

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  9. Influence of Asian Dust Particles on Immune Adjuvant Effects and Airway Inflammation in Asthma Model Mice

    PubMed Central

    Kurai, Jun; Watanabe, Masanari; Tomita, Katsuyuki; Yamasaki, Hiroyuki Sano Akira; Shimizu, Eiji

    2014-01-01

    Objective An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice. Methods Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically. Results Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles. Conclusion These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation. PMID:25386753

  10. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses

    PubMed Central

    Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed.

  11. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses

    PubMed Central

    Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  12. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses.

    PubMed

    Aravindhan, Vivekanandhan; Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  13. Association of the Innate Immunity and Inflammation Pathway with Advanced Prostate Cancer Risk

    PubMed Central

    Kazma, Rémi; Mefford, Joel A.; Cheng, Iona; Plummer, Sarah J.; Levin, Albert M.; Rybicki, Benjamin A.; Casey, Graham; Witte, John S.

    2012-01-01

    Prostate cancer is the most frequent and second most lethal cancer in men in the United States. Innate immunity and inflammation may increase the risk of prostate cancer. To determine the role of innate immunity and inflammation in advanced prostate cancer, we investigated the association of 320 single nucleotide polymorphisms, located in 46 genes involved in this pathway, with disease risk using 494 cases with advanced disease and 536 controls from Cleveland, Ohio. Taken together, the whole pathway was associated with advanced prostate cancer risk (P = 0.02). Two sub-pathways (intracellular antiviral molecules and extracellular pattern recognition) and four genes in these sub-pathways (TLR1, TLR6, OAS1, and OAS2) were nominally associated with advanced prostate cancer risk and harbor several SNPs nominally associated with advanced prostate cancer risk. Our results suggest that the innate immunity and inflammation pathway may play a modest role in the etiology of advanced prostate cancer through multiple small effects. PMID:23272139

  14. Immunity comes first: the effect of parasite genotypes on adaptive immunity and immunization in three-spined sticklebacks.

    PubMed

    Haase, David; Rieger, Jennifer K; Witten, Anika; Stoll, Monika; Bornberg-Bauer, Erich; Kalbe, Martin; Reusch, Thorsten B H

    2016-01-01

    Adaptive immunity in vertebrates can confer increased resistance against invading pathogens upon re-infection. But how specific parasite genotypes affect the temporal transition from innate to adaptive immunity under continual exposure to parasites is poorly understood. Here, we investigated the effects of homologous and heterologous exposures of genetically distinct parasite lineages of the eye fluke Diplostomum pseudospathaceum on gene expression patterns of adaptive immunity in sticklebacks (Gasterosteus aculeatus). Observable differences in gene expression were largely attributable to final exposures while there was no transcription pattern characteristic for a general response to repeated infections with D. pseudospathaceum. None of the final exposure treatments was able to erase the distinct expression patterns resulting from a heterologous pre-exposed fish. Interestingly, heterologous final exposures showed similarities between different treatment groups subjected to homologous pre-exposure. The observed pattern was supported by parasite infection rates and suggests that host immunization was optimized towards an adaptive immune response that favored effectiveness against parasite diversity over specificity.

  15. Adaptive resistance: A tumor strategy to evade immune attack

    PubMed Central

    Yao, Sheng; Chen, Lieping

    2014-01-01

    A dilemma in cancer immunology is that, although patients often develop active anti-tumor immune responses, the tumor still outgrows. It has become clear that under the pressure of the host’s immune system, cancer cells have adapted elaborate tactics to reduce their immunogenicity (also known as immunoselection) and/or to actively suppress immune cells and promote immune tolerance (also known as immunosubversion). In this issue of the European Journal of Immunology, Dolen and Esendagli [Eur. J. Immunol. 2013. 43: 747–757] show that acute myeloid leukemia (AML) cells develop an adaptive immune phenotype switching mechanism: In response to attack by activated T cells, the leukemia cells quickly downregulate the T-cell costimulatory ligand B7-H2 and reciprocally upregulate the coinhibitory ligands B7-H1 and B7-DC in order to shut down T-cell activation via the PD-1 pathway. These novel findings and their relevance for cancer immunotherapy, especially potential applications in PD-1 check-point blockade therapy are discussed in this Commentary. PMID:23381914

  16. Control of commensal microbiota by the adaptive immune system.

    PubMed

    Zhang, Husen; Luo, Xin M

    2015-01-01

    The symbiotic relationship between the mammalian host and gut microbes has fascinated many researchers in recent years. Use of germ-free animals has contributed to our understanding of how commensal microbes affect the host. Immunodeficiency animals lacking specific components of the mammalian immune system, on the other hand, enable studying of the reciprocal function-how the host controls which microbes to allow for symbiosis. Here we review the recent advances and discuss our perspectives of how to better understand the latter, with an emphasis on the effects of adaptive immunity on the composition and diversity of gut commensal bacteria. PMID:25901893

  17. Links between innate and adaptive immunity via type I interferon.

    PubMed

    Le Bon, Agnes; Tough, David F

    2002-08-01

    Type I interferon (IFN-alpha/beta) is expressed rapidly following exposure to a wide variety of infectious agents and plays a key role in innate control of virus replication. Recent studies have demonstrated that dendritic cells both produce IFN-alpha/beta and undergo maturation in response to IFN-alpha/beta. Moreover, IFN-alpha/beta has been shown to potently enhance immune responses in vivo through the stimulation of dendritic cells. These findings indicate that IFN-alpha/beta serves as a signal linking innate and adaptive immunity. PMID:12088676

  18. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans.

    PubMed

    Meydani, Simin N; Das, Sai K; Pieper, Carl F; Lewis, Michael R; Klein, Sam; Dixit, Vishwa D; Gupta, Alok K; Villareal, Dennis T; Bhapkar, Manjushri; Huang, Megan; Fuss, Paul J; Roberts, Susan B; Holloszy, John O; Fontana, Luigi

    2016-07-01

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype. PMID:27410480

  19. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans.

    PubMed

    Meydani, Simin N; Das, Sai K; Pieper, Carl F; Lewis, Michael R; Klein, Sam; Dixit, Vishwa D; Gupta, Alok K; Villareal, Dennis T; Bhapkar, Manjushri; Huang, Megan; Fuss, Paul J; Roberts, Susan B; Holloszy, John O; Fontana, Luigi

    2016-07-01

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype.

  20. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans

    PubMed Central

    Meydani, Simin N.; Das, Sai K.; Pieper, Carl F.; Lewis, Michael R.; Klein, Sam; Dixit, Vishwa D.; Gupta, Alok K.; Villareal, Dennis T.; Bhapkar, Manjushri; Huang, Megan; Fuss, Paul J.; Roberts, Susan B.; Holloszy, John O.; Fontana, Luigi

    2016-01-01

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype. PMID:27410480

  1. Innate immune system and inflammation in Alzheimer's disease: from pathogenesis to treatment.

    PubMed

    Serpente, Maria; Bonsi, Rossana; Scarpini, Elio; Galimberti, Daniela

    2014-01-01

    Immune activation and inflammation, likely triggered by amyloid-beta (Aβ) deposition, play a remarkable role in the pathogenesis of Alzheimer's disease (AD), which is the most frequent cause of dementia in the elderly. The principal cellular elements of the brain innate immune system likely to be involved in such processes are microglia. In an attempt to search for new disease-modifying drugs, the immune system has been addressed, with the aim of removing deposition of Aβ or tau by developing vaccines and humanized monoclonal antibodies. The aim of this review is to summarize the current evidence regarding the role played by microglia and inflammatory molecules in the pathogenesis of AD. In addition, we will discuss the main active and passive immunotherapeutic approaches.

  2. STIM1 controls T cell–mediated immune regulation and inflammation in chronic infection

    PubMed Central

    Desvignes, Ludovic; Weidinger, Carl; Shaw, Patrick; Vaeth, Martin; Ribierre, Theo; Liu, Menghan; Fergus, Tawania; Kozhaya, Lina; McVoy, Lauren; Unutmaz, Derya; Ernst, Joel D.; Feske, Stefan

    2015-01-01

    Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell–mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell–specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-γ production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-γ production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell–intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-γ and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell–mediated immune regulation to limit injurious inflammation during chronic infection. PMID:25938788

  3. The Relations Between Immunity, Oxidative Stress and Inflammation Markers, in Childhood Obesity.

    PubMed

    Laura Anca, Popescu; Bogdana, Virgolici; Olivia, Timnea; Horia, Virgolici; Dumitru, Oraseanu; Leon, Zagrean

    2014-10-01

    Oxidative stress, inflammation and insulin resistance are the principal culprits in childhood obesity. Immune modifications are also important in the development of the obesity complications.The aim of this study is to find the relations for some immunity parameters with markers for oxidative stress and inflammation. Sixty obese children (10-16 years old) and thirty age and sex matched lean children were involved. The activities for erythrocyte superoxid dismutase (SOD), for erythrocyte glutathione peroxidase (GPx) and serum thioredoxin level were measured by ELISA, as oxidative stress markers. Circulating immune complexes (CIC), complement fractions C3, C4 and the self-antibodies, antismooth muscle antibodies (ASMA), antiliver-kidney microsome antibodies (LKM1) were measured by ELISA methods. Ceruloplasmin, haptoglobin and C reactive protein (CRP) were measured as inflammatory markers by immunoturbidimetric methods. ceruloplasmin (p<0.001), haptoglobin (p<0.001), CRP (p<0.05) and activity for SOD (p<0.001) were measured, while thioredoxin concentration (p<0.04) was reduced. The antibodies LKM1 and ASMA and GPx activity were not modified between groups. Positive correlations (for p<0.05) were calculated between SOD activity and LKM1 (r=0.37), GPx activity and ASMA (r=0.27), haptoglobin and C3 (r=0.33), ceruloplasmin and CIC (r=0.41), CRP and C3 (p<0.27) and negative correlations were calculated for C4 both with GPx activity (r= -0.28) and with thioredoxin level (r= -0.27). In the obese children versus the lean ones, higher levels for C3 (p<0.001), C4(p<0.001), CIC (p<0.05), In conclusion, this study demonstrates that immune modifications, inflammation and oxidative stress are related and they act in cluster in childhood obesity. PMID:26461379

  4. Maternal adaptive immunity influences the intestinal microflora of suckling mice.

    PubMed

    Diaz, Rosa L; Hoang, Lisa; Wang, Jiafang; Vela, Jose L; Jenkins, Shannon; Aranda, Richard; Martín, Martín G

    2004-09-01

    The microflorae in the intestine of breast-fed infants are distinct from those that typically populate the intestine of formula-fed infants. Although the acquisition of passive immunity through breast-feeding may play a critical role in influencing the pattern of bacterial colonization of the gut, the precise mechanisms underlying the differences in the commensal microflorae of breast and formula-fed children have not been established. We hypothesized that the assemblage of commensal microflorae in suckling and weaned mice may be influenced by the maternal adaptive immune system. To test this hypothesis, we analyzed the intestinal microflorae of mice reared in the presence (wild-type) or absence of an intact maternal immune system (T- and B-cell deficient). Several types of bacteria (Lactobacillus, Enterococcus, Clostridium perfringens, Bifidobacterium, and Bacteroides) were isolated and enumerated from both the small and large intestine of 10-, 18-, 25- and 40- to 60-d old mice using selective media. The densities of bacteria were significantly lower in the small intestine of weaned mice that were reared by wild-type (WT) compared with immunodeficient (ID) dams. However, the microflorae were generally more abundant in the large intestine of suckling pups reared by WT compared with ID dams. Our results indicate that intestinal microflorae change throughout the suckling phase of development and that the maternal adaptive immune system influences the pattern and abundance of bacteria within the gut in an age- and site-specific manner.

  5. Immune Regulators of Inflammation in Obesity-Associated Type 2 Diabetes and Coronary Artery Disease

    PubMed Central

    Strissel, Katherine J.; Denis, Gerald V.; Nikolajczyk, Barbara S.

    2014-01-01

    Purpose To summarize current work identifying inflammatory components that underlie associations between obesity-associated type 2 diabetes (T2D) and coronary artery disease (CAD). Recent findings Recent studies implicate immune cells as drivers of pathogenic inflammation in human T2D. Inflammatory lymphocytes characterize unhealthy adipose tissue (AT), but regional adipose volume, primarily visceral and pericardial fat; also predict severity and risk for obesity-associated CAD. Having a greater understanding of shared characteristics between inflammatory cells from different AT depots and a more accessible tissue such as blood will facilitate progress towards clinical translation of our appreciation of obesity as an inflammatory disease. Summary Obesity predisposes inflammation and metabolic dysfunction through multiple mechanisms, but these mechanisms remain understudied in humans. Studies of obese subjects have identified disproportionate impacts of specific T cell subsets in metabolic diseases like T2D. Based on demonstration that AT inflammation is depot-specific, analysis of adiposity by waist-to-hip ratio or magnetic resonance imaging (MRI) will increase interpretive value of lymphocyte-focused studies and aid clinicians in determining which obese individuals are at highest risk for CAD. New tools to combat obesity-associated CAD and other co-morbidities will stem from identification of immune cell-mediated inflammatory networks that are amenable to pharmacological interventions. PMID:25106001

  6. Evaluation of the Adaptive Immune Response to Respiratory Syncytial Virus.

    PubMed

    Knudson, Cory J; Weiss, Kayla A; Stoley, Megan E; Varga, Steven M

    2016-01-01

    Evaluation of the adaptive immune response is critical to the advancement of our basic knowledge and understanding of respiratory syncytial virus (RSV). The cellular composition in the lung following RSV infection is often evaluated using flow cytometry. However, a limitation of this approach has been the inability to readily distinguish cells that are within the lung parenchyma from cells that remain in the pulmonary blood vessels. Herein, we detail a procedure to evaluate the adaptive immune response via flow cytometric analysis that incorporates an in vivo intravascular staining technique. This technique allows for discrimination of immune cells in the lung tissue from cells that remain in the pulmonary vasculature following perfusion. Therefore at any given time point following an RSV infection, the leukocytic populations in the lung parenchyma can be quantified and phenotypically assessed with high resolution. While we focus on the T lymphocyte response in the lung, this technique can be readily adapted to examine various leukocytic cell types in the lung following RSV infection. PMID:27464699

  7. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  8. Limbic Encephalitis: Potential Impact of Adaptive Autoimmune Inflammation on Neuronal Circuits of the Amygdala

    PubMed Central

    Melzer, Nico; Budde, Thomas; Stork, Oliver; Meuth, Sven G.

    2015-01-01

    Limbic encephalitis is characterized by adaptive autoimmune inflammation of the gray matter structures of the limbic system. It has recently been identified as a major cause of temporal lobe epilepsy accompanied by progressive declarative – mainly episodic – ­memory disturbance as well as a variety of rather poorly defined emotional and behavioral changes. While autoimmune inflammation of the hippocampus is likely to be responsible for declarative memory disturbance, consequences of autoimmune inflammation of the amygdala are largely unknown. The amygdala is central for the generation of adequate homoeostatic behavioral responses to emotionally significant external stimuli following processing in a variety of parallel neuronal circuits. Here, we hypothesize that adaptive cellular and humoral autoimmunity may target and modulate distinct inhibitory or excitatory neuronal networks within the amygdala, and thereby strongly impact processing of emotional stimuli and corresponding behavioral responses. This may explain some of the rather poorly understood neuropsychiatric symptoms in limbic encephalitis. PMID:26284026

  9. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice1

    PubMed Central

    Lalani, Almin I.; Moore, Carissa R.; Luo, Chang; Kreider, Benjamin Z.; Liu, Yan; Morse, Herbert C.; Xie, Ping

    2014-01-01

    Myeloid cells, including granulocytes, monocytes, macrophages and dendritic cells, are crucial players in innate immunity and inflammation. These cells constitutively or inducibly express a number of receptors of the TNF receptor and Toll-like receptor (TLR) families, whose signals are transduced by TRAF molecules. In vitro studies showed that TRAF3 is required for TLR-induced type I interferon production, but the in vivo function of TRAF3 in myeloid cells remains unknown. Here we report the generation and characterization of myeloid cell-specific TRAF3-deficient (M-TRAF3−/−) mice, which allowed us to gain insights into the in vivo functions of TRAF3 in myeloid cells. We found that TRAF3 ablation did not affect the maturation or homeostasis of myeloid cells in young adult mice, even though TRAF3-deficient macrophages and neutrophils exhibited constitutive NF-κB2 activation. However, in response to injections with LPS (a bacterial mimic) or polyI:C (a viral mimic), M-TRAF3−/− mice exhibited an altered profile of cytokine production. M-TRAF3−/− mice immunized with T cell-independent (TI) and -dependent (TD) antigens displayed elevated TI IgG3 as well as TD IgG2b responses. Interestingly, 15–22 month old M-TRAF3−/− mice spontaneously developed chronic inflammation or tumors, often affecting multiple organs. Taken together, our findings indicate that TRAF3 expressed in myeloid cells regulates immune responses in myeloid cells and acts to inhibit inflammation and tumor development in mice. PMID:25422508

  10. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances.

    PubMed

    Haapakoski, Rita; Ebmeier, Klaus P; Alenius, Harri; Kivimäki, Mika

    2016-04-01

    The inflammation theory of depression, proposed over 20years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced 'omics' technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account.

  11. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances

    PubMed Central

    Haapakoski, Rita; Ebmeier, Klaus P.; Alenius, Harri; Kivimäki, Mika

    2016-01-01

    The inflammation theory of depression, proposed over 20 years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced ‘omics’ technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. PMID:26631274

  12. Participation of blood vessel cells in human adaptive immune responses.

    PubMed

    Pober, Jordan S; Tellides, George

    2012-01-01

    Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans. PMID:22030237

  13. Immune complex–FcγR interaction modulates monocyte/macrophage molecules involved in inflammation and immune response

    PubMed Central

    BARRIONUEVO, P; BEIGIER-BOMPADRE, M; FERNANDEZ, G C; GOMEZ, S; ALVES-ROSA, M F; PALERMO, M S; ISTURIZ, M A

    2003-01-01

    The interaction between receptors for the Fc portion of IgG (FcγRs) from monocytes/macrophages and immune complexes (IC) triggers regulatory and effector functions. Recently, we have demonstrated that IC exert a drastic inhibition of basal and IFN-γ-induced expression of MHC class II on human monocytes. Taking into account that the regulation of MHC class II molecules is a crucial event in the immune response, in this report we extend our previous studies analysing the effect of STAT-1 phosphorylation in the down-regulatory process, the fate of the intracellular pool of MHC class II molecules and the effect of complement on MHC class II down-regulation induced by IC. We also studied the effect of IC on the expression of MHC class II (I-Ad) in macrophages using a mouse model of chronic inflammation. We demonstrate that IC induce a depletion not only on surface expressed but also on intracellular MHC class II content and that IC-induced down-regulation of MHC class II is not mediated by the inhibition of STAT-1 phosphorylation. On the other hand, the effect of IC is not specific for the down-regulation of MHC class II, for it could be restricted to other molecules involved in inflammatory processes. Our experiments also show that the activation of the complement system could be a crucial step on the regulation of the effect of IC on MHC class II expression. In agreement with our in vitro experiments using human monocytes, IC treatment reduces the expression of MHC class II in a mouse model of chronic inflammation. PMID:12869025

  14. Lipoxin A₄ modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism.

    PubMed

    Ramon, Sesquile; Bancos, Simona; Serhan, Charles N; Phipps, Richard P

    2014-02-01

    Specialized proresolving mediators are endogenous bioactive lipid molecules that play a fundamental role in the regulation of inflammation and its resolution. Lipoxins and other specialized proresolving mediators have been identified in important immunological tissues including bone marrow, spleen, and blood. Lipoxins regulate functions of the innate immune system including the promotion of monocyte recruitment and increase macrophage phagocytosis of apoptotic neutrophils. A major knowledge gap is whether lipoxins influence adaptive immune cells. Here, we analyzed the actions of lipoxin A₄ (LXA₄) and its receptor ALX/FPR2 on human and mouse B cells. LXA₄ decreased IgM and IgG production on activated human B cells through ALX/FPR2-dependent signaling, which downregulated NF-κB p65 nuclear translocation. LXA₄ also inhibited human memory B-cell antibody production and proliferation, but not naïve B-cell function. Lastly, LXA₄ decreased antigen-specific antibody production in an OVA immunization mouse model. To our knowledge, this is the first description of the actions of lipoxins on human B cells, demonstrating a link between resolution signals and adaptive immunity. Regulating antibody production is crucial to prevent unwanted inflammation. Harnessing the ability of lipoxins to decrease memory B-cell antibody production can be beneficial to threat inflammatory and autoimmune disorders.

  15. Ascorbic acid: its role in immune system and chronic inflammation diseases.

    PubMed

    Sorice, Angela; Guerriero, Eliana; Capone, Francesca; Colonna, Giovanni; Castello, Giuseppe; Costantini, Susan

    2014-05-01

    Ascorbic acid (AA), also known as vitamin C, was initially identified as the factor preventing the scurvy disease, and became very popular for its antioxidant properties. It is an important co-substrate of a large class of enzymes, and regulates gene expression by interacting with important transcription factors. AA is important in all stressful conditions that are linked to inflammatory processes and involve immunity. It has been known for decades that the persistence of an inflammatory stimulus is responsible for the onset of many diseases. AA is essential to stimulate the immune system by increasing the strength and protection of the organism. Therefore, its immunostimulant, antinflammatory, antiviral and antibacterial roles are well known, we have summarized its main functions in different types of diseases related to the immune system and chronic inflammation. We can conclude that AA, due to its effects and diversity of regulated pathways, is suitable for use in various fields of medicine including immunology, toxicology, radiobiology and others. AA is not preferable to be used as an isolated mode of treatment, but it can be co-applied as an adjuvant to regulate immunity, gene expression and other important physiological processes. However, we propose that future studies will take into consideration the research of new combinations of antioxidant natural substances and drugs. PMID:24766384

  16. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts.

    PubMed

    Zhu, Lv-yun; Nie, Li; Zhu, Guan; Xiang, Li-xin; Shao, Jian-zhong

    2013-01-01

    Fish is considered to be an important model in comparative immunology studies because it is a representative population of lower vertebrates serving as an essential link to early vertebrate evolution. Fish immune-relevant genes have received considerable attention due to its role in improving understanding of both fish immunology and the evolution of immune systems. In this review, we discuss the current understanding of teleost immune-relevant genes for both innate and adaptive immunity, including pattern recognition receptors, antimicrobial peptides, complement molecules, lectins, interferons and signaling factors, inflammatory cytokines, chemokines, adaptive immunity relevant cytokines and negative regulators, major histocompatibility complexes, immunoglobulins, and costimulatory molecules. The implications of these factors on the evolutionary history of immune systems were discussed and a perspective outline of innate and adaptive immunity of teleost fish was described. This review may provide clues on the evolution of the essential defense system in vertebrates.

  17. Re-balancing of inflammation and abeta immunity as a therapeutic for Alzheimer's disease-view from the bedside.

    PubMed

    Fiala, Milan

    2010-04-01

    Morbidities of aging and Alzheimer's disease (AD) have been related to defective functions of both T cells and macrophages leading to brain amyloidosis and inflammation. In AD patients, "inflammaging" may be associated with an increase of incompetent memory T cells and inflammatory cytokines produced by macrophages, whereas defective clearance of amyloid-beta 1-42 (Abeta) may be related to defective transcription of immune genes necessary for Abeta phagocytosis, beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase and Toll-like receptors. However, AD shows considerable heterogeneity of disease manifestations and mechanisms. The approaches to re-balancing Abeta immunity and inflammation are being pursued in transgenic animal models and peripheral blood mononuclear cells of patients. The regulatory signaling pathways of microglial phagocytosis and inflammation involving co-receptors and transforming growth factor-beta have been considerably clarified in animal studies. Natural immunostimulating therapies using vitamin D3 and curcuminoids have been developed in macrophages of AD patients. AD patients possess two types of macrophages: a majority has "Type I", which are improved by curcuminoids and vitamin D3; whereas a minority has "Type II" responding positively to vitamin D3 but not to curcuminoids. Other nutritional substances, such as plant polyphenols and omega-3 fatty acids, may inhibit inflammation and stimulate immunity. More invasive immune approaches involve Abeta vaccine and cytokine antagonists. Increased inflammation may represent the "first hit", and defective transcription of immune genes the "second hit" in the pathogenesis of AD.

  18. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling.

    PubMed

    Bottazzi, Barbara; Inforzato, Antonio; Messa, Massimo; Barbagallo, Marialuisa; Magrini, Elena; Garlanda, Cecilia; Mantovani, Alberto

    2016-06-01

    Pentraxins are a superfamily of fluid phase pattern recognition molecules conserved in evolution and characterized by a cyclic multimeric structure. C-reactive protein (CRP) and serum amyloid P component (SAP) constitute the short pentraxin arm of the superfamily. CRP and SAP are produced in the liver in response to IL-6 and are acute phase reactants in humans and mice respectively. In addition SAP has been shown to affect tissue remodelling and fibrosis by stabilizing all types of amyloid fibrils and by regulating monocyte to fibrocyte differentiation. Pentraxin 3 (PTX3) is the prototype of the long pentraxin arm. Gene targeted mice and genetic and epigenetic studies in humans suggest that PTX3 plays essential non-redundant roles in innate immunity and inflammation as well as in tissue remodelling. Recent studies have revealed the role of PTX3 as extrinsic oncosuppressor, able to tune cancer-related inflammation. In addition, at acidic pH PTX3 can interact with provisional matrix components promoting inflammatory matrix remodelling. Thus acidification during tissue repair sets PTX3 in a tissue remodelling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity.

  19. Circulating immune/inflammation markers in Chinese workers occupationally exposed to formaldehyde

    PubMed Central

    Seow, Wei Jie; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Hu, Wei; Bassig, Bryan A.; Ji, Zhiying; Shiels, Meredith S.; Kemp, Troy J.; Shen, Min; Qiu, Chuangyi; Reiss, Boris; Beane Freeman, Laura E.; Blair, Aaron; Kim, Christopher; Guo, Weihong; Wen, Cuiju; Li, Laiyu; Pinto, Ligia A.; Huang, Hanlin; Smith, Martyn T.; Hildesheim, Allan; Rothman, Nathaniel; Lan, Qing

    2015-01-01

    Background. Formaldehyde has been classified as a human myeloid leukemogen. However, the mechanistic basis for this association is still debated. Objectives. We aimed to evaluate whether circulating immune/inflammation markers were altered in workers occupationally exposed to formaldehyde. Methods. Using a multiplexed bead-based assay, we measured serum levels of 38 immune/inflammation markers in a cross-sectional study of 43 formaldehyde-exposed and 51 unexposed factory workers in Guangdong, China. Linear regression models adjusting for potential confounders were used to compare marker levels in exposed and unexposed workers. Results. We found significantly lower circulating levels of two markers among exposed factory workers compared with unexposed controls that remained significant after adjusting for potential confounders and multiple comparisons using a false discovery rate of 10%, including chemokine (C-X-C motif) ligand 11 (36.2 pg/ml in exposed versus 48.4 pg/ml in controls, P = 0.0008) and thymus and activation regulated chemokine (52.7 pg/ml in exposed versus 75.0 pg/ml in controls, P = 0.0028), suggesting immunosuppression among formaldehyde-exposed workers. Conclusions. Our findings are consistent with recently emerging understanding that immunosuppression might be associated with myeloid diseases. These findings, if replicated in a larger study, may provide insights into the mechanisms by which formaldehyde promotes leukemogenesis. PMID:25908645

  20. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  1. Interactions between nutrition and immune function: using inflammation biomarkers to interpret micronutrient status.

    PubMed

    Thurnham, David I

    2014-02-01

    The immune response promotes a complex series of reactions by the host in an effort to prevent ongoing tissue damage, isolate and destroy the infective organism and activate the repair processes that are necessary for restoring normal function. The homoeostatic process is known as inflammation and the early set of reactions that are induced are known as the acute phase response (APR). The APR has marked effects on the circulation, metabolism in the liver and the plasma concentration of many nutrients. The changes in nutrient concentrations follow a cyclic pattern; occurring before any clinical evidence of disease, being at their most pronounced during the disease and remaining in convalescence when all evidence of disease or trauma has disappeared. Therefore, where susceptibility to disease is high as in people who are HIV+ but still apparently healthy, obtaining an accurate measurement of nutritional status may not be possible. Accurate measurements of status are important for national statistics to plan for the proper utilisation of government resources and they are especially important to evaluate the effectiveness of nutritional interventions. Many acute phase proteins (APP) are synthesised during inflammation and they are used to monitor the progress of disease and recovery but, individually, none of their lifecycles compare well with those of the nutritional biomarkers. Nevertheless, recognising the presence of inflammation can help interpret data and, using two APP, this review paper will illustrate the methods we have developed to assist interpretation of plasma retinol, ferritin and zinc concentrations in apparently healthy, HIV+, Kenyan adults.

  2. Editing at the crossroad of innate and adaptive immunity.

    PubMed

    Turelli, Priscilla; Trono, Didier

    2005-02-18

    Genetic information can be altered through the enzymatic modification of nucleotide sequences. This process, known as editing, was originally identified in the mitochondrial RNA of trypanosomes and later found to condition events as diverse as neurotransmission and lipid metabolism in mammals. Recent evidence reveals that editing enzymes may fulfill one of their most essential roles in the defense against infectious agents: first, as the mediators of antibody diversification, a step crucial for building adaptive immunity, and second, as potent intracellular poisons for the replication of viruses. Exciting questions are raised, which take us to the depth of the intimate relations between vertebrates and the microbial underworld.

  3. Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury

    PubMed Central

    Ankeny, Daniel P.; Popovich, Phillip G.

    2009-01-01

    Traumatic spinal cord injury (SCI) in mammals causes widespread glial activation and recruitment to the CNS of innate (e.g., neutrophils, monocytes) and adaptive (e.g., T and B lymphocytes) immune cells. To date, most studies have sought to understand or manipulate the post-traumatic functions of astrocytes, microglia, neutrophils or monocytes. Significantly less is known about the consequences of SCI-induced lymphocyte activation. Yet, emerging data suggest that T and B cells are activated by SCI and play significant roles in shaping post-traumatic inflammation and downstream cascades of neurodegeneration and repair. Here, we provide neurobiologists with a timely review of the mechanisms and implications of SCI-induced lymphocyte activation, including a discussion of different experimental strategies that have been designed to manipulate lymphocyte function for therapeutic gain. PMID:18674593

  4. Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection

    PubMed Central

    Khan, Nargis; Vidyarthi, Aurobind; Javed, Shifa; Agrewala, Javed N.

    2016-01-01

    T cells play a cardinal role in imparting protection against Mycobacterium tuberculosis (Mtb). However, ample time is required before T-cells are able to evoke efficient effector responses in the lung, where the mycobacterium inflicts disease. This delay in T cells priming, which is termed as lag phase, provides sufficient time for Mtb to replicate and establish itself within the host. In contrast, innate immunity efficiently curb the growth of Mtb during initial phase of infection through several mechanisms. Pathogen recognition by innate cells rapidly triggers a cascade of events, such as apoptosis, autophagy, inflammasome formation and nitric oxide production to kill intracellular pathogens. Furthermore, bactericidal mechanisms such as autophagy and apoptosis, augment the antigen processing and presentation, thereby contributing substantially to the induction of adaptive immunity. This manuscript highlights the role of innate immune mechanisms in restricting the survival of Mtb during lag phase. Finally, this article provides new insight for designing immuno-therapies by targeting innate immune mechanisms to achieve optimum immune response to cure TB. PMID:27014247

  5. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases.

    PubMed

    Knight, Ellie T; Liu, Jenny; Seymour, Gregory J; Faggion, Clovis M; Cullinan, Mary P

    2016-06-01

    Plaque-induced periodontal diseases occur in response to the accumulation of dental plaque. Disease manifestation and progression is determined by the nature of the immune response to the bacterial complexes in plaque. In general, predisposing factors for these periodontal diseases can be defined as those factors which retain or hinder the removal of plaque and, depending upon the nature of the immune response to this plaque, the disease will either remain stable and not progress or it may progress and result in chronic periodontitis. In contrast, modifying factors can be defined as those factors that alter the nature or course of the inflammatory lesion. These factors do not cause the disease but rather modify the chronic inflammatory response, which, in turn, is determined by the nature of the innate and adaptive immune responses and the local cytokine and inflammatory mediator networks. Chronic inflammation is characterized by vascular, cellular and repair responses within the tissues. This paper will focus on how common modifying factors, such as smoking, stress, hormonal changes, diabetes, metabolic syndrome and HIV/AIDS, influence each of these responses, together with treatment implications. As treatment planning in periodontics requires an understanding of the etiology and pathogenesis of the disease, it is important for all modifying factors to be taken into account. For some of these, such as smoking, stress and diabetic control, supportive health behavior advice within the dental setting should be an integral component for overall patient management. PMID:27045429

  6. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus.

    PubMed

    Wolf, Susanne A; Steiner, Barbara; Wengner, Antje; Lipp, Martin; Kammertoens, Thomas; Kempermann, Gerd

    2009-09-01

    To understand the link between peripheral immune activation and neuronal precursor biology, we investigated the effect of T-cell activation on adult hippocampal neurogenesis in female C57Bl/6 mice. A peripheral adaptive immune response triggered by adjuvant-induced rheumatoid arthritis (2 microg/microl methylated BSA) or staphylococcus enterotoxin B (EC(50) of 0.25 microg/ml per 20 g body weight) was associated with a transient increase in hippocampal precursor cell proliferation and neurogenesis as assessed by immunohistochemistry and confocal microscopy. Both treatments were paralleled by an increase in corticosterone levels in the hippocampus 1- to 2-fold over the physiological amount measured by quantitative radioimmunoassay. In contrast, intraperitoneal administration of the innate immune response activator lipopolysaccaride (EC(50) of 0.5 microg/ml per 20 g body weight) led to a chronic 5-fold increase of hippocampal glucocorticoid levels and a decrease of adult neurogenesis. In vitro exposure of murine neuronal progenitor cells to corticosterone triggered either cell death at high (1.5 nM) or proliferation at low (0.25 nM) concentrations. This effect could be blocked using a viral vector system expressing a transdomain of the glucocorticoid receptor. We suggest an evolutionary relevant communication route for the brain to respond to environmental stressors like inflammation mediated by glucocorticoid levels in the hippocampus.

  7. Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis

    PubMed Central

    Weih, Falk; Gräbner, Rolf; Hu, Desheng; Beer, Michael; Habenicht, Andreas J. R.

    2012-01-01

    Tertiary lymphoid organs (TLOs) emerge in tissues in response to non-resolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs) in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE−/− mice. ATLOs are structured into T cell areas harboring conventional dendritic cells and monocyte-derived DCs; B cell follicles containing follicular dendritic cells within activated germinal centers; and peripheral niches of plasma cells. ATLOs also show extensive neoangiogenesis, aberrant lymphangiogenesis, and high endothelial venule (HEV) neogenesis. Newly formed conduit networks connect the external lamina of the artery with HEVs in T cell areas. ATLOs recruit and generate lymphocyte subsets with opposing activities including activated CD4+ and CD8+ effector T cells, natural and induced CD4+ T regulatory (nTregs; iTregs) cells as well as B-1 and B-2 cells at different stages of differentiation. These data indicate that ATLOs organize dichotomic innate and adaptive immune responses in atherosclerosis. In this review we discuss the novel concept that dichotomic immune responses toward atherosclerosis-specific antigens are carried out by ATLOs in the adventitia of the arterial wall and that malfunction of the tolerogenic arm of ATLO immunity triggers transition from silent autoimmune reactivity to clinically overt disease. PMID:22783198

  8. How does our increased understanding of the role of inflammation and innate immunity in acne impact treatment approaches?

    PubMed

    Leyden, James

    2016-01-01

    A supplement article recently published in the Journal of the European Academy of Dermatology and Venereology by Dréno et al., members of the Global Alliance to Improve Outcomes in Acne group, summarized the data for the emerging concept that inflammation in general and the innate immune system specifically play a central role in the pathogenesis of acne. This review, entitled "Understanding innate immunity and inflammation in acne: implications for management", also discusses the impact of different treatment options on the innate immune response and inflammation. The aim of the present summary is to provide a synopsis of the key points made in the paper, from the members of the Global Alliance, as relevant to the main article within this supplement: "Recent advances in the use of adapalene 0.1%/benzoyl peroxide 2.5% to treat acne patients with moderate to severe acne".

  9. Innate and Adaptive Immune Response to Fungal Products and Allergens.

    PubMed

    Williams, P Brock; Barnes, Charles S; Portnoy, Jay M

    2016-01-01

    Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions.

  10. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi.

    PubMed

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G; Joosten, Leo A B

    2016-09-01

    We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease. PMID:27101991

  11. How a well-adapted immune system is organized

    PubMed Central

    Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry; Walczak, Aleksandra M.

    2015-01-01

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from diverse pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. We develop a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters; individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens; and the optimal repertoires can be reached via the dynamics of competitive binding of antigens by receptors and selective amplification of stimulated receptors. Our results follow from a tension between the statistics of pathogen detection, which favor a broader receptor distribution, and the effects of cross-reactivity, which tend to concentrate the optimal repertoire onto a few highly abundant clones. Our predictions can be tested in high-throughput surveys of receptor and pathogen diversity. PMID:25918407

  12. [Adaptive immune response and associated trigger factors in atopic dermatitis].

    PubMed

    Heratizadeh, A; Werfel, T; Rösner, L M

    2015-02-01

    Due to a broad variety of extrinsic trigger factors, patients with atopic dermatitis (AD) are characterized by complex response mechanisms of the adaptive immune system. Notably, skin colonization with Staphylococcus aureus seems to be of particular interest since not only exotoxins, but also other proteins of S. aureus can induce specific humoral and cellular immune responses which partially also correlate with the severity of AD. In a subgroup of AD patients Malassezia species induce specific IgE- and T cell-responses which has been demonstrated by atopy patch tests. Moreover, Mala s 13 is characterized by high cross-reactivity to the human corresponding protein (thioredoxin). Induction of a potential autoallergy due to molecular mimicry seems therefore to be relevant for Malassezia-sensitized AD patients. In addition, sensitization mechanisms to autoallergens aside from cross-reactivity are under current investigation. Regarding inhalant allergens, research projects are in progress with the aim to elucidate allergen-specific immune response mechanisms in more depth. For grass-pollen allergens a flare-up of AD following controlled exposure has been observed while for house dust mite-allergens a polarization towards Th2 and Th2/Th17 T cell phenotypes can be observed. These and further findings might finally contribute to the development of specific and effective treatments for aeroallergen-sensitized AD patients. PMID:25532900

  13. Sec13 Regulates Expression of Specific Immune Factors Involved in Inflammation In Vivo

    PubMed Central

    Moreira, Thais G.; Zhang, Liang; Shaulov, Lihi; Harel, Amnon; Kuss, Sharon K.; Williams, Jessica; Shelton, John; Somatilaka, Bandarigoda; Seemann, Joachim; Yang, Jue; Sakthivel, Ramanavelan; Nussenzveig, Daniel R.; Faria, Ana M. C.; Fontoura, Beatriz M. A.

    2015-01-01

    The Sec13 protein functions in various intracellular compartments including the nuclear pore complex, COPII-coated vesicles, and inside the nucleus as a transcription regulator. Here we developed a mouse model that expresses low levels of Sec13 (Sec13H/−) to assess its functions in vivo, as Sec13 knockout is lethal. These Sec13 mutant mice did not present gross defects in anatomy and physiology. However, the reduced levels of Sec13 in vivo yielded specific immunological defects. In particular, these Sec13 mutant mice showed low levels of MHC I and II expressed by macrophages, low levels of INF-γ and IL-6 expressed by stimulated T cells, and low frequencies of splenic IFN-γ+CD8+ T cells. In contrast, the levels of soluble and membrane-bound TGF-β as well as serum immunoglobulin production are high in these mice. Furthermore, frequencies of CD19+CD5-CD95+ and CD19+CD5-IL-4+ B cells were diminished in Sec13H/− mice. Upon stimulation or immunization, some of the defects observed in the naïve mutant mice were compensated. However, TGF-β expression remained high suggesting that Sec13 is a negative modulator of TGF-β expression and of its immunosuppressive functions on certain immune cells. In sum, Sec13 regulates specific expression of immune factors with key functions in inflammation. PMID:26631972

  14. The innate and adaptive immune response to avian influenza virus infections and vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  15. Insulin-like growth factor-1 endues monocytes with immune suppressive ability to inhibit inflammation in the intestine.

    PubMed

    Ge, Rong-Ti; Mo, Li-Hua; Wu, Ruijin; Liu, Jiang-Qi; Zhang, Huan-Ping; Liu, Zhigang; Liu, Zhanju; Yang, Ping-Chang

    2015-01-15

    The pathogenesis of some chronic inflammation such as inflammatory bowel disease is unclear. Insulin-like growth factor-1 (IGF1) has active immune regulatory capability. This study aims to investigate into the mechanism by which IGF1 modulates the monocyte (Mo) properties to inhibit immune inflammation in the intestine. In this study, the production of IGF1 by intestinal epithelial cells was evaluated by real time RT-PCR and Western blotting. Mos were analyzed by flow cytometry. A mouse colitis model was created with trinitrobenzene sulfonic acid. The results showed that mouse IECs produced IGF1, which could be up regulated by exposure to CpG-ODN (CpG-oligodeoxynueleotides) in the culture. Culture the CpG-ODN-primed IEC cells and Mos or exposure of Mos to IGF1 in the culture induced the Mos to express IL-10. The IGF1-primed Mos showed the immune suppressive effect on inhibiting the immune inflammation in the mouse colon. In conclusion, the IGF1-primed Mos are capable of suppressing immune inflammation in the intestine.

  16. The role of the adaptive immune system in regulation of gut microbiota.

    PubMed

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-07-01

    The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system. Conversely, the immune system, particularly the adaptive immune system, plays a key role in shaping the repertoire of gut microbiota. The fitness of host immune system is reflected in the gut microbiota, and deficiencies in either innate or adaptive immunity impact on diversity and structures of bacterial communities in the gut. Here, we discuss the mechanisms that underlie this reciprocity and emphasize how the adaptive immune system via immunoglobulins (i.e. IgA) contributes to diversification and balance of gut microbiota required for immune homeostasis.

  17. Indoleamine 2,3-dioxygenase pathways of pathgenic inflammation and immune escape in cancer

    PubMed Central

    Prendergast, George C.; Smith, Courtney; Thomas, Sunil; Mandik-Nayak, Laura; Laury-Kleintop, Lisa; Metz, Richard; Muller, Alexander J.

    2014-01-01

    Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells (Treg) and myeloid-derived suppressor cells (MDSC), and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor AhR, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-β signaling. Small molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in GIST has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer. PMID:24711084

  18. Effects of environmental pollutants on airways, allergic inflammation, and the immune response.

    PubMed

    Handzel, Z T

    2000-01-01

    Particulate and gaseous air pollutants are capable of damaging the airway epithelial lining and of shifting the local immune balance, thereby facilitating the induction of persistent inflammation. Epidemiological studies are inconclusive regarding whether air pollution increases the incidence of asthma and chronic bronchitis in the population. Clearly, environmental pollution can, however, precipitate attacks and emergency-room admissions in those already suffering from such conditions. The catastrophic potential of airborne pollution was demonstrated in the 1960s and 1970s, when inverted atmospheric pressure conditions trapped smog over cities on the Eastern coast of the United States and over Europe. This smog resulted in thousands of hospital admissions and dozens of deaths. With the general rise in the incidence of atopy and asthma in the Western population, it is of major public health interest to reduce, as much as possible, the exposure of such populations to anthropogenic and natural sources of pollution. PMID:11048334

  19. Androgen receptor and immune inflammation in benign prostatic hyperplasia and prostate cancer

    PubMed Central

    Izumi, Kouji; Li, Lei; Chang, Chawnshang

    2014-01-01

    Both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are frequent diseases in middle-aged to elderly men worldwide. While both diseases are linked to abnormal growth of the prostate, the epidemiological and pathological features of these two prostate diseases are different. BPH nodules typically arise from the transitional zone, and, in contrast, PCa arises from the peripheral zone. Androgen deprivation therapy alone may not be sufficient to cure these two prostatic diseases due to its undesirable side effects. The alteration of androgen receptor-mediated inflammatory signals from infiltrating immune cells and prostate stromal/epithelial cells may play key roles in those unwanted events. Herein, this review will focus on the roles of androgen/androgen receptor signals in the inflammation-induced progression of BPH and PCa. PMID:26594314

  20. Inflammation, cytokines, immune response, apolipoprotein E, cholesterol, and oxidative stress in Alzheimer disease: therapeutic implications.

    PubMed

    Candore, Giuseppina; Bulati, Matteo; Caruso, Calogero; Castiglia, Laura; Colonna-Romano, Giuseppina; Di Bona, Danilo; Duro, Giovanni; Lio, Domenico; Matranga, Domenica; Pellicanò, Mariavaleria; Rizzo, Claudia; Scapagnini, Giovanni; Vasto, Sonya

    2010-01-01

    Alzheimer disease (AD) is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for senile dementia. Today many countries have rising aging populations and are facing an increased prevalence of age-related diseases, such as AD, with increasing health-care costs. Understanding the pathophysiology process of AD plays a prominent role in new strategies for extending the health of the elderly population. Considering the future epidemic of AD, prevention and treatment are important goals of ongoing research. However, a better understanding of AD pathophysiology must be accomplished to make this objective feasible. In this paper, we review some hot topics concerning AD pathophysiology that have an important impact on therapeutic perspectives. Hence, we have focused our attention on inflammation, cytokines, immune response, apolipoprotein E (APOE), cholesterol, oxidative stress, as well as exploring the related therapeutic possibilities, i.e., nonsteroidal antiinflammatory drugs, cytokine blocking antibodies, immunotherapy, diet, and curcumin.

  1. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation.

    PubMed

    Pedersen, Jannie; LaCasse, Eric C; Seidelin, Jakob B; Coskun, Mehmet; Nielsen, Ole H

    2014-11-01

    The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential.

  2. Sexual Orientation and Gender Differences in Markers of Inflammation and Immune Functioning

    PubMed Central

    Everett, Bethany G.; Rosario, Margaret; McLaughlin, Katie A.; Austin, S. Bryn

    2014-01-01

    Background Sexual minorities have documented elevated risk factors that can lead to inflammation and poor immune functioning Purpose Investigate disparities in C-Reactive protein and Epstein Barr Virus by gender and sexual orientation. Methods We used the National Longitudinal Study of Adolescent Health to examine disparities in CRP (N=11,462) and EBV (N=11,812). Results Among heterosexuals, women had higher levels of CRP and EBV than men. However, sexual-minority men had higher levels of CRP and EBV than heterosexual men and sexual minority women. Lesbians had lower levels of CRP than heterosexual women. Conclusions Gender differences in CRP and EBV found between men and women who identify as 100% heterosexual were reversed among sexual minorities and not explained by known risk factors (e.g. victimization, alcohol and tobacco use, BMI). More nuanced approaches to addressing gender differences in sexual orientation health disparities that include measures of gender nonconformity and minority stress are needed. PMID:24347405

  3. Tinospora cordifolia inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage.

    PubMed

    Sannegowda, K M; Venkatesha, S H; Moudgil, K D

    2015-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints leading to tissue damage. Despite the availability of potent drugs including the biologics, many patients fail to respond to them, whereas others suffer adverse effects following long-term use of these drugs. Accordingly, the use of natural herbal products by RA patients has been increasing over the years. However, limited information about the mechanism of action of these natural products is a major shortcoming that prevents the widespread acceptance of herbal therapy by professionals and patients alike. In this study, we demonstrated the anti-arthritic activity of Tinospora cordifolia extract (TCE) using the rat adjuvant-induced arthritis model of human RA and elaborated the immune mechanisms underlying this effect. TCE treatment suppressed arthritic inflammation and bone and cartilage damage. The anti-inflammatory effect of TCE was mediated via reduction of the pro-inflammatory cytokines such as: IL-1β, TNF-α, IL-6, and IL-17; the frequency of IL-17-producing T cells; and the production of chemokines such as RANTES. Furthermore, TCE treatment limited bone damage by shifting the balance of mediators of bone remodeling (e.g., receptor activator of nuclear factor-kB ligand [RANKL] and MMP-9) in favor of anti-osteoclastic activity. Our results suggest that TCE and its bioactive components should be evaluated for their utility as therapeutic adjuncts to conventional drugs against RA. PMID:26467057

  4. Diet and Inflammation: Possible Effects on Immunity, Chronic Diseases, and Life Span.

    PubMed

    Ricordi, Camillo; Garcia-Contreras, Marta; Farnetti, Sara

    2015-01-01

    Chronic inflammation negatively impacts all physiological functions, causing an array of degenerative conditions including diabetes; cancer; cardiovascular, osteo-articular, and neurodegenerative diseases; autoimmunity disorders; and aging. In particular, there is a growing knowledge of the role that gene transcription factors play in the inflammatory process. Obesity, metabolic syndrome, and diabetes represent multifactorial conditions resulting from improper balances of hormones and gene expression. In addition, these conditions have a strong inflammatory component that can potentially be impacted by the diet. It can reduce pro-inflammatory eicosanoids that can alter hormonal signaling cascades to the modulation of the innate immune system and gene transcription factors. Working knowledge of the impact of how nutrients, especially dietary fatty acids and polyphenols, can impact these various molecular targets makes it possible to develop a general outline of an anti-inflammatory diet that offers a unique, nonpharmacological approach in treating obesity, metabolic syndrome, and diabetes. Several important bioactive dietary components can exert their effect through selected inflammatory pathways that can affect metabolic and genetic changes. In fact, dietary components that can modulate glucose and insulin levels, as well as any other mediator that can activate nuclear factor-kB, can also trigger inflammation through common pathway master switches. PMID:26400428

  5. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    PubMed

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation.

  6. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    PubMed

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. PMID:26597009

  7. GATA-3 function in innate and adaptive immunity.

    PubMed

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.

  8. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  9. Adaptive Immunity Restricts Replication of Novel Murine Astroviruses

    PubMed Central

    Yokoyama, Christine C.; Loh, Joy; Zhao, Guoyan; Stappenbeck, Thaddeus S.; Wang, David; Huang, Henry V.

    2012-01-01

    The mechanisms of astrovirus pathogenesis are largely unknown, in part due to a lack of a small-animal model of disease. Using shotgun sequencing and a custom analysis pipeline, we identified two novel astroviruses capable of infecting research mice, murine astrovirus (MuAstV) STL1 and STL2. Subsequent analysis revealed the presence of at least two additional viruses (MuAstV STL3 and STL4), suggestive of a diverse population of murine astroviruses in research mice. Complete genomic characterization and subsequent phylogenetic analysis showed that MuAstV STL1 to STL4 are members of the mamastrovirus genus and are likely members of a new mamastrovirus genogroup. Using Rag1−/− mice deficient in B and T cells, we demonstrate that adaptive immunity is required to control MuAstV infection. Furthermore, using Stat1−/− mice deficient in innate signaling, we demonstrate a role for the innate immune response in the control of MuAstV replication. Our results demonstrate that MuAstV STL permits the study of the mechanisms of astrovirus infection and host-pathogen interactions in a genetically manipulable small-animal model. Finally, we detected MuAstV in commercially available mice, suggesting that these viruses may be present in academic and commercial research mouse facilities, with possible implications for interpretation of data generated in current mouse models of disease. PMID:22951832

  10. Adaptive immunity and histopathology in frog virus 3-infected Xenopus

    SciTech Connect

    Robert, Jacques . E-mail: robert@mail.rochester.edu; Morales, Heidi; Buck, Wayne; Cohen, Nicholas; Marr, Shauna; Gantress, Jennifer

    2005-02-20

    Xenopus has been used as an experimental model to evaluate the contribution of adaptive cellular immunity in amphibian host susceptibility to the emerging ranavirus FV3. Conventional histology and immunohistochemistry reveal that FV3 has a strong tropism for the proximal tubular epithelium of the kidney and is rarely disseminated elsewhere in Xenopus hosts unless their immune defenses are impaired or developmentally immature as in larvae. In such cases, virus is found widespread in most tissues. Adults, immunocompromised by depletion of CD8{sup +} T cells or by sub-lethal {gamma}-irradiation, show increased susceptibility to FV3 infection. Larvae and irradiated (but not normal) adults can be cross-infected through water by infected adult conspecifics (irradiated or not). The natural MHC class I deficiency and the absence of effect of anti-CD8 treatment on both larval CD8{sup +} T cells and larval susceptibility to FV3 are consistent with an inefficient CD8{sup +} T cell effector function during this developmental period.

  11. The activity of an anti-allergic compound, proxicromil, on models of immunity and inflammation.

    PubMed

    Keogh, R W; Bundick, R V; Cunnington, P G; Jenkins, S N; Blackham, A; Orr, T S

    1981-07-01

    A tricyclic chromone, proxicromil (sodium 6,7,8,9-tetrahydro-5-hydroxy-4-oxo-10-propyl-naphtho (2,3-b) pyran-2-carboxylate), has been tested for activity against certain immunological and inflammatory reactions. When given parenterally it suppressed the development of delayed hypersensitivity reactions in sensitized mice and guinea-pigs but did not affect the rejection of skin allografts in mice. The compound had no activity against certain in vitro correlates of delayed hypersensitivity reactions (lymphocyte transformation and lymphokine activity), but did have an inhibitory effect on lymphokine (MIF) productions at 10(-4) M but not at 10(-5) M. Proxicromil was also found to be active in non-immunologically mediated models of inflammation and in models having an immunological component which are known to be sensitive to non-steroidal anti-inflammatory drugs (adjuvant arthritis, reversed passive Arthus reaction). The activity of this compound was enhanced when administered in arachis oil when compared to its activity in saline. Proxicromil has not direct activity on the development of immune responsiveness but appear to suppress the expression of delayed hypersensitivity and immune complex mediated hypersensitivity reactions by virtue and its anti-inflammatory properties. This activity is not associated with inhibition of cyclo-oxygenase.

  12. The yin-yang of long pentraxin PTX3 in inflammation and immunity.

    PubMed

    Daigo, Kenji; Mantovani, Alberto; Bottazzi, Barbara

    2014-09-01

    Pentraxins are a family of multimeric proteins characterized by the presence of a pentraxin signature in their C-terminus region. Based on the primary structure, pentraxins are divided into short and long pentraxin: C-reactive protein (CRP) is the prototype of the short pentraxin subfamily while pentraxin 3 (PTX3) is the prototypic long pentraxin. Despite these two molecules exert similar fundamental actions in the regulation of innate immune and inflammatory responses, several differences exist between CRP and PTX3, including gene organization, protein oligomerization and expression pattern. The pathophysiological roles of PTX3 have been investigated using genetically modified mice since PTX3 gene organization and regulation are well conserved between mouse and human. Such in vivo studies figured out that PTX3 mainly have host-protective effects, even if it could also exert negative effects under certain pathophysiologic conditions. Here we will review the general properties of CRP and PTX3, emphasizing the differences between the two molecules and the regulatory functions exerted by PTX3 in innate immunity and inflammation.

  13. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria

    PubMed Central

    Barroso-Batista, João; Demengeot, Jocelyne; Gordo, Isabel

    2015-01-01

    Co-evolution between the mammalian immune system and the gut microbiota is believed to have shaped the microbiota's astonishing diversity. Here we test the corollary hypothesis that the adaptive immune system, directly or indirectly, influences the evolution of commensal species. We compare the evolution of Escherichia coli upon colonization of the gut of wild-type and Rag2−/− mice, which lack lymphocytes. We show that bacterial adaptation is slower in immune-compromised animals, a phenomenon explained by differences in the action of natural selection within each host. Emerging mutations exhibit strong beneficial effects in healthy hosts but substantial antagonistic pleiotropy in immune-deficient mice. This feature is due to changes in the composition of the gut microbiota, which differs according to the immune status of the host. Our results indicate that the adaptive immune system influences the tempo and predictability of E. coli adaptation to the mouse gut. PMID:26615893

  14. Genetic Variation in the Inflammation and Innate Immunity Pathways and Colorectal Cancer Risk

    PubMed Central

    Wang, Hansong; Taverna, Darin; Stram, Daniel O.; Fortini, Barbara K.; Cheng, Iona; Wilkens, Lynne R.; Burnett, Terrilea; Makar, Karen W.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steve; Baron, John A.; Haile, Robert; Kolonel, Laurence N.; Henderson, Brian E.; Newcomb, Polly A.; Casey, Graham; Duggan, David; Ulrich, Cornelia M.; Le Marchand, Loïc

    2013-01-01

    Background It is widely accepted that chronic inflammation plays a role in the etiology of colorectal cancer. Using a two-stage design, we examined the associations between colorectal cancer and common variation in 37 key genes in the inflammation and innate immunity pathways. Methods In the discovery stage, 2,322 discordant sibships (2,535 cases, 3,915 sibling controls) from the Colorectal Cancer Family Registry were genotyped for over 600 tagSNPs and 99 SNPs were selected for further examination based on strength of association. In the second stage, 351 SNPs tagging gene regions covered by the 99 SNPs were tested in 4,783 Multiethnic Cohort subjects (2,153 cases, 2,630 controls). Results The association between rs9858822 in the PPARG gene and colorectal cancer was statistically significant at the end of the second stage (odds ratio per allele = 1.36, Bonferroni-adjusted P = 0.045), based on the “effective” number of markers in Stage 2 (n = 306). The risk allele C was common (frequency 0.3) in African Americans but rare (frequency < 0.03) in whites, Japanese Americans, Latinos and Native Hawaiians. No statistically significant heterogeneity of effects across race/ethnicity, BMI levels, regular aspirin use or pack-years of smoking was detected for this SNP. Suggestive associations were also observed for several SNPs in close vicinity to rs9858822. Conclusions Our results provide new evidence of association between PPARG variants and colorectal cancer risk. Impact Further replication in independent samples is warranted. PMID:24045924

  15. [Connective tissue and inflammation].

    PubMed

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  16. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    PubMed

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  17. Trained immunity: A program of innate immune memory in health and disease.

    PubMed

    Netea, Mihai G; Joosten, Leo A B; Latz, Eicke; Mills, Kingston H G; Natoli, Gioacchino; Stunnenberg, Hendrik G; O'Neill, Luke A J; Xavier, Ramnik J

    2016-04-22

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases.

  18. Trained immunity: A program of innate immune memory in health and disease.

    PubMed

    Netea, Mihai G; Joosten, Leo A B; Latz, Eicke; Mills, Kingston H G; Natoli, Gioacchino; Stunnenberg, Hendrik G; O'Neill, Luke A J; Xavier, Ramnik J

    2016-04-22

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489

  19. Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype

    PubMed Central

    Nagato, Akinori C; Bezerra, Frank S; Talvani, André; Aarestrup, Beatriz J; Aarestrup, Fernando M

    2015-01-01

    Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or

  20. Skin inflammation arising from cutaneous regulatory T cell deficiency leads to impaired viral immune responses.

    PubMed

    Freyschmidt, Eva-Jasmin; Mathias, Clinton B; Diaz, Natalia; MacArthur, Daniel H; Laouar, Amale; Manjunath, Narasimhaswamy; Hofer, Matthias D; Wurbel, Marc-Andre; Campbell, James J; Chatila, Talal A; Oettgen, Hans C

    2010-07-15

    Individuals with atopic dermatitis immunized with the small pox vaccine, vaccinia virus (VV), are susceptible to eczema vaccinatum (EV), a potentially fatal disseminated infection. Dysfunction of Forkhead box P3 (FoxP3)-positive regulatory T cells (Treg) has been implicated in the pathogenesis of atopic dermatitis. To test whether Treg deficiency predisposes to EV, we percutaneously VV infected FoxP3-deficient (FoxP3(KO)) mice, which completely lack FoxP3(+) Treg. These animals generated both fewer VV-specific CD8(+) effector T cells and IFN-gamma-producing CD8(+) T cells than controls, had higher viral loads, and exhibited abnormal Th2-polarized responses to the virus. To focus on the consequences of Treg deficiency confined to the skin, we generated mixed CCR4(KO) FoxP3(KO) bone marrow (CCR4/FoxP3) chimeras in which skin, but not other tissues or central lymphoid organs, lack Treg. Like FoxP3(KO) mice, the chimeras had impaired VV-specific effector T cell responses and higher viral loads. Skin cytokine expression was significantly altered in infected chimeras compared with controls. Levels of the antiviral cytokines, type I and II IFNs and IL-12, were reduced, whereas expression of the proinflammatory cytokines, IL-6, IL-10, TGF-beta, and IL-23, was increased. Importantly, infection of CCR4/FoxP3 chimeras by a noncutaneous route (i.p.) induced immune responses comparable to controls. Our findings implicate allergic skin inflammation resulting from local Treg deficiency in the pathogenesis of EV.

  1. Immune-Mediated Inflammation May Contribute to the Pathogenesis of Cardiovascular Disease in Mucopolysaccharidosis Type I

    PubMed Central

    Gordts, Philip L.; Ellinwood, N. Matthew; Schwartz, Philip H.; Dickson, Patricia I.; Esko, Jeffrey D.; Wang, Raymond Y.

    2016-01-01

    Background Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease. Methods Gene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry. Results Gene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice. Conclusions Overexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for

  2. Bacterial Vaginosis and Subclinical Markers of Genital Tract Inflammation and Mucosal Immunity.

    PubMed

    Thurman, Andrea Ries; Kimble, Thomas; Herold, Betsy; Mesquita, Pedro M M; Fichorova, Raina N; Dawood, Hassan Y; Fashemi, Titilayo; Chandra, Neelima; Rabe, Lorna; Cunningham, Tina D; Anderson, Sharon; Schwartz, Jill; Doncel, Gustavo

    2015-11-01

    Bacterial vaginosis (BV) has been linked to an increased risk of human immunodeficiency virus (HIV) acquisition and transmission in observational studies, but the underlying biological mechanisms are unknown. We measured biomarkers of subclinical vaginal inflammation, endogenous antimicrobial activity, and vaginal flora in women with BV and repeated sampling 1 week and 1 month after completion of metronidazole therapy. We also compared this cohort of women with BV to a healthy control cohort without BV. A longitudinal, open label study of 33 women with a Nugent score of 4 or higher was conducted. All women had genital swabs, cervicovaginal lavage (CVL) fluid, and cervicovaginal biopsies obtained at enrollment and received 7 days of metronidazole treatment. Repeat sampling was performed approximately 1 week and 1 month after completion of therapy. Participant's baseline samples were compared to a healthy, racially matched control group (n=13) without BV. The CVL from women with resolved BV (Nugent 0-3) had significantly higher anti-HIV activity, secretory leukocyte protease inhibitor (SLPI), and growth-related oncogene alpha (GRO-α) levels and their ectocervical tissues had significantly more CD8 cells in the epithelium. Women with persistent BV after treatment had significantly higher levels of interleukin-1β, tumor necrosis factor alpha (TNF-α), and intercellular adhesion molecule 1 (ICAM-1) in the CVL. At study entry, participants had significantly greater numbers of CCR5(+) immune cells and a higher CD4/CD8 ratio in ectocervical tissues prior to metronidazole treatment, compared to a racially matched cohort of women with a Nugent score of 0-3. These data indicate that BV is associated with changes in select soluble immune mediators, an increase in HIV target cells, and a reduction in endogenous antimicrobial activity, which may contribute to the increased risk of HIV acquisition. PMID:26204200

  3. Impact of antiretroviral therapy (ART) timing on chronic immune activation/inflammation and end-organ damage

    PubMed Central

    Rajasuriar, Reena; Wright, Edwina; Lewin, Sharon R.

    2015-01-01

    Purpose of review The purpose of this review was to summarize recent studies on the effect of early antiretroviral therapy (ART) in HIV-infected patients on markers of immune activation/inflammation, viral persistence and serious non-AIDS events. Recent findings Early ART, initiated within days to months of HIV infection, was associated with marked reduction in T-cell activation often reaching levels observed in HIV-uninfected individuals. However, the impact of early ART on markers of innate immune activation, microbial translocation and inflammation/coagulation was less clear. Early ART has also been associated with a significant reduction in the frequency of latently infected cells, which was greater if ART was initiated within days to weeks rather than months following infection. However, few studies have evaluated the relationship between immune activation and viral reservoirs, specifically following early ART. Early ART may potentially reduce serious non-AIDS events and associated mortality, but most of these studies have extrapolated from changes in surrogate markers, such as CD4 : CD8 ratio. Summary Early ART was associated with beneficial effects on multiple markers of immune activation, inflammation and viral persistence. Longer term prospective studies are still needed to determine whether early ART translates to a significant reduction in serious non-AIDS events and mortality. PMID:25415420

  4. Lack of acetylcholine nicotine alpha 7 receptor suppresses development of collagen-induced arthritis and adaptive immunity.

    PubMed

    Westman, M; Saha, S; Morshed, M; Lampa, J

    2010-10-01

    Activation of the alpha7 receptor (α7nAChR) has been shown to be important in inflammation and immune regulation, and is also essential in the neural cholinergic anti-inflammatory pathway. The aim of this study was to investigate the role of α7nAChR in the development of experimental arthritis and immune activation. Mice lacking the α7nAChR were immunized with collagen II and the development of arthritis was assessed. Another group of α7nAChR-deficient mice was immunized with ovalbumin, spleen and lymph node cells were isolated and the proliferative responses to restimulation with ovalbumin or concanavalin A were investigated. We could demonstrate significantly milder arthritis and less cartilage destruction, together with a decrease of T cell content in lymph nodes in mice lacking the α7nAChR compared to wild-type controls. In addition, mice lacking the α7nAChR had a deficient proliferative response to concanavalin A, whereas antigen presentation-dependent proliferation was not affected. These results indicate important roles for α7nAChR in arthritis development as well as in regulation of T cell-dependent immunological mechanisms. In addition, the data implicate α7nAChR as a therapeutic target for modulation of adaptive immune responses.

  5. Foreign DNA capture during CRISPR–Cas adaptive immunity

    PubMed Central

    Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.; Engelman, Alan N.; Doudna, Jennifer A.

    2015-01-01

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40 base pair (bp) lengths into clustered regularly interspaced short palindromic repeats (CRISPR) loci as spacer segments1–6. The universally conserved Cas1–Cas2 integrase complex catalyzes spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases7–13. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33 nucleotide (nt) protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′–OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo2–4. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  6. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.

  7. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis.

    PubMed

    Solcà, Manuela S; Andrade, Bruno B; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R; Khouri, Ricardo; Valenzuela, Jesus G; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-09-06

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti-sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines.

  8. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis.

    PubMed

    Solcà, Manuela S; Andrade, Bruno B; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R; Khouri, Ricardo; Valenzuela, Jesus G; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-01-01

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti-sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines. PMID:27595802

  9. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis

    PubMed Central

    Solcà, Manuela S.; Andrade, Bruno B.; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R.; Khouri, Ricardo; Valenzuela, Jesus G.; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-01-01

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti–sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines. PMID:27595802

  10. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis

    NASA Astrophysics Data System (ADS)

    Solcà, Manuela S.; Andrade, Bruno B.; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R.; Khouri, Ricardo; Valenzuela, Jesus G.; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-09-01

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti–sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines.

  11. Basic biology and role of interleukin-17 in immunity and inflammation.

    PubMed

    Zenobia, Camille; Hajishengallis, George

    2015-10-01

    Interleukin-17 (also known as interleukin-17A) is a key cytokine that links T-cell activation to neutrophil mobilization and activation. As such, interleukin-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of interleukin-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of interleukin-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, interleukin-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis and other diseases involving bone immunopathology. Systemic treatments with anti-interleukin-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis; however, their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered interleukin-17 blockers, are required to implicate conclusivelyinterleukin-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease.

  12. Immunology and Homeopathy. 2. Cells of the Immune System and Inflammation

    PubMed Central

    Bellavite, Paolo; Conforti, Anita; Pontarollo, Francesco; Ortolani, Riccardo

    2006-01-01

    Here we describe the results of some experimental laboratory studies aimed at verifying the efficacy of high dilutions of substances and of homeopathic medicines in models of inflammation and immunity. Studies carried out on basophils, lymphocytes, granulocytes and fibroblasts are reviewed. This approach may help to test under controlled conditions the main principles of homeopathy such as ‘similarity’ of drug action at the cellular level and the effects of dilution/dynamization on the drug activity. The current situation is that few and rather small groups are working on laboratory models for homeopathy. Regarding the interpretation of data in view of the simile principle, we observe that there are different levels of similarity and that the laboratory data give support to this principle, but have not yet yielded the ultimate answer to the action mechanism of homeopathy. Evidence of the biological activity in vitro of highly diluted-dynamized solutions is slowly accumulating, with some conflicting reports. It is our hope that this review of literature unknown to most people will give an original and useful insight into the ‘state-of-the-art’ of homeopathy, without final conclusions ‘for’ or ‘against’ this modality. This kind of uncertainty may be difficult to accept, but is conceivably the most open-minded position now. PMID:16550219

  13. Selection for increased mass-independent maximal metabolic rate suppresses innate but not adaptive immune function

    PubMed Central

    Downs, Cynthia J.; Brown, Jessi L.; Wone, Bernard; Donovan, Edward R.; Hunter, Kenneth; Hayes, Jack P.

    2013-01-01

    Both appropriate metabolic rates and sufficient immune function are essential for survival. Consequently, eco-immunologists have hypothesized that animals may experience trade-offs between metabolic rates and immune function. Previous work has focused on how basal metabolic rate (BMR) may trade-off with immune function, but maximal metabolic rate (MMR), the upper limit to aerobic activity, might also trade-off with immune function. We used mice artificially selected for high mass-independent MMR to test for trade-offs with immune function. We assessed (i) innate immune function by quantifying cytokine production in response to injection with lipopolysaccharide and (ii) adaptive immune function by measuring antibody production in response to injection with keyhole limpet haemocyanin. Selection for high mass-independent MMR suppressed innate immune function, but not adaptive immune function. However, analyses at the individual level also indicate a negative correlation between MMR and adaptive immune function. By contrast BMR did not affect immune function. Evolutionarily, natural selection may favour increasing MMR to enhance aerobic performance and endurance, but the benefits of high MMR may be offset by impaired immune function. This result could be important in understanding the selective factors acting on the evolution of metabolic rates. PMID:23303541

  14. Interactions of innate and adaptive immunity in brain development and function

    PubMed Central

    Filiano, Anthony J.; Gadani, Sachin P.; Kipnis, Jonathan

    2014-01-01

    It has been known for decades that the immune system has a tremendous impact on behavior. Most work has described the negative role of immune cells on the central nervous system. However, we and others have demonstrated over the last decade that a well-regulated immune system is needed for proper brain function. Here we discuss several neuro-immune interactions, using examples from brain homeostasis and disease states. We will highlight our understanding of the consequences of malfunctioning immunity on neurodevelopment and will discuss the roles of the innate and adaptive immune system in neurodevelopment and how T cells maintain a proper innate immune balance in the brain surroundings and within its parenchyma. Also, we describe how immune imbalance impairs higher order brain functioning, possibly leading to behavioral and cognitive impairment. Lastly, we propose our hypothesis that some behavioral deficits in neurodevelopmental disorders, such as in autism spectrum disorder, are the consequence of malfunctioning immunity. PMID:25110235

  15. Liver Fibrosis and Mechanisms of the Protective Action of Medicinal Plants Targeting Inflammation and the Immune Response

    PubMed Central

    Moreno-Cuevas, Jorge E.; González-Garza, María Teresa; Maldonado-Bernal, Carmen; Cruz-Vega, Delia Elva

    2015-01-01

    Inflammation is a central feature of liver fibrosis as suggested by its role in the activation of hepatic stellate cells leading to extracellular matrix deposition. During liver injury, inflammatory cells are recruited in the injurious site through chemokines attraction. Thus, inflammation could be a target to reduce liver fibrosis. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. The aim of this review is to describe the role of inflammation and the immune response in the pathogenesis of liver fibrosis and detail the mechanisms of inhibition of both events by medicinal plants in order to reduce liver fibrosis. PMID:25954568

  16. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation

    PubMed Central

    Zhong, Wenwei; Su, Wen; Zhang, Yanjie; Liu, Qi; Wu, Jinhong; Di, Caixia; Zhang, Zili; Xia, Zhenwei

    2014-01-01

    Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE–antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4. PMID:24383680

  17. Dermatomycoses and inflammation: The adaptive balance between growth, damage, and survival.

    PubMed

    Hube, B; Hay, R; Brasch, J; Veraldi, S; Schaller, M

    2015-03-01

    Dermatomycosis is characterized by both superficial and subcutaneous infections of keratinous tissues and mucous membranes caused by a variety of fungal agents, the two most common classes being dermatophytes and yeasts. Overall, the stepwise process of host infection is similar among the main dermatomycotic species; however, the species-specific ability to elicit a host reaction upon infection is distinct. Yeasts such as Candida albicans elicit a relatively low level of host tissue damage and inflammation during pathogenic infection, while dermatophytes may induce a higher level of tissue damage and inflammatory reaction. Both pathogens can, however, manipulate the host's immune response, ensuring survival and prolonging chronic infection. One common element of most dermatomycotic infections is the disease burden caused by inflammation and associated signs and symptoms, such as erythema, burning and pruritus. There is a strong clinical rationale for the addition of a topical corticosteroid agent to an effective antimycotic therapy, especially in patients who present with inflammatory dermatomycoses (e.g., tinea inguinalis). In this review, we aim to compare the pathogenesis of common dermatomycotic species, including Candida yeasts (Candida albicans), dermatophytes (Trichophyton, Epidermophyton or Microsporum species), and other pathogenic yeasts (Malassezia), with a special focus on unique species-specific aspects of the respective infection processes, the interaction between essential aspects of pathogenic infection, the different roles of the host inflammatory response, and the clinical consequences of the infection-related tissue damage and inflammation. We hope that a broader understanding of the various mechanisms of dermatomycoses may contribute to more effective management of affected patients. PMID:25662199

  18. Role of Vanadium in Cellular and Molecular Immunology: Association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms

    PubMed Central

    Tsave, Olga; Petanidis, Savvas; Kioseoglou, Efrosini; Yavropoulou, Maria P.; Yovos, John G.; Anestakis, Doxakis; Tsepa, Androniki; Salifoglou, Athanasios

    2016-01-01

    Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a “safe,” highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs. PMID:27190573

  19. Role of Vanadium in Cellular and Molecular Immunology: Association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms.

    PubMed

    Tsave, Olga; Petanidis, Savvas; Kioseoglou, Efrosini; Yavropoulou, Maria P; Yovos, John G; Anestakis, Doxakis; Tsepa, Androniki; Salifoglou, Athanasios

    2016-01-01

    Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a "safe," highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs. PMID:27190573

  20. Role of Vanadium in Cellular and Molecular Immunology: Association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms.

    PubMed

    Tsave, Olga; Petanidis, Savvas; Kioseoglou, Efrosini; Yavropoulou, Maria P; Yovos, John G; Anestakis, Doxakis; Tsepa, Androniki; Salifoglou, Athanasios

    2016-01-01

    Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a "safe," highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs.

  1. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zu, Yun-Xiao; Zhou, Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.

  2. Adaptive immune response of Vγ2Vδ2 T cells: a new paradigm

    PubMed Central

    Chen, Zheng W.; Letvin, Norman L.

    2010-01-01

    The role of γδ T cells in adaptive immunity remains uncertain. Recent studies have demonstrated that a unique subset of γδ T cells in primates can mount adaptive immune responses during mycobacterial infections. This Review discusses notable similarities and differences in adaptive immune responses between non-peptide-specific γδ T cells and peptide-specific αβ T cells, and discusses both the molecular basis for γδ T-cell responses and potential functions of these enigmatic cells. PMID:12697454

  3. Coordinate actions of innate immune responses oppose those of the adaptive immune system during Salmonella infection of mice.

    PubMed

    Hotson, Andrew N; Gopinath, Smita; Nicolau, Monica; Khasanova, Anna; Finck, Rachel; Monack, Denise; Nolan, Garry P

    2016-01-12

    The immune system enacts a coordinated response when faced with complex environmental and pathogenic perturbations. We used the heterogeneous responses of mice to persistent Salmonella infection to model system-wide coordination of the immune response to bacterial burden. We hypothesized that the variability in outcomes of bacterial growth and immune response across genetically identical mice could be used to identify immune elements that serve as integrators enabling co-regulation and interconnectedness of the innate and adaptive immune systems. Correlation analysis of immune response variation to Salmonella infection linked bacterial load with at least four discrete, interacting functional immune response "cassettes." One of these, the innate cassette, in the chronically infected mice included features of the innate immune system, systemic neutrophilia, and high serum concentrations of the proinflammatory cytokine interleukin-6. Compared with mice with a moderate bacterial load, mice with the highest bacterial burden exhibited high activity of this innate cassette, which was associated with a dampened activity of the adaptive T cell cassette-with fewer plasma cells and CD4(+) T helper 1 cells and increased numbers of regulatory T cells-and with a dampened activity of the cytokine signaling cassette. System-wide manipulation of neutrophil numbers revealed that neutrophils regulated signal transducer and activator of transcription (STAT) signaling in B cells during infection. Thus, a network-level approach demonstrated unappreciated interconnections that balanced innate and adaptive immune responses during the dynamic course of disease and identified signals associated with pathogen transmission status, as well as a regulatory role for neutrophils in cytokine signaling.

  4. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    PubMed

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole.

  5. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    PubMed

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.

  6. Malnutrition and inflammation-"burning down the house": inflammation as an adaptive physiologic response versus self-destruction?

    PubMed

    Jensen, Gordon L

    2015-01-01

    A summary of my 2014 Rhoads Lecture is presented that explores our progress in understanding the complex interplay of malnutrition and inflammation. A historical perspective is provided that highlights the contributions of some of the key pioneers in the nutrition assessment field. Advances in agriculture, education, public health, healthcare, and living standards have affected traditional settings for malnutrition. The chronic disease, surgery, and injury conditions that are associated with modern healthcare are becoming prevalent settings for malnutrition. One consequence has been a growing appreciation for the contributions of inflammation to malnutrition in these clinical conditions. This recognition has driven a fresh look at how we define and think about malnutrition syndromes. An inflammatory component is included in the definitions suggested by the recent Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition consensus report that also describes characteristics recommended for the identification and documentation of malnutrition. Efforts are currently underway to evaluate the feasibility and validity of this approach. Recent advances in research highlight the profound impact of inflammation-mediated erosion of muscle mass on clinical outcomes. Research to identify better biomarkers of inflammation and malnutrition must be a leading priority. New "omics" approaches are an especially promising avenue of biomarker investigation. Inflammation can be a good thing; let's try to keep it that way.

  7. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system.

    PubMed

    Martin, Seamus J

    2016-07-01

    It is well known that necrotic cells are capable of promoting inflammation through releasing so-called endogenous 'danger signals' that can promote activation of macrophages, dendritic cells, and other sentinel cells of the innate immune system. However, the identity of these endogenous proinflammatory molecules, also called damage-associated molecular patterns (DAMPs), has been debated since the 'danger model' was first advanced 20 years ago. While a relatively large number of molecules have been proposed to act as DAMPs, little consensus has emerged concerning which of these represent the key activators of sterile inflammation. Here I argue that the canonical DAMPs have long been hiding in plain sight, in the form of members of the extended IL-1 cytokine family (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ). The latter cytokines possess all of the characteristics expected of endogenous DAMPs and initiate inflammation in a manner strikingly similar to that utilized by the other major category of inflammatory triggers, pathogen-associated molecular patterns (PAMPs). Furthermore, many PAMPs upregulate the expression of IL-1 family DAMPs, enabling robust synergy between these distinct classes of inflammatory triggers. Thus, multiple lines of evidence now suggest that IL-1 family cytokines represent the key initiators of necrosis-initiated sterile inflammation, as well as amplifiers of inflammation in response to infection-associated tissue injury. PMID:27273805

  8. Standard of hygiene and immune adaptation in newborn infants.

    PubMed

    Kallionpää, Henna; Laajala, Essi; Öling, Viveka; Härkönen, Taina; Tillmann, Vallo; Dorshakova, Natalya V; Ilonen, Jorma; Lähdesmäki, Harri; Knip, Mikael; Lahesmaa, Riitta

    2014-11-01

    The prevalence of immune-mediated diseases, such as allergies and type 1 diabetes, is on the rise in the developed world. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from infants born in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economic conditions). The whole blood transcriptome of Finnish and Estonian neonates differed from their Karelian counterparts, suggesting exposure to toll-like receptor (TLR) ligands and a more matured immune response in infants born in Karelia. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation in accordance with the surrounding microbial milieu. PMID:25245264

  9. Role of Innate and Adaptive Immunity in Cardiac Injury and Repair

    PubMed Central

    Epelman, Slava; Liu, Peter P.; Mann, Douglas L.

    2015-01-01

    Despite significant advances, cardiovascular disease is the leading cause of world-wide mortality, highlighting an important yet unmet clinical need. Understanding the pathophysiological basis underlying cardiovascular tissue injury and repair in therefore of prime importance. Following cardiac tissue injury, the immune system plays an important and complex role throughout the acute inflammatory response and regenerative response. This review will summarize the role of the immune system in cardiovascular disease, and focus on the idea that the immune system evolved to promote tissue homeostasis following tissue injury and/or infection, and that the inherent cost of this evolutionary development is unwanted inflammatory mediated damage. While inflammation induced tissue damage is of little evolutionary consequence in organisms that have limited life spans, as will be discussed below, inflammation plays a major role in the development of cardiovascular disease worldwide in humans. PMID:25614321

  10. Fc Gamma Receptor Signaling in Mast Cells Links Microbial Stimulation to Mucosal Immune Inflammation in the Intestine

    PubMed Central

    Chen, Xiao; Feng, Bai-Sui; Zheng, Peng-Yuan; Liao, Xue-Qing; Chong, Jasmine; Tang, Shang-Guo; Yang, Ping-Chang

    2008-01-01

    Microbes and microbial products are closely associated with the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms behind this connection remain unclear. It has been previously reported that flagellin-specific antibodies are increased in IBD patient sera. As mastocytosis is one of the pathological features of IBD, we hypothesized that flagellin-specific immune responses might activate mast cells that then contribute to the initiation and maintenance of intestinal inflammation. Thirty-two colonic biopsy samples were collected from IBD patients. A flagellin/flagellin-specific IgG/Fc gamma receptor I complex was identified on biopsied mast cells using both immunohistochemistry and co-immunoprecipitation experiments; this complex was shown to co-localize on the surfaces of mast cells in the colonic mucosa of patients with IBD. In addition, an ex vivo study showed flagellin-IgG was able to bind to human mast cells. These cells were found to be sensitized to flagellin-specific IgG; re-exposure to flagellin induced the mast cells to release inflammatory mediators. An animal model of IBD was then used to examine flagellin-specific immune responses in the intestine. Mice could be sensitized to flagellin, and repeated challenges with flagellin induced an IBD-like T helper 1 pattern of intestinal inflammation that could be inhibited by pretreatment with anti-Fc gamma receptor I antibodies. Therefore, flagellin-specific immune responses activate mast cells in the intestine and play important roles in the pathogenesis of intestinal immune inflammation. PMID:18974296

  11. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense system ...

  12. CXCL10-Mediates Macrophage, but not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis

    PubMed Central

    Tomita, Kyoko; Freeman, Brittany L.; Bronk, Steven F.; LeBrasseur, Nathan K.; White, Thomas A.; Hirsova, Petra; Ibrahim, Samar H.

    2016-01-01

    Nonalcoholic steatohepatitis (NASH) is an inflammatory lipotoxic disorder, but how inflammatory cells are recruited and activated within the liver is still unclear. We previously reported that lipotoxic hepatocytes release CXCL10-enriched extracellular vesicles, which are potently chemotactic for cells of the innate immune system. In the present study, we sought to determine the innate immune cell involved in the inflammatory response in murine NASH and the extent to which inhibition of the chemotactic ligand CXCL10 and its cognate receptor CXCR3 could attenuate liver inflammation, injury and fibrosis. C57BL/6J CXCL10−/−, CXCR3−/− and wild type (WT) mice were fed chow or high saturated fat, fructose, and cholesterol (FFC) diet. FFC-fed CXCL10−/− and WT mice displayed similar weight gain, metabolic profile, insulin resistance, and hepatic steatosis. In contrast, compared to the WT mice, FFC-fed CXCL10−/− mice had significantly attenuated liver inflammation, injury and fibrosis. Genetic deletion of CXCL10 reduced FFC-induced proinflammatory hepatic macrophage infiltration, while natural killer cells, natural killer T cells, neutrophils and dendritic cells hepatic infiltration were not significantly affected. Our results suggest that CXCL10−/− mice are protected against diet-induced NASH, in an obesity-independent manner. Macrophage-associated inflammation appears to be the key player in the CXCL10-mediated sterile inflammatory response in murine NASH. PMID:27349927

  13. The Role of Platelet-Activating Factor in Chronic Inflammation, Immune Activation, and Comorbidities Associated with HIV Infection

    PubMed Central

    Kelesidis, Theodoros; Papakonstantinou, Vasiliki; Detopoulou, Paraskevi; Fragopoulou, Elizabeth; Chini, Maria; Lazanas, Marios C.; Antonopoulou, Smaragdi

    2016-01-01

    With the advent of highly effective antiretroviral therapy, cardiovascular disease has become an important cause of morbidity and mortality among people with treated HIV-1, but the pathogenesis is unclear. Platelet-activating factor is a potent lipid mediator of inflammation that has immunomodulatory effects and a pivotal role in the pathogenesis of inflammatory disorders and cardiovascular disease. Limited scientific evidence suggests that the platelet-activating factor pathway may be a mechanistic link between HIV-1 infection, systemic inflammation, and immune activation that contribute to pathogenesis of chronic HIV-related comorbidities, including cardiovascular disease and HIV-associated neurocognitive disorders. In this review, we examine the mechanisms by which the cross-talk between HIV-1, immune dysregulation, inflammation, and perturbations in the platelet-activating factor pathway may directly affect HIV-1 immunopathogenesis. Understanding the role of platelet-activating factor in HIV-1 infection may pave the way for further studies to explore therapeutic interventions, such as diet, that can modify platelet-activating factor activity and use of platelet-activating factor inhibitors that might improve the prognosis of HIV-1 infected patients. PMID:26616844

  14. CXCL10-Mediates Macrophage, but not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis.

    PubMed

    Tomita, Kyoko; Freeman, Brittany L; Bronk, Steven F; LeBrasseur, Nathan K; White, Thomas A; Hirsova, Petra; Ibrahim, Samar H

    2016-01-01

    Nonalcoholic steatohepatitis (NASH) is an inflammatory lipotoxic disorder, but how inflammatory cells are recruited and activated within the liver is still unclear. We previously reported that lipotoxic hepatocytes release CXCL10-enriched extracellular vesicles, which are potently chemotactic for cells of the innate immune system. In the present study, we sought to determine the innate immune cell involved in the inflammatory response in murine NASH and the extent to which inhibition of the chemotactic ligand CXCL10 and its cognate receptor CXCR3 could attenuate liver inflammation, injury and fibrosis. C57BL/6J CXCL10(-/-), CXCR3(-/-) and wild type (WT) mice were fed chow or high saturated fat, fructose, and cholesterol (FFC) diet. FFC-fed CXCL10(-/-) and WT mice displayed similar weight gain, metabolic profile, insulin resistance, and hepatic steatosis. In contrast, compared to the WT mice, FFC-fed CXCL10(-/-) mice had significantly attenuated liver inflammation, injury and fibrosis. Genetic deletion of CXCL10 reduced FFC-induced proinflammatory hepatic macrophage infiltration, while natural killer cells, natural killer T cells, neutrophils and dendritic cells hepatic infiltration were not significantly affected. Our results suggest that CXCL10(-/-) mice are protected against diet-induced NASH, in an obesity-independent manner. Macrophage-associated inflammation appears to be the key player in the CXCL10-mediated sterile inflammatory response in murine NASH.

  15. T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation

    PubMed Central

    Whitacre, James M.; Lin, Joseph; Harding, Angus

    2011-01-01

    Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338

  16. Quantifying the Early Immune Response and Adaptive Immune Response Kinetics in Mice Infected with Influenza A Virus ▿

    PubMed Central

    Miao, Hongyu; Hollenbaugh, Joseph A.; Zand, Martin S.; Holden-Wiltse, Jeanne; Mosmann, Tim R.; Perelson, Alan S.; Wu, Hulin; Topham, David J.

    2010-01-01

    Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is ∼1.2 days, and the half-life of free infectious IAV is ∼4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is ∼0.5 days, and the average half-life of free infectious virus is ∼1.8 min. During the adaptive phase, model fitting confirms that CD8+ CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity. PMID:20410284

  17. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    PubMed

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression. PMID:26884167

  18. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    PubMed

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression.

  19. Adaptive immunity maintains occult cancer in an equilibrium state.

    PubMed

    Koebel, Catherine M; Vermi, William; Swann, Jeremy B; Zerafa, Nadeen; Rodig, Scott J; Old, Lloyd J; Smyth, Mark J; Schreiber, Robert D

    2007-12-01

    The capacity of immunity to control and shape cancer, that is, cancer immunoediting, is the result of three processes that function either independently or in sequence: elimination (cancer immunosurveillance, in which immunity functions as an extrinsic tumour suppressor in naive hosts); equilibrium (expansion of transformed cells is held in check by immunity); and escape (tumour cell variants with dampened immunogenicity or the capacity to attenuate immune responses grow into clinically apparent cancers). Extensive experimental support now exists for the elimination and escape processes because immunodeficient mice develop more carcinogen-induced and spontaneous cancers than wild-type mice, and tumour cells from immunodeficient mice are more immunogenic than those from immunocompetent mice. In contrast, the equilibrium process was inferred largely from clinical observations, including reports of transplantation of undetected (occult) cancer from organ donor into immunosuppressed recipients. Herein we use a mouse model of primary chemical carcinogenesis and demonstrate that equilibrium occurs, is mechanistically distinguishable from elimination and escape, and that neoplastic cells in equilibrium are transformed but proliferate poorly in vivo. We also show that tumour cells in equilibrium are unedited but become edited when they spontaneously escape immune control and grow into clinically apparent tumours. These results reveal that, in addition to destroying tumour cells and sculpting tumour immunogenicity, the immune system of a naive mouse can also restrain cancer growth for extended time periods.

  20. Prophylactic and Therapeutic Modulation of Innate and Adaptive Immunity Against Mucosal Infection of Herpes Simplex Virus

    PubMed Central

    Uyangaa, Erdenebileg; Patil, Ajit Mahadev

    2014-01-01

    Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, CD4+ Th1 T cells producing IFN-γ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses. PMID:25177251

  1. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    NASA Astrophysics Data System (ADS)

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  2. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice

    PubMed Central

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-01-01

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors. PMID:26975571

  3. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion.

    PubMed

    Yao, Chengcan; Sakata, Daiji; Esaki, Yoshiyasu; Li, Youxian; Matsuoka, Toshiyuki; Kuroiwa, Kenji; Sugimoto, Yukihiko; Narumiya, Shuh

    2009-06-01

    Two distinct helper T (TH) subsets, TH1 and TH17, mediate tissue damage and inflammation in animal models of various immune diseases such as multiple sclerosis, rheumatoid arthritis, inflammatory bowel diseases and allergic skin disorders. These experimental findings, and the implication of these TH subsets in human diseases, suggest the need for pharmacological measures to manipulate these TH subsets. Here we show that prostaglandin E2 (PGE2) acting on its receptor EP4 on T cells and dendritic cells not only facilitates TH1 cell differentiation but also amplifies interleukin-23-mediated TH17 cell expansion in vitro. Administration of an EP4-selective antagonist in vivo decreases accumulation of both TH1 and TH17 cells in regional lymph nodes and suppresses the disease progression in mice subjected to experimental autoimmune encephalomyelitis or contact hypersensitivity. Thus, PGE2-EP4 signaling promotes immune inflammation through TH1 differentiation and TH17 expansion, and EP4 antagonism may be therapeutically useful for various immune diseases.

  4. Caloric Restriction reduces inflammation and improves T cell-mediated immune response in obese mice but concomitant consumption of curcumin/piperine adds no further benefit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with low-grade inflammation and impaired immune response. Caloric restriction (CR) has been shown to inhibit inflammatory response and enhance cell-mediated immune function. Curcumin, the bioactive phenolic component of turmeric spice, is proposed to have anti-obesity and anti-...

  5. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non obese humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-cen...

  6. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity

    PubMed Central

    Uto, Tomofumi; Fukaya, Tomohiro; Takagi, Hideaki; Arimura, Keiichi; Nakamura, Takeshi; Kojima, Naoya; Malissen, Bernard; Sato, Katsuaki

    2016-01-01

    Dendritic cells (DCs) comprise several subsets that are critically involved in the initiation and regulation of immunity. Clec4A4/DC immunoreceptor 2 (DCIR2) is a C-type lectin receptor (CLR) exclusively expressed on CD8α− conventional DCs (cDCs). However, how Clec4A4 controls immune responses through regulation of the function of CD8α− cDCs remains unclear. Here we show that Clec4A4 is a regulatory receptor for the activation of CD8α− cDCs that impairs inflammation and T-cell immunity. Clec4a4−/−CD8α− cDCs show enhanced cytokine production and T-cell priming following Toll-like receptor (TLR)-mediated activation. Furthermore, Clec4a4−/− mice exhibit TLR-mediated hyperinflammation. On antigenic immunization, Clec4a4−/− mice show not only augmented T-cell responses but also progressive autoimmune pathogenesis. Conversely, Clec4a4−/− mice exhibit resistance to microbial infection, accompanied by enhanced T-cell responses against microbes. Thus, our findings highlight roles of Clec4A4 in regulation of the function of CD8α− cDCs for control of the magnitude and quality of immune response. PMID:27068492

  7. Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses

    PubMed Central

    van de Sandt, Carolien E.; Kreijtz, Joost H. C. M.; Rimmelzwaan, Guus F.

    2012-01-01

    The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies. PMID:23170167

  8. The microbiota in adaptive immune homeostasis and disease.

    PubMed

    Honda, Kenya; Littman, Dan R

    2016-07-06

    In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota-host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy.

  9. Modulation of host adaptive immunity by hRSV proteins

    PubMed Central

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  10. Evolutionary insights into the origin of innate and adaptive immune systems: different shades of grey.

    PubMed

    Sirisinha, Stitaya

    2014-03-01

    To struggle for survival, all living organisms, from protists to humans, must defend themselves from attack by predators. From the time when life began around 3,500 million years ago, all living cells have evolved mechanisms and strategies to optimally defend themselves, while the invaders also need to survive by evading these immune defenses. The end results would be healthy co-evolution of both parties. Classically, immune host defense is divided into two main categories, namely, innate and adaptive systems. It is well documented that while vertebrates possess both systems, invertebrates and prokaryotes like bacteria and archaea depend almost exclusively on the innate immune functions. Although the adaptive immune system like antibodies and cellular immunity or their equivalents are believed to have evolved at the time when the vertebrates first appeared about 550 million years ago, more recent information from molecular and genomic studies suggest that different forms of adaptive immune system may also be present in the invertebrates as well. These forms of "adaptive" immune system exhibit, for instance, limited degrees of memory, diversity and similarities of their immune receptors with the immunoglobulin domains of the conventional adaptive immune system of vertebrates. Organized lymphoid tissues have been identified in all vertebrates. Very recent molecular and genetic data further suggest that a special type of adaptive system functioning like RNAi of vertebrates is also present in the very ancient form of life like the bacteria and archaea. In this review, I provide some insights, based on recent information gathering from evolutionary data of innate and adaptive immune receptors of invertebrate and vertebrate animals that should convince the readers that our current view on the innate and adaptive immunity may need to be modified. The distinction between the two systems should not be thought of in terms of a "black and white" phenomenon anymore, as recent

  11. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity

    PubMed Central

    Shanely, R. Andrew; Nieman, David C.; Perkins-Veazie, Penelope; Henson, Dru A.; Meaney, Mary P.; Knab, Amy M.; Cialdell-Kam, Lynn

    2016-01-01

    Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488

  12. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity.

    PubMed

    Shanely, R Andrew; Nieman, David C; Perkins-Veazie, Penelope; Henson, Dru A; Meaney, Mary P; Knab, Amy M; Cialdell-Kam, Lynn

    2016-01-01

    Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488

  13. Systemic Inflammation, Nutritional Status and Tumor Immune Microenvironment Determine Outcome of Resected Non-Small Cell Lung Cancer

    PubMed Central

    Alifano, Marco; Mansuet-Lupo, Audrey; Lococo, Filippo; Roche, Nicolas; Bobbio, Antonio; Canny, Emelyne; Schussler, Olivier; Dermine, Hervé; Régnard, Jean-François; Burroni, Barbara; Goc, Jérémy; Biton, Jérôme; Ouakrim, Hanane; Cremer, Isabelle; Dieu-Nosjean, Marie-Caroline; Damotte, Diane

    2014-01-01

    Background Hypothesizing that nutritional status, systemic inflammation and tumoral immune microenvironment play a role as determinants of lung cancer evolution, the purpose of this study was to assess their respective impact on long-term survival in resected non-small cell lung cancers (NSCLC). Methods and Findings Clinical, pathological and laboratory data of 303 patients surgically treated for NSCLC were retrospectively analyzed. C-reactive protein (CRP) and prealbumin levels were recorded, and tumoral infiltration by CD8+ lymphocytes and mature dendritic cells was assessed. We observed that factors related to nutritional status, systemic inflammation and tumoral immune microenvironment were correlated; significant correlations were also found between these factors and other relevant clinical-pathological parameters. With respect to outcome, at univariate analysis we found statistically significant associations between survival and the following variables: Karnofsky index, American Society of Anesthesiologists (ASA) class, CRP levels, prealbumin concentrations, extent of resection, pathologic stage, pT and pN parameters, presence of vascular emboli, and tumoral infiltration by either CD8+ lymphocytes or mature dendritic cells and, among adenocarcinoma type, tumor grade (all p<0.05). In multivariate analysis, prealbumin levels (Relative Risk (RR): 0.34 [0.16–0.73], p = 0.0056), CD8+ cell count in tumor tissue (RR = 0.37 [0.16–0.83], p = 0.0162), and disease stage (RR 1.73 [1.03–2.89]; 2.99[1.07–8.37], p = 0.0374- stage I vs II vs III-IV) were independent prognostic markers. When taken together, parameters related to systemic inflammation, nutrition and tumoral immune microenvironment allowed robust prognostic discrimination; indeed patients with undetectable CRP, high (>285 mg/L) prealbumin levels and high (>96/mm2) CD8+ cell count had a 5-year survival rate of 80% [60.9–91.1] as compared to 18% [7.9–35.6] in patients with an opposite

  14. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    PubMed Central

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  15. H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection

    PubMed Central

    2011-01-01

    Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed. PMID:22044597

  16. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment.

    PubMed

    Gjini, Erida; Brito, Patricia H

    2016-04-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes.

  17. Deregulated tryptophan-kynurenine pathway is linked to inflammation, oxidative stress, and immune activation pathway in cardiovascular diseases

    PubMed Central

    Wang, Qiongxin; Liu, Danxia; Song, Ping; Zou, Ming-Hui

    2016-01-01

    The kynurenine (Kyn) pathway is the major route for tryptophan (Trp) metabolism, and it contributes to several fundamental biological processes. Trp is constitutively oxidized by tryptophan 2, 3-dioxygenase in liver cells. In other cell types, it is catalyzed by an alternative inducible indoleamine-pyrrole 2, 3-dioxygenase (IDO) under certain pathophysiological conditions, which consequently increases the formation of Kyn metabolites. IDO is up-regulated in response to inflammatory conditions as a novel marker of immune activation in early atherosclerosis. Besides, IDO and the IDO-related pathway are important mediators of the immunoinflammatory responses in advanced atherosclerosis. In particular, Kyn, 3-hydroxykynurenine, and quinolinic acid are positively associated with inflammation, oxidative stress (SOX), endothelial dysfunction, and carotid artery intima-media thickness values in end-stage renal disease patients. Moreover, IDO is a potential novel contributor to vessel relaxation and metabolism in systemic infections, which is also activated in acute severe heart attacks. The Kyn pathway plays a key role in the increased prevalence of cardiovascular disease by regulating inflammation, SOX, and immune activation. PMID:25961549

  18. Pollen/TLR4 Innate Immunity Signaling Initiates IL-33/ST2/Th2 Pathways in Allergic Inflammation

    PubMed Central

    Li, Jin; Zhang, Lili; Chen, Xin; Chen, Ding; Hua, Xia; Bian, Fang; Deng, Ruzhi; Lu, Fan; Li, Zhijie; Pflugfelder, Stephen C.; Li, De-Quan

    2016-01-01

    Innate immunity has been extended to respond environmental pathogen other than microbial components. Here we explore a novel pollen/TLR4 innate immunity in allergic inflammation. In experimental allergic conjunctivitis induced by short ragweed (SRW) pollen, typical allergic signs, stimulated IL-33/ST2 signaling and overproduced Th2 cytokine were observed in ocular surface, cervical lymph nodes and isolated CD4+ T cells of BALB/c mice. These clinical, cellular and molecular changes were significantly reduced/eliminated in TLR4 deficient (Tlr4-d) or MyD88 knockout (MyD88−/−) mice. Aqueous SRW extract (SRWe) directly stimulated IL-33 mRNA and protein expression by corneal epithelium and conjunctiva in wild type, but not in Tlr4-d or MyD88−/− mice with topical challenge. Furthermore, SRWe-stimulated IL-33 production was blocked by TLR4 antibody and NF-kB inhibitor in mouse and human corneal epithelial cells. These findings for the first time uncovered a novel mechanism by which SRW pollen initiates TLR4-dependent IL-33/ST2 signaling that triggers Th2-dominant allergic inflammation. PMID:27796360

  19. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer

    PubMed Central

    Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros

    2014-01-01

    Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer. PMID:24409421

  20. Blockade of Wnt/β-Catenin Pathway Aggravated Silica-Induced Lung Inflammation through Tregs Regulation on Th Immune Responses

    PubMed Central

    Dai, Wujing; Liu, Fangwei; Li, Chao; Lu, Yiping; Lu, Xiaowei; Du, Sitong; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    CD4+ T cells play an important role in regulating silica-induced inflammation and fibrosis. Recent studies showed that Wnt/β-catenin pathway could modulate the function and the differentiation of CD4+ T cells. Therefore, Wnt/β-catenin pathway may participate in the development and progress of silicosis. To investigate the role of Wnt/β-catenin pathway, we used lentivirus expressing β-catenin shRNA to block the Wnt/β-catenin pathway by intratracheal instillation to the mice model of silicosis. Treatment of lentivirus could significantly aggravate the silica-induced lung inflammation and attenuated the fibrosis at the late stage. By analyzing CD4+ T cells, we found that blockade of Wnt/β-catenin pathway suppressed regulatory T cells (Tregs). Reciprocally, enhanced Th17 response was responsible for the further accumulation of neutrophils and production of proinflammatory cytokines. In addition, blockade of Wnt/β-catenin pathway delayed the Th1/Th2 polarization by inhibiting Tregs and Th2 response. These results indicated that Wnt/β-catenin pathway could regulate Tregs to modulate Th immune response, which finally altered the pathological character of silicosis. Our study suggested that Wnt/β-catenin pathway might be a potential target to treat the silica-induced inflammation and fibrosis. PMID:27069316

  1. Heparin disaccharides inhibit tumor necrosis factor-alpha production by macrophages and arrest immune inflammation in rodents.

    PubMed

    Cahalon, L; Lider, O; Schor, H; Avron, A; Gilat, D; Hershkoviz, R; Margalit, R; Eshel, A; Shoseyev, O; Cohen, I R

    1997-10-01

    Inflammation is the clinical expression of chemical mediators such as the pro-inflammatory cytokine tumor necrosis factor (TNF-)-alpha produced by macrophages and other cells activated in the immune response. Hence, agents that can inhibit TNF-alpha may be useful in treating arthritis and other diseases resulting from uncontrolled inflammation. We now report that the cleavage of heparin by the enzyme heparinase I generates sulfated disaccharide (DS) molecules that can inhibit the production of TNF-alpha. Administration of nanogram amounts of the sulfated DS molecules to experimental animals inhibited delayed-type hypersensitivity to a skin sensitizer and arrested the joint swelling of immunologically induced adjuvant arthritis. Notably, the sulfated DS molecules showed a bell-shaped dose-response curve in vitro and in vivo: decreased effects were seen using amounts of the DS molecules higher than optimal. Thus, molecular regulators of inflammation can be released from the natural molecule heparin by the action of an enzyme. PMID:9352356

  2. Lipoxin A4 decreases human memory B cell antibody production via an ALX/FPR2-dependent mechanism: A link between resolution signals and adaptive immunity

    PubMed Central

    Ramon, Sesquile; Bancos, Simona; Serhan, Charles N.; Phipps, Richard P.

    2013-01-01

    Summary Specialized proresolving mediators (SPMs) are endogenous bioactive lipid molecules that play a fundamental role in the regulation of inflammation and its resolution. SPMs are classified into lipoxins, resolvins, protectins and maresins. Lipoxins and other SPMs have been identified in important immunological tissues including bone marrow, spleen and blood. Lipoxins regulate functions of the innate immune system including the promotion of monocyte recruitment and increase macrophage phagocytosis of apoptotic neutrophils. A major knowledge gap is whether lipoxins influence adaptive immune cells. Here, we analyzed the actions of lipoxin A4 (LXA4) and its receptor ALX/FPR2 on human B cells. LXA4 decreased IgM and IgG production on activated B cells through ALX/FPR2-dependent signaling, which downregulated NF-κB p65 nuclear translocation. LXA4 also inhibited human memory B cell antibody production and proliferation, but not naïve B cell function. Lastly, LXA4 decreased antigen-specific antibody production in vivo. To our knowledge, this is the first description of the actions of lipoxins on human B cells, which shows a link between resolution signals and adaptive immunity. Regulating antibody production is crucial to prevent unwanted inflammation. Harnessing the ability of lipoxins to decrease memory B cell antibody production can be beneficial to threat inflammatory and autoimmune disorders. PMID:24166736

  3. The role of platelets in inflammation.

    PubMed

    Thomas, Mark R; Storey, Robert F

    2015-08-31

    There is growing recognition of the critical role of platelets in inflammation and immune responses. Recent studies have indicated that antiplatelet medications may reduce mortality from infections and sepsis, which suggests possible clinical relevance of modifying platelet responses to inflammation. Platelets release numerous inflammatory mediators that have no known role in haemostasis. Many of these mediators modify leukocyte and endothelial responses to a range of different inflammatory stimuli. Additionally, platelets form aggregates with leukocytes and form bridges between leukocytes and endothelium, largely mediated by platelet P-selectin. Through their interactions with monocytes, neutrophils, lymphocytes and the endothelium, platelets are therefore important coordinators of inflammation and both innate and adaptive immune responses.

  4. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

    PubMed

    Bikard, David; Marraffini, Luciano A

    2012-02-01

    Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.

  5. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: innate immune responses in plants.

    PubMed

    Schulze-Lefert, P

    2010-04-01

    Plants rely exclusively upon mechanisms of innate immunity. Current concepts of the plant innate immune system are based largely on two forms of immunity that engage distinct classes of immune receptors. These receptors enable the recognition of non-self structures that are either conserved between members of a microbial class or specific to individual strains of a microbe. One type of receptor comprises membrane-resident pattern recognition receptors (PRRs) that detect widely conserved microbe-associated molecular patterns (MAMPs) on the cell surface. A second type of mainly intracellular immune sensors, designated resistance (R) proteins, recognizes either the structure or function of strain-specific pathogen effectors that are delivered inside host cells. Phytopathogenic microorganisms have evolved a repertoire of effectors, some of which are delivered into plant cells to sabotage MAMP-triggered immune responses. Plants appear to have also evolved receptors that sense cellular injury by the release and perception of endogenous damage-associated molecular patterns (DAMPs). It is possible that the integration of MAMP and DAMP responses is critical to mount robust MAMP-triggered immunity. This signal integration might help to explain why plants are colonized in nature by remarkably diverse and seemingly asymptomatic microbial communities. PMID:20415853

  6. Toward a molecular understanding of adaptive immunity: a chronology, part I

    PubMed Central

    Smith, Kendall A.

    2012-01-01

    The adaptive immune system has been the core of immunology for the past century, as immunologists have been primarily focused on understanding the basis for adaptive immunity for the better part of this time. Immunological thought has undergone an evolution with regard to our understanding as the complexity of the cells and the molecules of the system became elucidated. The original immunologists performed their experiments with whole animals (or humans), and for the most part they were focused on observing what happens when a foreign substance is introduced into the body. However, since Burnet formulated his clonal selection theory we have witnessed reductionist science focused first on cell populations, then individual cells and finally on molecules, in our quests to learn how the system works. This review is the first part of a chronology of our evolution toward a molecular understanding of adaptive immunity. PMID:23230443

  7. Size does not matter: commensal microorganisms forge tumor-promoting inflammation and anti-tumor immunity

    PubMed Central

    Rutkowski, Melanie R.; Conejo-Garcia, Jose R.

    2015-01-01

    Recent studies have demonstrated that the commensal microbiota are indispensable for the maintenance of immune homeostasis, orchestration of immune responses against pathogens and most recently during cancer immunotherapy and malignant progression of extraintestinal tumors. Here we discuss the recent findings that a common genetic variation in TLR5 influences the progression and outcome of ovarian, sarcoma, and luminal breast tumors and the implications of these findings in light of recent publications describing the role of the commensal microbiota in control of the systemic immune system. PMID:25897427

  8. Inflammation-associated activation of coagulation and immune regulation by the protein C pathway.

    PubMed

    Weiler, Hartmut

    2014-05-01

    The inflammation-induced activation of the protein C pathway provides negative feedback inhibition of coagulation and exerts coagulation-independent anti-inflammatory and cytoprotective effects. The balance between these activities of aPC modulates the outcome of diverse inflammatory diseases such as encephalitis, diabetes, and sepsis; and is affected by naturally occurring aPC-resistance of coagulation factor V Leiden.

  9. Modulatory Effects of Antidepressant Classes on the Innate and Adaptive Immune System in Depression.

    PubMed

    Eyre, H A; Lavretsky, H; Kartika, J; Qassim, A; Baune, B T

    2016-05-01

    Current reviews exploring for unique immune-modulatory profiles of antidepressant classes are limited by focusing mainly on cytokine modulation only and neglecting other aspects of the innate and adaptive immune system. These reviews also do not include recent comparative clinical trials, immune-genetic studies and therapeutics with unique neurotransmitter profiles (e. g., agomelatine). This systematic review extends the established literature by comprehensively reviewing the effects of antidepressants classes on both the innate and adaptive immune system. Antidepressants appear, in general, to reduce pro-inflammatory factor levels, particularly C-reactive protein (CRP), tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We caution against conclusions as to which antidepressant possesses the greater anti-inflammatory effect, given the methodological heterogeneity among studies and the small number of comparative studies. The effects of antidepressant classes on adaptive immune factors are complex and poorly understood, and few studies have been conducted. Methodological heterogeneity is high among these studies (e. g., length of study, cohort characteristics, dosage used and immune marker analysis). We recommend larger, comparative studies - in clinical and pre-clinical populations. PMID:26951496

  10. Modulatory Effects of Antidepressant Classes on the Innate and Adaptive Immune System in Depression.

    PubMed

    Eyre, H A; Lavretsky, H; Kartika, J; Qassim, A; Baune, B T

    2016-05-01

    Current reviews exploring for unique immune-modulatory profiles of antidepressant classes are limited by focusing mainly on cytokine modulation only and neglecting other aspects of the innate and adaptive immune system. These reviews also do not include recent comparative clinical trials, immune-genetic studies and therapeutics with unique neurotransmitter profiles (e. g., agomelatine). This systematic review extends the established literature by comprehensively reviewing the effects of antidepressants classes on both the innate and adaptive immune system. Antidepressants appear, in general, to reduce pro-inflammatory factor levels, particularly C-reactive protein (CRP), tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We caution against conclusions as to which antidepressant possesses the greater anti-inflammatory effect, given the methodological heterogeneity among studies and the small number of comparative studies. The effects of antidepressant classes on adaptive immune factors are complex and poorly understood, and few studies have been conducted. Methodological heterogeneity is high among these studies (e. g., length of study, cohort characteristics, dosage used and immune marker analysis). We recommend larger, comparative studies - in clinical and pre-clinical populations.

  11. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase

    PubMed Central

    Odobasic, Dragana; Kitching, A. Richard; Holdsworth, Stephen R.

    2016-01-01

    Neutrophils are no longer seen as leukocytes with a sole function of being the essential first responders in the removal of pathogens at sites of infection. Being armed with numerous pro- and anti-inflammatory mediators, these phagocytes can also contribute to the development of various autoimmune diseases and can positively or negatively regulate the generation of adaptive immune responses. In this review, we will discuss how myeloperoxidase, the most abundant neutrophil granule protein, plays a key role in the various functions of neutrophils in innate and adaptive immunity. PMID:26904693

  12. No Compensatory Relationship between the Innate and Adaptive Immune System in Wild-Living European Badgers

    PubMed Central

    Sin, Yung Wa; Newman, Chris; Dugdale, Hannah L.; Buesching, Christina; Mannarelli, Maria-Elena; Annavi, Geetha; Burke, Terry; Macdonald, David W.

    2016-01-01

    The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC) diversity correlated with a lower leukocyte coping capacity (LCC), compared to individuals with fewer, or many, MHC alleles. The organization of the MHC genes in mammals, however, differs to the highly duplicated MHC genes in sticklebacks by having far fewer loci. Using European badgers (Meles meles), we therefore investigated whether innate immune activity, estimated functionally as the ability of an individual’s leukocytes to produce a respiratory burst, was influenced by MHC diversity. We also investigated whether LCC was influenced by factors such as age-class, sex, body condition, season, year, neutrophil and lymphocyte counts, and intensity of infection with five different pathogens. We found that LCC was not associated with specific MHC haplotypes, MHC alleles, or MHC diversity, indicating that the innate immune system did not compensate for the adaptive immune system even when there were susceptible MHC alleles/haplotypes, or when the MHC diversity was low. We also identified a seasonal and annual variation of LCC. This temporal variation of innate immunity was potentially due to physiological trade-offs or temporal variation in pathogen infections. The innate immunity, estimated as LCC, does not compensate for MHC diversity suggests that the immune system may function differently between vertebrates with different MHC organizations, with implications for the evolution of immune systems in different taxa. PMID:27695089

  13. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity.

    PubMed

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity.

  14. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  15. Evasion of Innate and Adaptive Immune Responses by Influenza A Virus

    PubMed Central

    Schmolke, Mirco; García-Sastre, Adolfo

    2010-01-01

    Summary Host organisms have developed sophisticated antiviral responses in order to defeat emerging influenza A viruses (IAV). At the same time IAV have evolved immune evasion strategies. The immune system of mammals provides several lines of defense to neutralize invading pathogens or limit their replication. Here, we summarize the mammalian innate and adaptive immune mechanisms involved in host defense against viral infection and review strategies by which IAV avoid, circumvent or subvert these mechanisms. We highlight well-characterized, as well as recently described features of this intriguing virus-host molecular battle. PMID:20482552

  16. The interplay between the microbiome and the adaptive immune response in cancer development

    PubMed Central

    Russo, Edda; Taddei, Antonio; Ringressi, Maria Novella; Ricci, Federica; Amedei, Amedeo

    2016-01-01

    The data from different studies suggest a bacterial role in cancer genesis/progression, often modulating the local immune response. This is particularly so at the mucosal level where the bacterial presence is strong and the immune system is highly reactive. The epithelial surfaces of the body, such as the skin and mucosa, are colonized by a vast number of microorganisms, which represent the so-called normal microbiome. Normally the microbiome does not cause a proinflammatory response because the immune system has developed different strategies for the tolerance of commensal bacteria, but when these mechanisms are impaired or new pathogenic bacteria are introduced into this balanced system, the immune system reacts to the microbiome and can trigger tumor growth in the intestine. In this review, we discuss the potential role of the bacterial microbiome in carcinogenesis, focusing on the direct and indirect immune adaptive mechanisms, that the bacteria can modulate in different ways. PMID:27366226

  17. Evolving functions of endothelial cells in inflammation.

    PubMed

    Pober, Jordan S; Sessa, William C

    2007-10-01

    Inflammation is usually analysed from the perspective of tissue-infiltrating leukocytes. Microvascular endothelial cells at a site of inflammation are both active participants in and regulators of inflammatory processes. The properties of endothelial cells change during the transition from acute to chronic inflammation and during the transition from innate to adaptive immunity. Mediators that act on endothelial cells also act on leukocytes and vice versa. Consequently, many anti-inflammatory therapies influence the behaviour of endothelial cells and vascular therapeutics influence inflammation. This Review describes the functions performed by endothelial cells at each stage of the inflammatory process, emphasizing the principal mediators and signalling pathways involved and the therapeutic implications. PMID:17893694

  18. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage

    PubMed Central

    Chang, Yan; Jia, Xiaoyi; Wei, Fang; Wang, Chun; Sun, Xiaojing; Xu, Shu; Yang, Xuezhi; Zhao, Yingjie; Chen, Jingyu; Wu, Huaxun; Zhang, Lingling; Wei, Wei

    2016-01-01

    Paeoniflorin-6′-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin (Pae), was evaluated in rats with adjuvant-induced arthritis (AA) to study its potential anti-arthritic activity. AA rats were treated with CP-25 (25, 50, or 100 mg/kg) from days 17 to 29 after immunization. CP-25 effectively reduced clinical and histopathological scores compared with the AA groups. CP-25-treated rats exhibited decreases in pro-inflammatory cytokines (IL-1β, IL-6, IL-17 and TNF-α) coupled with an increase in the anti-inflammatory cytokine TGF-β1 in the serum. CP-25 treatment inhibited M1 macrophage activation and enhanced M2 macrophage activation by influencing cytokine production. Decreases in Th17-IL-17 and the Th17-associated transcription factor RAR-related orphan receptor gamma (ROR-γt) dramatically demonstrated the immunomodulatory effects of CP-25 on abnormal immune dysfunction. In addition, CP-25 suppressed the production of receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase (MMP) 9, which supported its anti-osteoclastic effects. The data presented here demonstrated that CP-25 significantly inhibited the progression of rat AA by reducing inflammation, immunity and bone damage. The protective effects of CP-25 in AA highlight its potential as an ideal new anti-arthritic agent for human RA. PMID:27184722

  19. MiR-146 and miR-125 in the regulation of innate immunity and inflammation

    PubMed Central

    Lee, Hye-Mi; Kim, Tae Sung; Jo, Eun-Kyeong

    2016-01-01

    Innate immune responses are primary, relatively limited, and specific responses to numerous pathogens and toxic molecules. Protein expression involved in these innate responses must be tightly regulated at both transcriptional level and post-transcriptional level to avoid the development of excessive inflammation that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs (∼22 nucleotides [nts]) that participate in the regulation of numerous physiological responses by targeting specific messenger RNAs to suppress their translation. Recent work has shown that several negative regulators of transcription including microRNAs play important roles in inhibiting the exacerbation of inflammatory responses and in the maintenance of immunological homeostasis. This emerging research area will provide new insights on how microRNAs regulate innate immune signaling. It might show that dysregulation of microRNA synthesis is associated with the pathogenesis of inflammatory and infectious diseases. In this review, we focused on miR-146 and miR-125 and described the roles these miRNAs in modulating innate immune signaling. These microRNAs can control inflammatory responses and the outcomes of pathogenic infections. [BMB Reports 2016; 49(6): 311-318] PMID:26996343

  20. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage.

    PubMed

    Chang, Yan; Jia, Xiaoyi; Wei, Fang; Wang, Chun; Sun, Xiaojing; Xu, Shu; Yang, Xuezhi; Zhao, Yingjie; Chen, Jingyu; Wu, Huaxun; Zhang, Lingling; Wei, Wei

    2016-05-17

    Paeoniflorin-6'-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin (Pae), was evaluated in rats with adjuvant-induced arthritis (AA) to study its potential anti-arthritic activity. AA rats were treated with CP-25 (25, 50, or 100 mg/kg) from days 17 to 29 after immunization. CP-25 effectively reduced clinical and histopathological scores compared with the AA groups. CP-25-treated rats exhibited decreases in pro-inflammatory cytokines (IL-1β, IL-6, IL-17 and TNF-α) coupled with an increase in the anti-inflammatory cytokine TGF-β1 in the serum. CP-25 treatment inhibited M1 macrophage activation and enhanced M2 macrophage activation by influencing cytokine production. Decreases in Th17-IL-17 and the Th17-associated transcription factor RAR-related orphan receptor gamma (ROR-γt) dramatically demonstrated the immunomodulatory effects of CP-25 on abnormal immune dysfunction. In addition, CP-25 suppressed the production of receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase (MMP) 9, which supported its anti-osteoclastic effects. The data presented here demonstrated that CP-25 significantly inhibited the progression of rat AA by reducing inflammation, immunity and bone damage. The protective effects of CP-25 in AA highlight its potential as an ideal new anti-arthritic agent for human RA.

  1. Polyreactive antibodies in adaptive immune responses to viruses.

    PubMed

    Mouquet, Hugo; Nussenzweig, Michel C

    2012-05-01

    B cells express immunoglobulins on their surface where they serve as antigen receptors. When secreted as antibodies, the same molecules are key elements of the humoral immune response against pathogens such as viruses. Although most antibodies are restricted to binding a specific antigen, some are polyreactive and have the ability to bind to several different ligands, usually with low affinity. Highly polyreactive antibodies are removed from the repertoire during B-cell development by physiologic tolerance mechanisms including deletion and receptor editing. However, a low level of antibody polyreactivity is tolerated and can confer additional binding properties to pathogen-specific antibodies. For example, high-affinity human antibodies to HIV are frequently polyreactive. Here we review the evidence suggesting that in the case of some pathogens like HIV, polyreactivity may confer a selective advantage to pathogen-specific antibodies.

  2. Retinol Binding Protein 4 in Relation to Diet, Inflammation, Immunity, and Cardiovascular Diseases12

    PubMed Central

    Zabetian-Targhi, Fateme; Mahmoudi, Mohammad J; Rezaei, Nima; Mahmoudi, Maryam

    2015-01-01

    Retinol binding protein 4 (RBP4), previously called retinol binding protein (RBP), is considered a specific carrier of retinol in the blood. It is also an adipokine that has been implicated in the pathophysiology of insulin resistance. RBP4 seems to be correlated with cardiometabolic markers in inflammatory chronic diseases, including obesity, type 2 diabetes, metabolic syndrome, and cardiovascular diseases (CVDs). It has recently been suggested that inflammation produced by RBP4 induces insulin resistance and CVD. The clinical relevance of this hypothesis is discussed in this review. Knowledge concerning the association of RBP4 with inflammation markers, oxidative stress, and CVDs as well as concerning the role of diet and antioxidants in decreasing RBP4 concentrations are discussed. Special attention is given to methodologies used in previously published studies and covariates that should be controlled when planning new studies on this adipokine. PMID:26567199

  3. Retinol binding protein 4 in relation to diet, inflammation, immunity, and cardiovascular diseases.

    PubMed

    Zabetian-Targhi, Fateme; Mahmoudi, Mohammad J; Rezaei, Nima; Mahmoudi, Maryam

    2015-11-01

    Retinol binding protein 4 (RBP4), previously called retinol binding protein (RBP), is considered a specific carrier of retinol in the blood. It is also an adipokine that has been implicated in the pathophysiology of insulin resistance. RBP4 seems to be correlated with cardiometabolic markers in inflammatory chronic diseases, including obesity, type 2 diabetes, metabolic syndrome, and cardiovascular diseases (CVDs). It has recently been suggested that inflammation produced by RBP4 induces insulin resistance and CVD. The clinical relevance of this hypothesis is discussed in this review. Knowledge concerning the association of RBP4 with inflammation markers, oxidative stress, and CVDs as well as concerning the role of diet and antioxidants in decreasing RBP4 concentrations are discussed. Special attention is given to methodologies used in previously published studies and covariates that should be controlled when planning new studies on this adipokine.

  4. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    PubMed

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination.

  5. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    PubMed

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  6. Inflammation, Innate Immunity, and the Intestinal Stromal Cell Niche: Opportunities and Challenges

    PubMed Central

    Owens, Benjamin M. J.

    2015-01-01

    Stromal cells of multiple tissues contribute to immune-mediated protective responses and, conversely, the pathological tissue changes associated with chronic inflammatory disease. However, unlike hematopoietic immune cells, tissue stromal cell populations remain poorly characterized with respect to specific surface marker expression, their ontogeny, self-renewal, and proliferative capacity within tissues and the extent to which they undergo phenotypic immunological changes during the course of an infectious or inflammatory insult. Extending our knowledge of the immunological features of stromal cells provides an exciting opportunity to further dissect the underlying biology of many important immune-mediated diseases, although several challenges remain in bringing the emerging field of stromal immunology to equivalence with the study of the hematopoietic immune cell compartment. This review highlights recent studies that have begun unraveling the complexity of tissue stromal cell function in immune responses, with a focus on the intestine, and proposes strategies for the development of the field to uncover the great potential for stromal immunology to contribute to our understanding of the fundamental pathophysiology of disease, and the opening of new therapeutic avenues in multiple chronic inflammatory conditions. PMID:26150817

  7. Gut Inflammation and Immunity: What Is the Role of the Human Gut Virome?

    PubMed Central

    Focà, Alfredo; Quirino, Angela; Marascio, Nadia; Zicca, Emilia; Pavia, Grazia

    2015-01-01

    The human virome comprises viruses that infect host cells, virus-derived elements in our chromosomes, and viruses that infect other organisms, including bacteriophages and plant viruses. The development of high-throughput sequencing techniques has shown that the human gut microbiome is a complex community in which the virome plays a crucial role into regulation of intestinal immunity and homeostasis. Nevertheless, the size of the human virome is still poorly understood. Indeed the enteric virome is in a continuous and dynamic equilibrium with other components of the gut microbiome and the gut immune system, an interaction that may influence the health and disease of the host. We review recent evidence on the viruses found in the gastrointestinal tract, discussing their interactions with the resident bacterial microbiota and the host immune system, in order to explore the potential impact of the virome on human health. PMID:25944980

  8. The biomarkers of immune dysregulation and inflammation response in Parkinson disease.

    PubMed

    Chen, Li; Mo, Mingshu; Li, Guangning; Cen, Luan; Wei, Lei; Xiao, Yousheng; Chen, Xiang; Li, Shaomin; Yang, Xinling; Qu, Shaogang; Xu, Pingyi

    2016-01-01

    Parkinson's disease (PD) is referring to the multi-systemic α-synucleinopathy with Lewy bodies deposited in midbrain. In ageing, the environmental and genetic factors work together and overactive major histocompatibility complex pathway to regulate immune reactions in central nerve system which resulting in neural degeneration, especially in dopaminergic neurons. As a series of biomarkers, the human leukocyte antigen genes with its related proteomics play cortical roles on the antigen presentation of major histocompatibility complex molecules to stimulate the differentiation of T lymphocytes and i-proteasome activities under their immune response to the PD-related environmental alteration and genetic variation. Furthermore, dopaminergic drugs change the biological characteristic of T lymphatic cells, affect the α-synuclein presentation pathway, and inhibit T lymphatic cells to release cytotoxicity in PD development. Taking together, the serum inflammatory factors and blood T cells are involved in the immune dysregulation of PD and inspected as the potential clinic biomarkers for PD prediction. PMID:27570618

  9. Generation of Individual Diversity: A Too Neglected Fundamental Property of Adaptive Immune System

    PubMed Central

    Muraille, Eric

    2014-01-01

    The fitness gains resulting from development of the adaptive immune system (AIS) during evolution are still the subject of hot debate. A large random repertoire of antigenic receptors is costly to develop and could be the source of autoimmune reactions. And yet, despite their drawbacks, AIS-like systems seem to have been independently acquired in several phyla of metazoans with very different anatomies, longevities, and lifestyles. This article is a speculative attempt to explore the selective pressures, which favored this striking convergent evolution. It is well known that the AIS enables an organism to produce a specific immune response against all natural or artificial antigenic structures. However, it is frequently neglected that this response is highly variable among individuals. In practice, each individual possesses a “private” adaptive immune repertoire. This individualization of immune defenses implies that invasion and escape immune mechanisms developed by pathogens will certainly not always be successful as the specific targets and organization of the immune response are somewhat unpredictable. In a population, where individuals display heterogeneous immune responses to infection, the probability that a pathogen is able to infect all individuals could be reduced compared to a homogeneous population. This suggests that the individual diversity of the immune repertoire is not a by-product of the AIS but of its fundamental properties and could be in part responsible for repeated selection and conservation of the AIS during metazoan evolution. The capacity of the AIS to improve the management of cooperative or parasitic symbiotic relationships at the individual level could be a secondary development due to its progressive integration into the innate immune system. This hypothesis constitutes a new scenario for AIS emergence and explains the selection of MHC restriction and MHC diversification. PMID:24860570

  10. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  11. Modulation of Immunity and Inflammation by the Mineralocorticoid Receptor and Aldosterone

    PubMed Central

    Muñoz-Durango, N.; Vecchiola, A.; Gonzalez-Gomez, L. M.; Simon, F.; Riedel, C. A.; Fardella, C. E.; Kalergis, A. M.

    2015-01-01

    The mineralocorticoid receptor (MR) is a ligand dependent transcription factor. MR has been traditionally associated with the control of water and electrolyte homeostasis in order to keep blood pressure through aldosterone activation. However, there is growing evidence indicating that MR expression is not restricted to vascular and renal tissues, as it can be also expressed by cells of the immune system, where it responds to stimulation or antagonism, controlling immune cell function. On the other hand, aldosterone also has been associated with proinflammatory immune effects, such as the release of proinflammatory cytokines, generating oxidative stress and inducing fibrosis. The inflammatory participation of MR and aldosterone in the cardiovascular disease suggests an association with alterations in the immune system. Hypertensive patients show higher levels of proinflammatory mediators that can be modulated by MR antagonism. Although these proinflammatory properties have been observed in other autoimmune and chronic inflammatory diseases, the cellular and molecular mechanisms that mediate these effects remain unknown. Here we review and discuss the scientific work aimed at determining the immunological role of MR and aldosterone in humans, as well as animal models. PMID:26448944

  12. Stimulation of Innate and Adaptive Immunity by Using Filamentous Bacteriophage fd Targeted to DEC-205

    PubMed Central

    D'Apice, Luciana; Costa, Valerio; Sartorius, Rossella; Trovato, Maria; Aprile, Marianna; De Berardinis, Piergiuseppe

    2015-01-01

    The filamentous bacteriophage fd, codisplaying antigenic determinants and a single chain antibody fragment directed against the dendritic cell receptor DEC-205, is a promising vaccine candidate for its safety and its ability to elicit innate and adaptive immune response in absence of adjuvants. By using a system vaccinology approach based on RNA-Sequencing (RNA-Seq) analysis, we describe a relevant gene modulation in dendritic cells pulsed with anti-DEC-205 bacteriophages fd. RNA-Seq data analysis indicates that the bacteriophage fd virions are sensed as a pathogen by dendritic cells; they activate the danger receptors that trigger an innate immune response and thus confer a strong adjuvanticity that is needed to obtain a long-lasting adaptive immune response. PMID:26380324

  13. Stimulation of Innate and Adaptive Immunity by Using Filamentous Bacteriophage fd Targeted to DEC-205.

    PubMed

    D'Apice, Luciana; Costa, Valerio; Sartorius, Rossella; Trovato, Maria; Aprile, Marianna; De Berardinis, Piergiuseppe

    2015-01-01

    The filamentous bacteriophage fd, codisplaying antigenic determinants and a single chain antibody fragment directed against the dendritic cell receptor DEC-205, is a promising vaccine candidate for its safety and its ability to elicit innate and adaptive immune response in absence of adjuvants. By using a system vaccinology approach based on RNA-Sequencing (RNA-Seq) analysis, we describe a relevant gene modulation in dendritic cells pulsed with anti-DEC-205 bacteriophages fd. RNA-Seq data analysis indicates that the bacteriophage fd virions are sensed as a pathogen by dendritic cells; they activate the danger receptors that trigger an innate immune response and thus confer a strong adjuvanticity that is needed to obtain a long-lasting adaptive immune response.

  14. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  15. Regulation of the Adaptive Immune Response by the IκB Family Protein Bcl-3

    PubMed Central

    Herrington, Felicity D.; Nibbs, Robert J. B.

    2016-01-01

    Bcl-3 is a member of the IκB family of proteins and an important regulator of Nuclear Factor (NF)-κB activity. The ability of Bcl-3 to bind and regulate specific NF-κB dimers has been studied in great depth, but its physiological roles in vivo are still not fully understood. It is, however, becoming clear that Bcl-3 is essential for the proper development, survival and activity of adaptive immune cells. Bcl-3 dysregulation can be observed in a number of autoimmune pathologies, and Bcl3-deficient animals are more susceptible to bacterial and parasitic infection. This review will describe our current understanding of the roles played by Bcl-3 in the development and regulation of the adaptive immune response, including lymphoid organogenesis, immune tolerance, lymphocyte function and dendritic cell biology. PMID:27023613

  16. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells

    PubMed Central

    Cohen, Evan N.; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G.; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J.; Cristofanilli, Massimo; Mani, Sendurai A.; Croix, Denise A.; Ueno, Naoto T.; Woodward, Wendy A.; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M.

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction. PMID:26207636

  17. Origins and evolutionary relationships between the innate and adaptive arms of immune systems.

    PubMed

    Bayne, Christopher J

    2003-04-01

    Long before vertebrates first appeared, protists, plants and animals had evolved diverse, effective systems of innate immunity. Ancestors of the vertebrates utilized components of the complement system, protease-inhibitors, metal-binding proteins, carbohydrate-binding proteins and other plasma-born molecules as humoral agents of defense. In these same animals, immunocytes endowed with a repertoire of defensive behaviors expressed Toll-like receptors. They made NADPH oxidase, superoxide dismutase and other respiratory burst enzymes to produce toxic oxygen radicals, and nitric oxide synthase to produce nitric oxide. Antimicrobial peptides and lytic enzymes were in their armory. Immune responses were orchestrated by cytokines. Furthermore, genes within the immunoglobulin superfamily were expressed to meet a variety of needs possibly including defense. However, recombination activating genes played no role. With the acquisition of one or more transposases and the resulting capacity to generate diverse receptors from immunoglobulin gene fragments, the adaptive (lymphoid) arm of the immune system was born. This may have coincided with the elaboration of the neural crest. Naturally, the role of the adaptive arm was initially subservient to the defensive functions of the pre-existing innate arm. The strong selective advantages that stemmed from having "sharp-shooters" (cells making antigen-specific receptors) on the defense team ensured their retention. Refined through evolution, adaptive immunity, even in mammals, remains dependent upon cells of the innate series (e.g., dendritic cells) for signals driving their functional maturation. This paper calls for some fresh thinking leading to a clearer vision of the origins and co-evolution of the two arms of modern immune systems, and suggests a possible neural origin for the adaptive immune system.

  18. Recognition of Extracellular Bacteria by NLRs and Its Role in the Development of Adaptive Immunity

    PubMed Central

    Ferrand, Jonathan; Ferrero, Richard Louis

    2013-01-01

    Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs), whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR) family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins, and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types. PMID:24155747

  19. [Demographic aspects of adaptive changes of human immune system in the North].

    PubMed

    Gelfgat, E L; Lozovoĭ, V P; Konenkov, V I

    1993-01-01

    The dynamics of an immunotypological structure in migrants in Magadan was studied in relation to the duration of residence in the North. The changes were assessed by the integrated immune heterogeneity index, the atypic immune status index, frequencies of some immune phenotypes, the prevalence of clinical immunopathological signs and HLA Class 1 antigen distribution in the groups of the examinees. The dynamics of the immunotypological structure of migrants to the North was shown to have regular features depending upon the duration of "life in the North", some certain time-dependent, qualitative and quantitative characteristics. The mechanisms of some changes in the population immune structure and their role in the adaptation of northern newcomers to extreme ecological conditions are discussed.

  20. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    PubMed

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo.

  1. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    SciTech Connect

    Roberts, Jenny R. . E-mail: jur6@cdc.gov; Young, Shih-Houng; Castranova, Vincent; Antonini, James M.

    2007-06-15

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 x 10{sup 4} Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses.

  2. Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans.

    PubMed

    Lomax, A R; Calder, P C

    2009-01-01

    A number of studies have been performed examining the influence of various probiotic organisms, either alone or in combination, on immune parameters, infectious outcomes, and inflammatory conditions in humans. Some components of the immune response, including phagocytosis, natural killer cell activity and mucosal immunoglobulin A production (especially in children), can be improved by some probiotic bacteria. Other components, including lymphocyte proliferation, the production of cytokines and of antibodies other than immunoglobulin A appear less sensitive to probiotics. Probiotics, including lactobacilli and bifidobacteria, administered to children can reduce incidence and duration of diarrhoea, but the precise effects depend upon the nature of the condition. Probiotic supplementation can reduce the risk of travellers' diarrhoea in adults, but does not affect duration. The effect of probiotics on other infectious outcomes is less clear. Probiotics may benefit children and adults with irritable bowel syndrome and adults with ulcerative colitis; studies in Crohn's Disease are less clear. Probiotics have little effect in rheumatoid arthritis. Probiotic supplementation, especially with lactobacilli and bifidobacteria, can reduce risk and severity of allergic disease, particular atopic dermatitis; early supplementation appears to be effective. Overall, the picture that emerges from studies of probiotics on immune, infectious and inflammatory outcomes in humans is mixed and there appear to be large species and strain differences in effects seen. Other reasons for differences in effects seen will include dose of probiotic organism used, duration of supplementation, characteristics of the subjects studied, sample size, and technical differences in how the measurements were made.

  3. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases.

  4. Sublingual Vaccination Induces Mucosal and Systemic Adaptive Immunity for Protection against Lung Tumor Challenge

    PubMed Central

    Singh, Shailbala; Yang, Guojun; Schluns, Kimberly S.; Anthony, Scott M.; Sastry, K. Jagannadha

    2014-01-01

    Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA) metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer) for harnessing the adjuvant potential of natural killer T (NKT) cells, which effectively bridge innate and adaptive arms of the immune system. The protective efficacy of immunization with OVA plus aGalCer was antigen-specific as immunized mice challenged with parental B16 tumors lacking OVA expression were not protected. Multiple sublingual immunizations in the presence, but not in the absence of aGalCer, resulted in repeated activation of NKT cells in the draining lymph nodes, spleens, and lungs of immunized animals concurrent with progressively increasing OVA-specific CD8+ T cell responses as well as serum IgG and vaginal IgA levels. Furthermore, sublingual administration of the antigen only in the presence of the aGalCer adjuvant effectively boosted the OVA-specific immune responses. These results support potential clinical utility of sublingual route of vaccination with aGalCer-for prevention of pulmonary metastases. PMID:24599269

  5. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    PubMed

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  6. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    PubMed Central

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  7. Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silica-induced lung inflammation and fibrosis

    PubMed Central

    Liu, Fangwei; Dai, Wujing; Li, Chao; Lu, Xiaowei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Silicosis is characterized by chronic lung inflammation and fibrosis, which are seriously harmful to human health. Previous research demonstrated that uncontrolled T-helper (Th) cell immune responses were involved in the pathogenesis of silicosis. Lymphocytes also are reported to have important roles. Existing studies on lymphocyte regulation of Th immune responses were limited to T cells, such as the regulatory T (Treg) cell, which could negatively regulate inflammation and promote the process of silicosis. However, other regulatory subsets in silicosis have not been investigated in detail, and the mechanism of immune homeostasis modulation needs further exploration. Another regulatory lymphocyte, the regulatory B cell, has recently drawn increasing attention. In this study, we comprehensively showed the role of IL-10-producing regulatory B cell (B10) in a silicosis model of mice. B10 was inducible by silica instillation. Insufficient B10 amplified inflammation and attenuated lung fibrosis by promoting the Th1 immune response. Insufficient B10 clearly inhibited Treg and decreased the level of IL-10. Our study indicated that B10 could control lung inflammation and exacerbate lung fibrosis by inhibiting Th1 response and modulating the Th balance. The regulatory function of B10 could be associated with Treg induction and IL-10 secretion. PMID:27354007

  8. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia.

    PubMed

    Hwang, Y; Kim, J; Shin, J Y; Kim, J Ii; Seo, J S; Webster, M J; Lee, D; Kim, S

    2013-01-01

    Whole-genome expression profiling in postmortem brain tissue has recently provided insight into the pathophysiology of schizophrenia. Previous microarray and RNA-Seq studies identified several biological processes including synaptic function, mitochondrial function and immune/inflammation response as altered in the cortex of subjects with schizophrenia. Now using RNA-Seq data from the hippocampus, we have identified 144 differentially expressed genes in schizophrenia cases as compared with unaffected controls. Immune/inflammation response was the main biological process over-represented in these genes. The upregulation of several of these genes, IFITM1, IFITM2, IFITM3, APOL1 (Apolipoprotein L1), ADORA2A (adenosine receptor 2A), IGFBP4 and CD163 were validated in the schizophrenia subjects using data from the SNCID database and with quantitative RT-PCR. We identified a co-expression module associated with schizophrenia that includes the majority of differentially expressed genes related to immune/inflammation response as well as with the density of parvalbumin-containing neurons in the hippocampus. The results indicate that abnormal immune/inflammation response in the hippocampus may underlie the pathophysiology of schizophrenia and may be associated with abnormalities in the parvalbumin-containing neurons that lead to the cognitive deficits of the disease. PMID:24169640

  9. Attenuation fluctuations and local dermal reflectivity are indicators of immune cell infiltrate and epidermal hyperplasia in skin inflammation

    NASA Astrophysics Data System (ADS)

    Phillips, Kevin G.; Wang, Yun; Choudhury, Niloy; Levitz, David; Swanzey, Emily; Lagowski, James; Kulesz-Martin, Molly; Jacques, Steven

    2012-02-01

    Psoriasis is a common inflammatory skin disease resulting from genetic and environmental alterations of cutaneous immune responses responsible for skin homeostasis. While numerous therapeutic targets involved in the immunopathogenesis of psoriasis have been identified, the in vivo dynamics of psoriasis remains under investigated. To elucidate the spatial-temporal morphological evolution of psoriasis we undertook in vivo time course focus-tracked optical coherence tomography (OCT) imaging to non-invasively document dermal alterations due to immune cell infiltration and epidermal hyperplasia in an Imiquimod (IMQ) induced model of psoriasis-like inflammation in DBA2/C57Bl6 hybrid mice. Quantitative appraisal of dermal architectural changes was achieved through a three parameter fit of OCT axial scans in the dermis of the form A(z) = ρ exp(-mu;z +ɛ(z)). Ensemble averaging of the fit parameters over 2000 axial scans per mouse in each treatment arm revealed that the local dermal reflectivity ρ, decreased significantly in response to 6 day IMQ treatment (p = 0.0001), as did the standard deviation of the attenuation fluctuation std(ɛ(z)), (p = 0.04), in comparison to cream controls and day 1 treatments. No significant changes were observed in the average dermal attenuation rate, μ. Our results suggest these label-free OCT-based metrics can be deployed to investigate new therapeutic targets in animal models as well as aid in clinical staging of psoriasis in conjunction with the psoriasis area and severity index.

  10. Emerging functions of amphiregulin in orchestrating immunity, inflammation and tissue repair

    PubMed Central

    Zaiss, Dietmar M.W.; Gause, William C.; Osborne, Lisa C.; Artis, David

    2016-01-01

    Type 2 inflammatory responses can be elicited by diverse stimuli, including toxins, venoms, allergens and infectious agents and play critical roles in resistance and tolerance associated with infection, wound healing, tissue repair and tumor development. Emerging data suggest that in addition to characteristic type 2-associated cytokines, the Epidermal Growth Factor (EGF)-like molecule Amphiregulin (AREG) may be a critical component of type 2-mediated resistance and tolerance. Notably, numerous studies demonstrate that in addition to the established role of epithelial- and mesenchymal-derived AREG, multiple leukocyte populations including mast cells, basophils, group 2 innate lymphoid cells (ILC2) and a subset of tissue-resident regulatory CD4+ T cells can express AREG. In this review, we discuss recent advances in our understanding of the AREG-EGF receptor pathway and its involvement in infection and inflammation, and propose a model for the function of this pathway in the context of resistance and tissue tolerance. PMID:25692699

  11. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints.

    PubMed

    Koyama, Shohei; Akbay, Esra A; Li, Yvonne Y; Herter-Sprie, Grit S; Buczkowski, Kevin A; Richards, William G; Gandhi, Leena; Redig, Amanda J; Rodig, Scott J; Asahina, Hajime; Jones, Robert E; Kulkarni, Meghana M; Kuraguchi, Mari; Palakurthi, Sangeetha; Fecci, Peter E; Johnson, Bruce E; Janne, Pasi A; Engelman, Jeffrey A; Gangadharan, Sidharta P; Costa, Daniel B; Freeman, Gordon J; Bueno, Raphael; Hodi, F Stephen; Dranoff, Glenn; Wong, Kwok-Kin; Hammerman, Peter S

    2016-01-01

    Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade. PMID:26883990

  12. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints

    PubMed Central

    Koyama, Shohei; Akbay, Esra A.; Li, Yvonne Y.; Herter-Sprie, Grit S.; Buczkowski, Kevin A.; Richards, William G.; Gandhi, Leena; Redig, Amanda J.; Rodig, Scott J.; Asahina, Hajime; Jones, Robert E.; Kulkarni, Meghana M.; Kuraguchi, Mari; Palakurthi, Sangeetha; Fecci, Peter E.; Johnson, Bruce E.; Janne, Pasi A.; Engelman, Jeffrey A.; Gangadharan, Sidharta P.; Costa, Daniel B.; Freeman, Gordon J.; Bueno, Raphael; Hodi, F. Stephen; Dranoff, Glenn; Wong, Kwok-Kin; Hammerman, Peter S.

    2016-01-01

    Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade. PMID:26883990

  13. Adaptive Immunity in Schizophrenia: Functional Implications of T Cells in the Etiology, Course and Treatment.

    PubMed

    Debnath, Monojit

    2015-12-01

    Schizophrenia is a severe and highly complex neurodevelopmental disorder with an unknown etiopathology. Recently, immunopathogenesis has emerged as one of the most compelling etiological models of schizophrenia. Over the past few years considerable research has been devoted to the role of innate immune responses in schizophrenia. The findings of such studies have helped to conceptualize schizophrenia as a chronic low-grade inflammatory disorder. Although the contribution of adaptive immune responses has also been emphasized, however, the precise role of T cells in the underlying neurobiological pathways of schizophrenia is yet to be ascertained comprehensively. T cells have the ability to infiltrate brain and mediate neuro-immune cross-talk. Conversely, the central nervous system and the neurotransmitters are capable of regulating the immune system. Neurotransmitter like dopamine, implicated widely in schizophrenia risk and progression can modulate the proliferation, trafficking and functions of T cells. Within brain, T cells activate microglia, induce production of pro-inflammatory cytokines as well as reactive oxygen species and subsequently lead to neuroinflammation. Importantly, such processes contribute to neuronal injury/death and are gradually being implicated as mediators of neuroprogressive changes in schizophrenia. Antipsychotic drugs, commonly used to treat schizophrenia are also known to affect adaptive immune system; interfere with the differentiation and functions of T cells. This understanding suggests a pivotal role of T cells in the etiology, course and treatment of schizophrenia and forms the basis of this review.

  14. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.

    PubMed

    Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R; Lee, Seungkyu; Cronin, Shane J F; Pascal, Maud A; Laedermann, Cedric; Foster, Simmie L; Tran, Johnathan V; Lai, Nicole; Chiu, Isaac M; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M; Kuchroo, Vijay K; Bean, Bruce P; Levy, Bruce D; Woolf, Clifford J

    2015-07-15

    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  15. Silencing nociceptor neurons reduces allergic airway inflammation

    PubMed Central

    Talbot, Sébastien; Abdulnour, Raja-Elie E.; Burkett, Patrick R.; Lee, Seungkyu; Cronin, Shane J.F.; Pascal, Maud A.; Laedermann, Cedric; Foster, Simmie L.; Tran, Johnathan V.; Lai, Nicole; Chiu, Isaac M.; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M.; Kuchroo, Vijay K.; Bean, Bruce P.; Levy, Bruce D.; Woolf, Clifford J.

    2015-01-01

    Summary Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8+ sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large pore ion channels to specifically block nociceptors, substantially reduced ovalbumin or house dust mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4+ and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  16. Synthesizing within-host and population-level selective pressures on viral populations: the impact of adaptive immunity on viral immune escape

    PubMed Central

    Volkov, Igor; Pepin, Kim M.; Lloyd-Smith, James O.; Banavar, Jayanth R.; Grenfell, Bryan T.

    2010-01-01

    The evolution of viruses to escape prevailing host immunity involves selection at multiple integrative scales, from within-host viral and immune kinetics to the host population level. In order to understand how viral immune escape occurs, we develop an analytical framework that links the dynamical nature of immunity and viral variation across these scales. Our epidemiological model incorporates within-host viral evolutionary dynamics for a virus that causes acute infections (e.g. influenza and norovirus) with changes in host immunity in response to genetic changes in the virus population. We use a deterministic description of the within-host replication dynamics of the virus, the pool of susceptible host cells and the host adaptive immune response. We find that viral immune escape is most effective at intermediate values of immune strength. At very low levels of immunity, selection is too weak to drive immune escape in recovered hosts, while very high levels of immunity impose such strong selection that viral subpopulations go extinct before acquiring enough genetic diversity to escape host immunity. This result echoes the predictions of simpler models, but our formulation allows us to dissect the combination of within-host and transmission-level processes that drive immune escape. PMID:20335194

  17. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity

    PubMed Central

    Pier, Gerald B.

    2007-01-01

    Pseudomonas aeruginosa is one of the most important bacterial pathogens encountered by immunocompromised hosts and patients with cystic fibrosis (CF), and the lipopolysaccharide (LPS) elaborated by this organism is a key factor in virulence and both innate and acquired host responses to infection. The molecule has a fair degree of heterogeneity in its lipid A and O-antigen structure, and elaborates 2 different outer-core glycoforms, of which only one binds O-antigen. A close relatedness between the chemical structures and genes encoding biosynthetic enzymes has been established, with 11 major O-antigen groups identified. The lipid A can be variably penta-, hexa- or hepta-acylated, and these isoforms have differing potencies when activating host innate immunity via binding to Toll-like receptor 4. The O-antigen is a major target for protective immunity as evidenced by numerous animal studies, but attempts, to date, to produce a human vaccine targeting these epitopes have not been successful Newer strategies employing live attenuated P. aeruginosa, or heterologous attenuated bacteria expressing P. aeruginosa O-antigens are potential means to solve some of the existing problems related to making a P. aeruginosa LPS-specific vaccine. Overall, there is now a large amount of information available about the genes and enzymes needed to produce the P. aeruginosa LPS, detailed chemical structures have been determined for the major O-antigens, and significant biologic and immunologic studies have been conducted to define the role of this molecule in virulence and immunity to P. aeruginosa infection. PMID:17466590

  18. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  19. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning. PMID:26581919

  20. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  1. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    PubMed

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  2. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease

    PubMed Central

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD. PMID:26900473

  3. Arsenic-Associated Oxidative Stress, Inflammation, and Immune Disruption in Human Placenta and Cord Blood

    PubMed Central

    Ahmed, Sultan; Khoda, Sultana Mahabbat-e; Rekha, Rokeya Sultana; Gardner, Renee M.; Ameer, Syeda Shegufta; Moore, Sophie; Ekström, Eva-Charlotte; Vahter, Marie; Raqib, Rubhana

    2011-01-01

    Background Arsenic (As) exposure during pregnancy induces oxidative stress and increases the risk of fetal loss and low birth weight. Objectives In this study we aimed to elucidate the effects of As exposure on immune markers in the placenta and cord blood, and the involvement of oxidative stress. Methods Pregnant women were enrolled around gestational week (GW) 8 in our longitudinal, population-based, mother–child cohort in Matlab, an area in rural Bangladesh with large variations in As concentrations in well water. Women (n = 130) delivering at local clinics were included in the present study. We collected maternal urine twice during pregnancy (GW8 and GW30) for measurements of As, and placenta and cord blood at delivery for assessment of immune and inflammatory markers. Placental markers were measured by immunohistochemistry, and cord blood cytokines by multiplex cytokine assay. Results In multivariable adjusted models, maternal urinary As (U-As) exposure both at GW8 and at GW30 was significantly positively associated with placental markers of 8-oxoguanine (8-oxoG) and interleukin-1β (IL-1β); U-As at GW8, with tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); and U-As at GW30, with leptin; U-As at GW8 was inversely associated with CD3+ T cells in the placenta. Cord blood cytokines (IL-1β, IL-8, IFNγ, TNFα) showed a U-shaped association with U-As at GW30. Placental 8-oxoG was significantly positively associated with placental proinflammatory cytokines. Multivariable adjusted analyses suggested that enhanced placental cytokine expression (TNFα and IFNγ) was primarily influenced by oxidative stress, whereas leptin expression appeared to be mostly mediated by As, and IL-1β appeared to be influenced by both oxidative stress and As. Conclusion As exposure during pregnancy appeared to enhance placental inflammatory responses (in part by increasing oxidative stress), reduce placental T cells, and alter cord blood cytokines. These findings suggest

  4. Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all?

    PubMed Central

    van Buel, E M; Patas, K; Peters, M; Bosker, F J; Eisel, U L M; Klein, H C

    2015-01-01

    A low-grade inflammatory response is commonly seen in the peripheral blood of major depressive disorder (MDD) patients, especially those with refractory and chronic disease courses. However, electroconvulsive therapy (ECT), the most drastic intervention reserved for these patients, is closely associated with an enhanced haematogenous as well as neuroinflammatory immune response, as evidenced by both human and animal studies. A related line of experimental evidence further shows that inflammatory stimulation reinforces neurotrophin expression and may even mediate dramatic neurogenic and antidepressant-like effects following exposure to chronic stress. The current review therefore attempts a synthesis of our knowledge on the neurotrophic and immunological aspects of ECT and other electrically based treatments in psychiatry. Perhaps contrary to contemporary views, we conclude that targeted potentiation, rather than suppression, of inflammatory responses may be of therapeutic relevance to chronically depressed patients or a subgroup thereof. PMID:26218851

  5. Environmental Enrichment Stimulates Immune Cell Secretion of Exosomes that Promote CNS Myelination and May Regulate Inflammation.

    PubMed

    Pusic, Kae M; Pusic, Aya D; Kraig, Richard P

    2016-04-01

    Environmental enrichment (EE) consists of increased physical, intellectual, and social activity, and has wide-ranging effects, including enhancing cognition, learning and memory, and motor coordination. Animal studies have demonstrated that EE improves outcome of brain trauma and neurodegenerative disorders, including demyelinating diseases like multiple sclerosis, making it a promising therapeutic option. However, the complexity of applying a robust EE paradigm makes clinical use difficult. A better understanding of the signaling involved in EE-based neuroprotection may allow for development of effective mimetics as an alternative. In prior work, we found that exosomes isolated from the serum of rats exposed to EE impact CNS myelination. Exosomes are naturally occurring nanovesicles containing mRNA, miRNA, and protein, which play important roles in cell function, disease, and immunomodulation. When applied to hippocampal slice cultures or nasally administered to naïve rats, EE-serum exosomes significantly increase myelin content, oligodendrocyte precursor (OPC) and neural stem cell levels, and reduce oxidative stress (OS). We found that rat EE exosomes were enriched in miR-219, which is necessary and sufficient for OPC differentiation into myelinating cells. Thus, peripherally produced exosomes may be a useful therapy for remyelination. Here, we aim to better characterize the impact of EE on CNS health and to determine the cellular source of nutritive exosomes found in serum. We found that exosomes isolated from various circulating immune cell types all increased slice culture myelin content, contained miR-219, and reduced OS, suggesting that EE globally alters immune function in a way that supports brain health.

  6. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  7. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    PubMed

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  8. Innate and adaptive immune responses against picornaviruses and their counteractions: An overview

    PubMed Central

    Dotzauer, Andreas; Kraemer, Leena

    2012-01-01

    Picornaviruses, small positive-stranded RNA viruses, cause a wide range of diseases which is based on their differential tissue and cell type tropisms. This diversity is reflected by the immune responses, both innate and adaptive, induced after infection, and the subsequent interactions of the viruses with the immune system. The defense mechanisms of the host and the countermeasures of the virus significantly contribute to the pathogenesis of the infections. Important human pathogens are poliovirus, coxsackievirus, human rhinovirus and hepatitis A virus. These viruses are the best-studied members of the family, and in this review we want to present the major aspects of the reciprocal effects between the immune system and these viruses. PMID:24175214

  9. Regulating adaptive immune responses using small molecule modulators of aminopeptidases that process antigenic peptides.

    PubMed

    Stratikos, Efstratios

    2014-12-01

    Antigenic peptide processing by intracellular aminopeptidases has emerged recently as an important pathway that regulates adaptive immune responses. Pathogens and cancer can manipulate the activity of key enzymes of this pathway to promote immune evasion. Furthermore, the activity of these enzymes is naturally variable due to polymorphic variation, contributing to predisposition to disease, most notably autoimmunity. Here, we review recent findings that suggest that the pharmacological regulation of the activity of these aminopeptidases constitutes a valid approach for regulating human immune responses. We furthermore review the state of the art in chemical tools for inhibiting these enzymes and how these tools can be useful for the development of innovative therapeutic approaches for a variety of diseases including cancer, viral infections and autoimmunity.

  10. Innate and adaptive immune responses against picornaviruses and their counteractions: An overview.

    PubMed

    Dotzauer, Andreas; Kraemer, Leena

    2012-06-12

    Picornaviruses, small positive-stranded RNA viruses, cause a wide range of diseases which is based on their differential tissue and cell type tropisms. This diversity is reflected by the immune responses, both innate and adaptive, induced after infection, and the subsequent interactions of the viruses with the immune system. The defense mechanisms of the host and the countermeasures of the virus significantly contribute to the pathogenesis of the infections. Important human pathogens are poliovirus, coxsackievirus, human rhinovirus and hepatitis A virus. These viruses are the best-studied members of the family, and in this review we want to present the major aspects of the reciprocal effects between the immune system and these viruses.

  11. Inflammation and cancer: advances and new agents.

    PubMed

    Crusz, Shanthini M; Balkwill, Frances R

    2015-10-01

    Tumour-promoting inflammation is considered one of the enabling characteristics of cancer development. Chronic inflammatory disease increases the risk of some cancers, and strong epidemiological evidence exists that NSAIDs, particularly aspirin, are powerful chemopreventive agents. Tumour microenvironments contain many different inflammatory cells and mediators; targeting these factors in genetic, transplantable and inducible murine models of cancer substantially reduces the development, growth and spread of disease. Thus, this complex network of inflammation offers targets for prevention and treatment of malignant disease. Much potential exists in this area for novel cancer prevention and treatment strategies, although clinical research to support targeting of cancer-related inflammation and innate immunity in patients with advanced-stage cancer remains in its infancy. Following the initial successes of immunotherapies that modulate the adaptive immune system, we assert that inflammation and innate immunity are important targets in patients with cancer on the basis of extensive preclinical and epidemiological data. The adaptive immune response is heavily dependent on innate immunity, therefore, inhibiting some of the tumour-promoting immunosuppressive actions of the innate immune system might enhance the potential of immunotherapies that activate a nascent antitumour response. PMID:26122183

  12. Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells.

    PubMed

    Tobar, Jaime A; Carreño, Leandro J; Bueno, Susan M; González, Pablo A; Mora, Jorge E; Quezada, Sergio A; Kalergis, Alexis M

    2006-11-01

    Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) in bacteria and by presenting bacterial antigens to T cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naïve T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function. Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to T cells by avoiding lysosomal degradation in DCs. Here, we show that this feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent Salmonella requires functional expression of a type three secretion system (TTSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation, which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.

  13. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems.

    PubMed

    Geenen, V

    2012-01-01

    The immune system may be considered as a sensory organ able to respond to different kinds of danger signals that are not detected by nervous cells. The immune response is not autonomous but also regulated by the central and peripheral nervous system, as well as by neuropeptides, vitamin D and neuroendocrine axes such as the corticotrope, somatotrope, thyrotrope and gonadotrope axes. During evolution, the thymus emerged concomitantly with recombinase-dependent adaptive immunity as an'immune brain' or a'master class' highly specialized in the orchestration of central immunological self-tolerance. This was an absolute requirement for survival of species because of the high risk of autotoxicity inherent to the stochastic generation of extreme diversity characterizing this novel adaptive type of immune defenses against non-self. The thymus now appears to be an obligatory intersection for the integrated evolution of the major systems of cell-to-cell signalling, the nervous, endocrine and immune systems. The presentation of many self-peptides by thymic major histocompatibility complex (MHC) proteins is controlled by the autoimmune regulator (AIRE) gene/protein and is responsible for the clonal deletion of self-reactive T cells. In the same time, by still unexplained mechanisms, MHC presentation of the same self-peptides in the thymus promotes the generation of self-specific FOXP3+ CD4+CD25+ natural regulatory T cells (nTreg) that are able to inhibit in periphery self-reactive CD4+ and CD8+ T cells having escaped the thymus censorship. Moreover, a thymus dysfunction is more and more established as the primary event driving the development of organ-specific autoimmunity, which is the tribute paid, mainly by mankind, for the preservation of self against non-self. Our novel knowledge about thymus physiology and physiopathology already serves as the basis for the development of various innovative and efficient immunomodulating strategies in pharmacology. PMID:22897070

  14. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  15. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis—a Fairy Tale No More

    PubMed Central

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that lymphoid neo-genesis takes place in the adventitia of atherosclerotic vessels, leading to the formation of tertiary lymphoid organs where an adaptive immune response can be mounted. Whereas the mechanisms orchestrating the formation of these organs are becoming better understood, their impact on atherosclerosis progression remains unclear. Several potential therapeutic strategies against atherosclerosis, such as protective vaccination against atherosclerosis antigens or inhibiting the activation of proatherogenic B cells, have been proposed based on our improving knowledge of the role of the immune system in atherosclerosis. These strategies have shown success in preclinical studies, giving hope that they will lead to clinical applications. PMID:26605642

  16. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity

    PubMed Central

    Klein, Theo; Viner, Rosa I.

    2016-01-01

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644975

  17. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity.

    PubMed

    Klein, Theo; Viner, Rosa I; Overall, Christopher M

    2016-10-28

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644975

  18. The adaptive immune response does not influence hantavirus disease or persistence in the Syrian hamster.

    PubMed

    Prescott, Joseph; Safronetz, David; Haddock, Elaine; Robertson, Shelly; Scott, Dana; Feldmann, Heinz

    2013-10-01

    Pathogenic New World hantaviruses cause severe disease in humans characterized by a vascular leak syndrome, leading to pulmonary oedema and respiratory distress with case fatality rates approaching 40%. Hantaviruses infect microvascular endothelial cells without conspicuous cytopathic effects, indicating that destruction of the endothelium is not a mechanism of disease. In humans, high levels of inflammatory cytokines are present in the lungs of patients that succumb to infection. This, along with other observations, suggests that disease has an immunopathogenic component. Currently the only animal model available to study hantavirus disease is the Syrian hamster, where infection with Andes virus (ANDV), the primary agent of disease in South America, results in disease that closely mimics that seen in humans. Conversely, inoculation of hamsters with a passaged Sin Nombre virus (SNV), the virus responsible for most cases of disease in North America, results in persistent infection with high levels of viral replication. We found that ANDV elicited a stronger innate immune response, whereas SNV elicited a more robust adaptive response in the lung. Additionally, ANDV infection resulted in significant changes in the blood lymphocyte populations. To determine whether the adaptive immune response influences infection outcome, we depleted hamsters of CD4(+) and CD8(+) T cells before infection with hantaviruses. Depletion resulted in inhibition of virus-specific antibody responses, although the pathogenesis and replication of these viruses were unaltered. These data show that neither hantavirus replication, nor pathogenesis caused by these viruses, is influenced by the adaptive immune response in the Syrian hamster.

  19. Adaptive immune response inhibits ectopic mature bone formation induced by BMSCs/BCP/plasma composite in immune-competent mice.

    PubMed

    Bouvet-Gerbettaz, Sébastien; Boukhechba, Florian; Balaguer, Thierry; Schmid-Antomarchi, Heidy; Michiels, Jean-François; Scimeca, Jean-Claude; Rochet, Nathalie

    2014-11-01

    A combination of autologous bone marrow stromal cells (BMSCs) and biomaterials is a strategy largely developed in bone tissue engineering, and subcutaneous implantation in rodents or large animals is often a first step to evaluate the potential of new biomaterials. This study aimed at investigating the influence of the immune status of the recipient animal on BMSCs-induced bone formation. BMSCs prepared from C57BL/6 mice, composed of a mixture of mesenchymal stromal and monocytic cells, were combined with a biomaterial that consisted of biphasic calcium phosphate (BCP) particles and plasma clot. This composite was implanted subcutaneously either in syngenic C57BL/6 immune-competent mice or in T-lymphocyte-deficient Nude (Nude) mice. Using histology, immunohistochemistry, and histomorphometry, we show here that this BMSC/BCP/plasma clot composite implanted in Nude mice induces the formation of mature lamellar bone associated to hematopoietic areas and numerous vessels. Comparatively, implantation in C57BL/6 results in the formation of woven bone without hematopoietic tissue, a lower number of new vessels, and numerous multinucleated giant cells (MNGCs). In situ hybridization, which enabled to follow the fate of the BMSCs, revealed that BMSCs implanted in Nude mice survived longer than BMSCs implanted in C57BL/6 mice. Quantitative expression analysis of 280 genes in the implants indicated that the differences between C57BL/6 and Nude implants corresponded almost exclusively to genes related to the immune response. Gene expression profile in C57BL/6 implants was consistent with a mild chronic inflammation reaction characterized by Th1, Th2, and cytotoxic T-lymphocyte activation. In the implants retrieved from T-deficient Nude mice, Mmp14, Il6st, and Tgfbr3 genes were over-expressed, suggesting their putative role in bone regeneration and hematopoiesis. In conclusion, we show here that the T-mediated inflammatory microenvironment is detrimental to BMSCs-induced bone

  20. Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential

    PubMed Central

    Aoki, Masayo; Aoki, Hiroaki; Ramanathan, Rajesh; Hait, Nitai C.; Takabe, Kazuaki

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cell processes. It is produced by the phosphorylation of sphingosine by sphingosine kinases (SphKs) and exported out of cells via transporters such as spinster homolog 2 (Spns2). S1P regulates diverse physiological processes by binding to specific G protein-binding receptors, S1P receptors (S1PRs) 1–5, through a process coined as “inside-out signaling.” The S1P concentration gradient between various tissues promotes S1PR1-dependent migration of T cells from secondary lymphoid organs into the lymphatic and blood circulation. S1P suppresses T cell egress from and promotes retention in inflamed peripheral tissues. S1PR1 in T and B cells as well as Spns2 in endothelial cells contributes to lymphocyte trafficking. FTY720 (Fingolimod) is a functional antagonist of S1PRs that induces systemic lymphopenia by suppression of lymphocyte egress from lymphoid organs. In this review, we summarize previous findings and new discoveries about the importance of S1P and S1PR signaling in the recruitment of immune cells and lymphocyte retention in inflamed tissues. We also discuss the role of S1P-S1PR1 axis in inflammatory diseases and wound healing. PMID:26966342

  1. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model

    PubMed Central

    MA, XIAOJUAN; MA, XIUMIN; MA, ZHIXING; WANG, JING; SUN, ZHAN; YU, WENYAN; LI, FENGSEN; DING, JIANBING

    2014-01-01

    The Uygur herb, Hyssopus officinalis L., has been demonstrated to affect the levels of a number of cytokines in asthmatic mice, including interleukin-4, -6 and -17 and interferon-γ. In the present study, the effect of Hyssopus officinalis L. on airway immune regulation and airway inflammation was investigated in a mouse model of chronic asthma. A total of 32 BALB/c mice were randomly divided into four groups, which included the normal, chronic asthmatic, dexamethasone treatment and Hyssopus officinalis L.treatment groups. Mice were sensitized and challenged with ovalbumin to establish an asthma model and the ratio of eosinophils (EOS) in the bronchoalveolar lavage fluid (BALF) was determined. In addition, the levels of immunoglobulin (Ig)E and IgG were detected using an enzyme-linked immunosorbent assay. The degree of airway mucus secretion was observed using the periodic acid-Schiff stain method. The results demonstrated that the ratio of EOS in the BALF and the level of serum IgE in the chronic asthmatic and dexamethasone treatment groups increased, while the level of serum IgG decreased, when compared with the normal group. In addition, excessive secretion of airway mucus was observed in these two groups. However, the EOS ratio in the BALF and the levels of serum IgE and IgG in the Hyssopus officinalis L. treatment group were similar to the results observed in the normal group. In conclusion, Hyssopus officinalis L. not only plays an anti-inflammatory role by inhibiting the invasion of EOS and decreasing the levels of IgE, but also affects immune regulation. PMID:25289025

  2. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model.

    PubMed

    Ma, Xiaojuan; Ma, Xiumin; Ma, Zhixing; Wang, Jing; Sun, Zhan; Yu, Wenyan; Li, Fengsen; Ding, Jianbing

    2014-11-01

    The Uygur herb, Hyssopus officinalis L., has been demonstrated to affect the levels of a number of cytokines in asthmatic mice, including interleukin-4, -6 and -17 and interferon-γ. In the present study, the effect of Hyssopus officinalis L. on airway immune regulation and airway inflammation was investigated in a mouse model of chronic asthma. A total of 32 BALB/c mice were randomly divided into four groups, which included the normal, chronic asthmatic, dexamethasone treatment and Hyssopus officinalis L.treatment groups. Mice were sensitized and challenged with ovalbumin to establish an asthma model and the ratio of eosinophils (EOS) in the bronchoalveolar lavage fluid (BALF) was determined. In addition, the levels of immunoglobulin (Ig)E and IgG were detected using an enzyme-linked immunosorbent assay. The degree of airway mucus secretion was observed using the periodic acid-Schiff stain method. The results demonstrated that the ratio of EOS in the BALF and the level of serum IgE in the chronic asthmatic and dexamethasone treatment groups increased, while the level of serum IgG decreased, when compared with the normal group. In addition, excessive secretion of airway mucus was observed in these two groups. However, the EOS ratio in the BALF and the levels of serum IgE and IgG in the Hyssopus officinalis L. treatment group were similar to the results observed in the normal group. In conclusion, Hyssopus officinalis L. not only plays an anti-inflammatory role by inhibiting the invasion of EOS and decreasing the levels of IgE, but also affects immune regulation.

  3. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model.

    PubMed

    Ma, Xiaojuan; Ma, Xiumin; Ma, Zhixing; Wang, Jing; Sun, Zhan; Yu, Wenyan; Li, Fengsen; Ding, Jianbing

    2014-11-01

    The Uygur herb, Hyssopus officinalis L., has been demonstrated to affect the levels of a number of cytokines in asthmatic mice, including interleukin-4, -6 and -17 and interferon-γ. In the present study, the effect of Hyssopus officinalis L. on airway immune regulation and airway inflammation was investigated in a mouse model of chronic asthma. A total of 32 BALB/c mice were randomly divided into four groups, which included the normal, chronic asthmatic, dexamethasone treatment and Hyssopus officinalis L.treatment groups. Mice were sensitized and challenged with ovalbumin to establish an asthma model and the ratio of eosinophils (EOS) in the bronchoalveolar lavage fluid (BALF) was determined. In addition, the levels of immunoglobulin (Ig)E and IgG were detected using an enzyme-linked immunosorbent assay. The degree of airway mucus secretion was observed using the periodic acid-Schiff stain method. The results demonstrated that the ratio of EOS in the BALF and the level of serum IgE in the chronic asthmatic and dexamethasone treatment groups increased, while the level of serum IgG decreased, when compared with the normal group. In addition, excessive secretion of airway mucus was observed in these two groups. However, the EOS ratio in the BALF and the levels of serum IgE and IgG in the Hyssopus officinalis L. treatment group were similar to the results observed in the normal group. In conclusion, Hyssopus officinalis L. not only plays an anti-inflammatory role by inhibiting the invasion of EOS and decreasing the levels of IgE, but also affects immune regulation. PMID:25289025

  4. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  5. Physical Model of the Immune Response of Bacteria Against Bacteriophage Through the Adaptive CRISPR-Cas Immune System

    PubMed Central

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. PMID:23492852

  6. Apical Organelle Secretion by Toxoplasma Controls Innate and Adaptive Immunity and Mediates Long-Term Protection.

    PubMed

    Sloves, Pierre-Julien; Mouveaux, Thomas; Ait-Yahia, Saliha; Vorng, Han; Everaere, Laetitia; Sangare, Lamba Omar; Tsicopoulos, Anne; Tomavo, Stanislas

    2015-11-01

    Apicomplexan parasites have unique apical rhoptry and microneme secretory organelles that are crucial for host infection, although their role in protection against Toxoplasma gondii infection is not thoroughly understood. Here, we report a novel function of the endolysosomal T. gondii sortilin-like receptor (TgSORTLR), which mediates trafficking to functional apical organelles and their subsequent secretion of virulence factors that are critical to the induction of sterile immunity against parasite reinfection. We further demonstrate that the T. gondii armadillo repeats-only protein (TgARO) mutant, which is deficient only in apical secretion of rhoptries, is also critical in mounting protective immunity. The lack of TgSORTLR and TgARO proteins completely inhibited T-helper 1-dependent adaptive immunity and compromised the function of natural killer T-cell-mediated innate immunity. Our findings reveal an essential role for apical secretion in promoting sterile protection against T. gondii and provide strong evidence for rhoptry-regulated discharge of antigens as a key effector for inducing protective immunity.

  7. Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis.

    PubMed

    Mohanta, Sarajo Kumar; Yin, Changjun; Peng, Li; Srikakulapu, Prasad; Bontha, Vineela; Hu, Desheng; Weih, Falk; Weber, Christian; Gerdes, Norbert; Habenicht, Andreas J R

    2014-05-23

    Tertiary lymphoid organs emerge in tissues in response to nonresolving inflammation. Recent research characterized artery tertiary lymphoid organs in the aorta adventitia of aged apolipoprotein E-deficient mice. The atherosclerosis-associated lymphocyte aggregates are organized into distinct compartments, including separate T-cell areas harboring conventional, monocyte-derived, lymphoid, and plasmacytoid dendritic cells, as well as activated T-cell effectors and memory cells; B-cell follicles containing follicular dendritic cells in activated germinal centers; and peripheral niches of plasma cells. Artery tertiary lymphoid organs show marked neoangiogenesis, aberrant lymphangiogenesis, and extensive induction of high endothelial venules. Moreover, newly formed lymph node-like conduits connect the external lamina with high endothelial venules in T-cell areas and also extend into germinal centers. Mouse artery tertiary lymphoid organs recruit large numbers of naïve T cells and harbor lymphocyte subsets with opposing activities, including CD4(+) and CD8(+) effector and memory T cells, natural and induced CD4(+) regulatory T cells, and memory B cells at different stages of differentiation. These data suggest that artery tertiary lymphoid organs participate in primary immune responses and organize T- and B-cell autoimmune responses in advanced atherosclerosis. In this review, we discuss the novel concept that pro- and antiatherogenic immune responses toward unknown arterial wall-derived autoantigens may be organized by artery tertiary lymphoid organs and that disruption of the balance between pro- and antiatherogenic immune cell subsets may trigger clinically overt atherosclerosis.

  8. Complex Adaptive Immunity to Enteric Fevers in Humans: Lessons Learned and the Path Forward

    PubMed Central

    Sztein, Marcelo B.; Salerno-Goncalves, Rosangela; McArthur, Monica A.

    2014-01-01

    Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, and S. Paratyphi A and B, causative agents of paratyphoid fever, are major public health threats throughout the world. Although two licensed typhoid vaccines are currently available, they are only moderately protective and immunogenic necessitating the development of novel vaccines. A major obstacle in the development of improved typhoid, as well as paratyphoid vaccines is the lack of known immunological correlates of protection in humans. Considerable progress has been made in recent years in understanding the complex adaptive host responses against S. Typhi. Although the induction of S. Typhi-specific antibodies (including their functional properties) and memory B cells, as well as their cross-reactivity with S. Paratyphi A and S. Paratyphi B has been shown, the role of humoral immunity in protection remains undefined. Cell mediated immunity (CMI) is likely to play a dominant role in protection against enteric fever pathogens. Detailed measurements of CMI performed in volunteers immunized with attenuated strains of S. Typhi have shown, among others, the induction of lymphoproliferation, multifunctional type 1 cytokine production, and CD8+ cytotoxic T-cell responses. In addition to systemic responses, the local microenvironment of the gut is likely to be of paramount importance in protection from these infections. In this review, we will critically assess current knowledge regarding the role of CMI and humoral immunity following natural S. Typhi and S. Paratyphi infections, experimental challenge, and immunization in humans. We will also address recent advances regarding cross-talk between the host’s gut microbiota and immunization with attenuated S. Typhi, mechanisms of systemic immune responses, and the homing potential of S. Typhi-specific B- and T-cells to the gut and other tissues. PMID:25386175

  9. Early inflammation and immune response mRNAs in the brain of AD11 anti-NGF mice.

    PubMed

    D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Di Mambro, Alessandra; Felsani, Armando; Capsoni, Simona; Cattaneo, Antonino

    2011-06-01

    We characterized the gene expression profile of brain regions at an early stage of the Alzheimer's like neurodegeneration in the anti-NGF AD11 model. Total RNA was extracted from hippocampus, cortex and basal forebrain of postnatal day 30 (P30) and postnatal day 90 (P90) mice and expression profiles were studied by microarray analysis, followed by qRT-PCR validation of 243 significant candidates. Wide changes in gene expression profiles occur already at P30. As expected, cholinergic system and neurotrophins related genes expression were altered. Interestingly, the most significantly affected clusters of mRNAs are linked to inflammation and immune response, as well as to Wnt signaling. mRNAs encoding for different complement factors show a large differential expression. This is noteworthy, since these complement cascade proteins are involved in CNS synapse elimination, during normal brain developing and in neurodegenerative diseases. This gene expression pattern highlights that an early event in AD11 neurodegeneration is represented, together with neurotrophic deficits and synaptic remodeling, by an inflammatory response and an unbalance in the immunotrophic state of the brain. These might be key events in the pathogenesis and development of AD.

  10. Understanding inflammation in juvenile idiopathic arthritis: How immune biomarkers guide clinical strategies in the systemic onset subtype.

    PubMed

    Swart, Joost F; de Roock, Sytze; Prakken, Berent J

    2016-09-01

    The translation of basic insight in immunological mechanisms underlying inflammation into clinical practice of inflammatory diseases is still challenging. Here we describe how-through continuous dialogue between bench and bedside-immunological knowledge translates into tangible clinical use in a complex inflammatory disease, juvenile idiopathic arthritis (JIA). Systemic JIA (sJIA) is an autoinflammatory disease, leading to the very successful use of IL-1 antagonists. Further immunological studies identified new immune markers for diagnosis, prediction of complications, response to and successful withdrawal of therapy. Myeloid related protein (MRP)8, MRP14, S100A12, and Interleukin-18 are already used daily in clinic as markers for active sJIA. For non-sJIA subtypes, HLA-B27, antinuclear-antibodies, rheumatoid factor, erythrocyte sedimentation rate, and C-reactive protein are still used for classification, prognosis or active disease. MRP8, MRP14, and S100A12 are now under study for clinical practice. We believe that with biomarkers, algorithms can soon be designed for the individual risk of disease, complications, damage, prediction of response to, and successful withdrawal of therapy. In that way, less time will be lost and less pain will be suffered by the patients. In this review, we describe the current status of immunological biomarkers used in diagnosis and treatment of JIA. PMID:27461267

  11. How the innate immune system trains immunity: lessons from studying atopic dermatitis and cutaneous bacteria.

    PubMed

    Skabytska, Yuliya; Kaesler, Susanne; Volz, Thomas; Biedermann, Tilo

    2016-02-01

    The skin is the largest organ at the interface between environment and host. It plays a major protective role against pathogens as physical barrier, as site of first recognition, and as orchestrator of consecutive immune responses. In this process, immunological crosstalk between skin-resident and immune cells is required, and fixed innate immune responses were previously believed to orchestrate adaptive immunity of B and T lymphocytes. Today, we understand that diverse qualities of immune responses to different microbes need to be regulated by also varying responses at the level of first microbe recognition through receptors of the innate immune system. Only fine-tuning of the innate immune system allows for the orchestration of immune responses to the microbiota in the absence of inflammation as well as to pathogens in the context of protective responses including inflammation. Understanding how innate immunity precisely adapts is also important for diseases such as atopic dermatitis (AD) with chronic inflammation. In this review, we present data on how the innate immune system actually fine-tunes its responses with special focus on the immunological consequences of cutaneous innate immune sensing through TLR2. These new insights are highly relevant for understanding microbiota-associated state of health, immune defense, and the pathogenesis underlying chronic cutaneous inflammation as seen in AD.

  12. Genome complexity in the coelacanth is reflected in its adaptive immune system

    USGS Publications Warehouse

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  13. Genome complexity in the coelacanth is reflected in its adaptive immune system.

    PubMed

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T

    2014-09-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  14. Genome complexity in the coelacanth is reflected in its adaptive immune system

    PubMed Central

    Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4 and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations. PMID:24464682

  15. HLA alleles associated with the adaptive immune response to smallpox vaccine: a replication study.

    PubMed

    Ovsyannikova, Inna G; Pankratz, V Shane; Salk, Hannah M; Kennedy, Richard B; Poland, Gregory A

    2014-09-01

    We previously reported HLA allelic associations with vaccinia virus (VACV)-induced adaptive immune responses in a cohort of healthy individuals (n = 1,071 subjects) after a single dose of the licensed smallpox (Dryvax) vaccine. This study demonstrated that specific HLA alleles were significantly associated with VACV-induced neutralizing antibody (NA) titers (HLA-B*13:02, *38:02, *44:03, *48:01, and HLA-DQB1*03:02, *06:04) and cytokine (HLA-DRB1*01:03, *03:01, *10:01, *13:01, *15:01) immune responses. We undertook an independent study of 1,053 healthy individuals and examined associations between HLA alleles and measures of adaptive immunity after a single dose of Dryvax-derived ACAM2000 vaccine to evaluate previously discovered HLA allelic associations from the Dryvax study and determine if these associations are replicated with ACAM2000. Females had significantly higher NA titers than male subjects in both study cohorts [median ID50 discovery cohort 159 (93, 256) vs. 125 (75, 186), p < 0.001; replication cohort 144 (82, 204) vs. 110 (61, 189), p = 0.024]. The association between the DQB1*03:02 allele (median ID50 discovery cohort 152, p = 0.015; replication cohort 134, p = 0.010) and higher NA titers was replicated. Two HLA associations of comparable magnitudes were consistently found between DRB1*04:03 and DRB1*08:01 alleles and IFN-γ ELISPOT responses. The association between the DRB1*15:01 allele with IFN-γ secretion was also replicated (median pg/mL discovery cohort 182, p = 0.052; replication cohort 203, p = 0.014). Our results suggest that smallpox vaccine-induced adaptive immune responses are significantly influenced by HLA gene polymorphisms. These data provide information for functional studies and design of novel candidate smallpox vaccines.

  16. Prostaglandin E2 Exerts Multiple Regulatory Actions on Human Obese Adipose Tissue Remodeling, Inflammation, Adaptive Thermogenesis and Lipolysis

    PubMed Central

    García-Alonso, Verónica; Titos, Esther; Alcaraz-Quiles, Jose; Rius, Bibiana; Lopategi, Aritz; López-Vicario, Cristina; Jakobsson, Per-Johan; Delgado, Salvadora; Lozano, Juanjo; Clària, Joan

    2016-01-01

    Obesity induces white adipose tissue (WAT) dysfunction characterized by unremitting inflammation and fibrosis, impaired adaptive thermogenesis and increased lipolysis. Prostaglandins (PGs) are powerful lipid mediators that influence the homeostasis of several organs and tissues. The aim of the current study was to explore the regulatory actions of PGs in human omental WAT collected from obese patients undergoing laparoscopic bariatric surgery. In addition to adipocyte hypertrophy, obese WAT showed remarkable inflammation and total and pericellular fibrosis. In this tissue, a unique molecular signature characterized by altered expression of genes involved in inflammation, fibrosis and WAT browning was identified by microarray analysis. Targeted LC-MS/MS lipidomic analysis identified increased PGE2 levels in obese fat in the context of a remarkable COX-2 induction and in the absence of changes in the expression of terminal prostaglandin E synthases (i.e. mPGES-1, mPGES-2 and cPGES). IPA analysis established PGE2 as a common top regulator of the fibrogenic/inflammatory process present in this tissue. Exogenous addition of PGE2 significantly reduced the expression of fibrogenic genes in human WAT explants and significantly down-regulated Col1α1, Col1α2 and αSMA in differentiated 3T3 adipocytes exposed to TGF-β. In addition, PGE2 inhibited the expression of inflammatory genes (i.e. IL-6 and MCP-1) in WAT explants as well as in adipocytes challenged with LPS. PGE2 anti-inflammatory actions were confirmed by microarray analysis of human pre-adipocytes incubated with this prostanoid. Moreover, PGE2 induced expression of brown markers (UCP1 and PRDM16) in WAT and adipocytes, but not in pre-adipocytes, suggesting that PGE2 might induce the trans-differentiation of adipocytes towards beige/brite cells. Finally, PGE2 inhibited isoproterenol-induced adipocyte lipolysis. Taken together, these findings identify PGE2 as a regulator of the complex network of interactions

  17. Administration of DNA Encoding the Interleukin-27 Gene Augments Antitumour Responses through Non-adaptive Immunity.

    PubMed

    Li, Q; Sato, A; Shimozato, O; Shingyoji, M; Tada, Y; Tatsumi, K; Shimada, H; Hiroshima, K; Tagawa, M

    2015-10-01

    DNA-mediated immunization of a tumour antigen is a possible immunotherapy for cancer, and interleukin (IL)-27 has diverse functions in adaptive immunity. In this study, we examined whether IL-27 DNA administration enhanced antitumour effects in mice vaccinated with DNA encoding a putative tumour antigen, β-galactosidase (β-gal). An intramuscular injection of cardiotoxin before DNA administration facilitated the exogenous gene expression. In mice received β-gal and IL-27 DNA, growth of β-gal-positive P815 tumours was retarded and survival of the mice was prolonged. Development of β-gal-positive Colon 26 tumours was suppressed by vaccination of β-gal DNA and further inhibited by additional IL-27 DNA administration or IL-12 family cytokines. Nevertheless, a population of β-gal-specific CD8(+) T cells did not increase, and production of anti-β-gal antibody was not enhanced by IL-27 DNA administration. Spleen cells from mice bearing IL-27-expressing Colon 26 tumours showed greater YAC-1-targeted cytotoxicity although CD3(-)/DX5(+) natural killer (NK) cell numbers remained unchanged. Recombinant IL-27 enhanced YAC-1-targeted cytotoxicity of IL-2-primed splenic NK cells and augmented a phosphorylation of signal transducer and activator of transcription 3 and an expression of perforin. These data collectively indicate that IL-27 DNA administration activates NK cells and augments vaccination effects of DNA encoding a tumour antigen through non-adaptive immune responses. PMID:26095954

  18. Disease-specific adaptive immune biomarkers in Alzheimer's disease and related pathologies.

    PubMed

    Dorothée, G; Sarazin, M; Aucouturier, P

    2013-10-01

    Identification of disease-specific diagnostic and prognostic biomarkers allowing for an early characterization and accurate clinical follow-up of Alzheimer's disease (AD) patients is a major clinical objective. Increasing evidences implicate both humoral and cellular adaptive immune responses in the pathophysiology of AD. Such disease-related B- and T-cell responses constitute a promising source of potential specific early biomarkers. Among them, levels of anti-Aβ antibodies in the serum and/or cerebrospinal fluid of patients may correlate with AD progression, clinical presentation of the disease, and occurrence of associated pathologies related to cerebral amyloid angiopathy. In the same line, Aβ-specific T cell responses and immune regulatory populations implicated in their modulation appear to play a role in the pathophysiology of AD and cerebral amyloid angiopathy. Further characterization of both autoantibodies and T cell responses specific for disease-related proteins, i.e. Aβ and hyperphosphorylated Tau, will allow better deciphering their interest as early diagnostic and prognostic markers in AD. Biomarkers of adaptive immune responses specific for other pathological proteins may also apply to other neurological disorders associated with abnormal protein deposition.

  19. Effects of a flavonoid-rich juice on inflammation, oxidative stress, and immunity in elite swimmers: a metabolomics-based approach.

    PubMed

    Knab, Amy M; Nieman, David C; Gillitt, Nicholas D; Shanely, R Andrew; Cialdella-Kam, Lynn; Henson, Dru A; Sha, Wei

    2013-04-01

    The effects of a flavonoid-rich fresh fruit and vegetable juice (JUICE) on chronic resting and postexercise inflammation, oxidative stress, immune function, and metabolic profiles (metabolomics analysis, gas-chromatography mass-spectrometry platform) in elite sprint and middle-distance swimmers were studied. In a randomized, crossover design with a 3-wk washout period, swimmers (n = 9) completed 10-d training with or without 16 fl oz of JUICE (230 mg flavonoids) ingested pre- and postworkout. Blood samples were taken presupplementation, post-10-d supplementation, and immediately postexercise, with data analyzed using a 2 × 3 repeated-measures ANOVA. Prestudy blood samples were also acquired from nonathletic controls (n = 7, age- and weight-matched) and revealed higher levels of oxidative stress in the swimmers, no differences in inflammation or immune function, and a distinct separation in global metabolic scores (R2Y [cum] = .971). Swim workouts consisted of high-intensity intervals (1:1, 1:2 swim-to-rest ratio) and induced little inflammation, oxidative stress, or immune changes. A distinct separation in global metabolic scores was found pre- to postexercise (R2Y [cum] = .976), with shifts detected in a small number of metabolites related to substrate utilization. No effect of 10-d JUICE was found on chronic resting levels or postexercise inflammation, oxidative stress, immune function, and shifts in metabolites. In conclusion, sprint and middle-distance swimmers had a slight chronic elevation in oxidative stress compared with nonathletic controls, experienced a low magnitude of postworkout perturbations in the biomarkers included in this study, and received no apparent benefit other than added nutrient intake from ingesting JUICE pre- and postworkout for 10 days.

  20. The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases

    PubMed Central

    Oschman, James L; Chevalier, Gaétan; Brown, Richard

    2015-01-01

    Multi-disciplinary research has revealed that electrically conductive contact of the human body with the surface of the Earth (grounding or earthing) produces intriguing effects on physiology and health. Such effects relate to inflammation, immune responses, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. The purpose of this report is two-fold: to 1) inform researchers about what appears to be a new perspective to the study of inflammation, and 2) alert researchers that the length of time and degree (resistance to ground) of grounding of experimental animals is an important but usually overlooked factor that can influence outcomes of studies of inflammation, wound healing, and tumorigenesis. Specifically, grounding an organism produces measurable differences in the concentrations of white blood cells, cytokines, and other molecules involved in the inflammatory response. We present several hypotheses to explain observed effects, based on current research results and our understanding of the electronic aspects of cell and tissue physiology, cell biology, biophysics, and biochemistry. An experimental injury to muscles, known as delayed onset muscle soreness, has been used to monitor the immune response under grounded versus ungrounded conditions. Grounding reduces pain and alters the numbers of circulating neutrophils and lymphocytes, and also affects various circulating chemical factors related to inflammation. PMID:25848315

  1. [Immune cells in atherosclerosis--good or bad?].

    PubMed

    Klingenberg, Roland; Matter, Christian M; Lüscher, Thomas F

    2016-04-13

    Inflammation is a major mediator of atherosclerosis and plays a pivotal role for both innate and adaptive immunity in the onset and the progression of atherosclerosis. Novel insights into how the adaptive immune system is activated and propagates atherosclerosis elucidate the intricate interplay of different subsets of lymphocytes and their mediators as a central feature of vascular inflammation. The recognition of an inherent anti-inflammatory component of the adaptive immune system mediated by regulatory T (Treg) cells outline a novel concept: the expansion of regulatory T cells to reduce atherosclerosis. Based on a variety of research results, this concept represents a new therapeutic option in patients with atherosclerosis.

  2. [Immune cells in atherosclerosis--good or bad?].

    PubMed

    Klingenberg, Roland; Matter, Christian M; Lüscher, Thomas F

    2016-04-13

    Inflammation is a major mediator of atherosclerosis and plays a pivotal role for both innate and adaptive immunity in the onset and the progression of atherosclerosis. Novel insights into how the adaptive immune system is activated and propagates atherosclerosis elucidate the intricate interplay of different subsets of lymphocytes and their mediators as a central feature of vascular inflammation. The recognition of an inherent anti-inflammatory component of the adaptive immune system mediated by regulatory T (Treg) cells outline a novel concept: the expansion of regulatory T cells to reduce atherosclerosis. Based on a variety of research results, this concept represents a new therapeutic option in patients with atherosclerosis. PMID:27078727

  3. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    PubMed

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  4. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems.

    PubMed

    Nishida, Keiji; Arazoe, Takayuki; Yachie, Nozomu; Banno, Satomi; Kakimoto, Mika; Tabata, Mayura; Mochizuki, Masao; Miyabe, Aya; Araki, Michihiro; Hara, Kiyotaka Y; Shimatani, Zenpei; Kondo, Akihiko

    2016-09-16

    The generation of genetic variation (somatic hypermutation) is an essential process for the adaptive immune system in vertebrates. We demonstrate the targeted single-nucleotide substitution of DNA using hybrid vertebrate and bacterial immune systems components. Nuclease-deficient type II CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) and the activation-induced cytidine deaminase (AID) ortholog PmCDA1 were engineered to form a synthetic complex (Target-AID) that performs highly efficient target-specific mutagenesis. Specific point mutation was induced primarily at cytidines within the target range of five bases. The toxicity associated with the nuclease-based CRISPR/Cas9 system was greatly reduced. Although combination of nickase Cas9(D10A) and the deaminase was highly effective in yeasts, it also induced insertion and deletion (indel) in mammalian cells. Use of uracil DNA glycosylase inhibitor suppressed the indel formation and improved the efficiency. PMID:27492474

  5. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation.

    PubMed

    Tough, David F

    2004-02-01

    Type I interferon (IFN-alpha/beta) is expressed rapidly after infection and plays a key role in innate defense against pathogens. Recent studies have shown that a connection exists between IFN-alpha/beta and antigen-presenting dendritic cells (DCs) at two levels. Firstly, a specific DC precursor, the plasmacytoid pre-DC (p-preDC), was identified as a cell type able to secrete very high amounts of IFN-alpha/beta following stimulation with infectious agents. Secondly, IFN-alpha/beta has been shown to act as a differentiation/maturation factor for DCs. These findings will be discussed in association with evidence indicating that IFN-alpha/beta can enhance and modulate immune responses in vivo. Taken together, the available data suggest that IFN-alpha/beta serves as a link between the innate response to infection and the adaptive immune response. PMID:15101709

  6. Hepatitis C virus evasion of adaptive immune responses: a model for viral persistence.

    PubMed

    Burke, Kelly P; Cox, Andrea L

    2010-07-01

    Hepatitis C virus (HCV) infects over 170 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. Approximately 20% [corrected] of those acutely infected clear the infection, whereas the remaining 80% [corrected] progress to chronic infection. Hepatitis C thus provides a model in which successful and unsuccessful responses can be compared to better understand the human response to viral infection. Our laboratory studies the strategies by which HCV evades the adaptive immune response. This review describes the impact of viral mutation on T cell recognition, the role of cell surface inhibitory receptors in recognition of HCV, and the development of antibodies that neutralize HCV infection. Understanding what constitutes an effective immune response in the control of HCV may enable the development of prophylactic and therapeutic vaccines for HCV and other chronic viral infections.

  7. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems.

    PubMed

    Nishida, Keiji; Arazoe, Takayuki; Yachie, Nozomu; Banno, Satomi; Kakimoto, Mika; Tabata, Mayura; Mochizuki, Masao; Miyabe, Aya; Araki, Michihiro; Hara, Kiyotaka Y; Shimatani, Zenpei; Kondo, Akihiko

    2016-09-16

    The generation of genetic variation (somatic hypermutation) is an essential process for the adaptive immune system in vertebrates. We demonstrate the targeted single-nucleotide substitution of DNA using hybrid vertebrate and bacterial immune systems components. Nuclease-deficient type II CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) and the activation-induced cytidine deaminase (AID) ortholog PmCDA1 were engineered to form a synthetic complex (Target-AID) that performs highly efficient target-specific mutagenesis. Specific point mutation was induced primarily at cytidines within the target range of five bases. The toxicity associated with the nuclease-based CRISPR/Cas9 system was greatly reduced. Although combination of nickase Cas9(D10A) and the deaminase was highly effective in yeasts, it also induced insertion and deletion (indel) in mammalian cells. Use of uracil DNA glycosylase inhibitor suppressed the indel formation and improved the efficiency.

  8. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity.

    PubMed

    Arts, Rob J W; Blok, Bastiaan A; Aaby, Peter; Joosten, Leo A B; de Jong, Dirk; van der Meer, Jos W M; Benn, Christine Stabell; van Crevel, Reinout; Netea, Mihai G

    2015-12-01

    BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity but not in immunocompromised hosts, as it is a live, attenuated vaccine. Therefore, we assessed whether killed γBCG has similar potentiating effects. In an in vitro model of trained immunity, human monocytes were incubated with γBCG for 24 h and restimulated after 6 d. Cytokine production and the role of pattern recognition receptors and histone methylation markers were assessed. The in vivo effects of γBCG vaccination were studied in a proof-of-principle trial in 15 healthy volunteers. γBCG induced trained immunity in vitro via the NOD2 receptor pathway and up-regulation of H3K4me3 histone methylation. However, these effects were less strong than those induced by live BCG. γBCG vaccination in volunteers had only minimal effects on innate immunity, whereas a significant increase in heterologous Th1/Th17 immunity was observed. Our results indicate that γBCG induces long-term training of innate immunity in vitro. In vivo, γBCG induces mainly heterologous effects on the adaptive-immune system, whereas effects on innate cytokine production are limited.

  9. Coinfection with Human Herpesvirus 8 Is Associated with Persistent Inflammation and Immune Activation in Virologically Suppressed HIV-Infected Patients

    PubMed Central

    Masiá, Mar; Robledano, Catalina; Ortiz de la Tabla, Victoria; Antequera, Pedro; Lumbreras, Blanca; Hernández, Ildefonso; Gutiérrez, Félix

    2014-01-01

    -mediated dilatation and total carotid intima-media thickness were not different according to HHV-8 serostatus. Conclusion In virologically suppressed HIV-infected patients, coinfection with HHV-8 is associated with increased inflammation and immune activation. This might contribute to increase the risk of non-AIDS events, including accelerated atherosclerotic disease. PMID:25133669

  10. Ebolavirus evolves in human to minimize the detection by immune cells by accumulating adaptive mutations.

    PubMed

    Ramaiah, Arunachalam; Arumugaswami, Vaithilingaraja

    2016-06-01

    The current outbreak of Zaire ebolavirus (EBOV) lasted longer than the previous outbreaks and there is as yet no proven treatment or vaccine available. Understanding host immune pressure and associated EBOV immune evasion that drive the evolution of EBOV is vital for diagnosis as well as designing a highly effective vaccine. The aim of this study was to deduce adaptive selection pressure acting on each amino acid sites of EBOV responsible for the recent 2014 outbreak. Multiple statistical methods employed in the study include SLAC, FEL, REL, IFEL, FUBAR and MEME. Results show that a total of 11 amino acid sites from sGP and ssGP, and 14 sites from NP, VP40, VP24 and L proteins were inferred as positively and negatively selected, respectively. Overall, the function of 11 out of 25 amino acid sites under selection pressure exactly found to be involved in T cell and B-cell epitopes. We identified that the EBOV had evolved through purifying selection pressure, which is a predictor that is known to aid the virus to adapt better to the human host and subsequently reduce the efficiency of existing immunity. Furthermore, computational RNA structure prediction showed that the three synonymous nucleotide mutations in NP gene altered the RNA secondary structure and optimal base-pairing energy, implicating a possible effect on genome replication. Here, we have provided evidence that the EBOV strains involved in the recent 2014 outbreak have evolved to minimize the detection by T and B cells by accumulating adaptive mutations to increase the survival fitness. PMID:27366764

  11. Essential Role for Neutrophils in Pathogenesis and Adaptive Immunity in Chlamydia caviae Ocular Infections ▿

    PubMed Central

    Lacy, H. Marie; Bowlin, Anne K.; Hennings, Leah; Scurlock, Amy M.; Nagarajan, Uma M.; Rank, Roger G.

    2011-01-01

    Trachoma, the world's leading cause of preventable blindness, is produced by chronic ocular infection with Chlamydia trachomatis, an obligate intracellular bacterium. While many studies have focused on immune mechanisms for trachoma during chronic stages of infection, less research has targeted immune mechanisms in primary ocular infections, events that could impact chronic responses. The goal of this study was to investigate the function of neutrophils during primary chlamydial ocular infection by using the guinea pig model of Chlamydia caviae inclusion conjunctivitis. We hypothesized that neutrophils help modulate the adaptive response and promote host tissue damage. To test these hypotheses, guinea pigs with primary C. caviae ocular infections were depleted of neutrophils by using rabbit antineutrophil antiserum, and immune responses and immunopathology were evaluated during the first 7 days of infection. Results showed that neutrophil depletion dramatically decreased ocular pathology, both clinically and histologically. The adaptive response was also altered, with increased C. caviae-specific IgA titers in tears and serum and decreased numbers of CD4+ and CD8+ T cells in infected conjunctivae. Additionally, there were changes in conjunctival chemokines and cytokines, such as increased expression of IgA-promoting interleukin-5 and anti-inflammatory transforming growth factor β, along with decreased expression of T cell-recruiting CCL5 (RANTES). This study, the first to investigate the role of neutrophils in primary chlamydial ocular infection, indicates a previously unappreciated role for neutrophils in modulating the adaptive response and suggests a prominent role for neutrophils in chlamydia-associated ocular pathology. PMID:21402767

  12. Essential role for neutrophils in pathogenesis and adaptive immunity in Chlamydia caviae ocular infections.

    PubMed

    Lacy, H Marie; Bowlin, Anne K; Hennings, Leah; Scurlock, Amy M; Nagarajan, Uma M; Rank, Roger G

    2011-05-01

    Trachoma, the world's leading cause of preventable blindness, is produced by chronic ocular infection with Chlamydia trachomatis, an obligate intracellular bacterium. While many studies have focused on immune mechanisms for trachoma during chronic stages of infection, less research has targeted immune mechanisms in primary ocular infections, events that could impact chronic responses. The goal of this study was to investigate the function of neutrophils during primary chlamydial ocular infection by using the guinea pig model of Chlamydia caviae inclusion conjunctivitis. We hypothesized that neutrophils help modulate the adaptive response and promote host tissue damage. To test these hypotheses, guinea pigs with primary C. caviae ocular infections were depleted of neutrophils by using rabbit antineutrophil antiserum, and immune responses and immunopathology were evaluated during the first 7 days of infection. Results showed that neutrophil depletion dramatically decreased ocular pathology, both clinically and histologically. The adaptive response was also altered, with increased C. caviae-specific IgA titers in tears and serum and decreased numbers of CD4(+) and CD8(+) T cells in infected conjunctivae. Additionally, there were changes in conjunctival chemokines and cytokines, such as increased expression of IgA-promoting interleukin-5 and anti-inflammatory transforming growth factor β, along with decreased expression of T cell-recruiting CCL5 (RANTES). This study, the first to investigate the role of neutrophils in primary chlamydial ocular infection, indicates a previously unappreciated role for neutrophils in modulating the adaptive response and suggests a prominent role for neutrophils in chlamydia-associated ocular pathology. PMID:21402767

  13. Toxoplasma gondii Oral Infection Induces Intestinal Inflammation and Retinochoroiditis in Mice Genetically Selected for Immune Oral Tolerance Resistance

    PubMed Central

    Dias, Raul Ramos Furtado; de Carvalho, Eulógio Carlos Queiroz; Leite, Carla Cristina da Silva; Tedesco, Roberto Carlos; Calabrese, Katia da Silva; Silva, Antonio Carlos; DaMatta, Renato Augusto; de Fatima Sarro-Silva, Maria

    2014-01-01

    Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS) or resistance (TR) to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis. PMID:25437299

  14. Differential effects on innate versus adaptive immune responses by WF10.

    PubMed

    Giese, Thomas; McGrath, Michael S; Stumm, Susanne; Schempp, Harald; Elstner, Erich; Meuer, Stefan C

    2004-06-01

    Oxidative compounds that are physiologically generated in vivo can induce natural defense mechanisms to enhance the elimination of pathogens and to limit inflammatory tissue damage in the course of inflammation. Here, we have investigated WF10, a chlorite-based non-toxic compound for its functional activities on human PBMC in vitro. WF10 exerts potent immune-modulatory effects through generating endogenous oxidative compounds such as taurine chloramine. Proliferation and IL-2 production of anti-CD3 stimulated PBMC were inhibited by WF10, as was the nuclear translocation of the transcription factor NFATc. In PBMC and monocytes, however, WF10 induced pro-inflammatory cytokines like IL-1beta, IL-8, and TNF-alpha. In the monocytic cell line THP-1, the activation of the transcription factors AP-1 and NFkappaB by WF10 was demonstrated. Inhibition of NFAT regulated genes in activated lymphocytes in concert with the induction of several myeloid cell associated pro-inflammatory genes in monocytes represents a novel mechanism of immune modulation.

  15. Steroid Sulfates from Ophiuroids (Brittle Stars): Action on Some Factors of Innate and Adaptive Immunity.

    PubMed

    Gazha, Anna K; Ivanushko, Lyudmila A; Levina, Eleonora V; Fedorov, Sergey N; Zaporozets, Tatyana S; Stonik, Valentin A; Besednova, Nataliya N

    2016-06-01

    The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen. PMID:27534108

  16. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice.

    PubMed

    Wegmann, Frank; Moghaddam, Amin E; Schiffner, Torben; Gartlan, Kate H; Powell, Timothy J; Russell, Rebecca A; Baart, Matthijs; Carrow, Emily W; Sattentau, Quentin J

    2015-09-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines.

  17. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice.

    PubMed

    Wegmann, Frank; Moghaddam, Amin E; Schiffner, Torben; Gartlan, Kate H; Powell, Timothy J; Russell, Rebecca A; Baart, Matthijs; Carrow, Emily W; Sattentau, Quentin J

    2015-09-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  18. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    PubMed Central

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  19. Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape

    PubMed Central

    Taube, Janis M.; Anders, Robert A.; Young, Geoffrey D.; Xu, Haiying; Sharma, Rajni; McMiller, Tracee L.; Chen, Shuming; Klein, Alison P.; Pardoll, Drew M.; Topalian, Suzanne L.; Chen, Lieping

    2013-01-01

    Although many human cancers such as melanoma express tumor antigens recognized by T cells, host immune responses often fail to control tumor growth for as yet unexplained reasons. Here, we found a strong association between melanocyte expression of B7-H1 (PD-L1), an immune-inhibitory molecule, and the presence of tumor-infiltrating lymphocytes (TILs) in human melanocytic lesions: 98% of B7-H1+ tumors were associated with TILs compared with only 28% of B7-H1− tumors. Indeed, B7-H1+ melanocytes were almost always localized immediately adjacent to TILs. B7-H1/TIL colocalization was identified not only in melanomas but also in inflamed benign nevi, indicating that B7-H1 expression may represent a host response to tissue inflammation. Interferon-γ, a primary inducer of B7-H1 expression, was detected at the interface of B7-H1+ tumors and TILs, whereas none was found in B7-H1− tumors. Therefore, TILs may actually trigger their own inhibition by secreting cytokines that drive tumor B7-H1 expression. Consistent with this hypothesis, overall survival of patients with B7-H1+ metastatic melanoma was significantly prolonged compared with that of patients with B7-H1− metastatic melanoma. Therefore, induction of the B7-H1/PD-1 pathway may represent an adaptive immune resistance mechanism exerted by tumor cells in response to endogenous antitumor activity and may explain how melanomas escape immune destruction despite endogenous antitumor immune responses. These observations suggest that therapies that block this pathway may benefit patients with B7-H1+ tumors. PMID:22461641

  20. Within-host co-evolution of chronic viruses and the adaptive immune system

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  1. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    PubMed Central

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  2. Hormonal Contraception and HIV-1 Infection: Medroxyprogesterone Acetate Suppresses Innate and Adaptive Immune Mechanisms

    PubMed Central

    Huijbregts, Richard P. H.; Helton, E. Scott; Michel, Katherine G.; Sabbaj, Steffanie; Richter, Holly E.; Goepfert, Paul A.

    2013-01-01

    Recent observational studies indicate an association between the use of hormonal contraceptives and acquisition and transmission of HIV-1. The biological and immunological mechanisms underlying the observed association are unknown. Depot medroxyprogesterone acetate (DMPA) is a progestin-only injectable contraceptive that is commonly used in regions with high HIV-1 prevalence. Here we show that medroxyprogesterone acetate (MPA) suppresses the production of key regulators of cellular and humoral immunity involved in orchestrating the immune response to invading pathogens. MPA inhibited the production of interferon (IFN)-γ, IL-2, IL-4, IL-6, IL-12, TNFα, macrophage inflammatory protein-1α (MIP-1α), and other cytokines and chemokines by peripheral blood cells and activated T cells and reduced the production of IFNα and TNFα by plasmacytoid dendritic cells in response to Toll-like receptor-7, -8, and -9 ligands. Women using DMPA displayed lower levels of IFNα in plasma and genital secretions compared with controls with no hormonal contraception. In addition, MPA prevented the down-regulation of HIV-1 coreceptors CXCR4 and CCR5 on the surface of T cells after activation and increased HIV-1 replication in activated peripheral blood mononuclear cell cultures. The presented results suggest that MPA suppresses both innate and adaptive arms of the immune system resulting in a reduction of host resistance to invading pathogens. PMID:23354099

  3. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    NASA Astrophysics Data System (ADS)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  4. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  5. Role of passive and adaptive immunity in influencing enterocyte-specific gene expression.

    PubMed

    Jenkins, Shannon L; Wang, Jiafang; Vazir, Mukta; Vela, Jose; Sahagun, Omar; Gabbay, Peter; Hoang, Lisa; Diaz, Rosa L; Aranda, Richard; Martín, Martín G

    2003-10-01

    Numerous genes expressed by intestinal epithelial cells are developmentally regulated, and the influence that adaptive (AI) and passive (PI) immunity have in controlling their expression has not been evaluated. In this study, we tested the hypothesis that both PI and AI influenced enterocyte gene expression by developing a breeding scheme that used T and B cell-deficient recombination-activating gene (RAG) mice. RNA was isolated from the liver and proximal/distal small intestine at various ages, and the steady-state levels of six different transcripts were evaluated by RNase protection assay. In wild-type (WT) pups, all transcripts [Fc receptor of the neonate (FcRn), polymeric IgA receptor (pIgR), GLUT5, lactase-phlorizin hydrolase (lactase), apical sodium-dependent bile acid transporter (ASBT), and Na+/glucose cotransporter (SGLT1)] studied were developmentally regulated at the time of weaning, and all transcripts except ASBT had the highest levels of expression in the proximal small intestine. In WT suckling pups reared in the absence of PI, pIgR mRNA levels were increased 100% during the early phase of development. In mice lacking AI, the expression of pIgR and lactase were significantly attenuated, whereas FcRn and GLUT5 levels were higher compared with WT mice. Finally, in the absence of both passive and active immunity, expression levels of pIgR and lactase were significantly lower than similarly aged WT mice. In summary, we report that the adaptive and passive immune status of mice influences steady-state mRNA levels of several important, developmentally regulated enterocyte genes during the suckling and weaning periods of life.

  6. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    PubMed

    Fricke, G Matthew; Letendre, Kenneth A; Moses, Melanie E; Cannon, Judy L

    2016-03-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  7. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    PubMed Central

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  8. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes.

    PubMed

    Toben, Catherine; Baune, Bernhard T

    2015-12-01

    Historically the monoaminergic neurotransmitter system, in particular the serotonergic system, was seen as being responsible for the pathophysiology of major depressive disorder (MDD). With the advent of psychoneuroimmunology an important role of the immune system in the interface between the central nervous systems (CNS) and peripheral organ systems has emerged. In addition to the well-characterised neurobiological activities of cytokines, T cell function in the context of depression has been neglected so far. In this review we will investigate the biological roles of T cells in depression. Originally it was thought that the adaptive immune arm including T lymphocytes was excluded from the CNS. It is now clear that peripheral naïve T cells not only carry out continuous surveillance within the brain but also maintain neural plasticity. Furthermore animal studies demonstrate that regulatory T lymphocytes can provide protection against maladaptive behavioural responses associated with depression. Psychogenic stress as a major inducer of depression can lead to transient trafficking of T lymphocytes into the brain stimulating the secretion of certain neurotrophic factors and cytokines. The separate and combined mechanism of CD4 and CD8 T cell activation is likely to determine the response pattern of CNS specific neurokines and neurotrophins. Under chronic stress-induced neuroinflammatory conditions associated with depression, T cell responses may become maladaptive and can be involved in neurodegeneration. Additionally, intracellular adhesion and MHC molecule expression as well as glucocorticoid receptor expression within the brain may play a role in determining T lymphocyte functionality in depression. Taken together, T lymphocyte mechanisms, which confer susceptibility or resilience to MDD, are not yet fully understood. Further insight into the cellular and molecular mechanisms which balance the adaptive and maladaptive roles of T lymphocytes may provide a better

  9. The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity.

    PubMed

    Yang, D; Chertov, O; Oppenheim, J J

    2001-06-01

    Since we live in a dirty environment, we have developed many host defenses to contend with microorganisms. The epithelial lining of our skin, gastrointestinal tract and bronchial tree produces a number of antibacterial peptides, and our phagocytic neutrophils rapidly ingest and enzymatically degrade invading organisms, as well as produce peptides and enzymes with antimicrobial activities. Some of these antimicrobial moieties also appear to alert host cells involved in both innate host defense and adaptive immune responses. The epithelial cells are a source of constitutively produced beta defensin (HBD1) and proinflammatory cytokine-inducible beta defensins (HBD2 and -3) and cathelicidin (LL37). The neutrophils-derived antimicrobial peptides are released on demand from their cytoplasmic granules. They include the enzymes cathepsin G and chymase, azurocidin, a defensins and cathelicidin. In contrast, C5a and C3b are produced by activation of the serum complement cascade. The antimicrobial moieties direct the migration and activate target cells by interacting with selected G-protein-coupled seven-transmembrane receptors (GPCRs) on cell surfaces. The beta defensins interact with the CCR6 chemokine GPCRs, whereas cathelicidins interact with the low-affinity FPRL-1 receptors. The neutrophil-derived cathepsin G acts on the high-affinity FMLP receptor (GPCR) known as FPR, while the receptors for chymase and azurocidin have not been identified as yet. The serum-derived C5a uses a GPCR known as C5aR to mediate its chemotactic and cell-activating effects. Consequently, all these ligand-receptor interactions in addition to mediating chemotaxis also activate receptor-expressing cells to produce other mediators of inflammation.

  10. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  11. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  12. Enhancement of Innate and Adaptive Immune Functions by Multiple Echinacea Species

    PubMed Central

    Zhai, Zili; Liu, Yi; Wu, Lankun; Senchina, David S.; Wurtele, Eve S.; Murphy, Patricia A.; Kohut, Marian L.; Cunnick, Joan E.

    2008-01-01

    Echinacea preparations are commonly used as nonspecific immunomodulatory agents. Alcohol extracts from three widely used Echinacea species, Echinacea angustifolia, Echinacea pallida, and Echinacea purpurea, were investigated for immunomodulating properties. The three Echinacea species demonstrated a broad difference in concentrations of individual lipophilic amides and hydrophilic caffeic acid derivatives. Mice were gavaged once a day (for 7 days) with one of the Echinacea extracts (130 mg/kg) or vehicle and immunized with sheep red blood cells (sRBC) 4 days prior to collection of immune cells for multiple immunological assays. The three herb extracts induced similar, but differential, changes in the percentage of immune cell populations and their biological functions, including increased percentages of CD49+ and CD19+ lymphocytes in spleen and natural killer cell cytotoxicity. Antibody response to sRBC was significantly increased equally by extracts of all three Echinacea species. Concanavalin A-stimulated splenocytes from E. angustifolia- and E. pallida-treated mice demonstrated significantly higher T cell proliferation. In addition, the Echinacea treatment significantly altered the cytokine production by mitogen-stimulated splenic cells. The three herbal extracts significantly increased interferon-γ production, but inhibited the release of tumor necrosis factor-α and interleukin (IL)-1β. Only E. angustifolia- and E. pallida-treated mice demonstrated significantly higher production of IL-4 and increased IL-10 production. Taken together, these findings demonstrated that Echinacea is a wide-spectrum immunomodulator that modulates both innate and adaptive immune responses. In particular, E. angustifolia or E. pallida may have more anti-inflammatory potential. PMID:17887935

  13. Systemic Immune-Inflammation Index Predicts the Clinical Outcome in Patients with mCRPC Treated with Abiraterone

    PubMed Central

    Lolli, Cristian; Caffo, Orazio; Scarpi, Emanuela; Aieta, Michele; Conteduca, Vincenza; Maines, Francesca; Bianchi, Emanuela; Massari, Francesco; Veccia, Antonello; Chiuri, Vincenzo E.; Facchini, Gaetano; De Giorgi, Ugo

    2016-01-01

    Background: A systemic immune-inflammation index (SII) based on neutrophil (N), lymphocyte (L), and platelet (P) counts has shown a prognostic impact in several solid tumors. The aim of this study is to evaluate the prognostic role of SII in metastatic castration-resistant prostate cancer (mCRPC) patients treated with abiraterone post docetaxel. Patients and Methods: We retrospectively reviewed consecutive mCRPC patients treated with abiraterone after docetaxel in our Institutions. X-tile 3.6.1 software, cut-off values of SII, neutrophil-to-lymphocyte ratio (NLR) defined as N/L and platelets-to-lymphocyte ratio (PLR) as P/L. Overall survival (OS) and their 95% Confidence Intervals (95% CI) was estimated by the Kaplan-Meier method and compared with the log-rank test. The impact of SII, PLR, and NLR on overall survival (OS) was evaluated by Cox regression analyses and on prostate-specific antigen (PSA) response rates were evaluated by binary logistic regression. Results: A total of 230 mCRPC patients treated abiraterone were included. SII ≥ 535, NLR ≥ 3 and PLR ≥ 210 were considered as elevated levels (high risk groups. The median OS was 17.3 months, 21.8 months in SII < 535 group and 14.7 months in SII ≥ 535 (p < 0.0001). At univariate analysis Eastern Cooperative Oncology Group (ECOG) performance status, previous enzalutamide, visceral metastases, SII, NLR, and PLR predicted OS. In multivariate analysis, ECOG performance status, previous enzalutamide, visceral metastases, SII, and NLR remained significant predictors of OS [hazard ratio (HR) = 5.08, p < 0.0001; HR = 2.12, p = 0.009, HR = 1.77, 95% p = 0.012; HR = 1.80, p = 0.002; and HR = 1.90, p = 0.001, respectively], whereas, PLR showed a borderline ability only (HR = 1.41, p = 0.068). Conclusion: SII and NLR might represent an early and easy prognostic marker in mCRPC patients treated with abiraterone. Further studies are needed to better define their impact and role in these patients. PMID:27790145

  14. Initiation of antiretroviral therapy before detection of colonic infiltration by HIV reduces viral reservoirs, inflammation and immune activation

    PubMed Central

    Crowell, Trevor A; Fletcher, James LK; Sereti, Irini; Pinyakorn, Suteeraporn; Dewar, Robin; Krebs, Shelly J; Chomchey, Nitiya; Rerknimitr, Rungsun; Schuetz, Alexandra; Michael, Nelson L; Phanuphak, Nittaya; Chomont, Nicolas; Ananworanich, Jintanat

    2016-01-01

    Introduction Colonic infiltration by HIV occurs soon after infection, establishing a persistent viral reservoir and a barrier to cure. We investigated virologic and immunologic correlates of detectable colonic HIV RNA during acute HIV infection (AHI) and their response to antiretroviral treatment (ART). Methods From 49,458 samples screened for HIV, 74 participants were enrolled during AHI and 41 consented to optional sigmoidoscopy, HIV RNA was categorized as detectable (≥50 copies/mg) or undetectable in homogenized colon biopsy specimens. Biomarkers and HIV burden in blood, colon and cerebrospinal fluid were compared between groups and after 24 weeks of ART. Results Colonic HIV RNA was detectable in 31 participants (76%) and was associated with longer duration since HIV exposure (median 16 vs. 11 days, p=0.02), higher median plasma levels of cytokines and inflammatory markers (CXCL10 476 vs. 148 pg/mL, p=0.02; TNF-RII 1036 vs. 649 pg/mL, p<0.01; neopterin 2405 vs. 1368 pg/mL, p=0.01) and higher levels of CD8+ T cell activation in the blood (human leukocyte antigen - antigen D related (HLA-DR)/CD38 expression 14.4% vs. 7.6%, p <0.01) and colon (8.9% vs. 4.5%, p=0.01). After 24 weeks of ART, participants with baseline detectable colonic HIV RNA demonstrated persistent elevations in total HIV DNA in colonic mucosal mononuclear cells (CMMCs) (median 61 vs. 0 copies/106 CMMCs, p=0.03) and a trend towards higher total HIV DNA in peripheral blood mononuclear cells (PBMC) (41 vs. 1.5 copies/106 PBMCs, p=0.06). There were no persistent differences in immune activation and inflammation. Conclusions The presence of detectable colonic HIV RNA at the time of ART initiation during AHI is associated with higher levels of proviral DNA after 24 weeks of treatment. Seeding of HIV in the gut may have long-lasting effects on the size of persistent viral reservoirs and may represent an important therapeutic target in eradication strategies. PMID:27637172

  15. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2.

    PubMed

    Schulze-Topphoff, Ulf; Varrin-Doyer, Michel; Pekarek, Kara; Spencer, Collin M; Shetty, Aparna; Sagan, Sharon A; Cree, Bruce A C; Sobel, Raymond A; Wipke, Brian T; Steinman, Lawrence; Scannevin, Robert H; Zamvil, Scott S

    2016-04-26

    Dimethyl fumarate (DMF) (BG-12, Tecfidera) is a fumaric acid ester (FAE) that was advanced as a multiple sclerosis (MS) therapy largely for potential neuroprotection as it was recognized that FAEs are capable of activating the antioxidative transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, DMF treatment in randomized controlled MS trials was associated with marked reductions in relapse rate and development of active brain MRI lesions, measures considered to reflect CNS inflammation. Here, we investigated the antiinflammatory contribution of Nrf2 in DMF treatment of the MS model, experimental autoimmune encephalomyelitis (EAE). C57BL/6 wild-type (WT) and Nrf2-deficient (Nrf2(-/-)) mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 (p35-55) for EAE induction and treated with oral DMF or vehicle daily. DMF protected WT and Nrf2(-/-) mice equally well from development of clinical and histologic EAE. The beneficial effect of DMF treatment in Nrf2(-/-) and WT mice was accompanied by reduced frequencies of IFN-γ and IL-17-producing CD4(+) cells and induction of antiinflammatory M2 (type II) monocytes. DMF also modulated B-cell MHC II expression and reduced the incidence of clinical disease in a B-cell-dependent model of spontaneous CNS autoimmunity. Our observations that oral DMF treatment promoted immune modulation and provided equal clinical benefit in acute EAE in Nrf2(-/-) and WT mice, suggest that the antiinflammatory activity of DMF in treatment of MS patients may occur through alternative pathways, independent of Nrf2. PMID:27078105

  16. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2

    PubMed Central

    Schulze-Topphoff, Ulf; Varrin-Doyer, Michel; Pekarek, Kara; Spencer, Collin M.; Shetty, Aparna; Sagan, Sharon A.; Cree, Bruce A. C.; Sobel, Raymond A.; Wipke, Brian T.; Steinman, Lawrence; Scannevin, Robert H.; Zamvil, Scott S.

    2016-01-01

    Dimethyl fumarate (DMF) (BG-12, Tecfidera) is a fumaric acid ester (FAE) that was advanced as a multiple sclerosis (MS) therapy largely for potential neuroprotection as it was recognized that FAEs are capable of activating the antioxidative transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, DMF treatment in randomized controlled MS trials was associated with marked reductions in relapse rate and development of active brain MRI lesions, measures considered to reflect CNS inflammation. Here, we investigated the antiinflammatory contribution of Nrf2 in DMF treatment of the MS model, experimental autoimmune encephalomyelitis (EAE). C57BL/6 wild-type (WT) and Nrf2-deficient (Nrf2−/−) mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35–55 (p35–55) for EAE induction and treated with oral DMF or vehicle daily. DMF protected WT and Nrf2−/− mice equally well from development of clinical and histologic EAE. The beneficial effect of DMF treatment in Nrf2−/− and WT mice was accompanied by reduced frequencies of IFN-γ and IL-17–producing CD4+ cells and induction of antiinflammatory M2 (type II) monocytes. DMF also modulated B-cell MHC II expression and reduced the incidence of clinical disease in a B-cell–dependent model of spontaneous CNS autoimmunity. Our observations that oral DMF treatment promoted immune modulation and provided equal clinical benefit in acute EAE in Nrf2−/− and WT mice, suggest that the antiinflammatory activity of DMF in treatment of MS patients may occur through alternative pathways, independent of Nrf2. PMID:27078105

  17. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice.

    PubMed

    Majidi, Jafar; Kosari-Nasab, Morteza; Salari, Ali-Akbar

    2016-01-01

    Neonatal infection is associated with increased lifetime risk for neuropsychiatric disorders including anxiety and depression, with evidence showing that dysregulation of the hypothalamic-pituitary-adrenal-(HPA)-axis system may be partly responsible. Preclinical and clinical studies demonstrate that minocycline exhibits antidepressant effects through inhibition of microglial activation and anti-inflammatory actions, and of interest is that recent studies suggest that minocycline alleviates the behavioral abnormalities induced by early-life insults. The current study was designed to determine if developmental minocycline treatment attenuates the neonatal immune activation-induced anxiety- and depression-like symptoms and HPA-axis-dysregulation later in life. To this end, neonatal mice were treated to either lipopolysaccharide or saline on postnatal days (PND) 3-5, then dams during lactation (PND 6-20) and male offspring during adolescence (PND 21-40) received oral administration of minocycline or water via regular drinking bottles. Anxiety- and depression-like behaviors, HPA-axis-reactivity (corticosterone), and hippocampal inflammation (TNF-α and IL-1β) after exposure to stress were evaluated. The results indicated that neonatal immune activation resulted in increased anxiety and depression-like symptoms, HPA-axis-hyperactivity, and elevated the levels of TNF-α and IL-1β in the hippocampus in response to stress in adulthood. Interestingly, developmental minocycline treatment significantly reduced the abnormalities induced by neonatal inflammation in adult mice. In addition, minocycline, regardless of postnatal inflammation, did not have any detrimental effects on the above measured parameters. Considering that minocycline is currently under exploration as an alternative or adjunctive therapy for reducing the symptoms of neurological disorders, our findings suggest that minocycline during development can decrease the behavioral abnormalities induced by early

  18. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    PubMed

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers. PMID:26792800

  19. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    PubMed

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers.

  20. Immune cells and angiogenesis.

    PubMed

    Ribatti, Domenico; Crivellato, Enrico

    2009-09-01

    Both innate and adaptive immune cells are involved in the mechanisms of endothelial cell proliferation, migration and activation, through the production and release of a large spectrum of pro-angiogenic mediators. These may create the specific microenvironment that favours an increased rate of tissue vascularization. In this review, we will focus on the immune cell component of the angiogenic process in inflammation and tumour growth. As angiogenesis is the result of a net balance between the activities exerted by positive and negative regulators, we will also provide information on some antiangiogenic properties of immune cells that may be utilized for a potential pharmacological use as antiangiogenic agents in inflammation as well as in cancer.

  1. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis.

    PubMed

    Meijer, Laurent; Nelson, Deborah J; Riazanski, Vladimir; Gabdoulkhakova, Aida G; Hery-Arnaud, Geneviève; Le Berre, Rozenn; Loaëc, Nadège; Oumata, Nassima; Galons, Hervé; Nowak, Emmanuel; Gueganton, Laetitia; Dorothée, Guillaume; Prochazkova, Michaela; Hall, Bradford; Kulkarni, Ashok B; Gray, Robert D; Rossi, Adriano G; Witko-Sarsat, Véronique; Norez, Caroline; Becq, Frédéric; Ravel, Denis; Mottier, Dominique; Rault, Gilles

    2016-01-01

    (R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate. PMID:26987072

  2. TIM-4, a Receptor for Phosphatidylserine, Controls Adaptive Immunity by Regulating the Removal of Antigen-Specific T Cells

    PubMed Central

    Albacker, Lee A.; Karisola, Piia; Chang, Ya-Jen; Umetsu, Sarah E.; Zhou, Meixia; Akbari, Omid; Kobayashi, Norimoto; Baumgarth, Nicole; Freeman, Gordon J.; Umetsu, Dale T.; DeKruyff, Rosemarie H.

    2010-01-01

    Adaptive immunity is characterized by the expansion of an Ag-specific T cell population following Ag exposure. The precise mechanisms, however, that control the expansion and subsequent contraction in the number of Ag-specific T cells are not fully understood. We show that T cell/transmembrane, Ig, and mucin (TIM)-4, a receptor for phosphatidylserine, a marker of apoptotic cells, regulates adaptive immunity in part by mediating the removal of Ag-specific T cells during the contraction phase of the response. During Ag immunization or during infection with influenza A virus, blockade of TIM-4 on APCs increased the expansion of Ag-specific T cells, resulting in an increase in secondary immune responses. Conversely, overexpression of TIM-4 on APCs in transgenic mice reduced the number of Ag-specific T cells that remained after immunization, resulting in reduced secondary T cell responses. There was no change in the total number of cell divisions that T cells completed, no change in the per cell proliferative capacity of the remaining Ag-specific T cells, and no increase in the development of Ag-specific regulatory T cells in TIM-4 transgenic mice. Thus, TIM-4–expressing cells regulate adaptive immunity by mediating the removal of phosphatidylserine-expressing apoptotic, Ag-specific T cells, thereby controlling the number of Ag-specific T cells that remain after the clearance of Ag or infection. PMID:21037090

  3. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures

    PubMed Central

    Rossignol, D A; Frye, R E

    2012-01-01

    Recent studies have implicated physiological and metabolic abnormalities in autism spectrum disorders (ASD) and other psychiatric disorders, particularly immune dysregulation or inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures (‘four major areas'). The aim of this study was to determine trends in the literature on these topics with respect to ASD. A comprehensive literature search from 1971 to 2010 was performed in these four major areas in ASD with three objectives. First, publications were divided by several criteria, including whether or not they implicated an association between the physiological abnormality and ASD. A large percentage of publications implicated an association between ASD and immune dysregulation/inflammation (416 out of 437 publications, 95%), oxidative stress (all 115), mitochondrial dysfunction (145 of 153, 95%) and toxicant exposures (170 of 190, 89%). Second, the strength of evidence for publications in each area was computed using a validated scale. The strongest evidence was for immune dysregulation/inflammation and oxidative stress, followed by toxicant exposures and mitochondrial dysfunction. In all areas, at least 45% of the publications were rated as providing strong evidence for an association between the physiological abnormalities and ASD. Third, the time trends in the four major areas were compared with trends in neuroimaging, neuropathology, theory of mind and genetics (‘four comparison areas'). The number of publications per 5-year block in all eight areas was calculated in order to identify significant changes in trends. Prior to 1986, only 12 publications were identified in the four major areas and 51 in the four comparison areas (42 for genetics). For each 5-year period, the total number of publications in the eight combined areas increased progressively. Most publications (552 of 895, 62%) in the four major areas were published in the last 5 years (2006–2010). Evaluation

  4. Immune response of mice to non-adapted avian influenza A virus.

    PubMed

    Stropkovská, A; Mikušková, T; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-12-01

    Human infections with avian influenza A viruses (IAVs) without or with clinical symptoms of disease were recently reported from several continents, mainly in high risk groups of people, who came into the contact with infected domestic birds or poultry. It was shown that avian IAVs are able to infect humans directly without previous adaptation, however, their ability to replicate and to cause a disease in this new host can differ. No spread of these avian IAVs among humans has been documented until now, except for one case described in Netherlands in the February of 2003 in people directly involved in handling IAV (H7N7)-infected poultry. The aim of our work was to examine whether a low pathogenic avian IAV can induce a virus-specific immune response of biological relevancy, in spite of its restricted replication in mammals. As a model we used a low pathogenic virus A/Duck/Czechoslovakia/1956 (H4N6) (A/Duck), which replicated well in MDCK cells and produced plaques on cell monolayers, but was unable to replicate productively in mouse lungs. We examined how the immune system of mice responds to the intranasal application of this non-adapted avian virus. Though we did not prove the infectious virus in lungs of mice following A/Duck application even after its multiple passaging in mice, we detected virus-specific vRNA till day 8 post infection. Moreover, we detected virus-specific mRNA and de novo synthesized viral nucleoprotein (NP) and membrane protein (M1) in lungs of mice on day 2 and 4 after exposure to A/Duck. Virus-specific antibodies in sera of these mice were detectable by ELISA already after a single intranasal dose of A/Duck virus. Not only antibodies specific to the surface glycoprotein hemagglutinin (HA) were induced, but also antibodies specific to the NP and M1 of IAV were detected by Western blot and their titers increased after the second exposure of mice to this virus. Importantly, antibodies neutralizing virus A/Duck were proved in mouse

  5. Immune response of mice to non-adapted avian influenza A virus.

    PubMed

    Stropkovská, A; Mikušková, T; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-12-01

    Human infections with avian influenza A viruses (IAVs) without or with clinical symptoms of disease were recently reported from several continents, mainly in high risk groups of people, who came into the contact with infected domestic birds or poultry. It was shown that avian IAVs are able to infect humans directly without previous adaptation, however, their ability to replicate and to cause a disease in this new host can differ. No spread of these avian IAVs among humans has been documented until now, except for one case described in Netherlands in the February of 2003 in people directly involved in handling IAV (H7N7)-infected poultry. The aim of our work was to examine whether a low pathogenic avian IAV can induce a virus-specific immune response of biological relevancy, in spite of its restricted replication in mammals. As a model we used a low pathogenic virus A/Duck/Czechoslovakia/1956 (H4N6) (A/Duck), which replicated well in MDCK cells and produced plaques on cell monolayers, but was unable to replicate productively in mouse lungs. We examined how the immune system of mice responds to the intranasal application of this non-adapted avian virus. Though we did not prove the infectious virus in lungs of mice following A/Duck application even after its multiple passaging in mice, we detected virus-specific vRNA till day 8 post infection. Moreover, we detected virus-specific mRNA and de novo synthesized viral nucleoprotein (NP) and membrane protein (M1) in lungs of mice on day 2 and 4 after exposure to A/Duck. Virus-specific antibodies in sera of these mice were detectable by ELISA already after a single intranasal dose of A/Duck virus. Not only antibodies specific to the surface glycoprotein hemagglutinin (HA) were induced, but also antibodies specific to the NP and M1 of IAV were detected by Western blot and their titers increased after the second exposure of mice to this virus. Importantly, antibodies neutralizing virus A/Duck were proved in mouse

  6. Autophagy genes in immunity

    PubMed Central

    Virgin, Herbert W; Levine, Beth

    2009-01-01

    In its classical form, autophagy is a pathway by which cytoplasmic constituents, including intracellular pathogens, are sequestered in a double-membrane–bound autophagosome and delivered to the lysosome for degradation. This pathway has been linked to diverse aspects of innate and adaptive immunity, including pathogen resistance, production of type I interferon, antigen presentation, tolerance and lymphocyte development, as well as the negative regulation of cytokine signaling and inflammation. Most of these links have emerged from studies in which genes encoding molecules involved in autophagy are inactivated in immune effector cells. However, it is not yet known whether all of the critical functions of such genes in immunity represent ‘classical autophagy’ or possible as-yet-undefined autophagolysosome-independent functions of these genes. This review summarizes phenotypes that result from the inactivation of autophagy genes in the immune system and discusses the pleiotropic functions of autophagy genes in immunity. PMID:19381141

  7. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-01

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. PMID:26382836

  8. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Wu, Genhua

    2014-08-01

    Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.

  9. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-01

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight.

  10. Formulation of the respiratory syncytial virus fusion protein with a polymer-based combination adjuvant promotes transient and local innate immune responses and leads to improved adaptive immunity.

    PubMed

    Sarkar, Indranil; Garg, Ravendra; van Drunen Littel-van den Hurk, Sylvia

    2016-09-30

    Respiratory syncytial virus (RSV) causes serious upper and lower respiratory tract infections in newborns and infants. Presently, there is no licensed vaccine against RSV. We previously reported the safety and efficacy of a novel vaccine candidate (ΔF/TriAdj) in rodent and lamb models following intranasal immunization. However, the effects of the vaccine on the innate immune system in the upper and lower respiratory tracts, when delivered intranasally, have not been characterized. In the present study, we found that ΔF/TriAdj triggered transient production of chemokines, cytokines and interferons in the nasal tissues and lungs of BALB/c mice. The types of chemokines produced were consistent with the populations of immune cells recruited, i.e. dendritic cells, macrophages and neutrophils, in the nose-associated lymphoid tissue (NALT), lung and their draining lymph nodes of the ΔF/TriAdj-immunized group. In addition, ΔF/TriAdj stimulated cellular activation with generation of mucosal and systemic antibody responses, and conferred complete protection from viral infection in the lungs upon RSV challenge. The effect of ΔF/TriAdj was short-lived in the nasal tissues and more prolonged in the lungs. In addition, both innate and adaptive immune responses were lower when mice were immunized with ΔF alone. These results suggest that ΔF/TriAdj modulates the innate mucosal environment in both upper and lower respiratory tracts, which contributes to robust adaptive immune responses and long-term protective efficacy of this novel vaccine formulation. PMID:27591951

  11. Immune adaptive response induced by Bicotylophora trachinoti (Monogenea: Diclidophoridae) infestation in pompano Trachinotus marginatus (Perciformes: Carangidae).

    PubMed

    Chaves, I S; Luvizzotto-Santos, R; Sampaio, L A N; Bianchini, A; Martínez, P E

    2006-09-01

    Fish have developed protective strategies against monogeneans through immunological responses. In this study, immune adaptive response to parasites was analysed in the pompano Trachinotus marginatus infested by Bicotylophora trachinoti. Hosts were pre-treated with formalin and after 10 days assigned to one of the following experimental treatments: (1) fish infested with remaining eggs of B. trachinoti; (2) fish infested with remaining eggs of B. trachinoti and experimentally re-infested by exposure to T. marginatus heavily infested with B. trachinoti. Samples were collected at 0, 15, and 30 days. Gills were dissected to check the presence of B. trachinoti. Blood was collected for haematological and biochemical assays. Spleen and head-kidney were dissected for phagocytosis assay. The spleen-somatic index was also calculated. Re-infested fish showed a faster and higher parasite infestation than infested ones. The parasite mean abundance at 15 days was 24.86+/-13.32 and 11.67+/-8.57 for re-infested and infested fish, respectively. In both groups, hosts showed an immune adaptive response to parasite infestation that was marked by an increased number of leukocytes. Also, phagocytosis (%) in spleen and head-kidney cells was stimulated after parasite infestation (92.50+/-3.73 and 66.00+/-9.54, respectively), becoming later depressed (77.39+/-6.69 and 53.23+/-9.14, respectively). These results support the hypothesis that monogenean infestation induces a biphasic response of the non-specific defence mechanisms in the pompano T. marginatus. This response is marked by an initial stimulation followed by a later depression of the non-specific defence mechanisms.

  12. The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence

    PubMed Central

    Mehra, Smriti; Foreman, Taylor W.; Didier, Peter J.; Ahsan, Muhammad H.; Hudock, Teresa A.; Kissee, Ryan; Golden, Nadia A.; Gautam, Uma S.; Johnson, Ann-Marie; Alvarez, Xavier; Russell-Lodrigue, Kasi E.; Doyle, Lara A.; Roy, Chad J.; Niu, Tianhua; Blanchard, James L.; Khader, Shabaana A.; Lackner, Andrew A.; Sherman, David R.

    2015-01-01

    Rationale: Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia. Objectives: To understand DosR's contribution in the persistence of M. tuberculosis, we compared the phenotype of various DosR regulon mutants and a complemented strain to M. tuberculosis in macaques, which faithfully model M. tuberculosis infection. Methods: We measured clinical and microbiologic correlates of infection with M. tuberculosis relative to mutant/complemented strains in the DosR regulon, studied lung pathology and hypoxia, and compared immune responses in lung using transcriptomics and flow cytometry. Measurements and Main Results: Despite being able to replicate initially, mutants in DosR regulon failed to persist or cause disease. On the contrary, M. tuberculosis and a complemented strain were able to establish infection and tuberculosis. The attenuation of pathogenesis in animals infected with the mutants coincided with the appearance of a Th1 response and organization of hypoxic lesions wherein M. tuberculosis expressed dosR. The lungs of animals infected with the mutants (but not the complemented strain) exhibited early transcriptional signatures of T-cell recruitment, activation, and proliferation associated with an increase of T cells expressing homing and proliferation markers. Conclusions: Delayed adaptive responses, a hallmark of M. tuberculosis infection, not only lead to persistence but also interfere with the development of effective antituberculosis vaccines. The DosR regulon therefore modulates both the magnitude and the timing of adaptive immune responses in response to hypoxia in vivo, resulting in persistent infection. Hence, DosR regulates key aspects of the M. tuberculosis life cycle and limits lung pathology. PMID:25730547

  13. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    SciTech Connect

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  14. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    NASA Astrophysics Data System (ADS)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B-B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  15. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    NASA Astrophysics Data System (ADS)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B–B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  16. Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection.

    PubMed

    Bendor, Liron; Weyrich, Laura S; Linz, Bodo; Rolin, Olivier Y; Taylor, Dawn L; Goodfield, Laura L; Smallridge, William E; Kennett, Mary J; Harvill, Eric T

    2015-01-01

    The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease. PMID:26485303

  17. Unusual association of amyotrophic lateral sclerosis and myasthenia gravis: A dysregulation of the adaptive immune system?

    PubMed

    Del Mar Amador, Maria; Vandenberghe, Nadia; Berhoune, Nawel; Camdessanché, Jean-Philippe; Gronier, Sophie; Delmont, Emilien; Desnuelle, Claude; Cintas, Pascal; Pittion, Sophie; Louis, Sarah; Demeret, Sophie; Lenglet, Timothée; Meininger, Vincent; Salachas, François; Pradat, Pierre-François; Bruneteau, Gaëlle

    2016-06-01

    Myasthenia gravis is an autoimmune disorder affecting neuromuscular junctions that has been associated with a small increased risk of amyotrophic lateral sclerosis (ALS). Here, we describe a retrospective series of seven cases with a concomitant diagnosis of ALS and myasthenia gravis, collected among the 18 French reference centers for ALS in a twelve year period. After careful review, only six patients strictly met the diagnostic criteria for both ALS and myasthenia gravis. In these patients, limb onset of ALS was reported in five (83%) cases. Localization of myasthenia gravis initial symptoms was ocular in three (50%) cases, generalized in two (33%) and bulbar in one (17%). Median delay between onset of the two conditions was 19 months (6-319 months). Anti-acetylcholine receptor antibodies testing was positive in all cases. All patients were treated with riluzole and one had an associated immune-mediated disease. In the one last ALS case, the final diagnosis was false-positivity for anti-acetylcholine receptor antibodies. The co-occurrence of ALS and myasthenia gravis is rare and requires strict diagnostic criteria. Its demonstration needs thoughtful interpretation of electrophysiological results and exclusion of false positivity for myasthenia gravis antibody testing in some ALS cases. This association may be triggered by a dysfunction of adaptive immunity.

  18. Influence of phthalates on in vitro innate and adaptive immune responses.

    PubMed

    Hansen, Juliana Frohnert; Nielsen, Claus Henrik; Brorson, Marianne Møller; Frederiksen, Hanne; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh; Bendtzen, Klaus; Feldt-Rasmussen, Ulla

    2015-01-01

    Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL)-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF)-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo.

  19. Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection.

    PubMed

    Bendor, Liron; Weyrich, Laura S; Linz, Bodo; Rolin, Olivier Y; Taylor, Dawn L; Goodfield, Laura L; Smallridge, William E; Kennett, Mary J; Harvill, Eric T

    2015-01-01

    The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease.

  20. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause promotes central obesity, adipose tissue (AT) inflammation and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages (M's), T-cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation an...

  1. Fault-Tolerant Trajectory Tracking of Unmanned Aerial Vehicles Using Immunity-Based Model Reference Adaptive Control

    NASA Astrophysics Data System (ADS)

    Wilburn, Brenton K.

    This dissertation presents the design, development, and simulation testing of an adaptive trajectory tracking algorithm capable of compensating for various aircraft subsystem failures and upset conditions. A comprehensive adaptive control framework, here within referred to as the immune model reference adaptive control (IMRAC) algorithm, is developed by synergistically merging core concepts from the biologically- inspired artificial immune system (AIS) paradigm with more traditional optimal and adaptive control techniques. In particular, a model reference adaptive control (MRAC) algorithm is enhanced with the detection and learning capabilities of a novel, artificial neural network augmented AIS scheme. With the given modifications, the MRAC scheme is capable of detecting and identifying a given failure or upset condition, learning how to adapt to the problem, responding in a manner specific to the given failure condition, and retaining the learning parameters for quicker adaptation to subsequent failures of the same nature. The IMRAC algorithm developed in this dissertation is applicable to a wide range of control problems. However, the proposed methodology is demonstrated in simulation for an unmanned aerial vehicle. The results presented show that the IMRAC algorithm is an effective and valuable extension to traditional optimal and adaptive control techniques. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems.

  2. Neuronal adaptations, neuroendocrine and immune correlates of heroin self-administration.

    PubMed

    Weber, R J; Gomez-Flores, R; Smith, J E; Martin, T J

    2009-10-01

    Opioid receptor-mediated action in the central nervous system (CNS) has been consistently shown to trigger changes in the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS) and suppress a variety of parameters of immune function in investigator-delivered paradigms. Overwhelming evidence supports the concept that the CNS undergoes numerous and complex neuronal adaptive changes in addicts, and in animal models of heroin addiction as a result of the training of drug stimuli to serve as reinforcers, altering the function of individual neurons and the larger neural circuits within which the neurons operate. Taken together, these advances suggest that since plastic neuronal changes occur in drug addiction and related animal model paradigms, profiles of neuroendocrine and immune function would differ in a rat model of heroin self-administration compared to passive infusion of drug. Self-administration of heroin induces neuronal circuitry adaptations in specific brain regions that may be related to alterations in neuroendocrine and T lymphocyte function also observed. Animals self-administering (SA) heroin exhibit increased mu-opioid receptor agonist ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO))-stimulated guanosine-5'-O-(gamma-thio)-triphosphate ([(35)S]GTPgammaS) binding in the anterior hypothalamus (50% and 33%) and rostral medial thalamus (33% and 36%) compared with control animals receiving identical non-contingent injections of yoked-heroin (YH) or yoked-saline (YS), respectively. No changes in agonist-stimulated G-protein sensitization were observed in 14 other brain regions studied. No changes in mu-opioid receptor density, ((3)H-DAMGO binding) were seen in all brain regions examined. The neuronal changes in SA animals were correlated with elevated adrenocorticotrophic hormone (ACTH) (64% and 104%) and glucocorticoid production (198% and 79%) compared with YH and YS groups, respectively. Neuroendocrine adaptive changes in SA

  3. Protective immune response of live attenuated thermo-adapted peste des petits ruminants vaccine in goats.

    PubMed

    Balamurugan, V; Sen, A; Venkatesan, G; Bhanuprakash, V; Singh, R K

    2014-01-01

    Virulent isolate of peste des petits ruminants virus (PPRV) of Indian origin (PPRV Jhansi 2003) initially adapted in Vero cells was further propagated in thermo-adapted (Ta) Vero cells grown at 40 °C for attaining thermo-adaption and attenuation of virus for development of Ta vaccine against PPR in goats and sheep. The virus was attenuated up to 50 passages in Ta Vero cells, at which, the virus was found sterile, innocuous in mice and guinea pigs and safe in seronegative goats and sheep. The developed vaccine was tested for its immunogenicity in goats and sheep by subcutaneous inoculation of 100 TCID50 (0.1 field dose), 10(3) TCID50 (one field dose) and 10(5) TCID50 (100 field doses) of the attenuated virus along with controls as per OIE described protocols for PPR vaccine testing and were assessed for PPRV-specific antibodies 7-28 days post vaccination (dpv) by PPR competitive ELISA and serum neutralization tests. The PPRV antibodies were detected in all immunized goats and sheep and goats were protective when challenged with virulent PPRV at 28th dpv along with controls for potency testing of the vaccine. The attenuated vaccine did not induce any adverse reaction at high dose (10(5) TCID50) in goats and sheep and provided complete protection even at low dose (10(2) TCID50) in goats when challenged with virulent virus. There was no shedding and horizontal transmission of the attenuated virus to in-contact controls. The results indicate that the developed PPR Ta attenuated virus is innocuous, safe, immunogenic and potent or efficacious vaccine candidate alternative to the existing vaccines for the protection of goats and sheep against PPR in the tropical countries like India. PMID:25674603

  4. Fish oil-supplemented parenteral nutrition could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis.

    PubMed

    Li, Xiaolong; Zhang, Xianxiang; Yang, Enqin; Zhang, Nanyang; Cao, Shougen; Zhou, Yanbing

    2015-09-01

    The objectives were to confirm that intravenous fish oil (FO) emulsions could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis and to explore the mechanisms of these effects. Thirty-six adult male Sprague-Dawley rats were divided into 4 groups randomly. Two days after central venous catheterization, rats were subjected to cecal ligation and puncture to produce abdominal sepsis. Rats were assigned to receive normal saline or total parenteral nutrition (TPN) containing standard soybean oil emulsions or FO-supplemented TPN at the onset of sepsis for 5 days. A sham operation and control treatment were performed in control group rats. Acute lung injury scores, peripheral blood lymphocyte subsets, plasma cytokines, and Foxp3 expression in the spleen were determined. Compared with the normal saline and TPN without FO, FO-supplemented TPN beneficially altered the distributions of the T-lymphocyte subsets and downregulated the acute lung injury scores, plasma cytokines, and expression of Foxp3 due to sepsis. Fish oil-supplemented TPN can decrease acute lung injury scores, alleviate histopathology, reduce the bacterial load in the peritoneal lavage fluid, modulate the lymphocyte subpopulation in the peripheral blood, downregulate Foxp3 expression in the spleen, and reduce plasma cytokines, which means that FO-supplemented TPN can alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis.

  5. On the heart, the mind, and how inflammation killed the Cartesian dualism. Commentary on the 2015 Named Series: Psychological Risk Factors and Immune System Involvement in Cardiovascular Disease.

    PubMed

    Mondelli, Valeria; Pariante, Carmine M

    2015-11-01

    The 2015 Named Series on "Psychological Risk Factors and Immune System Involvement in Cardiovascular Disease" was conceived with the idea of drawing attention to the interdisciplinary work aimed at investigating the relationships between the heart, metabolic system, brain, and mental health. In this commentary, we provide a brief overview of the manuscripts included in this Named Series and highlight how a better understanding of immune regulation will help us to move forward from the current "dualistic" perspective of the heart as separate from the mind to a more comprehensive understanding of the physiological links between cardiovascular and mental disorders. The manuscripts included in this Named Series range across a wide spectrum of topics, from understanding biological mechanisms explaining comorbidity between cardiovascular disease and psychiatric disorders to new insights into the dysregulation of inflammation associated with cardiovascular risk factors. Clearly, inflammation emerges as a cross-cutting theme across all studies. Data presented in this Series contribute to putting an end to an era in which the heart and the mind were considered to be separate entities in which the responses of one system did not affect the other.

  6. Immunity in arterial hypertension: associations or causalities?

    PubMed

    Anders, Hans-Joachim; Baumann, Marcus; Tripepi, Giovanni; Mallamaci, Francesca

    2015-12-01

    Numerous studies describe associations between markers of inflammation and arterial hypertension (aHT), but does that imply causality? Interventional studies that reduce blood pressure reduced also markers of inflammation, but does immunosuppression improve hypertension? Here, we review the available mechanistic data. Aberrant immunity can trigger endothelial dysfunction but is hardly ever the primary cause of aHT. Innate and adaptive immunity get involved once hypertension has caused vascular wall injury as immunity is a modifier of endothelial dysfunction and vascular wall remodelling. As vascular remodelling progresses, immunity-related mechanisms can become significant cofactors for cardiovascular (CV) disease progression; vice versa, suppressing immunity can improve hypertension and CV outcomes. Innate and adaptive immunity both contribute to vascular wall remodelling. Innate immunity is driven by danger signals that activate Toll-like receptors and other pattern-recognition receptors. Adaptive immunity is based on loss of tolerance against vascular autoantigens and includes autoreactive T-cell immunity as well as non-HLA angiotensin II type 1 receptor-activating autoantibodies. Such processes involve numerous other modulators such as regulatory T cells. Together, immunity is not causal for hypertension but rather an important secondary pathomechanism and a potential therapeutic target in hypertension.

  7. The effect of smoking and alcohol consumption on markers of systemic inflammation, immunoglobulin levels and immune response following pneumococcal vaccination in patients with arthritis

    PubMed Central

    2012-01-01

    Introduction The purpose of this research was to study the influence of cigarette smoking and alcohol consumption on immune response to heptavalent pneumococcal conjugate vaccine, immunoglobulin levels (Ig) and markers of systemic inflammation in patients with rheumatoid arthritis (RA) or spondylarthropathy (SpA). Methods In total, 505 patients were vaccinated. Six pre-specified groups were enrolled: RA on methotrexate (MTX) treatment in some cases other disease-modifying antirheumatic drugs (DMARDs) (I); RA on anti-tumour necrosis factor (TNF) as monotherapy (II); RA on anti-TNF+MTX+ possibly other DMARDs (III); SpA on anti-TNF as monotherapy (IV); SpA on anti-TNF+MTX+ possibly other DMARDs (V); and SpA on nonsteroidal anti-inflammatory drugs (NSAIDs) and/or analgesics (VI). Smoking (pack-years) and alcohol consumption (g/week) were calculated from patient questionnaires. Ig, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were determined at vaccination. IgG antibodies against serotypes 23F and 6B were measured at vaccination and after four to six weeks using standard ELISA. Immune response (ratio between post- and pre-vaccination antibodies; immune response (IR)) and positive immune response (≥2-fold increase in pre-vaccination antibodies; posIR) were calculated. Results Eighty-eight patients (17.4%) were current smokers. Smokers had higher CRP and ESR, lower IgG and lower IR for both serotypes (P between 0.012 and 0.045). RA patients on MTX who smoked ≥1pack-year had lower posIR for both serotypes (P = 0.021; OR 0.29; CI 0.1 to 0.7) compared to never-smokers. Alcohol consumption was associated with lower CRP (P = 0.05) and ESR (P = 0.003) but did not influence IR or Ig levels. Conclusion Smoking predicted impaired immune response to pneumococcal conjugate vaccine in RA patients on MTX. Smokers with arthritis had higher inflammatory markers and lower IgG regardless of diagnosis and treatment. Low to moderate alcohol consumption was related

  8. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection.

    PubMed

    Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu

    2014-09-01

    The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections.

  9. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection

    PubMed Central

    Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu

    2014-01-01

    The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268

  10. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    PubMed Central

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  11. Membrane vesicles of Clostridium perfringens Type A strains induce innate and adaptive immunity

    PubMed Central

    Jiang, Yanlong; Kong, Qingke; Roland, Kenneth L.; Curtiss, Roy

    2014-01-01

    Vesicle shedding from bacteria is a universal process in most Gram-negative bacteria and a few Gram-positive bacteria. In this report, we isolate extracellular membrane vesicles (MVs) from the supernatants of Gram-positive pathogen Clostridium perfringens (C. perfringens). We demonstrated vesicle production in a variety of virulent and nonvirulent type A strains. MVs did not contain alpha-toxin and NetB toxin demonstrated by negative reaction to specific antibody and absence of specific proteins identified by LC-MS/MS. C. perfringens MVs contained DNA components such as 16S ribosomal RNA gene (16S rRNA), alpha-toxin gene (plc) and the perfringolysin O gene (pfoA) demonstrated by PCR. We also identified a total of 431 proteins in vesicles by 1-D gel separation and LC-MS/MS analysis. In vitro studies demonstrated that vesicles could be internalized into murine macrophage RAW264.7 cells without direct cytotoxicity effects, causing release of inflammation cytokines including granulocyte colony stimulating factor (G-CSF), tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1), which could also be detected in mice injected with MVs through intraperitoneal (i.p.) route. Mice immunized with C. perfringens MVs produced high titer IgG, especially IgG1, antibodies against C. perfringens membrane proteins. However, this kind of antibody could not provide protection in mice following challenge, though it could slightly postpone the time of death. Our results indicate that release of MVs from C. perfringens could provide a previously unknown mechanism to induce release of inflammatory cytokines, especially TNF-α, these findings may contribute to a better understanding of the pathogenesis of C. perfringens infection. PMID:24631214

  12. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK

    PubMed Central

    Filippov, Sergey; Pinkosky, Stephen L.; Lister, Richard J.; Pawloski, Catherine; Hanselman, Jeffrey C.; Cramer, Clay T.; Srivastava, Rai Ajit K.; Hurley, Timothy R.; Bradshaw, Cheryl D.; Spahr, Mark A.; Newton, Roger S.

    2013-01-01

    ETC-1002 is an investigational drug currently in Phase 2 development for treatment of dyslipidemia and other cardiometabolic risk factors. In dyslipidemic subjects, ETC-1002 not only reduces plasma LDL cholesterol but also significantly attenuates levels of hsCRP, a clinical biomarker of inflammation. Anti-inflammatory properties of ETC-1002 were further investigated in primary human monocyte-derived macrophages and in in vivo models of inflammation. In cells treated with ETC-1002, increased levels of AMP-activated protein kinase (AMPK) phosphorylation coincided with reduced activity of MAP kinases and decreased production of proinflammatory cytokines and chemokines. AMPK phosphorylation and inhibitory effects of ETC-1002 on soluble mediators of inflammation were significantly abrogated by siRNA-mediated silencing of macrophage liver kinase B1 (LKB1), indicating that ETC-1002 activates AMPK and exerts its anti-inflammatory effects via an LKB1-dependent mechanism. In vivo, ETC-1002 suppressed thioglycollate-induced homing of leukocytes into mouse peritoneal cavity. Similarly, in a mouse model of diet-induced obesity, ETC-1002 restored adipose AMPK activity, reduced JNK phosphorylation, and diminished expression of macrophage-specific marker 4F/80. These data were consistent with decreased epididymal fat-pad mass and interleukin (IL)-6 release by inflamed adipose tissue. Thus, ETC-1002 may provide further clinical benefits for patients with cardiometabolic risk factors by reducing systemic inflammation linked to insulin resistance and vascular complications of metabolic syndrome. PMID:23709692

  13. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK.

    PubMed

    Filippov, Sergey; Pinkosky, Stephen L; Lister, Richard J; Pawloski, Catherine; Hanselman, Jeffrey C; Cramer, Clay T; Srivastava, Rai Ajit K; Hurley, Timothy R; Bradshaw, Cheryl D; Spahr, Mark A; Newton, Roger S

    2013-08-01

    ETC-1002 is an investigational drug currently in Phase 2 development for treatment of dyslipidemia and other cardiometabolic risk factors. In dyslipidemic subjects, ETC-1002 not only reduces plasma LDL cholesterol but also significantly attenuates levels of hsCRP, a clinical biomarker of inflammation. Anti-inflammatory properties of ETC-1002 were further investigated in primary human monocyte-derived macrophages and in in vivo models of inflammation. In cells treated with ETC-1002, increased levels of AMP-activated protein kinase (AMPK) phosphorylation coincided with reduced activity of MAP kinases and decreased production of proinflammatory cytokines and chemokines. AMPK phosphorylation and inhibitory effects of ETC-1002 on soluble mediators of inflammation were significantly abrogated by siRNA-mediated silencing of macrophage liver kinase B1 (LKB1), indicating that ETC-1002 activates AMPK and exerts its anti-inflammatory effects via an LKB1-dependent mechanism. In vivo, ETC-1002 suppressed thioglycollate-induced homing of leukocytes into mouse peritoneal cavity.