Science.gov

Sample records for adaptive immune inflammation

  1. The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance.

    PubMed

    Winer, Shawn; Winer, Daniel A

    2012-09-01

    Over the past decade, chronic inflammation in visceral adipose tissue (VAT) has gained acceptance as a lead promoter of insulin resistance in obesity. A great deal of evidence has pointed to the role of adipokines and innate immune cells, in particular, adipose tissue macrophages, in the regulation of fat inflammation and glucose homeostasis. However, more recently, cells of the adaptive immune system, specifically B and T lymphocytes, have emerged as unexpected promoters and controllers of insulin resistance. These adaptive immune cells infiltrate obesity expanded VAT and through cytokine secretion and macrophage modulation dictate the extent of the local inflammatory response, thereby directly impacting insulin resistance. The remarkable ability of our adaptive immune system to regulate insulin sensitivity and metabolism has unmasked a novel physiological function of this system, and promises new diagnostic and therapeutic strategies to manage the disease. This review highlights critical roles of adipose tissue lymphocytes in governing glucose homeostasis.

  2. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    PubMed Central

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  3. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity

    PubMed Central

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W.; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis. PMID:26317499

  4. Inflammation, Immunity, and Hypertension.

    PubMed

    Agita, Arisya; Alsagaff, M Thaha

    2017-04-01

    The immune system, inflammation and hypertension are related to each other. Innate and adaptive immunity system triggers an inflammatory process, in which blood pressure may increase, stimulating organ damage. Cells in innate immune system produce ROS, such as superoxide and hydrogen peroxide, which aimed at killing pathogens. Long-term inflammation process increases ROS production, causing oxidative stress which leads to endothelial dysfunction. Endothelial function is to regulate blood vessel tone and structure. When inflammation lasts, NO bioavailability decreases, disrupting its main function as vasodilator, so that blood vessels relaxation and vasodilatation are absent. Effector T cells and regulatory lymphocytes, part of the adaptive immune system, plays role in blood vessels constriction in hypertension. Signals from central nervous system and APC activates effector T lymphocyte differentiation and accelerate through Th-1 and Th-17 phenotypes. Th-1 and Th-17 effectors participate in inflammation which leads to increased blood pressure. One part of CD4+ is the regulatory T cells (Tregs) that suppress immune response activation as they produce immunosuppressive cytokines, such as TGF-β and IL-10. Adoptive transfer of Tregs cells can reduce oxidative stress in blood vessels, endothelial dysfunction, infiltration of aortic macrophages and T cells as well as proinflammatory cytokine levels in plasma circulation.

  5. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity.

    PubMed

    Saunders, Sean P; Moran, Tara; Floudas, Achilleas; Wurlod, Felicity; Kaszlikowska, Agnieszka; Salimi, Maryam; Quinn, Emma M; Oliphant, Christopher J; Núñez, Gabriel; McManus, Ross; Hams, Emily; Irvine, Alan D; McKenzie, Andrew N J; Ogg, Graham S; Fallon, Padraic G

    2016-02-01

    Atopic dermatitis (AD) is an inflammatory skin condition that can occur in early life, predisposing to asthma development in a phenomenon known as the atopic march. Although genetic and environmental factors are known to contribute to AD and asthma, the mechanisms underlying the atopic march remain poorly understood. Filaggrin loss-of-function mutations are a major genetic predisposer for the development of AD and progression to AD-associated asthma. We sought to experimentally address whether filaggrin mutations in mice lead to the development of spontaneous eczematous inflammation and address the aberrant immunologic milieu arising in a mouse model of filaggrin deficiency. Filaggrin mutant mice were generated on the proallergic BALB/c background, creating a novel model for the assessment of spontaneous AD-like inflammation. Independently recruited AD case collections were analyzed to define associations between filaggrin mutations and immunologic phenotypes. Filaggrin-deficient mice on a BALB/c background had profound spontaneous AD-like inflammation with progression to compromised pulmonary function with age, reflecting the atopic march in patients with AD. Strikingly, skin inflammation occurs independently of adaptive immunity and is associated with cutaneous expansion of IL-5-producing type 2 innate lymphoid cells. Furthermore, subjects with filaggrin mutations have an increased frequency of type 2 innate lymphoid cells in the skin in comparison with control subjects. This study provides new insights into our understanding of the atopic march, with innate immunity initiating dermatitis and the adaptive immunity required for subsequent development of compromised lung function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease.

    PubMed

    Moussa, Charbel; Hebron, Michaeline; Huang, Xu; Ahn, Jaeil; Rissman, Robert A; Aisen, Paul S; Turner, R Scott

    2017-01-03

    Treatment of mild-moderate Alzheimer's disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF Aβ40 levels and activities of daily living (ADL) scores. For this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF Aβ42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples. Compared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF Aβ42 levels during the 52-week trial, but did not alter tau levels. Collectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders. ClinicalTrials.gov NCT01504854.

  7. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression

    PubMed Central

    DeNardo, David G; Coussens, Lisa M

    2007-01-01

    Recent insights into the molecular and cellular mechanisms underlying cancer development have revealed that immune cells functionally regulate epithelial cancer development and progression. Moreover, accumulated clinical and experimental data indicate that the outcome of an immune response toward an evolving breast neoplasm is largely determined by the type of immune response elicited. Acute tumor-directed immune responses involving cytolytic T lymphocytes appear to protect against tumor development, whereas immune responses involving chronic activation of humoral immunity, infiltration by Th2 cells, and protumor-polarized innate inflammatory cells result in the promotion of tumor development and disease progression. Herein we review this body of literature and summarize important new findings revealing the paradoxical role of innate and adaptive leukocytes as regulators of breast carcinogenesis. PMID:17705880

  8. Quercetin, Inflammation and Immunity.

    PubMed

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-15

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.

  9. Quercetin, Inflammation and Immunity

    PubMed Central

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-01-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  10. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation

    PubMed Central

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  11. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    PubMed

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-07-07

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases.

  12. Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response.

    PubMed

    Jaligama, Sridhar; Chen, Zaili; Saravia, Jordy; Yadav, Nikki; Lomnicki, Slawomir M; Dugas, Tammy R; Cormier, Stephania A

    2015-07-21

    The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill.

  13. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation

    PubMed Central

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  14. Adaptive Immunity, Inflammation, and Cardiovascular Complications in Type 1 and Type 2 Diabetes Mellitus

    PubMed Central

    Pedicino, Daniela; Liuzzo, Giovanna; Trotta, Francesco; Giglio, Ada Francesca; Giubilato, Simona; Martini, Francesca; Zaccardi, Francesco; Scavone, Giuseppe; Previtero, Marco; Massaro, Gianluca; Cialdella, Pio; Cardillo, Maria Teresa; Pitocco, Dario; Ghirlanda, Giovanni; Crea, Filippo

    2013-01-01

    Diabetes mellitus (DM) is a pandemics that affects more than 170 million people worldwide, associated with increased mortality and morbidity due to coronary artery disease (CAD). In type 1 (T1) DM, the main pathogenic mechanism seems to be the destruction of pancreatic β-cells mediated by autoreactive T-cells resulting in chronic insulitis, while in type 2 (T2) DM primary insulin resistance, rather than defective insulin production due to β-cell destruction, seems to be the triggering alteration. In our study, we investigated the role of systemic inflammation and T-cell subsets in T1- and T2DM and the possible mechanisms underlying the increased cardiovascular risk associated with these diseases. PMID:23762872

  15. Adaptive immunity, inflammation, and cardiovascular complications in type 1 and type 2 diabetes mellitus.

    PubMed

    Pedicino, Daniela; Liuzzo, Giovanna; Trotta, Francesco; Giglio, Ada Francesca; Giubilato, Simona; Martini, Francesca; Zaccardi, Francesco; Scavone, Giuseppe; Previtero, Marco; Massaro, Gianluca; Cialdella, Pio; Cardillo, Maria Teresa; Pitocco, Dario; Ghirlanda, Giovanni; Crea, Filippo

    2013-01-01

    Diabetes mellitus (DM) is a pandemics that affects more than 170 million people worldwide, associated with increased mortality and morbidity due to coronary artery disease (CAD). In type 1 (T1) DM, the main pathogenic mechanism seems to be the destruction of pancreatic β -cells mediated by autoreactive T-cells resulting in chronic insulitis, while in type 2 (T2) DM primary insulin resistance, rather than defective insulin production due to β -cell destruction, seems to be the triggering alteration. In our study, we investigated the role of systemic inflammation and T-cell subsets in T1- and T2DM and the possible mechanisms underlying the increased cardiovascular risk associated with these diseases.

  16. Innate lymphoid cells in inflammation and immunity.

    PubMed

    McKenzie, Andrew N J; Spits, Hergen; Eberl, Gerard

    2014-09-18

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles throughout the duration of immune responses, participating in the transition from innate to adaptive immunity and contributing to chronic inflammation. The proximity of ILCs to epithelial surfaces and their constitutive strategic positioning in other tissues throughout the body ensures that, in spite of their rarity, ILCs are able to regulate immune homeostasis effectively. Dysregulation of ILC function might result in chronic pathologies such as allergies, autoimmunity, and inflammation. A new role for ILCs in the maintenance of metabolic homeostasis has started to emerge, underlining their importance in fundamental physiological processes beyond infection and immunity.

  17. HIF Transcription Factors, Inflammation, and Immunity

    PubMed Central

    Palazon, Asis; Goldrath, Ananda; Nizet, Victor

    2015-01-01

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors that play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity. PMID:25367569

  18. HIF transcription factors, inflammation, and immunity.

    PubMed

    Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S

    2014-10-16

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.

  19. Inflammation and immunity in organ regeneration.

    PubMed

    Mescher, Anthony L; Neff, Anton W; King, Michael W

    2017-01-01

    The ability of vertebrates to regenerate amputated appendages is increasingly well-understood at the cellular level. Cells mediating an innate immune response and inflammation in the injured tissues are a prominent feature of the limb prior to formation of a regeneration blastema, with macrophage activity necessary for blastema growth and successful development of the new limb. Studies involving either anti-inflammatory or pro-inflammatory agents suggest that the local inflammation produced by injury and its timely resolution are both important for regeneration, with blastema patterning inhibited in the presence of unresolved inflammation. Various experiments with Xenopus larvae at stages where regenerative competence is declining show improved digit formation after treatment with certain immunosuppressive, anti-inflammatory, or antioxidant agents. Similar work with the larval Xenopus tail has implicated adaptive immunity with regenerative competence and suggests a requirement for regulatory T cells in regeneration, which also occurs in many systems of tissue regeneration. Recent analyses of the human nail organ indicate a capacity for local immune tolerance, suggesting roles for adaptive immunity in the capacity for mammalian appendage regeneration. New information and better understanding regarding the neuroendocrine-immune axis in the response to stressors, including amputation, suggest additional approaches useful for investigating effects of the immune system during repair and regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  1. Inflammatory bowel disease related innate immunity and adaptive immunity.

    PubMed

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD.

  2. IL-33-mediated innate response and adaptive immune cells contribute to maximum responses of protease allergen-induced allergic airway inflammation.

    PubMed

    Kamijo, Seiji; Takeda, Haruna; Tokura, Tomoko; Suzuki, Mayu; Inui, Kyoko; Hara, Mutsuko; Matsuda, Hironori; Matsuda, Akira; Oboki, Keisuke; Ohno, Tatsukuni; Saito, Hirohisa; Nakae, Susumu; Sudo, Katsuko; Suto, Hajime; Ichikawa, Saori; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2013-05-01

    How the innate and adaptive immune systems cooperate in the natural history of allergic diseases has been largely unknown. Plant-derived allergen, papain, and mite allergens, Der f 1 and Der p 1, belong to the same family of cysteine proteases. We examined the role of protease allergens in the induction of Ab production and airway inflammation after repeated intranasal administration without adjuvants and that in basophil/mast cell stimulation in vitro. Papain induced papain-specific IgE/IgG1 and lung eosinophilia. Der f 1 induced Der f 1-specific IgG1 and eosinophilia. Although papain-, Der f 1-, and Der p 1-stimulated basophils expressed allergy-inducing cytokines, including IL-4 in vitro, basophil-depleting Ab and mast cell deficiency did not suppress the papain-induced in vivo responses. Protease inhibitor-treated allergens and a catalytic site mutant did not induce the responses. These results indicate that protease activity is essential to Ab production and eosinophilia in vivo and basophil activation in vitro. IL-33-deficient mice lacked eosinophilia and had reduced papain-specific IgE/IgG1. Coadministration of OVA with papain induced OVA-specific IgE/IgG1, which was reduced in IL-33-deficient mice. We demonstrated IL-33 release, subsequent IL-33-dependent IL-5/IL-13 release, and activation of T1/ST2-expressing lineage(-)CD25(+)CD44(+) innate lymphoid cells in the lung after papain inhalation, suggesting the contribution of the IL-33-type 2 innate lymphoid cell-IL-5/IL-13 axis to the papain-induced airway eosinophilia. Rag2-deficient mice, which lack adaptive immune cells, showed significant, but less severe, eosinophilia. Collectively, these results suggest cooperation of adaptive immune cells and IL-33-responsive innate cells in protease-dependent allergic airway inflammation.

  3. Microbiota, Immune Subversion, and Chronic Inflammation.

    PubMed

    Kramer, Carolyn D; Genco, Caroline Attardo

    2017-01-01

    Several host-adapted pathogens and commensals have evolved mechanisms to evade the host innate immune system inducing a state of low-grade inflammation. Epidemiological studies have also documented the association of a subset of these microorganisms with chronic inflammatory disorders. In this review, we summarize recent studies demonstrating the role of the microbiota in chronic inflammatory diseases and discuss how specific microorganisms subvert or inhibit protective signaling normally induced by toll-like receptors (TLRs). We highlight our work on the oral pathogen Porphyromonas gingivalis and discuss the role of microbial modulation of lipid A structures in evasion of TLR4 signaling and resulting systemic immunopathology associated with atherosclerosis. P. gingivalis intrinsically expresses underacylated lipid A moieties and can modify the phosphorylation of lipid A, leading to altered TLR4 signaling. Using P. gingivalis mutant strains expressing distinct lipid A moieties, we demonstrated that expression of antagonist lipid A was associated with P. gingivalis-mediated systemic inflammation and immunopathology, whereas strains expressing agonist lipid A exhibited modest systemic inflammation. Likewise, mice deficient in TLR4 were more susceptible to vascular inflammation after oral infection with P. gingivalis wild-type strain compared to mice possessing functional TLR4. Collectively, our studies support a role for P. gingivalis-mediated dysregulation of innate and adaptive responses resulting in immunopathology and systemic inflammation. We propose that anti-TLR4 interventions must be designed with caution, given the balance between the protective and destructive roles of TLR signaling in response to microbiota and associated immunopathologies.

  4. Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells

    PubMed Central

    Kim, Ki-Hye; Lee, Young-Tae; Hwang, Hye Suk; Kwon, Young-Man; Jung, Yu-Jin; Lee, Youri; Lee, Jong Seok; Lee, Yu-Na; Park, Soojin; Kang, Sang-Moo

    2015-01-01

    Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease. PMID:26468884

  5. Environmental immune disruptors, inflammation and cancer risk.

    PubMed

    Thompson, Patricia A; Khatami, Mahin; Baglole, Carolyn J; Sun, Jun; Harris, Shelley A; Moon, Eun-Yi; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Brown, Dustin G; Colacci, Annamaria; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Amedei, Amedeo; Hamid, Roslida A; Lowe, Leroy; Guarnieri, Tiziana; Bisson, William H

    2015-06-01

    An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.

  6. Environmental immune disruptors, inflammation and cancer risk

    PubMed Central

    Thompson, Patricia A.; Khatami, Mahin; Baglole, Carolyn J.; Sun, Jun; Harris, Shelley; Moon, Eun-Yi; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Brown, Dustin; Colacci, Annamaria; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth; Woodrick, Jordan; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Amedei, Amedeo; Hamid, Roslida A.; Lowe, Leroy; Guarnieri, Tiziana

    2015-01-01

    An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented. PMID:26106141

  7. Microbiota, Immune Subversion, and Chronic Inflammation

    PubMed Central

    Kramer, Carolyn D.; Genco, Caroline Attardo

    2017-01-01

    Several host-adapted pathogens and commensals have evolved mechanisms to evade the host innate immune system inducing a state of low-grade inflammation. Epidemiological studies have also documented the association of a subset of these microorganisms with chronic inflammatory disorders. In this review, we summarize recent studies demonstrating the role of the microbiota in chronic inflammatory diseases and discuss how specific microorganisms subvert or inhibit protective signaling normally induced by toll-like receptors (TLRs). We highlight our work on the oral pathogen Porphyromonas gingivalis and discuss the role of microbial modulation of lipid A structures in evasion of TLR4 signaling and resulting systemic immunopathology associated with atherosclerosis. P. gingivalis intrinsically expresses underacylated lipid A moieties and can modify the phosphorylation of lipid A, leading to altered TLR4 signaling. Using P. gingivalis mutant strains expressing distinct lipid A moieties, we demonstrated that expression of antagonist lipid A was associated with P. gingivalis-mediated systemic inflammation and immunopathology, whereas strains expressing agonist lipid A exhibited modest systemic inflammation. Likewise, mice deficient in TLR4 were more susceptible to vascular inflammation after oral infection with P. gingivalis wild-type strain compared to mice possessing functional TLR4. Collectively, our studies support a role for P. gingivalis-mediated dysregulation of innate and adaptive responses resulting in immunopathology and systemic inflammation. We propose that anti-TLR4 interventions must be designed with caution, given the balance between the protective and destructive roles of TLR signaling in response to microbiota and associated immunopathologies. PMID:28348558

  8. Autophagy in infection, inflammation, and immunity

    PubMed Central

    Saitoh, Tatsuya; Akira, Shizuo

    2017-01-01

    Preface Autophagy is a fundamental cell biological pathway affecting immunity. Whereas autophagy is an antimicrobial effector of conventional pattern recognition receptors (PRRs), autophagic adaptors termed SLRs represent a new subset of PRRs and provide the mechanistic basis for autophagic elimination of intracellular microbes. Autophagy controls inflammation via regulatory interactions with innate immunity signalling, by removing endogenous inflammasome agonists, and thorough effects on secretion of immune mediators. Autophagy contributes to antigen presentation, T cell homeostasis, and affects T cell repertories and polarization including Th17 inflammation. Here, we review the above relationships organized into four principal roles of autophagy in infection, inflammation, and immunity. PMID:24064518

  9. Adaptive Immunity to Fungi

    PubMed Central

    Wüthrich, Marcel; Deepe, George S.; Klein, Bruce

    2013-01-01

    Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue. PMID:22224780

  10. Fruit polyphenols, immunity and inflammation.

    PubMed

    González-Gallego, Javier; García-Mediavilla, M Victoria; Sánchez-Campos, Sonia; Tuñón, María J

    2010-10-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables and beverages derived from plants. These molecules have been reported to possess a wide range of activities in the prevention of common diseases, including CHD, cancer, neurodegenerative diseases, gastrointestinal disorders and others. The effects appear to be related to the various biological/pharmacological activities of flavonoids. A large number of publications suggest immunomodulatory and anti-inflammatory properties of these compounds. However, almost all studies are in vitro studies with limited research on animal models and scarce data from human studies. The majority of in vitro research has been carried out with single flavonoids, generally aglycones, at rather supraphysiological concentrations. Few studies have investigated the anti-inflammatory effects of physiologically attainable flavonoid concentrations in healthy subjects, and more epidemiological studies and prospective randomised trials are still required. This review summarises evidence for the effects of fruit and tea flavonoids and their metabolites in inflammation and immunity. Mechanisms of effect are discussed, including those on enzyme function and regulation of gene and protein expression. Animal work is included, and evidence from epidemiological studies and human intervention trials is reviewed. Biological relevance and functional benefits of the reported effects, such as resistance to infection or exercise performance, are also discussed.

  11. Adaptive Control of Innate Immunity

    PubMed Central

    Shanker, Anil

    2010-01-01

    1. Summary The mechanisms by which the immune system responds to an infection or disease depend on a complex interplay between the elements of innate and adaptive immunity. While most of the focus so far has been on the innate instruction of the adaptive immune responses, considerable evidence now suggests an equally important adaptive control of the innate immunity. Several studies yield new insights into how the adaptive immunity by initiating an antigen–specific response can compensate, suppress and activate innate responses at the site of tissue antigen. Here we discuss recent advances in our understanding of the adaptive control of immune effector functions in various pathological and physiological conditions. PMID:20394777

  12. Adaptive Immunity to Fungi

    PubMed Central

    Verma, Akash; Wüthrich, Marcel; Deepe, George; Klein, Bruce

    2015-01-01

    Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases. PMID:25377140

  13. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns

    PubMed Central

    Gartlan, Kate H.; Krashias, George; Wegmann, Frank; Hillson, William R.; Scherer, Erin M.; Greenberg, Philip D.; Eisenbarth, Stephanie C.; Moghaddam, Amin E.; Sattentau, Quentin J.

    2016-01-01

    Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition. PMID:27005810

  14. Adaptive immunity in the liver.

    PubMed

    Shuai, Zongwen; Leung, Miranda Wy; He, Xiaosong; Zhang, Weici; Yang, Guoxiang; Leung, Patrick Sc; Eric Gershwin, M

    2016-05-01

    The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver.

  15. Adaptive immunity in the liver

    PubMed Central

    Shuai, Zongwen; Leung, Miranda WY; He, Xiaosong; Zhang, Weici; Yang, Guoxiang; Leung, Patrick SC; Eric Gershwin, M

    2016-01-01

    The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver. PMID:26996069

  16. Bridging innate and adaptive immunity.

    PubMed

    Paul, William E

    2011-12-09

    The Nobel Prize in Physiology or Medicine for 2011 to Jules Hoffmann, Bruce Beutler, and the late Ralph Steinman recognizes accomplishments in understanding and unifying the two strands of immunology, the evolutionarily ancient innate immune response and modern adaptive immunity.

  17. Inflammation, immunity, and vaccines for Helicobacter pylori infection.

    PubMed

    Velin, Dominique; Straubinger, Kathrin; Gerhard, Markus

    2016-09-01

    The tight control of the innate and adaptive immune responses in the stomach mucosa during chronic Helicobacter pylori infection is of prime importance for the bacteria to persist and for the host to prevent inflammation-driven diseases. This review summarizes recent data on the roles of innate and adaptive immune responses during H. pylori/host interactions. In addition, the latest preclinical developments of H. pylori vaccines are discussed with a special focus on the clinical trial reported by Zeng et al., who provided evidence that oral vaccination significantly reduces the acquisition of natural H. pylori infection in children.

  18. Brucella evasion of adaptive immunity.

    PubMed

    Martirosyan, Anna; Gorvel, Jean-Pierre

    2013-02-01

    The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system.

  19. Adaptive Immunity Against Staphylococcus aureus.

    PubMed

    Karauzum, Hatice; Datta, Sandip K

    2016-02-27

    A complex interplay between host and bacterial factors allows Staphylococcus aureus to occupy its niche as a human commensal and a major human pathogen. The role of neutrophils as a critical component of the innate immune response against S. aureus, particularly for control of systemic infection, has been established in both animal models and in humans with acquired and congenital neutrophil dysfunction. The role of the adaptive immune system is less clear. Although deficiencies in adaptive immunity do not result in the marked susceptibility to S. aureus infection that neutrophil dysfunction imparts, emerging evidence suggests both T cell- and B cell-mediated adaptive immunity can influence host susceptibility and control of S. aureus. The contribution of adaptive immunity depends on the context and site of infection and can be either beneficial or detrimental to the host. Furthermore, S. aureus has evolved mechanisms to manipulate adaptive immune responses to its advantage. In this chapter, we will review the evidence for the role of adaptive immunity during S. aureus infections. Further elucidation of this role will be important to understand how it influences susceptibility to infection and to appropriately design vaccines that elicit adaptive immune responses to protect against subsequent infections.

  20. Immunity and inflammation in neurodegenerative diseases

    PubMed Central

    Cappellano, Giuseppe; Carecchio, Miryam; Fleetwood, Thomas; Magistrelli, Luca; Cantello, Roberto; Dianzani, Umberto; Comi, Cristoforo

    2013-01-01

    Immune reactions inside the central nervous system are finely regulated, thanks to the presence of several checkpoints that have the fundamental purpose to preserve this fragile tissue form harmful events. The current knowledge on the role of neuroinflammation and neuro-immune interactions in the fields of multiple sclerosis, Alzheimer’s disease and Parkinson’s disease is reviewed. Moreover, a focus on the potential role of both active and passive immunotherapy is provided. Finally, we propose a common perspective, which implies that, under pathological conditions, inflammation may exert both detrimental and protective functions, depending on local factors and the timing of immune activation and shutting-off systems. PMID:23844334

  1. The linkage between inflammation and immune tolerance: interfering with inflammation in cancer.

    PubMed

    Rogovskii, Vladimir Stanislavovich

    2017-01-09

    Inflammation is linked to immune tolerance. In pregnancy and in immune privileged organs constitutive low-grade inflammation is required for maintaining immunological tolerance. Apart from immune tolerance in normality, there is the phenomenon of immune tolerance in cancer which mediates tumor escape from the immune system. It is widely accepted that, in many situations, chronic inflammation critically contributes to cancer. Like other types of immune tolerance, tumor-induced tolerance is also mediated by inflammation. In this review, the main mechanisms that link inflammation and tolerance are considered. We discuss drug targets that are in use to interfere with inflammation in cancer.

  2. Inflammation and immune response in COPD: where do we stand?

    PubMed

    Rovina, Nikoletta; Koutsoukou, Antonia; Koulouris, Nikolaos G

    2013-01-01

    Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release "danger signal". These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  3. Neural reflexes in inflammation and immunity

    PubMed Central

    2012-01-01

    The mammalian immune system and the nervous system coevolved under the influence of infection and sterile injury. Knowledge of homeostatic mechanisms by which the nervous system controls organ function was originally applied to the cardiovascular, gastrointestinal, musculoskeletal, and other body systems. Development of advanced neurophysiological and immunological techniques recently enabled the study of reflex neural circuits that maintain immunological homeostasis, and are essential for health in mammals. Such reflexes are evolutionarily ancient, dating back to invertebrate nematode worms that possess primitive immune and nervous systems. Failure of these reflex mechanisms in mammals contributes to nonresolving inflammation and disease. It is also possible to target these neural pathways using electrical nerve stimulators and pharmacological agents to hasten the resolution of inflammation and provide therapeutic benefit. PMID:22665702

  4. Cooperativity of adaptive and innate immunity: implications for cancer therapy

    PubMed Central

    Marincola, Francesco M.

    2012-01-01

    The dichotomy of immunology into innate and adaptive immunity has created conceptual barriers in appreciating the intrinsic two-way interaction between immune cells. An emerging body of evidence in various models of immune rejection, including cancer, indicates an indispensable regulation of innate effector functions by adaptive immune cells. This bidirectional cooperativity in innate and adaptive immune functions has broad implications for immune responses in general and for regulating the tumor-associated inflammation that overrides the protective antitumor immunity. Mechanistic understanding of this two-way immune cross-talk could provide insights into novel strategies for designing better immunotherapy approaches against cancer and other diseases that normally defy immune control. PMID:21656157

  5. Obesity, inflammation and the immune system.

    PubMed

    de Heredia, Fátima Pérez; Gómez-Martínez, Sonia; Marcos, Ascensión

    2012-05-01

    Obesity shares with most chronic diseases the presence of an inflammatory component, which accounts for the development of metabolic disease and other associated health alterations. This inflammatory state is reflected in increased circulating levels of pro-inflammatory proteins, and it occurs not only in adults but also in adolescents and children. The chronic inflammatory response has its origin in the links existing between the adipose tissue and the immune system. Obesity, like other states of malnutrition, is known to impair the immune function, altering leucocyte counts as well as cell-mediated immune responses. In addition, evidence has arisen that an altered immune function contributes to the pathogenesis of obesity. This review attempts to briefly comment on the various plausible explanations that have been proposed for the phenomenon: (1) the obesity-associated increase in the production of leptin (pro-inflammatory) and the reduction in adiponectin (anti-inflammatory) seem to affect the activation of immune cells; (2) NEFA can induce inflammation through various mechanisms (such as modulation of adipokine production or activation of Toll-like receptors); (3) nutrient excess and adipocyte expansion trigger endoplasmic reticulum stress; and (4) hypoxia occurring in hypertrophied adipose tissue stimulates the expression of inflammatory genes and activates immune cells. Interestingly, data suggest a greater impact of visceral adipose tissue and central obesity, rather than total body fat, on the inflammatory process. In summary, there is a positive feedback loop between local inflammation in adipose tissue and altered immune response in obesity, both contributing to the development of related metabolic complications.

  6. Inflammation, Immunity, and Vaccines for Helicobacter pylori Infection.

    PubMed

    Walduck, Anna; Andersen, Leif P; Raghavan, Sukanya

    2015-09-01

    During the last year, a variety of studies have been published that increases our understanding of the basic mechanisms of immunity and inflammation in Helicobacter pylori infection and progression to gastric cancer. Innate immune regulation and epithelial cell response were covered by several studies that contribute with new insights in the host response to H. pylori infection. Also, the adaptive immune response to H. pylori and particularly the role of IL-22 have been addressed in some studies. These advances may improve vaccine development where new strategies have been published. Two major studies analyzed H. pylori genomes of 39 worldwide strains and looked at the protein profiles. In addition, multi-epitope vaccines for therapeutic use have been investigated. Studies on different adjuvants and delivery systems have also given us new insights. This review presents articles from the last year that reveal detailed insight into immunity and regulation of inflammation, the contribution of immune cells to the development of gastric cancer, and understanding mechanisms of vaccine-induced protection.

  7. Heme on innate immunity and inflammation

    PubMed Central

    Dutra, Fabianno F.; Bozza, Marcelo T.

    2014-01-01

    Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases. PMID:24904418

  8. Autophagy, Immunity, and Microbial Adaptations

    PubMed Central

    Deretic, Vojo; Levine, Beth

    2009-01-01

    Autophagy adjusts cellular biomass and function in response to diverse stimuli, including infection. Autophagy plays specific roles in shaping immune system development, fueling host innate and adaptive immune responses, and directly controlling intracellular microbes as a cell-autonomous innate defense. As an evolutionary counterpoint, intracellular pathogens have evolved to block autophagic microbicidal defense and subvert host autophagic responses for their survival or growth. The ability of eukaryotic pathogens to deploy their own autophagic machinery may also contribute to microbial pathogenesis. Thus, a complex interplay between autophagy and microbial adaptations against autophagy governs the net outcome of host-microbe encounters. PMID:19527881

  9. The role of natriuretic peptides in inflammation and immunity.

    PubMed

    Casserly, Brian P; Sears, Edmund H; Gartman, Eric J

    2010-06-01

    The natriuretic peptides (NPs) are a family of widely distributed, but evolutionarily conserved, polypeptide mediators that exert a range of effects throughout the body. There is growing realization that NP actions go far beyond volume and blood pressure homeostasis. Their pleiotropic effects include a significant role in regulating the immune system. Localization of NP receptors in various immune organs as well as in modulation of inflammation in vascular disease supports this hypothesis. Immune cells, including macrophages, dendritic cells, and T lymphocytes, express receptors for NPs. NPs are also involved in polarizing the immune response to allergens. NPs play an important role in shaping the early immune response to environmental antigens and appear to play a critical role in the interaction between cells of the innate and adaptive immune systems. The recent explosion of basic and clinical research has resulted in improved understanding of their molecular structure. This has facilitated development of chimeric forms of NPs as well as more convenient routes of administration. Thus, the NPs and their receptors could be exploited to develop therapeutics for the inflammatory and immune responses in wide range of diseases. Also discussed are several patents regarding NPs in the present review.

  10. IL-6 in Inflammation, Immunity, and Disease

    PubMed Central

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2014-01-01

    Interleukin 6 (IL-6), promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. Although its expression is strictly controlled by transcriptional and posttranscriptional mechanisms, dysregulated continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody was developed. Various clinical trials have since shown the exceptional efficacy of tocilizumab, which resulted in its approval for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab is expected to be effective for other intractable immune-mediated diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases. PMID:25190079

  11. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment

    PubMed Central

    Deakin, Julia; Lennox, Belinda R; Yolken, Robert; Jones, Peter B

    2015-01-01

    Complex interactions between the immune system and the brain might have important aetiological and therapeutic implications for neuropsychiatric brain disorders. A possible association between schizophrenia and the immune system was postulated over a century ago, and is supported by epidemiological and genetic studies pointing to links with infection and inflammation. Contrary to the traditional view that the brain is an immunologically privileged site shielded behind the blood–brain barrier, studies in the past 20 years have noted complex interactions between the immune system, systemic inflammation, and the brain, which can lead to changes in mood, cognition, and behaviour. In this Review, we describe some of the important areas of research regarding innate and adaptive immune response in schizophrenia and related psychotic disorders that, we think, will be of interest to psychiatric clinicians and researchers. We discuss potential mechanisms and therapeutic implications of these findings, including studies of anti-inflammatory drugs in schizophrenia, describe areas for development, and offer testable hypotheses for future investigations. PMID:26359903

  12. Radiation triggering immune response and inflammation.

    PubMed

    Hekim, Nezih; Cetin, Zafer; Nikitaki, Zacharenia; Cort, Aysegul; Saygili, Eyup Ilker

    2015-11-28

    Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.

  13. Sleep, immunity and inflammation in gastrointestinal disorders

    PubMed Central

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-01-01

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients. PMID:24409051

  14. Sleep, immunity and inflammation in gastrointestinal disorders.

    PubMed

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-12-28

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients.

  15. Cytokine mediators of immunity and inflammation.

    PubMed

    Lowry, S F

    1993-11-01

    The remarkable advances in molecular and cell biology occurring over the past four decades have served the cause of surgical science well. Our understanding of basic disease mechanisms and insights into potential new therapeutic strategies have occurred at a staggering pace. Perhaps nowhere in surgical biology are these mechanistic insights and therapeutic prospects more evident than in research defining the cytokine mediators of inflammation, injury, and repair. These proteins are secreted to some degree by virtually all immune cell types as well as by a diverse array of other nucleated cells, and their functions encompass a regulatory role on and among many components of the immune system. Such intense interest is well deserved because abnormalities or dysregulation of tissue and wound repair as well as of natural (innate) or specific (acquired) immune function underlie much of the morbidity and mortality associated with surgical practice. Indeed, it is evident that the insights gained from the study of such inflammatory mediators cross virtually every specialty of surgery, from the acute sequelae of severe injury and invasive infection to the chronic manifestations of benign and malignant processes.

  16. Cannabinoids and Neuro-Inflammation: Regulation of Brain Immune Response.

    PubMed

    Ranieri, Roberta; Laezza, Chiara; Bifulco, Maurizio; Marasco, Daniela; Malfitano, Anna M

    2016-01-01

    Cannabinoid receptors are involved in the neuro-pathogenic mechanisms of inflammatory conditions of the central nervous system and their expression can be modulated during diseases. In this manuscript we highlight the function of cannabinoid receptors, their signalling and expression at peripheral and central levels in order to understand their implication in neuro-inflammation and review the effects of cannabinoids in neuro-inflammatory disorders. Brain inflammatory processes are characterized by infiltration of numerous types of cells: both peripheral and brain resident immune cells and other neuronal cells. The disruption of the blood brain barrier favours cell infiltration in the central nervous system with consequent neuronal damage, a common event in many neuro-inflammatory diseases. Cannabinoids affect brain adaptive and immune response, regulate inflammatory mediators and can exert a role in blood brain barrier damage prevention. Various patents describe the beneficial properties of cannabinoids in numerous neurodegenerative diseases with inflammatory components and overall effects support the therapeutic application of cannabinoids.

  17. The TIPE (TNFAIP8) family in inflammation, immunity, and cancer.

    PubMed

    Lou, Yunwei; Liu, Suxia

    2011-10-01

    Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 or TIPE) family are recently identified proteins which are important for maintaining immune homeostasis. The mammalian TNFAIP8 family consists of four members: TNFAIP8, the first identified member of this family, TNFAIP8L1 (TNF-alpha-induced protein 8-like 1, TIPE1), TIPE2, and TIPE3, which share high degrees of sequence homology and involve in proliferation, inflammation, and cell death. Among the members, TNFAIP8 is considered to be associated with carcinogenesis, TIPE2 is an essential negative regulator of both innate and adaptive immunity and the depletion of TIPE2 would cause serve inflammatory disease. Whereas, little is known about TIPE1 and TIPE3.

  18. VLR-Based Adaptive Immunity

    PubMed Central

    Boehm, Thomas; McCurley, Nathanael; Sutoh, Yoichi; Schorpp, Michael; Kasahara, Masanori; Cooper, Max D.

    2012-01-01

    Lampreys and hagfish are primitive jawless vertebrates capable of mounting specific immune responses. Lampreys possess different types of lymphocytes, akin to T and B cells of jawed vertebrates, that clonally express somatically diversified antigen receptors termed variable lymphocyte receptors (VLRs), which are composed of tandem arrays of leucine-rich repeats. The VLRs appear to be diversified by a gene conversion mechanism involving lineage-specific cytosine deaminases. VLRA is expressed on the surface of T-like lymphocytes; B-like lymphocytes express and secrete VLRB as a multivalent protein. VLRC is expressed by a distinct lymphocyte lineage. VLRA-expressing cells appear to develop in a thymus-like tissue at the tip of gill filaments, and VLRB-expressing cells develop in hematopoietic tissues. Reciprocal expression patterns of evolutionarily conserved interleukins and chemokines possibly underlie cell-cell interactions during an immune response. The discovery of VLRs in agnathans illuminates the origins of adaptive immunity in early vertebrates. PMID:22224775

  19. Innate immunity and inflammation: a transcriptional paradigm.

    PubMed

    Hawiger, J

    2001-01-01

    The innate immune response and the process of inflammation are interwoven. Excessive and continuing cytokine production in response to bacterial lipopolysacharides (LPS) or superantigens is a hallmark of the systemic inflammatory response (IR), which can be life-threatening. Dissemination of these bacterial products induces waves of proinflammatory cytokines that cause vascular injury and multiple organ dysfunction. Both LPS and superantigens induce signaling to the nucleus in mononuclear phagocytes and T cells, respectively. These signaling pathways are mediated by NF-kappaB and other stress-responsive transcription factors (SRTFs), which play a critical role in reprogramming gene expression. The nuclear import of NF-kappaB allows transcriptional activation of over 100 genes that encode mediators of inflammatory and immune responses. We have developed a novel method to block nuclear import of NF-kappaB through cell-permeable peptide transduction in monocytes, macrophages, T lymphocytes, and endothelial cells. Strikingly, a cell-permeable peptide that antagonizes nuclear import of NF-kappaB and other SRTFs, suppressed the systemic production of proinflammatory cytokines (TNFalpha and interferon gamma) in mice challenged with a lethal dose of LPS, and increased their survival by at least 90%. Thus, systemic inflammatory responses are critically dependent on the transcriptional activation ofcytokine genes that are controlled by NF-kappaB and other SRTFs.

  20. Evolutionary responses of innate Immunity to adaptive immunity

    USDA-ARS?s Scientific Manuscript database

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  1. Role of type 2 immunity in intestinal inflammation.

    PubMed

    Bamias, Giorgos; Cominelli, Fabio

    2015-11-01

    Type 2 (Th2) immune responses play important roles in intestinal immunity by contributing to the maintenance of mucosal homeostasis, not only conferring protection against helminthic infection but also participating in pro-inflammatory pathways in chronic intestinal inflammatory disorders, including inflammatory bowel disease. The current review focuses on recent developments regarding the role of Th2 responses in intestinal inflammation. Th2 gut mucosal responses are promoted by mediators that are released following injury to the epithelium, and act as alarmin-type danger signals. Interleukin (IL)-33 is prominent among such factors and demonstrates a dichotomous function, exerting either protective or pro-inflammatory effects, depending on its cellular compartmentalization. The pool of type 2 effector cells has been enriched recently to include not only classical CD4+ Th2 lymphocytes but also a subset of innate lymphocytes (ILC2s) that express the transcriptional factor GATA binding protein 3 and secrete IL-4, IL-5, and IL-13. ILC2s play important roles during infection with helminths and bi-directionally interact with Th2 CD4+ lymphocytes, thus establishing a transition from innate to adaptive immunological pathways. Th2 responses are also involved in pro-inflammatory pathways at the intestinal mucosa, and neutralization of the pivotal cytokines IL-4 and IL-13 has been shown to regulate experimental intestinal inflammation. In striking contrast, however, neutralization of human IL-13 had no therapeutic effect in patients with ulcerative colitis. Further studies will be required to delineate the specific mechanisms of type 2 mucosal immunity in inflammatory bowel disease and examine the applicability of Th2-targeted therapies for intestinal inflammation.

  2. Innate and adaptive immunity in inflammatory bowel disease

    PubMed Central

    Siegmund, Britta; Zeitz, Martin

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a cross-regulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets. PMID:21912465

  3. Diverse novel functions of neutrophils in immunity, inflammation, and beyond

    PubMed Central

    Mócsai, Attila

    2013-01-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10–20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease. PMID:23825232

  4. Runx3 in Immunity, Inflammation and Cancer.

    PubMed

    Lotem, Joseph; Levanon, Ditsa; Negreanu, Varda; Bauer, Omri; Hantisteanu, Shay; Dicken, Joseph; Groner, Yoram

    2017-01-01

    In this chapter we summarize the pros and cons of the notion that Runx3 is a major tumor suppressor gene (TSG). Inactivation of TSGs in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago it was suggested that RUNX3 is involved in gastric cancer development, a postulate extended later to other epithelial cancers portraying RUNX3 as a major TSG. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. In contrast, RUNX3 is overexpressed in a significant fraction of tumor cells in various human epithelial cancers and its overexpression in pancreatic cancer cells promotes their migration, anchorage-independent growth and metastatic potential. Moreover, recent high-throughput quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models have unequivocally demonstrated that RUNX3 is not a bona fide cell-autonomous TSG. Importantly, accumulating data demonstrated that RUNX3 functions in control of immunity and inflammation, thereby indirectly influencing epithelial tumor development.

  5. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum

    PubMed Central

    Vieira-de-Abreu, Adriana; Campbell, Robert A.; Weyrich, Andrew S.

    2015-01-01

    Platelets are chief effector cells in hemostasis. In addition, however, their specializations include activities and intercellular interactions that make them key effectors in inflammation and in the continuum of innate and adaptive immunity. This review focuses on the immune features of human platelets and platelets from experimental animals and on interactions between inflammatory, immune, and hemostatic activities of these anucleate but complex and versatile cells. The experimental findings and evidence for physiologic immune functions include previously unrecognized biologic characteristics of platelets and are paralleled by new evidence for unique roles of platelets in inflammatory, immune, and thrombotic diseases. PMID:21818701

  6. Adaptive immune resistance: How cancer protects from immune attack

    PubMed Central

    Ribas, Antoni

    2015-01-01

    Adaptive immune resistance is a process where the cancer changes its phenotype in response to a cytotoxic or pro-inflammatory immune response, thereby evading it. This adaptive process is triggered by the specific recognition of cancer cells by T cells, which leads to the production of immune-activating cytokines. Cancers then hijack mechanisms developed to limit inflammatory and immune responses and protect themselves from the T cell attack. Inhibiting adaptive immune resistance is the mechanistic basis of responses to PD-1 or PD-L1 blocking antibodies, and may be of relevance for the development of other cancer immunotherapy strategies. PMID:26272491

  7. Regulation of the adaptive immune system by innate lymphoid cells

    PubMed Central

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid tissues and epithelial cells at barrier surfaces. In this review we summarize the current understanding of how ILCs modulate the magnitude and quality of adaptive immune cell responses, and in particular focus on recent evidence suggesting that ILCs can also directly regulate CD4+ T cells. Further, we discuss the implications that these pathways may have on human health and disease. PMID:24594491

  8. The Interplay between NLRs and Autophagy in Immunity and Inflammation

    PubMed Central

    Carneiro, Leticia A. M.; Travassos, Leonardo H.

    2013-01-01

    Since they were first described as cytosolic sensors of microbial molecules a decade ago, the Nod-like receptors (NLRs) have been shown to have many different and important roles in various aspects of immune and inflammatory responses, ranging from antimicrobial mechanisms to control of adaptive responses. In this review, we focus on the interplay between NLRs and autophagy, an evolutionarily conserved mechanism that is crucial for homeostasis and has recently been shown to be involved in the protective response against infections. Furthermore, the association between mutations of NLRs as well as proteins that form the autophagic machinery and inflammatory diseases such as Crohn’s disease highlight the importance of these proteins and their interactions in the regulation of inflammation. PMID:24273538

  9. Interleukin-17 and innate immunity in infections and chronic inflammation.

    PubMed

    Isailovic, Natasa; Daigo, Kenji; Mantovani, Alberto; Selmi, Carlo

    2015-06-01

    Interleukin 17 (IL-17) includes several cytokines among which IL-17A is considered as one of the major pro-inflammatory cytokine being central to the innate and adaptive immune responses. IL-17 is produced by unconventional T cells, members of innate lymphoid cells (ILCs), mast cells, as well as typical innate immune cells, such as neutrophils and macrophages located in the epithelial barriers and characterised by a rapid response to infectious agents by recruiting neutrophils as first line of defence and inducing the production of antimicrobial peptides. Th17 responses appear pivotal in chronic and acute infections by bacteria, parasites, and fungi, as well as in autoimmune and chronic inflammatory diseases, including rheumatoid arthritis, psoriasis, and psoriatic arthritis. The data discussed in this review cumulatively indicate that innate-derived IL-17 constitutes a major element in the altered immune response against self antigens or the perpetuation of inflammation, particularly at mucosal sites. New drugs targeting the IL17 pathway include brodalumab, ixekizumab, and secukinumab and their use in psoriatic disease is expected to dramatically impact our approach to this systemic condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer

    PubMed Central

    Lund, Amanda W.; Medler, Terry R.; Leachman, Sancy A.; Coussens, Lisa M.

    2015-01-01

    Skin is a highly ordered immune organ that coordinates rapid responses to external insult while maintaining self-tolerance. In healthy tissue, lymphatic vessels drain fluid and coordinate local immune responses; however, environmental factors induce lymphatic vessel dysfunction, leading to lymph stasis and perturbed regional immunity. These same environmental factors drive the formation of local malignancies, which are also influenced by local inflammation. Herein, we discuss clinical and experimental evidence supporting the tenet that lymphatic vessels participate in regulation of cutaneous inflammation and immunity, are important contributors to malignancy and potential biomarkers and targets for immunotherapy. PMID:26552413

  11. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma

    PubMed Central

    Kimbara, Shiro; Kondo, Shunsuke

    2016-01-01

    Pancreatic adenocarcinoma (PAC) is one of the most deadly malignant neoplasms, and the efficacy of conventional cytotoxic chemotherapy is far from satisfactory. Recent research studies have revealed that immunosuppression and inflammation are associated with oncogenesis, as well as tumor development, invasion, and metastasis in PAC. Thus, immunosuppression-related signaling, especially that involving immune checkpoint and inflammation, has emerged as novel treatment targets for PAC. However, PAC is an immune-resistant tumor, and it is still unclear whether immune checkpoint or anti-inflammation therapies would be an ideal strategy. In this article, we will review immune checkpoint and inflammation as potential targets, as well as clinical trials and the prospects for immunotherapy in PAC. PMID:27672267

  12. ABC transporters in adaptive immunity.

    PubMed

    Seyffer, Fabian; Tampé, Robert

    2015-03-01

    ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  14. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    PubMed Central

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-01-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms. PMID:27808112

  15. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies.

    PubMed

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-03

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  16. Blurring Borders: Innate Immunity with Adaptive Features

    PubMed Central

    Kvell, K.; Cooper, EL.; Engelmann, P.; Bovari, J.; Nemeth, P.

    2007-01-01

    Adaptive immunity has often been considered the penultimate of immune capacities. That system is now being deconstructed to encompass less stringent rules that govern its initiation, actual effector activity, and ambivalent results. Expanding the repertoire of innate immunity found in all invertebrates has greatly facilitated the relaxation of convictions concerning what actually constitutes innate and adaptive immunity. Two animal models, incidentally not on the line of chordate evolution (C. elegans and Drosophila), have contributed enormously to defining homology. The characteristics of specificity and memory and whether the antigen is pathogenic or nonpathogenic reveal considerable information on homology, thus deconstructing the more fundamentalist view. Senescence, cancer, and immunosuppression often associated with mammals that possess both innate and adaptive immunity also exist in invertebrates that only possess innate immunity. Strict definitions become blurred casting skepticism on the utility of creating rigid definitions of what innate and adaptive immunity are without considering overlaps. PMID:18317532

  17. Chemical mediators of inflammation and immunity

    SciTech Connect

    Cohen, S.; Hayashi, H.; Saito, K.; Takada, A.

    1986-01-01

    This book contains five sections, each consisting of several papers. The section tiles are: Activation of Inflammatory Cells, Mechanisms of Tissue Injury, Mechanisms of Lymphocyte Activation, Lympokines and Related Factors, and Mechanisms of Granulomatous Inflammation.

  18. Immune aging, dysmetabolism, and inflammation in neurological diseases

    PubMed Central

    Deleidi, Michela; Jäggle, Madeline; Rubino, Graziella

    2015-01-01

    As we age, the immune system undergoes a process of senescence accompanied by the increased production of proinflammatory cytokines, a chronic subclinical condition named as “inflammaging”. Emerging evidence from human and experimental models suggest that immune senescence also affects the central nervous system and promotes neuronal dysfunction, especially within susceptible neuronal populations. In this review we discuss the potential role of immune aging, inflammation and metabolic derangement in neurological diseases. The discovery of novel therapeutic strategies targeting age-linked inflammation may promote healthy brain aging and the treatment of neurodegenerative as well as neuropsychiatric disorders. PMID:26089771

  19. Adaptation in the innate immune system and heterologous innate immunity.

    PubMed

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  20. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    PubMed Central

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  1. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer.

    PubMed

    Lund, Amanda W; Medler, Terry R; Leachman, Sancy A; Coussens, Lisa M

    2016-01-01

    Skin is a highly ordered immune organ that coordinates rapid responses to external insult while maintaining self-tolerance. In healthy tissue, lymphatic vessels drain fluid and coordinate local immune responses; however, environmental factors induce lymphatic vessel dysfunction, leading to lymph stasis and perturbed regional immunity. These same environmental factors drive the formation of local malignancies, which are also influenced by local inflammation. Herein, we discuss clinical and experimental evidence supporting the tenet that lymphatic vessels participate in regulation of cutaneous inflammation and immunity, and are important contributors to malignancy and potential biomarkers and targets for immunotherapy. The tumor microenvironment and tumor-associated inflammation are now appreciated not only for their role in cancer progression but also for their response to therapy. The lymphatic vasculature is a less-appreciated component of this microenvironment that coordinates local inflammation and immunity and thereby critically shapes local responses. A mechanistic understanding of the complexities of lymphatic vessel function in the unique context of skin provides a model to understand how regional immune dysfunction drives cutaneous malignancies, and as such lymphatic vessels represent a biomarker of cutaneous immunity that may provide insight into cancer prognosis and effective therapy. ©2015 American Association for Cancer Research.

  2. Effects of recombinant bovine somatotropin during the periparturient period on innate and adaptive immune responses, systemic inflammation, and metabolism of dairy cows.

    PubMed

    Silva, P R B; Machado, K S; Da Silva, D N Lobão; Moraes, J G N; Keisler, D H; Chebel, R C

    2015-07-01

    The aim of this experiment was to determine effects of treating peripartum dairy cows with body condition score ≥3.75 with recombinant bovine somatotropin (rbST) on immune, inflammatory, and metabolic responses. Holstein cows (253±1d of gestation) were assigned randomly to 1 of 3 treatments: untreated control (n=53), rbST87.5 (n=56; 87.5mg of rbST), and rbST125 (n=57; 125mg of rbST). Cows in the rbST87.5 and rbST125 treatments received rbST weekly from -21 to 28d relative to calving. Growth hormone, insulin-like growth factor 1, haptoglobin, tumor necrosis factor α, nonesterified fatty acids, β-hydroxybutyrate, glucose, and cortisol concentrations were determined weekly from -21 to 21d relative to calving. Blood sampled weekly from -14 to 21d relative to calving was used for hemogram and polymorphonuclear leukocyte (PMNL) expression of adhesion molecules, phagocytosis, and oxidative burst. Cows were vaccinated with ovalbumin at -21, -7, and 7d relative to calving, and blood was collected weekly from -21 to 21d relative to calving to determine IgG anti-ovalbumin concentrations. A subsample of cows had liver biopsied -21, -7, and 7d relative to calving to determine total lipids, triglycerides, and glycogen content. Growth hormone concentrations prepartum (control=11.0±1.2, rbST87.5=14.1±1.2, rbST125=15.1±1.3ng/mL) and postpartum (control=14.4±1.1, rbST87.5=17.8±1.2, rbST125=21.8±1.1ng/mL) were highest for rbST125 cows. Cows treated with rbST had higher insulin-like growth factor 1 concentrations than control cows (control=110.5±4.5, rbST87.5=126.2±4.5, rbST125=127.2±4.5ng/mL) only prepartum. Intensity of L-selectin expression was higher for rbST125 than for control and rbST87.5 cows [control=3,590±270, rbST87.5=3,279±271, rbST125=4,371±279 geometric mean fluorescence intensity (GMFI)] in the prepartum period. The PMNL intensities of phagocytosis (control=3,131±130, rbST87.5=3,391±133, rbST125=3,673±137 GMFI) and oxidative burst (control=9,588±746

  3. Immunity, inflammation, and cancer: an eternal fight between good and evil

    PubMed Central

    Shalapour, Shabnam; Karin, Michael

    2015-01-01

    Cancer development and its response to therapy are strongly influenced by innate and adaptive immunity, which either promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome. Chronic inflammation promotes tumor development, progression, and metastatic dissemination, as well as treatment resistance. However, cancer development and malignant progression are also associated with accumulation of genetic alterations and loss of normal regulatory processes, which cause expression of tumor-specific antigens and tumor-associated antigens (TAAs) that can activate antitumor immune responses. Although signals that trigger acute inflammatory reactions often stimulate dendritic cell maturation and antigen presentation, chronic inflammation can be immunosuppressive. This antagonism between inflammation and immunity also affects the outcome of cancer treatment and needs to be considered when designing new therapeutic approaches. PMID:26325032

  4. Immunity, inflammation, and cancer: an eternal fight between good and evil.

    PubMed

    Shalapour, Shabnam; Karin, Michael

    2015-09-01

    Cancer development and its response to therapy are strongly influenced by innate and adaptive immunity, which either promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome. Chronic inflammation promotes tumor development, progression, and metastatic dissemination, as well as treatment resistance. However, cancer development and malignant progression are also associated with accumulation of genetic alterations and loss of normal regulatory processes, which cause expression of tumor-specific antigens and tumor-associated antigens (TAAs) that can activate antitumor immune responses. Although signals that trigger acute inflammatory reactions often stimulate dendritic cell maturation and antigen presentation, chronic inflammation can be immunosuppressive. This antagonism between inflammation and immunity also affects the outcome of cancer treatment and needs to be considered when designing new therapeutic approaches.

  5. The biology of the platelet with special reference to inflammation, wound healing and immunity.

    PubMed

    Nurden, Alan T

    2018-01-01

    While platelets have long been known to be essential for maintaining hemostasis in the vasculature, their role in tissue repair, inflammation and innate and adaptive immunity is a more recent science. The ability of platelets to attach to the vessel wall, form aggregates and promote fibrin formation, key elements of blood clotting, has been said to both favor and dampen inflammation, to fight infection and to assure an adequate immune response. To fulfill their different roles platelets often synchronize with leukocytes and cells of the immune system. But just as the molecular pathways of platelets in preventing blood loss can lead to arterial thrombosis and stroke if occurring in an uncontrolled manner, the failure to control inflammation can lead to sepsis and inadequate platelet function and can aggravate many major illnesses. This review is aimed to present a global picture of multifaceted platelet biology and platelet involvement in selected non-hemostatic events.

  6. Immune tolerance induction by integrating innate and adaptive immune regulators

    PubMed Central

    Suzuki, Jun; Ricordi, Camillo; Chen, Zhibin

    2009-01-01

    A diversity of immune tolerance mechanisms have evolved to protect normal tissues from immune damage. Immune regulatory cells are critical contributors to peripheral tolerance. These regulatory cells, exemplified by the CD4+Foxp3+ regulatory T (Treg) cells and a recently identified population named myeloid-derived suppressor cells (MDSCs), regulate immune responses and limiting immune-mediated pathology. In a chronic inflammatory setting, such as allograft-directed immunity, there may be a dynamic “crosstalk” between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage. CTLA4-B7-based interaction between the two branches may function as a molecular “bridge” to facilitate such “crosstalk”. Understanding the interplays among Treg cells, innate suppressors and pathogenic effector T (Teff) cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immunosuppressive elements in the innate and adaptive immune system. Successful development of localized strategies of regulatory cell therapies could circumvent the requirement for very high number of cells and decrease the risks associated with systemic immunosuppression. To realize the potential of innate and adaptive immune regulators for the still-elusive goal of immune tolerance induction, adoptive cell therapies may also need to be coupled with agents enhancing endogenous tolerance mechanisms. PMID:19919733

  7. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis.

    PubMed

    Sage, Andrew P; Mallat, Ziad

    2017-01-04

    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  8. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  9. Control of adaptive immunity by the innate immune system

    PubMed Central

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-01-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity. PMID:25789684

  10. The unfolded protein response in immunity and inflammation

    PubMed Central

    Grootjans, Joep; Kaser, Arthur; Kaufman, Randal J.; Blumberg, Richard S.

    2017-01-01

    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses. PMID:27346803

  11. Leptin in the regulation of immunity, inflammation, and hematopoiesis.

    PubMed

    Fantuzzi, G; Faggioni, R

    2000-10-01

    Leptin, the product of the ob gene, is a pleiotropic molecule that regulates food intake as well as metabolic and endocrine functions. Leptin also plays a regulatory role in immunity, inflammation, and hematopoiesis. Alterations in immune and inflammatory responses are present in leptin- or leptin-receptor-deficient animals, as well as during starvation and malnutrition, two conditions characterized by low levels of circulating leptin. Both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines. Leptin exerts proliferative and antiapoptotic activities in a variety of cell types, including T lymphocytes, leukemia cells, and hematopoietic progenitors. Leptin also affects cytokine production, the activation of monocytes/macrophages, wound healing, angiogenesis, and hematopoiesis. Moreover, leptin production is acutely increased during infection and inflammation. This review focuses on the role of leptin in the modulation of the innate immune response, inflammation, and hematopoiesis.

  12. MHC and adaptive immunity in teleost fishes.

    PubMed

    Wilson, Anthony B

    2017-08-01

    The adaptive immune system has long been considered a key evolutionary innovation of the vertebrates, the product of two rounds of genome duplication that gave rise to the raw material necessary for the evolution of a highly specific immune response and immune memory. While comparative studies of a small number of model organisms have led to the commonly held view that the adaptive immune system has remained relatively static since its origin, recent studies of non-model organisms are challenging this notion, highlighting the fact that we have only begun to scratch the surface in terms of our understanding of immune system diversity. Some of the most exciting recent results have come from the comparative analysis of teleost fishes, a group that includes more than 40% of vertebrates, and shows remarkable diversity in immune system structure and function. Despite the repeated loss of key components of the adaptive immune machinery in this group, affected species are capable of mounting a robust response to immune challenge, suggesting that they have evolved alternative mechanisms of immune protection. Such deviations from the canonical model of vertebrate immunity create opportunities to explore common paradigms of immune function, and may contribute to new experimental approaches and methods of treatment.

  13. Radiation, Inflammation, and Immune Responses in Cancer

    PubMed Central

    Multhoff, Gabriele; Radons, Jürgen

    2012-01-01

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR. PMID:22675673

  14. Adaptive immunity programmes in breast cancer.

    PubMed

    Varn, Frederick S; Mullins, David W; Arias-Pulido, Hugo; Fiering, Steven; Cheng, Chao

    2017-01-01

    The role of the immune system in shaping cancer development and patient prognosis has recently become an area of intense focus in industry and academia. Harnessing the adaptive arm of the immune system for tumour eradication has shown great promise in a variety of tumour types. Differences between tissues, however, necessitate a greater understanding of the adaptive immunity programmes that are active within each tumour type. In breast cancer, adaptive immune programmes play diverse roles depending on the cellular infiltration found in each tumour. Cytotoxic T lymphocytes and T helper type 1 cells can induce tumour eradication, whereas regulatory T cells and T helper type 2 cells are known to be involved in tumour-promoting immunosuppressive responses. Complicating these matters, heterogeneous expression of hormone receptors and growth factors in different tumours leads to disparate, patient-specific adaptive immune responses. Despite this non-conformity in adaptive immune behaviours, encouraging basic and clinical results have been observed that suggest a role for immunotherapeutic approaches in breast cancer. Here, we review the literature pertaining to the adaptive immune response in breast cancer, summarize the primary findings relating to the breast tumour's biology, and discuss potential clinical immunotherapies. © 2016 John Wiley & Sons Ltd.

  15. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression

    PubMed Central

    Koelwyn, Graeme J.; Wennerberg, Erik; Demaria, Sandra; Jones, Lee W.

    2016-01-01

    Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer. PMID:26676894

  16. Linear ubiquitination signals in adaptive immune responses.

    PubMed

    Ikeda, Fumiyo

    2015-07-01

    Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways.

  17. Regulation of T Cell Immunity in Atopic Dermatitis by Microbes: The Yin and Yang of Cutaneous Inflammation

    PubMed Central

    Biedermann, Tilo; Skabytska, Yuliya; Kaesler, Susanne; Volz, Thomas

    2015-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease predominantly mediated by T helper cells. While numerous adaptive immune mechanisms in AD pathophysiology have been elucidated in detail, deciphering the impact of innate immunity in AD pathogenesis has made substantial progress in recent years and is currently a fast evolving field. As innate and adaptive immunity are intimately linked, cross-talks between these two branches of the immune system are critically influencing the resulting immune response and disease. Innate immune recognition of the cutaneous microbiota was identified to substantially contribute to immune homeostasis and shaping of protective adaptive immunity in the absence of inflammation. Disturbances in the composition of the skin microbiome with reduced microbial diversity and overabundance of Staphylococcus spp. have been shown to be associated with AD inflammation. Distinct Staphylococcus aureus associated microbial associated molecular patterns (MAMPs) binding to TLR2 heterodimers could be identified to initiate long-lasting cutaneous inflammation driven by T helper cells and consecutively local immune suppression by induction of myeloid-derived suppressor cells further favoring secondary skin infections as often seen in AD patients. Moreover dissecting cellular and molecular mechanisms in cutaneous innate immune sensing in AD pathogenesis paved the way for exploiting regulatory and anti-inflammatory pathways to attenuate skin inflammation. Activation of the innate immune system by MAMPs of non-pathogenic bacteria on AD skin alleviated cutaneous inflammation. The induction of tolerogenic dendritic cells, interleukin-10 expression and regulatory Tr1 cells were shown to mediate this beneficial effect. Thus, activation of innate immunity by MAMPs of non-pathogenic bacteria for induction of regulatory T cell phenotypes seems to be a promising strategy for treatment of inflammatory skin disorders such as AD. These new findings

  18. Inflammation, immune activation, and cardiovascular disease in HIV.

    PubMed

    Nou, Eric; Lo, Janet; Grinspoon, Steven K

    2016-06-19

    Cardiovascular disease is one of the leading causes of morbidity and mortality in people living with HIV. Several epidemiological studies have shown an increased risk of myocardial infarction and stroke compared to uninfected controls. Although traditional risk factors contribute to this increased risk of cardiovascular disease, HIV-specific mechanisms likely also play a role. Systemic inflammation has been linked to cardiovascular disease in several populations suffering from chronic inflammation, including people living with HIV. Although antiretroviral therapy reduces immune activation, levels of inflammatory markers remain elevated compared to uninfected controls. The causes of this sustained immune response are likely multifactorial and incompletely understood. In this review, we summarize the evidence describing the relationship between inflammation and cardiovascular disease and discuss potential anti-inflammatory treatment options for cardiometabolic disease in people living with HIV.

  19. Endocannabinoid signalling in innate and adaptive immunity

    PubMed Central

    Chiurchiù, Valerio; Battistini, Luca; Maccarrone, Mauro

    2015-01-01

    The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments. PMID:25585882

  20. The origins of vertebrate adaptive immunity

    PubMed Central

    Litman, Gary W.; Rast, Jonathan P.; Fugmann, Sebastian D.

    2010-01-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been considered to occur by acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of preexisting systems are the major source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity. PMID:20651744

  1. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  2. Epigenetics and the Adaptive Immune Response

    PubMed Central

    Kondilis-Mangum, Hrisavgi D.; Wade, Paul A.

    2012-01-01

    Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathogens. While the immune system benefits from the dynamic nature of the epigenome, such benefit comes at a cost – increased likelihood of disease-causing mutation. PMID:22789989

  3. Tumors STING adaptive antitumor immunity.

    PubMed

    Bronte, Vincenzo

    2014-11-20

    Immunotherapy is revolutionizing the treatment of cancer patients, but the molecular basis for tumor immunogenicity is unclear. In this issue of Immunity, Deng et al. (2014) and Woo et al. (2014) provide evidence suggesting that dendritic cells detect DNA from tumor cells via the STING-mediated, cytosolic DNA sensing pathway.

  4. Homing of immune cells: role in homeostasis and intestinal inflammation.

    PubMed

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  5. Systems Genomics Support for Immune and Inflammation Hypothesis of Depression.

    PubMed

    Sharma, Abhay

    2016-01-01

    Immune system plays an important role in brain development and function. With the discovery of increased circulating inflammatory cytokine levels in depression over two decades ago, evidence implicating immune system alterations in the disease has increasingly accumulated. To assess the underlying etiology and pathophysiology, a brief overview of the hypothesis free genomic, transcriptomic and proteomic studies in depression is presented here in order to specifically examine if the immune and inflammation hypothesis of depression is supported. It is observed that genes identified in genome-wide association studies, and genes showing differential expression in transcriptomic studies in human depression do separately overrepresent processes related to both development as well as functioning of the immune system, and inflammatory response. These processes are also enriched in differentially expressed genes reported in animal models of antidepressant treatment. It is further noted that some of the genes identified in genome sequencing and proteomic analyses in human depression, and transcriptomic studies in chronic social defeat stress, an established animal model of depression, relate to immune and inflammatory pathways. In conclusion, integrative genomics evidence supports the immune and inflammation hypothesis of depression.

  6. Innate and Adaptive Cellular Immune Responses to Mycobacterium tuberculosis Infection.

    PubMed

    Mayer-Barber, Katrin D; Barber, Daniel L

    2015-07-17

    Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the coordinated efforts of innate and adaptive immune cells. Diverse pulmonary myeloid cell populations respond to Mtb with unique contributions to both host-protective and potentially detrimental inflammation. Although multiple cell types of the adaptive immune system respond to Mtb infection, CD4 T cells are the principal antigen-specific cells responsible for containment of Mtb infection, but they can also be major contributors to disease during Mtb infection in several different settings. Here, we will discuss the role of different myeloid populations as well as the dual nature of CD4 T cells in Mtb infection with a primary focus on data generated using in vivo cellular immunological studies in experimental animal models and in humans when available. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    PubMed

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Prognostic value of innate and adaptive immunity in colorectal cancer

    PubMed Central

    Grizzi, Fabio; Bianchi, Paolo; Malesci, Alberto; Laghi, Luigi

    2013-01-01

    Colorectal cancer (CRC) remains one of the major public health problems throughout the world. Originally depicted as a multi-step dynamical disease, CRC develops slowly over several years and progresses through cytologically distinct benign and malignant states, from single crypt lesions through adenoma, to malignant carcinoma with the potential for invasion and metastasis. Moving from histological observations since a long time, it has been recognized that inflammation and immunity actively participate in the pathogenesis, surveillance and progression of CRC. The advent of immunohistochemical techniques and of animal models has improved our understanding of the immune dynamical system in CRC. It is well known that immune cells have variable behavior controlled by complex interactions in the tumor microenvironment. Advances in immunology and molecular biology have shown that CRC is immunogenic and that host immune responses influence survival. Several lines of evidence support the concept that tumor stromal cells, are not merely a scaffold, but rather they influence growth, survival, and invasiveness of cancer cells, dynamically contributing to the tumor microenvironment, together with immune cells. Different types of immune cells infiltrate CRC, comprising cells of both the innate and adaptive immune system. A relevant issue is to unravel the discrepancy between the inhibitory effects on cancer growth exerted by the local immune response and the promoting effects on cancer proliferation, invasion, and dissemination induced by some types of inflammatory cells. Here, we sought to discuss the role played by innate and adaptive immune system in the local progression and metastasis of CRC, and the prognostic information that we can currently understand and exploit. PMID:23345940

  9. Prognostic value of innate and adaptive immunity in colorectal cancer.

    PubMed

    Grizzi, Fabio; Bianchi, Paolo; Malesci, Alberto; Laghi, Luigi

    2013-01-14

    Colorectal cancer (CRC) remains one of the major public health problems throughout the world. Originally depicted as a multi-step dynamical disease, CRC develops slowly over several years and progresses through cytologically distinct benign and malignant states, from single crypt lesions through adenoma, to malignant carcinoma with the potential for invasion and metastasis. Moving from histological observations since a long time, it has been recognized that inflammation and immunity actively participate in the pathogenesis, surveillance and progression of CRC. The advent of immunohistochemical techniques and of animal models has improved our understanding of the immune dynamical system in CRC. It is well known that immune cells have variable behavior controlled by complex interactions in the tumor microenvironment. Advances in immunology and molecular biology have shown that CRC is immunogenic and that host immune responses influence survival. Several lines of evidence support the concept that tumor stromal cells, are not merely a scaffold, but rather they influence growth, survival, and invasiveness of cancer cells, dynamically contributing to the tumor microenvironment, together with immune cells. Different types of immune cells infiltrate CRC, comprising cells of both the innate and adaptive immune system. A relevant issue is to unravel the discrepancy between the inhibitory effects on cancer growth exerted by the local immune response and the promoting effects on cancer proliferation, invasion, and dissemination induced by some types of inflammatory cells. Here, we sought to discuss the role played by innate and adaptive immune system in the local progression and metastasis of CRC, and the prognostic information that we can currently understand and exploit.

  10. Helminths as governors of immune-mediated inflammation.

    PubMed

    Elliott, David E; Summers, Robert W; Weinstock, Joel V

    2007-04-01

    Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.

  11. Adaptive immune responses to Candida albicans infection

    PubMed Central

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections. PMID:25607781

  12. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection.

    PubMed

    Lugade, Amit A; Bogner, Paul N; Thatcher, Thomas H; Sime, Patricia J; Phipps, Richard P; Thanavala, Yasmin

    2014-06-01

    The detrimental impact of tobacco on human health is clearly recognized, and despite aggressive efforts to prevent smoking, close to one billion individuals worldwide continue to smoke. People with chronic obstructive pulmonary disease are susceptible to recurrent respiratory infections with pathogens, including nontypeable Haemophilus influenzae (NTHI), yet the reasons for this increased susceptibility are poorly understood. Because mortality rapidly increases with multiple exacerbations, development of protective immunity is critical to improving patient survival. Acute NTHI infection has been studied in the context of cigarette smoke exposure, but this is the first study, to our knowledge, to investigate chronic infection and the generation of adaptive immune responses to NTHI after chronic smoke exposure. After chronic NTHI infection, mice that had previously been exposed to cigarette smoke developed increased lung inflammation and compromised adaptive immunity relative to air-exposed controls. Importantly, NTHI-specific T cells from mice exposed to cigarette smoke produced lower levels of IFN-γ and IL-4, and B cells produced reduced levels of Abs against outer-membrane lipoprotein P6, with impaired IgG1, IgG2a, and IgA class switching. However, production of IL-17, which is associated with neutrophilic inflammation, was enhanced. Interestingly, cigarette smoke-exposed mice exhibited a similar defect in the generation of adaptive immunity after immunization with P6. Our study has conclusively demonstrated that cigarette smoke exposure has a profound suppressive effect on the generation of adaptive immune responses to NTHI and suggests the mechanism by which prior cigarette smoke exposure predisposes chronic obstructive pulmonary disease patients to recurrent infections, leading to exacerbations and contributing to mortality.

  13. Natural innate and adaptive immunity to cancer.

    PubMed

    Vesely, Matthew D; Kershaw, Michael H; Schreiber, Robert D; Smyth, Mark J

    2011-01-01

    The immune system can identify and destroy nascent tumor cells in a process termed cancer immunosurveillance, which functions as an important defense against cancer. Recently, data obtained from numerous investigations in mouse models of cancer and in humans with cancer offer compelling evidence that particular innate and adaptive immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor-suppressor mechanisms. However, the immune system can also promote tumor progression. Together, the dual host-protective and tumor-promoting actions of immunity are referred to as cancer immunoediting. In this review, we discuss the current experimental and human clinical data supporting a cancer immunoediting process that provide the fundamental basis for further study of immunity to cancer and for the rational design of immunotherapies against cancer.

  14. Odor Signals of Immune Activation and CNS Inflammation

    DTIC Science & Technology

    2014-12-01

    Because both LPS and TBI elicit inflammatory processes and LPS-induced inflammation induces body odor changes, we hypothesized that (1) TBI would...8217eavesdrop’ on metabolic processes associated with inflammatory processes – such as traumatic brain injury. 2. KEYWORDS: Biosensor; Body...evaluated between these two time periods). Rapid onset of odor change (within days of exposure) suggests that innate immunity processes were responsible

  15. Suppression of innate inflammation and immunity by interleukin-37.

    PubMed

    Dinarello, Charles A; Nold-Petry, Claudia; Nold, Marcel; Fujita, Mayumi; Li, Suzhao; Kim, Soohyun; Bufler, Philip

    2016-05-01

    IL-37 is unique in the IL-1 family in that unlike other members of the family, IL-37 broadly suppresses innate immunity. IL-37 can be elevated in humans with inflammatory and autoimmune diseases where it likely functions to limit inflammation. Transgenic mice expressing human IL-37 (IL37-tg) exhibit less severe inflammation in models of endotoxin shock, colitis, myocardial infarction, lung, and spinal cord injury. IL37-tg mice have reduced antigen-specific responses and dendritic cells (DCs) from these mice exhibit characteristics of tolerogenic DCs. Compared to aging wild-type (WT) mice, aging IL37-tg mice are protected against B-cell leukemogenesis and heart failure. Treatment of WT mice with recombinant human IL-37 has been shown to be protective in several models of inflammation and injury. IL-37 binds to the IL-18 receptor but then recruits the orphan IL-1R8 (formerly TIR8 or SIGIRR) in order to function as an inhibitor. Here, we review the discovery of IL-37, its production, release, and mechanisms by which IL-37 reduces inflammation and suppresses immune responses. The data reviewed here suggest a therapeutic potential for IL-37. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity

    PubMed Central

    Navarro, Rocío; Compte, Marta; Álvarez-Vallina, Luis; Sanz, Laura

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells in small blood vessels. PC have traditionally been credited with structural functions, being essential for vessel maturation and stabilization. However, an accumulating body of evidence suggests that PC also display immune properties. They can respond to a series of pro-inflammatory stimuli and are able to sense different types of danger due to their expression of functional pattern-recognition receptors, contributing to the onset of innate immune responses. In this context, PC not only secrete a variety of chemokines but also overexpress adhesion molecules such as ICAM-1 and VCAM-1 involved in the control of immune cell trafficking across vessel walls. In addition to their role in innate immunity, PC are involved in adaptive immunity. It has been reported that interaction with PC anergizes T cells, which is attributed, at least in part, to the expression of PD-L1. As components of the tumor microenvironment, PC can also modulate the antitumor immune response. However, their role is complex, and further studies will be required to better understand the crosstalk of PC with immune cells in order to consider them as potential therapeutic targets. In any case, PC will be looked at with new eyes by immunologists from now on. PMID:27867386

  17. Host adaptive immunity alters gut microbiota.

    PubMed

    Zhang, Husen; Sparks, Joshua B; Karyala, Saikumar V; Settlage, Robert; Luo, Xin M

    2015-03-01

    It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1(-/-) mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1(-) mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium Akkermansia muciniphila was highly enriched in Rag1(-/-) mice compared with the wild type. This enrichment was suppressed when Rag1(-/-) mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1(-/-) mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota's composition and diversity.

  18. How metabolism generates signals during innate immunity and inflammation.

    PubMed

    McGettrick, Anne F; O'Neill, Luke A J

    2013-08-09

    The interplay between immunity, inflammation, and metabolic changes is a growing field of research. Toll-like receptors and NOD-like receptors are families of innate immune receptors, and their role in the human immune response is well documented. Exciting new evidence is emerging with regard to their role in the regulation of metabolism and the activation of inflammatory pathways during the progression of metabolic disorders such as type 2 diabetes and atherosclerosis. The proinflammatory cytokine IL-1β appears to play a central role in these disorders. There is also evidence that metabolites such as NAD(+) (acting via deacetylases such as SIRT1 and SIRT2) and succinate (which regulates hypoxia-inducible factor 1α) are signals that regulate innate immunity. In addition, the extracellular overproduction of metabolites such as uric acid and cholesterol crystals acts as a signal sensed by NLRP3, leading to the production of IL-1β. These observations cast new light on the role of metabolism during host defense and inflammation.

  19. The paradox of the immune response in HIV infection: when inflammation becomes harmful.

    PubMed

    Ipp, Hayley; Zemlin, Annalise

    2013-02-01

    HIV-infection is associated with ongoing activation of the immune system and persistent inflammation. These are key driving forces in the loss of CD4+ T cells, progression to AIDS and development of non-HIV-related complications such as cardiovascular disease and certain cancers. Diseases associated with accelerated aging are increasing in incidence despite good anti-retroviral therapy (ART). The common underlying mechanism appears to be chronic inflammation. HIV-specific mechanisms as well as non-specific generalized responses to infection contribute to the chronic and aberrant activation of the immune system. An early loss of gut mucosal integrity, the pro-inflammatory cytokine milieu, co-infections and later, marked destruction of lymph node architecture are all factors contributing to the ongoing activation of both the innate and adaptive immune systems. These factors paradoxically promote CD4+ T cell loss, both by providing additional substrate for viral infection in the form of activated CD4+ T cells, as well as by priming non-infected 'bystander' CD4+ T cells for death by apoptosis. However, the relative contributions of each of these mechanisms to ongoing immune activation remain to be determined. Cost-effective markers of inflammation and selective anti-inflammatory agents are important fields of current and future research.

  20. Innate and Adaptive Immunity in Atherosclerosis

    PubMed Central

    Packard, René R. S.; Lichtman, Andrew H.; Libby, Peter

    2010-01-01

    Atherosclerosis, a chronic inflammatory disorder, involves both the innate and adaptive arms of the immune response that mediate the initiation, progression, and ultimate thrombotic complications of atherosclerosis. Most fatal thromboses, which may manifest as acute myocardial infarction or ischemic stroke, result from frank rupture or superficial erosion of the fibrous cap overlying the atheroma, processes that occur in inflammatorily active, rupture-prone plaques. Appreciation of the inflammatory character of atherosclerosis has led to the application of C-reactive protein as a biomarker of cardiovascular risk, and the characterization of the anti-inflammatory and immunomodulatory actions of the statin class of drugs. An improved understanding of the pathobiology of atherosclerosis and further studies of its immune mechanisms provide avenues for the development of future strategies directed toward better risk stratification of patients as well as the identification of novel anti-inflammatory therapies. This review retraces leukocyte subsets involved in innate and adaptive immunity and their contributions to atherogenesis. PMID:19449008

  1. Host-microbiota interactions and adaptive immunity.

    PubMed

    McCoy, Kathy D; Ronchi, Francesca; Geuking, Markus B

    2017-09-01

    All mucosal surfaces are colonized with a vast number of microbes, which are essential for stimulating and regulating the immune system. While intrinsic and innate mechanisms exist to promote a strong barrier between the microbiota and the host to ensure compartmentalization, the microbiota is also able to induce robust adaptive immunity. In this review, we discuss the interplay between the microbiota and the adaptive immune system, with a focus on the induction of mucosal and systemic antibody responses and newly defined roles of maternal antibodies. We also highlight recent studies that aim to decipher microbial antigen-specificity of the T-cell compartment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut.

    PubMed

    Bashir, Arif; Miskeen, Abid Yousuf; Hazari, Younis Mohammad; Asrafuzzaman, Syed; Fazili, Khalid Majid

    2016-03-01

    Fusobacterium nucleatum is an identified proinflammatory autochthonous bacterium implicated in human colorectal cancer. It is also abundantly found in patients suffering from chronic gut inflammation (inflammatory bowel disease), consequently contributing to the pathogenesis of colorectal cancer. Majority of the studies have reported that colorectal tumors/colorectal adenocarcinomas are highly enriched with F. nucleatum compared to noninvolved adjacent colonic tissue. During the course of multistep development of colorectal cancer, tumors have evolved many mechanisms to resist the antitumor immune response. One of such favorite ploy is providing access to pathogenic bacteria, especially F. nucleatum in the colorectal tumor microenvironment, wherein both (colorectal tumors and F. nucleatum) exert profound effect on each other, consequently attracting tumor-permissive myeloid-derived suppressor cells, suppressing cytotoxic CD8+ T cells and inhibiting NK cell-mediated cancer cell killing. In this review, we have primarily focused on how this bug modulates the immune response, consequently rendering the antitumor immune cells inactive.

  3. Lung ILC2s link innate and adaptive responses in allergic inflammation.

    PubMed

    Martinez-Gonzalez, Itziar; Steer, Catherine A; Takei, Fumio

    2015-03-01

    How allergens trigger the T helper 2 (Th2) response that characterizes allergic lung inflammation is not well understood. Epithelium-derived alarmins released after an allergen encounter activate the innate immune system, including group 2 innate lymphoid cells (ILC2s) which produce the type 2 interleukins IL-5 and IL-13. It has been recently shown that ILC2-derived cytokines are responsible not only for the innate responses underlying allergic inflammation but also for the initiation of the adaptive Th2 response. We review the role of lung ILC2s in the development of allergic inflammation and, in the context of recent findings, propose a common pathway wherein ILC2s, activated by the epithelium-derived cytokine IL-33, link the innate and the adaptive responses after allergen encounter in the lung. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Adaptive immune responses to Acanthamoeba cysts.

    PubMed

    McClellan, Kathy; Howard, Kevin; Mayhew, Elizabeth; Niederkorn, Jerry; Alizadeh, Hassan

    2002-09-01

    Acanthamoeba cysts are not eliminated from the corneas of human subjects or experimentally infected animals. The persistence of Acanthamoeba cysts in the cornea indicates that either the cysts escape immunological elimination or are not recognized by the host's immunological elements. The aim of this study was to determine the immunogenicity and antigenicity of the Acanthamoeba cyst. Mice were immunized intraperitoneally and serum anti-Acanthamoeba IgG was measured by ELISA. Lymphoproliferative assay and delayed type hypersensitivity (DTH) responses to Acanthamoeba castellanii cyst and trophozoite antigens were used to determine the cell mediated immune responses against Acanthamoeba cysts. A. castellanii cysts were both immunogenic and antigenic, producing anti-Acanthamoeba serum IgG, T lymphocyte proliferation, and delayed type hypersensitivity responses. These results indicate that Acanthamoeba cysts are recognized by the immune system. The persistence of the organism in the human cornea means that these adaptive immune responses fail to kill Acanthamoeba cysts.

  5. Gastrointestinal inflammation and associated immune activation in schizophrenia

    PubMed Central

    Severance, Emily G.; Alaedini, Armin; Yang, Shuojia; Halling, Meredith; Gressitt, Kristin L.; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Leweke, F. Markus; Dickerson, Faith B.; Yolken, Robert H.

    2014-01-01

    Immune factors are implicated in normal brain development and in brain disorder pathogenesis. Pathogen infection and food antigen penetration across gastrointestinal barriers are means by which environmental factors might affect immune-related neurodevelopment. Here, we test if gastrointestinal inflammation is associated with schizophrenia and therefore, might contribute to bloodstream entry of potentially neurotropic milk and gluten exorphins and/or immune activation by food antigens. IgG antibodies to Saccharomyces cerevisiae (ASCA, a marker of intestinal inflammation), bovine milk casein, wheat-derived gluten, and 6 infectious agents were assayed. Cohort 1 included 193 with non-recent onset schizophrenia, 67 with recent onset schizophrenia and 207 non-psychiatric controls. Cohort 2 included 103 with first episode schizophrenia, 40 of whom were antipsychotic-naïve. ASCA markers were significantly elevated and correlated with food antigen antibodies in recent onset and non-recent onset schizophrenia compared to controls (p ≤ 0.00001–0.004) and in unmedicated individuals with first episode schizophrenia compared to those receiving antipsychotics (p ≤ 0.05–0.01). Elevated ASCA levels were especially evident in non-recent onset females (p ≤ 0.009), recent onset males (p ≤ 0.01) and in antipsychotic-naïve males (p ≤ 0.03). Anti-food antigen antibodies were correlated to antibodies against Toxoplasma gondii, an intestinally-infectious pathogen, particularly in males with recent onset schizophrenia (p ≤ 0.002). In conclusion, gastrointestinal inflammation is a relevant pathology in schizophrenia, appears to occur in the absence of but may be modified by antipsychotics, and may link food antigen sensitivity and microbial infection as sources of immune activation in mental illness. PMID:22446142

  6. Gastrointestinal inflammation and associated immune activation in schizophrenia.

    PubMed

    Severance, Emily G; Alaedini, Armin; Yang, Shuojia; Halling, Meredith; Gressitt, Kristin L; Stallings, Cassie R; Origoni, Andrea E; Vaughan, Crystal; Khushalani, Sunil; Leweke, F Markus; Dickerson, Faith B; Yolken, Robert H

    2012-06-01

    Immune factors are implicated in normal brain development and in brain disorder pathogenesis. Pathogen infection and food antigen penetration across gastrointestinal barriers are means by which environmental factors might affect immune-related neurodevelopment. Here, we test if gastrointestinal inflammation is associated with schizophrenia and therefore, might contribute to bloodstream entry of potentially neurotropic milk and gluten exorphins and/or immune activation by food antigens. IgG antibodies to Saccharomyces cerevisiae (ASCA, a marker of intestinal inflammation), bovine milk casein, wheat-derived gluten, and 6 infectious agents were assayed. Cohort 1 included 193 with non-recent onset schizophrenia, 67 with recent onset schizophrenia and 207 non-psychiatric controls. Cohort 2 included 103 with first episode schizophrenia, 40 of whom were antipsychotic-naïve. ASCA markers were significantly elevated and correlated with food antigen antibodies in recent onset and non-recent onset schizophrenia compared to controls (p≤0.00001-0.004) and in unmedicated individuals with first episode schizophrenia compared to those receiving antipsychotics (p≤0.05-0.01). Elevated ASCA levels were especially evident in non-recent onset females (p≤0.009), recent onset males (p≤0.01) and in antipsychotic-naïve males (p≤0.03). Anti-food antigen antibodies were correlated to antibodies against Toxoplasma gondii, an intestinally-infectious pathogen, particularly in males with recent onset schizophrenia (p≤0.002). In conclusion, gastrointestinal inflammation is a relevant pathology in schizophrenia, appears to occur in the absence of but may be modified by antipsychotics, and may link food antigen sensitivity and microbial infection as sources of immune activation in mental illness. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Epithelial NEMO links innate immunity to chronic intestinal inflammation.

    PubMed

    Nenci, Arianna; Becker, Christoph; Wullaert, Andy; Gareus, Ralph; van Loo, Geert; Danese, Silvio; Huth, Marion; Nikolaev, Alexei; Neufert, Clemens; Madison, Blair; Gumucio, Deborah; Neurath, Markus F; Pasparakis, Manolis

    2007-03-29

    Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease. The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides. However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF-kappaB, a master regulator of pro-inflammatory responses, functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappaB through conditional ablation of NEMO (also called IkappaB kinase-gamma (IKKgamma)) or both IKK1 (IKKalpha) and IKK2 (IKKbeta)-IKK subunits essential for NF-kappaB activation-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappaB deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor (TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappaB signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract

  8. Immune escape of γ-herpesviruses from adaptive immunity.

    PubMed

    Hu, Zhuting; Usherwood, Edward J

    2014-11-01

    Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two γ-herpesviruses identified in humans and are strongly associated with the development of malignancies. Murine γ-herpesvirus (MHV-68) is a naturally occurring rodent pathogen, representing a unique experimental model for dissecting γ-herpesvirus infection and the immune response. These γ-herpesviruses actively antagonize the innate and adaptive antiviral responses, thereby efficiently establishing latent or persistent infections and even promoting development of malignancies. In this review, we summarize immune evasion strategies of γ-herpesviruses. These include suppression of MHC-I-restricted and MHC-II-restricted antigen presentation, impairment of dendritic cell functions, downregulation of costimulatory molecules, activation of virus-specific regulatory T cells, and induction of inhibitory cytokines. There is a focus on how both γ-herpesvirus-derived and host-derived immunomodulators interfere with adaptive antiviral immunity. Understanding immune-evasive mechanisms is essential for developing future immunotherapies against EBV-driven and KSHV-driven tumors.

  9. Innate Immunity and Inflammation in NAFLD/NASH.

    PubMed

    Arrese, Marco; Cabrera, Daniel; Kalergis, Alexis M; Feldstein, Ariel E

    2016-05-01

    Inflammation and hepatocyte injury and death are the hallmarks of nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease (NAFLD), which is a currently burgeoning public health problem. Innate immune activation is a key factor in triggering and amplifying hepatic inflammation in NAFLD/NASH. Thus, identification of the underlying mechanisms by which immune cells in the liver recognize cell damage signals or the presence of pathogens or pathogen-derived factors that activate them is relevant from a therapeutic perspective. In this review, we present new insights into the factors promoting the inflammatory response in NASH including sterile cell death processes resulting from lipotoxicity in hepatocytes as well as into the altered gut-liver axis function, which involves translocation of bacterial products into portal circulation as a result of gut leakiness. We further delineate the key immune cell types involved and how they recognize both damage-associated molecular patterns or pathogen-associated molecular patterns through binding of surface-expressed pattern recognition receptors, which initiate signaling cascades leading to injury amplification. The relevance of modulating these inflammatory signaling pathways as potential novel therapeutic strategies for the treatment of NASH is summarized.

  10. Are the innate and adaptive immune systems setting hypertension on fire?

    PubMed

    Bomfim, Gisele F; Rodrigues, Fernanda Luciano; Carneiro, Fernando S

    2017-03-01

    Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension.

  11. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity.

    PubMed

    Huh, Jin Young; Park, Yoon Jeong; Ham, Mira; Kim, Jae Bum

    2014-05-01

    Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.

  12. Adipocytes properties and crosstalk with immune system in obesity-related inflammation.

    PubMed

    Maurizi, Giulia; Della Guardia, Lucio; Maurizi, Angela; Poloni, Antonella

    2018-01-01

    Obesity is a condition likely associated with several dysmetabolic conditions or worsening of cardiovascular and other chronic disturbances. A key role in this mechanism seem to be played by the onset of low-grade systemic inflammation, highlighting the importance of the interplay between adipocytes and immune system cells. Adipocytes express a complex and highly adaptive biological profile being capable to selectively activate different metabolic pathways in order to respond to environmental stimuli. It has been demonstrated how adipocytes, under appropriate stimulation, can easily differentiate and de-differentiate thereby converting themselves into different phenotypes according to metabolic necessities. Although underlying mechanisms are not fully understood, growing in adipocyte size and the inability of storing triglycerides under overfeeding conditions seem to be crucial for the switching to a dysfunctional metabolic profile, which is characterized by inflammatory and apoptotic pathways activation, and by the shifting to pro-inflammatory adipokines secretion. In obesity, changes in adipokines secretion along with adipocyte deregulation and fatty acids release into circulation contribute to maintain immune cells activation as well as their infiltration into regulatory organs. Over the well-established role of macrophages, recent findings suggest the involvement of new classes of immune cells such as T regulatory lymphocytes and neutrophils in the development inflammation and multi systemic worsening. Deeply understanding the pathways of adipocyte regulation and the de-differentiation process could be extremely useful for developing novel strategies aimed at curbing obesity-related inflammation and related metabolic disorders. © 2017 Wiley Periodicals, Inc.

  13. Protecting genome integrity during CRISPR immune adaptation.

    PubMed

    Wright, Addison V; Doudna, Jennifer A

    2016-10-01

    Bacterial CRISPR-Cas systems include genomic arrays of short repeats flanking foreign DNA sequences and provide adaptive immunity against viruses. Integration of foreign DNA must occur specifically to avoid damaging the genome or the CRISPR array, but surprisingly promiscuous activity occurs in vitro. Here we reconstituted full-site DNA integration and show that the Streptococcus pyogenes type II-A Cas1-Cas2 integrase maintains specificity in part through limitations on the second integration step. At non-CRISPR sites, integration stalls at the half-site intermediate, thereby enabling reaction reversal. S. pyogenes Cas1-Cas2 is highly specific for the leader-proximal repeat and recognizes the repeat's palindromic ends, thus fitting a model of independent recognition by distal Cas1 active sites. These findings suggest that DNA-insertion sites are less common than suggested by previous work, thereby preventing toxicity during CRISPR immune adaptation and maintaining host genome integrity.

  14. Depression and immunity: inflammation and depressive symptoms in multiple sclerosis.

    PubMed

    Gold, Stefan M; Irwin, Michael R

    2006-08-01

    There is strong evidence that depression involves alterations in multiple aspects of immunity that may contribute to the development or exacerbation of a number of medical disorders and also may play a role in the pathophysiology of depressive symptoms. Accordingly, aggressive management of depressive disorders in medically ill populations or individuals at risk for disease may improve disease outcome or prevent disease development. On the other hand, in light of data suggesting that immune processes may interact with the pathophysiologic pathways known to contribute to depression, novel approaches to the treatment of depression may target relevant aspects of the immune response. Taken together, the data provide compelling evidence that a psychoimmunologic frame of reference may have profound implications regarding the consequences and treatment of depression. In addition, this approach may be used to investigate the possibility that peripheral and central production of cytokines may account for neuropsychiatric symptoms in inflammatory diseases. This article summarizes evidence for a cytokine-mediated pathogenesis of depression and fatigue in MS. The effects of central inflammatory processes may account for some of the behavioral symptoms seen in patients who have MS that cannot be explained by psychosocial factors or CNS damage. This immune-mediated hypothesis is supported by indirect evidence from experimental and clinical studies of the effect of cytokines on behavior, which have found that both peripheral and central cytokines may cause depressive symptoms. Emerging clinical data from patients who have MS support an association of central inflammation (as measured by MRI) and inflammatory markers with depressive symptoms and fatigue. Based on the literature reviewed in this article, subtypes of MS fatigue and depression may exist that are caused by different pathogenetic mechanisms, including inflammation and CNS damage as well as psychosocial factors or

  15. Mesenchymal stem cells and adaptive immune responses.

    PubMed

    Cao, Wei; Cao, Kai; Cao, Jianchang; Wang, Ying; Shi, Yufang

    2015-12-01

    Over the past decade, our understanding of the regulatory role of mesenchymal stem cells (MSCs) in adaptive immune responses through both preclinical and clinical studies has dramatically expanded, providing great promise for treating various inflammatory diseases. Most studies are focused on the modulatory effects of these cells on the properties of T cell-mediated immune responses, including activation, proliferation, survival, and subset differentiation. Interestingly, the immunosuppressive function of MSCs was found to be licensed by IFN-γ and TNF-α produced by T cells and that can be further amplified by cytokines such as IL-17. However, the immunosuppressive function of MSCs can be reversed in certain situation, such as suboptimal levels of inflammatory cytokines, or in the presence of immunosuppressive molecules. Here we review the influence of MSCs on adaptive immune system, especially their bidirectional interaction in tuning the immune microenvironment and subsequently repairing damaged tissue. Understanding MSC-mediated regulation of T cells is expected to provide fundamental information for guiding appropriate applications of MSCs in clinical settings. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  16. Adaptive immune cells temper initial innate responses.

    PubMed

    Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong; Yang, Xuanming; Du, Peishuang; Tang, Hong; Fu, Yang-Xin

    2007-10-01

    Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells. Lymphocyte-deficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1-deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25-Foxp3- or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses.

  17. Adaptive immune cells temper initial innate responses

    PubMed Central

    Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong; Yang, Xuanming; Du, Peishuang; Tang, Hong; Fu, Yang-Xin

    2008-01-01

    Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells1–4. Lymphocytedeficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1–deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25−Foxp3− or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses. PMID:17891146

  18. Initiation of adaptive immune responses by transcutaneous immunization.

    PubMed

    Warger, Tobias; Schild, Hansjörg; Rechtsteiner, Gerd

    2007-03-15

    The development of new, effective, easy-to-use and lower-cost vaccination approaches for the combat against malignant and infectious diseases is a pre-eminent need: cancer is a leading cause of morbidity in the Western World; there are numerous pathogenic diseases for which we still have no protective or therapeutic cure; and the financial limitations of developing countries to fight these diseases. In this mini-review we focus on transcutaneous immunization (TCI), a relatively new route for antigen delivery. TCI protocols appear to be particularly promising by gaining access to skin resident APC, which are highly efficient for the initiation of humoral and/or cellular immune responses. Consisting of an adjuvant as a stimulus in combination with an antigen which defines the target, TCI offers a most attractive immunization strategy to mount highly specific full-blown adaptive immune responses. As a topically applicable cell-free adjuvant/antigen mixture, TCI might be suitable to improve patient compliance, as well as feasible economically for the use in Third World countries. In addition, this non-invasive procedure might increase the safety of vaccinations by eliminating the risk of infections related to the recycling and improper disposal of needles. The dissection of antigen and adjuvant is important because it allows "free" combinations in contrast to classical immunizations which are based on application of the pathogen of interest. The most relevant ways and means to find new, effective pathogenic target antigens are "reverse vaccinology" and the direct peptide-epitope identification from MHC molecules with mass-spectrometry. Due to these efficient approaches the variety of antigenic epitopes for potential protective/therapeutic use is perpetually expanding. The most studied adjuvants in TCI approaches are cholera toxin (CT) and its less toxic relative, the heat-labile enterotoxin (LT). Both CT and LT can serve as antigen as well. In contrast to these large

  19. Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby

    2015-12-07

    Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk. Copyright © 2016 Chenery et al.

  20. Wakayama symposium: interface between innate and adaptive immunity in dry eye disease.

    PubMed

    Na, Kyung-Sun; Hwang, Kyu-Yeon; Lee, Hyun-Soo; Chung, So-Hyang; Mok, Jee Won; Joo, Choun-Ki

    2015-12-17

    Although the mechanism of dry eye disease is not clearly understood, it is certain that inflammation and the immune response play a major role in determining the health of the ocular surface in dry eye patients. Accurate ocular surface characterization during the early stages of dry eye disease is critical for successful treatment, because there exists no single standard, objective test to diagnose the early phase of dry eye disease. The treatment target should be direct to prevent the perpetuation of chronic inflammation and immune responses. Numerous studies have categorized dry eye disease as an autoimmune-related inflammatory disease. However, relatively little is known about how innate immune mechanisms act following a local insult, why some patients are particularly vulnerable, and why local inflammation fails to resolve in these patients. Within this review, particular attention will be given to the very early events and corresponding defense mechanism in dry eye disease. The transition from innate to adaptive immunity will also be discussed.

  1. Chronic immune activation and inflammation as the cause of malignancy

    PubMed Central

    O'Byrne, K J; Dalgleish, A G

    2001-01-01

    Several chronic infections known to be associated with malignancy have established oncogenic properties. However the existence of chronic inflammatory conditions that do not have an established infective cause and are associated with the development of tumours strongly suggests that the inflammatory process itself provides the prerequisite environment for the development of malignancy. This environment includes upregulation of mediators of the inflammatory response such as cyclo-oxygenase (COX)-2 leading to the production of inflammatory cytokines and prostaglandins which themselves may suppress cell mediated immune responses and promote angiogenesis. These factors may also impact on cell growth and survival signalling pathways resulting in induction of cell proliferation and inhibition of apoptosis. Furthermore, chronic inflammation may lead to the production of reactive oxygen species and metabolites such as malondialdehyde within the affected cells that may in turn induce DNA damage and mutations and, as a result, be carcinogenic. Here it is proposed that the conditions provided by a chronic inflammatory environment are so essential for the progression of the neoplastic process that therapeutic intervention aimed at inhibiting inflammation, reducing angiogenesis and stimulating cell mediated immune responses may have a major role in reducing the incidence of common cancers. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11506482

  2. Long QT Syndrome: An Emerging Role for Inflammation and Immunity

    PubMed Central

    Lazzerini, Pietro Enea; Capecchi, Pier Leopoldo; Laghi-Pasini, Franco

    2015-01-01

    The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial disorder of myocardial repolarization predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes. In the latest years, inflammation and immunity have been increasingly recognized as novel factors crucially involved in modulating ventricular repolarization. In the present paper, we critically review the available information on this topic, also analyzing putative mechanisms and potential interplays with the other etiologic factors, either acquired or inherited. Accumulating data indicate inflammatory activation as a potential cause of acquired LQTS. The putative underlying mechanisms are complex but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion channels expression and function, and indirect effects resulting from an increased central nervous system sympathetic drive on the heart. Autoimmunity represents another recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that autoantibodies may affect myocardial electric properties by directly cross-reacting with the cardiomyocyte and interfering with specific ion currents as a result of molecular mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity may be also involved in modulating the clinical expression of congenital forms of LQTS, possibly triggering or enhancing electrical instability in patients who already are genetically predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may in the future represent an attractive therapeutic approach in a number of LQTS patients, thus opening new exciting avenues in antiarrhythmic therapy. PMID:26798623

  3. Histone deacetylases as regulators of inflammation and immunity.

    PubMed

    Shakespear, Melanie R; Halili, Maria A; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2011-07-01

    Histone deacetylases (HDACs) remove an acetyl group from lysine residues of target proteins to regulate cellular processes. Small-molecule inhibitors of HDACs cause cellular growth arrest, differentiation and/or apoptosis, and some are used clinically as anticancer drugs. In animal models, HDAC inhibitors are therapeutic for several inflammatory diseases, but exacerbate atherosclerosis and compromise host defence. Loss of HDAC function has also been linked to chronic lung diseases in humans. These contrasting effects might reflect distinct roles for individual HDACs in immune responses. Here, we review the current understanding of innate and adaptive immune pathways that are regulated by classical HDAC enzymes. The objective is to provide a rationale for targeting (or not targeting) individual HDAC enzymes with inhibitors for future immune-related applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Inflammation on the Mind: Visualizing Immunity in the Central Nervous System

    PubMed Central

    Kang, Silvia S.

    2016-01-01

    The central nervous system (CNS) is a remarkably complex structure that utilizes electrochemical signaling to coordinate activities throughout the entire body. Because the nervous system contains nonreplicative cells, it is postulated that, through evolutionary pressures, this compartment has acquired specialized mechanisms to limit damage. One potential source of damage comes from our immune system, which has the capacity to survey the CNS and periphery for the presence of foreign material. The immune system is equipped with numerous effector mechanisms and can greatly alter the homeostasis and function of the CNS. Degeneration, autoimmunity, and pathogen infection can all result in acute, and sometimes chronic, inflammation within the CNS. Understanding the specialized functionality of innate and adaptive immune cells within the CNS is critical to the design of more efficacious treatments to mitigate CNS inflammatory conditions. Much of our knowledge of CNS-immune interactions stems from seminal studies that have used static and dynamic imaging approaches to visualize inflammatory cells responding to different CNS conditions. This review will focus on how imaging techniques have elevated our understanding of CNS inflammation as well as the exciting prospects that lie ahead as we begin to pursue investigation of the inflamed CNS in real time. PMID:19521688

  5. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    PubMed

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  6. Disruption of immune regulation by microbial pathogens and resulting chronic inflammation.

    PubMed

    Barth, Kenneth; Remick, Daniel G; Genco, Caroline A

    2013-07-01

    Activation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation. In this review, we discuss two model pathogens, Mycobacterium tuberculosis and Porphyromonas gingivalis, which efficiently escape various aspects of the immune system within professional and non-professional immune cell types to establish chronic inflammation.

  7. Disruption of Immune Regulation by Microbial Pathogens and Resulting Chronic Inflammation

    PubMed Central

    Barth, Kenneth; Remick, Daniel G.; Genco, Caroline A.

    2014-01-01

    Activation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation. In this review, we discuss two model pathogens, Mycobacterium tuberculosis and Porphyromonas gingivalis, which efficiently escape various aspects of the immune system within professional and non-professional immune cell types to establish chronic inflammation. PMID:23255141

  8. Natural antibodies bridge innate and adaptive immunity.

    PubMed

    Panda, Saswati; Ding, Jeak L

    2015-01-01

    Natural Abs, belonging to isotypes IgM, IgG3, and IgA, were discovered nearly half a century ago. Despite knowledge about the role of the polyreactive natural IgM in pathogen elimination, B cell survival and homeostasis, inflammatory diseases, and autoimmunity, there is a lack of clarity about the physiological role of natural IgG and natural IgA because they appear incapable of recognizing Ags on their own and are perceived as nonreactive. However, recent research revealed exciting functions of natural IgG in innate immunity. Natural IgG:lectin collaboration swiftly and effectively kills invading pathogens. These advances prompt further examination of natural Abs in immune defense and homeostasis, with the potential for developing novel therapeutics. This review provides new insights into the interaction between natural Abs and lectins, with implications on how interactions between molecules of the innate and adaptive immune systems bridge these two arms of immunity. Copyright © 2014 by The American Association of Immunologists, Inc.

  9. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define “slow” or “rapid” disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression. PMID:27159038

  10. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis.

    PubMed

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo; Cosio, Manuel G; Saetta, Marina

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define "slow" or "rapid" disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression.

  11. The adaptive immune response in celiac disease.

    PubMed

    Qiao, Shuo-Wang; Iversen, Rasmus; Ráki, Melinda; Sollid, Ludvig M

    2012-07-01

    Compared to other human leukocyte antigen (HLA)-associated diseases such as type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, fundamental aspects of the pathogenesis in celiac disease are relatively well understood. This is mostly because the causative antigen in celiac disease-cereal gluten proteins-is known and the culprit HLA molecules are well defined. This has facilitated the dissection of the disease-relevant CD4+ T cells interacting with the disease-associated HLA molecules. In addition, celiac disease has distinct antibody responses to gluten and the autoantigen transglutaminase 2, which give strong handles to understand all sides of the adaptive immune response leading to disease. Here we review recent developments in the understanding of the role of T cells, B cells, and antigen-presenting cells in the pathogenic immune response of this instructive disorder.

  12. Immune activation by histones: plusses and minuses in inflammation.

    PubMed

    Pisetsky, David S

    2013-12-01

    Histones are highly cationic proteins that are essential components of the cell nucleus, interacting with DNA to form the nucleosome and regulating transcription. Histones, however, can transit from the cell nucleus during cell death and, once in an extracellular location, can serve as danger signals and activate immune cells. An article in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3336-3342] reports that histones can activate monocyte-derived DCs via the NRLP3 inflammasome to induce the production of IL-1β. As such, histones, which can also stimulate TLRs, may drive events in the immunopathogenesis of a wide range of acute and chronic diseases marked by sterile inflammation. While the mechanism of this stimulation is not known, the positive charge of histones may provide a structural element to promote interaction with cells and activation of downstream signaling systems.

  13. Rethinking inflammation: neural circuits in the regulation of immunity

    PubMed Central

    Olofsson, Peder S.; Rosas-Ballina, Mauricio; Levine, Yaakov A.; Tracey, Kevin J.

    2015-01-01

    Summary Neural reflex circuits regulate cytokine release to prevent potentially damaging inflammation and maintain homeostasis. In the inflammatory reflex, sensory input elicited by infection or injury travels through the afferent vagus nerve to integrative regions in the brainstem, and efferent nerves carry outbound signals that terminate in the spleen and other tissues. Neurotransmitters from peripheral autonomic nerves subsequently promote acetylcholine-release from a subset of CD4+ T cells that relay the neural signal to other immune cells, e.g. through activation of α7 nicotinic acetylcholine receptors on macrophages. Here, we review recent progress in the understanding of the inflammatory reflex and discuss potential therapeutic implications of current findings in this evolving field. PMID:22725962

  14. Fat-Associated Lymphoid Clusters in Inflammation and Immunity

    PubMed Central

    Cruz-Migoni, Sara; Caamaño, Jorge

    2016-01-01

    Fat-associated lymphoid clusters (FALCs) are atypical lymphoid tissues that were originally identified in mouse and human mesenteries due to that they contain a high number of type 2 innate lymphoid cells/nuocytes/natural helper cells. FALCs are located on adipose tissues in mucosal surfaces such as the mediastinum, pericardium, and gonadal fat. Importantly, these clusters contain B1, B2 and T lymphocytes as well as myeloid and other innate immune cell populations. The developmental cues of FALC formation have started to emerge, showing that these clusters depend on a different set of molecules and cells than secondary lymphoid tissues for their formation. Here, we review the current knowledge on FALC formation, and we compare FALCs and omental milky spots and their responses to inflammation. PMID:28066422

  15. Integration of the immune system: a complex adaptive supersystem

    NASA Astrophysics Data System (ADS)

    Crisman, Mark V.

    2001-10-01

    Immunity to pathogenic organisms is a complex process involving interacting factors within the immune system including circulating cells, tissues and soluble chemical mediators. Both the efficiency and adaptive responses of the immune system in a dynamic, often hostile, environment are essential for maintaining our health and homeostasis. This paper will present a brief review of one of nature's most elegant, complex adaptive systems.

  16. Mast cells in allergy and autoimmunity: implications for adaptive immunity.

    PubMed

    Gregory, Gregory D; Brown, Melissa A

    2006-01-01

    As in the fashion industry, trends in a particular area of scientific investigation often are fleeting but then return with renewed and enthusiastic interest. Studies of mast cell biology are good examples of this. Although dogma once relegated mast cells almost exclusively to roles in pathological inflammation associated with allergic disease, these cells are emerging as important players in a number of other physiological processes. Consequently, they are quickly becoming the newest "trendy" cell, both within and outside the field of immunology. As sources of a large array of pro- and anti-inflammatory mediators, mast cells also express cell surface molecules with defined functions in lymphocyte activation and trafficking. Here, we provide an overview of the traditional and newly appreciated contributions of mast cells to both innate and adaptive immune responses.

  17. Intercellular Communication in the Adaptive Immune System

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  18. Innate and adaptive antifungal immune responses: partners on an equal footing.

    PubMed

    Hamad, Mawieh

    2012-05-01

    Adaptive immunity has long been regarded as the major player in protection against most fungal infections. Mounting evidence suggest however, that both innate and adaptive responses intricately collaborate to produce effective antifungal protection. Dendritic cells (DCs) play an important role in initiating and orchestrating antifungal immunity; neutrophils, macrophages and other phagocytes also participate in recognising and eliminating fungal pathogens. Adaptive immunity provides a wide range of effector and regulatory responses against fungal infections. Th1 responses protect against most forms of mycoses but they associate with significant inflammation and limited pathogen persistence. By contrast, Th2 responses enhance persistence of and tolerance to fungal infections thus permitting the generation of long-lasting immunological memory. Although the role of Th17 cytokines in fungal immunity is not fully understood, they can enhance proinflammatory or anti-inflammatory responses or play a regulatory role in fungal immunity all depending on the pathogen, site/phase of infection and host immunostatus. T regulatory cells balance the activities of various Th cell subsets thereby permitting inflammation and protection on the one hand and allowing for tolerance and memory on the other. Here, recent developments in fungal immunity research are reviewed as means of tracing the emergence of a refined paradigm where innate and adaptive responses are viewed in the same light.

  19. The innate and adaptive immune response to avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  20. Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses

    PubMed Central

    Lian, Jeffrey; Luster, Andrew D.

    2015-01-01

    The generation of adaptive immune responses occurs in the lymph node (LN) and requires that lymphocytes locate and interact with cognate antigen-bearing dendritic cells. This process requires the coordinated movement of both innate and adaptive immune cells, and is orchestrated by the chemokine family of chemotactic cytokines. Upon initiation of inflammation, the LN undergoes dramatic changes that include the marked induction of specific chemokines in distinct regions of the reactive LN. These chemokine rich domains establish LN niches that facilitate the differentiation of CD4+ T cells into effector cell subsets and the rapid activation of memory CD8+ T cells. This review will focus on recent advances highlighting the importance of LN chemokines for shaping adaptive immune responses by controlling immune cell migration, positioning, and interactions in the reactive LN. PMID:26067148

  1. Therapies targeting innate immunity for fighting inflammation in atherosclerosis.

    PubMed

    Mendel, Itzhak; Yacov, Niva; Harats, Dror; Breitbart, Eyal

    2015-01-01

    Atherosclerosis is a smoldering disease of the vasculature that can lead to the occlusion of the arteries, resulting in ischemia of the heart and brain. For many years, the asserted underlying mechanism of atherosclerosis, supported by its epidemiology, was based on the "cholesterol hypothesis" that people with high blood cholesterol are at higher risk of developing cardiovascular disease. This hypothesis instigated a vigorous search for treatment that yielded the generation of statins, which specifically reduce LDL cholesterol. Since then, statins have revolutionized the way people are treated for the prevention of atherosclerosis. Nonetheless, despite this potent class of drugs, cardiovascular disease continues to be the leading cause of death in many parts of the world, suggesting that additional mechanisms are involved in disease pathogenesis. Intensive research has revealed that the atherosclerotic plaque is enriched with leukocytes, and that macrophages constitute the majority of immune cells in the lesion. Monocytes/macrophages are now recognized as the prime immune cells involved in the development of atherosclerosis and are implicated to affect the size, composition and vulnerability of the atherosclerotic plaque. While many of the macrophage-derived pro-inflammatory mechanisms associated with atherogenesis have been characterized, such as cell adhesion, cytokine production and protease secretion, there is a dearth of drugs that specifically target innate immunity for treating patients with atherosclerosis. This review presents pre-clinical studies, and in most cases following clinical trials with antagonists and agonists that have been designed to counteract inflammation in atherosclerosis and associated diseases, highlighting targets expressed predominantly in monocytes.

  2. Inflammaging decreases adaptive and innate immune responses in mice and humans.

    PubMed

    Frasca, Daniela; Blomberg, Bonnie B

    2016-02-01

    Both the innate and adaptive immune systems decline with age, causing greater susceptibility to infectious diseases and reduced responses to vaccination. Diseases are more severe in elderly than in young individuals and have a greater impact on health outcomes such as morbidity, disability and mortality. Aging is characterized by increased low-grade chronic inflammation, called "inflammaging", measured by circulating levels of TNF-α, IL-6 and CRP, as well as by latent infections with viruses such as cytomegalovirus. Inflammaging has received considerable attention because it proposes a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we aim at summarizing the current knowledge on pathways contributing to inflammaging, on immune responses down-regulated by inflammation and mechanisms proposed. The defects in the immune response of elderly individuals presented in this review should help to discover avenues for effective intervention to promote healthy aging.

  3. CRISPR adaptive immune systems of Archaea.

    PubMed

    Vestergaard, Gisle; Garrett, Roger A; Shah, Shiraz A

    2014-01-01

    CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile-profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein sequences and gene synteny of the interference modules. With few exceptions, they could be assigned to the universal Type I or Type III systems. For Type I, subtypes I-A, I-B, and I-D dominate but the data support the division of subtype I-B into two subtypes, designated I-B and I-G. About 70% of the Type III systems fall into the universal subtypes III-A and III-B but the remainder, some of which are phyla-specific, diverge significantly in Cas protein sequences, and/or gene synteny, and they are classified separately. Furthermore, a few CRISPR systems that could not be assigned to Type I or Type III are categorized as variant systems. Criteria are presented for assigning newly sequenced archaeal CRISPR systems to the different subtypes. Several accessory proteins were identified that show a specific gene linkage, especially to Type III interference modules, and these may be cofunctional with the CRISPR systems. Evidence is presented for extensive exchange having occurred between adaptation and interference modules of different archaeal CRISPR systems, indicating the wide compatibility of the functionally diverse interference complexes with the relatively conserved adaptation modules.

  4. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities.

    PubMed

    Huang, Zhi; Rose, Aaron H; Hoffmann, Peter R

    2012-04-01

    Dietary selenium (]Se), mainly through its incorporation into selenoproteins, plays an important role in inflammation and immunity. Adequate levels of Se are important for initiating immunity, but they are also involved in regulating excessive immune responses and chronic inflammation. Evidence has emerged regarding roles for individual selenoproteins in regulating inflammation and immunity, and this has provided important insight into mechanisms by which Se influences these processes. Se deficiency has long been recognized to negatively impact immune cells during activation, differentiation, and proliferation. This is related to increased oxidative stress, but additional functions such as protein folding and calcium flux may also be impaired in immune cells under Se deficient conditions. Supplementing diets with above-adequate levels of Se can also impinge on immune cell function, with some types of inflammation and immunity particularly affected and sexually dimorphic effects of Se levels in some cases. In this comprehensive article, the roles of Se and individual selenoproteins in regulating immune cell signaling and function are discussed. Particular emphasis is given to how Se and selenoproteins are linked to redox signaling, oxidative burst, calcium flux, and the subsequent effector functions of immune cells. Data obtained from cell culture and animal models are reviewed and compared with those involving human physiology and pathophysiology, including the effects of Se levels on inflammatory or immune-related diseases including anti-viral immunity, autoimmunity, sepsis, allergic asthma, and chronic inflammatory disorders. Finally, the benefits and potential adverse effects of intervention with Se supplementation for various inflammatory or immune disorders are discussed.

  5. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer.

    PubMed

    Marrero, Idania; Ware, Randle; Kumar, Vipin

    2015-01-01

    Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.

  6. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer

    PubMed Central

    Marrero, Idania; Ware, Randle; Kumar, Vipin

    2015-01-01

    Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer. PMID:26136748

  7. Prebiotics, immune function, infection and inflammation: a review of the evidence.

    PubMed

    Lomax, Amy R; Calder, Philip C

    2009-03-01

    Beta2-1 fructans are carbohydrate molecules with prebiotic properties. Through resistance to digestion in the upper gastrointestinal tract, they reach the colon intact, where they selectively stimulate the growth and/or activity of beneficial members of the gut microbiota. Through this modification of the intestinal microbiota, and by additional mechanisms, beta2-1 fructans may have beneficial effects upon immune function, ability to combat infection, and inflammatory processes and conditions. In this paper, we have collated, summarised and evaluated studies investigating these areas. Twenty-one studies in laboratory animals suggest that some aspects of innate and adaptive immunity of the gut and the systemic immune systems are modified by beta2-1 fructans. In man, two studies in children and nine studies in adults indicate that the adaptive immune system may be modified by beta2-1 fructans. Thirteen studies in animal models of intestinal infections conclude a beneficial effect of beta2-1 fructans. Ten trials involving infants and children have mostly reported benefits on infectious outcomes; in fifteen adult trials, little effect was generally seen, although in specific situations, certain beta2-1 fructans may be beneficial. Ten studies in animal models show benefit of beta2-1 fructans with regard to intestinal inflammation. Human studies report some benefits regarding inflammatory bowel disease (four positive studies) and atopic dermatitis (one positive study), but findings in irritable bowel syndrome are inconsistent. Therefore, overall the results indicate that beta2-1 fructans are able to modulate some aspects of immune function, to improve the host's ability to respond successfully to certain intestinal infections, and to modify some inflammatory conditions.

  8. The evolution of adaptive immunity in vertebrates.

    PubMed

    Hirano, Masayuki; Das, Sabyasachi; Guo, Peng; Cooper, Max D

    2011-01-01

    Approximately 500 million years ago, two types of recombinatorial adaptive immune systems (AISs) arose in vertebrates. The jawed vertebrates diversify their repertoire of immunoglobulin domain-based T and B cell antigen receptors mainly through the rearrangement of V(D)J gene segments and somatic hypermutation, but none of the fundamental AIS recognition elements in jawed vertebrates have been found in jawless vertebrates. Instead, the AIS of jawless vertebrates is based on variable lymphocyte receptors (VLRs) that are generated through recombinatorial usage of a large panel of highly diverse leucine-rich-repeat (LRR) sequences. Whereas the appearance of transposon-like, recombination-activating genes contributed uniquely to the origin of the AIS in jawed vertebrates, the use of activation-induced cytidine deaminase for receptor diversification is common to both the jawed and jawless vertebrates. Despite these differences in anticipatory receptor construction, the basic AIS design featuring two interactive T and B lymphocyte arms apparently evolved in an ancestor of jawed and jawless vertebrates within the context of preexisting innate immunity and has been maintained since as a consequence of powerful and enduring selection, most probably for pathogen defense purposes.

  9. Activation and inhibition of adaptive immune response mediated by mast cells.

    PubMed

    Toniato, E; Frydas, I; Robuffo, I; Ronconi, G; Caraffa, Al; Kritas, S K; Conti, P

    Adaptive immune response plays an important role against bacteria and parasites, a reaction that also involves mast cell (MC) activation which participates in innate and adaptive immunity. In allergic reactions there is a TH2 immune response with generation of allergen-specific IgE antibodies. In MCs, IgE cross-link FcRI high affinity receptor and activate tyrosine kinase proteins, leading to stimulation of NF-κB and AP-1 resulting in the release of a number of cytokines/chemokines and other compounds. Through their proteolytic pathways, MCs may process the antigen for presentation to CD4+ cells which release TH2 cytokines and growth factors, which play an important role in asthma, allergy, anaphylaxis and inflammation. Thus, MCs can contribute to adaptive immunity. MCs may also be activated though the TLR-dependent pathway which is controlled by several proteins including myeloid differentiation factor 88 (MyD88) which can be inhibited by interleukin (IL)-37. Here, we describe the participation of MCs in adaptive immunity and inflammation, an effect that may be inhibited by IL-37.

  10. Manipulation of Innate and Adaptive Immunity through Cancer Vaccines

    PubMed Central

    Mitchell, Duane A.

    2017-01-01

    Although cancer immunotherapy has shown significant promise in mediating efficacious responses, it remains encumbered by tumor heterogeneity, loss of tumor-specific antigen targets, and the regulatory milieu both regionally and systemically. Cross talk between the innate and adaptive immune response may be requisite to polarize sustained antigen specific immunity. Cancer vaccines can serve as an essential fulcrum in initiating innate immunity while molding and sustaining adaptive immunity. Although peptide vaccines have shown tepid responses in a therapeutic setting with poor correlates for immune activity, RNA vaccines activate innate immune responses and have shown promising effects in preclinical and clinical studies based on enhanced DC migration. While the mechanistic insights behind the interplay between innate and adaptive immunity may be unique to the immunotherapeutic being investigated, understanding this dynamic is important to coordinate the different arms of the immune response in a focused response against cancer antigens. PMID:28265580

  11. Complement receptor immunoglobulin: a control point in infection and immunity, inflammation and cancer.

    PubMed

    Small, Annabelle Grace; Al-Baghdadi, Marwah; Quach, Alex; Hii, Charles; Ferrante, Antonio

    2016-01-01

    The B7 family-related protein, V-set and Ig domain (VSIG4) / Z39Ig / complement receptor immunoglobulin (CRIg), is a new player in the regulation of immunity to infection and inflammation. The unique features of this receptor as compared with classical complement receptors, CR3 and CR4, have heralded the emergence of new concepts in the regulation of innate and adaptive immunity. Its selective expression in tissue macrophages and dendritic cells has been considered of importance in host defence and in maintaining tolerance against self-antigens. Although a major receptor for phagocytosis of complement opsonised bacteria, its array of emerging functions which incorporates the immune suppressive and anti-inflammatory action of the receptor have now been realised. Accumulating evidence from mouse experimental models indicates a potential role for CRIg in protection against bacterial infection and inflammatory diseases, such as rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, and also in promotion of tumour growth. CRIg expression can be considered as a control point in these diseases, through which inflammatory mediators, including cytokines, act. The ability of CRIg to suppress cytotoxic T cell proliferation and function may underlie its promotion of cancer growth. Thus, the unique properties of this receptor open up new avenues for understanding of the pathways that regulate inflammation during infection, autoimmunity and cancer with the potential for new drug targets to be identified. While some complement receptors may be differently expressed in mice and humans, as well as displaying different properties, mouse CRIg has a structure and function similar to the human receptor, suggesting that extrapolation to human diseases is appropriate. Furthermore, there is emerging evidence in human conditions that CRIg may be a valuable biomarker in infection and immunity, inflammatory conditions and cancer prognosis.

  12. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system.

  13. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways.

    PubMed

    Perros, Frederic; Lambrecht, Bart N; Hammad, Hamida

    2011-09-24

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs.

  14. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways

    PubMed Central

    2011-01-01

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs. PMID:21943186

  15. Runx3 at the interface of immunity, inflammation and cancer.

    PubMed

    Lotem, Joseph; Levanon, Ditsa; Negreanu, Varda; Bauer, Omri; Hantisteanu, Shay; Dicken, Joseph; Groner, Yoram

    2015-04-01

    Inactivation of tumor suppressor genes (TSG) in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago claims arose that the RUNX3 member of the RUNX transcription factor family is a major TSG inactivated in gastric cancer, a postulate extended later to other cancers. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. Here we critically re-appraise this paradigm in light of recent high-throughput, quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models. Collectively, these studies unequivocally demonstrate that RUNX3 is not a bona fide cell-autonomous TSG. Accordingly, RUNX3 is not recognized as a TSG and is not included among the 2000 cancer genes listed in the "Cancer Gene Census" or "Network for Cancer Genes" repositories. In contrast, RUNX3 does play important functions in immunity and inflammation and may thereby indirectly influence epithelial tumor development.

  16. Mast Cells as Cellular Sensors in Inflammation and Immunity

    PubMed Central

    Beghdadi, Walid; Madjene, Lydia Célia; Benhamou, Marc; Charles, Nicolas; Gautier, Gregory; Launay, Pierre; Blank, Ulrich

    2011-01-01

    Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases. PMID:22566827

  17. Did the molecules of adaptive immunity evolve from the innate immune system?

    PubMed

    Bartl, Simona; Baish, Meredith; Weissman, Irving L; Diaz, Marilyn

    2003-04-01

    The antigen receptors on cells of innate immune systems recognize broadly expressed markers on non-host cells while the receptors on lymphocytes of the adaptive immune system display a higher level of specificity. Adaptive immunity, with its exquisite specificity and immunological memory, has only been found in the jawed vertebrates, which also display innate immunity. Jawless fishes and invertebrates only have innate immunity. In the adaptive immune response, T and B-lymphocytes detect foreign agents or antigens using T cell receptors (TCR) or immunoglobulins (Ig), respectively. While Ig can bind free intact antigens, TCR only binds processed antigenic fragments that are presented on molecules encoded in the major histocompatibility complex (MHC). MHC molecules display variation through allelic polymorphism. A diverse repertoire of Ig and TCR molecules is generated by gene rearrangement and junctional diversity, processes carried out by the recombinase activating gene (RAG) products and terminal deoxynucleotidyl transferase (TdT). Thus, the molecules that define adaptive immunity are TCR, Ig, MHC molecules, RAG products and TdT. No direct predecessors of these molecules have been found in the jawless fishes or invertebrates. In contrast, the complement cascade can be activated by either adaptive or innate immune systems and contains examples of molecules that gradually evolved from non-immune functions to being part of the innate and then adaptive immune system. In this paper we examine the molecules of the adaptive immune system and speculate on the existence of direct predecessors that were part of innate immunity.

  18. STATs in cancer inflammation and immunity: a leading role for STAT3

    PubMed Central

    Yu, Hua; Pardoll, Drew; Jove, Richard

    2016-01-01

    Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-κB (NF-κB) and interleukin-6 (IL-6)–GP130–Janus kinase (JAK) pathways, and by opposing STAT1- and NF-κB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy. PMID:19851315

  19. STATs in cancer inflammation and immunity: a leading role for STAT3.

    PubMed

    Yu, Hua; Pardoll, Drew; Jove, Richard

    2009-11-01

    Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-kappaB (NF-kappaB) and interleukin-6 (IL-6)-GP130-Janus kinase (JAK) pathways, and by opposing STAT1- and NF-kappaB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy.

  20. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis.

    PubMed

    Ait-Oufella, Hafid; Sage, Andrew P; Mallat, Ziad; Tedgui, Alain

    2014-05-09

    Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.

  1. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  2. R4 Regulator of G Protein Signaling (RGS) Proteins in Inflammation and Immunity.

    PubMed

    Xie, Zhihui; Chan, Eunice C; Druey, Kirk M

    2016-03-01

    G protein-coupled receptors (GPCRs) have important functions in both innate and adaptive immunity, with the capacity to bridge interactions between the two arms of the host responses to pathogens through direct recognition of secreted microbial products or the by-products of host cells damaged by pathogen exposure. In the mid-1990s, a large group of intracellular proteins was discovered, the regulator of G protein signaling (RGS) family, whose main, but not exclusive, function appears to be to constrain the intensity and duration of GPCR signaling. The R4/B subfamily--the focus of this review--includes RGS1-5, 8, 13, 16, 18, and 21, which are the smallest RGS proteins in size, with the exception of RGS3. Prominent roles in the trafficking of B and T lymphocytes and macrophages have been described for RGS1, RGS13, and RGS16, while RGS18 appears to control platelet and osteoclast functions. Additional G protein independent functions of RGS13 have been uncovered in gene expression in B lymphocytes and mast cell-mediated allergic reactions. In this review, we discuss potential physiological roles of this RGS protein subfamily, primarily in leukocytes having central roles in immune and inflammatory responses. We also discuss approaches to target RGS proteins therapeutically, which represents a virtually untapped strategy to combat exaggerated immune responses leading to inflammation.

  3. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation

    PubMed Central

    Croasdell, Amanda; Duffney, Parker F.; Kim, Nina; Lacy, Shannon H.; Sime, Patricia J.; Phipps, Richard P.

    2015-01-01

    The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators—eicosanoids with critical roles in resolution—may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor. PMID:26713087

  4. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation.

    PubMed

    Croasdell, Amanda; Duffney, Parker F; Kim, Nina; Lacy, Shannon H; Sime, Patricia J; Phipps, Richard P

    2015-01-01

    The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators-eicosanoids with critical roles in resolution-may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.

  5. Crosstalk between intestinal epithelial cell and adaptive immune cell in intestinal mucosal immunity.

    PubMed

    Lu, Jun Tao; Xu, An Tao; Shen, Jun; Ran, Zhi Hua

    2017-05-01

    Constantly challenged by luminal bacteria, intestinal epithelium forms both a physical and biochemical defense against pathogens. Besides, intestinal epithelium senses dynamic and continuous changes in luminal environment and transmits signals to subjacent immune cells accordingly. It has been long accepted that adaptive immune cells fulfill their roles partly by modulating function of intestinal epithelial cells. Recent studies have brought up the proposal that intestinal epithelial cells also actively participate in the regulation of adaptive immunity, especially CD4+ adaptive T cells, which indicates that there is reciprocal crosstalk between intestinal epithelial cells and adaptive immune cells, and the crosstalk may play important role in intestinal mucosal immunity. This Review makes a comprehensive summary about crosstalk between intestinal epithelial cells and CD4+ adaptive T cells in intestinal immunity. Special attention would be given to their implications in inflammatory bowel disease pathogenesis and potential therapeutic targets. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  6. Licensing Adaptive Immunity by NOD-Like Receptors

    PubMed Central

    Liu, Dong; Rhebergen, Anne Marie; Eisenbarth, Stephanie C.

    2013-01-01

    The innate immune system is composed of a diverse set of host defense molecules, physical barriers, and specialized leukocytes and is the primary form of immune defense against environmental insults. Another crucial role of innate immunity is to shape the long-lived adaptive immune response mediated by T and B lymphocytes. The activation of pattern recognition receptors (PRRs) from the Toll-like receptor family is now a classic example of innate immune molecules influencing adaptive immunity, resulting in effective antigen presentation to naïve T cells. More recent work suggests that the activation of another family of PRRs, the NOD-like receptors (NLRs), induces a different set of innate immune responses and accordingly, drives different aspects of adaptive immunity. Yet how this unusually diverse family of molecules (some without canonical PRR function) regulates immunity remains incompletely understood. In this review, we discuss the evidence for and against NLR activity orchestrating adaptive immune responses during infectious as well as non-infectious challenges. PMID:24409181

  7. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection

    PubMed Central

    Senba, Masachika; Mori, Naoki

    2012-01-01

    Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer. PMID:25992215

  8. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation.

    PubMed

    McPhee, Joseph B; Schertzer, Jonathan D

    2015-12-01

    The bacteria that inhabit us have emerged as factors linking immunity and metabolism. Changes in our microbiota can modify obesity and the immune underpinnings of metabolic diseases such as Type 2 diabetes. Obesity coincides with a low-level systemic inflammation, which also manifests within metabolic tissues such as adipose tissue and liver. This metabolic inflammation can promote insulin resistance and dysglycaemia. However, the obesity and metabolic disease-related immune responses that are compartmentalized in the intestinal environment do not necessarily parallel the inflammatory status of metabolic tissues that control blood glucose. In fact, a permissive immune environment in the gut can exacerbate metabolic tissue inflammation. Unravelling these discordant immune responses in different parts of the body and establishing a connection between nutrients, immunity and the microbiota in the gut is a complex challenge. Recent evidence positions the relationship between host gut barrier function, intestinal T cell responses and specific microbes at the crossroads of obesity and inflammation in metabolic disease. A key problem to be addressed is understanding how metabolite, immune or bacterial signals from the gut are relayed and transferred into systemic or metabolic tissue inflammation that can impair insulin action preceding Type 2 diabetes. © 2015 Authors; published by Portland Press Limited.

  9. Immune biomarkers for chronic inflammation related complications in non-cancerous and cancerous diseases.

    PubMed

    Meirow, Yaron; Baniyash, Michal

    2017-08-01

    Chronic inflammation arising in a diverse range of non-cancerous and cancerous diseases, dysregulates immunity and exposes patients to a variety of complications. These include immunosuppression, tissue damage, cardiovascular diseases and more. In cancer, chronic inflammation and related immunosuppression can directly support tumor growth and dramatically reduce the efficacies of traditional treatments, as well as novel immune-based therapies, which require a functional immune system. Nowadays, none of the immune biomarkers, regularly used by clinicians can sense a developing chronic inflammation, thus complications can only be detected upon their appearance. This review focuses on the necessity for such immune status biomarkers, which could predict complications prior to their appearance. Herein we bring examples for the use of cellular and molecular biomarkers in diagnosis, prognosis and follow-up of patients suffering from various cancers, for prediction of response to immune-based anti-cancer therapy and for prediction of cardiovascular disease in type 2 diabetes patients. Monitoring such biomarkers is expected to have a major clinical impact in addition to unraveling of the entangled complexity underlying dysregulated immunity in chronic inflammation. Thus, newly discovered biomarkers and those that are under investigation are projected to open a new era towards combating the silent damage induced by chronic inflammation.

  10. Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection.

    PubMed

    Lee, Young-Tae; Kim, Ki-Hye; Hwang, Hye Suk; Lee, Youri; Kwon, Young-Man; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Kang, Sang-Moo

    2015-11-01

    Respiratory syncytial virus (RSV) is the major leading cause of infantile viral bronchiolitis. However, cellular phenotypes contributing to the RSV protection and vaccine-enhanced disease remain largely unknown. Upon RSV challenge, we analyzed phenotypes and cellularity in the lung of mice that were naïve, immunized with formalin inactivated RSV (FI-RSV), or re-infected with RSV. In comparison with naïve and live RSV re-infected mice, the high levels of eosinophils, neutrophils, plasmacytoid and CD11b(+) dendritic cells, and IL-4(+) CD4(+) T cells were found to be contributing to pulmonary inflammation in FI-RSV immune mice despite lung viral clearance. Alveolar macrophages appeared to play differential roles in protection and inflammation upon RSV infection of different RSV immune mice. These results suggest that multiple innate and adaptive immune components differentially contribute to RSV disease and inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. SY 17-2 INFLAMMATION, IMMUNITY AND HYPERTENSION.

    PubMed

    Harrison, David

    2016-09-01

    Hypertension remains an enormous health care burden that affects one third of the population. Despite its prevalence the cause of most cases of hypertension remains unknown. Our laboratory has defined a novel mechanism for hypertension involving adaptive immunity. We found that mice lacking lymphocytes (RAG-1 mice) develop blunted hypertensive responses to a variety of stimuli including chronic angiotensin II infusion, DOCA-salt challenge and norepinephrine infusion. Adoptive transfer of T cells, but not B cells, restores the hypertensive responses to these stimuli. Hypertension is associated with the infiltration of T cells into the kidney and vasculature, where they release cytokines, including IFN-g, IL-17A, and TNFa, which promote sodium retention, vasoconstriction and oxidative injury. Recently, we have found that angiotensin II has striking effects on dendritic cells (DCs), promoting their propensity to activate T cells. Our data indicate that angiotensin II infusion increases DC superoxide production by 5-fold and causes a striking accumulation isoketals, oxidized products of arachidonic acid in these cells. These form covalent bonds to lysines of proteins and these modified proteins become immunogenic. Several isoketal scavengers, including 2-hydroxybenzylamine (2-HOBA) prevent DC activation, the ability of DCs to stimulate T cell proliferation and prevent hypertension. This is most prevalent in monocyte-derived DCs that are CD11c/CD11b/MHCII positive. The precise mechanism for formation of these cells is under investigation. A major impetus for immune cell activation seems to be increased sympathetic outflow, stimulated by the central actions of angiotensin II. By lesioning the AV3 V region of the forebrain of mice or inactivating the NADPH oxidase in the subfornical organ using Cre Lox technology, we have prevented the central actions of angiotensin II and found that this inhibits both T cell activation and hypertension. Renal denervation likewise

  12. Reprogramming of monocytes by GM-CSF contributes to regulatory immune functions during intestinal inflammation.

    PubMed

    Däbritz, Jan; Weinhage, Toni; Varga, Georg; Wirth, Timo; Walscheid, Karoline; Brockhausen, Anne; Schwarzmaier, David; Brückner, Markus; Ross, Matthias; Bettenworth, Dominik; Roth, Johannes; Ehrchen, Jan M; Foell, Dirk

    2015-03-01

    Human and murine studies showed that GM-CSF exerts beneficial effects in intestinal inflammation. To explore whether GM-CSF mediates its effects via monocytes, we analyzed effects of GM-CSF on monocytes in vitro and assessed the immunomodulatory potential of GM-CSF-activated monocytes (GMaMs) in vivo. We used microarray technology and functional assays to characterize GMaMs in vitro and used a mouse model of colitis to study GMaM functions in vivo. GM-CSF activates monocytes to increase adherence, migration, chemotaxis, and oxidative burst in vitro, and primes monocyte response to secondary microbial stimuli. In addition, GMaMs accelerate epithelial healing in vitro. Most important, in a mouse model of experimental T cell-induced colitis, GMaMs show therapeutic activity and protect mice from colitis. This is accompanied by increased production of IL-4, IL-10, and IL-13, and decreased production of IFN-γ in lamina propria mononuclear cells in vivo. Confirming this finding, GMaMs attract T cells and shape their differentiation toward Th2 by upregulating IL-4, IL-10, and IL-13 in T cells in vitro. Beneficial effects of GM-CSF in Crohn's disease may possibly be mediated through reprogramming of monocytes to simultaneously improved bacterial clearance and induction of wound healing, as well as regulation of adaptive immunity to limit excessive inflammation.

  13. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    PubMed Central

    Bullens, Dominique M. A.; Decraene, Ann; Seys, Sven; Dupont, Lieven J.

    2013-01-01

    Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A), called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases. PMID:23401702

  14. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response.

    PubMed

    Liliensiek, Birgit; Weigand, Markus A; Bierhaus, Angelika; Nicklas, Werner; Kasper, Michael; Hofer, Stefan; Plachky, Jens; Gröne, Herman-Josef; Kurschus, Florian C; Schmidt, Ann Marie; Yan, Shi Du; Martin, Eike; Schleicher, Erwin; Stern, David M; Hämmerling G, G ünterJ; Nawroth, Peter P; Arnold, Bernd

    2004-06-01

    While the initiation of the adaptive and innate immune response is well understood, less is known about cellular mechanisms propagating inflammation. The receptor for advanced glycation end products (RAGE), a transmembrane receptor of the immunoglobulin superfamily, leads to perpetuated cell activation. Using novel animal models with defective or tissue-specific RAGE expression, we show that in these animal models RAGE does not play a role in the adaptive immune response. However, deletion of RAGE provides protection from the lethal effects of septic shock caused by cecal ligation and puncture. Such protection is reversed by reconstitution of RAGE in endothelial and hematopoietic cells. These results indicate that the innate immune response is controlled by pattern-recognition receptors not only at the initiating steps but also at the phase of perpetuation.

  15. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response

    PubMed Central

    Liliensiek, Birgit; Weigand, Markus A.; Bierhaus, Angelika; Nicklas, Werner; Kasper, Michael; Hofer, Stefan; Plachky, Jens; Gröne, Herman-Josef; Kurschus, Florian C.; Schmidt, Ann Marie; Yan, Shi Du; Martin, Eike; Schleicher, Erwin; Stern, David M.; Hämmerling, Günter J.; Nawroth, Peter P.; Arnold, Bernd

    2004-01-01

    While the initiation of the adaptive and innate immune response is well understood, less is known about cellular mechanisms propagating inflammation. The receptor for advanced glycation end products (RAGE), a transmembrane receptor of the immunoglobulin superfamily, leads to perpetuated cell activation. Using novel animal models with defective or tissue-specific RAGE expression, we show that in these animal models RAGE does not play a role in the adaptive immune response. However, deletion of RAGE provides protection from the lethal effects of septic shock caused by cecal ligation and puncture. Such protection is reversed by reconstitution of RAGE in endothelial and hematopoietic cells. These results indicate that the innate immune response is controlled by pattern-recognition receptors not only at the initiating steps but also at the phase of perpetuation. PMID:15173891

  16. Evolution of adaptive immune recognition in jawless vertebrates.

    PubMed

    Saha, Nil Ratan; Smith, Jeramiah; Amemiya, Chris T

    2010-02-01

    All extant vertebrates possess an adaptive immune system wherein diverse immune receptors are created and deployed in specialized blood cell lineages. Recent advances in DNA sequencing and developmental resources for basal vertebrates have facilitated numerous comparative analyses that have shed new light on the molecular and cellular bases of immune defense and the mechanisms of immune receptor diversification in the "jawless" vertebrates. With data from these key species in hand, it is becoming possible to infer some general aspects of the early evolution of vertebrate adaptive immunity. All jawed vertebrates assemble their antigen-receptor genes through combinatorial recombination of different "diversity" segments into immunoglobulin or T-cell receptor genes. However, the jawless vertebrates employ an analogous, but independently derived set of immune receptors in order to recognize and bind antigens: the variable lymphocyte receptors (VLRs). The means by which this locus generates receptor diversity and achieves antigen specificity is of considerable interest because these mechanisms represent a completely independent strategy for building a large immune repertoire. Therefore, studies of the VLR system are providing insight into the fundamental principles and evolutionary potential of adaptive immune recognition systems. Here we review and synthesize the wealth of data that have been generated towards understanding the evolution of the adaptive immune system in the jawless vertebrates. (c) 2009 Elsevier Ltd. All rights reserved.

  17. The Role of Selenium in Inflammation and Immunity: From Molecular Mechanisms to Therapeutic Opportunities

    PubMed Central

    Huang, Zhi; Rose, Aaron H.

    2012-01-01

    Abstract Dietary selenium (]Se), mainly through its incorporation into selenoproteins, plays an important role in inflammation and immunity. Adequate levels of Se are important for initiating immunity, but they are also involved in regulating excessive immune responses and chronic inflammation. Evidence has emerged regarding roles for individual selenoproteins in regulating inflammation and immunity, and this has provided important insight into mechanisms by which Se influences these processes. Se deficiency has long been recognized to negatively impact immune cells during activation, differentiation, and proliferation. This is related to increased oxidative stress, but additional functions such as protein folding and calcium flux may also be impaired in immune cells under Se deficient conditions. Supplementing diets with above-adequate levels of Se can also impinge on immune cell function, with some types of inflammation and immunity particularly affected and sexually dimorphic effects of Se levels in some cases. In this comprehensivearticle, the roles of Se and individual selenoproteins in regulating immune cell signaling and function are discussed. Particular emphasis is given to how Se and selenoproteins are linked to redox signaling, oxidative burst, calcium flux, and the subsequent effector functions of immune cells. Data obtained from cell culture and animal models are reviewed and compared with those involving human physiology and pathophysiology, including the effects of Se levels on inflammatory or immune-related diseases including anti-viral immunity, autoimmunity, sepsis, allergic asthma, and chronic inflammatory disorders. Finally, the benefits and potential adverse effects of intervention with Se supplementation for various inflammatory or immune disorders are discussed. Antioxid. Redox Signal. 16, 705–743. PMID:21955027

  18. Sympathetic neural-immune interactions regulate hematopoiesis, thermoregulation and inflammation in mammals.

    PubMed

    Madden, Kelley S

    2017-01-01

    This review will highlight recently discovered mechanisms underlying sympathetic nervous system (SNS) regulation of the immune system in hematopoiesis, thermogenesis, and inflammation. This work in mammals illuminates potential mechanisms by which the nervous and immune systems may interact in invertebrate and early vertebrate species and allow diverse organisms to thrive under varying and extreme conditions and ultimately improve survival.

  19. The Jeremiah Metzger Lecture: Inflammation, Immune Modulators, and Chronic Disease.

    PubMed

    Dubois, Raymond N

    2015-01-01

    Chronic inflammation is a risk factor for many different diseases. It is clear that inflammation is associated with degenerative brain diseases, obesity, metabolic syndrome, cardiovascular disease, diabetes, and cancer. Throughout the past 100 years, changes in the causes of death in the US have been dramatic. The most recent data indicate that cardiovascular disease and cancer are now responsible for 63% of mortality in the US population. Although progression of these diseases is related to diet, lifestyle, and genetic factors, a common but often unrecognized link is the presence of underlying chronic inflammation. As of 2014, 83.6 million people were living with some form of cardiovascular disease, 29.1 million people have been diagnosed with diabetes, 14 million people carried the diagnosis of cancer, and 5.2 million people were living with Alzheimer disease. These diseases are a huge burden on our health care system and all have been associated with chronic inflammation.

  20. The Jeremiah Metzger Lecture: Inflammation, Immune Modulators, and Chronic Disease

    PubMed Central

    Dubois, Raymond N.

    2015-01-01

    Chronic inflammation is a risk factor for many different diseases. It is clear that inflammation is associated with degenerative brain diseases, obesity, metabolic syndrome, cardiovascular disease, diabetes, and cancer. Throughout the past 100 years, changes in the causes of death in the US have been dramatic. The most recent data indicate that cardiovascular disease and cancer are now responsible for 63% of mortality in the US population. Although progression of these diseases is related to diet, lifestyle, and genetic factors, a common but often unrecognized link is the presence of underlying chronic inflammation. As of 2014, 83.6 million people were living with some form of cardiovascular disease, 29.1 million people have been diagnosed with diabetes, 14 million people carried the diagnosis of cancer, and 5.2 million people were living with Alzheimer disease. These diseases are a huge burden on our health care system and all have been associated with chronic inflammation. PMID:26330682

  1. Immune Suppression and Inflammation in the Progression of Breast Cancer

    DTIC Science & Technology

    2007-03-01

    Coussens , L . M ., and Z . Werb . 2002 . Inflammation and cancer . Nature 420:860. 5. Kusmartsev, S., and D. I...as a major preventable cause of human cancer . J Intern Med 248:171. 3. Shacter, E., and S. A. Weitzman. 2002 . Chronic inflammation and cancer ...N., and E. Voronov. 2002 . Interleukin-1--a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol 12:277. 11. Saijo, Y., M

  2. Autophagy, Inflammation and Immunity: A Troika Governing Cancer and Its Treatment

    PubMed Central

    Zhong, Zhenyu; Sanchez-Lopez, Elsa; Karin, Michael

    2016-01-01

    Summary Autophagy, a cellular waste disposal process, has well-established tumor suppressive properties. New studies indicate that in addition to its cell autonomous anti-tumorigenic functions, autophagy inhibits cancer development by orchestrating inflammation and immunity. While attenuating tumor-promoting inflammation, autophagy enhances the processing and presentation of tumor antigens and thereby stimulates anti-tumor immunity. Although cancer cells can escape immunosurveillance by tuning down autophagy, certain chemotherapeutic agents with immunogenic properties may enhance anti-tumor immunity by inducing autophagic cell death. Understanding the intricate and complex relationships within this troika and how they are affected by autophagy enhancing drugs should improve the efficacy of cancer immunotherapy. PMID:27419869

  3. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment.

    PubMed

    Zhong, Zhenyu; Sanchez-Lopez, Elsa; Karin, Michael

    2016-07-14

    Autophagy, a cellular waste disposal process, has well-established tumor-suppressive properties. New studies indicate that, in addition to its cell-autonomous anti-tumorigenic functions, autophagy inhibits cancer development by orchestrating inflammation and immunity. While attenuating tumor-promoting inflammation, autophagy enhances the processing and presentation of tumor antigens and thereby stimulates anti-tumor immunity. Although cancer cells can escape immunosurveillance by tuning down autophagy, certain chemotherapeutic agents with immunogenic properties may enhance anti-tumor immunity by inducing autophagic cell death. Understanding the intricate and complex relationships within this troika and how they are affected by autophagy enhancing drugs should improve the efficacy of cancer immunotherapy.

  4. Diversity of immune strategies explained by adaptation to pathogen statistics

    PubMed Central

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M.

    2016-01-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations—differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  5. Diversity of immune strategies explained by adaptation to pathogen statistics.

    PubMed

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M

    2016-08-02

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations-differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems.

  6. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    PubMed

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.

  7. SnapShot: CRISPR-RNA-guided adaptive immune systems.

    PubMed

    Carter, Joshua; Wiedenheft, Blake

    2015-09-24

    Bacteria and archaea have evolved sophisticated adaptive immune systems that reply on CRISPR loci and a diverse cassette of Cas genes that are classified into three main types and at least eleven subtypes. All CRISPR-Cas immune systems operate through three main stages: acquisition, biogenesis, and interference. This SnapShot summarizes our current knowledge of these fascinating immune systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in Alzheimer's disease models.

    PubMed

    Lonskaya, I; Hebron, M L; Selby, S T; Turner, R S; Moussa, C E-H

    2015-09-24

    Alzheimer's disease (AD) brains exhibit plaques and tangles in association with inflammation. The non-receptor tyrosine kinase Abl is linked to neuro-inflammation in AD. Abl inhibition by nilotinib or bosutinib facilitates amyloid clearance and may decrease inflammation. Transgenic mice that express Dutch, Iowa and Swedish APP mutations (TgAPP) and display progressive Aβ plaque deposition were treated with tyrosine kinase inhibitors (TKIs) to determine pre-plaque effects on systemic and CNS inflammation using milliplex® ELISA. Plaque Aβ was detected at 4months in TgAPP and pre-plaque intracellular Aβ accumulation (2.5months) was associated with changes of cytokines and chemokines prior to detection of glial changes. Plaque formation correlated with increased levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-1α, IL-1β) and markers of immunosuppressive and adaptive immunity, including, IL-4, IL-10, IL-2, IL-3, Vascular Endothelial Growth Factor (VEGF) and IFN-γ. An inverse relationship of chemokines was observed as CCL2 and CCL5 were lower than WT mice at 2months and significantly increased after plaque appearance, while soluble CX3CL1 decreased. A change in glial profile was only robustly detected at 6months in Tg-APP mice and TKIs reduced astrocyte and dendritic cell number with no effects on microglia, suggesting alteration of brain immunity. Nilotinib decreased blood and brain cytokines and chemokines and increased CX3CL1. Bosutinib increased brain and blood IL-10 and CX3CL1, suggesting a protective role for soluble CX3CL1. Taken together these data suggest that TKIs regulate systemic and CNS immunity and may be useful treatments in early AD through dual effects on amyloid clearance and immune modulation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Depression and immunity: inflammation and depressive symptoms in multiple sclerosis.

    PubMed

    Gold, Stefan M; Irwin, Michael R

    2009-05-01

    An increasing body of evidence suggests that patients who have major depressive disorder show alterations in immunologic markers including increases in proinflammatory cytokine activity and inflammation. Inflammation of the central nervous system is a pathologic hallmark of multiple sclerosis (MS). Patients affected by this disease also show a high incidence of depression. Accumulating evidence from animal studies suggests that some aspects of depression and fatigue in MS may be linked to inflammatory markers. This article reviews the current knowledge in the field and illustrates how the sickness behavior model may be applied to investigate depressive symptoms in inflammatory neurologic diseases.

  10. Evolution of innate and adaptive immune systems in jawless vertebrates.

    PubMed

    Kasamatsu, Jun

    2013-01-01

    Because jawless vertebrates are the most primitive vertebrates, they have been studied to gain understanding of the evolutionary processes that gave rise to the innate and adaptive immune systems in vertebrates. Jawless vertebrates have developed lymphocyte-like cells that morphologically resemble the T and B cells of jawed vertebrates, but they express variable lymphocyte receptors (VLRs) instead of the T and B cell receptors that specifically recognize antigens in jawed vertebrates. These VLRs act as antigen receptors, diversity being generated in their antigen-binding sites by assembly of highly diverse leucine-rich repeat modules. Therefore, jawless vertebrates have developed adaptive immune systems based on the VLRs. Although pattern recognition receptors, including Toll-like receptors (TLRs) and Rig-like receptors (RLRs), and their adaptor genes are conserved in jawless vertebrates, some transcription factor and inflammatory cytokine genes in the TLR and RLR pathways are not present. However, like jawed vertebrates, the initiation of adaptive immune responses in jawless vertebrates appears to require prior activation of the innate immune system. These observations imply that the innate immune systems of jawless vertebrates have a unique molecular basis that is distinct from that of jawed vertebrates. Altogether, although the molecular details of the innate and adaptive immune systems differ between jawless and jawed vertebrates, jawless vertebrates have developed versions of these immune systems that are similar to those of jawed vertebrates. © 2012 The Societies and Wiley Publishing Asia Pty Ltd.

  11. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.

    PubMed

    Mora-Bau, Gabriela; Platt, Andrew M; van Rooijen, Nico; Randolph, Gwendalyn J; Albert, Matthew L; Ingersoll, Molly A

    2015-07-01

    Urinary tract infection (UTI) is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder.

  12. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection

    PubMed Central

    Mora-Bau, Gabriela; Platt, Andrew M.; van Rooijen, Nico; Randolph, Gwendalyn J.; Albert, Matthew L.; Ingersoll, Molly A.

    2015-01-01

    Urinary tract infection (UTI) is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder. PMID:26182347

  13. CD98 at the crossroads of adaptive immunity and cancer.

    PubMed

    Cantor, Joseph M; Ginsberg, Mark H

    2012-03-15

    Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer.

  14. CD98 at the crossroads of adaptive immunity and cancer

    PubMed Central

    Cantor, Joseph M.; Ginsberg, Mark H.

    2012-01-01

    Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer. PMID:22499670

  15. Immune inflammation indicators and implication for immune modulation strategies in advanced hepatocellular carcinoma patients receiving sorafenib

    PubMed Central

    Gardini, Andrea Casadei; Scarpi, Emanuela; Faloppi, Luca; Scartozzi, Mario; Silvestris, Nicola; Santini, Daniele; de Stefano, Giorgio; Marisi, Giorgia; Negri, Francesca V.; Foschi, Francesco Giuseppe; Valgiusti, Martina; Ercolani, Giorgio; Frassineti, Giovanni Luca

    2016-01-01

    We evalueted a systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) with the aim to explored their prognostic value in patients with advanced hepatocellular carcinoma (HCC) treated with sorafenib. 56 advanced HCC patients receiving sorafenib were available for our analysis. Lymphocyte, neutrophil and platelet were measured before beginning of treatment and after one month. Patient with SII ≥ 360 showed lower median PFS (2.6 vs. 3.9 months, P < 0.026) and OS (5.6 vs. 13.9 months, P = 0.027) with respect to patients with SII < 360. NLR ≥ 3 had a lower median PFS (2.6 vs. 3.3 months, P < 0.049) but not OS (5.6 vs. 13.9 months, P = 0.062) than those with NLR < 3. After adjusting for clinical covariates SII and NLR remained an independent prognostic factor for OS. The SII and NLR represent potential prognostic indicator in patients with advanced HCC treated with sorafenib. PMID:27613839

  16. Role of the Microbiota in Immunity and inflammation

    PubMed Central

    Belkaid, Yasmine; Hand, Timothy

    2014-01-01

    The microbiota plays a fundamental role on the induction, training and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally this immune system–microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries overuse of antibiotics, changes in diet, and elimination of constitutive partners such as nematodes has selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. PMID:24679531

  17. Zinc in innate and adaptive tumor immunity

    PubMed Central

    2010-01-01

    Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493

  18. Inflammation and bone destruction in arthritis: synergistic activity of immune and mesenchymal cells in joints.

    PubMed

    Komatsu, Noriko; Takayanagi, Hiroshi

    2012-01-01

    Rheumatoid arthritis (RA) is an immune-mediated disease of the joints that is characterized by chronic inflammation and synovial hyperplasia that eventually lead to cartilage and bone destruction. Synovial fibroblasts are mesenchymal cells recognized as a key cell population in RA due to their hyperproliferative and hypersensitive properties in the inflammatory milieu and hyperproduction of both inflammatory cytokines and matrix-degrading enzymes. On the immune cell side, a wealth of evidence has shown that CD4(+)T-cells, especially IL-17 producing helper T (Th17) cells, play a prominent role, particularly in the initiation of systemic immune response in RA. However, it is still unclear how the local chronic inflammation in the joint is elicited by a systemic immune response. Recent studies have shed light on the importance of the interaction between immune and mesenchymal cells in joints including synovial fibroblasts. In particular, mesenchymal cells contribute to the Th17-mediated chronic inflammation in RA by promoting the migration of Th17 cells to the inflamed site and then the homeostatic proliferation and concomitant increase in IL-17 production. In addition, recent progress in osteoimmunology has provided new insight into the pathogenesis of the bone destruction which takes place in RA. Th17-related cytokines have been shown to enhance osteoclastogenesis, mainly via synovial fibroblasts. Thus, mesenchymal cells are a determinant of the development of RA that links the systemic immune response and the local disorder in the joints. In addition, the interaction of immune and mesenchymal cells plays a key role in both the chronic inflammation and bone destruction seen in RA. Elucidation of the precise events involved in this interaction will lead to a better understanding of the mechanisms by which chronic inflammation and bone destruction in joint results from a systemic immune response, and also will help provide a molecular basis for novel therapeutic

  19. Inflammation and Bone Destruction in Arthritis: Synergistic Activity of Immune and Mesenchymal Cells in Joints

    PubMed Central

    Komatsu, Noriko; Takayanagi, Hiroshi

    2012-01-01

    Rheumatoid arthritis (RA) is an immune-mediated disease of the joints that is characterized by chronic inflammation and synovial hyperplasia that eventually lead to cartilage and bone destruction. Synovial fibroblasts are mesenchymal cells recognized as a key cell population in RA due to their hyperproliferative and hypersensitive properties in the inflammatory milieu and hyperproduction of both inflammatory cytokines and matrix-degrading enzymes. On the immune cell side, a wealth of evidence has shown that CD4+T-cells, especially IL-17 producing helper T (Th17) cells, play a prominent role, particularly in the initiation of systemic immune response in RA. However, it is still unclear how the local chronic inflammation in the joint is elicited by a systemic immune response. Recent studies have shed light on the importance of the interaction between immune and mesenchymal cells in joints including synovial fibroblasts. In particular, mesenchymal cells contribute to the Th17-mediated chronic inflammation in RA by promoting the migration of Th17 cells to the inflamed site and then the homeostatic proliferation and concomitant increase in IL-17 production. In addition, recent progress in osteoimmunology has provided new insight into the pathogenesis of the bone destruction which takes place in RA. Th17-related cytokines have been shown to enhance osteoclastogenesis, mainly via synovial fibroblasts. Thus, mesenchymal cells are a determinant of the development of RA that links the systemic immune response and the local disorder in the joints. In addition, the interaction of immune and mesenchymal cells plays a key role in both the chronic inflammation and bone destruction seen in RA. Elucidation of the precise events involved in this interaction will lead to a better understanding of the mechanisms by which chronic inflammation and bone destruction in joint results from a systemic immune response, and also will help provide a molecular basis for novel therapeutic

  20. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications

    PubMed Central

    Luo, Yueh-Hsia; Chang, Louis W.; Lin, Pinpin

    2015-01-01

    Nanomaterials, including metal-based nanoparticles, are used for various biological and medical applications. However, metals affect immune functions in many animal species including humans. Different physical and chemical properties induce different cellular responses, such as cellular uptake and intracellular biodistribution, leading to the different immune responses. The goals of this review are to summarize and discuss the innate and adaptive immune responses triggered by metal-based nanoparticles in a variety of immune system models. PMID:26125021

  1. Immune and stress responses in oysters with insights on adaptation.

    PubMed

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments.

  2. Evolution of adaptive immunity from transposable elements combined with innate immune systems.

    PubMed

    Koonin, Eugene V; Krupovic, Mart

    2015-03-01

    Adaptive immune systems in prokaryotes and animals give rise to long-term memory through modification of specific genomic loci, such as by insertion of foreign (viral or plasmid) DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci in prokaryotes and by V(D)J recombination of immunoglobulin genes in vertebrates. Strikingly, recombinases derived from unrelated mobile genetic elements have essential roles in both prokaryotic and vertebrate adaptive immune systems. Mobile elements, which are ubiquitous in cellular life forms, provide the only known, naturally evolved tools for genome engineering that are successfully adopted by both innate immune systems and genome-editing technologies. In this Opinion article, we present a general scenario for the origin of adaptive immunity from mobile elements and innate immune systems.

  3. Induction of adaptive immunity by flagellin does not require robust activation of innate immunity.

    PubMed

    Sanders, Catherine J; Franchi, Luigi; Yarovinsky, Felix; Uematsu, Satoshi; Akira, Shizuo; Núñez, Gabriel; Gewirtz, Andrew T

    2009-02-01

    The ability of TLR agonists to promote adaptive immune responses is attributed to their ability to robustly activate innate immunity. However, it has been observed that, for adjuvants in actual use in research and vaccination, TLR signaling is dispensable for generating humoral immunity. Here, we examined the role of TLR5 and MyD88 in promoting innate and humoral immunity to flagellin using a prime/boost immunization regimen. We observed that eliminating TLR5 greatly reduced flagellin-induced cytokine production, except for IL-18, and ablated DC maturation but did not significantly impact flagellin's ability to promote humoral immunity. Elimination of MyD88, which will ablate signaling through TLR and IL-1beta/IL-18 generated by Nod-like receptors, reduced, but did not eliminate flagellin's promotion of humoral immunity. In contrast, loss of the innate immune receptor for profilin-like protein (PLP), TLR11, greatly reduced the ability of PLP to elicit humoral immunity. Together, these results indicate that, firstly, the degree of innate immune activation induced by TLR agonists may be in great excess of that needed to promote humoral immunity and, secondly, there is considerable redundancy in mechanisms that promote the humoral immune response upon innate immune recognition of flagellin. Thus, it should be possible to design innate immune activators that are highly effective vaccine adjuvants yet avoid the adverse events associated with systemic TLR activation.

  4. The role of the innate and adaptive immune responses in Acanthamoeba keratitis.

    PubMed

    Niederkorn, Jerry Y

    2002-01-01

    Infections of the corneal surface are an important cause of blindness. Protozoal, viral, bacterial, and helminthic infections of the cornea account for up to 9 million cases of corneal blindness. Free-living amoebae of the genus Acanthamoeba produce a progressive infection of the cornea called Acanthamoeba keratitis. Disease is usually transmitted by Acanthamoeba trophozoites bound to soft contact lenses. Infection of the cornea is initiated when the parasite binds to the corneal epithelial surface. Recrudescence can occur and suggests that the adaptive immune response is not aroused by corneal Acanthamoeba infections. Systemic immunization with Acanthamoeba antigens elicits robust Th1 cell-mediated immunity and serum IgG antibody, yet fails to prevent the development of Acanthamoeba keratitis. However, immunization via mucosal surfaces induces anti-Acanthamoeba IgA antibodies in the tears and provides solid protection against the development of Acanthamoeba keratitis. Unlike other immune effector mechanisms that rely on cytolysis, inflammation, release of toxic molecules, or the induction of host cell death, the adaptive immune apparatus prevents Acanthamoeba infections of the cornea by simply preventing the attachment of the parasite to the epithelial surface. The beauty of this mechanism lies in its exquisite simplicity and efficacy.

  5. Adaptive Immune Regulation of Glial Homeostasis as an Immunization Strategy for Neurodegenerative Diseases

    PubMed Central

    Kosloski, Lisa M.; Ha, Duy M.; Stone, David K.; Hutter, Jessica A. L.; Pichler, Michael R.; Reynolds, Ashley D.; Gendelman, Howard E.; Mosley, R. Lee

    2010-01-01

    Neurodegenerative diseases, notably Alzheimer's and Parkinson's diseases, are amongst the most devastating disorders afflicting the elderly. Currently, no curative treatments or treatments that interdict disease progression exist. Over the past decade, immunization strategies have been proposed to combat disease progression. Such strategies induce humoral immune responses against misfolded protein aggregates to facilitate their clearance. Robust adaptive immunity against misfolded proteins, however, accelerates disease progression, precipitated by induced effector T cell responses that lead to encephalitis and neuronal death. Since then, mechanisms that attenuate such adaptive neurotoxic immune responses have been sought. We propose that shifting the balance between effector and regulatory T cell activity can attenuate neurotoxic inflammatory events. This review summarizes advances in immune regulation to achieve a homeostatic glial response for therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are also discussed. PMID:20524958

  6. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    PubMed

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials. Published by Elsevier Inc.

  7. Odor Signals of Immune Activation and CNS Inflammation

    DTIC Science & Technology

    2013-10-15

    treatment with LPS in humans . Urine samples collected from humans receiving a small dose of LPS (or control) were subjected to discrimination tasks by...a human sensory panel as well as chemical analyses. Both assays suggested that treatment with LPS results in a detectable alteration of urine...volatiles. From these experiments, we conclude that LPS-induced inflammation alters urine in both mice and humans . Furthermore, these changes can be

  8. Innate and adaptive immune responses in neurodegeneration and repair.

    PubMed

    Amor, Sandra; Woodroofe, M Nicola

    2014-03-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases.

  9. Long noncoding RNAs in Innate and Adaptive Immunity

    PubMed Central

    Fitzgerald, Katherine A.; Caffrey, Daniel R.

    2014-01-01

    The differentiation and activation of both innate and adaptive immune cells is highly dependent on a coordinated set of transcriptional and post-transcriptional events. Chromatin-modifiers and transcription factors regulate the accessibility and transcription of immune genes, respectively. Immune cells also express miRNA and RNA-binding proteins that provide an additional layer of regulation at the mRNA level. However, long noncoding RNA (lncRNA), which have been primarily studied in the context of genomic imprinting, cancer, and cell differentiation, are now emerging as important regulators of immune cell differentiation and activation. In this review, we provide a brief overview of lncRNA, their known functions in immunity, and discuss their potential to be more broadly involved in other aspects of the immune response. PMID:24556411

  10. Innate and adaptive immune responses in neurodegeneration and repair

    PubMed Central

    Amor, Sandra; Woodroofe, M Nicola

    2014-01-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases. PMID:23758741

  11. Metalloproteinases and their natural inhibitors in inflammation and immunity.

    PubMed

    Khokha, Rama; Murthy, Aditya; Weiss, Ashley

    2013-09-01

    Over the past 50 years, steady growth in the field of metalloproteinase biology has shown that the degradation of extracellular matrix components represents only a fraction of the functions performed by these enzymes and has highlighted their fundamental roles in immunity. Metalloproteinases regulate aspects of immune cell development, effector function, migration and ligand-receptor interactions. They carry out ectodomain shedding of cytokines and their cognate receptors. Together with their endogenous inhibitors TIMPs (tissue inhibitor of metalloproteinases), these enzymes regulate signalling downstream of the tumour necrosis factor receptor and the interleukin-6 receptor, as well as that downstream of the epidermal growth factor receptor and Notch, which are all pertinent for inflammatory responses. This Review discusses the metalloproteinase family as a crucial component in immune cell development and function.

  12. Cancer immunoediting by the innate immune system in the absence of adaptive immunity.

    PubMed

    O'Sullivan, Timothy; Saddawi-Konefka, Robert; Vermi, William; Koebel, Catherine M; Arthur, Cora; White, J Michael; Uppaluri, Ravi; Andrews, Daniel M; Ngiow, Shin Foong; Teng, Michele W L; Smyth, Mark J; Schreiber, Robert D; Bui, Jack D

    2012-09-24

    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3'methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2(-/-), and RAG2(-/-)x γc(-/-) mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2(-/-)x γc(-/-) mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting.

  13. Cancer immunoediting by the innate immune system in the absence of adaptive immunity

    PubMed Central

    O’Sullivan, Timothy; Saddawi-Konefka, Robert; Vermi, William; Koebel, Catherine M.; Arthur, Cora; White, J. Michael; Uppaluri, Ravi; Andrews, Daniel M.; Ngiow, Shin Foong; Teng, Michele W.L.; Smyth, Mark J.; Schreiber, Robert D.

    2012-01-01

    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3′methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2−/−, and RAG2−/−x γc−/− mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2−/−x γc−/− mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting. PMID:22927549

  14. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    PubMed Central

    da Rocha Junior, Laurindo Ferreira; Dantas, Andréa Tavares; Duarte, Ângela Luzia Branco Pinto; de Melo Rego, Moacyr Jesus Barreto; Pitta, Ivan da Rocha; Pitta, Maira Galdino da Rocha

    2013-01-01

    Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPARγ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPARγ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPARγ has also been associated with B cells. The present review addresses these issues by placing PPARγ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity. PMID:23983678

  15. Innate and Adaptive Immune Responses in Wound Epithelialization

    PubMed Central

    Strbo, Natasa; Yin, Natalie; Stojadinovic, Olivera

    2014-01-01

    Significance: Over the years, it has become clear that, in addition to performing their regular duties in immune defense, the innate and adaptive arms of the immune system are important regulators of the complex series of events that lead to wound healing. Immune cells modulate wound healing by promoting cellular cross-talk; they secrete signaling molecules, including cytokines, chemokines, and growth factors. In line with the major effort in wound healing research to find efficient therapeutic agents for the constantly increasing number of patients with chronic wounds, findings regarding the contributions of innate and adaptive immune responses to the re-epithelialization of damaged skin may bring novel therapeutics. Recent Advances: Increasing evidence suggests that induction of the adaptive immune response requires activation of innate immunity and that there is a dependent relationship between the two systems. Consequently, the bridge between the innate and the acquired immune systems has become an area of emerging exploration. It is clear that a better understanding of the epithelial cells (keratinocytes), immune cells, and mechanisms that contribute to an effective wound healing process is necessary so that new strategies for successful wounds treatment can be devised. Critical Issues: A greater understanding of the biology of skin innate and adaptive immune cells during wound epithelialization may have an impact on development of novel strategies for significant improvements in the quality of tissue repair. Future Directions: Future studies should clarify the importance of particular molecules and mechanisms utilized for development and functions of skin-resident γδT and Langerhans cells, as well as identify therapeutic targets for manipulation of these cells to combat epithelial diseases. PMID:25032069

  16. [Association of ocular inflammation and innate immune response].

    PubMed

    Sonoda, Koh-Hei

    2008-03-01

    Immune response has been divided into innate immunity and acquired immunity. We focused on the role of innate immunity during the formation of uveitis and choroidal neovascularization (CNV)-related diseases. To carry out a comprehensive analysis of ocular inflammatory responses in patients with uveitis, vitreous fluid was analyzed using a microbead-based multiplex ELIZA system. We found that cytokines which were related with innate immunity were elevated, but cytokines which were related with acquired immunity were not. We also found that the role of IL-17 was to produce Th17 cells in the chronic phase of experimental uveitis. Next, we investigated the role of the natural killer (NK) T cells which restrict CD1 and participate in the innate immune response in laser-induced experimental CNV. We studied the CNV formation in two independent NK T cell-deficient strains of mice, CD1 knockout (KO) mice and Jalpha18 KO mice, and found that both KO mice showed significant reduction of the effects of experimental CNV. After laser treatment, both CD1 KO mice and Jalpha18 KO mice showed a decrease in the expression of vascular endothelial growth factor (VEGF) expression in retina and choroid. Interestingly, intravitreous inoculation of a galactosylceramide (alphaGalCer), which is the ligand of NK Tcells, inhibited CNV in C57BL6 mice. Collectively, we conclude that NK T cells play an important role in forming CNV as one of the inducers of VEGS. Because NK T cells bear the potential to regulate immune response, alphaGalCer might activate NK T cells differently to produce angiostatic factors and have a therapeutic potential in vivo. During the clinical process of CNV-related diseases, not only CNV formation, but also subretinal scarring is thought to be another important step. We thus established the experimental model of subretinal scaring by injecting peritoneal exudating macrophases into the subretinal space. This scaring was inhibited by inoculation of anti-IL-6 antibody and

  17. An Overview of the Innate and Adaptive Immune System in Inflammatory Bowel Disease.

    PubMed

    Choy, Matthew C; Visvanathan, Kumar; De Cruz, Peter

    2017-01-01

    Inflammatory bowel diseases (IBDs) are thought to develop as a result of complex interactions between host genetics, the immune system and the environment including the gut microbiome. Although an improved knowledge of the immunopathogenesis of IBDs has led to great advances in therapy such as the highly effective anti-tumor necrosis factor class of medications, a significant proportion of patients with Crohn's disease and ulcerative colitis do not respond to anti-tumor necrosis factor antibodies. Further understanding of the different immune pathways involved in the genesis of chronic intestinal inflammation is required to help find effective treatments for IBDs. In this review, the role of the mucosal innate and adaptive immune system in IBD is summarized, highlighting new areas of discovery which may hold the key to identifying novel predictive or prognostic biomarkers and new avenues of therapeutic discovery.

  18. Periodontitis: from microbial immune subversion to systemic inflammation

    PubMed Central

    Hajishengallis, George

    2014-01-01

    Periodontitis is a dysbiotic inflammatory disease with an adverse impact on systemic health. Recent studies have provided insights into the emergence and persistence of dysbiotic oral microbial communities, which can mediate inflammatory pathology at local as well as distant sites. This Review discusses mechanisms of microbial immune subversion that tip the balance from homeostasis to disease in oral or extraoral sites. PMID:25534621

  19. Role of Redox Signaling and Inflammation in Skeletal Muscle Adaptations to Training

    PubMed Central

    Gomez-Cabrera, Maria Carmen; Viña, Jose; Ji, Li Li

    2016-01-01

    The inflammatory response to exercise-induced muscle damage has been extensively described. Exercise has important modulatory effects on immune function. These effects are mediated by diverse factors including pro-inflammatory cytokines, classical stress hormones, and hemodynamic effects leading to cell redistribution. As has been reported regarding oxidative stress, inflammation can have both detrimental and beneficial effects in skeletal muscle. In this review we will address the role of inflammation on protein metabolism in skeletal muscle. Specifically, we will review studies showing that treatment with cyclooxygenase-inhibiting drugs modulate the protein synthesis response to one bout of resistance exercise and to training. Understanding how these drugs work is important for the millions of individuals worldwide that consume them regularly. We will also discuss the importance of reactive oxygen species and inflammatory cytokines in muscle adaptations to exercise and the Janus faced of the use of antioxidant and anti-inflammatory drugs by athletes for optimizing their performance, especially during the periods in which muscle hypertrophy is expected. PMID:27983587

  20. Osteopontin Bridging Innate and Adaptive Immunity in Autoimmune Diseases

    PubMed Central

    Raineri, Davide; Boggio, Elena; Favero, Francesco; Soluri, Maria Felicia

    2016-01-01

    Osteopontin (OPN) regulates the immune response at multiple levels. Physiologically, it regulates the host response to infections by driving T helper (Th) polarization and acting on both innate and adaptive immunity; pathologically, it contributes to the development of immune-mediated and inflammatory diseases. In some cases, the mechanisms of these effects have been described, but many aspects of the OPN function remain elusive. This is in part ascribable to the fact that OPN is a complex molecule with several posttranslational modifications and it may act as either an immobilized protein of the extracellular matrix or a soluble cytokine or an intracytoplasmic molecule by binding to a wide variety of molecules including crystals of calcium phosphate, several cell surface receptors, and intracytoplasmic molecules. This review describes the OPN structure, isoforms, and functions and its role in regulating the crosstalk between innate and adaptive immunity in autoimmune diseases. PMID:28097158

  1. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.

  2. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  3. Cellular factors targeting APCs to modulate adaptive T cell immunity.

    PubMed

    Visperas, Anabelle; Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity.

  4. Structural insights into the evolution of the adaptive immune system.

    PubMed

    Deng, Lu; Luo, Ming; Velikovsky, Alejandro; Mariuzza, Roy A

    2013-01-01

    The adaptive immune system, which is based on highly diverse antigen receptors that are generated by somatic recombination, arose approximately 500 Mya at the dawn of vertebrate evolution. In jawed vertebrates, adaptive immunity is mediated by antibodies and T cell receptors (TCRs), which are composed of immunoglobulin (Ig) domains containing hypervariable loops that bind antigen. In striking contrast, the adaptive immune receptors of jawless vertebrates, termed variable lymphocyte receptors (VLRs), are constructed from leucine-rich repeat (LRR) modules. Structural studies of VLRs have shown that these LRR-based receptors bind antigens though their concave surface, in addition to a unique hypervariable loop in the C-terminal LRR capping module. These studies have revealed a remarkable example of convergent evolution in which jawless vertebrates adopted the LRR scaffold to recognize as broad a spectrum of antigens as the Ig-based antibodies and TCRs of jawed vertebrates, with altogether comparable affinity and specificity.

  5. Differential role of lipocalin-2 during immune-complex mediated acute and chronic inflammation

    PubMed Central

    Shashidharamurthy, Rangaiah; Machiah, Deepa; Aitken, Jesse D; Putty, Kalyani; Srinivasan, Gayathri; Chassaing, Benoit; Parkos, Charles A; Selvaraj, Periasamy; Vijay-Kumar, Matam

    2013-01-01

    Objectives Lipocalin-2 (Lcn2) is an innate immune protein expressed by a variety of cells and is highly upregulated during several pathological conditions including immune-complex (IC) mediated inflammatory/autoimmune disorders. However, the function of Lcn2 during IC-mediated inflammation is largely unknown. Therefore our objective was to investigate the role of Lcn2 in IC-mediated diseases. Methods The upregulation of Lcn2 was determined by ELISA in three different mouse models of IC-mediated autoimmune disease: systemic lupus erythematosus, collagen-induced arthritis and serum-induced arthritis. The in vivo role of Lcn2 during IC-mediated inflammation was investigated using Lcn2 knockout (Lcn2KO) mice and their wild type (WT) littermates. Results Lcn2 levels were significantly elevated in all the three autoimmune disease models. Further, in an acute skin inflammation model, Lcn2KO mice demonstrated a 50% reduction in inflammation with histopathological analysis revealing strikingly reduced immune cell infiltration compared to WT mice. Administration of recombinant Lcn2 to Lcn2KO mice restored inflammation to levels observed in WT mice. Neutralization of Lcn2 using a monoclonal antibody significantly reduced inflammation in WT mice. In contrast, Lcn2KO mice developed more severe serum-induced arthritis compared to WT mice. Histological analysis revealed extensive tissue and bone destruction with significantly reduced neutrophil infiltration but considerably more macrophage migration in Lcn2KO mice when compared to WT. Conclusion These results demonstrate that Lcn2 may regulate immune cell recruitment to the site of inflammation, a process essential for the controlled initiation, perpetuation and resolution of inflammatory processes. Thus, Lcn2 may present a promising target in the treatment of IC-mediated inflammatory/autoimmune diseases. PMID:23280250

  6. Human Adaptive Immunity Rescues an Inborn Error of Innate Immunity.

    PubMed

    Israel, Laura; Wang, Ying; Bulek, Katarzyna; Della Mina, Erika; Zhang, Zhao; Pedergnana, Vincent; Chrabieh, Maya; Lemmens, Nicole A; Sancho-Shimizu, Vanessa; Descatoire, Marc; Lasseau, Théo; Israelsson, Elisabeth; Lorenzo, Lazaro; Yun, Ling; Belkadi, Aziz; Moran, Andrew; Weisman, Leonard E; Vandenesch, François; Batteux, Frederic; Weller, Sandra; Levin, Michael; Herberg, Jethro; Abhyankar, Avinash; Prando, Carolina; Itan, Yuval; van Wamel, Willem J B; Picard, Capucine; Abel, Laurent; Chaussabel, Damien; Li, Xiaoxia; Beutler, Bruce; Arkwright, Peter D; Casanova, Jean-Laurent; Puel, Anne

    2017-02-23

    The molecular basis of the incomplete penetrance of monogenic disorders is unclear. We describe here eight related individuals with autosomal recessive TIRAP deficiency. Life-threatening staphylococcal disease occurred during childhood in the proband, but not in the other seven homozygotes. Responses to all Toll-like receptor 1/2 (TLR1/2), TLR2/6, and TLR4 agonists were impaired in the fibroblasts and leukocytes of all TIRAP-deficient individuals. However, the whole-blood response to the TLR2/6 agonist staphylococcal lipoteichoic acid (LTA) was abolished only in the index case individual, the only family member lacking LTA-specific antibodies (Abs). This defective response was reversed in the patient, but not in interleukin-1 receptor-associated kinase 4 (IRAK-4)-deficient individuals, by anti-LTA monoclonal antibody (mAb). Anti-LTA mAb also rescued the macrophage response in mice lacking TIRAP, but not TLR2 or MyD88. Thus, acquired anti-LTA Abs rescue TLR2-dependent immunity to staphylococcal LTA in individuals with inherited TIRAP deficiency, accounting for incomplete penetrance. Combined TIRAP and anti-LTA Ab deficiencies underlie staphylococcal disease in this patient.

  7. Quantifying Adaptive Evolution in the Drosophila Immune System

    PubMed Central

    Obbard, Darren J.; Welch, John J.; Kim, Kang-Wook; Jiggins, Francis M.

    2009-01-01

    It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host–parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host–parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution. PMID:19851448

  8. A Systems Model for Immune Cell Interactions Unravels the Mechanism of Inflammation in Human Skin

    PubMed Central

    Umezawa, Yoshinori; Kotov, Nikolay V.; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O.

    2010-01-01

    Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes. PMID:21152006

  9. Role of Adaptive Immunity in the Development and Progression of Heart Failure: New Evidence.

    PubMed

    Sánchez-Trujillo, Luis; Vázquez-Garza, Eduardo; Castillo, Elena C; García-Rivas, Gerardo; Torre-Amione, Guillermo

    2017-01-01

    Heart failure (HF) is considered the endpoint of a variety of cardiac diseases, which are the leading cause of death in adults and considered a growing pandemic worldwide. Independent of the initial form of cardiac injury, there is evidence linking the involvement of the immune system. In HF there is evidence of the participation of TH1, and TH17 cells, which account for sustained pathological chronic inflammation, cell migration, and the induction of specific pathological phenotypes of mononuclear cells. Of equal or even higher relevance are the B lymphocyte activation mechanisms that include production of pro-inflammatory cytokines, chemokines, and cardiac autoantibodies with or without activation of the complement proteins. Both of these unbalanced T- and B-cell pathways of the adaptive immune system are associated with cardiomyocyte death and tissue remodeling by fibrosis leading to a dysfunctional heart. At this time, therapy with neutralizing antibodies and the use of anti-cytokine immunomodulators to counteract the immune system effects have reached a plateau of mixed results in clinical trials. Nevertheless, recent evidence showed promising results in animal models that suggest that modulation of the adaptive immune system cells more than some of their effector molecules could have benefits in HF patients. This review summarizes the role of the adaptive immunity cells in HF, considering the sustained activation of adaptive immune system as a potential contributor to disease progression in humans and experimental models where its regulation provides a new therapeutic target. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  10. T cells and adaptive immunity to Mycobacterium tuberculosis in humans.

    PubMed

    Jasenosky, Luke D; Scriba, Thomas J; Hanekom, Willem A; Goldfeld, Anne E

    2015-03-01

    The adaptive immune response mediated by T cells is critical for control of Mycobacterium tuberculosis (M. tuberculosis) infection in humans. However, the M. tuberculosis antigens and host T-cell responses that are required for an effective adaptive immune response to M. tuberculosis infection are yet to be defined. Here, we review recent findings on CD4(+) and CD8(+) T-cell responses to M. tuberculosis infection and examine the roles of distinct M. tuberculosis-specific T-cell subsets in control of de novo and latent M. tuberculosis infection, and in the evolution of T-cell immunity to M. tuberculosis in response to tuberculosis treatment. In addition, we discuss recent studies that elucidate aspects of M. tuberculosis-specific adaptive immunity during human immunodeficiency virus co-infection and summarize recent findings from vaccine trials that provide insight into effective adaptive immune responses to M. tuberculosis infection. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    PubMed Central

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  12. Targeting Rho-GTPases in immune cell migration and inflammation.

    PubMed

    Biro, Maté; Munoz, Marcia A; Weninger, Wolfgang

    2014-12-01

    Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies. This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24. © 2014 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.

  13. The Influence of Innate and Adaptive Immune Responses on Atherosclerosis

    PubMed Central

    Witztum, Joseph L.; Lichtman, Andrew H.

    2014-01-01

    Both the chronic development of atherosclerotic lesions and the acute changes in lesion phenotype that lead to clinical cardiovascular events are significantly influenced by the innate and adaptive immune responses to lipoprotein deposition and oxidation in the arterial wall. The rapid pace of discovery of mechanisms of immunologic recognition, effector functions, and regulation has significantly influenced the study of atherosclerosis, and our new knowledge is beginning to affect how we treat this ubiquitous disease. In this review, we discuss recent advances in our understanding of how innate and adaptive immunity contribute to atherosclerosis, as well as therapeutic opportunities that arise from this knowledge. PMID:23937439

  14. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    PubMed Central

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted. PMID:28223985

  15. Interferon regulatory factor 3 in adaptive immune responses.

    PubMed

    Ysebrant de Lendonck, Laure; Martinet, Valerie; Goriely, Stanislas

    2014-10-01

    Interferon regulatory factor (IRF) 3 plays a key role in innate responses against viruses. Indeed, activation of this transcription factor triggers the expression of type I interferons and downstream interferon-stimulated genes in infected cells. Recent evidences indicate that this pathway also modulates adaptive immune responses. This review focuses on the different mechanisms that are implicated in this process. We discuss the role of IRF3 within antigen-presenting cells and T lymphocytes in the polarization of the cellular immune response and its implication in the pathogenesis of immune disorders.

  16. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  17. Mitochondria in the regulation of innate and adaptive immunity.

    PubMed

    Weinberg, Samuel E; Sena, Laura A; Chandel, Navdeep S

    2015-03-17

    Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.

  18. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology.

    PubMed

    Sansbury, Brian E; Spite, Matthew

    2016-06-24

    Acute inflammation is a host-protective response that is mounted in response to tissue injury and infection. Initiated and perpetuated by exogenous and endogenous mediators, acute inflammation must be resolved for tissue repair to proceed and for homeostasis to be restored. Resolution of inflammation is an actively regulated process governed by an array of mediators as diverse as those that initiate inflammation. Among these, resolvins have emerged as a genus of evolutionarily conserved proresolving mediators that act on specific cellular receptors to regulate leukocyte trafficking and blunt production of inflammatory mediators, while also promoting clearance of dead cells and tissue repair. Given that chronic unresolved inflammation is emerging as a central causative factor in the development of cardiovascular diseases, an understanding of the endogenous processes that govern normal resolution of acute inflammation is critical for determining why sterile maladaptive cardiovascular inflammation perpetuates. Here, we provide an overview of the process of resolution with a focus on the enzymatic biosynthesis and receptor-dependent actions of resolvins and related proresolving mediators in immunity, thrombosis, and vascular biology. We discuss how nutritional and current therapeutic approaches modulate resolution and propose that harnessing resolution concepts could potentially lead to the development of new approaches for treating chronic cardiovascular inflammation in a manner that is not host disruptive.

  19. Self-reported parenting style is associated with children's inflammation and immune activation.

    PubMed

    Byrne, Michelle L; Badcock, Paul B; Simmons, Julian G; Whittle, Sarah; Pettitt, Adam; Olsson, Craig A; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2017-04-01

    Family environments and parenting have been associated with inflammation and immune activation in children and adolescents; however, it remains unclear which specific aspects of parenting drive this association. In this study, we cross-sectionally examined the association between 5 discrete parenting styles and inflammation and immune activation in late childhood. Data were drawn from 102 families (55 with female children, mean age 9.50 years, SD = 0.34) participating in the Imaging Brain Development in the Childhood to Adolescence Transition Study. Children provided saliva samples from which inflammation (C-reactive protein) and immune competence/activation (secretory immunoglobulin A) were measured. Parents completed the Alabama Parenting Questionnaire, which measures 5 aspects of parenting style-positive parental involvement, positive disciplinary techniques, consistency in disciplinary techniques, corporal punishment, and monitoring and supervision. Results showed that higher scores on the poor parental monitoring scale were associated with higher levels of both inflammation and immune activation in children. This study highlights parental monitoring and supervision as a specific aspect of parenting behavior that may be important for children's physical and mental health. (PsycINFO Database Record

  20. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.

    PubMed

    Vida, Carmen; González, Eva M; De la Fuente, Mónica

    2014-01-01

    According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.

  1. Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis

    PubMed Central

    Yang, XueZhi; Chang, Yan; Wei, Wei

    2016-01-01

    Inflammation, as a feature of rheumatoid arthritis (RA), leads to the activation of endothelial cells (ECs). Activated ECs induce atherosclerosis through an increased expression of leukocyte adhesion molecules. Endothelial dysfunction (ED) is recognized as a failure of endothelial repair mechanisms. It is also an early preclinical marker of atherosclerosis and is commonly found in RA patients. RA is now established as an independent cardiovascular risk factor, while mechanistic determinants of ED in RA are still poorly understood. An expanding body of study has shown that EC at a site of RA is both active participant and regulator of inflammatory process. Over the last decade, a role for endothelial dysfunction in RA associated with cardiovascular disease (CVD) has been hypothesized. At the same time, several maintenance drugs targeting this phenomenon have been tested, which has promising results. Assessment of endothelial function may be a useful tool to identify and monitor RA patients. PMID:27122657

  2. From inflammation to sickness and depression: when the immune system subjugates the brain

    PubMed Central

    Dantzer, Robert; O’Connor, Jason C.; Freund, Gregory G.; Johnson, Rodney W.; Kelley, Keith W.

    2010-01-01

    In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour. When activation of the peripheral immune system continues unabated, such as during systemic infections, cancer or autoimmune diseases, the ensuing immune signalling to the brain can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals. These phenomena might account for the increased prevalence of clinical depression in physically ill people. Inflammation is therefore an important biological event that might increase the risk of major depressive episodes, much like the more traditional psychosocial factors. PMID:18073775

  3. Neuro-immune Interactions in Inflammation and Host Defense: Implications for Transplantation.

    PubMed

    Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M

    2017-09-23

    Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. CCN1: a novel inflammation-regulated biphasic immune cell migration modulator.

    PubMed

    Löbel, Madlen; Bauer, Sandra; Meisel, Christian; Eisenreich, Andreas; Kudernatsch, Robert; Tank, Juliane; Rauch, Ursula; Kühl, Uwe; Schultheiss, Heinz-Peter; Volk, Hans-Dieter; Poller, Wolfgang; Scheibenbogen, Carmen

    2012-09-01

    In this study, we performed a comprehensive analysis of the effect of CCN1 on the migration of human immune cells. The molecule CCN1, produced by fibroblasts and endothelial cells, is considered as an important matrix protein promoting tissue repair and immune cell adhesion by binding various integrins. We recently reported that CCN1 therapy is able to suppress acute inflammation in vivo. Here, we show that CCN1 binds to various immune cells including T cells, B cells, NK cells, and monocytes. The addition of CCN1 in vitro enhances both actin polymerization and transwell migration. Prolonged incubation with CCN1, however, results in the inhibition of migration of immune cells by a mechanism that involves downregulation of PI3Kγ, p38, and Akt activation. Furthermore, we observed that immune cells themselves produce constitutively CCN1 and secretion is induced by pro-inflammatory stimuli. In line with this finding, patients suffering from acute inflammation had enhanced serum levels of CCN1. These findings extend the classical concept of CCN1 as a locally produced cell matrix adhesion molecule and suggest that CCN1 plays an important role in regulating immune cell trafficking by attracting and locally immobilizing immune cells.

  5. IL-25 promotes Th2 immunity responses in airway inflammation of asthmatic mice via activation of dendritic cells.

    PubMed

    Hongjia, Li; Caiqing, Zhang; Degan, Lu; Fen, Liu; Chao, Wang; Jinxiang, Wu; Liang, Dong

    2014-08-01

    Allergic asthma occurs as a consequence of inappropriate immunologic inflammation to allergens and characterized by Th2 adaptive immune response. Recent studies indicated that interleukin (IL)-25, a member of the IL-17 cytokine family, had been implicated in inducing Th2 cell-dependent inflammation in airway epithelium and IL-25-deficient mice exhibit impaired Th2 immunity responses; however, how these cytokines influence innate immune responses remains poorly understood. In this study, we used ovalbumin (OVA) sensitization and challenge to induce the murine asthmatic model and confirmed by histological analysis of lung tissues and serum levels of total and OVA-specific immunoglobulin (Ig)-E. The expression of IL-25 was detected by quantitative real-time PCR and immunohistochemistry, respectively, and the dendritic cells (DCs) activation was detected by levels of CD80 and CD86 in bronchoalveolar lavage fluid (BALF) by flow cytometry. The mice sensitized and challenged with OVA showed high expression of IL-25 in both mRNA and protein levels in lungs. We detected the expression of CD80 and CD86 in BALF was also increased. A tight correlation between IL-25 mRNA and other Th2 cells producing cytokines such as IL-4, IL-5, and IL-13 in BALF was identified. Furthermore, when the asthmatic mice were treated with inhaled corticosteroids, the inflammatory cells infiltration and the inflammatory cytokines secretion were significantly decreased. In this study, we show that IL-25 promoted the accumulation of co-stimulatory molecules of CD80 and CD86 on DCs and then induced the differentiation of prime naive CD4(+) T cells to become proinflammatory Th2 cells and promoted Th2 cytokine responses in OVA-induced airway inflammation. The ability of IL-25 to promote the activation and differentiation of DCs population was identified as a link between the IL-17 cytokine family and the innate immune response and suggested a previously unrecognized innate immune pathway that promotes Th2

  6. Innate Lymphoid Cells: Balancing Immunity, Inflammation, and Tissue Repair in the Intestine

    PubMed Central

    Wojno, Elia D. Tait; Artis, David

    2012-01-01

    Innate lymphoid cells (ILCs) are a recently described group of innate immune cells that can regulate immunity, inflammation, and tissue repair in multiple anatomical compartments, particularly the barrier surfaces of the skin, airways, and intestine. Broad categories of ILCs have been defined based on transcription factor expression and the ability to produce distinct patterns of effector molecules. Recent studies have revealed that ILC populations can regulate commensal bacterial communities, contribute to resistance to helminth and bacterial pathogens, promote inflammation, and orchestrate tissue repair and wound healing. This review will examine the phenotype and function of murine and human ILCs and discuss the critical roles these innate immune cells play in health and disease. PMID:23084914

  7. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective

    PubMed Central

    Neumann, Silke; Shields, Nicholas J.; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N.

    2015-01-01

    Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells. PMID:26690125

  8. Inflammation and Immunity in Diseases of the Arterial Tree: Players and Layers

    PubMed Central

    Libby, Peter; Hansson, Göran K.

    2014-01-01

    The hypothesis that immunity and inflammation participate in the pathogenesis of vascular diseases has now gained widespread recognition and stimulated work around the globe. Broadening knowledge has extended the recognition of the role of immune and inflammatory mechanisms to all of the layers of the artery, to all levels of the arterial tree, and implicated virtually all arms, cellular “players,” and effector molecules and pathways involved in these crucial host defenses, that turn against us in disease. We provide here a guide to a compendium series of papers that aimed to look forward, and broaden the traditional focus of immunopathogenesis of arterial disease, with the goal of integrating the “players” and the “layers” involved. While the field has advanced remarkably, much remains to be done, and this commentary also aims to highlight some of the gaps that future research should strive to close regarding the participation of inflammation and immunity in arterial diseases. PMID:25593275

  9. Meeting the demand for innate and adaptive immunities during evolution.

    PubMed

    Du Pasquier, L

    2005-07-01

    An ideal immune system should provide each individual with rapid and efficient responses, a diverse repertoire of recognition and effector molecules and a certain flexibility to match the changing internal and external environment. It should be economic in cells and genes. Specific memory would be useful. It should not be autoreactive. These requirements, a mixture of innate and adaptive immunity features, are modulated in function of the dominant mode of selection for each species of metazoa during evolution (K or r). From sponges to man, a great diversity of receptors and effector mechanisms, some of them shared with plants, are articulated around conserved signalling cascades. Multiple attempts at combining innate and adaptive immunity somatic features can be observed as new somatic mechanisms provide individualized repertoires of receptors throughout metazoa, in agnathans, prochordates, echinoderms and mollusks. The adaptive immunity of vertebrates with lymphocytes and their specific receptors of the immunoglobulin superfamily, the major histocompatibility complex, developed from innate immunity evolutionary lines that can be traced back in earlier deuterostomes.

  10. A role of the adaptive immune system in glucose homeostasis

    PubMed Central

    Bronsart, Laura L; Contag, Christopher H

    2016-01-01

    Objective The immune system, including the adaptive immune response, has recently been recognized as having a significant role in diet-induced insulin resistance. In this study, we aimed to determine if the adaptive immune system also functions in maintaining physiological glucose homeostasis in the absence of diet-induced disease. Research design and methods SCID mice and immunocompetent control animals were phenotypically assessed for variations in metabolic parameters and cytokine profiles. Additionally, the glucose tolerance of SCID and immunocompetent control animals was assessed following introduction of a high-fat diet. Results SCID mice on a normal chow diet were significantly insulin resistant relative to control animals despite having less fat mass. This was associated with a significant increase in the innate immunity-stimulating cytokines granulocyte colony-stimulating factor, monocyte chemoattractant protein 1 (MCP1), and MCP3. Additionally, the SCID mouse phenotype was exacerbated in response to a high-fat diet as evidenced by the further significant progression of glucose intolerance. Conclusions These results support the notion that the adaptive immune system plays a fundamental biological role in glucose homeostasis, and that the absence of functional B and T cells results in disruption in the concentrations of various cytokines associated with macrophage proliferation and recruitment. Additionally, the absence of functional B and T cells is not protective against diet-induced pathology. PMID:27026807

  11. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    PubMed

    Cappelletti, Cristina; Galbardi, Barbara; Kapetis, Dimos; Vattemi, Gaetano; Guglielmi, Valeria; Tonin, Paola; Salerno, Franco; Morandi, Lucia; Tomelleri, Giuliano; Mantegazza, Renato; Bernasconi, Pia

    2014-01-01

    Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs). In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM), polymyositis (PM), dermatomyositis (DM) and juvenile dermatomyositis (JDM). We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1). These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  12. [Natural killer cells: adaptation and memory in innate immunity].

    PubMed

    Narni-Mancinelli, Emilie; Ugolini, Sophie; Vivier, Eric

    2013-04-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that can kill tumor and infected cells. NK cells also secrete cytokines that participate in the shaping of the adaptive immune response. During the past few years, several studies have shown that the threshold of NK cell responsiveness is more adaptable than originally thought. NK cell reactivity is tuned by the environment and depends on the time of exposure of NK cells to their microenvironment. The impact of the NK cell response on immunity also depends on the intensity and the nature of the tumor or infections assaults. We review here how the local context impacts on NK cell responsiveness and shapes the outcome of NK cell activation. © 2013 médecine/sciences – Inserm / SRMS.

  13. Innate or adaptive immunity? The example of natural killer cells.

    PubMed

    Vivier, Eric; Raulet, David H; Moretta, Alessandro; Caligiuri, Michael A; Zitvogel, Laurence; Lanier, Lewis L; Yokoyama, Wayne M; Ugolini, Sophie

    2011-01-07

    Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity endowed with constitutive cytolytic functions. More recently, a more nuanced view of NK cells has emerged. NK cells are now recognized to express a repertoire of activating and inhibitory receptors that is calibrated to ensure self-tolerance while allowing efficacy against assaults such as viral infection and tumor development. Moreover, NK cells do not react in an invariant manner but rather adapt to their environment. Finally, recent studies have unveiled that NK cells can also mount a form of antigen-specific immunologic memory. NK cells thus exert sophisticated biological functions that are attributes of both innate and adaptive immunity, blurring the functional borders between these two arms of the immune response.

  14. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  15. Negative regulatory responses to metabolically triggered inflammation impair renal epithelial immunity in diabetes mellitus.

    PubMed

    Chen, Nelson K F; Chong, Tsung Wen; Loh, Hwai-Liang; Lim, Kiat Hon; Gan, Valerie H L; Wang, Marian; Kon, Oi Lian

    2013-05-01

    Diabetes mellitus is characterized by chronic inflammation and increased risk of infections, particularly of tissues exposed to the external environment. However, the causal molecular mechanisms that affect immune cells and their functions in diabetes are unclear. Here we show, by transcript and protein analyses, signatures of glucose-induced tissue damage, chronic inflammation, oxidative stress, and dysregulated expression of multiple inflammation- and immunity-related molecules in diabetic kidneys compared with non-diabetic controls. Abnormal signaling involving cytokines, G-protein coupled receptors, protein kinase C isoforms, mitogen-activated protein kinases, nuclear factor-κB (NFκB), and Toll-like receptors (TLR) were evident. These were accompanied by overexpression of negative regulators of NFκB, TLR, and other proinflammatory pathways, e.g., A20, SOCS1, IRAK-M, IκBα, Triad3A, Tollip, SIGIRR, and ST2L. Anti-inflammatory and immunomodulatory molecules, e.g., IL-10, IL-4, and TSLP that favor TH2 responses were strongly induced. These molecular indicators of immune dysfunction led us to detect the cryptic presence of bacteria and human cytomegalovirus in more than one third of kidneys of diabetic subjects but none in non-diabetic kidneys. Similar signaling abnormalities could be induced in primary human renal tubular epithelial (but not mesangial) cell cultures exposed to high glucose, proinflammatory cytokines and methylglyoxal, and were reversed by combined pharmacological treatment with an antioxidant and a PKC inhibitor. Our results suggest that diabetes impairs epithelial immunity as a consequence of chronic and inappropriate activation of counter-regulatory immune responses, which are otherwise physiological protective mechanisms against inflammation. The immune abnormalities and cryptic renal infections described here may contribute to progression of diabetic nephropathy.

  16. Senescent Remodeling of the Innate and Adaptive Immune System in the Elderly Men with Prostate Cancer

    PubMed Central

    Taverna, Gianluigi; Seveso, Mauro; Giusti, Guido; Hurle, Rodolfo; Graziotti, Pierpaolo; Štifter, Sanja; Chiriva-Internati, Maurizio; Grizzi, Fabio

    2014-01-01

    Despite years of intensive investigation that has been made in understanding prostate cancer, it remains a major cause of death in men worldwide. Prostate cancer emerges from multiple alterations that induce changes in expression patterns of genes and proteins that function in networks controlling critical cellular events. Based on the exponential aging of the population and the increasing life expectancy in industrialized Western countries, prostate cancer in the elderly men is becoming a disease of increasing significance. Aging is a progressive degenerative process strictly integrated with inflammation. Several theories have been proposed that attempt to define the role of chronic inflammation in aging including redox stress, mitochondrial damage, immunosenescence, and epigenetic modifications. Here, we review the innate and adaptive immune systems and their senescent remodeling in elderly men with prostate cancer. PMID:24772169

  17. An evolutionary perspective on the systems of adaptive immunity.

    PubMed

    Müller, Viktor; de Boer, Rob J; Bonhoeffer, Sebastian; Szathmáry, Eörs

    2017-07-26

    We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to 'learn' by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system - the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the 'Big Bang' of

  18. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response.

    PubMed

    de Brito, Cyro Alves; Goldoni, Adriana Letícia; Sato, Maria Notomi

    2009-09-01

    The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.

  19. The Adaptive Immune System of Haloferax volcanii.

    PubMed

    Maier, Lisa-Katharina; Dyall-Smith, Mike; Marchfelder, Anita

    2015-02-16

    To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable-the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated). Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I-III) and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA) maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM) sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  20. Subverting the adaptive immune resistance mechanism to improve clinical responses to immune checkpoint blockade therapy

    PubMed Central

    Kim, Young J

    2015-01-01

    The correlation between tumor-infiltrating lymphocyte (TIL)-expression of programmed cell death ligand 1 (PD-L1) and clinical responsiveness to the PD-1 blocking antibody nivolumab implicates adaptive immune evasion mechanisms in cancer. We review our findings that tumor cell PD-L1 expression is induced by interferon γ (IFNγ) producing TILs. We provide a mechanistic rationale for combining IFNγ+ T helper type 1 (Th1)-inducing cancer vaccines with PD-1 immune checkpoint blockade. PMID:25964860

  1. Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation

    PubMed Central

    Šedý, John; Bekiaris, Vasileios; Ware, Carl F.

    2015-01-01

    The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor–ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes), lymphotoxin-β receptor (LT-βR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs. Lymphotoxin-expressing innate-acting B cells construct microenvironments in lymphoid organs that restrict pathogen spread and initiate interferon defenses. Recent results illustrate how the communication networks formed among these cytokines and the coreceptors B and T lymphocyte attenuator (BTLA) and CD160 both inhibit and activate innate lymphoid cells (ILCs), innate γδ T cells, and natural killer (NK) cells. Understanding the role of TNFSF/TNFRSF and interacting proteins in innate cells will likely reveal avenues for future therapeutics for human disease. PMID:25524549

  2. Multiple sclerosis and fatigue: A review on the contribution of inflammation and immune-mediated neurodegeneration.

    PubMed

    Patejdl, Robert; Penner, Iris K; Noack, Thomas K; Zettl, Uwe K

    2016-03-01

    Multiple sclerosis (MS) is an immune mediated disease of the central nervous system (CNS) and the leading cause of non-traumatic disability among young and middle-aged adults in the western world. One of its most prevalent and debilitating symptoms is fatigue. Despite the general acceptance of the idea of an immune pathogenesis of MS itself, the role of autoimmunity in the course of MS-fatigue is a matter of debate. Both immune-related processes (acute inflammation, chronic inflammation, immune-mediated neurodegeneration, immune-mediated alterations of endocrine functions related to fatigue) and presumably non-immune-mediated disturbances and factors (sleep disturbances, depression, cognitive alterations, chronic infections, adverse effects of medications) contribute to the clinical picture. Data from in vitro and animal experiments has provided evidence for a role of cytokines as IL-1 and TNF-alpha. This association could not be verified directly in blood samples from humans whereas whole blood stimulation protocols gave some indirect evidence for a role of cytokines in MS-fatigue. MRI being able to detect acute and chronic immune mediated damage to the CNS could depict that global atrophy of gray or white matter does not correlate with fatigue. Rather, distinctive clusters of lesions and atrophy at different locations, mostly bifrontal or in subcortical structures, correlate specifically with fatigue. Regardless of the difficulties in pinpointing the immunogenesis of MS-fatigue, an important role of autoimmunity is strongly supported by an indirect route: A growing amount of data shows that the highly effective immunotherapeutics which have been introduced to MS-treatment over the last years effectively and sustainably stabilize and ameliorate fatigue in parallel to their dampening effects on the neuroinflammatory process. This review summarizes the existing data on the relation between inflammation, patterns of CNS-lesions and the effects of immunotherapeutics

  3. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease.

    PubMed

    Allen Reish, Heather E; Standaert, David G

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses.

  4. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease

    PubMed Central

    Allen Reish, Heather E.; Standaert, David G.

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses. PMID:25588354

  5. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications.

    PubMed

    Ish-Shalom, Eliran; Meirow, Yaron; Sade-Feldman, Moshe; Kanterman, Julia; Wang, Lynn; Mizrahi, Olga; Klieger, Yair; Baniyash, Michal

    2016-01-01

    Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.

  6. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation?

    PubMed Central

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of “proinflammatory” cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine “inflammation”? In this review, we discuss the functions of “inflammatory” mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury. PMID:27597803

  7. Innate and Adaptive Immunity in Calcific Aortic Valve Disease

    PubMed Central

    Mathieu, Patrick; Bouchareb, Rihab

    2015-01-01

    Calcific aortic valve disease (CAVD) is the most common heart valve disorder. CAVD is a chronic process characterized by a pathologic mineralization of valve leaflets. Ectopic mineralization of the aortic valve involves complex relationships with immunity. Studies have highlighted that both innate and adaptive immunity play a role in the development of CAVD. In this regard, accumulating evidence indicates that fibrocalcific remodelling of the aortic valve is associated with activation of the NF-κB pathway. The expression of TNF-α and IL-6 is increased in human mineralized aortic valves and promotes an osteogenic program as well as the mineralization of valve interstitial cells (VICs), the main cellular component of the aortic valve. Different factors, including oxidized lipid species, activate the innate immune response through the Toll-like receptors. Moreover, VICs express 5-lipoxygenase and therefore produce leukotrienes, which may amplify the inflammatory response in the aortic valve. More recently, studies have emphasized that an adaptive immune response is triggered during CAVD. Herein, we are reviewing the link between the immune response and the development of CAVD and we have tried, whenever possible, to keep a translational approach. PMID:26065007

  8. Innate and Adaptive Immunity in Calcific Aortic Valve Disease.

    PubMed

    Mathieu, Patrick; Bouchareb, Rihab; Boulanger, Marie-Chloé

    2015-01-01

    Calcific aortic valve disease (CAVD) is the most common heart valve disorder. CAVD is a chronic process characterized by a pathologic mineralization of valve leaflets. Ectopic mineralization of the aortic valve involves complex relationships with immunity. Studies have highlighted that both innate and adaptive immunity play a role in the development of CAVD. In this regard, accumulating evidence indicates that fibrocalcific remodelling of the aortic valve is associated with activation of the NF-κB pathway. The expression of TNF-α and IL-6 is increased in human mineralized aortic valves and promotes an osteogenic program as well as the mineralization of valve interstitial cells (VICs), the main cellular component of the aortic valve. Different factors, including oxidized lipid species, activate the innate immune response through the Toll-like receptors. Moreover, VICs express 5-lipoxygenase and therefore produce leukotrienes, which may amplify the inflammatory response in the aortic valve. More recently, studies have emphasized that an adaptive immune response is triggered during CAVD. Herein, we are reviewing the link between the immune response and the development of CAVD and we have tried, whenever possible, to keep a translational approach.

  9. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  10. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses

    PubMed Central

    Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  11. Host adaptive immunity deficiency in severe pandemic influenza

    PubMed Central

    2010-01-01

    Introduction Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. Methods We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analysis 8.5 (IPA) (Ingenuity Systems, Redwood City, CA) was used to select, annotate and visualize genes by function and pathway (gene ontology). IPA analysis identified those canonical pathways differentially expressed (P < 0.05) between comparison groups. Hierarchical clustering of those genes differentially expressed between groups by IPA analysis was performed using BRB-Array Tools v.3.8.1. Results The majority of patients were characterized by the presence of comorbidities and the absence of immunosuppressive conditions. pH1N1 specific antibody production was observed around day 9 from disease onset and defined an early period of innate immune response and a late period of adaptive immune response to the virus. The most severe patients (n = 12) showed persistence of viral secretion. Seven of the most severe patients died. During the late phase, the most severe patient group had impaired expression of a number of genes participating in adaptive immune responses when compared to less severe patients. These genes were involved in antigen presentation, B-cell development, T-helper cell differentiation, CD28, granzyme B signaling, apoptosis and protein ubiquitination. Patients with the poorest outcomes were characterized by proinflammatory hypercytokinemia, along with elevated levels of immunosuppressory cytokines (interleukin (IL)-10 and IL-1ra) in serum. Conclusions Our findings suggest an impaired development of adaptive immunity in the most severe cases of pandemic influenza

  12. Modeling the Dichotomy of the Immune Response to Cancer: Cytotoxic Effects and Tumor-Promoting Inflammation.

    PubMed

    Wilkie, Kathleen P; Hahnfeldt, Philip

    2017-06-01

    Although the immune response is often regarded as acting to suppress tumor growth, it is now clear that it can be both stimulatory and inhibitory. The interplay between these competing influences has complex implications for tumor development, cancer dormancy, and immunotherapies. In fact, early immunotherapy failures were partly due to a lack in understanding of the nonlinear growth dynamics these competing immune actions may cause. To study this biological phenomenon theoretically, we construct a minimally parameterized framework that incorporates all aspects of the immune response. We combine the effects of all immune cell types, general principles of self-limited logistic growth, and the physical process of inflammation into one quantitative setting. Simulations suggest that while there are pro-tumor or antitumor immunogenic responses characterized by larger or smaller final tumor volumes, respectively, each response involves an initial period where tumor growth is stimulated beyond that of growth without an immune response. The mathematical description is non-identifiable which allows an ensemble of parameter sets to capture inherent biological variability in tumor growth that can significantly alter tumor-immune dynamics and thus treatment success rates. The ability of this model to predict non-intuitive yet clinically observed patterns of immunomodulated tumor growth suggests that it may provide a means to help classify patient response dynamics to aid identification of appropriate treatments exploiting immune response to improve tumor suppression, including the potential attainment of an immune-induced dormant state.

  13. Insights on adaptive and innate immunity in canine leishmaniosis.

    PubMed

    Hosein, Shazia; Blake, Damer P; Solano-Gallego, Laia

    2017-01-01

    Canine leishmaniosis (CanL) is caused by the parasite Leishmania infantum and is a systemic disease, which can present with variable clinical signs, and clinicopathological abnormalities. Clinical manifestations can range from subclinical infection to very severe systemic disease. Leishmaniosis is categorized as a neglected tropical disease and the complex immune responses associated with Leishmania species makes therapeutic treatments and vaccine development challenging for both dogs and humans. In this review, we summarize innate and adaptive immune responses associated with L. infantum infection in dogs, and we discuss the problems associated with the disease as well as potential solutions and the future direction of required research to help control the parasite.

  14. Innate immunity and inflammation in ageing: a key for understanding age-related diseases

    PubMed Central

    Licastro, Federico; Candore, Giuseppina; Lio, Domenico; Porcellini, Elisa; Colonna-Romano, Giuseppina; Franceschi, Claudio; Caruso, Calogero

    2005-01-01

    The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few – have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased chance of long life survival

  15. Bile acids in regulation of inflammation and immunity: friend or foe?

    PubMed

    Zhu, Ci; Fuchs, Claudia D; Halilbasic, Emina; Trauner, Michael

    2016-01-01

    Apart from their pivotal role in dietary lipid absorption and cholesterol homeostasis, bile acids (BAs) are increasingly recognised as important signalling molecules in the regulation of systemic endocrine functions. As such BAs are natural ligands for several nuclear hormone receptors and G-protein-coupled receptors. Through activating various signalling pathways, BAs not only regulate their own synthesis, enterohepatic recirculation and metabolism, but also immune homeostasis. This makes BAs attractive therapeutic agents for managing metabolic and inflammatory liver disorders. Recent experimental and clinical evidence indicates that BAs exert beneficial effects in cholestatic and metabolically driven inflammatory diseases. This review elucidates how different BAs function as pathogenetic factors and potential therapeutic agents for inflammation-driven liver diseases, focusing on their role in regulation of inflammation and immunity.

  16. Targeting MALT1 Proteolytic Activity in Immunity, Inflammation and Disease: Good or Bad?

    PubMed

    Demeyer, Annelies; Staal, Jens; Beyaert, Rudi

    2016-02-01

    MALT1 is a signaling protein that plays a key role in immunity, inflammation, and lymphoid malignancies. For a long time MALT1 was believed to function as a scaffold protein, providing an assembly platform for other signaling proteins. This view changed dramatically when MALT1 was also found to have proteolytic activity and a capacity to fine-tune immune responses. Preclinical studies have fostered the belief that MALT1 is a promising therapeutic target in autoimmunity and B cell lymphomas. However, recent studies have shown that mice expressing catalytically-inactive MALT1 develop multi-organ inflammation and autoimmunity, and thus have tempered this initial enthusiasm. We discuss recent findings, highlighting the urgent need for a better mechanistic and functional understanding of MALT1 in host defense and disease.

  17. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration

    PubMed Central

    Selders, Gretchen S.; Fetz, Allison E.; Radic, Marko Z.; Bowlin, Gary L.

    2017-01-01

    Despite considerable recent progress in defining neutrophil functions and behaviors in tissue repair, much remains to be determined with regards to its overall role in the tissue integration of biomaterials. This article provides an overview of the neutrophil’s numerous, important roles in both inflammation and resolution, and subsequently, their role in biomaterial integration. Neutrophils function in three primary capacities: generation of oxidative bursts, release of granules and formation of neutrophil extracellular traps (NETs); these combined functions enable neutrophil involvement in inflammation, macrophage recruitment, M2 macrophage differentiation, resolution of inflammation, angiogenesis, tumor formation and immune system activation. Neutrophils exhibit great flexibility to adjust to the prevalent microenvironmental conditions in the tissue; thus, the biomaterial composition and fabrication will potentially influence neutrophil behavior following confrontation. This review serves to highlight the neutrophil’s plasticity, reiterating that neutrophils are not just simple suicidal killers, but the true maestros of resolution and regeneration. PMID:28149530

  18. Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis.

    PubMed

    Gibson, Frank C; Ukai, Takashi; Genco, Caroline A

    2008-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. The expression of TLRs are markedly augmented in human atherosclerotic lesions and this occurs preferentially by endothelial cells and macrophages in areas infiltrated with inflammatory cells. Furthermore polymorphisms in the human gene encoding one TLR receptor (TLR4) which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with low levels of certain circulating mediators of inflammation and a decreased risk for atherosclerosis in humans. Recent advances have established a fundamental role for inflammation in mediating all stages of atherosclerosis. However, the triggers that initiate and sustain the inflammatory process have not been definitively identified. Although definitive proof of a role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen Porphyromonas gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. We have also established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate

  19. Two forms of adaptive immunity in vertebrates: similarities and differences.

    PubMed

    Kasahara, Masanori; Sutoh, Yoichi

    2014-01-01

    Unlike jawed vertebrates that use T-cell and B-cell receptors for antigen recognition, jawless vertebrates represented by lampreys and hagfish use variable lymphocyte receptors (VLRs) as antigen receptors. VLRs generate diversity comparable to that of gnathostome antigen receptors by assembling variable leucine-rich repeat modules. The discovery of VLR has revolutionized our understanding of how adaptive immunity emerged and highlighted the differences between the adaptive immune systems (AISs) of jawed and jawless vertebrates. However, emerging evidence also indicates that their AISs have much in common. Particularly striking is the conservation of lymphocyte lineages. The basic architecture of the AIS including the dichotomy of lymphocytes appears to have been established in a common ancestor of jawed and jawless vertebrates. We review here the current knowledge on the AIS of jawless vertebrates, emphasizing both the similarities to and differences from the AIS of jawed vertebrates. © 2014 Elsevier Inc. All rights reserved.

  20. Suppression of Innate Inflammation and Immunity by Interleukin Family Member Interleukin-37

    PubMed Central

    Dinarello, Charles A.; Nold-Petry, Claudia; Nold, Marcel; Fujita, Mayumi; Li, Suzhao; Kim, Soohyun; Bufler, Philip

    2016-01-01

    IL-37 is unique in the IL-1 family in that unlike other members of the family, IL-37 broadly suppresses innate immunity. IL-37 can be elevated in humans with inflammatory and autoimmune diseases where it likely functions to limit inflammation. Transgenic mice expressing human IL-37 (IL37-tg) exhibit less severe inflammation in models of endotoxin shock, colitis, myocardial infarction, lung and spinal cord injury. IL37-tg mice have reduced antigen-specific responses and dendritic cells (DCs) from these mice exhibit characteristics of tolerogenic DCs. Compared to aging wild-type (WT) mice, aging IL37-tg mice are protected against B-cell leukemogenesis and heart failure. Treatment of WT mice with recombinant human IL-37 has been shown to be protective in several models of inflammation and injury. IL-37 binds to the IL-18 receptor but then recruits the orphan IL-1R8 (formerly TIR8 or Sin order function as an inhibitor. Here we review the discovery of IL-37, its production, release and mechanisms by which IL-37 reduces inflammation and suppresses immune responses. The data reviewed here suggest a therapeutic potential for IL-37. PMID:27060871

  1. Influence of Asian Dust Particles on Immune Adjuvant Effects and Airway Inflammation in Asthma Model Mice

    PubMed Central

    Kurai, Jun; Watanabe, Masanari; Tomita, Katsuyuki; Yamasaki, Hiroyuki Sano Akira; Shimizu, Eiji

    2014-01-01

    Objective An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice. Methods Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically. Results Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles. Conclusion These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation. PMID:25386753

  2. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    PubMed Central

    Pashov, Anastas; Monzavi-Karbassi, Bejatolah; Raghava, Gajendra P. S.; Kieber-Emmons, Thomas

    2010-01-01

    Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC) in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies. PMID:20617150

  3. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk.

    PubMed

    Kazma, Rémi; Mefford, Joel A; Cheng, Iona; Plummer, Sarah J; Levin, Albert M; Rybicki, Benjamin A; Casey, Graham; Witte, John S

    2012-01-01

    Prostate cancer is the most frequent and second most lethal cancer in men in the United States. Innate immunity and inflammation may increase the risk of prostate cancer. To determine the role of innate immunity and inflammation in advanced prostate cancer, we investigated the association of 320 single nucleotide polymorphisms, located in 46 genes involved in this pathway, with disease risk using 494 cases with advanced disease and 536 controls from Cleveland, Ohio. Taken together, the whole pathway was associated with advanced prostate cancer risk (P = 0.02). Two sub-pathways (intracellular antiviral molecules and extracellular pattern recognition) and four genes in these sub-pathways (TLR1, TLR6, OAS1, and OAS2) were nominally associated with advanced prostate cancer risk and harbor several SNPs nominally associated with advanced prostate cancer risk. Our results suggest that the innate immunity and inflammation pathway may play a modest role in the etiology of advanced prostate cancer through multiple small effects.

  4. miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics

    PubMed Central

    Duroux-Richard, Isabelle; Roubert, Christine; Ammari, Meryem; Présumey, Jessy; Grün, Joachim R.; Häupl, Thomas; Grützkau, Andreas; Lecellier, Charles-Henri; Boitez, Valérie; Codogno, Patrice; Escoubet, Johanna; Pers, Yves-Marie; Jorgensen, Christian

    2016-01-01

    Metabolic changes drive monocyte differentiation and fate. Although abnormal mitochondria metabolism and innate immune responses participate in the pathogenesis of many inflammatory disorders, molecular events regulating mitochondrial activity to control life and death in monocytes remain poorly understood. We show here that, in human monocytes, microRNA-125b (miR-125b) attenuates the mitochondrial respiration through the silencing of the BH3-only proapoptotic protein BIK and promotes the elongation of the mitochondrial network through the targeting of the mitochondrial fission process 1 protein MTP18, leading to apoptosis. Proinflammatory activation of monocyte-derived macrophages is associated with a concomitant increase in miR-125b expression and decrease in BIK and MTP18 expression, which lead to reduced oxidative phosphorylation and enhanced mitochondrial fusion. In a chronic inflammatory systemic disorder, CD14+ blood monocytes display reduced miR-125b expression as compared with healthy controls, inversely correlated with BIK and MTP18 messenger RNA expression. Our findings not only identify BIK and MTP18 as novel targets for miR-125b that control mitochondrial metabolism and dynamics, respectively, but also reveal a novel function for miR-125b in regulating metabolic adaptation of monocytes to inflammation. Together, these data unravel new molecular mechanisms for a proapoptotic role of miR-125b in monocytes and identify potential targets for interfering with excessive inflammatory activation of monocytes in inflammatory disorders. PMID:27702798

  5. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    PubMed Central

    Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological

  6. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity.

    PubMed

    Deaglio, Silvia; Robson, Simon C

    2011-01-01

    Evolving studies in models of transplant rejection, inflammatory bowel disease, and cancer, among others, have implicated purinergic signaling in clinical manifestations of vascular injury and thrombophilia, inflammation, and immune disturbance. Within the vasculature, spatial and temporal expression of CD39 nucleoside triphosphate diphosphohydrolase (NTPDase) family members together with CD73 ecto-5'-nucleotidase control platelet activation, thrombus size, and stability. This is achieved by closely regulated phosphohydrolytic activities to scavenge extracellular nucleotides, maintain P2-receptor integrity, and coordinate adenosinergic signaling responses. The CD38/CD157 family of extracellular NADases degrades NAD(+) and generates Ca(2+)-active metabolites, including cyclic ADP ribose and ADP ribose. These mediators regulate leukocyte adhesion and chemotaxis. These mechanisms are crucial in vascular homeostasis, hemostasis, thrombogenesis, and during inflammation. There has been recent interest in ectonucleotidase expression by immune cells. CD39 expression identifies Langerhans-type dendritic cells and efficiently distinguishes T regulatory cells from other resting or activated T cells. CD39, together with CD73 in mice, serves as an integral component of the suppressive machinery of T cells. Purinergic responses also impact generation of T helper-type 17 cells. Further, CD38 and changes in NAD(+) availability modulate ADP ribosylation of the cytolytic P2X7 receptor that deletes T regulatory cells. Expression of CD39, CD73, and CD38 ectonucleotidases on either endothelial or immune cells allows for homeostatic integration and control of vascular inflammatory and immune cell reactions at sites of injury. Ongoing development of therapeutic strategies targeting these and other ectonucleotidases offers promise for the management of vascular thrombosis, disordered inflammation, and aberrant immune reactivity.

  7. TIR8/SIGIRR is an Interleukin-1 Receptor/Toll Like Receptor Family Member with Regulatory Functions in Inflammation and Immunity

    PubMed Central

    Riva, Federica; Bonavita, Eduardo; Barbati, Elisa; Muzio, Marta; Mantovani, Alberto; Garlanda, Cecilia

    2012-01-01

    Interleukin-1R like receptors (ILRs) and Toll Like Receptors (TLRs) are key receptors of innate immunity, inflammation, and orientation of the adaptive response. They belong to a superfamily characterized by the presence of a conserved intracellular domain, the Toll/IL-1R (TIR) domain, which is involved in the activation of a signaling cascade leading to activation of transcription factors associated to inflammation. The activation of inflammatory responses and immunity by ILRs or TLRs signaling is potentially detrimental for the host in acute and chronic conditions and is tightly regulated at different levels by receptor antagonists, decoy receptors or signaling molecules, and miRNAs. Recent evidence suggests that the ILRs family member TIR8 (also known as SIGIRR) is a regulatory protein acting intracellularly to inhibit ILRs and TLRs signaling. In particular, current evidence suggests that TIR8/SIGIRR dampens TLRs-mediated activation and inhibits signaling receptor complexes of IL-1 family members associated with Th1 (IL-18), Th2 (IL-33), and Th17 (IL-1) differentiation. Studies with Tir8/Sigirr-deficient mice showed that the ability to dampen signaling from ILRs and TLRs family members makes TIR8/SIGIRR a key regulator of inflammation. Here, we summarize our current understanding of the structure and function of TIR8/SIGIRR, focusing on its role in different pathological conditions, ranging from infectious and sterile inflammation, to autoimmunity and cancer-related inflammation. PMID:23112799

  8. TIR8/SIGIRR is an Interleukin-1 Receptor/Toll Like Receptor Family Member with Regulatory Functions in Inflammation and Immunity.

    PubMed

    Riva, Federica; Bonavita, Eduardo; Barbati, Elisa; Muzio, Marta; Mantovani, Alberto; Garlanda, Cecilia

    2012-01-01

    Interleukin-1R like receptors (ILRs) and Toll Like Receptors (TLRs) are key receptors of innate immunity, inflammation, and orientation of the adaptive response. They belong to a superfamily characterized by the presence of a conserved intracellular domain, the Toll/IL-1R (TIR) domain, which is involved in the activation of a signaling cascade leading to activation of transcription factors associated to inflammation. The activation of inflammatory responses and immunity by ILRs or TLRs signaling is potentially detrimental for the host in acute and chronic conditions and is tightly regulated at different levels by receptor antagonists, decoy receptors or signaling molecules, and miRNAs. Recent evidence suggests that the ILRs family member TIR8 (also known as SIGIRR) is a regulatory protein acting intracellularly to inhibit ILRs and TLRs signaling. In particular, current evidence suggests that TIR8/SIGIRR dampens TLRs-mediated activation and inhibits signaling receptor complexes of IL-1 family members associated with Th1 (IL-18), Th2 (IL-33), and Th17 (IL-1) differentiation. Studies with Tir8/Sigirr-deficient mice showed that the ability to dampen signaling from ILRs and TLRs family members makes TIR8/SIGIRR a key regulator of inflammation. Here, we summarize our current understanding of the structure and function of TIR8/SIGIRR, focusing on its role in different pathological conditions, ranging from infectious and sterile inflammation, to autoimmunity and cancer-related inflammation.

  9. Modulation of dendritic cell innate and adaptive immune functions by oral and sublingual immunotherapy.

    PubMed

    Frischmeyer-Guerrerio, Pamela A; Keet, Corinne A; Guerrerio, Anthony L; Chichester, Kristin L; Bieneman, Anja P; Hamilton, Robert G; Wood, Robert A; Schroeder, John T

    2014-11-01

    Sublingual (SLIT) and oral immunotherapy (OIT) are promising treatments for food allergy, but underlying mechanisms are poorly understood. Dendritic cells (DCs) induce and maintain Th2-type allergen-specific T cells, and also regulate innate immunity through their expression of Toll-like receptors (TLRs). We examined how SLIT and OIT influenced DC innate and adaptive immune responses in children with IgE-mediated cow's milk (CM) allergy. SLIT, but not OIT, decreased TLR-induced IL-6 secretion by myeloid DCs (mDCs). SLIT and OIT altered mDC IL-10 secretion, a potent inhibitor of FcεRI-dependent pro-inflammatory responses. OIT uniquely augmented IFN-α and decreased IL-6 secretion by plasmacytoid DCs (pDCs), which was associated with reduced TLR-induced IL-13 release in pDC-T cell co-cultures. Both SLIT and OIT decreased Th2 cytokine secretion to CM in pDC-T, but not mDC-T, co-cultures. Therefore, SLIT and OIT exert unique effects on DC-driven innate and adaptive immune responses, which may inhibit allergic inflammation and promote tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Modulation of Dendritic Cell Innate and Adaptive Immune Functions by Oral and Sublingual Immunotherapy

    PubMed Central

    Frischmeyer-Guerrerio, Pamela A.; Keet, Corinne A.; Guerrerio, Anthony L.; Chichester, Kristin L.; Bieneman, Anja P.; Hamilton, Robert G.; Wood, Robert A.; Schroeder, John T.

    2014-01-01

    Sublingual (SLIT) and oral immunotherapy (OIT) are promising treatments for food allergy, but underlying mechanisms are poorly understood. Dendritic cells (DC) induce and maintain Th2-type allergen-specific T cells, and also regulate innate immunity through their expression of Toll-like receptors (TLRs). We examined how SLIT and OIT influenced DC innate and adaptive immune responses in children with IgE-mediated cow's milk (CM) allergy. SLIT, but not OIT, decreased TLR-induced IL-6 secretion by myeloid DCs (mDCs). SLIT and OIT altered mDC IL-10 secretion, a potent inhibitor of FcεRI-dependent pro-inflammatory responses. OIT uniquely augmented IFN-α and decreased IL-6 secretion by plasmacytoid DCs (pDCs), which was associated with reduced TLR-induced IL-13 release in pDC-T cell co-cultures. Both SLIT and OIT decreased Th2 cytokine secretion to CM in pDC-T, but not mDC-T, co-cultures. Therefore, SLIT and OIT exert unique effects on DC-driven innate and adaptive immune responses, which may inhibit allergic inflammation and promote tolerance. PMID:25173802

  11. MiRNA in innate immune responses: novel players in wound inflammation.

    PubMed

    Roy, Sashwati; Sen, Chandan K

    2011-05-01

    Chronic wounds represent a major and rising socioeconomic threat affecting over 6.5 million people in the United States costing in excess of US $25 billion annually. Wound healing is a physiological response to injury that is conserved across tissue systems. In humans, wounding is followed by instant response aimed at hemostasis, which in turn provides the foundation for inflammatory processes that closely follow. Inflammation is helpful and a prerequisite for healing as long as it is mounted and resolved in a timely manner. Chronic inflammation derails the healing cascade resulting in impaired wound closure. Disruption of Dicer, the RNase III enzyme that generates functional miRNAs, has a major impact on the overall immune system. Emerging studies indicate that miRNAs, especially miR-21, miR-146a/b, and miR-155, play a key role in regulating several hubs that orchestrate the inflammatory process. Direct evidence from studies addressing wound inflammation being limited, the current work represents a digest of the relevant literature that is aimed at unveiling the potential significance of miRNAs in the regulation of wound inflammation. Such treatment would help establish new paradigms highlighting a central role of miRs in the understanding and management of dysregulated inflammation as noted in conjunction with chronic wounds.

  12. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  13. Boosting Adaptive Immunity: A New Role for PAFR Antagonists

    PubMed Central

    Koga, Marianna M.; Bizzarro, Bruna; Sá-Nunes, Anderson; Rios, Francisco J.; Jancar, Sonia

    2016-01-01

    We have previously shown that the Platelet-Activating Factor Receptor (PAFR) engagement in murine macrophages and dendritic cells (DCs) promotes a tolerogenic phenotype reversed by PAFR-antagonists treatment in vitro. Here, we investigated whether a PAFR antagonist would modulate the immune response in vivo. Mice were subcutaneously injected with OVA or OVA with PAFR-antagonist WEB2170 on days 0 and 7. On day 14, OVA–specific IgG2a and IgG1 were measured in the serum. The presence of WEB2170 during immunization significantly increased IgG2a without affecting IgG1 levels. When WEB2170 was added to OVA in complete Freund’s adjuvant, enhanced IgG2a but not IgG1 production was also observed, and CD4+ FoxP3+ T cell frequency in the spleen was reduced compared to mice immunized without the antagonist. Similar results were observed in PAFR-deficient mice, along with increased Tbet mRNA expression in the spleen. Additionally, bone marrow-derived DCs loaded with OVA were transferred into naïve mice and their splenocytes were co-cultured with fresh OVA-loaded DCs. CD4+ T cell proliferation was higher in the group transferred with DCs treated with the PAFR-antagonist. We propose that the activation of PAFR by ligands present in the site of immunization is able to fine-tune the adaptive immune response. PMID:27966635

  14. Evasion of Innate and Adaptive Immunity by Mycobacterium tuberculosis.

    PubMed

    Goldberg, Michael F; Saini, Neeraj K; Porcelli, Steven A

    2014-10-01

    Through thousands of years of reciprocal coevolution, Mycobacterium tuberculosis has become one of humanity's most successful pathogens, acquiring the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies that interfere with both innate and adaptive immunity. These include the manipulation of their phagosomal environment within host macrophages, the selective avoidance or engagement of pattern recognition receptors, modulation of host cytokine production, and the manipulation of antigen presentation to prevent or alter the quality of T-cell responses. In this article we review an extensive array of published studies that have begun to unravel the sophisticated program of specific mechanisms that enable M. tuberculosis and other pathogenic mycobacteria to persist and replicate in the face of considerable immunological pressure from their hosts. Unraveling the mechanisms by which M. tuberculosis evades or modulates host immune function is likely to be of major importance for the development of more effective new vaccines and targeted immunotherapy against tuberculosis.

  15. Activated immune system and inflammation in healthy ageing: relevance for tryptophan and neopterin metabolism.

    PubMed

    Capuron, Lucile; Geisler, Simon; Kurz, Katharina; Leblhuber, Friedrich; Sperner-Unterweger, Barbara; Fuchs, Dietmar

    2014-01-01

    Immune activation not only accompanies inflammation in various disorders including infections, autoimmune syndromes and cancer, but it also represents a characteristic feature of ageing. Immune deviations which are most widely expressed in the elderly include increased neopterin production and tryptophan breakdown. These biochemical events result from the activation of the immune system and are preferentially triggered by pro-inflammatory stimuli, such as the Th1-type cytokine interferon-γ. They seem to play a role in the development of several age-related disorders and might be involved in the pathogenesis of common symptoms, including neurobehavioral disorders (e.g., cognitive and mood disturbances), anemia, cachexia, weight-loss but also immunodeficiency. Concentrations of the biomarkers neopterin and Kyn/Trp were found to be predictive of overall disease specific mortality in coronary artery disease, infections and various types of cancer. Immune activation and inflammation are also accompanied by high output of reactive oxygen species and thereby may lead to the development of oxidative stress and contribute to the vitamin deficiency which is often observed in the elderly. Accordingly, increases in neopterin were found to correlate with a substantial decline in key vitamins, including folate and vitamin-B6, - B12, -C, -D and -E.

  16. Live-Attenuated Lentivirus Immunization Modulates Innate Immunity and Inflammation while Protecting Rhesus Macaques from Vaginal Simian Immunodeficiency Virus Challenge

    PubMed Central

    Genescà, Meritxell; Ma, Zhong-Min; Wang, Yichuan; Assaf, Basel; Qureshi, Huma; Fritts, Linda; Huang, Ying; McChesney, Michael B.

    2012-01-01

    Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8+ lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8+ T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8+ T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8+ T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8+ T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8+ T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission. PMID:22696662

  17. Live-attenuated lentivirus immunization modulates innate immunity and inflammation while protecting rhesus macaques from vaginal simian immunodeficiency virus challenge.

    PubMed

    Genescà, Meritxell; Ma, Zhong-Min; Wang, Yichuan; Assaf, Basel; Qureshi, Huma; Fritts, Linda; Huang, Ying; McChesney, Michael B; Miller, Christopher J

    2012-09-01

    Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8(+) lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8(+) T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8(+) T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8(+) T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8(+) T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8(+) T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission.

  18. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans

    PubMed Central

    Meydani, Simin N.; Das, Sai K.; Pieper, Carl F.; Lewis, Michael R.; Klein, Sam; Dixit, Vishwa D.; Gupta, Alok K.; Villareal, Dennis T.; Bhapkar, Manjushri; Huang, Megan; Fuss, Paul J.; Roberts, Susan B.; Holloszy, John O.; Fontana, Luigi

    2016-01-01

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype. PMID:27410480

  19. Sex differences matter in the gut: effect on mucosal immune activation and inflammation.

    PubMed

    Sankaran-Walters, Sumathi; Macal, Monica; Grishina, Irina; Nagy, Lauren; Goulart, Larissa; Coolidge, Kathryn; Li, Jay; Fenton, Anne; Williams, Theodore; Miller, Mary K; Flamm, Jason; Prindiville, Thomas; George, Michael; Dandekar, Satya

    2013-05-07

    Women and men have diverse responses to many infectious diseases. These differences are amplified following menopause. However, despite extensive information regarding the effects of sex hormones on immune cells, our knowledge is limited regarding the effects of sex and gender on the function of the mucosal immune system. Sex differences also manifest in the prevalence of gut associated inflammatory and autoimmune disorders, including Crohn's disease, ulcerative colitis and Celiac disease. It is thus hypothesized that a baseline sex-associated difference in immune activation may predispose women to inflammation-associated disease. Peripheral blood samples and small intestinal biopsies were obtained from 34 healthy men and women. Immunophenotypic analysis of isolated lymphocytes was performed by flow cytometry. Oligonucleotide analysis was used to study the transcriptional profile in the gut mucosal microenvironment while real-time PCR analysis was utilized to identify differential gene expression in isolated CD4+ T cells. Transcriptional analysis was confirmed by protein expression levels for genes of interest using fluorescent immunohistochemistry. Data was analyzed using the GraphPad software package. Women had higher levels of immune activation and inflammation-associated gene expression in gut mucosal samples. CD4+ and CD8+ T cells had a significantly higher level of immune activation-associated phenotype in peripheral blood as well as in gut associated lymphoid tissue along with higher levels of proliferating T cells. CD4+ T cells that showed upregulation of IL1β as well as the TH17 pathway-associated genes contributed a large part of the inflammatory profile. In this study, we demonstrated an upregulation in gene expression related to immune function in the gut microenvironment of women compared to men, in the absence of disease or pathology. Upon closer investigation, CD4+ T cell activation levels were higher in the LPLs in women than in men. Sex

  20. Role of immune cells in obesity induced low grade inflammation and insulin resistance.

    PubMed

    Asghar, Ambreen; Sheikh, Nadeem

    2017-05-01

    The frequency of obesity is enormously growing worldwide. Obesity results when energy intake exceeds, energy expenditure. Excess adiposity is a major risk factor in the progress of various metabolic disorders accounting insulin resistance, hypertension, Type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovarian disease and several types of cancers. Obesity is characterized by pro-inflammatory condition in which hypertrophied adipose tissue along with immune cells contribute to increase the level of pro-inflammatory cytokines. Immune cells are the key players in inducing low grade chronic inflammation in obesity and are main factor responsible for pathogenesis of insulin resistance resulting Type 2 diabetes. The current review is aimed to investigate the mechanism of pro-inflammatory responses and insulin resistance involving immune cells and their products in obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Overcoming the hurdles of tumor immunity by targeting regulatory pathways in innate and adaptive immune cells.

    PubMed

    Zwirner, Norberto W; Croci, Diego O; Domaica, Carolina I; Rabinovich, Gabriel A

    2010-01-01

    The improved understanding of the biochemical nature of tumor antigens and the identification of cellular and molecular mechanisms leading to activation of innate and adaptive immune cells have been of paramount importance in the progress of tumor immunology. Studies on the intricate network of interactions between tumor and immune cells have revealed novel regulatory signals, including cell surface inhibitory receptors and costimulatory molecules, intracellular regulatory pathways, immunosuppressive cytokines and proapoptotic mediators, which may operate in concert to orchestrate tumor-immune escape. This emerging portfolio of inhibitory checkpoints can influence the physiology of innate immune cells including dendritic cells, macrophages and natural killer (NK) cells, as well as different subsets of T cells to fine tune their effector function. The synergistic combination of strategies aimed at overcoming regulatory signals and/or stimulating effector pathways, may offer therapeutic advantage as adjuvants of conventional anticancer therapies. Based on this premise, we will discuss here how the control of the effector functions of innate and adaptive immune cells and the manipulation of regulatory pathways, either alone or in combination, could be exploited for therapeutic purposes in cancer patients.

  2. Immune adaptation to chronic intense exercise training: new microarray evidence.

    PubMed

    Liu, Dongmei; Wang, Ru; Grant, Ana R; Zhang, Jinming; Gordon, Paul M; Wei, Yuqin; Chen, Peijie

    2017-01-05

    Endurance exercise training, especially the high-intensity training, exhibits a strong influence on the immune system. However, the mechanisms underpinning the immune-regulatory effect of exercise remain unclear. Consequently, we chose to investigate the alterations in the transcriptional profile of blood leukocytes in young endurance athletes as compared with healthy sedentary controls, using Affymetrix human gene 1.1 ST array. Group differences in the transcriptome were analyzed using Intensity-based Hierarchical Bayes method followed by a Logistic Regression-based gene set enrichment method. We identified 72 significant transcripts differentially expressed in the leukocyte transcriptome of young endurance athletes as compared with non-athlete controls with a false discovery rate (FDR) < 0.05, comprising mainly the genes encoding ribosomal proteins and the genes involved in mitochondrial oxidative phosphorylation. Gene set enrichment analysis identified three major gene set clusters: two were up-regulated in athletes including gene translation and ribosomal protein production, and mitochondria oxidative phosphorylation and biogenesis; one gene set cluster identified as transcriptionally downregulated in athletes was related to inflammation and immune activity. Our data indicates that in young healthy individuals, intense endurance exercise training (exemplifed by athletic training) can chronically induce transcriptional changes in the peripheral blood leukocytes, upregulating genes related to protein production and mitochondrial energetics, and downregulating genes involved in inflammatory response. The findings of the study also provide support for the notion that peripheral blood can be used as a surrogate tissue to study the systemic effect of exercise training.

  3. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity.

    PubMed

    Liu, Qingjun; Zhou, Hong; Langdon, Wallace Y; Zhang, Jian

    2014-01-01

    Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING finger E3 ubiquitin-protein ligase, has been demonstrated to play a crucial role in establishing the threshold for T-cell activation and controlling peripheral T-cell tolerance via multiple mechanisms. Accumulating evidence suggests that Cbl-b also regulates innate immune responses and plays an important role in host defense to pathogens. Understanding the signaling pathways regulated by Cbl-b in innate and adaptive immune cells is therefore essential for efficient manipulation of Cbl-b in emerging immunotherapies for human disorders such as autoimmune diseases, allergic inflammation, infections, and cancer. In this article, we review the latest developments in the molecular structural basis of Cbl-b function, the regulation of Cbl-b expression, the signaling mechanisms of Cbl-b in immune cells, as well as the biological function of Cbl-b in physiological and pathological immune responses in animal models and human diseases.

  4. Borrelia burgdorferi Manipulates Innate and Adaptive Immunity to Establish Persistence in Rodent Reservoir Hosts

    PubMed Central

    Tracy, Karen E.; Baumgarth, Nicole

    2017-01-01

    Borrelia burgdorferi sensu lato species complex is capable of establishing persistent infections in a wide variety of species, particularly rodents. Infection is asymptomatic or mild in most reservoir host species, indicating successful co-evolution of the pathogen with its natural hosts. However, infected humans and other incidental hosts can develop Lyme disease, a serious inflammatory syndrome characterized by tissue inflammation of joints, heart, muscles, skin, and CNS. Although B. burgdorferi infection induces both innate and adaptive immune responses, they are ultimately ineffective in clearing the infection from reservoir hosts, leading to bacterial persistence. Here, we review some mechanisms by which B. burgdorferi evades the immune system of the rodent host, focusing in particular on the effects of innate immune mechanisms and recent findings suggesting that T-dependent B cell responses are subverted during infection. A better understanding of the mechanisms causing persistence in rodents may help to increase our understanding of the pathogenesis of Lyme disease and ultimately aid in the development of therapies that support effective clearance of the bacterial infection by the host’s immune system. PMID:28265270

  5. STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection.

    PubMed

    Desvignes, Ludovic; Weidinger, Carl; Shaw, Patrick; Vaeth, Martin; Ribierre, Theo; Liu, Menghan; Fergus, Tawania; Kozhaya, Lina; McVoy, Lauren; Unutmaz, Derya; Ernst, Joel D; Feske, Stefan

    2015-06-01

    Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell-mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell-specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-γ production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-γ production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell-intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-γ and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell-mediated immune regulation to limit injurious inflammation during chronic infection.

  6. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances

    PubMed Central

    Haapakoski, Rita; Ebmeier, Klaus P.; Alenius, Harri; Kivimäki, Mika

    2016-01-01

    The inflammation theory of depression, proposed over 20 years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced ‘omics’ technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. PMID:26631274

  7. Adaptive immune response during hepatitis C virus infection.

    PubMed

    Larrubia, Juan Ramón; Moreno-Cubero, Elia; Lokhande, Megha Uttam; García-Garzón, Silvia; Lázaro, Alicia; Miquel, Joaquín; Perna, Cristian; Sanz-de-Villalobos, Eduardo

    2014-04-07

    Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed.

  8. Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer.

    PubMed

    Brest, P; Corcelle, E A; Cesaro, A; Chargui, A; Belaïd, A; Klionsky, D J; Vouret-Craviari, V; Hebuterne, X; Hofman, P; Mograbi, B

    2010-07-01

    Inflammatory bowel diseases (IBD) are common inflammatory disorders of the gastrointestinal tract that include ulcerative colitis (UC) and Crohn's disease (CD). The incidences of IBD are high in North America and Europe, affecting as many as one in 500 people. These diseases are associated with high morbidity and mortality. Colorectal cancer risk is also increased in IBD, correlating with inflammation severity and duration. IBD are now recognized as complex multigenetic disorders involving at least 32 different risk loci. In 2007, two different autophagy-related genes, ATG16L1 (autophagy-related gene 16-like 1) and IRGM (immunity-related GTPase M) were shown to be specifically involved in CD susceptibility by three independent genome-wide association studies. Soon afterwards, more than forty studies confirmed the involvement of ATG16L1 and IRGM variants in CD susceptibility and gave new information on the importance of macroautophagy (hereafter referred to as autophagy) in the control of infection, inflammation, immunity and cancer. In this review, we discuss how such findings have undoubtedly changed our understanding of CD pathogenesis. A unifying autophagy model then emerges that may help in understanding the development of CD from bacterial infection, to inflammation and finally cancer. The Pandora's box is now open, releasing a wave of hope for new therapeutic strategies in treating Crohn's disease.

  9. Participation of blood vessel cells in human adaptive immune responses.

    PubMed

    Pober, Jordan S; Tellides, George

    2012-01-01

    Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Policing of gut microbiota by the adaptive immune system.

    PubMed

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-02-12

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery.

  11. Long non-coding RNAs in innate and adaptive immunity

    PubMed Central

    Aune, Thomas M.; Spurlock, Charles F.

    2015-01-01

    Long noncoding RNAs (lncRNAs) represent a newly discovered class of regulatory molecules that impact a variety of biological processes in cells and organ systems. In humans, it is estimated that there may be more than twice as many lncRNA genes than protein-coding genes. However, only a handful of lncRNAs have been analyzed in detail. In this review, we describe expression and functions of lncRNAs that have been demonstrated to impact innate and adaptive immunity. These emerging paradigms illustrate remarkably diverse mechanisms that lncRNAs utilize to impact the transcriptional programs of immune cells required to fight against pathogens and maintain normal health and homeostasis. PMID:26166759

  12. Rapid innate control of antigen abrogates adaptive immunity

    PubMed Central

    Pembroke, Thomas P I; Gallimore, Awen M; Godkin, Andrew

    2013-01-01

    Natural killer (NK) cells provide an immediate first line of defence against viral infections. Memory responses, maintained by CD4+ T cells, require exposure to viral antigen and provide long-term protection against future infections. It is known that NK cells can promote the development of the adaptive response through cytokine production and cross-talk with antigen-presenting cells. In this paper however, we summarize a series of recent publications, in mouse models and for the first time in man, with the unifying message that rapid viral antigen control by the innate immune system limits antigen exposure to CD4+ cells thereby abrogating the development of a memory response. We discuss the significant implication of these studies on viral treatment strategies and immunization models. PMID:23198899

  13. Future directions in bladder cancer immunotherapy: towards adaptive immunity

    PubMed Central

    Smith, Sean G; Zaharoff, David A

    2016-01-01

    The clinical management of bladder cancer has not changed significantly in several decades. In particular, intravesical bacillus Calmette–Guérin (BCG) immunotherapy has been a mainstay for high-risk nonmuscle invasive bladder cancer since the late 1970s/early 1980s. This is despite the fact that bladder cancer has the highest recurrence rates of any cancer and BCG immunotherapy has not been shown to induce a tumor-specific immune response. We and others have hypothesized that immunotherapies capable of inducing tumor-specific adaptive immunity are needed to impact bladder cancer morbidity and mortality. This article summarizes the preclinical and clinical development of bladder cancer immunotherapies with an emphasis on the last 5 years. Expected progress in the near future is also discussed. PMID:26860539

  14. Future directions in bladder cancer immunotherapy: towards adaptive immunity.

    PubMed

    Smith, Sean G; Zaharoff, David A

    2016-01-01

    The clinical management of bladder cancer has not changed significantly in several decades. In particular, intravesical bacillus Calmette-Guérin (BCG) immunotherapy has been a mainstay for high-risk nonmuscle invasive bladder cancer since the late 1970s/early 1980s. This is despite the fact that bladder cancer has the highest recurrence rates of any cancer and BCG immunotherapy has not been shown to induce a tumor-specific immune response. We and others have hypothesized that immunotherapies capable of inducing tumor-specific adaptive immunity are needed to impact bladder cancer morbidity and mortality. This article summarizes the preclinical and clinical development of bladder cancer immunotherapies with an emphasis on the last 5 years. Expected progress in the near future is also discussed.

  15. IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection

    PubMed Central

    Nie, Catherine Q.; Bernard, Nicholas J.; Norman, M. Ursula; Amante, Fiona H.; Lundie, Rachel J.; Crabb, Brendan S.; Heath, William R.; Engwerda, Christian R.; Hickey, Michael J.; Schofield, Louis; Hansen, Diana S.

    2009-01-01

    Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis. PMID:19343215

  16. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment

    PubMed Central

    Schmidt, Frank M.; Kirkby, Kenneth C.; Lichtblau, Nicole

    2016-01-01

    Growing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration. PMID:26769225

  17. Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model

    PubMed Central

    Ludewig, Burkhard; Freigang, Stefan; Jäggi, Martin; Kurrer, Michael O.; Pei, Yao-Chang; Vlk, Lenka; Odermatt, Bernhard; Zinkernagel, Rolf M.; Hengartner, Hans

    2000-01-01

    Arterial inflammatory responses are thought to be a significant component of atherosclerotic disease. We describe here, using a transgenic approach, the mutual perpetuation of immune-mediated arterial inflammation and cholesterol-induced atherosclerosis. Mice expressing the bacterial transgene β-galactosidase exclusively in cardiomyocytes and in smooth muscle cells in lung arteries and the aorta (SM-LacZ), and hypercholesterolemic apolipoprotein E-deficient SM-LacZ mice (SM-LacZ/apoE−/−) developed myocarditis and arteritis after immunization with dendritic cells presenting a β-galactosidase-derived immunogenic peptide. Hypercholesterolemia amplified acute arteritis and perpetuated chronic arterial inflammation in SM-LacZ/apoE−/− mice, but had no major impact on acute myocarditis or the subsequent development of dilated cardiomyopathy. Conversely, arteritis significantly accelerated cholesterol-induced atherosclerosis. Taken together, these data demonstrate that the linkage of immune-mediated arteritis and hypercholesterolemia favors initiation and maintenance of atherosclerotic lesion formation. Therapeutic strategies to prevent or disrupt such self-perpetuating vicious circles may be crucial for the successful treatment of atherosclerosis. PMID:11050173

  18. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates.

    PubMed

    Magadan, Susana; Sunyer, Oriol J; Boudinot, Pierre

    2015-01-01

    Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.

  19. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates

    PubMed Central

    Sunyer, Oriol J.

    2016-01-01

    Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates. PMID:26537384

  20. PD-1 blockade induces responses by inhibiting adaptive immune resistance.

    PubMed

    Tumeh, Paul C; Harview, Christina L; Yearley, Jennifer H; Shintaku, I Peter; Taylor, Emma J M; Robert, Lidia; Chmielowski, Bartosz; Spasic, Marko; Henry, Gina; Ciobanu, Voicu; West, Alisha N; Carmona, Manuel; Kivork, Christine; Seja, Elizabeth; Cherry, Grace; Gutierrez, Antonio J; Grogan, Tristan R; Mateus, Christine; Tomasic, Gorana; Glaspy, John A; Emerson, Ryan O; Robins, Harlan; Pierce, Robert H; Elashoff, David A; Robert, Caroline; Ribas, Antoni

    2014-11-27

    Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types. One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8(+) T cells (termed adaptive immune resistance). Here we show that pre-existing CD8(+) T cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analysed samples from 46 patients with metastatic melanoma obtained before and during anti-PD-1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next-generation sequencing for T-cell antigen receptors (TCRs). In serially sampled tumours, patients responding to treatment showed proliferation of intratumoral CD8(+) T cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8-, PD-1- and PD-L1-expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression after therapeutic PD-1 blockade requires pre-existing CD8(+) T cells that are negatively regulated by PD-1/PD-L1-mediated adaptive immune resistance.

  1. PD-1 blockade induces responses by inhibiting adaptive immune resistance

    PubMed Central

    Tumeh, Paul C.; Harview, Christina L.; Yearley, Jennifer H.; Shintaku, I. Peter; Taylor, Emma J. M.; Robert, Lidia; Chmielowski, Bartosz; Spasic, Marko; Henry, Gina; Ciobanu, Voicu; West, Alisha N.; Carmona, Manuel; Kivork, Christine; Seja, Elizabeth; Cherry, Grace; Gutierrez, Antonio; Grogan, Tristan R.; Mateus, Christine; Tomasic, Gorana; Glaspy, John A.; Emerson, Ryan O.; Robins, Harlan; Pierce, Robert H.; Elashoff, David A.; Robert, Caroline; Ribas, Antoni

    2014-01-01

    Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types.1–5 One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8 T-cells (termed adaptive immune resistance).6,7 Here we show that pre-existing CD8 T-cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analyzed samples from 46 patients with metastatic melanoma obtained before and during anti-PD1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell receptors (TCR). In serially sampled tumours, responding patients showed proliferation of intratumoural CD8+ T-cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8, PD1, and PD-L1 expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression following therapeutic PD-1 blockade requires pre-existing CD8+ T cells that are negatively regulated by PD-1/PD-L1 mediated adaptive immune resistance. PMID:25428505

  2. Diversity Against Adversity: How Adaptive Immune System Evolves Potent Antibodies

    NASA Astrophysics Data System (ADS)

    Heo, Muyoung; Zeldovich, Konstantin B.; Shakhnovich, Eugene I.

    2011-07-01

    Adaptive immunity is an amazing mechanism, whereby new protein functions—affinity of antibodies (Immunoglobulins) to new antigens—evolve through mutation and selection in a matter of a few days. Despite numerous experimental studies, the fundamental physical principles underlying immune response are still poorly understood. In considerable departure from past approaches, here, we propose a microscopic multiscale model of adaptive immune response, which consists of three essential players: The host cells, viruses, and B-cells in Germinal Centers (GC). Each moiety carries a genome, which encodes proteins whose stability and interactions are determined from their sequences using laws of Statistical Mechanics, providing an exact relationship between genomic sequences and strength of interactions between pathogens and antibodies and antibodies and host proteins (autoimmunity). We find that evolution of potent antibodies (the process known as Affinity Maturation (AM)) is a delicate balancing act, which has to reconcile the conflicting requirements of protein stability, lack of autoimmunity, and high affinity of antibodies to incoming antigens. This becomes possible only when antibody producing B cells elevate their mutation rates (process known as Somatic Hypermutation (SHM)) to fall into a certain range—not too low to find potency increasing mutations but not too high to destroy stable Immunoglobulins and/or already achieved affinity. Potent antibodies develop through clonal expansion of initial B cells expressing marginally potent antibodies followed by their subsequent affinity maturation through mutation and selection. As a result, in each GC the population of mature potent Immunoglobulins is monoclonal being ancestors of a single cell from initial (germline) pool. We developed a simple analytical theory, which provides further rationale to our findings. The model and theory reveal the molecular factors that determine the efficiency of affinity maturation

  3. Leptin in the interplay of inflammation, metabolism and immune system disorders.

    PubMed

    Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste

    2017-02-01

    Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.

  4. Immunoregulatory molecules are master regulators of inflammation during the immune response

    PubMed Central

    Sánchez-Madrid, Francisco

    2014-01-01

    The balance between pro- and anti-inflammatory signalling is critical to maintain the immune homeostasis under physiological conditions as well as for the control of inflammation in different pathological settings. Recent progress in the signalling pathways that control this balance has led to the development of novel therapeutic agents for diseases characterized by alterations in the activation/suppression of the immune response. Different molecules have a key role in the regulation of the immune system, including the receptors PD-1 (Programmed cell Death 1), CTLA-4 (Cytotoxic T-Lymphocyte Antigen 4) and galectins; or the intracellular enzyme IDO (indoleamine 2,3-dioxygenase). In addition, other molecules as CD69, AhR (Aryl hydrocarbon Receptor), and GADD45 (Growth Arrest and DNA Damage-inducible 45) family members, have emerged as potential targets for the regulation of the activation/suppression balance of immune cells. This review offers a perspective on well-characterized as well as emergent negative immune regulatory molecules in the context of autoimmune inflammatory diseases. PMID:22819828

  5. Respiratory Antiviral Immunity and Immunobiotics: Beneficial Effects on Inflammation-Coagulation Interaction during Influenza Virus Infection

    PubMed Central

    Zelaya, Hortensia; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio

    2016-01-01

    Influenza virus (IFV) is a major respiratory pathogen of global importance, and the cause of a high degree of morbidity and mortality, especially in high-risk populations such as infants, elderly, and immunocompromised hosts. Given its high capacity to change antigenically, acquired immunity is often not effective to limit IFV infection and therefore vaccination must be constantly redesigned to achieve effective protection. Improvement of respiratory and systemic innate immune mechanisms has been proposed to reduce the incidence and severity of IFV disease. In the last decade, several research works have demonstrated that microbes with the capacity to modulate the mucosal immune system (immunobiotics) are a potential alternative to beneficially modulate the outcome of IFV infection. This review provides an update of the current status on the modulation of respiratory immunity by orally and nasally administered immunobiotics, and their beneficial impact on IFV clearance and inflammatory-mediated lung tissue damage. In particular, we describe the research of our group that investigated the influence of immunobiotics on inflammation–coagulation interactions during IFV infection. Studies have clearly demonstrated that hostile inflammation is accompanied by dysfunctional coagulation in respiratory IFV disease, and our investigations have proved that some immunobiotic strains are able to reduce viral disease severity through their capacity to modulate the immune-coagulative responses in the respiratory tract. PMID:28066442

  6. Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression.

    PubMed

    D'Mello, Charlotte; Swain, Mark G

    A growing body of evidence now highlights a key role for inflammation in mediating sickness behaviors and depression. Systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and chronic liver disease have high comorbidity with depression. How the periphery communicates with the brain to mediate changes in neurotransmission and thereby behavior is not completely understood. Traditional routes of communication between the periphery and the brain involve neural and humoral pathways with TNFα, IL-1β, and IL-6 being the three main cytokines that have primarily been implicated in mediating signaling via these pathways. However, in recent years communication via peripheral immune-cell-to-brain and the gut-microbiota-to-brain routes have received increasing attention for their ability to modulate brain function. In this chapter we discuss periphery-to-brain communication pathways and their potential role in mediating inflammation-associated sickness behaviors and depression.

  7. Limbic Encephalitis: Potential Impact of Adaptive Autoimmune Inflammation on Neuronal Circuits of the Amygdala.

    PubMed

    Melzer, Nico; Budde, Thomas; Stork, Oliver; Meuth, Sven G

    2015-01-01

    Limbic encephalitis is characterized by adaptive autoimmune inflammation of the gray matter structures of the limbic system. It has recently been identified as a major cause of temporal lobe epilepsy accompanied by progressive declarative - mainly episodic - -memory disturbance as well as a variety of rather poorly defined emotional and behavioral changes. While autoimmune inflammation of the hippocampus is likely to be responsible for declarative memory disturbance, consequences of autoimmune inflammation of the amygdala are largely unknown. The amygdala is central for the generation of adequate homoeostatic behavioral responses to emotionally significant external stimuli following processing in a variety of parallel neuronal circuits. Here, we hypothesize that adaptive cellular and humoral autoimmunity may target and modulate distinct inhibitory or excitatory neuronal networks within the amygdala, and thereby strongly impact processing of emotional stimuli and corresponding behavioral responses. This may explain some of the rather poorly understood neuropsychiatric symptoms in limbic encephalitis.

  8. Inflammation enhances resection-induced intestinal adaptive growth in IL-10 null mice

    PubMed Central

    Speck, Karen E.; Garrison, Aaron P.; Rigby, Rachael J.; von Allmen, Doug C.; Lund, P. Kay; Helmrath, Michael A.

    2009-01-01

    Background Surgical resection of the ileum, cecum and proximal right colon (ICR) is common in the management of Crohn’s disease, yet little is known about the effect of active inflammation on the adaptive response following intestinal loss. We recently developed a surgical model of ICR in germ-free (GF) IL-10 null mice that develop small intestinal inflammation only when mice undergo conventionalization with normal fecal microflora (CONV) before surgical intervention. In this study, we examined the effects of post-surgical small bowel inflammation on adaptive growth after ICR. Methods 8-10 week old GF 129SvEv IL-10 null mice were allocated to GF or CONV groups. Non-operated GF and CONV mice provided baseline controls. Two weeks later GF and CONV mice were further allocated to ICR or sham operation. Small intestine and colon were harvested 7d after surgery for histological analysis. Results All mice within the gnotobiotic facility maintained GF status and did not develop small intestinal or colonic inflammation. CONV resulted in colitis in all groups, whereas small intestinal inflammation was only observed following ICR. Resection-induced small intestinal inflammation in CONV mice was associated with increases in proliferation, crypt depth and villus height when compared to GF mice after ICR. Resection-induced increases in crypt fission only occurred in CONV mice. Conclusion ICR-dependent small intestinal inflammation in CONV IL-10 null mice dramatically enhances early adaptive growth of the small intestine. Additional studies utilizing our model may provide clinical insight leading to optimal therapies in managing IBD patients after surgical resection. PMID:20074747

  9. Interleukin 13 and serotonin: linking the immune and endocrine systems in murine models of intestinal inflammation.

    PubMed

    Shajib, Md Sharif; Wang, Huaqing; Kim, Janice J; Sunjic, Ivana; Ghia, Jean-Eric; Denou, Emmanuel; Collins, Matthew; Denburg, Judah A; Khan, Waliul I

    2013-01-01

    Infiltration of activated immune cells and increased cytokine production define the immunophenotype of gastrointestinal (GI) inflammation. In addition, intestinal inflammation is accompanied by alteration in the numbers of serotonin (5-hydroxytryptamine; 5-HT) synthesizing enterochromaffin (EC) cells and in 5-HT amount. It has been established that EC cells express interleukin (IL)-13 receptor, additionally IL-13 has been implicated in the pathogenesis of ulcerative colitis. In this study, we investigated the role of IL-13 mediated 5-HT signaling in pathogenesis of colitis. Colitis was induced in IL-13 deficient (IL-13-/-) and wild-type (WT) mice with dextran sulfate sodium (DSS) and dinitrobenzene sulfonic acid (DNBS), as well as in IL-13-/- mice given recombinant mouse IL-13 (rmIL-13) and 5-hydroxytryptamine (5-HTP), the direct precursor of 5-HT. Elevated colonic IL-13 levels were observed in WT mice receiving DSS in comparison to control. IL-13-/- mice administered DSS exhibited significantly reduced severity of colitis compared to WT mice as reflected by macroscopic and histological damage assessments. Following DSS administration, significantly lower pro-inflammatory cytokine production and fewer infiltrating macrophages were observed in IL-13-/- mice compared to WT. The reduced severity of colitis observed in IL-13-/- mice was also accompanied by down-regulation of EC cell numbers and colonic 5-HT content. In addition, increasing colonic 5-HT content by administration of rmIL-13 or 5-HTP exacerbated severity of DSS colitis in IL-13-/- mice. IL-13-/- mice also exhibited reduced severity of DNBS-induced colitis. These results demonstrate that IL-13 plays a critical role in the pathogenesis of experimental colitis and 5-HT is an important mediator of IL-13 driven intestinal inflammation. This study revealed important information on immune-endocrine axis in gut in relation to inflammation which may ultimately lead to better strategy in managing various intestinal

  10. Alterations in adaptive immunity persist during long-duration spaceflight

    PubMed Central

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716

  11. The innate immune response to adjuvants dictates the adaptive immune response to autoantigens.

    PubMed

    Staykova, Maria A; Liñares, David; Fordham, Susan A; Paridaen, Judith T; Willenborg, David O

    2008-06-01

    To elucidate the role of innate immunity in susceptibility to the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we induced EAE by immunization with spinal cord homogenate (SCH) plus complete Freund adjuvant or carbonyl iron in 3 inbred rat strains. Lewis are considered "susceptible," PVG/c-Rt7a (PVG) as "semisusceptible," and Brown Norway (BN) as "resistant" to EAE. Immunization with SCH-carbonyl iron resulted in clinical disease in all 3 strains, but the pathologic features of EAE in the resistant BN and the semisusceptible PVG rats differed from those in the Lewis and PVG model of EAE induced with SCH-complete Freund adjuvant. In BN and PVG rats, there were numerous inflammatory lesions with prominent involvement of microglia and, to a lesser extent, perivascular macrophages. These data suggest that different levels of activation of the innate immune system by different adjuvants determine whether EAE will or will not develop. Accordingly, the widely accepted scale of susceptibility to EAE development (Lewis > PVG > BN) should be revised because it does not take into account the important contribution of the composition of the adjuvant to the quality and quantity of the innate immune response and, consequently, to the generation and extent of the pathogenic T-cell-mediated, that is, adaptive, autoimmune disease.

  12. Immune and inflammation responses to a 3-day period of intensified running versus cycling.

    PubMed

    Nieman, David C; Luo, Beibei; Dréau, Didier; Henson, Dru A; Shanely, R Andrew; Dew, Dustin; Meaney, Mary Pat

    2014-07-01

    Functional overreaching has been linked to alterations in immunity and host pathogen defense, but little is known as to whether or not running and cycling evoke different responses. This study compared inflammation, muscle damage and soreness, and innate immune function responses to a 3-day period of intensified exercise in trained long distance runners (N=13, age 34.4±2.4year) and cyclists (N=22, age 36.6±1.7year, P=0.452). Upper respiratory tract infection (URTI) symptomatology was monitored for 12weeks using the Wisconsin Upper Respiratory Symptom Survey (WURSS), and subjects from both athletic groups came to the lab during week five and exercised 2.5h/day for 3days in a row at 70% VO2max. Blood samples were collected before and after the 3-day period of exercise, with recovery samples collected 1-, 14-, and 38h-post-exercise. Samples were analyzed for muscle damage [creatine kinase (CK), myoglobin (MYO)], inflammation (CRP, IL-6, IL-8, IL-10, MCP), and innate immunity [granulocyte and monocyte phagocytosis (GR-PHAG and MO-PHAG) and oxidative burst activity (GR-OBA and MO-OBA)]. Runners compared to cyclists experienced significantly more muscle damage (CK 133% and MYO 404% higher post-3days exercise), inflammation (CRP 87%, IL-6 256%, IL 8 61%, IL-10 32%, MCP 29%), and delayed onset of muscle soreness (DOMS, 87%). The 3-day period of exercise caused significant downturns in GR-PHAG, MO-PHAG, GR-OBA, MO-OBA by 14- and 38h-recovery, but the pattern of change did not differ between groups. No group differences were measured for 12-week URTI severity (18.3±5.6 and 16.6±4.0, P=0.803) and symptom scores (33.4±12.6 and 24.7±5.8, P=0.477). These data indicate that a 3-day period of functional overreaching results in substantially more muscle damage and soreness, and systemic inflammation in runners compared to cyclists, but without group differences for 12-week URTI symptomatology and post-exercise decrements in innate immune function. Copyright © 2013 Elsevier

  13. Analysis of differential immune responses induced by innate and adaptive immunity following transplantation

    PubMed Central

    He, Hongzhen; Stone, James R; Perkins, David L

    2003-01-01

    The roles of innate and adaptive immunity in allograft rejection remain incompletely understood. Previous studies analysing lymphocyte deficient or syngeneic graft recipients have identified subsets of inflammatory chemokines and cytokines induced by antigen independent mechanisms. In the current study, we analysed a panel of 60 inflammatory parameters including serum cytokines, intragraft chemokines and cytokines, receptors, and cellular markers. Our results confirmed the up-regulation of a subset of markers by innate mechanisms and also identified a subset of parameters up-regulated only in the context of an adaptive response. Thus, we successfully differentiated markers of the innate and adaptive phases of rejection. Current paradigms emphasize that innate signals can promote a subsequent adaptive response. Interestingly, in our studies, expression of the markers induced by innate mechanisms was markedly amplified in the allogeneic, but not syngeneic or lymphocyte deficient, recipients. These results suggest that inflammatory mediators can have functional overlap between the innate and adaptive responses, and that the adaptive component of the rejection process amplifies the innate response by positive feedback regulation. PMID:12757613

  14. Inciting inflammation: the RAGE about tumor promotion.

    PubMed

    Dougan, Michael; Dranoff, Glenn

    2008-02-18

    Mechanisms of innate and adaptive immunity play a pivotal role in the development of cancer. Chronic inflammation can drive tumor development, but antitumor immunity can also restrict or even prevent tumor growth. New data show that feed-forward signals downstream of the receptor for advanced glycation end-products (RAGE) can fuel chronic inflammation, creating a microenvironment that is ideal for tumor formation.

  15. Immune complex–FcγR interaction modulates monocyte/macrophage molecules involved in inflammation and immune response

    PubMed Central

    BARRIONUEVO, P; BEIGIER-BOMPADRE, M; FERNANDEZ, G C; GOMEZ, S; ALVES-ROSA, M F; PALERMO, M S; ISTURIZ, M A

    2003-01-01

    The interaction between receptors for the Fc portion of IgG (FcγRs) from monocytes/macrophages and immune complexes (IC) triggers regulatory and effector functions. Recently, we have demonstrated that IC exert a drastic inhibition of basal and IFN-γ-induced expression of MHC class II on human monocytes. Taking into account that the regulation of MHC class II molecules is a crucial event in the immune response, in this report we extend our previous studies analysing the effect of STAT-1 phosphorylation in the down-regulatory process, the fate of the intracellular pool of MHC class II molecules and the effect of complement on MHC class II down-regulation induced by IC. We also studied the effect of IC on the expression of MHC class II (I-Ad) in macrophages using a mouse model of chronic inflammation. We demonstrate that IC induce a depletion not only on surface expressed but also on intracellular MHC class II content and that IC-induced down-regulation of MHC class II is not mediated by the inhibition of STAT-1 phosphorylation. On the other hand, the effect of IC is not specific for the down-regulation of MHC class II, for it could be restricted to other molecules involved in inflammatory processes. Our experiments also show that the activation of the complement system could be a crucial step on the regulation of the effect of IC on MHC class II expression. In agreement with our in vitro experiments using human monocytes, IC treatment reduces the expression of MHC class II in a mouse model of chronic inflammation. PMID:12869025

  16. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation.

    PubMed

    Heron, Samantha E; Elahi, Shokrollah

    2017-01-01

    Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to "inflammaging" that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore

  17. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation

    PubMed Central

    Heron, Samantha E.; Elahi, Shokrollah

    2017-01-01

    Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to “inflammaging” that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome

  18. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans

    PubMed Central

    2010-01-01

    Background Astaxanthin modulates immune response, inhibits cancer cell growth, reduces bacterial load and gastric inflammation, and protects against UVA-induced oxidative stress in in vitro and rodent models. Similar clinical studies in humans are unavailable. Our objective is to study the action of dietary astaxanthin in modulating immune response, oxidative status and inflammation in young healthy adult female human subjects. Methods Participants (averaged 21.5 yr) received 0, 2, or 8 mg astaxanthin (n = 14/diet) daily for 8 wk in a randomized double-blind, placebo-controlled study. Immune response was assessed on wk 0, 4 and 8, and tuberculin test performed on wk 8. Results Plasma astaxanthin increased (P < 0.01) dose-dependently after 4 or 8 wk of supplementation. Astaxanthin decreased a DNA damage biomarker after 4 wk but did not affect lipid peroxidation. Plasma C-reactive protein concentration was lower (P < 0.05) on wk 8 in subjects given 2 mg astaxanthin. Dietary astaxanthin stimulated mitogen-induced lymphoproliferation, increased natural killer cell cytotoxic activity, and increased total T and B cell subpopulations, but did not influence populations of Thelper, Tcytotoxic or natural killer cells. A higher percentage of leukocytes expressed the LFA-1 marker in subjects given 2 mg astaxanthin on wk 8. Subjects fed 2 mg astaxanthin had a higher tuberculin response than unsupplemented subjects. There was no difference in TNF and IL-2 concentrations, but plasma IFN-γ and IL-6 increased on wk 8 in subjects given 8 mg astaxanthin. Conclusion Therefore, dietary astaxanthin decreases a DNA damage biomarker and acute phase protein, and enhances immune response in young healthy females. PMID:20205737

  19. How a well-adapted immune system is organized

    PubMed Central

    Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry; Walczak, Aleksandra M.

    2015-01-01

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from diverse pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. We develop a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters; individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens; and the optimal repertoires can be reached via the dynamics of competitive binding of antigens by receptors and selective amplification of stimulated receptors. Our results follow from a tension between the statistics of pathogen detection, which favor a broader receptor distribution, and the effects of cross-reactivity, which tend to concentrate the optimal repertoire onto a few highly abundant clones. Our predictions can be tested in high-throughput surveys of receptor and pathogen diversity. PMID:25918407

  20. Innate and Adaptive Immune Response to Fungal Products and Allergens.

    PubMed

    Williams, P Brock; Barnes, Charles S; Portnoy, Jay M

    2016-01-01

    Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. The cytokine networks of adaptive immunity in fish.

    PubMed

    Wang, Tiehui; Secombes, Christopher J

    2013-12-01

    Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?

    PubMed

    Adamczyk-Sowa, Monika; Medrek, Aldona; Madej, Paulina; Michlicka, Wirginia; Dobrakowski, Pawel

    2017-01-01

    Aim. Evaluation of the impact of gut microflora on the pathophysiology of MS. Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy and Lactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS. Conclusions. The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis.

  3. HE3286, an oral synthetic steroid, treats lung inflammation in mice without immune suppression

    PubMed Central

    2010-01-01

    Background 17α-Ethynyl-5-androsten-3β, 7β, 17β-triol (HE3286) is a synthetic derivative of an endogenous steroid androstenetriol (β-AET), a metabolite of the abundant adrenal steroid deyhdroepiandrosterone (DHEA), with broad anti-inflammatory activities. We tested the ability of this novel synthetic steroid with improved pharmacological properties to limit non-productive lung inflammation in rodents and attempted to gauge its immunological impact. Methods and Results In mice, oral treatment with HE3286 (40 mg/kg) significantly (p < 0.05) decreased neutrophil counts and exudate volumes (~50%) in carrageenan-induced pleurisy, and myeloperoxidase in lipopolysaccharide-induced lung injury. HE3286 (40 mg/kg) was not found to be profoundly immune suppressive in any of the classical animal models of immune function, including those used to evaluate antigen specific immune responses in vivo (ovalbumin immunization). When mice treated for two weeks with HE3286 were challenged with K. pneumoniae, nearly identical survival kinetics were observed in vehicle-treated, HE3286-treated and untreated groups. Conclusions HE3286 represents a novel, first-in-class anti-inflammatory agent that may translate certain benefits of β-AET observed in rodents into treatments for chronic inflammatory pulmonary disease. PMID:21034489

  4. Basal inflammation and innate immune response in chronic multisite musculoskeletal pain.

    PubMed

    Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; Dekker, Joost; Penninx, Brenda W J H

    2014-08-01

    Dysregulation of the immune system may play a role in chronic pain, although study findings are inconsistent. This cross-sectional study examined whether basal inflammatory markers and the innate immune response are associated with the presence and severity of chronic multisite musculoskeletal pain. Data were used on 1632 subjects of the Netherlands Study of Depression and Anxiety. The Chronic Pain Grade questionnaire was used to determine the presence and severity of chronic multisite musculoskeletal pain. Subjects were categorized in a chronic multisite musculoskeletal pain group (n=754) and a control group (n=878). Blood levels of the basal inflammatory markers C-reactive protein, interleukin-6, and tumor necrosis factor-alpha were determined. To obtain a measure of the innate immune response, 13 inflammatory markers were assessed after lipopolysaccharide (LPS) stimulation in a subsample (n=707). Subjects with chronic multisite musculoskeletal pain showed elevated levels of basal inflammatory markers compared with controls, but statistical significance was lost after adjustment for lifestyle and disease variables. For some LPS-stimulated inflammatory markers, we did find elevated levels in subjects with chronic multisite musculoskeletal pain both before and after adjustment for covariates. Pain severity was not associated with inflammation within chronic pain subjects. An enhanced innate immune response in chronic multisite musculoskeletal pain may be examined as a potential biomarker for the onset or perpetuation of chronic pain.

  5. Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?

    PubMed Central

    Adamczyk-Sowa, Monika; Madej, Paulina; Michlicka, Wirginia; Dobrakowski, Pawel

    2017-01-01

    Aim. Evaluation of the impact of gut microflora on the pathophysiology of MS. Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy and Lactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS. Conclusions. The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis. PMID:28316999

  6. Innate and adaptive immune responses against Staphylococcus aureus skin infections.

    PubMed

    Krishna, Sheila; Miller, Lloyd S

    2012-03-01

    Staphylococcus aureus is an important human pathogen that is responsible for the vast majority of bacterial skin and soft tissue infections in humans. S. aureus can also become more invasive and cause life-threatening infections such as bacteremia, pneumonia, abscesses of various organs, meningitis, osteomyelitis, endocarditis, and sepsis. These infections represent a major public health threat due to the enormous numbers of these infections and the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. MSRA is endemic in hospitals worldwide and is rapidly spreading throughout the normal human population in the community. The increasing frequency of MRSA infections has complicated treatment as these strains are more virulent and are increasingly becoming resistant to multiple different classes of antibiotics. The important role of the immune response against S. aureus infections cannot be overemphasized as humans with certain genetic and acquired immunodeficiency disorders are at an increased risk for infection. Understanding the cutaneous immune responses against S. aureus is essential as most of these infections occur or originate from a site of infection or colonization of the skin and mucosa. This review will summarize the innate immune responses against S. aureus skin infections, including antimicrobial peptides that have direct antimicrobial activity against S. aureus as well as pattern recognition receptors and proinflammatory cytokines that promote neutrophil abscess formation in the skin, which is required for bacterial clearance. Finally, we will discuss the recent discoveries involving IL-17-mediated responses, which provide a key link between cutaneous innate and adaptive immune responses against S. aureus skin infections.

  7. The Gateway Reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS.

    PubMed

    Sabharwal, Lavannya; Kamimura, Daisuke; Meng, Jie; Bando, Hidenori; Ogura, Hideki; Nakayama, Chiemi; Jiang, Jing-Jing; Kumai, Noriko; Suzuki, Hironao; Atsumi, Toru; Arima, Yasunobu; Murakami, Masaaki

    2014-12-01

    The brain-blood barrier (BBB) tightly limits immune cell migration into the central nervous system (CNS), avoiding unwanted inflammation under the normal state. However, immune cells can traverse the BBB when inflammation occurs within the CNS, suggesting a certain signal that creates a gateway that bypasses the BBB might exist. We revealed the inflammation amplifier as a mechanism of this signal, and identified dorsal vessels of the fifth lumber (L5) spinal cord as the gateway. The inflammation amplifier is driven by a simultaneous activation of NF-κB and STATs in non-immune cells, causing the production of a large amount of inflammatory chemokines to open the gateway at L5 vessels. It was found that the activation of the amplifier can be modulated by neural activation and artificially operated by electric pulses followed by establishment of new gateways, Gateway Reflex, at least in mice. Furthermore, genes required for the inflammation amplifier have been identified and are highly associated with various inflammatory diseases and disorders in the CNS. Thus, physical and/or pharmacological manipulation of the inflammation amplifier holds therapeutic value to control neuro-inflammation. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling.

    PubMed

    Bottazzi, Barbara; Inforzato, Antonio; Messa, Massimo; Barbagallo, Marialuisa; Magrini, Elena; Garlanda, Cecilia; Mantovani, Alberto

    2016-06-01

    Pentraxins are a superfamily of fluid phase pattern recognition molecules conserved in evolution and characterized by a cyclic multimeric structure. C-reactive protein (CRP) and serum amyloid P component (SAP) constitute the short pentraxin arm of the superfamily. CRP and SAP are produced in the liver in response to IL-6 and are acute phase reactants in humans and mice respectively. In addition SAP has been shown to affect tissue remodelling and fibrosis by stabilizing all types of amyloid fibrils and by regulating monocyte to fibrocyte differentiation. Pentraxin 3 (PTX3) is the prototype of the long pentraxin arm. Gene targeted mice and genetic and epigenetic studies in humans suggest that PTX3 plays essential non-redundant roles in innate immunity and inflammation as well as in tissue remodelling. Recent studies have revealed the role of PTX3 as extrinsic oncosuppressor, able to tune cancer-related inflammation. In addition, at acidic pH PTX3 can interact with provisional matrix components promoting inflammatory matrix remodelling. Thus acidification during tissue repair sets PTX3 in a tissue remodelling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling

    PubMed Central

    Bottazzi, Barbara; Inforzato, Antonio; Messa, Massimo; Barbagallo, Marialuisa; Magrini, Elena; Garlanda, Cecilia; Mantovani, Alberto

    2017-01-01

    Pentraxins are a superfamily of fluid phase pattern recognition molecules conserved in evolution and characterized by a cyclic multimeric structure. C reactive protein (CRP) and serum amyloid P component (SAP) constitute the short pentraxin arm of the superfamily. CRP and SAP are produced in the liver in response to IL-6 and are acute phase reactants in humans and mice respectively. In addition SAP has been shown to affect tissue remodeling and fibrosis by stabilizing all types of amyloid fibrils and by regulating monocyte to fibrocyte differentiation. Pentraxin 3 (PTX3) is the prototype of the long pentraxin arm. Gene targeted mice and genetic and epigenetic studies in humans suggest that PTX3 plays essential non-redundant roles in innate immunity and inflammation as well as in tissue remodeling. Recent studies have revealed the role of PTX3 as extrinsic oncosuppressor able to tune cancer-related inflammation. In addition, at acidic pH PTX3 can interact with provisional matrix components promoting inflammatory matrix remodeling. Thus acidification during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:26921689

  10. Different impairment of immune and inflammation functions in short and long-term after ischemic stroke

    PubMed Central

    Li, Wen-Xing; Qi, Fei; Liu, Jia-Qian; Li, Gong-Hua; Dai, Shao-Xing; Zhang, Tao; Cheng, Fei; Liu, Dahai; Zheng, Song Guo

    2017-01-01

    Ischemic stroke therapy and prognosis outcomes largely depend on the time periods after symptom onset. This study aims to explore the difference of global gene expression profiles and impairment of biological functions between short-term and long-term after stroke onset. We compared three short-term (3 h, 5 h and 24 h) and a long-term (6-month) gene expression levels by a multi-platform microarray data integration method. RankProd was used to calculate the differentially expressed genes between stroke patients and controls. DAVID Bioinformatics Resources was utilized to determine affected biological functions. Consensus cluster and hierarchical cluster methods were employed to compare the gene expression patterns of the commonly biological functions among these four time course groups. The results showed that severe impairment of inflammation and immune related functions in 5 h and 24 h after symptom onset. However, these functions were less affected in the 3 h and the 6-month groups. In addition, several key genes (CCL20, THBS1, EREG, and IL6 et al.) were dramatically down-regulated in 5 h and 24 h groups, whereas these genes showed no change or even a slight contrary expression in 3 h or 6-month groups. This study has identified the large differences of altered immune and inflammation functions based on gene levels between short and long-term after stroke onset. The findings provide valuable insight into the clinical practice and prognosis evaluation of ischemic stroke. PMID:28337302

  11. Different impairment of immune and inflammation functions in short and long-term after ischemic stroke.

    PubMed

    Li, Wen-Xing; Qi, Fei; Liu, Jia-Qian; Li, Gong-Hua; Dai, Shao-Xing; Zhang, Tao; Cheng, Fei; Liu, Dahai; Zheng, Song Guo

    2017-01-01

    Ischemic stroke therapy and prognosis outcomes largely depend on the time periods after symptom onset. This study aims to explore the difference of global gene expression profiles and impairment of biological functions between short-term and long-term after stroke onset. We compared three short-term (3 h, 5 h and 24 h) and a long-term (6-month) gene expression levels by a multi-platform microarray data integration method. RankProd was used to calculate the differentially expressed genes between stroke patients and controls. DAVID Bioinformatics Resources was utilized to determine affected biological functions. Consensus cluster and hierarchical cluster methods were employed to compare the gene expression patterns of the commonly biological functions among these four time course groups. The results showed that severe impairment of inflammation and immune related functions in 5 h and 24 h after symptom onset. However, these functions were less affected in the 3 h and the 6-month groups. In addition, several key genes (CCL20, THBS1, EREG, and IL6 et al.) were dramatically down-regulated in 5 h and 24 h groups, whereas these genes showed no change or even a slight contrary expression in 3 h or 6-month groups. This study has identified the large differences of altered immune and inflammation functions based on gene levels between short and long-term after stroke onset. The findings provide valuable insight into the clinical practice and prognosis evaluation of ischemic stroke.

  12. Impact of Mast Cells in Mucosal Immunity of Intestinal Inflammation: Inhibitory Effect of IL-37.

    PubMed

    Conti, Pio; Caraffa, Alessandro; Ronconi, Gianpaolo; Kritas, Spiros K; Mastrangelo, Filiberto; Tettamanti, Lucia; Theoharides, Theoharis C

    2017-09-29

    Mast cells (MCs) are implicated in an array of diseases, especially those involving a mucosal surface, including intestine. On appropriate activation from cytoplasmatic granules, MCs release preformed chemical mediators and generate inflammatory lipids and cytokines/chemokines. Intracellular signal and Lyn activation pathways can cause the degranulation of MCs and the generation of lipid mediators and cytokines/chemokines. MCs undergo maturation and polarization in gut mucosal surfaces where they are constitutively present, and can alter intestinal permeability, an important factor in many inflammatory mucosal disorders including autoimmune diseases. On the other hand, since they are immununosuppressive, MCs have potential anti-inflammatory properties by producing TGF-β1, interleukin (IL)-4, IL-10, IL-13 and histamine. In addition, MC chymase, located in the sub-mucosa, acts on intestinal permeability by protecting the bowel. To carry the inflammatory response, MCs need to be attracted by CC chemokines such as RANTES (CCL5) and MCP-1(CCL2), an effect absent in genetically W/W(v) mast cell-deficient mice, where the inflammatory reaction is not present. Here, we focused our attention on recent findings regarding how MCs can initiate and develop the cellular immune response in the gut and mediate inflammation, an effect that can be inhibited by IL-37. These studies contribute to clarify the mechanisms by which MCs profoundly affect immunity and inflammation of the intestine. Copyright © 2017. Published by Elsevier B.V.

  13. Circulating immune/inflammation markers in Chinese workers occupationally exposed to formaldehyde

    PubMed Central

    Seow, Wei Jie; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Hu, Wei; Bassig, Bryan A.; Ji, Zhiying; Shiels, Meredith S.; Kemp, Troy J.; Shen, Min; Qiu, Chuangyi; Reiss, Boris; Beane Freeman, Laura E.; Blair, Aaron; Kim, Christopher; Guo, Weihong; Wen, Cuiju; Li, Laiyu; Pinto, Ligia A.; Huang, Hanlin; Smith, Martyn T.; Hildesheim, Allan; Rothman, Nathaniel; Lan, Qing

    2015-01-01

    Background. Formaldehyde has been classified as a human myeloid leukemogen. However, the mechanistic basis for this association is still debated. Objectives. We aimed to evaluate whether circulating immune/inflammation markers were altered in workers occupationally exposed to formaldehyde. Methods. Using a multiplexed bead-based assay, we measured serum levels of 38 immune/inflammation markers in a cross-sectional study of 43 formaldehyde-exposed and 51 unexposed factory workers in Guangdong, China. Linear regression models adjusting for potential confounders were used to compare marker levels in exposed and unexposed workers. Results. We found significantly lower circulating levels of two markers among exposed factory workers compared with unexposed controls that remained significant after adjusting for potential confounders and multiple comparisons using a false discovery rate of 10%, including chemokine (C-X-C motif) ligand 11 (36.2 pg/ml in exposed versus 48.4 pg/ml in controls, P = 0.0008) and thymus and activation regulated chemokine (52.7 pg/ml in exposed versus 75.0 pg/ml in controls, P = 0.0028), suggesting immunosuppression among formaldehyde-exposed workers. Conclusions. Our findings are consistent with recently emerging understanding that immunosuppression might be associated with myeloid diseases. These findings, if replicated in a larger study, may provide insights into the mechanisms by which formaldehyde promotes leukemogenesis. PMID:25908645

  14. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22.

    PubMed

    Sonnenberg, Gregory F; Fouser, Lynette A; Artis, David

    2011-05-01

    The maintenance of barrier function at exposed surfaces of the mammalian body is essential for limiting exposure to environmental stimuli, preventing systemic dissemination of commensal and pathogenic microbes and retaining normal homeostasis of the entire body. Indeed, dysregulated barrier function is associated with many infectious and inflammatory diseases, including psoriasis, influenza, inflammatory bowel disease and human immunodeficiency virus, which collectively afflict millions of people worldwide. Studies have shown that interleukin 22 (IL-22) is expressed at barrier surfaces and that its expression is dysregulated in certain human diseases, which suggests a critical role in the maintenance of normal barrier homeostasis. Consistent with that, studies of mouse model systems have identified a critical role for signaling by IL-22 through its receptor (IL-22R) in the promotion of antimicrobial immunity, inflammation and tissue repair at barrier surfaces. In this review we will discuss how the expression of IL-22 and IL-22R is regulated, the functions of the IL-22-IL-22R pathway in regulating immunity, inflammation and tissue homeostasis, and the therapeutic potential of targeting this pathway in human disease.

  15. The role of inflammation in intravenous immune globulin-mediated hemolysis.

    PubMed

    Pendergrast, Jacob; Willie-Ramharack, Kezia; Sampson, Lorna; Laroche, Vincent; Branch, Donald R

    2015-07-01

    Intravenous immune globulin (IVIG) therapy has shown great success in a number of autoimmune and inflammatory conditions and its use continues to increase worldwide. There is growing awareness of significant side effects of high-dose IVIG: however, particularly severe hemolysis in patients that are non-group O. It has been proposed that IVIG-associated hemolysis may be heralded by an existing inflammatory condition. In the work presented herein, we have provided a review of the pathophysiology of inflammation, particularly as it applies in immune-mediated red blood cell hemolysis, and a summary of previous publications that suggest an association between IVIG-mediated hemolysis and a state of existing inflammation. In addition, preliminary results from a prospective study to address the mechanism of IVIG-associated hemolysis are provided. These preliminary data support the idea of an existing inflammatory condition preceding overt hemolysis after high-dose IVIG therapy that: 1) is restricted to non-group O patients, 2) is seen when using IVIG doses of more than 2 g/kg, 3) involves an activated mononuclear phagocyte system, 4) may be presaged by a significant increase in the anti-inflammatory cytokine interleukin-1 receptor agonist, and 5) is independent of secretor status.

  16. Regulation of inflammation, autoimmunity, and infection immunity by HVEM-BTLA signaling.

    PubMed

    Shui, Jr-Wen; Steinberg, Marcos W; Kronenberg, Mitchell

    2011-04-01

    The HVEM, or TNFRSF14, is a membrane-bound receptor known to activate the NF-κB pathway, leading to the induction of proinflammatory and cell survival-promoting genes. HVEM binds several ligands that are capable of mediating costimulatory pathways, predominantly through its interaction with LIGHT (TNFSF14). However, it can also mediate coinhibitory effects, predominantly by interacting with IGSF members, BTLA or CD160. Therefore, it can function like a "molecular switch" for various activating or inhibitory functions. Furthermore, recent studies suggest the existence of bidirectional signaling with HVEM acting as a ligand for signaling through BTLA, which may act as a ligand in other contexts. Bidirectional signaling, together with new information indicating signaling in cis by cells that coexpress HVEM and its ligands, makes signaling within a HVEM-mediated network complicated, although potentially rich in biology. Accumulating in vivo evidence has shown that HVEM-mediated, coinhibitory signaling may be dominant over HVEM-mediated costimulatory signaling. In several disease models the absence of HVEM-BTLA signaling predominantly resulted in severe mucosal inflammation in the gut and lung, autoimmune-like disease, and impaired immunity during bacterial infection. Here, we will summarize the current view about how HVEM-BTLA signaling is involved in the regulation of mucosal inflammation, autoimmunity, and infection immunity.

  17. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  18. Was the evolutionary road towards adaptive immunity paved with endothelium?

    PubMed

    van Niekerk, Gustav; Davis, Tanja; Engelbrecht, Anna-Mart

    2015-09-04

    The characterization of a completely novel adaptive immune system (AIS) in jawless vertebrates (hagfish and lampreys) presents an excellent opportunity for exploring similarities and differences in design principles. It also highlights a somewhat neglected question: Why did vertebrates, representing only 5 % of all animals, evolve a system as complex as an AIS twice, whereas invertebrates failed to do so? A number of theories have been presented in answer to this question. However, these theories either fail to explain why invertebrates would not similarly develop an AIS and are confounded by issues of causality, or have been challenged by more recent findings. Instead of identifying a selective pressure that would drive the development of an AIS, we hypothesise that invertebrates failed to develop an AIS because of the evolutionary constraints imposed by these animals' physiological context. In particular, we argue that a number of vascular innovations in vertebrates allowed the effective implementation of an AIS. A lower blood volume allowed for a higher antibody titer (i.e., less 'diluted' antibody concentration), rendering these immune effectors more cost-effective. In addition, both a high circulatory velocity and the ability of endothelium to coordinate immune cell trafficking promote 'epitope sampling'. Collectively, these innovations allowed the effective implementation of AIS in vertebrates. The hypothesis posits that a number of innovations to the vascular system provided the release from constraints which allowed the implementation of an AIS. However, this hypothesis would be refuted by phylogenetic analysis demonstrating that the AIS preceded these vascular innovations. The hypothesis also suggests that vascular performance would have an impact on the efficacy of an AIS, thus predicting a correlation between the vascular parameters of a species and its relative investment in AIS. The contribution of certain vascular innovations in augmenting immune

  19. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging.

    PubMed

    De la Fuente, Mónica; Miquel, Jaime

    2009-01-01

    The aging process is one of the best examples of the effects of a deterioration of homeostasis, since aging is accompanied by an impairment of the physiological systems including the homeostatic systems such as the immune system. We propose an integrative theory of aging providing answers to the how (oxidation), where first (mitochondria of differentiated cells) and why (pleiotropic genes) this process occurs. In agreement with this oxidation-mitochondrial theory of aging, we have observed that the age-related changes of immune functions have as their basis an oxidative and inflammatory stress situation, which has among its intracellular mechanisms the activation of NFkappaB in immune cells. Moreover, we have also observed that several functions of immune cells are good markers of biological age and predictors of longevity. Based on the above we have proposed the theory of oxidation-inflammation as the main cause of aging. Accordingly, the chronic oxidative stress that appears with age affects all cells and especially those of the regulatory systems, such as the nervous, endocrine and immune systems and the communication between them. This fact prevents an adequate homeostasis and, therefore, the preservation of health. We have also proposed a key involvement of the immune system in the aging process of the organism, concretely in the rate of aging, since there is a relation between the redox state and functional capacity of the immune cells and the longevity of individuals. Moreover, the role of the immune system in senescence could be of universal application. A confirmation of the central role of the immune system in oxi-inflamm-aging is that the administration of adequate amounts of antioxidants in the diet, improves the immune functions, decreasing their oxidative stress, and consequently increases the longevity of the subjects.

  20. The role of uric acid as an endogenous danger signal in immunity and inflammation.

    PubMed

    Ghaemi-Oskouie, Faranak; Shi, Yan

    2011-04-01

    Gout is an ancient disease that still plagues us. Its pathogenic culprit, uric acid crystal deposition in tissues, is a strong inflammatory stimulant. In recent years, the mechanisms through which uric acid crystals promote inflammation have been a subject of increasing interest among rheumatologists and immunologists. Uric acid has been identified as an endogenous adjuvant that drives immune responses in the absence of microbial stimulation. Because uric acid is a ubiquitous metabolite that is produced in high quantities upon cellular injury, the ramifications of its effects may be considerable in health and in disease. Uric acid crystals also have been shown to trigger interleukin-1β-mediated inflammation via activation of the NOD-like receptor protein (NLRP)3 inflammasome, a multimolecular complex whose activation appears to be central to many pathological inflammatory conditions. In this article, we review the possible mechanisms of uric acid-mediated inflammation and offer some historical perspectives on what has been learned about the complex effects of a relatively simple substance.

  1. The Role of Uric Acid as an Endogenous Danger Signal in Immunity and Inflammation

    PubMed Central

    Ghaemi-Oskouie, Faranak

    2011-01-01

    Gout is an ancient disease that still plagues us. Its pathogenic culprit, uric acid crystal deposition in tissues, is a strong inflammatory stimulant. In recent years, the mechanisms through which uric acid crystals promote inflammation have been a subject of increasing interest among rheumatologists and immunologists. Uric acid has been identified as an endogenous adjuvant that drives immune responses in the absence of microbial stimulation. Because uric acid is a ubiquitous metabolite that is produced in high quantities upon cellular injury, the ramifications of its effects may be considerable in health and in disease. Uric acid crystals also have been shown to trigger interleukin-1β–mediated inflammation via activation of the NOD-like receptor protein (NLRP)3 inflammasome, a multimolecular complex whose activation appears to be central to many pathological inflammatory conditions. In this article, we review the possible mechanisms of uric acid–mediated inflammation and offer some historical perspectives on what has been learned about the complex effects of a relatively simple substance. PMID:21234729

  2. Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer.

    PubMed

    Liu, Wenli; Rodgers, Griffin P

    2016-06-01

    Olfactomedin 4 (OLFM4) is an olfactomedin domain-containing glycoprotein. Multiple signaling pathways and factors, including NF-κB, Wnt, Notch, PU.1, retinoic acids, estrogen receptor, and miR-486, regulate its expression. OLFM4 interacts with several other proteins, such as gene associated with retinoic-interferon-induced mortality 19 (GRIM-19), cadherins, lectins, nucleotide oligomerization domain-1 (NOD1) and nucleotide oligomerization domain-2 (NOD2), and cathepsins C and D, known to regulate important cellular functions. Recent investigations using Olfm4-deficient mouse models have provided important clues about its in vivo biological functions. Olfm4 inhibited Helicobacter pylori-induced NF-κB pathway activity and inflammation and facilitated H. pylori colonization in the mouse stomach. Olfm4-deficient mice exhibited enhanced immunity against Escherichia coli and Staphylococcus aureus infection. Olfm4 deletion in a chronic granulomatous disease mouse model rescued them from S. aureus infection. Olfm4 deletion in mice treated with azoxymethane/dextran sodium sulfate led to robust intestinal inflammation and intestinal crypt hyperplasia. Olfm4 deletion in Apc (Min/+) mice promoted intestinal polyp formation as well as adenocarcinoma development in the distal colon. Further, Olfm4-deficient mice spontaneously developed prostatic epithelial lesions as they age. OLFM4 expression is correlated with cancer differentiation, stage, metastasis, and prognosis in a variety of cancers, suggesting its potential clinical value as an early-stage cancer marker or a therapeutic target. Collectively, these data suggest that OLFM4 plays important roles in innate immunity against bacterial infection, gastrointestinal inflammation, and cancer. In this review, we have summarized OLFM4's initial characterization, expression, regulation, protein interactions, and biological functions.

  3. Genetic variation in innate immunity and inflammation pathways associated with lung cancer risk.

    PubMed

    Shiels, Meredith S; Engels, Eric A; Shi, Jianxin; Landi, Maria Teresa; Albanes, Demetrius; Chatterjee, Nilanjan; Chanock, Stephen J; Caporaso, Neil E; Chaturvedi, Anil K

    2012-11-15

    Pulmonary inflammation may contribute to lung cancer etiology. The authors conducted a broad evaluation of the association of single nucleotide polymorphisms (SNPs) in innate immunity and inflammation pathways with lung cancer risk and conducted comparisons with a lung cancer genome-wide association study (GWAS). In total, 378 patients with lung cancer (cases) and a group of 450 controls from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial were included. A proprietary oligonucleotide pool assay was used to genotype 1429 SNPs. Odds ratios and 95% confidence intervals were estimated for each SNP, and P values for trend (P(trend) ) were calculated. For statistically significant SNPs (P(trend) < .05), the results were replicated with genotyped or imputed SNPs in the GWAS, and P values were adjusted for multiple testing. In the PLCO analysis, a significant association was observed between lung cancer and 81 SNPs located in 44 genes (P(trend) < .05). Of these 81 SNPS, there was evidence for confirmation in the GWAS for 10 SNPs. However, after adjusting for multiple comparisons, the only SNP that retained a significant association with lung cancer in the replication phase was reference SNP rs4648127 (nuclear factor of kappa light polypeptide gene enhancer of B-cells 1 [NFKB1]) (multiple testing-adjusted P(trend) = .02). The cytosine-thymine (CT)/TT genotype of NFKB1 was associated with reduced odds of lung cancer in the PLCO study (odds ratio, 0.56; 95% confidence interval, 0.37-0.86) and the in the GWAS (odds ratio, 0.79; 95% confidence interval, 0.69-0.90). A significant association was observed between a variant in the NFKB1 gene and the risk of lung cancer. The current findings add to evidence implicating inflammation and immunity in lung cancer etiology. Published 2012 American Cancer Society.

  4. Influenza-induced innate immunity: regulators of viral replication, respiratory tract pathology & adaptive immunity

    PubMed Central

    Oslund, Karen L; Baumgarth, Nicole

    2011-01-01

    Influenza virus infections usually cause mild to moderately severe respiratory disease, however some infections, like those involving the avian H5N1 virus, can cause massive viral pneumonia, systemic disease and death. The innate immune response of respiratory tract resident cells is the first line of defense and limits virus replication. Enhanced cytokine and chemokine production following infection, however, appears to underlie much of the pathology that develops after infection with highly pathogenic strains. A so-called `cytokine storm' can damage the lung tissue and cause systemic disease, despite the control of viral replication. By summarizing current knowledge of the innate responses mounted to influenza infection, this review highlights the importance of the respiratory tract epithelial cells as regulators of innate and adaptive immunity to influenza virus. PMID:21909336

  5. Pathogenesis of innate immunity and adaptive immunity in the mouse model of experimental autoimmune uveitis.

    PubMed

    Bi, Hong-Sheng; Liu, Zheng-Feng; Cui, Yan

    2015-05-01

    Experimental autoimmune uveitis, a well-established model for human uveitis, is similar to human uveitis in many pathological features. Studies concerning the mechanisms of experimental autoimmune uveitis would cast a light on the pathogenesis of human uveitis as well as the search for more effective therapeutic agents. The cellular components of innate immunity include natural killer cells, gamma delta T lymphocytes, antigen-presenting dendritic cells, phagocytic macrophages, and granulocytes. It is believed that T cells are central in the generation of human uveitis. It has already become clear that CD4(+) effecter cells that predominantly produce interleukin-17 (the so-called Th17 cells) may play an important role in uveitis. In addition, the occurrence and recurrence of uveitis depends on a complex interplay between the elements of innate and adaptive immunity.

  6. The role of the adaptive immune system in regulation of gut microbiota.

    PubMed

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-07-01

    The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system. Conversely, the immune system, particularly the adaptive immune system, plays a key role in shaping the repertoire of gut microbiota. The fitness of host immune system is reflected in the gut microbiota, and deficiencies in either innate or adaptive immunity impact on diversity and structures of bacterial communities in the gut. Here, we discuss the mechanisms that underlie this reciprocity and emphasize how the adaptive immune system via immunoglobulins (i.e. IgA) contributes to diversification and balance of gut microbiota required for immune homeostasis.

  7. Natural killer cells remember: an evolutionary bridge between innate and adaptive immunity?

    PubMed

    Sun, Joseph C; Lanier, Lewis L

    2009-08-01

    Since their discovery three decades ago, NK cells have been classified as cells of the innate immune system. NK cells were shown to respond rapidly and non-specifically to infection, and were thought to act as a functional "bridge" to sustain the early innate immune response until the later adaptive immune responses could be mounted. In light of new findings showing how NK cells possess nearly all of the features of adaptive immunity including memory, we propose the placement of NK cells as an "evolutionary bridge" between innate and adaptive immunity.

  8. Inflammation in lung after acute myocardial infarction is induced by dendritic cell-mediated immune response.

    PubMed

    Hu, L J; Ren, W Y; Shen, Q J; Ji, H Y; Zhu, L

    2017-01-01

    The present study was performed to describe the changes of lung tissues in mice with acute myocardial infarction (AMI) and also explain the cell mechanism involved in inflammation in lung. AMI was established by left coronary ligation in mice. Then mice were divided into three groups: control group, MW1 group (sampling after surgery for one week) and MW2 group (sampling after surgery for two weeks). Afterwards, measurement of lung weight and lung histology, cell sorting in bronchoalveolar lavage (BAL) fluid and detection of several adhesive molecules, inflammatory molecules as well as enzyme associated with inflammation were performed. Moreover, dendritic cells (DCs) were isolated from bone marrow of C57B/L6 mice. After incubating with necrotic myocardium, the expression of antigen presenting molecules, co-stimulatory molecules and inflammatory molecules were detected by flow cytometry or immunohistochemistry in DCs. We also detected T-cell proliferation after incubating with necrotic myocardium-treated DCs. AMI induced pathological changes of lung tissue and increased inflammatory cell amount in BAL fluid. AMI also increased the expression of several inflammatory factors, adhesive molecules and enzymes associated with inflammation. CD11c and TLR9, which are DC surface markers, showed a significantly increased expression in mice with AMI. Additionally, necrotic myocardium significantly increased the expression of co-stimulatory factors including CD83 and CD80, inflammatory cytokines including TNF-α, IFN-γ and NF-κB in DCs. Furthermore, DCs treated with necrotic myocardium also significantly promoted T-cell proliferation. AMI induced inflammation in lung and these pathological changes were mediated by DC-associated immune response.

  9. Recipient inflammation affects the frequency and magnitude of immunization to transfused red blood cells.

    PubMed

    Hendrickson, Jeanne E; Desmarets, Maxime; Deshpande, Seema S; Chadwick, Traci E; Hillyer, Christopher D; Roback, John D; Zimring, James C

    2006-09-01

    Most alloantigens on transfused red blood cells (RBCs) are weakly immunogenic, with only a 2 to 6 percent overall immunization rate even in patients receiving multiple transfusions. Although recipient genetics may contribute to responder and/or nonresponder status, in most cases HLA type does not predict humoral response to RBC antigens. In contrast, rates of alloimmunization do correspond to the underlying disease status of transfusion recipients, suggesting that acquired host factors may play an important role. In this context, it was hypothesized that the inflammatory status of a transfusion recipient would influence immunization to transfused RBCs. A novel murine model for alloimmunization to RBC antigens was developed with the mHEL mouse, which expresses hen egg lysozyme (HEL) as a model blood group antigen. Leukoreduced mHEL RBCs were transfused into wild-type recipient mice, and anti-HEL responses were monitored. To test the stated hypothesis, some recipient animals were injected with polyinosinic polycytidylic acid (poly(I:C)), a synthetic double-stranded RNA molecule that induces viral-like inflammation. Similar to the immunogenicity of most RBC antigens in humans, transfusion of mHEL RBCs into uninflamed mice was only a weak immunogen. In contrast, poly(I:C)-treated mice had a significant increase in both the frequency and the magnitude of alloimmunization to the mHEL antigen. These findings demonstrate that recipient inflammation with poly(I:C) significantly enhances humoral immunization to transfused alloantigens in a murine model. Moreover, these data suggest that the inflammatory status of human transfusion recipients may regulate the immunogenicity of transfused RBCs.

  10. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    PubMed

    Béland, Kathie; Lapierre, Pascal; Djilali-Saiah, Idriss; Alvarez, Fernando

    2012-01-01

    The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  11. Thymosin alpha1: an endogenous regulator of inflammation, immunity, and tolerance.

    PubMed

    Romani, Luigina; Bistoni, Francesco; Montagnoli, Claudia; Gaziano, Roberta; Bozza, Silvia; Bonifazi, Pierluigi; Zelante, Teresa; Moretti, Silvia; Rasi, Guido; Garaci, Enrico; Puccetti, Paolo

    2007-09-01

    Thymosin alpha1 (Talpha1), first described and characterized by Allan Goldstein in 1972, is used worldwide for the treatment of some immunodeficiencies, malignancies, and infections. Although Talpha1 has shown a variety of effects on cells and pathways of the immune system, its central role in modulating dendritic cell (DC) function has only recently been appreciated. As DCs have the ability to sense infection and tissue stress and to translate collectively this information into an appropriate immune response, an action on DCs would predict a central role for Talpha1 in inducing different forms of immunity and tolerance. Recent results have shown that Talpha1: (a) primed DCs for antifungal Th1 resistance through Toll-like receptor (TLR)/MyD88-dependent signaling and this translated in vivo in protection against aspergillosis; (b) activated plasmacytoid DCs (pDC) via the TLR9/MyD88-dependent viral recognition, thus leading to the activation of interferon regulatory factor 7 and the promotion of the IFN-alpha/IFN-gamma-dependent effector pathway, which resulted in vivo in protection against primary murine cytomegalovirus infection; (c) induced indoleamine 2,3-dioxygenase activity in DCs, thus affecting tolerization toward self as well as microbial non-self-antigens, and this resulted in vivo in transplantation tolerance and protection from inflammatory allergy. Talpha1 is produced in vivo by cleavage of prothymosin alpha in diverse mammalian tissues. Our data qualify Talpha1 as an endogenous regulator of immune homeostasis and suggest that instructive immunotherapy with Talpha1, via DCs and tryptophan catabolism, could be at work to control inflammation, immunity, and tolerance in a variety of clinical settings.

  12. BACH transcription factors in innate and adaptive immunity.

    PubMed

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4(+) regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  13. CRISPR-Cas: an adaptive immunity system in prokaryotes

    PubMed Central

    Makarova, Kira S

    2009-01-01

    Most of the archaea and numerous bacteria possess an elaborate system of adaptive immunity to mobile genetic elements known as the CRISPR (clustered regularly interspaced short palindromic repeats)-associated system (CRISPR-Cas), which consists of arrays of short repeats interspersed with unique DNA spacers and adjacent operons encompassing CRISPR-associated (cas) genes with predicted and, in some cases, experimentally validated nuclease, helicase, and polymerase activities. The system functions by integrating fragments of alien DNA between the repeats and employing their transcripts to degrade the DNA of the respective invading elements via an RNA interference-like mechanism. The CRISPR-Cas system is a case of apparent Lamarckian inheritance. PMID:20556198

  14. Platelets: versatile modifiers of innate and adaptive immune responses to transplants

    PubMed Central

    Baldwin, William M; Kuo, Hsiao-Hsuan; Morrell, Craig N

    2011-01-01

    Purpose of review Over the last decade, there has been mounting experimental data demonstrating that platelets contribute to acute vascular inflammation and atherosclerosis. This review focuses on recent findings that link platelets to inflammatory responses of relevance to transplants. Recent findings Although it has been known that platelets modify vascular inflammation by secretion of soluble mediators and release of microparticles, new aspects of these mechanisms are being defined. For example, platelet-derived RANTES (CCL5) not only functions in homomers, but also forms more potent heteromers with Platelet Factor 4 (CXCL4). This heteromer formation can be inhibited with small molecules. New findings also demonstrate heterologous interactions of platelet microparticles with leukocytes that may increase their range of impact. By attaching to neutrophils, platelet microparticles appear to migrate out of blood vessels and into other compartments where they stimulate secretion of cytokines. Contact of platelets with extracellular matrix also can result in cleavage of hyaluronan into fragments that serve as an endogenous danger signal. Summary Recent findings have expanded the range of interactions by which platelets can modify innate and adaptive immune responses to transplants. PMID:21157344

  15. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    PubMed

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions.

  16. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets.

    PubMed

    Pichler, Raimund; Afkarian, Maryam; Dieter, Brad P; Tuttle, Katherine R

    2017-04-01

    Increasing incidences of obesity and diabetes have made diabetic kidney disease (DKD) the leading cause of chronic kidney disease and end-stage renal disease worldwide. Despite current pharmacological treatments, including strategies for optimizing glycemic control and inhibitors of the renin-angiotensin system, DKD still makes up almost one-half of all cases of end-stage renal disease in the United States. Compelling and mounting evidence has clearly demonstrated that immunity and inflammation play a paramount role in the pathogenesis of DKD. This article reviews the involvement of the immune system in DKD and identifies important roles of key immune and inflammatory mediators. One of the most recently identified biomarkers is serum amyloid A, which appears to be relatively specific for DKD. Novel and evolving treatment approaches target protein kinases, transcription factors, chemokines, adhesion molecules, growth factors, advanced glycation end-products, and other inflammatory molecules. This is the beginning of a new era in the understanding and treatment of DKD, and we may have finally reached a tipping point in our fight against the growing burden of DKD. Copyright © 2017 the American Physiological Society.

  17. Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation

    PubMed Central

    Sakelliou, Alexandra; Athanailidis, Ioannis; Tsoukas, Dimitrios; Chatzinikolaou, Athanasios; Draganidis, Dimitris; Jamurtas, Athanasios Z.; Liacos, Christina; Mandalidis, Dimitrios; Stamatelopoulos, Kimon; Dimopoulos, Meletios A.; Mitrakou, Asimina

    2016-01-01

    We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation. PMID:27974950

  18. Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation.

    PubMed

    Sakelliou, Alexandra; Fatouros, Ioannis G; Athanailidis, Ioannis; Tsoukas, Dimitrios; Chatzinikolaou, Athanasios; Draganidis, Dimitris; Jamurtas, Athanasios Z; Liacos, Christina; Papassotiriou, Ioannis; Mandalidis, Dimitrios; Stamatelopoulos, Kimon; Dimopoulos, Meletios A; Mitrakou, Asimina

    2016-01-01

    We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA(+) macrophages, and 11B(+) macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.

  19. Sec13 Regulates Expression of Specific Immune Factors Involved in Inflammation In Vivo

    PubMed Central

    Moreira, Thais G.; Zhang, Liang; Shaulov, Lihi; Harel, Amnon; Kuss, Sharon K.; Williams, Jessica; Shelton, John; Somatilaka, Bandarigoda; Seemann, Joachim; Yang, Jue; Sakthivel, Ramanavelan; Nussenzveig, Daniel R.; Faria, Ana M. C.; Fontoura, Beatriz M. A.

    2015-01-01

    The Sec13 protein functions in various intracellular compartments including the nuclear pore complex, COPII-coated vesicles, and inside the nucleus as a transcription regulator. Here we developed a mouse model that expresses low levels of Sec13 (Sec13H/−) to assess its functions in vivo, as Sec13 knockout is lethal. These Sec13 mutant mice did not present gross defects in anatomy and physiology. However, the reduced levels of Sec13 in vivo yielded specific immunological defects. In particular, these Sec13 mutant mice showed low levels of MHC I and II expressed by macrophages, low levels of INF-γ and IL-6 expressed by stimulated T cells, and low frequencies of splenic IFN-γ+CD8+ T cells. In contrast, the levels of soluble and membrane-bound TGF-β as well as serum immunoglobulin production are high in these mice. Furthermore, frequencies of CD19+CD5-CD95+ and CD19+CD5-IL-4+ B cells were diminished in Sec13H/− mice. Upon stimulation or immunization, some of the defects observed in the naïve mutant mice were compensated. However, TGF-β expression remained high suggesting that Sec13 is a negative modulator of TGF-β expression and of its immunosuppressive functions on certain immune cells. In sum, Sec13 regulates specific expression of immune factors with key functions in inflammation. PMID:26631972

  20. Adaptive immunity and histopathology in frog virus 3-infected Xenopus

    SciTech Connect

    Robert, Jacques . E-mail: robert@mail.rochester.edu; Morales, Heidi; Buck, Wayne; Cohen, Nicholas; Marr, Shauna; Gantress, Jennifer

    2005-02-20

    Xenopus has been used as an experimental model to evaluate the contribution of adaptive cellular immunity in amphibian host susceptibility to the emerging ranavirus FV3. Conventional histology and immunohistochemistry reveal that FV3 has a strong tropism for the proximal tubular epithelium of the kidney and is rarely disseminated elsewhere in Xenopus hosts unless their immune defenses are impaired or developmentally immature as in larvae. In such cases, virus is found widespread in most tissues. Adults, immunocompromised by depletion of CD8{sup +} T cells or by sub-lethal {gamma}-irradiation, show increased susceptibility to FV3 infection. Larvae and irradiated (but not normal) adults can be cross-infected through water by infected adult conspecifics (irradiated or not). The natural MHC class I deficiency and the absence of effect of anti-CD8 treatment on both larval CD8{sup +} T cells and larval susceptibility to FV3 are consistent with an inefficient CD8{sup +} T cell effector function during this developmental period.

  1. GATA-3 function in innate and adaptive immunity.

    PubMed

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.

  2. Dynamics of adaptive immunity against phage in bacterial populations

    PubMed Central

    Balasubramanian, Vijay

    2017-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations exhibit damped oscillations, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a “winner-take-all” scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition probability. PMID:28414716

  3. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  4. The Fungal Quorum-Sensing Molecule Farnesol Activates Innate Immune Cells but Suppresses Cellular Adaptive Immunity

    PubMed Central

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin

    2015-01-01

    ABSTRACT Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. PMID:25784697

  5. Upregulation of HERV-K is Linked to Immunity and Inflammation in Pulmonary Arterial Hypertension.

    PubMed

    Saito, Toshie; Miyagawa, Kazuya; Chen, Shih-Yu; Tamosiuniene, Rasa; Wang, Lingli; Sharp, Orr; Samayoa, Erik; Harada, Daisuke; Moonen, Jan-Renier A J; Cao, Aiqin; Chen, Pin-I; Hennigs, Jan K; Gu, Mingxia; Li, Caiyun G; Leib, Ryan D; Li, Dan; Adams, Christopher M; Del Rosario, Patricia A; Bill, Matthew A; Haddad, Francois; Montoya, Jose G; Robinson, William; Fantl, Wendy J; Nolan, Garry P; Zamanian, Roham T; Nicolls, Mark R; Chiu, Charles Y; Ariza, Maria E; Rabinovitch, Marlene

    2017-09-21

    Background -Immune dysregulation has been linked to occlusive vascular remodeling in pulmonary arterial hypertension (PAH) that is hereditary, idiopathic or associated with other conditions. Circulating autoantibodies, lung perivascular lymphoid tissue and elevated cytokines have been related to PAH pathogenesis but without clear understanding of how these abnormalities are initiated, perpetuated and connected in the progression of disease. We therefore set out to identify specific target antigens in PAH lung immune complexes as a starting point toward resolving these issues to better inform future application of immunomodulatory therapies. Methods -Lung immune complexes were isolated and PAH target antigens were identified by liquid chromatography tandem mass spectrometry (LCMS), confirmed by ELISA, and localized by confocal microscopy. One PAH antigen linked to immunity and inflammation was pursued and a link to PAH pathophysiology was investigated by next generation sequencing, functional studies in cultured monocytes and endothelial cells (EC) and hemodynamic and lung studies in a rat. Results -SAM domain and HD1 domain-containing protein (SAMHD1), an innate immune factor that suppresses HIV replication was identified and confirmed as highly expressed in immune complexes from 16 hereditary and idiopathic PAH vs. 12 control lungs. Elevated SAMHD1 was localized to endothelial cells (EC), perivascular dendritic cells and macrophages and SAMHD1 antibodies were prevalent in tertiary lymphoid tissue. An unbiased screen using metagenomic sequencing related SAMHD1 to increased expression of human endogenous retrovirus K (HERV-K) in PAH vs. control lungs (n=4 each). HERV-K envelope and deoxyuridine triphosphate nucleotidohydrolase (dUTPase) mRNAs were elevated in PAH vs. control lungs (n=10) and proteins were localized to macrophages. HERV-K dUTPase induced SAMHD1 and pro-inflammatory cytokines (e.g., IL6, IL1β and TNFα) in circulating monocytes and pulmonary arterial

  6. Insulin-like growth factor-1 endues monocytes with immune suppressive ability to inhibit inflammation in the intestine

    PubMed Central

    Ge, Rong-Ti; Mo, Li-Hua; Wu, Ruijin; Liu, Jiang-Qi; Zhang, Huan-Ping; Liu, Zhigang; Liu, Zhanju; Yang, Ping-Chang

    2015-01-01

    The pathogenesis of some chronic inflammation such as inflammatory bowel disease is unclear. Insulin-like growth factor-1 (IGF1) has active immune regulatory capability. This study aims to investigate into the mechanism by which IGF1 modulates the monocyte (Mo) properties to inhibit immune inflammation in the intestine. In this study, the production of IGF1 by intestinal epithelial cells was evaluated by real time RT-PCR and Western blotting. Mos were analyzed by flow cytometry. A mouse colitis model was created with trinitrobenzene sulfonic acid. The results showed that mouse IECs produced IGF1, which could be up regulated by exposure to CpG-ODN (CpG-oligodeoxynueleotides) in the culture. Culture the CpG-ODN-primed IEC cells and Mos or exposure of Mos to IGF1 in the culture induced the Mos to express IL-10. The IGF1-primed Mos showed the immune suppressive effect on inhibiting the immune inflammation in the mouse colon. In conclusion, the IGF1-primed Mos are capable of suppressing immune inflammation in the intestine. PMID:25588622

  7. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    PubMed

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  8. Indoleamine 2,3-dioxygenase pathways of pathgenic inflammation and immune escape in cancer

    PubMed Central

    Prendergast, George C.; Smith, Courtney; Thomas, Sunil; Mandik-Nayak, Laura; Laury-Kleintop, Lisa; Metz, Richard; Muller, Alexander J.

    2014-01-01

    Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells (Treg) and myeloid-derived suppressor cells (MDSC), and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor AhR, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-β signaling. Small molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in GIST has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer. PMID:24711084

  9. Role for Sumoylation in Systemic Inflammation and Immune Homeostasis in Drosophila Larvae

    PubMed Central

    Paddibhatla, Indira; Lee, Mark J.; Govind, Shubha

    2010-01-01

    To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failure of the latter develops into systemic inflammatory disease, we correlated parasitic wasp-induced changes in the Drosophila larva with systemic chronic conditions in sumoylation-deficient mutants. We have previously reported that loss of either Cactus, the Drosophila (IκB) protein or Ubc9, the SUMO-conjugating enzyme, leads to constitutive activation of the humoral and cellular pathways, hematopoietic overproliferation and tumorogenesis. Here we report that parasite infection simultaneously activates NF-κB-dependent transcription of Spätzle processing enzyme (SPE) and cactus. Endogenous Spätzle protein (the Toll ligand) is expressed in immune cells and excessive SPE or Spätzle is pro-inflammatory. Consistent with this function, loss of Spz suppresses Ubc9− defects. In contrast to the pro-inflammatory roles of SPE and Spätzle, Cactus and Ubc9 exert an anti-inflammatory effect. We show that Ubc9 maintains steady state levels of Cactus protein. In a series of immuno-genetic experiments, we demonstrate the existence of a robust bidirectional interaction between blood cells and the fat body and propose that wasp infection activates Toll signaling in both compartments via extracellular activation of Spätzle. Within each organ, the IκB/Ubc9-dependent inhibitory feedback resolves immune signaling and restores homeostasis. The loss of this feedback leads to chronic inflammation. Our studies not only provide an integrated framework for understanding the molecular basis of the evolutionary arms race between insect hosts and their parasites, but also offer insights into

  10. Role for sumoylation in systemic inflammation and immune homeostasis in Drosophila larvae.

    PubMed

    Paddibhatla, Indira; Lee, Mark J; Kalamarz, Marta E; Ferrarese, Roberto; Govind, Shubha

    2010-12-23

    To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failure of the latter develops into systemic inflammatory disease, we correlated parasitic wasp-induced changes in the Drosophila larva with systemic chronic conditions in sumoylation-deficient mutants. We have previously reported that loss of either Cactus, the Drosophila (IκB) protein or Ubc9, the SUMO-conjugating enzyme, leads to constitutive activation of the humoral and cellular pathways, hematopoietic overproliferation and tumorogenesis. Here we report that parasite infection simultaneously activates NF-κB-dependent transcription of Spätzle processing enzyme (SPE) and cactus. Endogenous Spätzle protein (the Toll ligand) is expressed in immune cells and excessive SPE or Spätzle is pro-inflammatory. Consistent with this function, loss of Spz suppresses Ubc9⁻ defects. In contrast to the pro-inflammatory roles of SPE and Spätzle, Cactus and Ubc9 exert an anti-inflammatory effect. We show that Ubc9 maintains steady state levels of Cactus protein. In a series of immuno-genetic experiments, we demonstrate the existence of a robust bidirectional interaction between blood cells and the fat body and propose that wasp infection activates Toll signaling in both compartments via extracellular activation of Spätzle. Within each organ, the IκB/Ubc9-dependent inhibitory feedback resolves immune signaling and restores homeostasis. The loss of this feedback leads to chronic inflammation. Our studies not only provide an integrated framework for understanding the molecular basis of the evolutionary arms race between insect hosts and their parasites, but also offer insights into

  11. Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation.

    PubMed

    Ganguli, Kriston; Meng, Di; Rautava, Samuli; Lu, Lei; Walker, W Allan; Nanthakumar, Nanda

    2013-01-15

    Necrotizing enterocolitis (NEC), an extensive intestinal inflammatory disease of premature infants, is caused, in part, by an excessive inflammatory response to initial bacterial colonization due to the immature expression of innate immune response genes. In a randomized placebo-controlled clinical trial, supplementation of very low birth weight infants with probiotics significantly reduced the incidence of NEC. The primary goal of this study was to determine whether secreted products of these two clinically effective probiotic strains, Bifidobacterium infantis and Lactobacillus acidophilus, prevented NEC by accelerating the maturation of intestinal innate immune response genes and whether both strains are required for this effect. After exposure to probiotic conditioned media (PCM), immature human enterocytes, immature human intestinal xenografts, and primary enterocyte cultures of NEC tissue (NEC-IEC) were assayed for an IL-8 and IL-6 response to inflammatory stimuli. The latter two models were also assayed for innate immune response gene expression. In the immature xenograft, PCM exposure significantly attenuated LPS and IL-1β-induced IL-8 and IL-6 expression, decreased TLR2 mRNA and TLR4 mRNA, and increased mRNA levels of specific negative regulators of inflammation, SIGIRR and Tollip. In NEC-IEC, PCM decreased TLR2-dependent IL-8 and IL-6 induction and increased SIGIRR and Tollip expression. The attenuated inflammatory response with PCM was reversed with Tollip siRNA-mediated knockdown. The anti-inflammatory secreted factor is a 5- to 10-kDa molecule resistant to DNase, RNase, protease, heat stress, and acid exposure. B. infantis-conditioned media showed superior anti-inflammatory properties to that of L. acidophilus in immature human enterocytes, suggesting a strain specificity to this effect. We conclude that PCM promotes maturation of innate immune response gene expression, potentially explaining the protective effects of probiotics in clinical NEC.

  12. Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application

    PubMed Central

    Vezzani, Annamaria; Dingledine, Raymond; Rossetti, Andrea O

    2016-01-01

    Status epilepticus (SE) is a life-threatening neurological emergency often refractory to available treatment options. It is a very heterogeneous condition in terms of clinical presentation and causes, which besides genetic, vascular and other structural causes also include CNS or severe systemic infections, sudden withdrawal from benzodiazepines or anticonvulsants and rare autoimmune etiologies. Treatment of SE is essentially based on expert opinions and antiepileptic drug treatment per se seems to have no major impact on prognosis. There is, therefore, urgent need of novel therapies that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Accumulating evidence in animal models highlights that inflammation ensuing in the brain during SE may play a determinant role in ongoing seizures and their long-term detrimental consequences, independent of an infection or auto-immune cause; this evidence encourages reconsideration of the treatment flow in SE patients. PMID:26312647

  13. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy.

    PubMed

    Cayrol, Corinne; Girard, Jean-Philippe

    2014-12-01

    IL-33 is a nuclear cytokine from the IL-1 family constitutively expressed in epithelial barrier tissues and lymphoid organs, which plays important roles in type-2 innate immunity and human asthma. Recent studies indicate that IL-33 induces production of large amounts of IL-5 and IL-13 by group 2 innate lymphoid cells (ILC2s), for initiation of allergic inflammation shortly after exposure to allergens or infection with parasites or viruses. IL-33 appears to function as an alarmin (alarm signal) rapidly released from producing cells upon cellular damage or cellular stress. In this review, we discuss the cellular sources, mode of action and regulation of IL-33, and we highlight its crucial roles in vivo with particular emphasis on results obtained using IL33-deficient mice.

  14. Androgen receptor and immune inflammation in benign prostatic hyperplasia and prostate cancer

    PubMed Central

    Izumi, Kouji; Li, Lei; Chang, Chawnshang

    2014-01-01

    Both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are frequent diseases in middle-aged to elderly men worldwide. While both diseases are linked to abnormal growth of the prostate, the epidemiological and pathological features of these two prostate diseases are different. BPH nodules typically arise from the transitional zone, and, in contrast, PCa arises from the peripheral zone. Androgen deprivation therapy alone may not be sufficient to cure these two prostatic diseases due to its undesirable side effects. The alteration of androgen receptor-mediated inflammatory signals from infiltrating immune cells and prostate stromal/epithelial cells may play key roles in those unwanted events. Herein, this review will focus on the roles of androgen/androgen receptor signals in the inflammation-induced progression of BPH and PCa. PMID:26594314

  15. Attention deficit hyperactivity disorder may be a highly inflammation and immune-associated disease (Review).

    PubMed

    Zhou, Rong-Yi; Wang, Jiao-Jiao; Sun, Ji-Chao; You, Yue; Ying, Jing-Nang; Han, Xin-Min

    2017-10-01

    Attention deficit hyperactivity disorder (ADHD) is a common behavioral disorder. Previous research has indicated that genetic factors, family education, environment and dietary habits are associated with ADHD. It has been determined that in China many children with ADHD also have allergic rhinitis or asthma. These children are more susceptible to the common cold or upper respiratory infections compared with normal healthy children. Additionally, the common cold or an upper respiratory infection may lead to disease recurrence or worsen the symptoms in these children. Previous studies have determined that ADHD may have a close association with allergic disease. Based on the clinically observed phenomenon and previous studies, it was hypothesized that ADHD is a high inflammation and immune‑associated disease. Therefore, the authors designed clinical and animal experiments to test this hypothesis in the future. Immune system disorders may be a novel part of the etiology of ADHD. The current report may have implications for future clinical practice.

  16. Inflammation, cytokines, immune response, apolipoprotein E, cholesterol, and oxidative stress in Alzheimer disease: therapeutic implications.

    PubMed

    Candore, Giuseppina; Bulati, Matteo; Caruso, Calogero; Castiglia, Laura; Colonna-Romano, Giuseppina; Di Bona, Danilo; Duro, Giovanni; Lio, Domenico; Matranga, Domenica; Pellicanò, Mariavaleria; Rizzo, Claudia; Scapagnini, Giovanni; Vasto, Sonya

    2010-01-01

    Alzheimer disease (AD) is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for senile dementia. Today many countries have rising aging populations and are facing an increased prevalence of age-related diseases, such as AD, with increasing health-care costs. Understanding the pathophysiology process of AD plays a prominent role in new strategies for extending the health of the elderly population. Considering the future epidemic of AD, prevention and treatment are important goals of ongoing research. However, a better understanding of AD pathophysiology must be accomplished to make this objective feasible. In this paper, we review some hot topics concerning AD pathophysiology that have an important impact on therapeutic perspectives. Hence, we have focused our attention on inflammation, cytokines, immune response, apolipoprotein E (APOE), cholesterol, oxidative stress, as well as exploring the related therapeutic possibilities, i.e., nonsteroidal antiinflammatory drugs, cytokine blocking antibodies, immunotherapy, diet, and curcumin.

  17. Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor.

    PubMed

    Jaiswal, Mukesh K; Agrawal, Varkha; Mallers, Timothy; Gilman-Sachs, Alice; Hirsch, Emmet; Beaman, Kenneth D

    2013-12-01

    An innate immune response is required for successful implantation and placentation. This is regulated, in part, by the a2 isoform of V-ATPase (a2V) and the concurrent infiltration of M1 (inflammatory) and M2 (anti-inflammatory) macrophages to the uterus and placenta. The objective of the present study was to identify the role of a2V during inflammation-induced preterm labor in mice and its relationship to the regulation of apoptosis and innate immune responses. Using a mouse model of infection-induced preterm delivery, gestational tissues were collected 8 h after intrauterine inoculation on day 14.5 of pregnancy with either saline or peptidoglycan (PGN; a TLR 2 agonist) and polyinosinic-polycytidylic acid [poly(I:C); a TLR3 agonist], modeling Gram-positive bacterial and viral infections, respectively. Expression of a2V decreased significantly in the placenta, uterus, and fetal membranes during PGN+poly(I:C)-induced preterm labor. Expression of inducible NO synthase was significantly upregulated in PGN+poly(I:C)-treated placenta and uterus. PGN+poly(I:C) treatment disturbed adherens junction proteins and increased apoptotic cell death via an extrinsic pathway of apoptosis among uterine decidual cells and spongiotrophoblasts. F4/80(+) macrophages were increased and polarization was skewed in PGN+poly(I:C)-treated uterus toward double-positive CD11c(+) (M1) and CD206(+) (M2) cells, which are critical for the clearance of dying cells and rapid resolution of inflammation. Expression of Nlrp3 and activation of caspase-1 were increased in PGN+poly(I:C)-treated uterus, which could induce pyroptosis. These results suggest that the double hit of PGN+poly(I:C) induces preterm labor via reduction of a2V expression and simultaneous activation of apoptosis and inflammatory processes.

  18. Regulation of Apoptosis and Innate Immune Stimuli in Inflammation Induced Preterm labor

    PubMed Central

    Jaiswal, Mukesh K.; Agrawal, Varkha; Mallers, Timothy; Gilman-Sachs, Alice; Hirsch, Emmet; Beaman, Kenneth D.

    2013-01-01

    An innate immune response is required for successful implantation and placentation. This is regulated in part by a2 isoform of V-ATPase (a2V) and the concurrent infiltration of M1 (inflammatory) and M2 (anti-inflammatory) macrophages to the uterus and placenta. The objective of present study was to identify the role of a2V during inflammation-induced preterm labor in mice and its relationship to the regulation of apoptosis and innate immune responses. Using a mouse model of infection-induced preterm delivery, gestational tissues were collected 8 hrs after intrauterine inoculation on day 14.5 of pregnancy with either saline or peptidoglycan (PGN, a toll-like receptor (TLR) 2 agonist) and polyinosinic:cytidylic acid (poly(I:C), a TLR3 agonist), modeling Gram positive bacterial and viral infections, respectively. Expression of a2V decreased significantly in the placenta, uterus, and fetal membranes during PGN+poly(I:C) induced preterm labor. Expression of iNOS was significantly upregulated in PGN+poly(I:C) treated placenta and uterus. PGN+poly(I:C) treatment disturbed adherens junction proteins and increased apoptotic cell death via extrinsic pathway of apoptosis among uterine decidual cells and spongiotrophoblast. F4/80+ macrophages were increased and polarization was skewed in PGN+poly(I:C) treated uterus toward double positive CD11c+ (M1) and CD206+ (M2) cells, which are critical for the clearance of dying cells and rapid resolution of inflammation. Expression of Nlrp3 and activation of caspase-1 was increased in PGN+poly(I:C) treated uterus which could induce pyroptosis. These results suggest that double hit of PGN+poly(I:C) induces preterm labor via reduction of a2V expression and simultaneous activation of apoptosis and inflammatory processes. PMID:24163412

  19. Intestinal Antigen-Presenting Cells: Key Regulators of Immune Homeostasis and Inflammation.

    PubMed

    Flannigan, Kyle L; Geem, Duke; Harusato, Akihito; Denning, Timothy L

    2015-07-01

    The microbiota that populate the mammalian intestine are critical for proper host physiology, yet simultaneously pose a potential danger. Intestinal antigen-presenting cells, namely macrophages and dendritic cells (DCs), are integral components of the mucosal innate immune system that maintain co-existence with the microbiota in face of this constant threat. Intestinal macrophages and DCs integrate signals from the microenvironment to orchestrate innate and adaptive immune responses that ultimately lead to durable tolerance of the microbiota. Tolerance is not a default response, however, because macrophages and DCs remain poised to vigorously respond to pathogens that breach the epithelial barrier. In this review, we summarize the salient features of macrophages and DCs in the healthy and inflamed intestine and discuss how signals from the microbiota can influence their function.

  20. The role of inflammation and immunity in the pathogenesis of androgenetic alopecia.

    PubMed

    Magro, Cynthia M; Rossi, Anthony; Poe, Jonathan; Manhas-Bhutani, Suveena; Sadick, Neil

    2011-12-01

    Female pattern hair loss affects many women; its pathogenetic basis has been held to be similar to men with common baldness. The objective of this study was to determine the role of immunity and inflammation in androgenetic alopecia in women and modulate therapy according to inflammatory and immunoreactant profiles. 52 women with androgenetic alopecia (AA) underwent scalp biopsies for routine light microscopic assessment and direct immunofluroescent studies. In 18 patients, serologic assessment for antibodies to androgen receptor, estrogen receptor and cytokeratin 15 was conducted. A lymphocytic folliculitis targeting the bulge epithelium was observed in many cases. Thirty-three of 52 female patients had significant deposits of IgM within the epidermal basement membrane zone typically accompanied by components of complement activation. The severity of changes light microscopically were more apparent in the positive immunoreactant group. Biopsies from men with androgenetic alopecia showed a similar pattern of inflammation and immunoreactant deposition. Serologic assessment for antibodies to androgen receptor, estrogen receptor or cytokeratin 15 were negative. Combined modality therapy with minocycline and topical steroids along with red light produced consistent good results in the positive immunoreactant group compared to the negative immunoreactant group. A lymphocytic microfolliculitis targeting the bulge epithelium along with deposits of epithelial basement membrane zone immunoreactants are frequent findings in androgenetic alopecia and could point toward an immunologically driven trigger. Cases showing a positive immunoreactant profile respond well to combined modality therapy compared to those with a negative result.

  1. Phospholipid transfer protein in human plasma associates with proteins linked to immunity and inflammation.

    PubMed

    Cheung, Marian C; Vaisar, Tomás; Han, Xianlin; Heinecke, Jay W; Albers, John J

    2010-08-31

    Phospholipid transfer protein (PLTP), which associates with apolipoprotein A-I (the major HDL protein), plays a key role in lipoprotein remodeling. Because its level in plasma increases during acute inflammation, it may also play previously unsuspected roles in the innate immune system. To gain further insight into its potential physiological functions, we isolated complexes containing PLTP from plasma by immunoaffinity chromatography and determined their composition. Shotgun proteomics revealed that only 6 of the 24 proteins detected in the complexes were apolipoproteins. The most abundant proteins were clusterin (apoJ), PLTP itself, coagulation factors, complement factors, and apoA-I. Remarkably, 20 of the 24 proteins had known protein-protein interactions. Biochemical studies confirmed two previously established interactions and identified five new ones between PLTP and proteins. Moreover, clusterin, apoA-I, and apoE preserved the lipid-transfer activity of recombinant PLTP in the absence of lipid, indicating that these interactions may have functional significance. Unexpectedly, lipids accounted for only 3% of the mass of the PLTP complexes. Collectively, our observations indicate that PLTP in human plasma resides on lipid-poor complexes dominated by clusterin and proteins implicated in host defense and inflammation. They further suggest that protein-protein interactions drive the formation of PLTP complexes in plasma.

  2. Crosstalk between innate and adaptive immunity in hepatitis B virus infection.

    PubMed

    Wang, Li; Wang, Kai; Zou, Zhi-Qiang

    2015-12-28

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection.

  3. Crosstalk between innate and adaptive immunity in hepatitis B virus infection

    PubMed Central

    Wang, Li; Wang, Kai; Zou, Zhi-Qiang

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection. PMID:26730277

  4. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    PubMed Central

    Ortolani, Claudio; del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Artico, Marco; Papa, Stefano

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view. PMID:28078307

  5. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    PubMed

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria

    PubMed Central

    Barroso-Batista, João; Demengeot, Jocelyne; Gordo, Isabel

    2015-01-01

    Co-evolution between the mammalian immune system and the gut microbiota is believed to have shaped the microbiota's astonishing diversity. Here we test the corollary hypothesis that the adaptive immune system, directly or indirectly, influences the evolution of commensal species. We compare the evolution of Escherichia coli upon colonization of the gut of wild-type and Rag2−/− mice, which lack lymphocytes. We show that bacterial adaptation is slower in immune-compromised animals, a phenomenon explained by differences in the action of natural selection within each host. Emerging mutations exhibit strong beneficial effects in healthy hosts but substantial antagonistic pleiotropy in immune-deficient mice. This feature is due to changes in the composition of the gut microbiota, which differs according to the immune status of the host. Our results indicate that the adaptive immune system influences the tempo and predictability of E. coli adaptation to the mouse gut. PMID:26615893

  7. Immune evasion by cytomegalovirus--survival strategies of a highly adapted opportunist.

    PubMed

    Hengel, H; Brune, W; Koszinowski, U H

    1998-05-01

    Slowly replicating, species-specific and complex DNA viruses, such as cytomegaloviruses (CMVs), which code for > 200 antigenic proteins, should be easy prey to the host's immune system. Yet, CMVs are amazingly adapted opportunists that cope with multiple immune responses. Frequently, CMVs exploit immune mechanisms generated by the host. These strategies secure the persistence of CMVs and provide opportunities to spread to naive individuals.

  8. The yin-yang of long pentraxin PTX3 in inflammation and immunity.

    PubMed

    Daigo, Kenji; Mantovani, Alberto; Bottazzi, Barbara

    2014-09-01

    Pentraxins are a family of multimeric proteins characterized by the presence of a pentraxin signature in their C-terminus region. Based on the primary structure, pentraxins are divided into short and long pentraxin: C-reactive protein (CRP) is the prototype of the short pentraxin subfamily while pentraxin 3 (PTX3) is the prototypic long pentraxin. Despite these two molecules exert similar fundamental actions in the regulation of innate immune and inflammatory responses, several differences exist between CRP and PTX3, including gene organization, protein oligomerization and expression pattern. The pathophysiological roles of PTX3 have been investigated using genetically modified mice since PTX3 gene organization and regulation are well conserved between mouse and human. Such in vivo studies figured out that PTX3 mainly have host-protective effects, even if it could also exert negative effects under certain pathophysiologic conditions. Here we will review the general properties of CRP and PTX3, emphasizing the differences between the two molecules and the regulatory functions exerted by PTX3 in innate immunity and inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cell-mediated immune response to unrelated proteins and unspecific inflammation blocked by orally tolerated proteins.

    PubMed

    Ramos, Gustavo C; Rodrigues, Claudiney M; Azevedo, Geraldo M; Pinho, Vanessa; Carvalho, Cláudia R; Vaz, Nelson M

    2009-03-01

    Oral tolerance promotes a generalized decrease in specific immune responsiveness to proteins previously encountered via the oral route. In addition, parenteral immunization with a tolerated protein also triggers a significant reduction in the primary responsiveness to a second unrelated antigen. This is generally explained by 'innocent bystander suppression', suggesting that the transient and episodic effects of inhibitory cytokines released by contact with the tolerated antigen would block responses to the second antigen. In disagreement with this view, we have previously shown that: (i) these inhibitory effects do not require concomitance or contiguity of the injections of the two proteins; (ii) that intravenous or intragastric exposures to the tolerated antigen are not inhibitory; and (iii) that the inhibitory effect, once triggered, persists in the absence of further contact with the tolerated protein, possibly by inhibition of secondary responsiveness (immunological memory). The present work confirms that immunological memory of the second unrelated antigen is hindered by exposure to the tolerated antigen and, in addition, shows that this exposure: (i) inhibits the inflammation triggered by an unrelated antigen through the double effect of inhibiting production of leucocytes in the bone marrow and blocking their migration to inflammed sites; and (ii) significantly blocks footpaw swelling triggered by carrageenan. Taken together, these results conclusively demonstrate that inhibitory effects of parenteral injection of tolerated antigens are much more general than suggested by the 'innocent bystander suppression' hypothesis.

  10. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection.

    PubMed

    Ruffin, Nicolas; Thang, Pham Hong; Rethi, Bence; Nilsson, Anna; Chiodi, Francesca

    2011-01-01

    One important pathogenic feature of human immunodeficiency virus (HIV)-1 infection is chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells was reported to occur in both children and adults infected with HIV-1; these cells are responsible for maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  11. The Impact of Inflammation and Immune Activation on B Cell Differentiation during HIV-1 Infection

    PubMed Central

    Ruffin, Nicolas; Thang, Pham Hong; Rethi, Bence; Nilsson, Anna; Chiodi, Francesca

    2012-01-01

    One important pathogenic feature of human immunodeficiency virus (HIV)-1 infection is chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells was reported to occur in both children and adults infected with HIV-1; these cells are responsible for maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells. PMID:22566879

  12. Circulating immune complexes and markers of systemic inflammation in RAO-affected horses.

    PubMed

    Niedźwiedź, A; Jaworski, Z; Kubiak, K

    2014-01-01

    The aim of this study was to investigate the levels of circulating immune complexes (CICs) and concentration of haptoglobin, fibrinogen and C-reactive protein in the serum of horses with recurrent airway obstruction and healthy controls. The study was conducted on a group of 14 adult Polish Konik horses, kept in uniform environmental and living conditions. Horses were divided into two groups: 7 horses were not affected by any respiratory problem (control group) and 7 horses had a history of recurrent airway obstruction (RAO) (study group). A clinical and laboratory evaluation, endoscopic examination and bronchoalveolar lavage (BAL) were performed in all horses. Levels of circulating immune complexes were significantly (p = 0.0057) increased in heaves-affected horses compared to healthy controls (median [25th-75th percentiles]) (3.96 [3.96-4.43] vs. 7.46 [5.13-11.9]). No significant difference was observed in the levels of the examined acute phase proteins between the groups. Moreover, all results were within the reference range established for horses. The results of this study indicate that heaves in horses is associated with the formation and high level of CICs. Haptoglobin, fibrinogen and C-reactive protein failed as markers of early stage systemic inflammation in the course of RAO.

  13. Corticosterone, inflammation, immune status and telomere length in frigatebird nestlings facing a severe herpesvirus infection

    PubMed Central

    Sebastiano, Manrico; Eens, Marcel; Angelier, Frederic; Pineau, Kévin; Chastel, Olivier; Costantini, David

    2017-01-01

    Herpesvirus outbreaks are common in natural animal populations, but little is known about factors that favour the infection and its consequences for the organism. In this study, we examined the pathophysiological consequences of a disease probably attributable to herpesvirus infection for several markers of immune function, corticosterone, telomere length and inflammation. In addition, we assessed whether any markers used in this study might be associated with the occurrence of visible clinical signs of the disease and its impact on short-term survival perspectives. To address our questions, in spring 2015, we collected blood samples from nestlings of the magnificent frigatebird (Fregata magnificens) that were free of any clinical signs or showed visible signs of the disease. We found that the plasma concentration of haptoglobin was strongly associated with the infection status and could predict probabilities of survival. We also found that nestlings with clinical signs had lower baseline corticosterone concentrations and similar telomere length compared with healthy nestlings, whereas we did not find any association of the infection status with innate immune defenses or with nitric oxide concentration. Overall, our results suggest that the plasma concentration of haptoglobin might be a valuable tool to assess survival probabilities of frigatebird nestlings facing a herpesvirus outbreak. PMID:28070333

  14. Molecular interaction between natural IgG and ficolin - mechanistic insights on adaptive-innate immune crosstalk

    NASA Astrophysics Data System (ADS)

    Panda, Saswati; Zhang, Jing; Yang, Lifeng; Anand, Ganesh S.; Ding, Jeak L.

    2014-01-01

    Recently, we found that natural IgG (nIgG; a non-specific immunoglobulin of adaptive immunity) is not quiescent, but plays a crucial role in immediate immune defense by collaborating with ficolin (an innate immune protein). However, how the nIgG and ficolin interplay and what factors control the complex formation during infection is unknown. Here, we found that mild acidosis and hypocalcaemia induced by infection- inflammation condition increased the nIgG:ficolin complex formation. Hydrogen-deuterium exchange mass spectrometry delineated the binding interfaces to the CH2-CH3 region of nIgG Fc and P-subdomain of ficolin FBG domain. Infection condition exposes novel binding sites. Site-directed mutagenesis and surface plasmon resonance analyses of peptides, derived from nIgG and ficolin, defined the interacting residues between the proteins. These results provide mechanistic insights on the interaction between two molecules representing the adaptive and innate immune pathways, prompting potential development of immunomodulatory/prophylactic peptides tunable to prevailing infection conditions.

  15. Enhanced 15-lipoxygenase activity and elevated eicosanoid production in kidney tumor microenvironment contribute to the inflammation and immune suppression

    PubMed Central

    2012-01-01

    Macrophage infiltration is a hallmark in the majority of solid tumors. Our studies demonstrated that macrophages that infiltrate human renal cells carcinoma (RCC) display markedly enhanced expression and activity of 15-lipoxygenase-2 (15-LOX2). Obtained data suggest that enhanced lipoxygenase activity in tumor-associated macrophages stimulates cancer inflammation and causes immune dysfunction. PMID:22720260

  16. Enhanced 15-lipoxygenase activity and elevated eicosanoid production in kidney tumor microenvironment contribute to the inflammation and immune suppression.

    PubMed

    Kusmartsev, Sergei

    2012-03-01

    Macrophage infiltration is a hallmark in the majority of solid tumors. Our studies demonstrated that macrophages that infiltrate human renal cells carcinoma (RCC) display markedly enhanced expression and activity of 15-lipoxygenase-2 (15-LOX2). Obtained data suggest that enhanced lipoxygenase activity in tumor-associated macrophages stimulates cancer inflammation and causes immune dysfunction.

  17. Adaptations in responsiveness of brainstem pain-modulating neurons in acute compared with chronic inflammation.

    PubMed

    Cleary, Daniel R; Heinricher, Mary M

    2013-06-01

    Despite similar behavioral hypersensitivity, acute and chronic pain have distinct neural bases. We used intraplantar injection of complete Freund's adjuvant to directly compare activity of pain-modulating neurons in the rostral ventromedial medulla (RVM) in acute vs chronic inflammation. Heat-evoked and von Frey-evoked withdrawal reflexes and corresponding RVM neuronal activity were recorded in lightly anesthetized animals either during the first hour after complete Freund's adjuvant injection (acute) or 3 to 10 days later (chronic). Thermal and modest mechanical hyperalgesia during acute inflammation were associated with increases in the spontaneous activity of pain-facilitating ON-cells and suppression of pain-inhibiting OFF-cells. Acute hyperalgesia was reversed by RVM block, showing that the increased activity of RVM ON-cells is necessary for acute behavioral hypersensitivity. In chronic inflammation, thermal hyperalgesia had resolved but mechanical hyperalgesia had become pronounced. The spontaneous discharges of ON- and OFF-cells were not different from those in control subjects, but the mechanical response thresholds for both cell classes were reduced into the innocuous range. RVM block in the chronic condition worsened mechanical hyperalgesia. These studies identify distinct contributions of RVM ON- and OFF-cells to acute and chronic inflammatory hyperalgesia. During early immune-mediated inflammation, ON-cell spontaneous activity promotes hyperalgesia. After inflammation is established, the antinociceptive influence of OFF-cells is dominant, yet the lowered threshold for the OFF-cell pause allows behavioral responses to stimuli that would normally be considered innocuous. The efficacy of OFF-cells in counteracting sensitization of ascending transmission pathways could therefore be an important determining factor in development of chronic inflammatory pain.

  18. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells

    PubMed Central

    Luo, Yuchun; Cai, Xiangna; Liu, Sucai; Wang, Sen; Nold-Petry, Claudia A.; Nold, Marcel F.; Bufler, Philip; Norris, David; Dinarello, Charles A.; Fujita, Mayumi

    2014-01-01

    IL-1 family member IL-37 limits innate inflammation in models of colitis and LPS-induced shock, but a role in adaptive immunity remains unknown. Here, we studied mice expressing human IL-37b isoform (IL-37tg) subjected to skin contact hypersensitivity (CHS) to dinitrofluorobenzene. CHS challenge to the hapten was significantly decreased in IL-37tg mice compared with wild-type (WT) mice (−61%; P < 0.001 at 48 h). Skin dendritic cells (DCs) were present and migrated to lymph nodes after antigen uptake in IL-37tg mice. When hapten-sensitized DCs were adoptively transferred to WT mice, antigen challenge was greatly impaired in mice receiving DCs from IL-37tg mice compared with those receiving DCs from WT mice (−60%; P < 0.01 at 48 h). In DCs isolated from IL-37tg mice, LPS-induced increase of MHC II and costimulatory molecule CD40 was reduced by 51 and 31%, respectively. In these DCs, release of IL-1β, IL-6, and IL-12 was reduced whereas IL-10 secretion increased (37%). Consistent with these findings, DCs from IL-37tg mice exhibited a lower ability to stimulate syngeneic and allogeneic naive T cells as well as antigen-specific T cells and displayed enhanced induction of T regulatory (Treg) cells (86%; P < 0.001) in vitro. Histological analysis of CHS skin in mice receiving hapten-sensitized DCs from IL-37tg mice revealed a marked reduction in CD8+ T cells (−74%) but an increase in Treg cells (2.6-fold). Together, these findings reveal that DCs expressing IL-37 are tolerogenic, thereby impairing activation of effector T-cell responses and inducing Treg cells. IL-37 thus emerges as an inhibitor of adaptive immunity. PMID:25294929

  19. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells.

    PubMed

    Luo, Yuchun; Cai, Xiangna; Liu, Sucai; Wang, Sen; Nold-Petry, Claudia A; Nold, Marcel F; Bufler, Philip; Norris, David; Dinarello, Charles A; Fujita, Mayumi

    2014-10-21

    IL-1 family member IL-37 limits innate inflammation in models of colitis and LPS-induced shock, but a role in adaptive immunity remains unknown. Here, we studied mice expressing human IL-37b isoform (IL-37tg) subjected to skin contact hypersensitivity (CHS) to dinitrofluorobenzene. CHS challenge to the hapten was significantly decreased in IL-37tg mice compared with wild-type (WT) mice (-61%; P < 0.001 at 48 h). Skin dendritic cells (DCs) were present and migrated to lymph nodes after antigen uptake in IL-37tg mice. When hapten-sensitized DCs were adoptively transferred to WT mice, antigen challenge was greatly impaired in mice receiving DCs from IL-37tg mice compared with those receiving DCs from WT mice (-60%; P < 0.01 at 48 h). In DCs isolated from IL-37tg mice, LPS-induced increase of MHC II and costimulatory molecule CD40 was reduced by 51 and 31%, respectively. In these DCs, release of IL-1β, IL-6, and IL-12 was reduced whereas IL-10 secretion increased (37%). Consistent with these findings, DCs from IL-37tg mice exhibited a lower ability to stimulate syngeneic and allogeneic naive T cells as well as antigen-specific T cells and displayed enhanced induction of T regulatory (Treg) cells (86%; P < 0.001) in vitro. Histological analysis of CHS skin in mice receiving hapten-sensitized DCs from IL-37tg mice revealed a marked reduction in CD8(+) T cells (-74%) but an increase in Treg cells (2.6-fold). Together, these findings reveal that DCs expressing IL-37 are tolerogenic, thereby impairing activation of effector T-cell responses and inducing Treg cells. IL-37 thus emerges as an inhibitor of adaptive immunity.

  20. gammadelta T cells link innate and adaptive immune responses.

    PubMed

    Holtmeier, Wolfgang; Kabelitz, Dieter

    2005-01-01

    While most T cells use a CD3-associated alpha/beta T cell receptor as antigen recognition structure, a second population of T cells expresses the alternative gamma/delta T cell receptor. gamma/delta T cells are a minor population in the peripheral blood but constitute a major population among intestinal intraepithelial lymphocytes. Most gamma/delta T cells recognize ligands which are fundamentally different from the short peptides that are seen by alpha/beta T cells in the context of MHC class I or class II molecules. Thus, human Vdelta2 T cells recognize small bacterial phosphoantigens, alkylamines and synthetic aminobisphosphonates, whereas Vdelta1 T cells recognize stress-inducible MHC-related molecules MICA/B as well as several other ligands. At the functional level, gamma/delta T cells rapidly produce a variety of cytokines and usually exert potent cytotoxic activity, also towards many tumor cells. In this article, we discuss the role of gamma/delta T cells as a bridge between the innate and the adaptive immune system, based on the interpretation that gamma/delta T cells use their T cell receptor as a pattern recognition receptor. Our increasing understanding of the ligand recognition and activation mechanisms of gamma/delta T cells also opens new perspectives for the development of gamma/delta T cell-based immunotherapies.

  1. Foreign DNA capture during CRISPR–Cas adaptive immunity

    PubMed Central

    Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.; Engelman, Alan N.; Doudna, Jennifer A.

    2015-01-01

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40 base pair (bp) lengths into clustered regularly interspaced short palindromic repeats (CRISPR) loci as spacer segments1–6. The universally conserved Cas1–Cas2 integrase complex catalyzes spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases7–13. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33 nucleotide (nt) protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′–OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo2–4. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  2. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.

  3. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen.

    PubMed

    Hansen, Jonathan J; Huang, Yong; Peterson, Daniel A; Goeser, Laura; Fan, Ting-Jia; Chang, Eugene B; Sartor, R Balfour

    2012-01-01

    Inflammatory bowel diseases (IBD) may be caused in part by aberrant immune responses to commensal intestinal microbes including the well-characterized anaerobic gut commensal Bacteroides thetaiotaomicron (B. theta). Healthy, germ-free HLA-B27 transgenic (Tg) rats develop chronic colitis when colonized with complex gut commensal bacteria whereas non-transgenic (nTg) rats remain disease-free. However, the role of B. theta in causing disease in Tg rats is unknown nor is much known about how gut microbes respond to host inflammation. Tg and nTg rats were monoassociated with a human isolate of B. theta. Colonic inflammation was assessed by histologic scoring and tissue pro-inflammatory cytokine measurement. Whole genome transcriptional profiling of B. theta recovered from ceca was performed using custom GeneChips and data analyzed using dChip, Significance Analysis of Microarrays, and Gene Set Enrichment Analysis (GSEA) software. Western Blots were used to determine adaptive immune responses to a differentially expressed B. theta gene. B. theta monoassociated Tg rats, but not nTg or germ-free controls, developed chronic colitis. Transcriptional profiles of cecal B. theta were significantly different in Tg vs. nTg rats. GSEA revealed that genes in KEGG canonical pathways involved in bacterial growth and metabolism were downregulated in B. theta from Tg rats with colitis though luminal bacterial concentrations were unaffected. Bacterial genes in the Gene Ontology molecular function "receptor activity", most of which encode nutrient binding proteins, were significantly upregulated in B. theta from Tg rats and include a SusC homolog that induces adaptive immune responses in Tg rats. B. theta induces colitis in HLA-B27 Tg rats, which is associated with regulation of bacterial genes in metabolic and nutrient binding pathways that may affect host immune responses. These studies of the host-microbial dialogue may lead to the identification of novel microbial targets for IBD

  4. The role of tissue adaptation and graft size in immune tolerance.

    PubMed

    Hauben, Ehud; Roncarolo, Maria Grazia; Draghici, Elena; Nevo, Uri

    2007-11-01

    Understanding how immune tolerance is induced and maintained is critical for our approach to immune-related diseases. Ecoimmunity is a new theory that views the immune system-tissue interaction as a co-adapting predator-prey system. Ecoimmunity suggests that tissues adapt to the selective immune pressure during ontogeny and throughout life. Therefore, immune tolerance towards 'self' represents a symmetric balance between the propensity of the immune system to prey on 'self' cells, and the tissue's specific capacity to undergo phenotypic adaptations in order to avoid destructive immune interaction. According to this theory, we hypothesized that tissues of adult immune-deficient mice, which are not exposed to selective immune pressure, will not withstand immune activity and will therefore display higher susceptibility to graft rejection. To test this prediction, C57Bl/6 wild type female mice were rendered diabetic by streptozotocin and transplanted with syngeneic pancreatic islets isolated from either immune-deficient C57Bl/6 SCID or wild type females. Remarkably, recipients of islet grafts from immune-deficient syngeneic donors displayed significantly impaired glucose homeostasis compared to mice transplanted with islets of wild type donors (p<0.001, two way repeated measures ANOVA). The severity of this impairment was correlated with islet graft size, suggesting a capacity of transplanted islets to gradually acquire a tolerogenic phenotype. These findings support the view of graft survival that is based on 'natural selection' of tissue cells. In addition, we describe a new experimental system for molecular characterization of self-tolerance.

  5. Inflammation and innate immune response against viral infections in marine fish.

    PubMed

    Novoa, B; Mackenzie, S; Figueras, A

    2010-01-01

    Viral infections in fish are common in both natural and cultured fish populations and the spread of infectious disease is a serious threat to both natural ecosystems and commercial exploitations. A significant body of studies have addressed the host response to viral infection including the efficacy of DNA vaccines however we still have a fragmented vision of both pathologies associated with viral infection and the immune response to those across fish species. Many studies have concentrated upon freshwater fish including the zebrafish (Danio rerio) and the Rainbow trout (Oncorhynchus mykiss) whereas the majority of marine fish studies address the Atlantic salmon (Salmo salar). Here we provide a comprehensive review concentrating upon the salient pathological features of the most common viral infections including examples of the Betanodaviruses, Birnaviruses, Rhabdoviruses and the Isavirus in cultured fish with emphasis where possible upon non-salmonid cold water adapted marine species. In parallel we review the current state of the art mainly in reference to gene expression studies describing the host innate immune response concentrating upon the inflammatory response and its relationship toward anti-viral immunity in fish. Due to the complexity of the observed responses and the limitations of candidate gene expression studies to describe global biological processes, recent efforts in the use of microarray analysis for the study of the anti-viral response have been highlighted including members of the Pleuronectiform and the Perciform families. Finally we review the potential of the zebrafish to become a significant biological model in the elucidation of the molecular mechanisms underlying the piscine immune response to viral infection.

  6. Circulating Mediators of Inflammation and Immune Activation in AIDS-Related Non-Hodgkin Lymphoma

    PubMed Central

    Nolen, Brian M.; Breen, Elizabeth Crabb; Bream, Jay H.; Jenkins, Frank J.; Kingsley, Lawrence A.; Rinaldo, Charles R.; Lokshin, Anna E.

    2014-01-01

    Background Non-Hodgkin lymphoma (NHL) is the most common AIDS-related malignancy in developed countries. An elevated risk of developing NHL persists among HIV-infected individuals in comparison to the general population despite the advent of effective antiretroviral therapy. The mechanisms underlying the development of AIDS-related NHL (A-NHL) are not fully understood, but likely involve persistent B-cell activation and inflammation. Methods This was a nested case-control study within the ongoing prospective Multicenter AIDS Cohort Study (MACS). Cases included 47 HIV-positive male subjects diagnosed with high-grade B-cell NHL. Controls were matched to each case from among participating HIV-positive males who did not develop any malignancy. Matching criteria included time HIV+ or since AIDS diagnosis, age, race and CD4+ cell count. Sera were tested for 161 serum biomarkers using multiplexed bead-based immunoassays. Results A subset of 17 biomarkers, including cytokines, chemokines, acute phase proteins, tissue remodeling agents and bone metabolic mediators was identified to be significantly altered in A-NHL cases in comparison to controls. Many of the biomarkers included in this subset were positively correlated with HIV viral load. A pathway analysis of our results revealed an extensive network of interactions between current and previously identified biomarkers. Conclusions These findings support the current hypothesis that A-NHL develops in the context of persistent immune stimulation and inflammation. Further analysis of the biomarkers identified in this report should enhance our ability to diagnose, monitor and treat this disease. PMID:24922518

  7. MODEL OF COLONIC INFLAMMATION: IMMUNE MODULATORY MECHANISMS IN INFLAMMATORY BOWEL DISEASE

    PubMed Central

    Wendelsdorf, Katherine; Bassaganya-Riera, Josep; Hontecillas, Raquel; Eubank, Stephen

    2010-01-01

    Inflammatory Bowel Disease (IBD) is an immunoinflammatory illness of the gut initiated by an immune response to bacteria in the microflora. The resulting immunopathogenesis leads to lesions in epithelial lining of the colon through which bacteria may infiltrate the tissue causing recurring bouts of diarrhea, rectal bleeding, and mal-nutrition. In healthy individuals such immunopathogenesis is avoided by the presence of regulatory cells that inhibit the inflammatory pathway. Highly relevant to the search for treatment strategies is the identification of components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immunopathogenesis to proceed. In vitro techniques have identified cellular interactions involved in inflammation-regulation crosstalk. However, tracing immunological mechanisms discovered at the cellular level confidently back to an in vivo context of multiple, simultaneous interactions has met limited success. To explore the impact of specific interactions, we have constructed a system of 29 ordinary differential equations representing different phenotypes of T-cells, macrophages, dendritic cells, and epithelial cells as they move and interact with bacteria in the lumen, lamina propria, and lymphoid tissue of the colon. Simulations revealed the positive inflammatory feedback loop formed by inflammatory M1 macrophage activation of T-cells as a driving force underlying the immunopathology of IBD. Furthermore, strategies that remove M1 from the site of infection, by either i) increasing its potential to switch to a regulatory M2 phenotype or ii) increasing the rate of reversion (for M1 and M2 alike) to a resting state, cease immunopathogenesis even as bacteria are eliminated by other inflammatory cells. Based on these results, we identify macrophages and their mechanisms of plasticity as key targets for mucosal inflammation intervention strategies. In addition, we propose that the primary mechanism behind the association of

  8. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.

    PubMed

    Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm

    2017-03-17

    All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1(-) zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.The ISME Journal advance online publication, 17 March 2017; doi:10.1038/ismej.2017.28.

  9. Can Probiotics Reduce Inflammation and Enhance Gut Immune Health in People Living with HIV: Study Designs for the Probiotic Visbiome for Inflammation and Translocation (PROOV IT) Pilot Trials.

    PubMed

    Kim, Connie J; Walmsley, Sharon L; Raboud, Janet M; Kovacs, Colin; Coburn, Bryan; Rousseau, Rodney; Reinhard, Robert; Rosenes, Ron; Kaul, Rupert

    2016-07-01

    Despite substantial improvements in HIV outcomes with combination antiretroviral therapy (cART), morbidity and mortality remain above population norms. The gut mucosal immune system is not completely restored by cART, and the resultant microbial translocation may contribute to chronic inflammation, inadequate CD4 T-cell recovery, and increased rates of serious non-AIDS events. Since the microbial environment surrounding a CD4 T cell may influence its development and function, we hypothesize that probiotics provided during cART might reduce inflammation and improve gut immune health in HIV-positive treatment-naïve individuals (PROOV IT I) and individuals with suboptimal CD4 recovery on cART (PROOV IT II). These prospective, double-blinded, randomized, placebo-controlled, multicenter pilot studies will assess the impact of the probiotic Visbiome at 900 billion bacteria daily. Forty HIV positive cART-naïve men will be randomized in the PROOV IT I study, coincident with antiretroviral initiation, and be followed for 24 weeks. In PROOV IT II, 36 men on cART, but with a CD4 T-cell count below 350 cells/mm(3) will be followed for 48 weeks. The primary outcome for both studies is the comparison of blood CD8 T-cell immune activation. Secondary analyses will include comparison of blood inflammatory biomarkers, microbial translocation, blood and gut immunology and HIV levels, the bacterial community composition, diet, intestinal permeability, and the safety, adherence and tolerability of the study product. These studies will evaluate the ability of probiotics as a safe and tolerable therapeutic intervention to reduce systemic immune activation and to accelerate gut immune restoration in people living with HIV.

  10. Bacterial Vaginosis and Subclinical Markers of Genital Tract Inflammation and Mucosal Immunity

    PubMed Central

    Kimble, Thomas; Herold, Betsy; Mesquita, Pedro M.M.; Fichorova, Raina N.; Dawood, Hassan Y.; Fashemi, Titilayo; Chandra, Neelima; Rabe, Lorna; Cunningham, Tina D.; Anderson, Sharon; Schwartz, Jill; Doncel, Gustavo

    2015-01-01

    Abstract Bacterial vaginosis (BV) has been linked to an increased risk of human immunodeficiency virus (HIV) acquisition and transmission in observational studies, but the underlying biological mechanisms are unknown. We measured biomarkers of subclinical vaginal inflammation, endogenous antimicrobial activity, and vaginal flora in women with BV and repeated sampling 1 week and 1 month after completion of metronidazole therapy. We also compared this cohort of women with BV to a healthy control cohort without BV. A longitudinal, open label study of 33 women with a Nugent score of 4 or higher was conducted. All women had genital swabs, cervicovaginal lavage (CVL) fluid, and cervicovaginal biopsies obtained at enrollment and received 7 days of metronidazole treatment. Repeat sampling was performed approximately 1 week and 1 month after completion of therapy. Participant's baseline samples were compared to a healthy, racially matched control group (n=13) without BV. The CVL from women with resolved BV (Nugent 0–3) had significantly higher anti-HIV activity, secretory leukocyte protease inhibitor (SLPI), and growth-related oncogene alpha (GRO-α) levels and their ectocervical tissues had significantly more CD8 cells in the epithelium. Women with persistent BV after treatment had significantly higher levels of interleukin-1β, tumor necrosis factor alpha (TNF-α), and intercellular adhesion molecule 1 (ICAM-1) in the CVL. At study entry, participants had significantly greater numbers of CCR5+ immune cells and a higher CD4/CD8 ratio in ectocervical tissues prior to metronidazole treatment, compared to a racially matched cohort of women with a Nugent score of 0–3. These data indicate that BV is associated with changes in select soluble immune mediators, an increase in HIV target cells, and a reduction in endogenous antimicrobial activity, which may contribute to the increased risk of HIV acquisition. PMID:26204200

  11. Skin inflammation arising from cutaneous Treg deficiency leads to impaired viral immune responses1

    PubMed Central

    Freyschmidt, Eva-Jasmin; Mathias, Clinton B.; Diaz, Natalia; MacArthur, Daniel H.; Laouar, Amale; Manjunath, Narasimhaswamy; Hofer, Matthias D.; Wurbel, Marc-Andre; Campbell, James J.; Chatila, Talal A.; Oettgen, Hans C.

    2013-01-01

    Individuals with atopic dermatitis (AD) immunized with the small pox vaccine, vaccinia virus (VV), are susceptible to eczema vaccinatum (EV), a potentially-fatal disseminated infection. Dysfunction of FoxP3+ regulatory T cells (Treg) has been implicated in the pathogenesis of AD. To test whether Treg-deficiency predisposes to EV, we percutaneously VV-infected FoxP3-deficient (FoxP3KO) mice, which completely lack FoxP3+ Treg. These animals generated both fewer VV-specific CD8+ effector T cells and interferon-γ producing CD8+ T cells than controls, had higher viral loads and exhibited abnormal Th2 polarized responses to the virus. To focus on the consequences of Treg deficiency confined to the skin, we generated mixed CCR4KO FoxP3KO bone marrow (CCR4/FoxP3) chimeras in which skin, but not other tissues or central lymphoid organs, lack Treg. Like FoxP3KO mice, the chimeras had impaired VV-specific effector T cell responses and higher viral loads. Skin cytokine expression was significantly altered in infected chimeras compared to controls. Levels of the antiviral cytokines, type I and II interferons and IL-12, were reduced whereas expression of the proinflammatory cytokines, IL-6, IL-10, TGF-β and IL-23, was increased. Importantly, infection of CCR4/FoxP3 chimeras by a non-cutaneous route (i.p.) induced immune responses comparable to controls. Our findings implicate allergic skin inflammation resulting from local Treg deficiency in the pathogenesis of EV. PMID:20548030

  12. Skin inflammation arising from cutaneous regulatory T cell deficiency leads to impaired viral immune responses.

    PubMed

    Freyschmidt, Eva-Jasmin; Mathias, Clinton B; Diaz, Natalia; MacArthur, Daniel H; Laouar, Amale; Manjunath, Narasimhaswamy; Hofer, Matthias D; Wurbel, Marc-Andre; Campbell, James J; Chatila, Talal A; Oettgen, Hans C

    2010-07-15

    Individuals with atopic dermatitis immunized with the small pox vaccine, vaccinia virus (VV), are susceptible to eczema vaccinatum (EV), a potentially fatal disseminated infection. Dysfunction of Forkhead box P3 (FoxP3)-positive regulatory T cells (Treg) has been implicated in the pathogenesis of atopic dermatitis. To test whether Treg deficiency predisposes to EV, we percutaneously VV infected FoxP3-deficient (FoxP3(KO)) mice, which completely lack FoxP3(+) Treg. These animals generated both fewer VV-specific CD8(+) effector T cells and IFN-gamma-producing CD8(+) T cells than controls, had higher viral loads, and exhibited abnormal Th2-polarized responses to the virus. To focus on the consequences of Treg deficiency confined to the skin, we generated mixed CCR4(KO) FoxP3(KO) bone marrow (CCR4/FoxP3) chimeras in which skin, but not other tissues or central lymphoid organs, lack Treg. Like FoxP3(KO) mice, the chimeras had impaired VV-specific effector T cell responses and higher viral loads. Skin cytokine expression was significantly altered in infected chimeras compared with controls. Levels of the antiviral cytokines, type I and II IFNs and IL-12, were reduced, whereas expression of the proinflammatory cytokines, IL-6, IL-10, TGF-beta, and IL-23, was increased. Importantly, infection of CCR4/FoxP3 chimeras by a noncutaneous route (i.p.) induced immune responses comparable to controls. Our findings implicate allergic skin inflammation resulting from local Treg deficiency in the pathogenesis of EV.

  13. Immune-Mediated Inflammation May Contribute to the Pathogenesis of Cardiovascular Disease in Mucopolysaccharidosis Type I

    PubMed Central

    Gordts, Philip L.; Ellinwood, N. Matthew; Schwartz, Philip H.; Dickson, Patricia I.; Esko, Jeffrey D.; Wang, Raymond Y.

    2016-01-01

    Background Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease. Methods Gene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry. Results Gene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice. Conclusions Overexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for

  14. Bacterial Vaginosis and Subclinical Markers of Genital Tract Inflammation and Mucosal Immunity.

    PubMed

    Thurman, Andrea Ries; Kimble, Thomas; Herold, Betsy; Mesquita, Pedro M M; Fichorova, Raina N; Dawood, Hassan Y; Fashemi, Titilayo; Chandra, Neelima; Rabe, Lorna; Cunningham, Tina D; Anderson, Sharon; Schwartz, Jill; Doncel, Gustavo

    2015-11-01

    Bacterial vaginosis (BV) has been linked to an increased risk of human immunodeficiency virus (HIV) acquisition and transmission in observational studies, but the underlying biological mechanisms are unknown. We measured biomarkers of subclinical vaginal inflammation, endogenous antimicrobial activity, and vaginal flora in women with BV and repeated sampling 1 week and 1 month after completion of metronidazole therapy. We also compared this cohort of women with BV to a healthy control cohort without BV. A longitudinal, open label study of 33 women with a Nugent score of 4 or higher was conducted. All women had genital swabs, cervicovaginal lavage (CVL) fluid, and cervicovaginal biopsies obtained at enrollment and received 7 days of metronidazole treatment. Repeat sampling was performed approximately 1 week and 1 month after completion of therapy. Participant's baseline samples were compared to a healthy, racially matched control group (n=13) without BV. The CVL from women with resolved BV (Nugent 0-3) had significantly higher anti-HIV activity, secretory leukocyte protease inhibitor (SLPI), and growth-related oncogene alpha (GRO-α) levels and their ectocervical tissues had significantly more CD8 cells in the epithelium. Women with persistent BV after treatment had significantly higher levels of interleukin-1β, tumor necrosis factor alpha (TNF-α), and intercellular adhesion molecule 1 (ICAM-1) in the CVL. At study entry, participants had significantly greater numbers of CCR5(+) immune cells and a higher CD4/CD8 ratio in ectocervical tissues prior to metronidazole treatment, compared to a racially matched cohort of women with a Nugent score of 0-3. These data indicate that BV is associated with changes in select soluble immune mediators, an increase in HIV target cells, and a reduction in endogenous antimicrobial activity, which may contribute to the increased risk of HIV acquisition.

  15. [Connective tissue and inflammation].

    PubMed

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  16. Coordinate actions of innate immune responses oppose those of the adaptive immune system during Salmonella infection of mice.

    PubMed

    Hotson, Andrew N; Gopinath, Smita; Nicolau, Monica; Khasanova, Anna; Finck, Rachel; Monack, Denise; Nolan, Garry P

    2016-01-12

    The immune system enacts a coordinated response when faced with complex environmental and pathogenic perturbations. We used the heterogeneous responses of mice to persistent Salmonella infection to model system-wide coordination of the immune response to bacterial burden. We hypothesized that the variability in outcomes of bacterial growth and immune response across genetically identical mice could be used to identify immune elements that serve as integrators enabling co-regulation and interconnectedness of the innate and adaptive immune systems. Correlation analysis of immune response variation to Salmonella infection linked bacterial load with at least four discrete, interacting functional immune response "cassettes." One of these, the innate cassette, in the chronically infected mice included features of the innate immune system, systemic neutrophilia, and high serum concentrations of the proinflammatory cytokine interleukin-6. Compared with mice with a moderate bacterial load, mice with the highest bacterial burden exhibited high activity of this innate cassette, which was associated with a dampened activity of the adaptive T cell cassette-with fewer plasma cells and CD4(+) T helper 1 cells and increased numbers of regulatory T cells-and with a dampened activity of the cytokine signaling cassette. System-wide manipulation of neutrophil numbers revealed that neutrophils regulated signal transducer and activator of transcription (STAT) signaling in B cells during infection. Thus, a network-level approach demonstrated unappreciated interconnections that balanced innate and adaptive immune responses during the dynamic course of disease and identified signals associated with pathogen transmission status, as well as a regulatory role for neutrophils in cytokine signaling.

  17. Histological Architecture Underlying Brain-Immune Cell-Cell Interactions and the Cerebral Response to Systemic Inflammation.

    PubMed

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2017-01-01

    Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell-cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood-brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain-immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain-immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury.

  18. Histological Architecture Underlying Brain–Immune Cell–Cell Interactions and the Cerebral Response to Systemic Inflammation

    PubMed Central

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2017-01-01

    Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell–cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood–brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain–immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain–immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury. PMID:28154566

  19. Innate and adaptive immune cells in the tumor microenvironment

    PubMed Central

    Gajewski, Thomas F; Schreiber, Hans; Fu, Yang-Xin

    2014-01-01

    Most tumor cells express antigens that can mediate recognition by host CD8+ T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell–inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system–suppressive pathways. The other major phenotype lacks this T cell–inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect. PMID:24048123

  20. Improvement of adaptive immunity by antigen-carrying biodegradable nanoparticles.

    PubMed

    Uto, Tomofumi; Wang, Xin; Akagi, Takami; Zenkyu, Rika; Akashi, Mitsuru; Baba, Masanori

    2009-02-06

    One of the most important aspects in vaccine development is to induce potent antigen-specific immune responses. In this study, we examined the immunological activities of antigen-carrying biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs) in mice. The immunization with ovalbumin (OVA)-carrying gamma-PGA NPs (OVA-NPs) could induce significant expansion of antigen-specific CD8(+) T cells. Unlike complete Freund's adjuvant, subcutaneous (s.c.) inoculation of OVA-NPs to footpad did not generate injection site swelling. Although OVA-NPs could induce both antigen-specific cellular and humoral immune responses, the dominant induction of either cellular or humoral immunity was found to depend on their administration routes. Strong antibody production was observed by s.c. immunization, yet no antibody was identified by intranasal immunization. Thus, gamma-PGA NPs are a safe and efficient antigen carrier with unique immunological properties.

  1. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    PubMed

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Basic biology and role of interleukin-17 in immunity and inflammation

    PubMed Central

    Zenobia, Camille; Hajishengallis, George

    2014-01-01

    Interleukin-17 (IL-17, also known as IL-17A) is a key cytokine that links T cell activation to neutrophil mobilization and activation. As such, IL-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of IL-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of IL-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, IL-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis, and other diseases involving bone immunopathology. Systemic treatments with anti-IL-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis, although their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered IL-17 blockers, are required to conclusively implicate IL-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease. PMID:26252407

  3. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis.

    PubMed

    Solcà, Manuela S; Andrade, Bruno B; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R; Khouri, Ricardo; Valenzuela, Jesus G; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-09-06

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of