Science.gov

Sample records for adaptive inflammatory immune

  1. Inflammatory bowel disease related innate immunity and adaptive immunity

    PubMed Central

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD. PMID:27398134

  2. Innate and adaptive immunity in inflammatory bowel disease.

    PubMed

    Geremia, Alessandra; Biancheri, Paolo; Allan, Philip; Corazza, Gino R; Di Sabatino, Antonio

    2014-01-01

    Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). The exact cause of IBD remains unknown. Available evidence suggests that an abnormal immune response against the microorganisms of the intestinal flora is responsible for the disease in genetically susceptible individuals. The adaptive immune response has classically been considered to play a major role in the pathogenesis of IBD. However, recent advances in immunology and genetics have clarified that the innate immune response is equally as important in inducing gut inflammation in these patients. In particular, an altered epithelial barrier function contributes to intestinal inflammation in patients with UC, while aberrant innate immune responses, such as antimicrobial peptide production, innate microbial sensing and autophagy are particularly associated to CD pathogenesis. On the other hand, besides T helper cell type (Th)1 and Th2 immune responses, other subsets of T cells, namely Th17 and regulatory T (Treg) cells, are likely to play a role in IBD. However, given the complexity and probably the redundancy of pathways leading to IBD lesions, and the fact that Th17 cells may also have protective functions, neutralization of IL-17A failed to induce any improvement in CD. Studying the interactions between various constituents of the innate and adaptive immune systems will certainly open new horizons in the knowledge about the immunologic mechanisms implicated in gut inflammation. PMID:23774107

  3. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  4. A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation

    PubMed Central

    Shahriyari, Leili

    2016-01-01

    There is an old hypothesis that metastasis is the result of migration of tumor cells from the tumor to a distant site. In this article, we propose another mechanism for metastasis, for cancers that are initiated at the site of chronic inflammation. We suggest that cells at the site of chronic inflammation might become adapted to the inflammatory process, and these adaptations may lead to the initiation of an inflammatory tumor. For example, in an inflammatory tumor immune cells might be adapted to send signals of proliferation or angiogenesis, and epithelial cells might be adapted to proliferation (like inactivation of tumor suppressor genes). Therefore, we hypothesize that metastasis could be the result of an inflammatory process by adapted cells, especially adapted immune cells at the site of inflammation, as well as the migration of tumor cells with the help of activated platelets, which travel between sites of inflammation.  If this hypothesis is correct, then any treatment causing necrotic cell death may not be a good solution. Because necrotic cells in the tumor micro-environment or anywhere in the body activate the immune system to initiate the inflammatory process, and the involvement of adapted immune cells in the inflammatory processes leads to the formation and progression of tumors. Adapted activated immune cells send more signals of proliferation and/or angiogenesis than normal cells. Moreover, if there were adapted epithelial cells, they would divide at a much higher rate in response to the proliferation signals than normal cells. Thus, not only would the tumor come back after the treatment, but it would also grow more aggressively. PMID:27158448

  5. Adaptive immune resistance: How cancer protects from immune attack

    PubMed Central

    Ribas, Antoni

    2015-01-01

    Adaptive immune resistance is a process where the cancer changes its phenotype in response to a cytotoxic or pro-inflammatory immune response, thereby evading it. This adaptive process is triggered by the specific recognition of cancer cells by T cells, which leads to the production of immune-activating cytokines. Cancers then hijack mechanisms developed to limit inflammatory and immune responses and protect themselves from the T cell attack. Inhibiting adaptive immune resistance is the mechanistic basis of responses to PD-1 or PD-L1 blocking antibodies, and may be of relevance for the development of other cancer immunotherapy strategies. PMID:26272491

  6. Circulating Tumor Cells (CTC) Are Associated with Defects in Adaptive Immunity in Patients with Inflammatory Breast Cancer

    PubMed Central

    Mego, M; Gao, H; Cohen, EN; Anfossi, S; Giordano, A; Sanda, T; Fouad, TM; De Giorgi, U; Giuliano, M; Woodward, WA; Alvarez, RH; Valero, V; Ueno, NT; Hortobagyi, GN; Cristofanilli, M; Reuben, JM

    2016-01-01

    Background: Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are prognostic in primary and metastatic breast cancer. Peripheral blood (PB) immune cells contribute to an unfavorable microenvironment for CTC survival. This study aimed to correlate CTCs with the PB T-cell immunophenotypes and functions of patients with inflammatory breast cancer (IBC). Methods: This study included 65 IBC patients treated at the MD Anderson Cancer Center. PB was obtained from patients prior to starting a new line of chemotherapy for CTCs enumeration by CellSearch®, and T cell phenotype and function by flow cytometry; the results were correlated with CTCs and clinical outcome. Results: At least 1 CTC (≥1) or ≥5 CTCs was detected in 61.5% or 32.3% of patients, respectively. CTC count did not correlate with total lymphocytes; however, patients with ≥1 CTC or ≥5 CTCs had lower percentages (%) of CD3+ and CD4+ T cells compared with patients with no CTCs or <5 CTCs, respectively. Patients with ≥1 CTC had a lower percentage of T-cell receptor (TCR)-activated CD8+ T cells synthesizing TNF-α and IFN-γ and a higher percentage of T-regulatory lymphocytes compared to patients without CTCs. In multivariate analysis, tumor grade and % CD3+ T-cells were associated with ≥1 CTC, whereas ≥5 CTC was associated with tumor grade, stage, % CD3+ and % CD4+ T cells, and % TCR-activated CD8 T-cells synthesizing IL-17. Conclusions: IBC patients with CTCs in PB had abnormalities in adaptive immunity that could potentially impact tumor cell dissemination and initiation of the metastatic cascade. PMID:27326253

  7. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  8. [Ocular immune reconstitution inflammatory syndrome].

    PubMed

    Ma, N; Ye, J J

    2016-02-11

    Immune reconstitution inflammatory syndrome (IRIS) is a collection of inflammatory disorders associated with paradoxical worsening of preexisting infectious processes or emerging diseases or even dead after the initiation of highly active antiretroviral therapy (HAART) in human immunodeficiency virus (HIV) infected individuals in a period of recovery of immune function. Ocular immune reconstitution inflammatory syndrome is mainly caused by cytomegalovirus which performing a series of ocular inflammation accompanied with the increase of CD4+ T lymphocytes, such as cytomegalovirus retinitis, after HAART. With HAART widely used, the patients of IRIS gradually increased. But the clinical presentations of IRIS were various because of different pathogens. This review summarized the clinical manifestations, risk factors, diagnosis and treatment of ocular IRIS.(Chin J Ophthalmol, 2016, 51: 150-153). PMID:26906710

  9. Innate and Adaptive Immunity in Atherosclerosis

    PubMed Central

    Packard, René R. S.; Lichtman, Andrew H.; Libby, Peter

    2010-01-01

    Atherosclerosis, a chronic inflammatory disorder, involves both the innate and adaptive arms of the immune response that mediate the initiation, progression, and ultimate thrombotic complications of atherosclerosis. Most fatal thromboses, which may manifest as acute myocardial infarction or ischemic stroke, result from frank rupture or superficial erosion of the fibrous cap overlying the atheroma, processes that occur in inflammatorily active, rupture-prone plaques. Appreciation of the inflammatory character of atherosclerosis has led to the application of C-reactive protein as a biomarker of cardiovascular risk, and the characterization of the anti-inflammatory and immunomodulatory actions of the statin class of drugs. An improved understanding of the pathobiology of atherosclerosis and further studies of its immune mechanisms provide avenues for the development of future strategies directed toward better risk stratification of patients as well as the identification of novel anti-inflammatory therapies. This review retraces leukocyte subsets involved in innate and adaptive immunity and their contributions to atherogenesis. PMID:19449008

  10. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease

    PubMed Central

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD. PMID:26900473

  11. Adaptive immunity in the liver.

    PubMed

    Shuai, Zongwen; Leung, Miranda Wy; He, Xiaosong; Zhang, Weici; Yang, Guoxiang; Leung, Patrick Sc; Eric Gershwin, M

    2016-05-01

    The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver. PMID:26996069

  12. Adaptive immunity in the liver

    PubMed Central

    Shuai, Zongwen; Leung, Miranda WY; He, Xiaosong; Zhang, Weici; Yang, Guoxiang; Leung, Patrick SC; Eric Gershwin, M

    2016-01-01

    The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver. PMID:26996069

  13. Brucella evasion of adaptive immunity.

    PubMed

    Martirosyan, Anna; Gorvel, Jean-Pierre

    2013-02-01

    The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system. PMID:23374122

  14. Filoviruses and the balance of innate, adaptive, and inflammatory responses.

    PubMed

    Mohamadzadeh, Mansour; Chen, Lieping; Olinger, Gene G; Pratt, William D; Schmaljohn, Alan L

    2006-01-01

    The Filoviruses Marburg virus and Ebola virus are among the deadliest of human pathogens, causing fulminant hemorrhagic fevers typified by overmatched specific immune responses and profuse inflammatory responses. Keys to both vaccination and treatment may reside, first, in the understanding of immune dysfunctions that parallel Filoviral disease and, second, in devising ways to redirect and restore normal immune function as well as to mitigate inflammation. Here, we describe how Filoviral infections may subvert innate immune responses through perturbances of dendritic cells and neutrophils, with particular emphasis on the downstream effects on adaptive immunity and inflammation. We suggest that pivotal events may be subject to therapeutic intervention as Filoviruses encounter immune processes. PMID:17201655

  15. Control of innate and adaptive immunity by the inflammasome

    PubMed Central

    Ciraci, Ceren; Janczy, John R.; Sutterwala, Fayyaz S.; Cassel, Suzanne L.

    2012-01-01

    The importance of innate immunity lies not only in directly confronting pathogenic and non-pathogenic insults but also in instructing the development of an efficient adaptive immune response. The Nlrp3 inflammasome provides a platform for the activation of caspase-1 with the subsequent processing and secretion of IL-1 family members. Given the importance of IL-1 in a variety of inflammatory diseases, understanding the role of Nlrp3 inflammasome in the initiation of innate and adaptive immune responses cannot be overstated. This review examines recent advances in inflammasome biology with an emphasis on its roles in sterile inflammation and triggering of adaptive immune responses. PMID:22841804

  16. Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-κB mediated and supports innate and adaptive anti-tumour immune priming

    PubMed Central

    2011-01-01

    Background As well as inducing direct oncolysis, reovirus treatment of melanoma is associated with activation of innate and adaptive anti-tumour immune responses. Results Here we characterise the effects of conditioned media from reovirus-infected, dying human melanoma cells (reoTCM), in the absence of live virus, to address the immune bystander potential of reovirus therapy. In addition to RANTES, IL-8, MIP-1α and MIP-1β, reovirus-infected melanoma cells secreted eotaxin, IP-10 and the type 1 interferon IFN-β. To address the mechanisms responsible for the inflammatory composition of reoTCM, we show that IL-8 and IFN-β secretion by reovirus-infected melanoma cells was associated with activation of NF-κB and decreased by pre-treatment with small molecule inhibitors of NF-κB and PKR; specific siRNA-mediated knockdown further confirmed a role for PKR. This pro-inflammatory milieu induced a chemotactic response in isolated natural killer (NK) cells, dendritic cells (DC) and anti-melanoma cytotoxic T cells (CTL). Following culture in reoTCM, NK cells upregulated CD69 expression and acquired greater lytic potential against tumour targets. Furthermore, melanoma cell-loaded DC cultured in reoTCM were more effective at priming adaptive anti-tumour immunity. Conclusions These data demonstrate that the PKR- and NF-κB-dependent induction of pro-inflammatory molecules that accompanies reovirus-mediated killing can recruit and activate innate and adaptive effector cells, thus potentially altering the tumour microenvironment to support bystander immune-mediated therapy as well as direct viral oncolysis. PMID:21338484

  17. Developmental origins of inflammatory and immune diseases.

    PubMed

    Chen, Ting; Liu, Han-Xiao; Yan, Hui-Yi; Wu, Dong-Mei; Ping, Jie

    2016-08-01

    Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. PMID:27226490

  18. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense system ...

  19. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases.

    PubMed

    Middleton, Elizabeth A; Weyrich, Andrew S; Zimmerman, Guy A

    2016-10-01

    Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury. PMID:27489307

  20. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies. PMID:26102534

  1. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  2. Adaptive Immune Regulation of Mammary Postnatal Organogenesis.

    PubMed

    Plaks, Vicki; Boldajipour, Bijan; Linnemann, Jelena R; Nguyen, Nguyen H; Kersten, Kelly; Wolf, Yochai; Casbon, Amy-Jo; Kong, Niwen; van den Bijgaart, Renske J E; Sheppard, Dean; Melton, Andrew C; Krummel, Matthew F; Werb, Zena

    2015-09-14

    Postnatal organogenesis occurs in an immune competent environment and is tightly controlled by interplay between positive and negative regulators. Innate immune cells have beneficial roles in postnatal tissue remodeling, but roles for the adaptive immune system are currently unexplored. Here we show that adaptive immune responses participate in the normal postnatal development of a non-lymphoid epithelial tissue. Since the mammary gland (MG) is the only organ developing predominantly after birth, we utilized it as a powerful system to study adaptive immune regulation of organogenesis. We found that antigen-mediated interactions between mammary antigen-presenting cells and interferon-γ (IFNγ)-producing CD4+ T helper 1 cells participate in MG postnatal organogenesis as negative regulators, locally orchestrating epithelial rearrangement. IFNγ then affects luminal lineage differentiation. This function of adaptive immune responses, regulating normal development, changes the paradigm for studying players of postnatal organogenesis and provides insights into immune surveillance and cancer transformation. PMID:26321127

  3. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses

    PubMed Central

    Mogensen, Trine H.

    2009-01-01

    Summary: The innate immune system constitutes the first line of defense against invading microbial pathogens and relies on a large family of pattern recognition receptors (PRRs), which detect distinct evolutionarily conserved structures on pathogens, termed pathogen-associated molecular patterns (PAMPs). Among the PRRs, the Toll-like receptors have been studied most extensively. Upon PAMP engagement, PRRs trigger intracellular signaling cascades ultimately culminating in the expression of a variety of proinflammatory molecules, which together orchestrate the early host response to infection, and also is a prerequisite for the subsequent activation and shaping of adaptive immunity. In order to avoid immunopathology, this system is tightly regulated by a number of endogenous molecules that limit the magnitude and duration of the inflammatory response. Moreover, pathogenic microbes have developed sophisticated molecular strategies to subvert host defenses by interfering with molecules involved in inflammatory signaling. This review presents current knowledge on pathogen recognition through different families of PRRs and the increasingly complex signaling pathways responsible for activation of an inflammatory and antimicrobial response. Moreover, medical implications are discussed, including the role of PRRs in primary immunodeficiencies and in the pathogenesis of infectious and autoimmune diseases, as well as the possibilities for translation into clinical and therapeutic applications. PMID:19366914

  4. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated.

    PubMed

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G; Okogbule-Wonodi, Adora C

    2015-08-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  5. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated

    PubMed Central

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G.

    2015-01-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  6. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  7. Central Nervous System Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Boulware, David R.; Marais, Suzaan; Scriven, James; Wilkinson, Robert J.; Meintjes, Graeme

    2013-01-01

    Central nervous system immune reconstitution inflammatory syndrome (CNS-IRIS) develops in 9 %–47 % of persons with HIV infection and a CNS opportunistic infection who start antiretroviral therapy and is associated with a mortality rate of 13 %–75 %. These rates vary according to the causative pathogen. Common CNS-IRIS events occur in relation to Cryptococcus, tuberculosis (TB), and JC virus, but several other mycobacteria, fungi, and viruses have been associated with IRIS. IRIS symptoms often mimic the original infection, and diagnosis necessitates consideration of treatment failure, microbial resistance, and an additional neurological infection. These diagnostic challenges often delay IRIS diagnosis and treatment. Corticosteroids have been used to treat CNS-IRIS, with variable responses; the best supportive evidence exists for the treatment of TB-IRIS. Pathogenic mechanisms vary: Cryptococcal IRIS is characterized by a paucity of cerebrospinal inflammation prior to antiretroviral therapy, whereas higher levels of inflammatory markers at baseline predispose to TB meningitis IRIS. This review focuses on advances in the understanding of CNS-IRIS over the past 2 years. PMID:24173584

  8. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    PubMed

    da Rocha Junior, Laurindo Ferreira; Dantas, Andréa Tavares; Duarte, Angela Luzia Branco Pinto; de Melo Rego, Moacyr Jesus Barreto; Pitta, Ivan da Rocha; Pitta, Maira Galdino da Rocha

    2013-01-01

    Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPAR γ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPAR γ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPAR γ has also been associated with B cells. The present review addresses these issues by placing PPAR γ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity. PMID:23983678

  9. Use of genetically modified bacteria to modulate adaptive immunity.

    PubMed

    Bueno, Susan M; González, Pablo A; Kalergis, Alexis M

    2009-06-01

    Infectious diseases caused by virulent bacteria are a significant cause of morbidity and mortality worldwide, especially in developing countries. However, attenuated strains derived from pathogenic bacteria, such as Salmonella, are highly immunogenic and can be used as vaccines to promote immunity against parental pathogenic bacteria strains. Further, they can be genetically manipulated to either express foreign antigens or deliver exogenous DNA, in order to induce immunity against other pathogens or antigens. Contrarily, specific structural modifications in attenuated Salmonella have allowed the generation of strains that can be well tolerated by the immune system and reduce inflammatory responses. It is thought that those strains could be considered as vectors to promote specific immune tolerance for certain auto-antigens or allergens and reduce unwanted or self-reactive immune responses. In addition, some structural features of Salmonella can contribute to defining the nature and type of polarization of the adaptive immune response induced after immunization, which can be considered as a tool to modulate antigen-specific immunity. In this article we discuss recent advances in the understanding of immune system modulation by molecular components of bacteria and their exploitation for the rational induction of pathogen immunity or antigen-specific tolerance. PMID:19519362

  10. Endocannabinoid signalling in innate and adaptive immunity

    PubMed Central

    Chiurchiù, Valerio; Battistini, Luca; Maccarrone, Mauro

    2015-01-01

    The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments. PMID:25585882

  11. The origins of vertebrate adaptive immunity

    PubMed Central

    Litman, Gary W.; Rast, Jonathan P.; Fugmann, Sebastian D.

    2010-01-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been considered to occur by acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of preexisting systems are the major source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity. PMID:20651744

  12. The origins of vertebrate adaptive immunity.

    PubMed

    Litman, Gary W; Rast, Jonathan P; Fugmann, Sebastian D

    2010-08-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been thought to occur by the acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of pre-existing systems are the main source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity. PMID:20651744

  13. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  14. Acne: a new model of immune-mediated chronic inflammatory skin disease.

    PubMed

    Antiga, E; Verdelli, A; Bonciani, D; Bonciolini, V; Caproni, M; Fabbri, P

    2015-04-01

    Acne is a chronic inflammatory disease of the sebaceous-pilosebaceous unit. Interestingly, inflammation can be detected by histopathological examination and immuohistochemical analysis even in the apparently non-inflammatory acneic lesions, such as comedones. In the last years, it has been clearly demonstrated that acne development is linked to the combination of predisposing genetic factors and environmental triggers, among which a prominent role is played by the follicular colonization by Propionibacterium acnes (P. acnes). P. acnes displays several activities able to promote the development of acne skin lesions, including the promotion of follicular hyperkeratinisation, the induction of sebogenesis, and the stimulation of an inflammatory response by the secretion of proinflammatory molecules and by the activation of innate immunity, that is followed by a P. acnes-specific adaptive immune response. In addition, P. acnes-independent inflammation mediated by androgens or by a neurogenic activation, followed by the secretion in the skin of pro-inflammatory neuropeptides, can occur in acne lesions. In conclusion, acne can be considered as a model of immune-mediated chronic inflammatory skin disease, characterized by an innate immune response that is not able to control P. acnes followed by a Th1-mediated adaptive immune response, that becomes self-maintaining independently from P. acnes itself. PMID:25876146

  15. Hansen's disease in association with immune reconstitution inflammatory syndrome

    PubMed Central

    George, Anju; Vidyadharan, Suja

    2016-01-01

    Immune reconstitution inflammatory syndrome is characterized by a paradoxical worsening of an existing infection or disease process, soon after initiation of highly active antiretroviral therapy. The first case of leprosy presenting as immune reconstitution inflammatory syndrome was published in 2003. Here we report a case of Hansen's disease borderline tuberculoid presenting with type 1 lepra reaction 5 months after initiation of highly active antiretroviral therapy. PMID:26955584

  16. Hansen's disease in association with immune reconstitution inflammatory syndrome.

    PubMed

    George, Anju; Vidyadharan, Suja

    2016-01-01

    Immune reconstitution inflammatory syndrome is characterized by a paradoxical worsening of an existing infection or disease process, soon after initiation of highly active antiretroviral therapy. The first case of leprosy presenting as immune reconstitution inflammatory syndrome was published in 2003. Here we report a case of Hansen's disease borderline tuberculoid presenting with type 1 lepra reaction 5 months after initiation of highly active antiretroviral therapy. PMID:26955584

  17. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    PubMed

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life. PMID:26423359

  18. Regulation of intestinal homeostasis by innate and adaptive immunity.

    PubMed

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis. PMID:22962437

  19. Fever, immunity, and molecular adaptations.

    PubMed

    Hasday, Jeffrey D; Thompson, Christopher; Singh, Ishwar S

    2014-01-01

    The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided. PMID:24692136

  20. Host adaptive immunity alters gut microbiota.

    PubMed

    Zhang, Husen; Sparks, Joshua B; Karyala, Saikumar V; Settlage, Robert; Luo, Xin M

    2015-03-01

    It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1(-/-) mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1(-) mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium Akkermansia muciniphila was highly enriched in Rag1(-/-) mice compared with the wild type. This enrichment was suppressed when Rag1(-/-) mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1(-/-) mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota's composition and diversity. PMID:25216087

  1. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome.

    PubMed

    Lai, Rachel P J; Meintjes, Graeme; Wilkinson, Robert J

    2016-03-01

    Patients co-infected with HIV-1 and tuberculosis (TB) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) following commencement of antiretroviral therapy (ART). TB-IRIS is characterized by transient but severe localized or systemic inflammatory reactions against Mycobacterium tuberculosis antigens. Here, we review the risk factors and clinical management of TB-IRIS, as well as the roles played by different aspects of the immune response in contributing to TB-IRIS pathogenesis. PMID:26423994

  2. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    PubMed

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials. PMID:26303886

  3. Antibody Fc: Linking Adaptive and Innate Immunity

    PubMed Central

    Reichert, Janice M.

    2014-01-01

    Antibody Fc: Linking Adaptive and Innate Immunity, edited by Margaret E. Ackerman and Falk Nimmerjahn and published by Academic Press, provides a highly detailed examination of the involvement of the antibody Fc in mechanisms critical to both innate and adaptive immune responses. Despite a recent increase in format diversity, most marketed antibodies are full-length IgG molecules and the majority of the commercial clinical pipeline of antibody therapeutics is composed of Fc-containing IgG molecules, which underscores the importance of understanding how the Fc domain affects biological responses. The book is divided into six sections that include a total of 20 chapters. In order of their appearance, the sections provide extensive coverage of effector mechanisms, effector cells, Fc receptors, variability of the Fc domain, genetic associations, and evolving areas.

  4. Crosstalk between innate and adaptive immunity in hepatitis B virus infection

    PubMed Central

    Wang, Li; Wang, Kai; Zou, Zhi-Qiang

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection. PMID:26730277

  5. The Role of Innate Immunity Receptors in the Pathogenesis of Inflammatory Bowel Disease

    PubMed Central

    Elia, Paula Peruzzi; Tolentino, Yolanda Faia M.; de Souza, Heitor Siffert Pereira

    2015-01-01

    Innate immunity constitutes the first line of defense, fundamental for the recognition and the initiation of an inflammatory response against microorganisms. The innate immune response relies on the sensing of microbial-associated molecular patterns through specialized structures such as toll-like receptors (TLRs) and the nucleotide oligomerization domain- (NOD-) like receptors (NLRs). In the gut, these tasks are performed by the epithelial barrier and the presence of adaptive and innate immune mechanisms. TLRs and NLRs are distributed throughout the gastrointestinal mucosa, being more expressed in the epithelium, and in lamina propria immune and nonimmune cells. These innate immunity receptors exhibit complementary biological functions, with evidence for pathways overlapping. However, as tolerance is the predominant physiological response in the gastrointestinal mucosa, it appears that the TLRs are relatively downregulated, while NLRs play a critical role in mucosal defense in the gut. Over the past two decades, genetic polymorphisms have been associated with several diseases including inflammatory bowel disease. Special emphasis has been given to the susceptibility to Crohn's disease, in association with abnormalities in the NOD2 and in the NLRP3/inflammasome. Nevertheless, the mechanisms underlying innate immune receptors dysfunction that result in the persistent inflammation in inflammatory bowel disease remain to be clarified. PMID:25821356

  6. [Immune granulomatous inflammation as the body's adaptive response].

    PubMed

    Paukov, V S; Kogan, E A

    2014-01-01

    Based on their studies and literature analysis, the authors offer a hypothesis for the adaptive pattern of chronic immune granulomatous inflammation occurring in infectious diseases that are characterized by the development of non-sterile immunity. The authors' proposed hypothesis holds that not every chronic inflammation is a manifestation of failing defenses of the body exposed to a damaging factor. By using tuberculosis and leprosy as an example, the authors show the insolvency of a number of existing notions of the pathogenesis and morphogenesis of epithelioid-cell and leprous granulomas. Thus, the authors consider that resident macrophages in tuberculosis maintain their function to kill mycobacteria; thereby the immune system obtains information on the antigenic determinants of the causative agents. At the same time, by consuming all hydrolases to kill mycobacteria, the macrophage fails to elaborate new lysosomes for the capacity of the pathogens to prevent them from forming. As a result, the lysosome-depleted macrophage transforms into an epithelioid cell that, maintaining phagocytic functions, loses its ability to kill the causative agents. It is this epithelioid cell where endocytobiosis takes place. These microorganisms destroy the epithelioid cell and fall out in the area of caseating granuloma necrosis at regular intervals. Some of them phagocytize epithelioid cells to maintain non-sterile immunity; the others are killed by inflammatory macrophages. The pathogenesis and morphogenesis of leprous granuloma, its tuberculous type in particular, proceed in a fundamentally similar way. Thus, non-sterile immunity required for tuberculosis, leprosy, and, possibly, other mycobacterioses is maintained. PMID:25306624

  7. Adaptive immunity to murine skin commensals

    PubMed Central

    Shen, Wei; Li, Wenqing; Hixon, Julie A.; Bouladoux, Nicolas; Belkaid, Yasmine; Dzutzev, Amiran; Durum, Scott K.

    2014-01-01

    The adaptive immune system provides critical defense against pathogenic bacteria. Commensal bacteria have begun to receive much attention in recent years, especially in the gut where there is growing evidence of complex interactions with the adaptive immune system. In the present study, we observed that commensal skin bacteria are recognized by major populations of T cells in skin-draining lymph nodes of mice. Recombination activating gene 1 (Rag1)−/− mice, which lack adaptive immune cells, contained living skin-derived bacteria and bacterial sequences, especially mycobacteria, in their skin-draining lymph nodes. T cells from skin-draining lymph nodes of normal mice were shown, in vitro, to specifically recognize bacteria of several species that were grown from Rag1−/− lymph nodes. T cells from skin-draining lymph nodes, transferred into Rag1−/− mice proliferated in skin-draining lymph nodes, expressed a restricted T-cell receptor spectrotype and produced cytokines. Transfer of T cells into Rag1−/− mice had the effect of reducing bacterial sequences in skin-draining lymph nodes and in skin itself. Antibacterial effects of transferred T cells were dependent on IFNγ and IL-17A. These studies suggest a previously unrecognized role for T cells in controlling skin commensal bacteria and provide a mechanism to account for cutaneous infections and mycobacterial infections in T-cell–deficient patients. PMID:25002505

  8. Nucleosides Accelerate Inflammatory Osteolysis, Acting as Distinct Innate Immune Activators

    PubMed Central

    Pan, George; Zheng, Rui; Yang, Pingar; Li, Yao; Clancy, John P.; Liu, Jianzhong; Feng, Xu; Garber, David A; Spearman, Paul; McDonald, Jay M

    2015-01-01

    The innate immune system and its components play an important role in the pathogenesis of inflammatory bone destruction. Blockade of inflammatory cytokines does not completely arrest bone erosion, suggesting that other mediators also may be involved in osteolysis. Previously we showed that nucleosides promote osteoclastogenesis and bone-resorption activity in the presence of receptor activator for nuclear factor κB ligand (RANKL) in vitro. The studies described here further demonstrate that selected nucleosides and nucleoside analogues accelerate bone destruction in mice immunized with collagen II alone (CII) but also further enhance bone erosion in mice immunized by collagen II plus complete Freund's adjuvant (CII + CFA). Abundant osteoclasts are accumulated in destructive joints. These data indicate that nucleosides act as innate immune activators distinct from CFA, synergistically accelerating osteoclast formation and inflammatory osteolysis. The potential roles of the surface triggering receptor expressed on myeloid cells (TREM) and the intracellular inflammasome in nucleoside-enhanced osteoclastogenesis have been studied. These observations provide new insight into the pathogenesis and underlying mechanism of bone destruction in inflammatory autoimmune osteoarthritis. PMID:21472777

  9. Microbiota activation and regulation of innate and adaptive immunity

    PubMed Central

    Alexander, Katie L.; Targan, Stephan R.; Elson, Charles O.

    2014-01-01

    Summary The human host has co-evolved with the collective of bacteria species, termed microbiota, in a complex fashion that affects both innate and adaptive immunity. Differential regulation of regulatory T-cell and effector T-cell responses are a direct result of specific microbial species present within the gut, and this relationship is subject is dysregulation during inflammation and disease. The microbiota varies widely between individuals and has a profound effect on how one reacts to various environmental stimuli, particularly if a person is genetically predisposed to an immune-mediated inflammatory disorder such as inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC). Approximately half of all CD patients have elevated antibodies to CBir1, a microbiota flagellin common to mice and humans, demonstrating flagellins as immunodominant antigens in the intestines. This review focuses on the use of flagellins as probes to study microbiota specific responses in the context of health and disease as well as probes of innate and adaptive responses employed by the host to deal with the overwhelming bacterial presence of the microbiota. PMID:24942691

  10. The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases.

    PubMed

    Gardiner, Clair M; Mills, Kingston H G

    2016-08-01

    Immunological memory mediated by antigen-specific T and B cells is the foundation of adaptive immunity and is fundamental to the heightened and rapid protective immune response induced by vaccination or following re-infection with the same pathogen. While the innate immune system has classically been considered to be non-specific and devoid of memory, it now appears that it can be trained following exposure to microbes or their products and that this may confer a form of memory on innate immune cells. The evidence for immunological memory outside of T and B cells has been best established for natural killer (NK) cells, where it has been known for decades that NK cells have heighten responses following immunological re-challenge. Furthermore, recent studies have demonstrated that monocyte/macrophages, and probably dendritic cells, can be re-programmed through epigenetic modification, following exposure to pathogens or their products, resulting in heighted responses following a second stimulation. Unlike antigen-specific memory of the adaptive immune system, the second stimulation does not have to be with the same pathogen or antigen. Indirect evidence for this comes from reports on the non-specific beneficial effect of certain live vaccines, such as Bacillus Calmette Guerin (BCG) against unrelated childhood infectious diseases. It also appears that certain pathogen or pathogen-derived molecules can prime immune cells, especially macrophages, to secrete more anti-inflammatory and less pro-inflammatory cyokines, thus opening up the possibility of exploiting innate immune training as a new therapeutic approach for inflammatory diseases. PMID:26979658

  11. Crusted scabies-associated immune reconstitution inflammatory syndrome

    PubMed Central

    2012-01-01

    Background Despite the widely accepted association between crusted scabies and human immunodeficiency virus (HIV)-infection, crusted scabies has not been included in the spectrum of infections associated with immune reconstitution inflammatory syndrome in HIV-infected patients initiating antiretroviral therapy. Case presentation We report a case of a 28-year-old Mexican individual with late HIV-infection, who had no apparent skin lesions but soon after initiation of antiretroviral therapy, he developed an aggressive form of crusted scabies with rapid progression of lesions. Severe infestation by Sarcoptes scabiei was confirmed by microscopic examination of the scale and skin biopsy. Due to the atypical presentation of scabies in a patient responding to antiretroviral therapy, preceded by no apparent skin lesions at initiation of antiretroviral therapy, the episode was interpreted for the first time as “unmasking crusted scabies-associated immune reconstitution inflammatory syndrome”. Conclusion This case illustrates that when crusted scabies is observed in HIV-infected patients responding to antiretroviral therapy, it might as well be considered as a possible manifestation of immune reconstitution inflammatory syndrome. Patient context should be considered for adequate diagnosis and treatment of conditions exacerbated by antiretroviral therapy-induced immune reconstitution. PMID:23181485

  12. Immune reconstitution inflammatory syndrome associated with biologic therapy.

    PubMed

    Gupta, Malika; Jafri, Kashif; Sharim, Rebecca; Silverman, Susanna; Sindher, Sayantani B; Shahane, Anupama; Kwan, Mildred

    2015-02-01

    The use of biologics in the treatment of autoimmune disease, cancer, and other immune conditions has revolutionized medical care in these areas. However, there are drawbacks to the use of these medications including increased susceptibility to opportunistic infections. One unforeseen risk once opportunistic infection has occurred with biologic use is the onset of immune reconstitution inflammatory syndrome (IRIS) upon drug withdrawal. Although originally described in human immunodeficiency virus (HIV) patients receiving highly active antiretroviral therapy, it has become clear that IRIS may occur when recovery of immune function follows opportunistic infection in the setting of previous immune compromise/suppression. In this review, we draw attention to this potential pitfall on the use of biologic drugs. PMID:25504263

  13. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    PubMed

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  14. Intercellular Communication in the Adaptive Immune System

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  15. Immunization status in children with inflammatory bowel disease.

    PubMed

    Longuet, Romain; Willot, Stephanie; Giniès, Jean-Louis; Pélatan, Cecile; Breton, Estelle; Segura, Jean-François; Bridoux, Laure; Le Henaff, Gaelle; Cagnard, Benoit; Jobert, Agathe; Cardonna, Joël; Grimal, Isabelle; Balençon, Martine; Darviot, Estelle; Delaperrière, Nadège; Caldari, Dominique; Piloquet, Hugues; Dabadie, Alain

    2014-05-01

    Inflammatory bowel diseases have an increased risk of infections due to immunosuppressive therapies. To report the immunization status according to previous recommendations and the reasons explaining a delay, a questionnaire was filled in by the pediatric gastroenterologist, concerning outpatients, in six tertiary centers and five local hospitals, in a study, from May to November 2011. One hundred and sixty-five questionnaires were collected, of which 106 Crohn's diseases, 41 ulcerative colitis, and 17 indeterminate colitis. Sex ratio was 87:78 M/F. Median age was 14.4 years old (4.2-20.0). One hundred and nine patients (66 %) were receiving or had received an immunosuppressive therapy (azathioprine, infliximab, methotrexate, or prednisone). Vaccines were up to date according to the vaccine schedule of French recommendations in 24 % of cases and according to the recommendations for inflammatory bowel disease in 4 % of cases. Coverage by vaccine was the following: diphtheria-tetanus-poliomyelitis 87 %, hepatitis B 38 %, pneumococcus 32 %, and influenza 22 %. Immunization delay causes were as follows: absence of proposal 58 %, patient refusal 41 %, fear of side effects 33 %, and fear of disease activation 5 %. Therefore, immunization coverage is insufficient in children with inflammatory bowel disease, due to simple omission or to refusal. A collaboration with the attending physicians and a targeted information are necessary. PMID:24305728

  16. Immune reconstitution inflammatory syndrome during treatment of Whipple's disease.

    PubMed

    Vayssade, Marielle; Tournadre, Anne; D'Incan, Michel; Soubrier, Martin; Dubost, Jean-Jacques

    2015-03-01

    Immune reconstitution inflammatory syndrome is a rare complication of the treatment of Whipple's disease. Here, we report the case of a 65-year-old man treated for Whipple's disease affecting the joints, with positive Tropheryma whipplei PCR in CSF, who developed fever and nodular eruption on the trunk, arms and face in association with biological inflammatory syndrome 10 days after initiation of antimicrobial treatment. Skin manifestations and the patient's general condition improved on corticosteroids (0.5mg/kg prednisone), but as steroids were gradually tapered, new nodules appeared below a prednisone dose of 10-15mg. One year after starting treatment, lumbar puncture showed asymptomatic meningitis with negative T. whipplei PCR results which had regressed spontaneously. Two years after the diagnosis, on prednisone 5mg daily and antimicrobial treatment, the patient had only transient, episodic nodular rash without fever or inflammatory syndrome. PMID:25553832

  17. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome

    USGS Publications Warehouse

    Meteyer, Carol U.; Barber, Daniel; Mandl, Judith N.

    2012-01-01

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS), which was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  18. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome.

    PubMed

    Meteyer, Carol U; Barber, Daniel; Mandl, Judith N

    2012-11-15

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS). IRIS was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology. PMID:23154286

  19. The innate immune function of airway epithelial cells in inflammatory lung disease.

    PubMed

    Hiemstra, Pieter S; McCray, Paul B; Bals, Robert

    2015-04-01

    The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed. PMID:25700381

  20. The innate immune function of airway epithelial cells in inflammatory lung disease

    PubMed Central

    Hiemstra, Pieter S.; McCray, Paul B.; Bals, Robert

    2016-01-01

    The airway epithelium is now considered central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as a first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. In the review, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, COPD and cystic fibrosis, are discussed. PMID:25700381

  1. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes

    PubMed Central

    Gañán-Gómez, I; Wei, Y; Starczynowski, DT; Colla, S; Yang, H; Cabrero-Calvo, M; Bohannan, ZS; Verma, A; Steidl, U; Garcia-Manero, G

    2016-01-01

    Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal hematologic malignancies that are characterized by defective bone marrow (BM) hematopoiesis and by the occurrence of intramedullary apoptosis. During the past decade, the identification of key genetic and epigenetic alterations in patients has improved our understanding of the pathophysiology of this disease. However, the specific molecular mechanisms leading to the pathogenesis of MDS have largely remained obscure. Recently, essential evidence supporting the direct role of innate immune abnormalities in MDS has been obtained, including the identification of multiple key regulators that are overexpressed or constitutively activated in BM hematopoietic stem and progenitor cells. Mounting experimental results indicate that the dysregulation of these molecules leads to abnormal hematopoiesis, unbalanced cell death and proliferation in patients' BM, and has an important role in the pathogenesis of MDS. Furthermore, there is compelling evidence that the deregulation of innate immune and inflammatory signaling also affects other cells from the immune system and the BM microenvironment, which establish aberrant associations with hematopoietic precursors and contribute to the MDS phenotype. Therefore, the deregulation of innate immune and inflammatory signaling should be considered as one of the driving forces in the pathogenesis of MDS. In this article, we review and update the advances in this field, summarizing the results from the most recent studies and discussing their clinical implications. PMID:25761935

  2. Progressive multifocal leukoencephalopathy and immune reconstitution inflammatory syndrome (IRIS).

    PubMed

    Bauer, Jan; Gold, Ralf; Adams, Ortwin; Lassmann, Hans

    2015-12-01

    Progressive multifocal leukoencephalopathy is a viral encephalitis induced by the John Cunningham (JC) virus, an ubiquitous neurotropic papovavirus of the genus polyomavirus that in healthy people in latency resides in kidney and bone marrow cells. Activation and entry into the CNS were first seen in patients with malignancies of the hematopoietic system and an impaired immune system. During the 1980 and the 1990s with the appearance of human immunodeficiency virus infection in humans, PML was found to be the most important opportunistic infection of the central nervous system. As a result of highly efficient immunosuppressive and immunomodulatory treatments, in recent years, the number of PML cases again increased. PML is prevented by an intact cellular immune response and accordingly immune reconstitution can terminate established disease in the CNS. However, forced immune reconstitution can lead to massive destruction of virus-infected cells. This may result in clinical exacerbation associated with high morbidity and mortality and referred to as PML with immune reconstitution inflammatory syndrome (PML-IRIS). In the present review, we discuss virological properties and routes of infection in the CNS, but mostly focus on the pathology of PML and PML-IRIS and on the role of the immune system in these disorders. We show that PML and PML-IRIS result from predominant JC virus infection of oligodendrocytes and, to a lesser extent, of infected neurons. Inflammation in these encephalitides seems to be driven by a dominant cytotoxic T cell response which is massively exaggerated during IRIS. PMID:26323992

  3. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi.

    PubMed

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G; Joosten, Leo A B

    2016-09-01

    We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease. PMID:27101991

  4. Innate and Adaptive Immune Response to Fungal Products and Allergens.

    PubMed

    Williams, P Brock; Barnes, Charles S; Portnoy, Jay M

    2016-01-01

    Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions. PMID:26755096

  5. Preventing Heart Failure in Inflammatory and Immune Disorders

    PubMed Central

    Serhal, Maya; Longenecker, Chris T.

    2014-01-01

    Patients with chronic inflammatory diseases are at increased risk for heart failure due to ischemic heart disease and other causes including heart failure with preserved ejection fraction. Using rheumatoid arthritis and treated HIV infection as two prototypical examples, we review the epidemiology and potential therapies to prevent heart failure in these populations. Particular focus is given to anti-inflammatory therapies including statins and biologic disease modifying drugs. There is also limited evidence for lifestyle changes and blockade of the renin-angiotensin-aldosterone system. We conclude by proposing how a strategy for heart failure prevention, such as the model tested in the Screening To Prevent Heart Failure (STOP-HF) trial, may be adapted to chronic inflammatory disease. PMID:26316924

  6. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  7. Innate immune inflammatory response in the acutely ischemic myocardium.

    PubMed

    Deftereos, Spyridon; Angelidis, Christos; Bouras, Georgios; Raisakis, Konstantinos; Gerckens, Ulrich; Cleman, Michael W; Giannopoulos, Georgios

    2014-01-01

    The "holy grail" of modern interventional cardiology is the salvage of viable myocardial tissue in the distribution of an acutely occluded coronary artery. Thrombolysis and percutaneous coronary interventions, provided they can be delivered on time, can interrupt the occlusion and save tissue. At the same time restoring the patency of the coronary vessels and providing the ischemic myocardium with blood can cause additional tissue damage. A key element of ischemic and reperfusion injury and major determinant of the evolution of damage in the injured myocardium is the inflammatory response. The innate immune system initiates and directs this response which is a prerequisite for subsequent healing. The complement cascade is set in motion following the release of subcellular membrane constituents. Endogenous 'danger' signals known as danger-associated molecular patterns (DAMPs) released from ischemic and dying cells alert the innate immune system and activate several signal transduction pathways through interactions with the highly conserved Toll like receptors (TLRs). Reactive oxygen species (ROS) generation directly induces pro-inflammatory cascades and triggers formation of the inflammasome. The challenge lies into designing strategies that specifically block the inflammatory cascades responsible for tissue damage without affecting those concerned with tissue healing. PMID:25102201

  8. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase

    PubMed Central

    Odobasic, Dragana; Kitching, A. Richard; Holdsworth, Stephen R.

    2016-01-01

    Neutrophils are no longer seen as leukocytes with a sole function of being the essential first responders in the removal of pathogens at sites of infection. Being armed with numerous pro- and anti-inflammatory mediators, these phagocytes can also contribute to the development of various autoimmune diseases and can positively or negatively regulate the generation of adaptive immune responses. In this review, we will discuss how myeloperoxidase, the most abundant neutrophil granule protein, plays a key role in the various functions of neutrophils in innate and adaptive immunity. PMID:26904693

  9. Immune Mechanisms in Inflammatory and Degenerative Eye Disease

    PubMed Central

    Perez, Victor L.; Caspi, Rachel R.

    2015-01-01

    It has recently been recognized that pathology of age-associated degenerative eye diseases such as adult macular degeneration (AMD), glaucoma and diabetic retinopathy, have strong immunological underpinnings. Attempts have been made to extrapolate to age-related degenerative disease insights from inflammatory processes associated with non-infectious uveitis, but these have not yet been sufficiently informative. Here we review recent findings on the immune processes underlying uveitis and those that have been shown to contribute to AMD, discussing in this context parallels and differences between overt inflammation and para-inflammation in the eye. We propose that mechanisms associated with ocular immune privilege, in combination with paucity of age-related antigen(s) within the target tissue, dampen what could otherwise be overt inflammation and result in the para-inflammation that characterizes age-associated neurodegenerative disease. PMID:25981967

  10. Vaccinations in patients with immune-mediated inflammatory diseases

    PubMed Central

    Rahier, Jean-François; Moutschen, Michel; Van Gompel, Alfons; Van Ranst, Marc; Louis, Edouard; Segaert, Siegfried; Masson, Pierre

    2010-01-01

    Patients with immune-mediated inflammatory diseases (IMID) such as RA, IBD or psoriasis, are at increased risk of infection, partially because of the disease itself, but mostly because of treatment with immunomodulatory or immunosuppressive drugs. In spite of their elevated risk for vaccine-preventable disease, vaccination coverage in IMID patients is surprisingly low. This review summarizes current literature data on vaccine safety and efficacy in IMID patients treated with immunosuppressive or immunomodulatory drugs and formulates best-practice recommendations on vaccination in this population. Especially in the current era of biological therapies, including TNF-blocking agents, special consideration should be given to vaccination strategies in IMID patients. Clinical evidence indicates that immunization of IMID patients does not increase clinical or laboratory parameters of disease activity. Live vaccines are contraindicated in immunocompromized individuals, but non-live vaccines can safely be given. Although the reduced quality of the immune response in patients under immunotherapy may have a negative impact on vaccination efficacy in this population, adequate humoral response to vaccination in IMID patients has been demonstrated for hepatitis B, influenza and pneumococcal vaccination. Vaccination status is best checked and updated before the start of immunomodulatory therapy: live vaccines are not contraindicated at that time and inactivated vaccines elicit an optimal immune response in immunocompetent individuals. PMID:20591834

  11. Inflammatory networks and immune surveillance of pancreatic carcinoma

    PubMed Central

    Vonderheide, Robert H.; Bayne, Lauren J.

    2013-01-01

    Cancer-associated inflammation plays an important role in restraining anti-tumor immunity, particularly in pancreatic ductal adenocarcinoma (PDA) for which a massive infiltration of immunosuppressive leukocytes into the tumor stroma is an early and consistent event in oncogenesis. This pathophysiology is in contrast to many other solid tumors for which infiltration of effector T cells is often prominent, associated with improved clinical outcomes, and mechanistically contributes to tumor immunoediting that ultimately can mediate immune escape. In PDA, increasing evidence suggests that the ras oncogene drives an inflammatory program that establishes immune privilege in the tumor microenvironment. Indeed, PDA cells might remain intrinsically sensitive to T cell killing because they have never been exposed to T cell selective pressure in vivo. In support of this hypothesis, recent studies demonstrate that derailing immune suppressive pathways in the PDA microenvironment, such as tumor derived GM-CSF, facilitates T-cell mediated tumor rejection. These findings carry major implications for the development of novel, combination immunotherapies for pancreatic cancer. PMID:23422836

  12. Modulatory Effects of Antidepressant Classes on the Innate and Adaptive Immune System in Depression.

    PubMed

    Eyre, H A; Lavretsky, H; Kartika, J; Qassim, A; Baune, B T

    2016-05-01

    Current reviews exploring for unique immune-modulatory profiles of antidepressant classes are limited by focusing mainly on cytokine modulation only and neglecting other aspects of the innate and adaptive immune system. These reviews also do not include recent comparative clinical trials, immune-genetic studies and therapeutics with unique neurotransmitter profiles (e. g., agomelatine). This systematic review extends the established literature by comprehensively reviewing the effects of antidepressants classes on both the innate and adaptive immune system. Antidepressants appear, in general, to reduce pro-inflammatory factor levels, particularly C-reactive protein (CRP), tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We caution against conclusions as to which antidepressant possesses the greater anti-inflammatory effect, given the methodological heterogeneity among studies and the small number of comparative studies. The effects of antidepressant classes on adaptive immune factors are complex and poorly understood, and few studies have been conducted. Methodological heterogeneity is high among these studies (e. g., length of study, cohort characteristics, dosage used and immune marker analysis). We recommend larger, comparative studies - in clinical and pre-clinical populations. PMID:26951496

  13. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases.

    PubMed

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Walder, Ken; Maes, Michael

    2016-03-01

    Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways. PMID:25598355

  14. Interferon Signature in the Blood in Inflammatory Common Variable Immune Deficiency

    PubMed Central

    Park, Joon; Munagala, Indira; Xu, Hui; Blankenship, Derek; Maffucci, Patrick; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Cunningham-Rundles, Charlotte

    2013-01-01

    About half of all subjects with common variable immune deficiency (CVID) are afflicted with inflammatory complications including hematologic autoimmunity, granulomatous infiltrations, interstitial lung disease, lymphoid hyperplasia and/or gastrointestinal inflammatory disease. The pathogenesis of these conditions is poorly understood but singly and in aggregate, these lead to significantly increased (11 fold) morbidity and mortality, not experienced by CVID subjects without these complications. To explore the dysregulated networks in these subjects, we applied whole blood transcriptional profiling to 91 CVID subjects, 47 with inflammatory conditions and 44 without, in comparison to subjects with XLA and healthy controls. As compared to other CVID subjects, males with XLA or healthy controls, the signature of CVID subjects with inflammatory complications was distinguished by a marked up-regulation of IFN responsive genes. Chronic up-regulation of IFN pathways is known to occur in autoimmune disease due to activation of TLRs and other still unclarified cytoplasmic sensors. As subjects with inflammatory complications were also more likely to be lymphopenic, have reduced B cell numbers, and a greater reduction of B, T and plasma cell networks, we suggest that more impaired adaptive immunity in these subjects may lead to chronic activation of innate IFN pathways in response to environmental antigens. The unbiased use of whole blood transcriptome analysis may provides a tool for distinguishing CVID subjects who are at risk for increased morbidity and earlier mortality. As more effective therapeutic options are developed, whole blood transcriptome analyses could also provide an efficient means of monitoring the effects of treatment of the inflammatory phenotype. PMID:24069364

  15. Complement activation pathways: a bridge between innate and adaptive immune responses in asthma.

    PubMed

    Wills-Karp, Marsha

    2007-07-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, is no exception. The emerging paradigm is that C3a production at the airway surface serves as a common pathway for the induction of Th2-mediated inflammatory responses to a variety of environmental triggers of asthma (i.e., allergens, pollutants, viral infections, cigarette smoke). In contrast, C5a plays a dual immunoregulatory role by protecting against the initial development of a Th2-polarized adaptive immune response via its ability to induce tolerogenic dendritic cell subsets. On the other hand, C5a drives type 2-mediated inflammatory responses once inflammation ensues. Thus, alterations in the balance of generation of the various components of the complement pathway either due to environmental exposure changes or genetic alterations in genes of the complement cascade may underlie the recent rise in asthma prevalence in westernized countries. PMID:17607007

  16. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    PubMed Central

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  17. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  18. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. PMID:23932846

  19. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    PubMed

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  20. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation

    PubMed Central

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  1. Inflammatory Bowel Disease: Autoimmune or Immune-mediated Pathogenesis?

    PubMed Central

    Wen, Zhonghui

    2004-01-01

    The pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), the two main forms of inflammatory bowel disease (IBD), is still unclear, but both autoimmune and immune-mediated phenomena are involved. Autoimmune phenomena include the presence of serum and mucosal autoantibodies against intestinal epithelial cells in either form of IBD, and against human tropomyosin fraction five selectively in UC. In addition, perinuclear antineutrophil cytoplasmic antibodies (pANCA) are common in UC, whereas antibodies against Saccharomyces cerevisiae (ASCA) are frequently found in CD. Immune-mediate phenomena include a variety of abnormalities of humoral and cell-mediated immunity, and a generalized enhanced reactivity against intestinal bacterial antigens in both CD and UC. It is currently believed that loss of tolerance against the indigenous enteric flora is the central event in IBD pathogenesis. Various complementary factors probably contribute to the loss of tolerance to commensal bacteria in IBD. They include defects in regulatory T-cell function, excessive stimulation of mucosal dendritic cells, infections or variants of proteins critically involved in bacterial antigen recognition, such as the products of CD-associated NOD2/CARD15 mutations. PMID:15559364

  2. Associations of coffee drinking with systemic immune and inflammatory markers

    PubMed Central

    Loftfield, Erikka; Shiels, Meredith S.; Graubard, Barry I.; Katki, Hormuzd A.; Chaturvedi, Anil K.; Trabert, Britton; Pinto, Ligia A.; Kemp, Troy J.; Shebl, Fatma M.; Mayne, Susan T.; Wentzensen, Nicolas; Purdue, Mark P.; Hildesheim, Allan; Sinha, Rashmi; Freedman, Neal D.

    2015-01-01

    Background Coffee drinking has been inversely associated with mortality as well as cancers of the endometrium, colon, skin, prostate, and liver. Improved insulin sensitivity and reduced inflammation are among the hypothesized mechanisms by which coffee drinking may affect cancer risk; however, associations between coffee drinking and systemic levels of immune and inflammatory markers have not been well characterized. Methods We used Luminex bead-based assays to measure serum levels of 77 immune and inflammatory markers in 1,728 older non-Hispanic Whites. Usual coffee intake was self-reported using a food frequency questionnaire. We used weighted multivariable logistic regression models to examine associations between coffee and dichotomized marker levels. We conducted statistical trend tests by modeling the median value of each coffee category and applied a 20% false discovery rate criterion to P-values. Results Ten of the 77 markers were nominally associated (P-value for trend<0.05) with coffee drinking. Five markers withstood correction for multiple comparisons and included aspects of the host response namely chemotaxis of monocytes/macrophages (IFNγ, CX3CL1/fractalkine, CCL4/MIP-1β), pro-inflammatory cytokines (sTNFRII) and regulators of cell growth (FGF-2). Heavy coffee drinkers had lower circulating levels of IFNγ (OR=0.35; 95% CI 0.16–0.75), CX3CL1/fractalkine (OR=0.25; 95% CI 0.10–0.64), CCL4/MIP-1β (OR=0.48; 95% CI 0.24–0.99), FGF-2 (OR=0.62; 95% CI 0.28–1.38), and sTNFRII (OR=0.34; 95% CI 0.15–0.79) than non-coffee drinkers. Conclusions Lower circulating levels of inflammatory markers among coffee drinkers may partially mediate previously observed associations of coffee with cancer and other chronic diseases. Impact Validation studies, ideally controlled feeding trials, are needed to confirm these associations. PMID:25999212

  3. Immune reconstitution inflammatory syndrome in HIV-infected patients

    PubMed Central

    Walker, Naomi F; Scriven, James; Meintjes, Graeme; Wilkinson, Robert J

    2015-01-01

    Access to antiretroviral therapy (ART) is improving worldwide. Immune reconstitution inflammatory syndrome (IRIS) is a common complication of ART initiation. In this review, we provide an overview of clinical and epidemiological features of HIV-associated IRIS, current understanding of pathophysiological mechanisms, available therapy, and preventive strategies. The spectrum of HIV-associated IRIS is described, with a particular focus on three important pathogen-associated forms: tuberculosis-associated IRIS, cryptococcal IRIS, and Kaposi’s sarcoma IRIS. While the clinical features and epidemiology are well described, there are major gaps in our understanding of pathophysiology and as a result therapeutic and preventative strategies are suboptimal. Timing of ART initiation is critical to reduce IRIS-associated morbidity. Improved understanding of the pathophysiology of IRIS will hopefully enable improved diagnostic modalities and better targeted treatments to be developed. PMID:25709503

  4. Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease

    PubMed Central

    Cantorna, Margherita T.; McDaniel, Kaitlin; Bora, Stephanie; Chen, Jing; James, Jamaal

    2014-01-01

    The inflammatory bowel diseases (IBD) are complex diseases caused by environmental, immunological and genetic factors. Vitamin D status is low in patients with IBD and experimental IBD is more severe in vitamin D deficient or vitamin D receptor knockout animals. Vitamin D is beneficial in IBD because it regulates multiple checkpoints and processes essential for homeostasis in the gut. Vitamin D inhibits IFN-γ and IL-17 production while inducing regulatory T cells. In addition, vitamin D regulates epithelial cell integrity, innate immune responses, and the composition of the gut microbiota. Overall vitamin D regulates multiple pathways that maintain gastrointestinal homeostasis. The data support improving vitamin D status in patients with IBD. PMID:24668555

  5. Immune reconstitution inflammatory syndrome in HIV-infected patients.

    PubMed

    Walker, Naomi F; Scriven, James; Meintjes, Graeme; Wilkinson, Robert J

    2015-01-01

    Access to antiretroviral therapy (ART) is improving worldwide. Immune reconstitution inflammatory syndrome (IRIS) is a common complication of ART initiation. In this review, we provide an overview of clinical and epidemiological features of HIV-associated IRIS, current understanding of pathophysiological mechanisms, available therapy, and preventive strategies. The spectrum of HIV-associated IRIS is described, with a particular focus on three important pathogen-associated forms: tuberculosis-associated IRIS, cryptococcal IRIS, and Kaposi's sarcoma IRIS. While the clinical features and epidemiology are well described, there are major gaps in our understanding of pathophysiology and as a result therapeutic and preventative strategies are suboptimal. Timing of ART initiation is critical to reduce IRIS-associated morbidity. Improved understanding of the pathophysiology of IRIS will hopefully enable improved diagnostic modalities and better targeted treatments to be developed. PMID:25709503

  6. Paradoxical reactions and immune reconstitution inflammatory syndrome in tuberculosis.

    PubMed

    Bell, Lucy C K; Breen, Ronan; Miller, Robert F; Noursadeghi, Mahdad; Lipman, Marc

    2015-03-01

    The coalescence of the HIV-1 and tuberculosis (TB) epidemics in Sub-Saharan Africa has had a significant and negative impact on global health. The availability of effective antimicrobial treatment for both HIV-1 (in the form of highly active antiretroviral therapy (HAART)) and TB (with antimycobacterial agents) has the potential to mitigate the associated morbidity and mortality. However, the use of both HAART and antimycobacterial therapy is associated with the development of inflammatory paradoxical syndromes after commencement of therapy. These include paradoxical reactions (PR) and immune reconstitution inflammatory syndromes (IRIS), conditions that complicate mycobacterial disease in HIV seronegative and seropositive individuals. Here, we discuss case definitions for PR and IRIS, and explore how advances in identifying the risk factors and immunopathogenesis of these conditions informs our understanding of their shared underlying pathogenesis. We propose that both PR and IRIS are characterized by the triggering of exaggerated inflammation in a setting of immunocompromise and antigen loading, via the reversal of immunosuppression by HAART and/or antimycobacterials. Further understanding of the molecular basis of this pathogenesis may pave the way for effective immunotherapies for the treatment of PR and IRIS. PMID:25809754

  7. The Gut Microbiota in Immune-Mediated Inflammatory Diseases

    PubMed Central

    Forbes, Jessica D.; Van Domselaar, Gary; Bernstein, Charles N.

    2016-01-01

    The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID. PMID:27462309

  8. The Gut Microbiota in Immune-Mediated Inflammatory Diseases.

    PubMed

    Forbes, Jessica D; Van Domselaar, Gary; Bernstein, Charles N

    2016-01-01

    The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID. PMID:27462309

  9. Diversity of immune strategies explained by adaptation to pathogen statistics

    PubMed Central

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M.

    2016-01-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations—differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  10. Diversity of immune strategies explained by adaptation to pathogen statistics.

    PubMed

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M

    2016-08-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations-differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  11. Neuroendocrine Effects of Stress on Immunity in the Elderly: Implications for Inflammatory Disease

    PubMed Central

    Heffner, Kathi L.

    2010-01-01

    Synopsis Age-related changes in immune function leave older adults at risk for a host of inflammatory diseases. Immune-mediated inflammatory processes are regulated by neuroendocrine hormones, including glucocorticoids, dehydroepiandrosterone (DHEA), and the catecholamines, epinephrine and norepinephrine. This regulation, however, becomes impaired in older adults in light of age-related changes in endocrine function. Chronic stress shows similarly harmful effects on neuroendocrine and immune function and may, therefore, combine with age to further increase disease risk in older adults. This article highlights evidence for the impact of age and stress on neuroendocrine regulation of inflammatory processes that may substantially increase risk for inflammatory disease at older ages. PMID:21094926

  12. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    PubMed Central

    Curtale, Graziella; Citarella, Franca

    2013-01-01

    Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response. PMID:23975170

  13. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    PubMed Central

    Bullens, Dominique M. A.; Decraene, Ann; Seys, Sven; Dupont, Lieven J.

    2013-01-01

    Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A), called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases. PMID:23401702

  14. Immune reconstitution inflammatory syndrome: the trouble with immunity when you had none

    PubMed Central

    Barber, Daniel L.; Andrade, Bruno B.; Sereti, Irini; Sher, Alan

    2012-01-01

    Some individuals who are infected with HIV rapidly deteriorate shortly after starting antiretroviral therapy, despite effective viral suppression. This reaction, referred to as immune reconstitution inflammatory syndrome (IRIS), is characterized by tissue-destructive inflammation and arises as CD4+ T cells re-emerge. It has been proposed that IRIS is caused by a dysregulation of the expanding population of CD4+ T cells specific for a co-infecting opportunistic pathogen. Here, we argue that IRIS instead results from hyper-responsiveness of the innate immune system to T cell help, a mechanism that may be shared by the many manifestations of IRIS that occur following the reversal of other types of immunosuppression in pathogen-infected hosts. PMID:22230950

  15. Oxazolone-Induced Contact Hypersensitivity Reduces Lymphatic Drainage but Enhances the Induction of Adaptive Immunity

    PubMed Central

    Aebischer, David; Willrodt, Ann-Helen; Halin, Cornelia

    2014-01-01

    Contact hypersensitivity (CHS) induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC) migration to draining lymph nodes (dLNs). On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA) was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH) response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40) and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function. PMID:24911791

  16. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis

    PubMed Central

    Zhang, Yonggang; Li, Fang; Wang, Hong; Yin, Chaoran; Huang, JieAn; Mahavadi, Sunila; Murthy, Karnam S.

    2016-01-01

    Background The contractility of colonic smooth muscle is dysregulated due to immune/inflammatory responses in inflammatory bowel diseases. Inflammation in vitro induces up-regulation of regulator of G-protein signaling 4 (RGS4) expression in colonic smooth muscle cells. Aims To characterize the immune/inflammatory responses and RGS4 expression pattern in colonic smooth muscle after induction of colitis. Methods Colitis was induced in rabbits by intrarectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Innate/adaptive immune response RT-qPCR array was performed using colonic circular muscle strips. At 1–9 weeks after colonic intramuscular microinjection of lentivirus, the distal and proximal colons were collected, and muscle strips and dispersed muscle cells were prepared from circular muscle layer. Expression levels of RGS4 and NFκB signaling components were determined by Western blot analysis. The biological consequences of RGS4 knockdown were assessed by measurement of muscle contraction and phospholipase C (PLC)-β activity in response to acetylcholine (ACh). Results Contraction in response to ACh was significantly inhibited in the inflamed colonic circular smooth muscle cells. RGS4, IL-1, IL-6, IL-8, CCL3, CD1D, and ITGB2 were significantly up-regulated, while IL-18, CXCR4, CD86, and C3 were significantly down-regulated in the inflamed muscle strips. RGS4 protein expression in the inflamed smooth muscles was dramatically increased. RGS4 stable knockdown in vivo augmented ACh-stimulated PLC-β activity and contraction in colonic smooth muscle cells. Conclusion Inflamed smooth muscle exhibits up-regulation of IL-1-related signaling components, Th1 cytokines and RGS4, and inhibition of contraction. Stable knockdown of endogenous RGS4 in colonic smooth muscle increases PLC-β activity and contractile responses. PMID:26879904

  17. Adaptive Immunity in Schizophrenia: Functional Implications of T Cells in the Etiology, Course and Treatment.

    PubMed

    Debnath, Monojit

    2015-12-01

    Schizophrenia is a severe and highly complex neurodevelopmental disorder with an unknown etiopathology. Recently, immunopathogenesis has emerged as one of the most compelling etiological models of schizophrenia. Over the past few years considerable research has been devoted to the role of innate immune responses in schizophrenia. The findings of such studies have helped to conceptualize schizophrenia as a chronic low-grade inflammatory disorder. Although the contribution of adaptive immune responses has also been emphasized, however, the precise role of T cells in the underlying neurobiological pathways of schizophrenia is yet to be ascertained comprehensively. T cells have the ability to infiltrate brain and mediate neuro-immune cross-talk. Conversely, the central nervous system and the neurotransmitters are capable of regulating the immune system. Neurotransmitter like dopamine, implicated widely in schizophrenia risk and progression can modulate the proliferation, trafficking and functions of T cells. Within brain, T cells activate microglia, induce production of pro-inflammatory cytokines as well as reactive oxygen species and subsequently lead to neuroinflammation. Importantly, such processes contribute to neuronal injury/death and are gradually being implicated as mediators of neuroprogressive changes in schizophrenia. Antipsychotic drugs, commonly used to treat schizophrenia are also known to affect adaptive immune system; interfere with the differentiation and functions of T cells. This understanding suggests a pivotal role of T cells in the etiology, course and treatment of schizophrenia and forms the basis of this review. PMID:26162591

  18. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome

    PubMed Central

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika PMID:27212842

  19. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome.

    PubMed

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika. PMID:27212842

  20. CD98 at the crossroads of adaptive immunity and cancer

    PubMed Central

    Cantor, Joseph M.; Ginsberg, Mark H.

    2012-01-01

    Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer. PMID:22499670

  1. Invariant natural killer T cells: bridging innate and adaptive immunity

    PubMed Central

    Parekh, Vrajesh V.; Wu, Lan

    2013-01-01

    Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system. PMID:20734065

  2. Innate and Adaptive Immune Regulation During Chronic Viral Infections

    PubMed Central

    Zuniga, Elina I.; Macal, Monica; Lewis, Gavin M.; Harker, James A.

    2015-01-01

    Chronic viral infections represent a unique challenge to the infected host. Persistently replicating viruses outcompete or subvert the initial antiviral response, allowing the establishment of chronic infections that result in continuous stimulation of both the innate and adaptive immune compartments. This causes a profound reprogramming of the host immune system, including attenuation and persistent low levels of type I interferons, progressive loss (or exhaustion) of CD8+ T cell functions, and specialization of CD4+ T cells to produce interleukin-21 and promote antibody-mediated immunity and immune regulation. Epigenetic, transcriptional, posttranscriptional, and metabolic changes underlie this adaptation or recalibration of immune cells to the emerging new environment in order to strike an often imperfect balance between the host and the infectious pathogen. In this review we discuss the common immunological hallmarks observed across a range of different persistently replicating viruses and host species, the underlying molecular mechanisms, and the biological and clinical implications. PMID:26958929

  3. Zinc in innate and adaptive tumor immunity

    PubMed Central

    2010-01-01

    Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493

  4. Aryl Hydrocarbon Receptor Control of Adaptive Immunity

    PubMed Central

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation. PMID:23908379

  5. An Activated Immune and Inflammatory Response Targets the Pancreas of Newborn Pigs with Cystic Fibrosis

    PubMed Central

    Abu-El-Haija, Maisam; Sinkora, Marek; Meyerholz, David K.; Welsh, Michael J.; McCray, Jr., Paul B.; Butler, John; Uc, Aliye

    2011-01-01

    Background/Aims: In cystic fibrosis (CF), pancreatic disease begins in utero and progresses over time to complete destruction of the organ. Although inflammatory cells have been detected in the pancreas of humans and pigs with CF, their subtypes have not been characterized. Methods: Using four-color flow cytometry, we analyzed the surface antigens of leukocytes in pancreas, blood, and mesenteric lymph nodes (MLN) of newborn pigs with CF (CFTR–/– and CFTRΔF508/ΔF508) and in those without CF (CFTR+/–, CFTR+/ΔF508, CFTR+/+). Pancreatic histopathology was examined with HE stain. Results: CF pig pancreas had patchy distribution of inflammatory cells with neutrophils/macrophages in dilated acini, and lymphocytes in the interstitium compared to non-CF. B cells, effector (MHC-II+) and cytotoxic (CD2+CD8+) γδ T cells, activated (MHC-II+ and/or CD25+) and effector (CD4+CD8+) αβ T helper cells, effector natural killer cells (MHC-II+CD3−CD8+), and monocytes/macrophages and neutrophils were increased in the CF pig pancreas compared to pigs without CF. Blood and MLN leukocyte populations were not different between CF and non-CF pigs. Conclusions: We discovered an activated immune response that was specific to the pancreas of newborn CF pigs; inflammation was not systemic. The presence of both innate and adaptive immune cells suggests that the disease process is complex and extensive. PMID:22057257

  6. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  7. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  8. P-selectin glycoprotein ligand-1 modulates immune inflammatory responses in the enteric lamina propria.

    PubMed

    Nuñez-Andrade, Norman; Lamana, Amalia; Sancho, David; Gisbert, Javier P; Gonzalez-Amaro, Roberto; Sanchez-Madrid, Francisco; Urzainqui, Ana

    2011-06-01

    P-selectin glycoprotein ligand-1 (PSGL-1), a leukocyte adhesion receptor that interacts with selectins, induces a tolerogenic programme in bone marrow-derived dendritic cells (DCs), which in turn promotes the generation of T regulatory (Treg) lymphocytes. In the present study, we have used a mouse model of dextran sulphate sodium (DSS)-induced colitis and studied the characteristics of the inflammatory cell infiltrate in the lamina propria (LP), mesenteric lymph nodes (mLNs) and Peyer's patches (PPs) to assess the possible role of PSGL-1 in the modulation of the enteric immune response. We have found that untreated PSGL-1-deficient mice showed an altered proportion of innate and adaptive immune cells in mLNs and PPs as well as an activated phenotype of macrophages and DCs in the colonic LP that mainly produced pro-inflammatory cytokines. Administration of an anti-PSGL-1 antibody also reduced the total numbers of macrophages, DCs and B cells in the colonic LP, and induced a lower expression of MHC-II by DCs and macrophages. After DSS treatment, PSGL-1(-/-) mice developed colitis earlier and with higher severity than wild-type (WT) mice. Accordingly, the colonic LP of these animals showed an enhanced number of Th1 and Th17 lymphocytes, with enhanced synthesis of IL-1α, IL-6 and IL-22, and increased activation of LP macrophages. Together, our data indicate that PSGL-1 has a relevant homeostatic role in the gut-associated lymphoid tissue under steady-state conditions, and that this adhesion receptor is able to down-regulate the inflammatory phenomenon in DSS-induced colitis. PMID:21432853

  9. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    PubMed Central

    Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585

  10. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  11. Mitochondria in the regulation of innate and adaptive immunity

    PubMed Central

    Weinberg, Samuel E.; Sena, Laura A.; Chandel, Navdeep S.

    2015-01-01

    Summary Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses. PMID:25786173

  12. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    PubMed

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo. PMID:26766427

  13. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  14. Impact of nutrition on immune function and the inflammatory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The review utilizes data on three micronutrients (vitamin A, zinc and iron), anthropometrically defined undernutrition (stunting, wasting and underweight) and obesity to evaluate the effect on immune function, recovery of immune function in response to nutritional interventions, related health outco...

  15. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  16. Erythema elevatum diutinum in acquired immune deficiency syndrome: Can it be an immune reconstitution inflammatory syndrome?

    PubMed Central

    Jose, Sheethal K; Marfatia, Yogesh S.

    2016-01-01

    A 47-year-old male with acquired immune deficiency syndrome (AIDS) presented with multiple hyperpigmented papules and nodules on both ankles, dorsum of bilateral feet and soles. It was associated with mild itching and pain. The patient was diagnosed with human immunodeficiency virus (HIV) in 2007. First-line antiretroviral therapy (ART) was started in 2009 to which he responded initially. He was shifted to second-line ART 11 months ago in March 2015 due to treatment failure as suggested by CD4 count of 50 cells/mm3. The present skin lesions started 2 months after the initiation of second-line ART. Differential diagnoses considered were Kaposi's sarcoma and immune reconstitution inflammatory syndrome (IRIS) related infections, but biopsy was suggestive of erythema elevatum diutinum (EED). Patient was started on oral dapsone 100 mg/day and increased to 200 mg/day to which he is responding gradually. In the present case, appearance of the lesions after initiation of second-line ART coupled with increase in CD4 count and decrease of viral load below undetectable level suggest that EED could be an IRIS. PMID:27190420

  17. Erythema elevatum diutinum in acquired immune deficiency syndrome: Can it be an immune reconstitution inflammatory syndrome?

    PubMed

    Jose, Sheethal K; Marfatia, Yogesh S

    2016-01-01

    A 47-year-old male with acquired immune deficiency syndrome (AIDS) presented with multiple hyperpigmented papules and nodules on both ankles, dorsum of bilateral feet and soles. It was associated with mild itching and pain. The patient was diagnosed with human immunodeficiency virus (HIV) in 2007. First-line antiretroviral therapy (ART) was started in 2009 to which he responded initially. He was shifted to second-line ART 11 months ago in March 2015 due to treatment failure as suggested by CD4 count of 50 cells/mm(3). The present skin lesions started 2 months after the initiation of second-line ART. Differential diagnoses considered were Kaposi's sarcoma and immune reconstitution inflammatory syndrome (IRIS) related infections, but biopsy was suggestive of erythema elevatum diutinum (EED). Patient was started on oral dapsone 100 mg/day and increased to 200 mg/day to which he is responding gradually. In the present case, appearance of the lesions after initiation of second-line ART coupled with increase in CD4 count and decrease of viral load below undetectable level suggest that EED could be an IRIS. PMID:27190420

  18. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens.

    PubMed

    Holtzman, Michael J

    2012-08-01

    Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease. PMID:22850884

  19. Hyperperfusion in progressive multifocal leukoencephalopathy is associated with disease progression and absence of immune reconstitution inflammatory syndrome

    PubMed Central

    Khoury, Michael N.; Gheuens, Sarah; Ngo, Long; Wang, Xiaoen; Alsop, David C.

    2013-01-01

    We sought to characterize perfusion patterns of progressive multifocal leukoencephalopathy lesions by arterial spin labelling perfusion magnetic resonance imaging and to analyse their association with immune reconstitution inflammatory syndrome, and survival. A total of 22 patients with progressive multifocal leukoencephalopathy underwent a clinical evaluation and magnetic resonance imaging of the brain within 190 days of symptom onset. The presence of immune reconstitution inflammatory syndrome was determined based on clinical and laboratory criteria. Perfusion within progressive multifocal leukoencephalopathy lesions was determined by arterial spin labelling magnetic resonance imaging. We observed intense hyperperfusion within and at the edge of progressive multifocal leukoencephalopathy lesions in a subset of subjects. This hyperperfusion was quantified by measuring the fraction of lesion volume showing perfusion in excess of twice normal appearing grey matter. Hyperperfused lesion fraction was significantly greater in progressive multifocal leukoencephalopathy progressors than in survivors (12.8% versus 3.4% P = 0.02) corresponding to a relative risk of progression for individuals with a hyperperfused lesion fraction ≥ 4.0% of 9.1 (95% confidence interval of 1.4–59.5). The presence of hyperperfusion was inversely related to the occurrence of immune reconstitution inflammatory syndrome at the time of scan (P = 0.03). Indeed, within 3 months after symptom onset, hyperperfusion had a positive predictive value of 88% for absence of immune reconstitution inflammatory syndrome. Arterial spin labelling magnetic resonance imaging recognized regions of elevated perfusion within lesions of progressive multifocal leukoencephalopathy. These regions might represent virologically active areas operating in the absence of an effective adaptive immune response and correspond with a worse prognosis. PMID:24088807

  20. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  1. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases.

    PubMed

    Knight, Ellie T; Liu, Jenny; Seymour, Gregory J; Faggion, Clovis M; Cullinan, Mary P

    2016-06-01

    Plaque-induced periodontal diseases occur in response to the accumulation of dental plaque. Disease manifestation and progression is determined by the nature of the immune response to the bacterial complexes in plaque. In general, predisposing factors for these periodontal diseases can be defined as those factors which retain or hinder the removal of plaque and, depending upon the nature of the immune response to this plaque, the disease will either remain stable and not progress or it may progress and result in chronic periodontitis. In contrast, modifying factors can be defined as those factors that alter the nature or course of the inflammatory lesion. These factors do not cause the disease but rather modify the chronic inflammatory response, which, in turn, is determined by the nature of the innate and adaptive immune responses and the local cytokine and inflammatory mediator networks. Chronic inflammation is characterized by vascular, cellular and repair responses within the tissues. This paper will focus on how common modifying factors, such as smoking, stress, hormonal changes, diabetes, metabolic syndrome and HIV/AIDS, influence each of these responses, together with treatment implications. As treatment planning in periodontics requires an understanding of the etiology and pathogenesis of the disease, it is important for all modifying factors to be taken into account. For some of these, such as smoking, stress and diabetic control, supportive health behavior advice within the dental setting should be an integral component for overall patient management. PMID:27045429

  2. Immune reconstitution inflammatory syndrome: incidence and implications for mortality

    PubMed Central

    Novak, Richard M.; Richardson, James T.; Buchacz, Kate; Chmiel, Joan S.; Durham, Marcus D.; Palella, Frank J.; Wendrow, Andrea; Wood, Kathy; Young, Benjamin; Brooks, John T.

    2015-01-01

    Objective To describe incidence of immune reconstitution inflammatory syndrome (IRIS) and its association with mortality in a large multisite US HIV-infected cohort applying an objective, comprehensive definition. Design We studied 2 610 patients seen during 1996–2007 who initiated or resumed highly active combination antiretroviral therapy (cART) and, during the next 6 months, demonstrated a decline in plasma HIV-RNA viral load of at least 0.5 log10 copies/ml or an increase of at least 50% in CD4 cell count per microliter. We defined IRIS as the diagnosis of a type B or C condition [as per the Centers for Disease Control and Prevention (CDC) 1993 AIDS case definition] or any new mucocutaneous disorder during this same 6-month period. Methods We assessed the incidence of IRIS and evaluated risk factors for IRIS using conditional logistic regression and for all-cause mortality using proportional hazards models. Results We identified 370 cases of IRIS (in 276 patients). Median and nadir CD4 cell counts at cART initiation were 90 and 43 cells/μl, respectively; median viral load was 2.7 log10 copies/ml. The most common IRIS-defining diagnoses were candidiasis (all forms), cytomegalovirus infection, disseminated Mycobacterium avium intracellulare, Pneumocystis pneumonia, varicella zoster, Kaposi’s sarcoma and non-Hodgkin lymphoma. Only one case of Mycobacterium tuberculosis was observed. IRIS was independently associated with CD4 cell count less than 50 cells/μl vs. at least 200 cells/μl [odds ratio (OR) 5.0] and a viral load of at least 5.0 log10 copies vs. less than 4.0 log10 copies (OR 2.3). IRIS with a type B-defining or type C-defining diagnosis approximately doubled the risk for all-cause mortality. Conclusion In this large US-based HIV-infected cohort, IRIS occurred in 10.6% of patients who responded to effective ART and contributed to increased mortality. PMID:22233655

  3. Modulation of host adaptive immunity by hRSV proteins.

    PubMed

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  4. The microbiota in adaptive immune homeostasis and disease.

    PubMed

    Honda, Kenya; Littman, Dan R

    2016-07-01

    In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota-host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy. PMID:27383982

  5. Modulation of host adaptive immunity by hRSV proteins

    PubMed Central

    Espinoza, Janyra A; Bohmwald, Karen; Céspedes, Pablo F; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response. PMID:25513775

  6. THE NEUROPEPTIDE VIP: DIRECT EFFECTS ON IMMUNE CELLS AND INVOLVEMENT IN INFLAMMATORY AND AUTOIMMUNE DISEASES

    PubMed Central

    Ganea, Doina; Hooper, Kirsten M.; Kong, Weimin

    2015-01-01

    Neuropeptides represent an important category of endogenous contributors to the establishment and maintenance of immune deviation in immune privileged organs such as the CNS, and in the control of acute inflammation in the peripheral immune organs. Vasoactive intestinal peptide (VIP) is a major immunoregulatory neuropeptide widely distributed in the central and peripheral nervous system. In addition to neurons, VIP is synthesized by immune cells which also express VIP receptors. Here we review the current information on VIP production and VIP receptor mediated effects in the immune system, the role of endogenous and exogenous VIP in inflammatory and autoimmune disorders, and present and future VIP therapeutic approaches. PMID:25422088

  7. Multifaceted interactions between adaptive immunity and the central nervous system.

    PubMed

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  8. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D

    PubMed Central

    Wei, Ran; Christakos, Sylvia

    2015-01-01

    Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of vitamin D receptors in the different tissues and cells and, with regard to the immune system, whether or not vitamin D plays a role in the normal immune response and in modifying immune mediated diseases. In this article findings indicating that vitamin D is a key factor regulating both innate and adaptive immunity are reviewed with a focus on the molecular mechanisms involved. In addition, the physiological significance of vitamin D action, as suggested by in vivo studies in mouse models is discussed. Together, the findings indicate the importance of 1,25(OH)2D3 as a regulator of key components of the immune system. An understanding of the mechanisms involved will lead to potential therapeutic applications for the treatment of immune mediated diseases. PMID:26404359

  9. Innate immune sensors stimulate inflammatory and immunosuppressive responses to UVB radiation.

    PubMed

    Gallo, Richard L; Bernard, Jamie J

    2014-06-01

    Almost 40 years from when it was first reported that UVB radiation exposure would modulate immune signaling, the photoimmunology field is still trying to understand the mechanisms by which UVB initiates inflammatory responses and modulates immune recognition. This commentary focuses on the ability of Toll-like receptors (TLRs), specifically TLR4 (Ahmad et al., 2014) and ligands such as damage-associated molecular patterns (DAMPs) released from injured cells to stimulate innate immune signaling and inflammatory cytokine production following UVB irradiation. PMID:24825061

  10. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    PubMed Central

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  11. Human neutrophil elastase inhibitors in innate and adaptive immunity.

    PubMed

    Fitch, P M; Roghanian, A; Howie, S E M; Sallenave, J-M

    2006-04-01

    Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response. PMID:16545094

  12. Control of commensal microbiota by the adaptive immune system.

    PubMed

    Zhang, Husen; Luo, Xin M

    2015-01-01

    The symbiotic relationship between the mammalian host and gut microbes has fascinated many researchers in recent years. Use of germ-free animals has contributed to our understanding of how commensal microbes affect the host. Immunodeficiency animals lacking specific components of the mammalian immune system, on the other hand, enable studying of the reciprocal function-how the host controls which microbes to allow for symbiosis. Here we review the recent advances and discuss our perspectives of how to better understand the latter, with an emphasis on the effects of adaptive immunity on the composition and diversity of gut commensal bacteria. PMID:25901893

  13. Links between innate and adaptive immunity via type I interferon.

    PubMed

    Le Bon, Agnes; Tough, David F

    2002-08-01

    Type I interferon (IFN-alpha/beta) is expressed rapidly following exposure to a wide variety of infectious agents and plays a key role in innate control of virus replication. Recent studies have demonstrated that dendritic cells both produce IFN-alpha/beta and undergo maturation in response to IFN-alpha/beta. Moreover, IFN-alpha/beta has been shown to potently enhance immune responses in vivo through the stimulation of dendritic cells. These findings indicate that IFN-alpha/beta serves as a signal linking innate and adaptive immunity. PMID:12088676

  14. Cellular Immune Activation in Cerebrospinal Fluid From Ugandans With Cryptococcal Meningitis and Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Meya, David B.; Okurut, Samuel; Zziwa, Godfrey; Rolfes, Melissa A.; Kelsey, Melander; Cose, Steve; Joloba, Moses; Naluyima, Prossy; Palmer, Brent E.; Kambugu, Andrew; Mayanja-Kizza, Harriet; Bohjanen, Paul R.; Eller, Michael A.; Wahl, Sharon M.; Boulware, David R.; Manabe, Yuka C.; Janoff, Edward N.

    2015-01-01

    Background. Human immunodeficiency virus (HIV)-associated cryptococcal meningitis (CM) is characterized by high fungal burden and limited leukocyte trafficking to cerebrospinal fluid (CSF). The immunopathogenesis of CM immune reconstitution inflammatory syndrome (IRIS) after initiation of antiretroviral therapy at the site of infection is poorly understood. Methods. We characterized the lineage and activation status of mononuclear cells in blood and CSF of HIV-infected patients with noncryptococcal meningitis (NCM) (n = 10), those with CM at day 0 (n = 40) or day 14 (n = 21) of antifungal therapy, and those with CM-IRIS (n = 10). Results. At diagnosis, highly activated CD8+ T cells predominated in CSF in both CM and NCM. CM-IRIS was associated with an increasing frequency of CSF CD4+ T cells (increased from 2.2% to 23%; P = .06), a shift in monocyte phenotype from classic to an intermediate/proinflammatory, and increased programmed death ligand 1 expression on natural killer cells (increased from 11.9% to 61.6%, P = .03). CSF cellular responses were distinct from responses in peripheral blood. Conclusions. After CM, T cells in CSF tend to evolve with the development of IRIS, with increasing proportions of activated CD4+ T cells, migration of intermediate monocytes to the CSF, and declining fungal burden. These changes provide insight into IRIS pathogenesis and could be exploited to more effectively treat CM and prevent CM-IRIS. PMID:25492918

  15. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    PubMed Central

    Lang, Pierre Olivier; Aspinall, Richard

    2015-01-01

    Vitamin D (VitD), which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response. PMID:25803545

  16. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  17. Control of the Adaptive Immune Response by Tumor Vasculature

    PubMed Central

    Mauge, Laetitia; Terme, Magali; Tartour, Eric; Helley, Dominique

    2014-01-01

    The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy. PMID:24734218

  18. The adaptive immune response does not influence hantavirus disease or persistence in the Syrian hamster.

    PubMed

    Prescott, Joseph; Safronetz, David; Haddock, Elaine; Robertson, Shelly; Scott, Dana; Feldmann, Heinz

    2013-10-01

    Pathogenic New World hantaviruses cause severe disease in humans characterized by a vascular leak syndrome, leading to pulmonary oedema and respiratory distress with case fatality rates approaching 40%. Hantaviruses infect microvascular endothelial cells without conspicuous cytopathic effects, indicating that destruction of the endothelium is not a mechanism of disease. In humans, high levels of inflammatory cytokines are present in the lungs of patients that succumb to infection. This, along with other observations, suggests that disease has an immunopathogenic component. Currently the only animal model available to study hantavirus disease is the Syrian hamster, where infection with Andes virus (ANDV), the primary agent of disease in South America, results in disease that closely mimics that seen in humans. Conversely, inoculation of hamsters with a passaged Sin Nombre virus (SNV), the virus responsible for most cases of disease in North America, results in persistent infection with high levels of viral replication. We found that ANDV elicited a stronger innate immune response, whereas SNV elicited a more robust adaptive response in the lung. Additionally, ANDV infection resulted in significant changes in the blood lymphocyte populations. To determine whether the adaptive immune response influences infection outcome, we depleted hamsters of CD4(+) and CD8(+) T cells before infection with hantaviruses. Depletion resulted in inhibition of virus-specific antibody responses, although the pathogenesis and replication of these viruses were unaltered. These data show that neither hantavirus replication, nor pathogenesis caused by these viruses, is influenced by the adaptive immune response in the Syrian hamster. PMID:23600567

  19. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease

    PubMed Central

    Allen Reish, Heather E.; Standaert, David G.

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses. PMID:25588354

  20. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    PubMed Central

    Pashov, Anastas; Monzavi-Karbassi, Bejatolah; Raghava, Gajendra P. S.; Kieber-Emmons, Thomas

    2010-01-01

    Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC) in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies. PMID:20617150

  1. Impact of Alcohol Abuse on the Adaptive Immune System

    PubMed Central

    Pasala, Sumana; Barr, Tasha; Messaoudi, Ilhem

    2015-01-01

    Alcohol exposure, and particularly chronic heavy drinking, affects all components of the adaptive immune system. Studies both in humans and in animal models determined that chronic alcohol abuse reduces the number of peripheral T cells, disrupts the balance between different T-cell types, influences T-cell activation, impairs T-cell functioning, and promotes T-cell apoptosis. Chronic alcohol exposure also seems to cause loss of peripheral B cells, while simultaneously inducing increased production of immunoglobulins. In particular, the levels of antibodies against liver-specific autoantigens are increased in patients with alcoholic liver disease and may promote alcohol-related liver damage. Finally, chronic alcohol exposure in utero interferes with normal T-cell and B-cell development, which may increase the risk of infections during both childhood and adulthood. Alcohol’s impact on T cells and B cells increases the risk of infections (e.g., pneumonia, HIV infection, hepatitis C virus infection, and tuberculosis), impairs responses to vaccinations against such infections, exacerbates cancer risk, and interferes with delayed-type hypersensitivity. In contrast to these deleterious effects of heavy alcohol exposure, moderate alcohol consumption may have beneficial effects on the adaptive immune system, including improved responses to vaccination and infection. The molecular mechanisms underlying ethanol’s impact on the adaptive immune system remain poorly understood. PMID:26695744

  2. The Pathogenesis of ACLF: The Inflammatory Response and Immune Function.

    PubMed

    Moreau, Richard

    2016-05-01

    Although systemic inflammation is a hallmark of acute-on-chronic liver failure (ACLF), its role in the development of this syndrome is poorly understood. Here the author first summarizes the general principles of the inflammatory response. Inflammation can be triggered by exogenous or endogenous inducers. Important exogenous inducers include bacterial products such as pathogen-associated molecular patterns (PAMPs) and virulence factors. Pathogen-associated molecular patterns elicit inflammation through structural feature recognition (using innate pattern-recognition receptors [PRRs]), whereas virulence factors generally trigger inflammation via functional feature recognition. Endogenous inducers are called danger-associated molecular patterns (DAMPs) and include molecules released by necrotic cells and products of extracellular matrix breakdown. Danger-associated molecular patterns use different PRRs. The purpose of the inflammatory response may differ according to the type of stimulus: The aim of infection-induced inflammation is to decrease pathogen burden, whereas the DAMP-induced inflammation aims to promote tissue repair. An excessive inflammatory response can induce collateral tissue damage (a process called immunopathology). However immunopathology may not be the only mechanism of tissue damage; for example, organ failure can develop because of failed disease tolerance. In this review, the author also discusses how general principles of the inflammatory response can help us to understand the development of ACLF in different contexts: bacterial infection, severe alcoholic hepatitis, and cases in which there is no identifiable trigger. PMID:27172355

  3. Mathematical Model of Innate and Adaptive Immunity of Sepsis: A Modeling and Simulation Study of Infectious Disease

    PubMed Central

    Shi, Zhenzhen; Wu, Chih-Hang J.; Ben-Arieh, David; Simpson, Steven Q.

    2015-01-01

    Sepsis is a systemic inflammatory response (SIR) to infection. In this work, a system dynamics mathematical model (SDMM) is examined to describe the basic components of SIR and sepsis progression. Both innate and adaptive immunities are included, and simulated results in silico have shown that adaptive immunity has significant impacts on the outcomes of sepsis progression. Further investigation has found that the intervention timing, intensity of anti-inflammatory cytokines, and initial pathogen load are highly predictive of outcomes of a sepsis episode. Sensitivity and stability analysis were carried out using bifurcation analysis to explore system stability with various initial and boundary conditions. The stability analysis suggested that the system could diverge at an unstable equilibrium after perturbations if rt2max (maximum release rate of Tumor Necrosis Factor- (TNF-) α by neutrophil) falls below a certain level. This finding conforms to clinical findings and existing literature regarding the lack of efficacy of anti-TNF antibody therapy. PMID:26446682

  4. Regulation of chronic inflammatory and immune processes by extracellular vesicles.

    PubMed

    Robbins, Paul D; Dorronsoro, Akaitz; Booker, Cori N

    2016-04-01

    Almost all cell types release extracellular vesicles (EVs), which are derived either from multivesicular bodies or from the plasma membrane. EVs contain a subset of proteins, lipids, and nucleic acids from the cell from which they are derived. EV factors, particularly small RNAs such as miRNAs, likely play important roles in cell-to-cell communication both locally and systemically. Most of the functions associated with EVs are in the regulation of immune responses to pathogens and cancer, as well as in regulating autoimmunity. This Review will focus on the different modes of immune regulation, both direct and indirect, by EVs. The therapeutic utility of EVs for the regulation of immune responses will also be discussed. PMID:27035808

  5. Activation of the reward system boosts innate and adaptive immunity.

    PubMed

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  6. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  7. The immune pathogenesis of immune reconstitution inflammatory syndrome associated with highly active antiretroviral therapy in AIDS.

    PubMed

    Zheng, Yuhuang; Zhou, Huaying; He, Yan; Chen, Zi; He, Bo; He, Mei

    2014-12-01

    The present study investigated the immunological pathogenesis of immune reconstitution inflammatory syndrome (IRIS) in acquired immunodeficiency syndrome (AIDS) patients undergoing highly active antiretroviral therapy (HAART). A total of 238 patients with AIDS who received initial HAART were included in this prospective cohort study. Blood samples were collected immediately, at baseline, at week 12, and at week 24 after initial HAART and at the onset of IRIS. Lymphocyte subsets, Th1 and Th2 cytokines, and interleukin (IL)-7 levels were measured by flow cytometry or ELISA. Among the 238 patients with AIDS who received HAART, 47 patients developed IRIS. The percentages of CD4(+) and CD8(+) naive, memory, and activated cells exhibited no significant differences between AIDS patients with and without IRIS 24 weeks after initial HAART. The percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells was lower in IRIS patients than in non-IRIS patients before HAART, 12 weeks after HAART, 24 weeks after HAART, and at the onset of IRIS. IL-2 and interferon (IFN)-γ levels were significantly higher at week 4 and at the onset of IRIS in IRIS patients than in non-IRIS patients. In contrast, IL-4 and IL-10 levels were significantly lower at week 4 and at the onset of IRIS in IRIS patients than in non-IRIS patients. Plasma IL-7 decreased gradually with the progression of HAART. The level of IL-7 was higher in IRIS patients than in non-IRIS patients at all follow-up time points. An imbalance of Th1/Th2 cytokines, a consistently low CD(+)CD25(+)Fox3(+) percentage, and a high IL-7 level may be crucial in the pathogenesis of IRIS in AIDS patients who had received HAART. PMID:25131160

  8. Axillary lymph node tuberculosis masquerading as inflammatory breast carcinoma in an immune-compromised patient.

    PubMed

    Chikkannaiah, Panduranga; Vani, B R; Benachinmardi, Kirtilaxmi; Murthy, V Srinivasa

    2016-02-01

    While tuberculosis is still the leading opportunistic infection among human immunodeficiency virus-seropositive patients, extra-pulmonary tuberculosis is more common than pulmonary tuberculosis, with lymph nodes being a common site. Axillary lymph node pathology such as tuberculosis and lymphoma rarely mimics inflammatory breast carcinoma by producing lymphatic obstruction. We report a case of axillary lymph node tuberculosis in a 40-year-old immune-compromised woman, clinically presenting as inflammatory breast carcinoma. PMID:25681261

  9. The vagus nerve and the inflammatory reflex—linking immunity and metabolism

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2014-01-01

    The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders. PMID:23169440

  10. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    PubMed Central

    Vamvakopoulos, Nicholas V.

    1995-01-01

    This review higlghts key aspects of corticotropin releasing hormone (CRH) biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h) CRH gene: (1) a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic glucocorticoid administration in clinical practice and (2) a heuristic diagram to illustrate the proposed modulation of the stress response and immune/ inflammatory reaction by steroid hormones, from the perspective of the CRH system. PMID:18475634

  11. Schistosome-Derived Molecules as Modulating Actors of the Immune System and Promising Candidates to Treat Autoimmune and Inflammatory Diseases

    PubMed Central

    Vieira, Anderson Rodrigues Araújo; de Campos, Tatiana Amabile

    2016-01-01

    It is long known that some parasite infections are able to modulate specific pathways of host's metabolism and immune responses. This modulation is not only important in order to understand the host-pathogen interactions and to develop treatments against the parasites themselves but also important in the development of treatments against autoimmune and inflammatory diseases. Throughout the life cycle of schistosomes the mammalian hosts are exposed to several biomolecules that are excreted/secreted from the parasite infective stage, named cercariae, from their tegument, present in adult and larval stages, and finally from their eggs. These molecules can induce the activation and modulation of innate and adaptive responses as well as enabling the evasion of the parasite from host defense mechanisms. Immunomodulatory effects of helminth infections and egg molecules are clear, as well as their ability to downregulate proinflammatory cytokines, upregulate anti-inflammatory cytokines, and drive a Th2 type of immune response. We believe that schistosomes can be used as a model to understand the potential applications of helminths and helminth-derived molecules against autoimmune and inflammatory diseases.

  12. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease

    PubMed Central

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E.; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to “danger” or “non-danger” signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation. PMID:26635804

  13. Immune reconstitution inflammatory syndrome unmasking erythema nodosum leprosum: a rare case report.

    PubMed

    Arakkal, Geeta Kiran; Damarla, Sudha Vani; Chanda, Geetha Madhuri

    2015-01-01

    Immune reconstitution inflammatory syndrome (IRIS) occurs as an acute symptomatic expression of a latent infection during the recovery of immune system in response to antiretroviral therapy in HIV patients. IRIS triggers both opportunistic and non-opportunistic infections. We report a case of IRIS in a patient with HIV, presenting as erythema nodosum leprosum (ENL), which led to unmasking of lepromatous leprosy following anti-retroviral therapy (ART). PMID:25657440

  14. Adaptive immune response during hepatitis C virus infection

    PubMed Central

    Larrubia, Juan Ramón; Moreno-Cubero, Elia; Lokhande, Megha Uttam; García-Garzón, Silvia; Lázaro, Alicia; Miquel, Joaquín; Perna, Cristian; Sanz-de-Villalobos, Eduardo

    2014-01-01

    Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed. PMID:24707125

  15. Policing of gut microbiota by the adaptive immune system.

    PubMed

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-01-01

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery. PMID:26867587

  16. Diversity Against Adversity: How Adaptive Immune System Evolves Potent Antibodies

    NASA Astrophysics Data System (ADS)

    Heo, Muyoung; Zeldovich, Konstantin B.; Shakhnovich, Eugene I.

    2011-07-01

    Adaptive immunity is an amazing mechanism, whereby new protein functions—affinity of antibodies (Immunoglobulins) to new antigens—evolve through mutation and selection in a matter of a few days. Despite numerous experimental studies, the fundamental physical principles underlying immune response are still poorly understood. In considerable departure from past approaches, here, we propose a microscopic multiscale model of adaptive immune response, which consists of three essential players: The host cells, viruses, and B-cells in Germinal Centers (GC). Each moiety carries a genome, which encodes proteins whose stability and interactions are determined from their sequences using laws of Statistical Mechanics, providing an exact relationship between genomic sequences and strength of interactions between pathogens and antibodies and antibodies and host proteins (autoimmunity). We find that evolution of potent antibodies (the process known as Affinity Maturation (AM)) is a delicate balancing act, which has to reconcile the conflicting requirements of protein stability, lack of autoimmunity, and high affinity of antibodies to incoming antigens. This becomes possible only when antibody producing B cells elevate their mutation rates (process known as Somatic Hypermutation (SHM)) to fall into a certain range—not too low to find potency increasing mutations but not too high to destroy stable Immunoglobulins and/or already achieved affinity. Potent antibodies develop through clonal expansion of initial B cells expressing marginally potent antibodies followed by their subsequent affinity maturation through mutation and selection. As a result, in each GC the population of mature potent Immunoglobulins is monoclonal being ancestors of a single cell from initial (germline) pool. We developed a simple analytical theory, which provides further rationale to our findings. The model and theory reveal the molecular factors that determine the efficiency of affinity maturation

  17. Acute microbiologically negative hypoxic interstitial pneumonia on HAART: Immune Reconstitution Inflammatory Syndrome unmasking Pneumocystis Jiroveci infection with an atypical presentation

    PubMed Central

    Sovaila, S; de Raigniac, A; Picard, C; Taulera, O; Lascoux-Combe, C; Sereni, D; Bourgarit, A

    2012-01-01

    Highly active antiretroviral therapy for AIDS sometimes engenders inflammatory manifestations resulting from an inappropriate and unbalanced immune-system restoration, called Immune Reconstitution inflammatory Syndrome, which, in turn, can unmask a subclinical infection/pathology. Despite our patient’s evident syndrome, the atypical clinical, microbiologic and radiologic feature of Pneumocystis pneumonia made its diagnosis difficult. PMID:22802889

  18. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under physiological conditions the gut-associated lymphoid tissues not only prevent the induction of a local inflammatory immune response, but also induce systemic tolerance to fed antigens. A notable exception is coeliac disease, where genetically susceptible individuals expressing human leukocyte...

  19. Acute Cryptococcal Immune Reconstitution Inflammatory Syndrome in a Patient on Natalizumab

    PubMed Central

    Gundacker, Nathan D.; Jordan, Stephen J.; Jones, Benjamin A.; Drwiega, Joseph C.; Pappas, Peter G.

    2016-01-01

    Presented is the first case of acute immune reconstitution inflammatory syndrome (IRIS)-associated cryptococcal meningoencephalitis in a patient on natalizumab for multiple sclerosis. The patient developed acute cerebral edema after initiation of amphotericin B. We propose several mechanisms that explain the acuity of IRIS in this specific patient population and suggest possible therapies. PMID:27006962

  20. Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage.

    PubMed Central

    Hunninghake, G. W.; Gadek, J. E.; Kawanami, O.; Ferrans, V. J.; Crystal, R. G.

    1979-01-01

    Bronchoalveolar lavage is an invaluable means of accurately evaluating the inflammatory and immune processes of the human lung. Although lavage recovers only those cells and proteins present on the epithelial surface of the lower respiratory tract, comparison with open lung biopsies shows that these constituents are representative of the inflammatory and immune systems of the alveolar structures. With the use of these techniques, sufficient materials are obtained from normal individuals to allow characterization of not only the types of cells and proteins present but their functions as well. Such observations have been useful in defining the inflammatory and immune capabilities of the normal lung and provide a basis for the study of lung disease. Lavage methods have been used to characterize inflammatory and immune processes of the lower respiratory tract in destructive, infectious, neoplastic, and interstitial disorders. From the data already acquired, it is apparent that bronchoalveolar lavage will yield major insights into the pathogenesis, staging, and therapy decisions involved in these disorders. (Am J Pathol 97:149--206, 1979). Images Figure 9 Figure 1 Figure 2 Figure 10 Figure 7 Figure 8 Figure 4 Figure 5 Figure 6 Figure 3 PMID:495693

  1. Age-associated changes in immune and inflammatory response: role of nutritional intervention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with dysregulated immune and inflammatory responses. Declined T cell function is best characterized in immuno-senescence. Both intrinsic changes within T cells and extrinsic factors contribute to the age-associated decline in T cell function. T cell defect involves multiple stage...

  2. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders.

    PubMed

    Bahia, Malkeet Singh; Kaur, Maninder; Silakari, Pragati; Silakari, Om

    2015-06-01

    The various cells of innate immune system quickly counter-attack invading pathogens, and mount up "first line" defense through their trans-membrane receptors including Toll-like receptors (TLRs) and interleukin receptors (IL-Rs) that result in the secretion of pro-inflammatory cytokines. Albeit such inflammatory responses are beneficial in pathological conditions, their overstimulation may cause severe inflammatory damage; thus, make this defense system a "double edged sword". IRAK-4 has been evaluated as an indispensable element of IL-Rs and TLR pathways that can regulate the abnormal levels of cytokines, and therefore could be employed to manage immune- and inflammation-related disorders. Historically, the identification of selective and potent inhibitors has been challenging; thus, a limited number of small molecule IRAK-4 inhibitors are available in literature. Recently, IRAK-4 achieved great attention, when Ligand® pharmaceutical and Nimbus Discovery® reported the beneficial potentials of IRAK-4 inhibitors in the pre-clinical evaluation for various inflammatory- and immune-related disorders, but not limited to, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, gout, asthma and cancer. PMID:25728511

  3. Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection

    PubMed Central

    Khan, Nargis; Vidyarthi, Aurobind; Javed, Shifa; Agrewala, Javed N.

    2016-01-01

    T cells play a cardinal role in imparting protection against Mycobacterium tuberculosis (Mtb). However, ample time is required before T-cells are able to evoke efficient effector responses in the lung, where the mycobacterium inflicts disease. This delay in T cells priming, which is termed as lag phase, provides sufficient time for Mtb to replicate and establish itself within the host. In contrast, innate immunity efficiently curb the growth of Mtb during initial phase of infection through several mechanisms. Pathogen recognition by innate cells rapidly triggers a cascade of events, such as apoptosis, autophagy, inflammasome formation and nitric oxide production to kill intracellular pathogens. Furthermore, bactericidal mechanisms such as autophagy and apoptosis, augment the antigen processing and presentation, thereby contributing substantially to the induction of adaptive immunity. This manuscript highlights the role of innate immune mechanisms in restricting the survival of Mtb during lag phase. Finally, this article provides new insight for designing immuno-therapies by targeting innate immune mechanisms to achieve optimum immune response to cure TB. PMID:27014247

  4. Interactions Between the Host Innate Immune System and Microbes in Inflammatory Bowel Disease

    PubMed Central

    Abraham, Clara; Medzhitov, Ruslan

    2013-01-01

    The intestinal immune system defends against pathogens and entry of excessive intestinal microbes; simultaneously, a state of immune tolerance to resident intestinal microbes must be maintained. Perturbation of this balance is associated with intestinal inflammation in various mouse models and is thought to predispose humans to inflammatory bowel disease (IBD). The innate immune system senses microbes; dendritic cells, macrophages, and epithelial cells produce an initial, rapid response. The immune system continuously monitors resident microbiota and utilizes constitutive antimicrobial mechanisms to maintain immune homeostasis. associations between IBD and genes that regulate microbial recognition and innate immune pathways, such as nucleotide oligomerization domain 2 (Nod2), genes that control autophagy (eg, ATG16L1, IRGM), and genes in the interleukin-23–T helper cell 17 pathway indicate the important roles of host-microbe interactions in regulating intestinal immune homeostasis. There is increasing evidence that intestinal microbes influence host immune development, immune responses, and susceptibility to human diseases such as IBD, diabetes mellitus, and obesity. Conversely, host factors can affect microbes, which in turn modulate disease susceptibility. We review the cell populations and mechanisms that mediate interactions between host defense and tolerance and how the dysregulation of host-microbe interactions leads to intestinal inflammation and IBD. PMID:21530739

  5. Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in Adipose Tissue: A RNA-Seq Study

    PubMed Central

    Mathieu, François; Truong, Vinh; Blum, Yuna; Durand, Hervé; Alili, Rohia; Chelghoum, Nadjim; Pelloux, Véronique; Aron-Wisnewsky, Judith; Torcivia, Adriana; Bouillot, Jean-Luc; Parks, Brian W.; Ninio, Ewa; Clément, Karine; Tiret, Laurence

    2015-01-01

    Background Bariatric surgery is associated to improvements in obesity-associated comorbidities thought to be mediated by a decrease of adipose inflammation. However, the molecular mechanisms behind these beneficial effects are poorly understood. Methodology/Principal Findings We analyzed RNA-seq expression profiles in adipose tissue from 22 obese women before and 3 months after surgery. Of 15,972 detected genes, 1214 were differentially expressed after surgery at a 5% false discovery rate. Upregulated genes were mostly involved in the basal cellular machinery. Downregulated genes were enriched in metabolic functions of adipose tissue. At baseline, 26 modules of coexpressed genes were identified. The four most stable modules reflected the innate and adaptive immune responses of adipose tissue. A first module reflecting a non-specific signature of innate immune cells, mainly macrophages, was highly conserved after surgery with the exception of DUSP2 and CD300C. A second module reflected the adaptive immune response elicited by T lymphocytes; after surgery, a disconnection was observed between genes involved in T-cell signaling and mediators of the signal transduction such as CXCR1, CXCR2, GPR97, CCR7 and IL7R. A third module reflected neutrophil-mediated inflammation; after surgery, several genes were dissociated from the module, including S100A8, S100A12, CD300E, VNN2, TUBB1 and FAM65B. We also identified a dense network of 19 genes involved in the interferon-signaling pathway which was strongly preserved after surgery, with the exception of DDX60, an antiviral factor involved in RIG-I-mediated interferon signaling. A similar loss of connection was observed in lean mice compared to their obese counterparts. Conclusions/Significance These results suggest that improvements of the inflammatory state following surgery might be explained by a disruption of immuno-inflammatory cascades involving a few crucial molecules which could serve as potential therapeutic targets

  6. Cancer therapy with trifunctional antibodies: linking innate and adaptive immunity.

    PubMed

    Hess, Juergen; Ruf, Peter; Lindhofer, Horst

    2012-01-01

    Trifunctional antibodies (trAbs) are promising novel anticancer biologics with a particular mode of action capable of linking innate with adaptive immunity. Based on their unique structure, trifunctional IgG-like heterodimeric antibodies, consisting of nonhuman mouse and rat immunoglobulin halves are able to redirect T lymphocytes, as well as accessory cells, to the tumor site. This recruitment of immune cells is accompanied by cellular activation events elicited by anti-CD3, as well as Fcγ-receptor engagement of trAbs supported by a proinflammatory Th1-biased cytokine milieu. All necessary immunological factors required for long-term vaccination-like effects are stimulated along trAb-mediated therapeutic interventions. Thus, the concerted interplay of antibody-dependent cellular cytotoxicity plus the polyclonal T-cell cytotoxicity and Fcγ-receptor-driven induction of long-lasting immune responses after the initial tumor cell elimination represent the major hallmarks of trAb-mediated treatment of malignant diseases. PMID:22149036

  7. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases.

    PubMed

    Zhong, Zhenyu; Sanchez-Lopez, Elsa; Karin, Michael

    2016-01-01

    Loss of homeostasis, as a result of pathogen invasion or self imbalance, causes tissue damage and inflammation. In addition to its well-established role in promoting clearance of pathogens or cell corpses, inflammation is also key to drive tissue repair and regeneration. Conserved from flies to humans, a transient, well-balanced inflammatory response is critical for restoration of tissue homeostasis after damage. The absence of such a response can result in failure of tissue repair, leading to the development of devastating immunopathologies and degenerative diseases. Studies in the past decade collectively suggest that a malfunction of NLRP3 inflammasome, a key tissue damage sensor, is a dominant driver of various autoinflammatory and autoimmune diseases, including gout, rheumatoid arthritis, and lupus. It is therefore crucial to understand the biology and regulation of NLRP3 inflammasome and determine its affect in the context of various diseases. Of note, various studies suggest that autophagy, a cellular waste removal and rejuvenation process, serves an important role as a macrophage-intrinsic negative regulator of NLRP3 inflammasome. Here, we review recent advances in understanding how autophagy regulates NLRP3 inflammasome activity and discuss the implications of this regulation on the pathogenesis of autoinflammatory and autoimmune diseases. PMID:27586797

  8. Immune reconstitution inflammatory syndrome in association with HIV/AIDS and tuberculosis: Views over hidden possibilities

    PubMed Central

    Shankar, Esaki Muthu; Vignesh, Ramachandran; Murugavel, Kailapuri G; Balakrishnan, Pachamuthu; Sekar, Ramalingam; Lloyd, Charmaine AC; Solomon, Suniti; Kumarasamy, Nagalingeswaran

    2007-01-01

    Gut immune components are severely compromised among persons with AIDS, which allows increased translocation of bacterial lipopolysaccharides (LPS) into the systemic circulation. These microbial LPS are reportedly increased in chronically HIV-infected individuals and findings have correlated convincingly with measures of immune activation. Immune reconstitution inflammatory syndrome (IRIS) is an adverse consequence of the restoration of pathogen-specific immune responses in a subset of HIV-infected subjects with underlying latent infections during the initial months of highly active antiretroviral treatment (HAART). Whether IRIS is the result of a response to a high antigen burden, an excessive response by the recovering immune system, exacerbated production of pro-inflammatory cytokines or a lack of immune regulation due to inability to produce regulatory cytokines remains to be determined. We theorize that those who develop IRIS have a high burden of proinflammatory cytokines produced also in response to systemic bacterial LPS that nonspecifically act on latent mycobacterial antigens. We also hypothesize that subjects that do not develop IRIS could have developed either tolerance (anergy) to persistent LPS/tubercle antigens or could have normal FOXP3+ gene and that those with defective FOXP3+ gene or those with enormous plasma LPS could be vulnerable to IRIS. The measure of microbial LPS, anti-LPS antibodies and nonspecific plasma cytokines in subjects on HAART shall predict the role of these components in IRIS. PMID:18053126

  9. Inflammatory caspases are innate immune receptors for intracellular LPS.

    PubMed

    Shi, Jianjin; Zhao, Yue; Wang, Yupeng; Gao, Wenqing; Ding, Jingjin; Li, Peng; Hu, Liyan; Shao, Feng

    2014-10-01

    The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation. PMID:25119034

  10. Immune Adaptation to Environmental Influence: The Case of NK Cells and HCMV.

    PubMed

    Rölle, Alexander; Brodin, Petter

    2016-03-01

    The immune system of an individual human is determined by heritable traits and a continuous process of adaptation to a broad variety of extrinsic, non-heritable factors such as viruses, bacteria, dietary components and more. Cytomegalovirus (CMV) successfully infects the majority of the human population and establishes latency, thereby exerting a life-long influence on the immune system of its host. CMV has been shown to influence the majority of immune parameters in healthy individuals. Here we focus on adaptive changes induced by CMV in subsets of Natural Killer (NK) cells, changes that question our very definition of adaptive and innate immunity by suggesting that adaptations of immune cells to environmental influences occur across the entire human immune system and not restricted to the classical adaptive branch of the immune system. PMID:26869205

  11. Essential Role for Neutrophils in Pathogenesis and Adaptive Immunity in Chlamydia caviae Ocular Infections ▿

    PubMed Central

    Lacy, H. Marie; Bowlin, Anne K.; Hennings, Leah; Scurlock, Amy M.; Nagarajan, Uma M.; Rank, Roger G.

    2011-01-01

    Trachoma, the world's leading cause of preventable blindness, is produced by chronic ocular infection with Chlamydia trachomatis, an obligate intracellular bacterium. While many studies have focused on immune mechanisms for trachoma during chronic stages of infection, less research has targeted immune mechanisms in primary ocular infections, events that could impact chronic responses. The goal of this study was to investigate the function of neutrophils during primary chlamydial ocular infection by using the guinea pig model of Chlamydia caviae inclusion conjunctivitis. We hypothesized that neutrophils help modulate the adaptive response and promote host tissue damage. To test these hypotheses, guinea pigs with primary C. caviae ocular infections were depleted of neutrophils by using rabbit antineutrophil antiserum, and immune responses and immunopathology were evaluated during the first 7 days of infection. Results showed that neutrophil depletion dramatically decreased ocular pathology, both clinically and histologically. The adaptive response was also altered, with increased C. caviae-specific IgA titers in tears and serum and decreased numbers of CD4+ and CD8+ T cells in infected conjunctivae. Additionally, there were changes in conjunctival chemokines and cytokines, such as increased expression of IgA-promoting interleukin-5 and anti-inflammatory transforming growth factor β, along with decreased expression of T cell-recruiting CCL5 (RANTES). This study, the first to investigate the role of neutrophils in primary chlamydial ocular infection, indicates a previously unappreciated role for neutrophils in modulating the adaptive response and suggests a prominent role for neutrophils in chlamydia-associated ocular pathology. PMID:21402767

  12. Essential role for neutrophils in pathogenesis and adaptive immunity in Chlamydia caviae ocular infections.

    PubMed

    Lacy, H Marie; Bowlin, Anne K; Hennings, Leah; Scurlock, Amy M; Nagarajan, Uma M; Rank, Roger G

    2011-05-01

    Trachoma, the world's leading cause of preventable blindness, is produced by chronic ocular infection with Chlamydia trachomatis, an obligate intracellular bacterium. While many studies have focused on immune mechanisms for trachoma during chronic stages of infection, less research has targeted immune mechanisms in primary ocular infections, events that could impact chronic responses. The goal of this study was to investigate the function of neutrophils during primary chlamydial ocular infection by using the guinea pig model of Chlamydia caviae inclusion conjunctivitis. We hypothesized that neutrophils help modulate the adaptive response and promote host tissue damage. To test these hypotheses, guinea pigs with primary C. caviae ocular infections were depleted of neutrophils by using rabbit antineutrophil antiserum, and immune responses and immunopathology were evaluated during the first 7 days of infection. Results showed that neutrophil depletion dramatically decreased ocular pathology, both clinically and histologically. The adaptive response was also altered, with increased C. caviae-specific IgA titers in tears and serum and decreased numbers of CD4(+) and CD8(+) T cells in infected conjunctivae. Additionally, there were changes in conjunctival chemokines and cytokines, such as increased expression of IgA-promoting interleukin-5 and anti-inflammatory transforming growth factor β, along with decreased expression of T cell-recruiting CCL5 (RANTES). This study, the first to investigate the role of neutrophils in primary chlamydial ocular infection, indicates a previously unappreciated role for neutrophils in modulating the adaptive response and suggests a prominent role for neutrophils in chlamydia-associated ocular pathology. PMID:21402767

  13. Androgens and estrogens modulate the immune and inflammatory responses in rheumatoid arthritis.

    PubMed

    Cutolo, Maurizio; Seriolo, Bruno; Villaggio, Barbara; Pizzorni, Carmen; Craviotto, Chiara; Sulli, Alberto

    2002-06-01

    Generally, androgens exert suppressive effects on both humoral and cellular immune responses and seem to represent natural anti-inflammatory hormones; in contrast, estrogens exert immunoenhancing activities, at least on humoral immune response. Low levels of gonadal androgens (testosterone/dihydrotestosterone) and adrenal androgens (dehydroepiandrosterone and its sulfate), as well as lower androgen/estrogen ratios, have been detected in body fluids (that is, blood, synovial fluid, smears, salivary) of both male and female rheumatoid arthritis patients, supporting the possibility of a pathogenic role for the decreased levels of the immune-suppressive androgens. Several physiological, pathological, and therapeutic conditions may change the sex hormone milieu and/or peripheral conversion, including the menstrual cycle, pregnancy, the postpartum period, menopause, chronic stress, and inflammatory cytokines, as well as use of corticosteroids, oral contraceptives, and steroid hormonal replacements, inducing altered androgen/estrogen ratios and related effects. Therefore, sex hormone balance is still a crucial factor in the regulation of immune and inflammatory responses, and the therapeutical modulation of this balance should represent part of advanced biological treatments for rheumatoid arthritis and other autoimmune rheumatic diseases. PMID:12114267

  14. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases

    PubMed Central

    Wilmanski, Jeanette M.; Petnicki-Ocwieja, Tanja; Kobayashi, Koichi S.

    2012-01-01

    The innate immune system is the first line of defense against microorganisms and is conserved in both plants and animals. The NLR protein family is a recent addition to the members of innate immunity effector molecules. These proteins are characterized by a central oligomerization domain termed NACHT (or NBD/NOD) and a protein interaction domain, LRRs (Leucine rich repeats) at the C-terminus. It has been shown that NLR proteins are localized to the cytoplasm and recognize microbial products. To date, it is known that Nod1 and Nod2 detect bacterial cell wall components, whereas IPAF and NAIP detect bacterial flagellin and NALP1 has been shown to detect anthrax lethal toxin. NLR proteins comprise a diverse protein family (over 20 in humans), indicating that NLRs have evolved to acquire specificity to various pathogenic microorganisms, thereby controlling host-pathogen interactions. Activation of NLR proteins results in inflammatory responses mediated either by NF-κB, MAPK or Caspase-1 activation, accompanied by subsequent secretion of pro-inflammatory cytokines. Mutations in several members of the NLR protein family have been linked to inflammatory diseases, suggesting these molecules play important roles in maintaining host-pathogen interaction and inflammatory responses. Therefore, understanding NLR signaling is important for the therapeutic intervention of various infectious and inflammatory diseases. PMID:17875812

  15. The Basic Immune Simulator: An agent-based model to study the interactions between innate and adaptive immunity

    PubMed Central

    Folcik, Virginia A; An, Gary C; Orosz, Charles G

    2007-01-01

    Background We introduce the Basic Immune Simulator (BIS), an agent-based model created to study the interactions between the cells of the innate and adaptive immune system. Innate immunity, the initial host response to a pathogen, generally precedes adaptive immunity, which generates immune memory for an antigen. The BIS simulates basic cell types, mediators and antibodies, and consists of three virtual spaces representing parenchymal tissue, secondary lymphoid tissue and the lymphatic/humoral circulation. The BIS includes a Graphical User Interface (GUI) to facilitate its use as an educational and research tool. Results The BIS was used to qualitatively examine the innate and adaptive interactions of the immune response to a viral infection. Calibration was accomplished via a parameter sweep of initial agent population size, and comparison of simulation patterns to those reported in the basic science literature. The BIS demonstrated that the degree of the initial innate response was a crucial determinant for an appropriate adaptive response. Deficiency or excess in innate immunity resulted in excessive proliferation of adaptive immune cells. Deficiency in any of the immune system components increased the probability of failure to clear the simulated viral infection. Conclusion The behavior of the BIS matches both normal and pathological behavior patterns in a generic viral infection scenario. Thus, the BIS effectively translates mechanistic cellular and molecular knowledge regarding the innate and adaptive immune response and reproduces the immune system's complex behavioral patterns. The BIS can be used both as an educational tool to demonstrate the emergence of these patterns and as a research tool to systematically identify potential targets for more effective treatment strategies for diseases processes including hypersensitivity reactions (allergies, asthma), autoimmunity and cancer. We believe that the BIS can be a useful addition to the growing suite of in

  16. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus

    PubMed Central

    Beltrán, Luis M; Rubio-Navarro, Alfonso; Amaro-Villalobos, Juan Manuel; Egido, Jesús; García-Puig, Juan; Moreno, Juan Antonio

    2015-01-01

    Patients infected with the human immunodeficiency virus (HIV) have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection. PMID:25609975

  17. The role of complement in inflammation and adaptive immunity.

    PubMed

    Barrington, R; Zhang, M; Fischer, M; Carroll, M C

    2001-04-01

    Major advances in our understanding of the immunobiology of complement were made within the past 5 years primarily due to the development of gene-targeting technology. New strains of mice bearing specific deficiencies in serum complement proteins or their receptors were developed using this approach. Characterization of these mice has provided new and exciting insights into the biology of the complement system. In this review, we discuss recent results on two important aspects of the complement system, i) host protection and inflammation, and ii) regulation of B lymphocytes of adaptive immunity. While these two roles appear distinct, they are linked. We discuss how natural antibody and classical pathway complement work together in host protection against bacterial infection on the one hand but, on the other, they co-operate to induce inflammation as observed in reperfusion injury. Significantly, the lymphocytes that produce natural antibody, the B-1 lymphocytes, are regulated in part by the complement system. PMID:11414363

  18. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  19. Adaptive immunity and histopathology in frog virus 3-infected Xenopus

    SciTech Connect

    Robert, Jacques . E-mail: robert@mail.rochester.edu; Morales, Heidi; Buck, Wayne; Cohen, Nicholas; Marr, Shauna; Gantress, Jennifer

    2005-02-20

    Xenopus has been used as an experimental model to evaluate the contribution of adaptive cellular immunity in amphibian host susceptibility to the emerging ranavirus FV3. Conventional histology and immunohistochemistry reveal that FV3 has a strong tropism for the proximal tubular epithelium of the kidney and is rarely disseminated elsewhere in Xenopus hosts unless their immune defenses are impaired or developmentally immature as in larvae. In such cases, virus is found widespread in most tissues. Adults, immunocompromised by depletion of CD8{sup +} T cells or by sub-lethal {gamma}-irradiation, show increased susceptibility to FV3 infection. Larvae and irradiated (but not normal) adults can be cross-infected through water by infected adult conspecifics (irradiated or not). The natural MHC class I deficiency and the absence of effect of anti-CD8 treatment on both larval CD8{sup +} T cells and larval susceptibility to FV3 are consistent with an inefficient CD8{sup +} T cell effector function during this developmental period.

  20. Bridging innate NK cell functions with adaptive immunity.

    PubMed

    Marcenaro, Emanuela; Carlomagno, Simona; Pesce, Silvia; Moretta, Alessandro; Sivori, Simona

    2011-01-01

    Killer Ig-like receptors (KIRs) are major human NK receptors displaying either inhibitory or activating functions which recognize allotypic determinants of HLA-class I molecules. Surprisingly, NK cell treatment with CpG-ODN (TLR9 ligands) results in selective down-modulation of KIR3DL2, its co-internalization with CpG-ODN and its translocation to TLR9-rich early endosomes. This novel KIR-associated function may offer clues to better understand the possible role of certain KIRs and also emphasizes the involvement of NK cells in the course of microbial infections. NK cells are involved not only in innate immune responses against viruses and tumors but also participate in the complex network of cell-to cell interaction that leads to the development of adaptive immune responses. In this context the interaction of NK cells with DC appears to play a crucial role in the acquisition of CCR7, a chemokine receptor that enables NK cells to migrate towards lymph nodes in response to CCL19 and/or CCL21. Analysis of NK cell clones revealed that KIR-mismatched but not KIR-matched NK cells acquire CCR7. These data have important implications in haploidentical haematopoietic stem cell transplantation (HSCT), in which KIR-mismatched NK cells may acquire the ability to migrate to secondary lymphoid compartments (SLCs), where they can kill recipient's antigen presenting cells (APCs) and T cells thus preventing graft versus host (and host vs. graft) reactions. PMID:21842364

  1. Possible Implication of Local Immune Response in Darier's Disease: An Immunohistochemical Characterization of Lesional Inflammatory Infiltrate

    PubMed Central

    Miracco, Clelia; Pietronudo, Francesco; Mourmouras, Vasileios; Pellegrino, Michele; Onorati, Monica; Mastrogiulio, Maria Grazia; Cantarini, Luca; Luzi, Pietro

    2010-01-01

    Cell-mediated immunity is considered to be normal in Darier's Disease (DD), an inherited skin disorder complicated by skin infections. To date, there are no investigations on the local inflammatory infiltrate in DD skin lesions. In this immunohistochemical study we characterized and quantified it, making comparisons with two other inflammatory skin disorders, that is, pemphigus vulgaris (PV) and lichen ruber planus (LRP), and with the normal skin (NSk). We found a significant (P < .05) decrease of CD1a+ Langerhans cells (LCs) in DD, compared to PV, LRP, and NSk, and of CD123+ plasmacytoid dendritic cells (pDCs), compared to PV and LRP. We hypothesize that the genetic damage of keratinocytes might result in a loss of some subsets of dendritic cells and, consequently, in an impaired local immune response, which might worsen the infections that inevitably occur in this disease. PMID:20671948

  2. [Severe inflammation during recovery from neutropenia: the immune reconstitution inflammatory syndrome following chemotherapy].

    PubMed

    van Lier, Dirk P T; Janssen, Nico A F; Snoeren, Miranda M; Verweij, Paul E; Blijlevens, Nicole M A; van der Velden, Walter J F M

    2015-01-01

    Immune reconstitution inflammatory syndrome (IRIS) occurs when a patient is recovering from a transient immunodeficiency and results in an uncontrolled inflammatory response to infectious agents and tissue damage. Symptoms such as fever and radiological signs seem to paradoxically appear or worsen, unmasking a previously unrecognized infection. The patient's clinical condition may then deteriorate as a result of increasing tissue damage and this may even lead to death. IRIS was initially described in patients suffering from a HIV infection who experienced immune recovery following the initiation of antiretroviral therapy. Increasingly, however, the syndrome is being reported in patients who are recovering from an episode of neutropenia following chemotherapy, hypomethylating agent use or a stem cell transplantation for the treatment of a solid tumour or haematological cancers. We describe two cases of IRIS following an episode of neutropenia in patients with a haematological malignancy and elaborate on the pathogenesis, diagnosis and treatment of IRIS in cancer patients. PMID:26246060

  3. The potent anti-inflammatory agent escin does not increase corticosterone secretion and immune cell apoptosis in mice.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Fan, Huaying; Wang, Tian; Jiang, Na; Yu, Pengfei; Fu, Fenghua

    2011-09-01

    Escin exerts potent glucocorticoid-like anti-inflammatory effects. The aim of this study was to investigate whether the anti-inflammatory effect of escin is through the up-regulation of glucocorticoids and if escin induces pathological changes in immune organs. Mice were administrated with escin intravenously for 7 days before observing the relevant parameters. The results showed that escin exhibits a potent anti-inflammatory effect, but does not increase corticosterone secretion in mice, and does not increase immune cell apoptosis in the spleen and thymus of mice. These findings suggest that the anti-inflammatory effect of escin is not dependent on the release of corticosterone. PMID:21596110

  4. DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis.

    PubMed

    Cai, Minchao; Zhou, Tong; Wang, Xuan; Shang, Minghua; Zhang, Yueyue; Luo, Maocai; Xu, Chundi; Yuan, Weijie

    2016-03-01

    Podocytes, the main target of immune complex, participate actively in the development of glomerular injury as immune cells. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune molecular that has an immune recognition function, and is involved in mediation of cell adhesion and immunoregulation. Here we explored the expression of DC-SIGN on podocytes and its role in immune and inflammatory responses in lupus nephritis (LN). Expression of DC-SIGN and immunoglobulin (Ig)G1 was observed in glomeruli of LN patients. DC-SIGN was co-expressed with nephrin on podocytes. Accompanied by increased proteinuria of LN mice, DC-SIGN and IgG1 expressions were observed in the glomeruli from 20 weeks, and the renal function deteriorated up to 24 weeks. Mice with anti-DC-SIGN antibody showed reduced proteinuria and remission of renal function. After the podocytes were stimulated by serum of LN mice in vitro, the expression of DC-SIGN, major histocompatibility complex (MHC) class II and CD80 was up-regulated, stimulation of T cell proliferation was enhanced and the interferon (IFN)-γ/interleukin (IL)-4 ratio increased. However, anti-DC-SIGN antibody treatment reversed these events. These results suggested that podocytes in LN can exert DC-like function through their expression of DC-SIGN, which may be involved in immune and inflammatory responses of renal tissues. However, blockage of DC-SIGN can inhibit immune functions of podocytes, which may have preventive and therapeutic effects. PMID:26440060

  5. Differential functional genomic effects of anti-inflammatory phytocompounds on immune signaling

    PubMed Central

    2010-01-01

    Background Functional comparative genomic analysis of the cellular immunological effects of different anti-inflammatory phytocompounds is considered as a helpful approach to distinguish the complex and specific bioactivities of candidate phytomedicines. Using LPS-stimulated THP-1 monocytes, we characterize here the immunomodulatory activities of three single phytocompounds (emodin, shikonin, and cytopiloyne) and a defined phytocompound mixture extracted from Echinacea plant (BF/S+L/Ep) by focused DNA microarray analysis of selected immune-related genes. Results Shikonin and emodin significantly inhibited the early expression (within 0.5 h) of approximately 50 genes, notably cytokines TNF-α, IL-1β and IL-4, chemokines CCL4 and CCL8, and inflammatory modulators NFATC3 and PTGS2. In contrast, neither cytopiloyne nor BF/S+L/Ep inhibited the early expression of these 50 genes, but rather inhibited most late-stage expression (~12 h) of another immune gene subset. TRANSPATH database key node analysis identified the extracellular signal-regulated kinase (ERK) 1/2 activation pathway as the putative target of BF/S+L/Ep and cytopiloyne. Western blot confirmed that delayed inactivation of the ERK pathway was indeed demonstrable for these two preparations during the mid-stage (1 to 4 h) of LPS stimulation. We further identified ubiquitin pathway regulators, E6-AP and Rad23A, as possible key regulators for emodin and shikonin, respectively. Conclusion The current focused DNA microarray approach rapidly identified important subgenomic differences in the pattern of immune cell-related gene expression in response to specific anti-inflammatory phytocompounds. These molecular targets and deduced networks may be employed as a guide for classifying, monitoring and manipulating the molecular and immunological specificities of different anti-inflammatory phytocompounds in key immune cell systems and for potential pharmacological application. PMID:20868472

  6. Tomato Aqueous Extract Modulates the Inflammatory Profile of Immune Cells and Endothelial Cells.

    PubMed

    Schwager, Joseph; Richard, Nathalie; Mussler, Bernd; Raederstorff, Daniel

    2016-01-01

    Nutrients transiently or chronically modulate functional and biochemical characteristics of cells and tissues both in vivo and in vitro. The influence of tomato aqueous extract (TAE) on the in vitro inflammatory response of activated human peripheral blood leukocytes (PBLs) and macrophages was investigated. Its effect on endothelial dysfunction (ED) was analyzed in human umbilical vein endothelial cells (HUVECs). Murine macrophages (RAW264.7 cells), PBLs and HUVECs were incubated with TAE. They were activated with LPS or TNF-α in order to induce inflammatory processes and ED, respectively. Inflammatory mediators and adhesion molecules were measured by immune assay-based multiplex analysis. Gene expression was quantified by RT-PCR. TAE altered the production of interleukins (IL-1β, IL-6, IL-10, IL-12) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8, CXCL10/IP-10) in PBLs. TAE reduced ED-associated expression of adhesion molecules (ICAM-1, VCAM-1) in endothelial cell. In macrophages, the production of nitric oxide, PGE2, cytokines and ILs (TNF-α, IL-1β, IL-6, IL-12), which reflects chronic inflammatory processes, was reduced. Adenosine was identified as the main bioactive of TAE. Thus, TAE had cell-specific and context-dependent effects. We infer from these in vitro data, that during acute inflammation TAE enhances cellular alertness and therefore the sensing of disturbed immune homeostasis in the vascular-endothelial compartment. Conversely, it blunts inflammatory mediators in macrophages during chronic inflammation. A novel concept of immune regulation by this extract is proposed. PMID:26840280

  7. Modulation of Immunity and the Inflammatory Response: A New Target for Treating Drug-resistant Epilepsy

    PubMed Central

    Yu, Nian; Liu, Hao; Di, Qing

    2013-01-01

    Until recently, epilepsy medical therapy is usually limited to anti-epileptic drugs (AEDs). However, approximately 1/3 of epilepsy patients, described as drug-resistant epilepsy (DRE) patients, still suffer from continuous frequent seizures despite receiving adequate AEDs treatment of sufficient duration. More recently, with the remarkable progress of immunology, immunity and inflammation are considered to be key elements of the pathobiology of epilepsy. Activation of inflammatory processes in brain tissue has been observed in both experimental seizure animal models and epilepsy patients. Anti-inflammatory and immunotherapies also showed significant anticonvulsant properties both in clinical and in experimental settings. The above emerging evidence indicates that modulation of immunity and inflammatory processes could serve as novel specific targets to achieve potential anticonvulsant effects for the patients with epilepsy, especially DRE. Herein we review the recent evidence supporting the role of inflammation in the development and perpetuation of seizures, and also discuss the recent achievements in modulation of inflammation and immunotherapy applied to the treatment of epilepsy. Apart from medical therapy, we also discuss the influences of surgery, ketogenic diet, and electroconvulsive therapy on immunity and inflammation in DRE patients. Taken together, a promising perspective is suggested for future immunomodulatory therapies in the treatment of patients with DRE. PMID:23814544

  8. Potential Use of Salivary Markers for Longitudinal Monitoring of Inflammatory Immune Responses to Vaccination

    PubMed Central

    Garssen, Johan; Sandalova, Elena

    2016-01-01

    Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies largely based on analyzing the blood components including specific antibodies and cytokines were usually constrained by number of participants and volume of collected blood sample. Hence, blood-based studies may not be able to cover the full dynamic range of inflammation responses induced by vaccination. In this review, the potential of using saliva in addition to blood for studying the kinetics of inflammatory response studies was assessed. Saliva sampling is noninvasive and has a great potential to be used for studies aimed at analysing the magnitude, time course, and variance in immune responses, including inflammation after vaccination. Based on a literature survey of inflammatory biomarkers that can be determined in saliva and an analysis of how these biomarkers could help to understand the mechanisms and dynamics of immune reactivity and inflammation, we propose that the saliva-based approach might have potential to add substantial value to clinical studies, particularly in vulnerable populations such as infants, toddlers, and ill individuals. PMID:27022211

  9. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  10. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria

    PubMed Central

    Barroso-Batista, João; Demengeot, Jocelyne; Gordo, Isabel

    2015-01-01

    Co-evolution between the mammalian immune system and the gut microbiota is believed to have shaped the microbiota's astonishing diversity. Here we test the corollary hypothesis that the adaptive immune system, directly or indirectly, influences the evolution of commensal species. We compare the evolution of Escherichia coli upon colonization of the gut of wild-type and Rag2−/− mice, which lack lymphocytes. We show that bacterial adaptation is slower in immune-compromised animals, a phenomenon explained by differences in the action of natural selection within each host. Emerging mutations exhibit strong beneficial effects in healthy hosts but substantial antagonistic pleiotropy in immune-deficient mice. This feature is due to changes in the composition of the gut microbiota, which differs according to the immune status of the host. Our results indicate that the adaptive immune system influences the tempo and predictability of E. coli adaptation to the mouse gut. PMID:26615893

  11. CNS–Immune Reconstitution Inflammatory Syndrome in the Setting of HIV Infection, Part 2: Discussion of Neuro–Immune Reconstitution Inflammatory Syndrome with and without Other Pathogens

    PubMed Central

    Post, M.J.D.; Thurnher, M.M.; Clifford, D.B.; Nath, A.; Gonzalez, R.G.; Gupta, R.K.; Post, K.K.

    2016-01-01

    SUMMARY While the previous review of CNS-IRIS in the HIV-infected patient on highly active antiretroviral therapy (Part 1) dealt with an overview of the biology, pathology, and neurologic presentation of this condition and a discussion of the atypical imaging findings in PML-IRIS and cryptococcal meningitis–IRIS due to the robust inflammatory response, the current review (Part 2) discusses the imaging findings in other commonly encountered organisms seen in association with CNS-IRIS, namely, VZV, CMV, HIV, Candida organisms, Mycobacterium tuberculosis, and Toxoplasma gondii. Also described is the imaging appearance of CNS-IRIS when not associated with a particular organism. Recognition of these imaging findings will give credence to the diagnosis of CNS-IRIS and will allow the clinician to institute changes in medical management, if necessary, so that immune reconstitution and improved patient outcome can occur with time. PMID:22790252

  12. Influence of Phthalates on in vitro Innate and Adaptive Immune Responses

    PubMed Central

    Hansen, Juliana Frohnert; Nielsen, Claus Henrik; Brorson, Marianne Møller; Frederiksen, Hanne; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh; Bendtzen, Klaus; Feldt-Rasmussen, Ulla

    2015-01-01

    Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL)-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF)-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo. PMID:26110840

  13. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    PubMed

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  14. Utility of immune response-derived biomarkers in the differential diagnosis of inflammatory disorders.

    PubMed

    ten Oever, Jaap; Netea, Mihai G; Kullberg, Bart-Jan

    2016-01-01

    Differentiating between inflammatory disorders is difficult, but important for a rational use of antimicrobial agents. Biomarkers reflecting the host immune response may offer an attractive strategy to predict the etiology of an inflammatory process and can thus be of help in decision making. We performed a review of the literature to evaluate the diagnostic value of inflammatory biomarkers in adult patients admitted to the hospital with suspected systemic acute infections. Elevated procalcitonin (PCT) concentrations indicate a bacterial infection in febrile patients with an auto-immune disease, rather than a disease flare. CD64 expression on neutrophils can discriminate between non-infectious systemic inflammation and sepsis, and limited evidence suggests the same for decoy receptor 3. PCT is useful for both diagnosing bacterial infection complicating influenza and guiding antibiotic treatment in lower respiratory tract infections in general. In undifferentiated illnesses, increased CD35 expression on neutrophils distinguishes bacterial from viral infections. Compared to bacterial infections, invasive fungal infections are characterized by low concentrations of PCT. No biomarker predicting a specific infecting agent could be identified. PMID:26429736

  15. Cryptococcus-Related Immune Reconstitution Inflammatory Syndrome(IRIS): Pathogenesis and Its Clinical Implications

    PubMed Central

    Wiesner, Darin L; Boulware, David R.

    2011-01-01

    This review provides an overview of Cryptococcus neoformans immunology and focuses on the pathogenesis of Cryptococcus-related paradoxical immune reconstitution inflammatory syndrome (IRIS). Cryptococcal IRIS has three phases: (1) before antiretroviral therapy (ART), with a paucity of cerebrospinal fluid (CSF) inflammation and defects in antigen clearance; (2) during initial ART immune recovery, with pro-inflammatory signaling by antigen-presenting cells without an effector response; and (3) at IRIS, a cytokine storm with a predominant type-1 helper T-cell (Th1) interferon-gamma (IFN-γ) response. Understanding IRIS pathogenesis allows for risk stratification and customization of HIV/AIDS care. In brief, persons at high IRIS risk may benefit from enhancing microbiologic clearance by use of adjunctive agents in combination with amphotericin, prolonging initial induction therapy, and/or increasing the initial consolidation antifungal therapy dose to at least 800 mg of fluconazole daily until the 2-week CSF culture is known to be sterile. Prophylactic anti-inflammatory therapies or undue delay of ART initiation in an attempt to prevent IRIS is unwarranted and may be dangerous. PMID:22389746

  16. Possible involvement of soluble B7-H4 in T cell-mediated inflammatory immune responses.

    PubMed

    Kamimura, Yosuke; Kobori, Hiroko; Piao, Jinhua; Hashiguchi, Masaaki; Matsumoto, Koichiro; Hirose, Sachiko; Azuma, Miyuki

    2009-11-13

    B7-H4, a newly identified B7 family molecule, is reported to regulate T cell activation. However, the expression and function of B7-H4 remain controversial. Here, we demonstrated that B7-H4 expression in immune cells was undetectable at both the transcription and cell-surface protein levels. B7-H4 transfectants augmented anti-CD3 mAb-induced re-directed cytotoxicity and this was inhibited by anti-B7-H4 mAb. In a hapten-induced contact hypersensitivity model, treatment with anti-B7-H4 mAb at sensitization, but not at challenge, efficiently suppressed the ear swelling and CD8(+) T cell activation assessed by CD25 expression and IFN-gamma production. We found that cells expressing B7-H4 secreted soluble B7-H4 and the serum B7-H4 level increased with disease progression in lupus-prone and collagen-induced arthritis autoimmune mice and after the antigen challenge in allergic inflammatory diseases. Our results suggest a different action of B7-H4 in T cell-mediated inflammatory responses and the possible involvement of soluble B7-H4 in inflammatory immune responses. PMID:19723502

  17. Foreign DNA capture during CRISPR–Cas adaptive immunity

    PubMed Central

    Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.; Engelman, Alan N.; Doudna, Jennifer A.

    2015-01-01

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40 base pair (bp) lengths into clustered regularly interspaced short palindromic repeats (CRISPR) loci as spacer segments1–6. The universally conserved Cas1–Cas2 integrase complex catalyzes spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases7–13. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33 nucleotide (nt) protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′–OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo2–4. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  18. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  19. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system

    PubMed Central

    Dilger, Ryan N.; Johnson, Rodney W.

    2008-01-01

    Recent studies suggest that activation of the peripheral immune system elicits a discordant central (i.e., in the brain) inflammatory response in aged but otherwise healthy subjects compared with younger cohorts. A fundamental difference in the reactive state of microglial cells in the aged brain has been suggested as the basis for this discordant inflammatory response. Thus, the aging process appears to serve as a “priming” stimulus for microglia, and upon secondary stimulation with a triggering stimulus (i.e., peripheral signals communicating infection), these primed microglia release excessive quantities of proinflammatory cytokines. Subsequently, this exaggerated cytokine release elicits exaggerated behavioral changes including anorexia, hypersomnia, lethargy, decreased social interaction, and deficits in cognitive and motor function (collectively known as the sickness behavior syndrome). Whereas this reorganization of host priorities is normally adaptive in young subjects, there is a propensity for this response to be maladaptive in aged subjects, resulting in greater severity and duration of the sickness behavior syndrome. Consequently, acute bouts of cognitive impairment in elderly subjects increase the likelihood of poor self-care behaviors (i.e., anorexia, weight loss, noncompliance), which ultimately leads to higher rates of hospitalization and mortality. PMID:18495785

  20. Study of Molecular Mechanisms Involved in the Pathogenesis of Immune-Mediated Inflammatory Diseases, using Psoriasis As a Model

    PubMed Central

    Sobolev, V.V.; Abdeev, R.M.; Zolotarenko, A.D.; Nikolaev, A.A.; Sarkisova, M.K.; Sautin, M.E.; Ishkin, A.A.; Piruzyan, An.L.; Ilyina, S.A.; Korsunskaya, I.M.; Rahimova, O.Y.; Bruskin, S.A.

    2009-01-01

    Psoriasis was used as a model to analyze the pathogenetic pathways of immune-mediated inflammatory diseases, and the results of bioinformatic, molecular-genetic and proteomic studies are provided. Cell mechanisms, common for the pathogenesis of psoriasis, as well as Crohn's disease, are identified. New approaches for immune-mediated diseases are discussed. PMID:22649625

  1. Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression.

    PubMed

    Elling, Roland; Chan, Jennie; Fitzgerald, Katherine A

    2016-03-01

    The innate immune system represents the first line of defense during infection and is initiated by the detection of conserved microbial products by germline-encoded pattern recognition receptors (PRRs). Sensing through PRRs induces broad transcriptional changes that elicit powerful inflammatory responses. Tight regulation of these processes depends on multiple regulatory checkpoints, including noncoding RNA species such as microRNAs. In addition, long noncoding RNAs (lncRNAs) have recently gained attention as important regulators of gene expression acting through versatile interactions with DNA, RNA, or proteins. As such, these RNAs have a multitude of mechanisms to modulate gene expression. Here, we summarize recent advances in this rapidly moving and evolving field. We highlight the contribution of lncRNAs to both the development and activation of innate immune cells, whether it is in the nucleus, where lncRNAs alter the transcription of target genes through interaction with transcription factors, chromatin-modifying complexes or heterogeneous ribonucleoprotein complexes, or in the cytosol where they can control the stability of target mRNAs. In addition, we discuss experimental approaches required to comprehensively investigate the function of a candidate noncoding RNA locus, including loss-of-function approaches encompassing genomic deletions, RNA interference, locked nucleic acids, and various adaptions of the CRISPR/Cas9 technology. PMID:26820238

  2. MODEL OF COLONIC INFLAMMATION: IMMUNE MODULATORY MECHANISMS IN INFLAMMATORY BOWEL DISEASE

    PubMed Central

    Wendelsdorf, Katherine; Bassaganya-Riera, Josep; Hontecillas, Raquel; Eubank, Stephen

    2010-01-01

    Inflammatory Bowel Disease (IBD) is an immunoinflammatory illness of the gut initiated by an immune response to bacteria in the microflora. The resulting immunopathogenesis leads to lesions in epithelial lining of the colon through which bacteria may infiltrate the tissue causing recurring bouts of diarrhea, rectal bleeding, and mal-nutrition. In healthy individuals such immunopathogenesis is avoided by the presence of regulatory cells that inhibit the inflammatory pathway. Highly relevant to the search for treatment strategies is the identification of components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immunopathogenesis to proceed. In vitro techniques have identified cellular interactions involved in inflammation-regulation crosstalk. However, tracing immunological mechanisms discovered at the cellular level confidently back to an in vivo context of multiple, simultaneous interactions has met limited success. To explore the impact of specific interactions, we have constructed a system of 29 ordinary differential equations representing different phenotypes of T-cells, macrophages, dendritic cells, and epithelial cells as they move and interact with bacteria in the lumen, lamina propria, and lymphoid tissue of the colon. Simulations revealed the positive inflammatory feedback loop formed by inflammatory M1 macrophage activation of T-cells as a driving force underlying the immunopathology of IBD. Furthermore, strategies that remove M1 from the site of infection, by either i) increasing its potential to switch to a regulatory M2 phenotype or ii) increasing the rate of reversion (for M1 and M2 alike) to a resting state, cease immunopathogenesis even as bacteria are eliminated by other inflammatory cells. Based on these results, we identify macrophages and their mechanisms of plasticity as key targets for mucosal inflammation intervention strategies. In addition, we propose that the primary mechanism behind the association of

  3. The WAP protein Trappin-2/Elafin: a handyman in the regulation of inflammatory and immune responses.

    PubMed

    Verrier, Thomas; Solhonne, Brigitte; Sallenave, Jean-Michel; Garcia-Verdugo, Ignacio

    2012-08-01

    Trappin-2/Elafin is a potent serine protease inhibitor which prevents excessive damage under inflammatory status. This "alarm-antiprotease" is locally expressed by epithelial cells and immune cells such as macrophages and γδ T cells. It has also been proven to modulate a wide range of parameters that are critical for the inflammation process like modulating the NFκB pathway, cytokine secretion and cell recruitment. In addition, Trappin-2/Elafin was shown to possess anti-microbial properties against different classes of pathogens including viruses, fungi and bacteria. Studies also linked Trappin-2/Elafin to either susceptibility or protection against inflammatory disease and infections, even though the mechanisms remains poorly understood. This review will discuss some of the pleiotropic effects displayed by Trappin-2/Elafin, and the properties that could be used to prevent infection or to protect against inflammation. PMID:22634606

  4. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation.

    PubMed

    Pedersen, Jannie; LaCasse, Eric C; Seidelin, Jakob B; Coskun, Mehmet; Nielsen, Ole H

    2014-11-01

    The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential. PMID:25282548

  5. Interventions to Improve Adherence in Patients with Immune-Mediated Inflammatory Disorders: A Systematic Review

    PubMed Central

    Depont, Fanny; Berenbaum, Francis; Filippi, Jérome; Le Maitre, Michel; Nataf, Henri; Paul, Carle; Peyrin-Biroulet, Laurent; Thibout, Emmanuel

    2015-01-01

    Background In patients with immune-mediated inflammatory disorders, poor adherence to medication is associated with increased healthcare costs, decreased patient satisfaction, reduced quality of life and unfavorable treatment outcomes. Objective To determine the impact of different interventions on medication adherence in patients with immune-mediated inflammatory disorders. Design Systematic review. Data sources MEDLINE, EMBASE and Cochrane Library. Study eligibility criteria for selecting studies Included studies were clinical trials and observational studies in adult outpatients treated for psoriasis, Crohn’s disease, ulcerative colitis, rheumatoid arthritis, spondyloarthritis, psoriatic arthritis or multiple sclerosis. Study appraisal and synthesis methods Intervention approaches were classified into four categories: educational, behavioral, cognitive behavioral, and multicomponent interventions. The risk of bias/study limitations of each study was assessed using the GRADE system. Results Fifteen studies (14 clinical trials and one observational study) met eligibility criteria and enrolled a total of 1958 patients. Forty percent of the studies (6/15) was conducted in patients with inflammatory bowel disease, half (7/15) in rheumatoid arthritis patients, one in psoriasis patients and one in multiple sclerosis patients. Seven out of 15 interventions were classified as multicomponent, four as educational, two as behavioral and two as cognitive behavioral. Nine studies, of which five were multicomponent interventions, had no serious limitations according to GRADE criteria. Nine out of 15 interventions showed an improvement of adherence: three multicomponent interventions in inflammatory bowel disease; one intervention of each category in rheumatoid arthritis; one multicomponent in psoriasis and one multicomponent in multiple sclerosis. Conclusion The assessment of interventions designed for increasing medication adherence in IMID is rare in the literature and

  6. Effects of Age and Oral Disease on Systemic Inflammatory and Immune Parameters in Nonhuman Primates▿

    PubMed Central

    Ebersole, J. L.; Steffen, M. J.; Gonzalez-Martinez, J.; Novak, M. J.

    2008-01-01

    This report evaluated systemic inflammatory and immune biomarkers in a cohort of Macaca mulatta (rhesus monkeys) maintained as a large family social unit, including an age range from <1 year to >24 years. We hypothesized that the systemic host responses would be affected by the age, gender, and clinical oral presentation of the population, each contributing to inflammatory and immune responses that would reflect chronic oral infections. The results demonstrated that the prevalence and severity of periodontitis, including missing teeth, increased significantly with age. Generally, minimal differences in clinical parameters were noted between the genders. Systemic inflammatory mediators, including acute-phase reactants, prostaglandin E2 (PGE2), cytokines/chemokines, and selected matrix metalloproteinases (MMP), demonstrated significant differences among the various age groups of animals. Levels of many of these were increased with age, although PGE2, RANTES, bactericidal permeability-inducing factor (BPI), MMP-1, and MMP-9 levels were significantly increased in the young group (∼1 to 3 years old) relative to those for the older animals. We observed that in the adult and aged animals, levels of the systemic inflammatory mediators related to gingival inflammation and periodontal tissue destruction were significantly elevated. Serum antibody levels in response to a battery of periodontal pathogens were generally lower in the young animals, <50% of those in the adults, and were significantly related to aging in the cohort. The levels of antibodies, particularly those to Porphorymonas gingivalis, Fusobacterium nucleatum, and Tannerella forsythia, were most significantly elevated in animals with periodontal disease, irrespective of the age of the animal. These results provide a broad description of oral health and host responses in a large cohort of nonhuman primates from very young animals to the aged of this species. The findings afford a base of data with which to

  7. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD

    PubMed Central

    2013-01-01

    Background Rhinovirus (RV) is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations, and primarily infects bronchial epithelial cells. Immune responses from BECs to RV infection are critical in limiting viral replication, and remain unclear in COPD. The objective of this study is to investigate innate immune responses to RV infection in COPD primary BECs (pBECs) in comparison to healthy controls. Methods Primary bronchial epithelial cells (pBECs) from subjects with COPD and healthy controls were infected with RV-1B. Cells and cell supernatant were collected and analysed using gene expression microarray, qPCR, ELISA, flow cytometry and titration assay for viral replication. Results COPD pBECs responded to RV-1B infection with an increased expression of antiviral and pro-inflammatory genes compared to healthy pBECs, including cytokines, chemokines, RNA helicases, and interferons (IFNs). Similar levels of viral replication were observed in both disease groups; however COPD pBECs were highly susceptible to apoptosis. COPD pBECs differed at baseline in the expression of 9 genes, including calgranulins S100A8/A9, and 22 genes after RV-1B infection including the signalling proteins pellino-1 and interleukin-1 receptor associated kinase 2. In COPD, IFN-β/λ1 pre-treatment did not change MDA-5/RIG-I and IFN-β expression, but resulted in higher levels IFN-λ1, CXCL-10 and CCL-5. This led to reduced viral replication, but did not increase pro-inflammatory cytokines. Conclusions COPD pBECs elicit an exaggerated pro-inflammatory and antiviral response to RV-1B infection, without changing viral replication. IFN pre-treatment reduced viral replication. This study identified novel genes and pathways involved in potentiating the inflammatory response to RV in COPD. PMID:23384071

  8. Triptolide in the treatment of psoriasis and other immune-mediated inflammatory diseases.

    PubMed

    Han, Rui; Rostami-Yazdi, Martin; Gerdes, Sascha; Mrowietz, Ulrich

    2012-09-01

    Apart from cancer chronic (auto)immune-mediated diseases are a major threat for patients and a challenge for physicians. These conditions include classic autoimmune diseases like systemic lupus erythematosus, systemic sclerosis and dermatomyositis and also immune-mediated inflammatory diseases such as rheumatoid arthritis and psoriasis. Traditional therapies for these conditions include unspecific immunosuppressants including steroids and cyclophosphamide, more specific compounds such as ciclosporin or other drugs which are thought to act as immunomodulators (fumarates and intravenous immunoglobulins). With increasing knowledge about the underlying pathomechanisms of the diseases, targeted biologic therapies mainly consisting of anti-cytokine or anti-cytokine receptor agents have been developed. The latter have led to a substantial improvement of the induction of long term remission but drug costs are high and are not affordable in all countries. In China an extract of the herb Tripterygium wilfordii Hook F. (TwHF) is frequently used to treat autoimmune and/or inflammatory diseases due to its favourable cost-benefit ratio. Triptolide has turned out to be the active substance of TwHF extracts and has been shown to exert potent anti-inflammatory and immunosuppressive effects in vitro and in vivo. There is increasing evidence for an immunomodulatory and partly immunosuppressive mechanism of action of triptolide. Thus, compounds such as triptolide or triptolide derivatives may have the potential to be developed as a new class of drugs for these diseases. In this review we summarize the published knowledge regarding clinical use, pharmacokinetics and the possible mode of action of triptolide in the treatment of inflammatory diseases with a particular focus on psoriasis. PMID:22348323

  9. Endogenous anti-inflammatory neuropeptides and pro-resolving lipid mediators: a new therapeutic approach for immune disorders

    PubMed Central

    Anderson, Per; Delgado, Mario

    2008-01-01

    Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from ω-3 and ω-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. PMID:18554314

  10. Innate immunity and the role of the antimicrobial peptide cathelicidin in inflammatory skin disease

    PubMed Central

    Roby, Keith D; Nardo, Anna Di

    2013-01-01

    Cathelicidin antimicrobial peptide is an important mediator of the innate immune response. In addition to its potent antimicrobial activity, cathelicidin has been shown to have chemoattractant and angiogenic properties. Recent research has demonstrated that, in addition to its aforementioned functions, cathelicidin plays an important role in the complex pathogenesis of several chronic inflammatory skin diseases. This review will present a concise overview of the role of cathelicidin in infection and in the development of atopic dermatitis, psoriasis, and rosacea. This understanding will direct future research efforts to identify therapeutic approaches that use cathelicidin as a novel drug itself, or aim to modify its expression and regulation. PMID:24489580

  11. Surgical management of malignant cerebral edema secondary to immune reconstitution inflammatory syndrome from natalizumab-associated progressive multifocal encephalopathy.

    PubMed

    Tan, Lee A; Lopes, Demetrius K

    2015-10-01

    We report a rare multiple sclerosis (MS) patient who developed malignant cerebral edema related to progressive multifocal encephalopathy (PML) immune reconstitution inflammatory syndrome (IRIS) after natalizumab discontinuation. The patient subsequently required a decompressive hemicraniectomy to reduce intracranial pressure and to avoid uncal herniation. PML is a demyelinating disease of the central nervous system (CNS) which affects oligodendrocytes and is caused by reactivation of latent John Cunningham virus. Natalizumab is a known risk factor (1 in 1000) for MS patients treated with this drug. Discontinuation of natalizumab treatment decreases the risk of PML progression, but a massive inflammatory response can occur after cell-mediated immune surveillance is reestablished in the CNS, causing immune reconstitution inflammatory syndrome (IRIS). Treatment of IRIS usually consists of steroids and plasma exchange to lessen the immune response, however, mortality has been reported at up to 29.4%, despite aggressive medical treatment. We discuss our management strategy with a review of the pertinent literature. PMID:26115897

  12. The inflammatory function of renal glomerular mesangial cells and their interaction with the cellular immune system.

    PubMed

    Radeke, H H; Resch, K

    1992-09-01

    The autoimmune nature of chronic progredient glomerular diseases has been well established. Like in other chronic inflammatory diseases, the active role of organ-borne cells has become increasingly apparent--both for the inflammatory process and for the initiation and perpetuation of the immune reaction. In most forms of glomerulonephritis, intrinsic glomerular mesangial cells are likely candidates to come into intimate contact with immune cells such as monocytes or lymphocytes. On the basis of cell culture studies we would like to integrate the current knowledge available about the responsiveness of mesangial cells to inflammatory agents and the resulting secretory capacity and, moreover, their possible role in sustaining chronic inflammatory injury and autoimmune reactions through a direct interaction with lymphocytes. Apart from being responsive to physiological stimuli such as angiotensin II, glomerular mesangial cells are predominantly activated by agents related to inflammation. This includes exogenous substances such as the components of gram-negative bacteria and an array of highly potent immunological stimuli like antigen-antibody complexes, activated complement, or various cytokines. The transformation of resting mesangial cells to proliferating cells with an accompanying expansion of their secretory profile and responsiveness is due to mediators like platelet-derived growth factor, transforming growth factor, and others. Numerous low-molecular-weight substances (O2-, H2O2, NO, platelet-activating factor, eicosanoids), proteins (proteinases, matrix components, interleukins 1 and 6, colony-stimulating factors, growth factors), and cell-surface molecules released or expressed by mesangial cells participate in the inflammatory process. Among these products interleukin 1 and/or 6, class II major histocompatibility antigen and integrins also support an interaction with the cellular immune system. It has been well documented that mesangial cells induced in

  13. Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via Toll-like receptor 7 signaling.

    PubMed

    Feng, Yan; Chen, Hongliang; Cai, Jiayan; Zou, Lin; Yan, Dan; Xu, Ganqiong; Li, Dan; Chao, Wei

    2015-10-30

    We have recently reported that extracellular RNA (exRNA) released from necrotic cells induces cytokine production in cardiomyocytes and immune cells and contributes to myocardial ischemia/reperfusion injury. However, the signaling mechanism by which exRNA exhibits its pro-inflammatory effect is unknown. Here we hypothesize that exRNA directly induces inflammation through specific Toll-like receptors (TLRs). To test the hypothesis, we treated rat neonatal cardiomyocytes, mouse bone marrow-derived macrophages (BMDM), or mouse neutrophils with RNA (2.5-10 μg/ml) isolated from rat cardiomyocytes or the hearts from mouse, rat, and human. We found that cellular RNA induced production of several cytokines such as macrophage inflammatory protein-2 (MIP-2), ILs, TNFα, and the effect was completely diminished by RNase, but not DNase. The RNA-induced cytokine production was partially inhibited in cells treated with TLR7 antagonist or genetically deficient in TLR7. Deletion of myeloid differentiation primary response protein 88 (MyD88), a downstream adapter of TLRs including TLR7, abolished the RNA-induced MIP-2 production. Surprisingly, genetic deletion of TLR3 had no impact on the RNA-induced MIP-2 response. Importantly, extracellular RNA released from damaged cardiomyocytes also induced cytokine production. Finally, mice treated with 50 μg of RNA intraperitoneal injection exhibited acute peritonitis as evidenced by marked neutrophil and monocyte migration into the peritoneal space. Together, these data demonstrate that exRNA of cardiac origin exhibits a potent pro-inflammatory property in vitro and in vivo and that exRNA induces cytokine production through TLR7-MyD88 signaling. PMID:26363072

  14. Inflammatory and immune markers associated with physical frailty syndrome: findings from Singapore longitudinal aging studies.

    PubMed

    Lu, Yanxia; Tan, Crystal Tze Ying; Nyunt, Ma Shwe Zin; Mok, Esther Wing Hei; Camous, Xavier; Kared, Hassen; Fulop, Tamas; Feng, Liang; Ng, Tze Pin; Larbi, Anis

    2016-05-17

    Chronic systematic inflammation and reduced immune system fitness are considered potential contributing factors to the development of age-related frailty, but the underlying mechanisms are poorly defined. This exploratory study aimed to identify frailty-related inflammatory markers and immunological phenotypes in a cohort of community-dwelling adults aged ≥ 55 years. Frailty was assessed using two models, a Frailty Index and a categorical phenotype, and correlated with levels of circulating immune biomarkers and markers of senescence in immune cell subsets. We identified eight serological biomarkers that were associated with frailty, including sgp130, IL-2Rα, I-309, MCP-1, BCA-1, RANTES, leptin, and IL-6R. Frailty Index was inversely predicted by the frequency of CD3+, CD45RA+, and central memory CD4 cells, and positively predicted by the loss of CD28 expression, especially in CD8+ T cells, while frailty status was predicted by the frequency of terminal effector CD8+ T cells. In γ/δ T cells, frailty was negatively associated with CD27, and positively associated with IFNγ+TNFα- secretion by γ/δ2+ cells and IFNγ-TNFα+ secretion by γ/δ2- cells. Increased numbers of exhausted and CD38+ B cells, as well as CD14+CD16+ inflammatory monocytes, were also identified as frailty-associated phenotypes. This pilot study supports an association between inflammation, cellular immunity, and the process of frailty. These findings have significance for the early identification of frailty using circulating biomarkers prior to clinical manifestations of severe functional decline in the elderly. PMID:27119508

  15. The role of histamine H4 receptor in immune and inflammatory disorders.

    PubMed

    Zampeli, E; Tiligada, E

    2009-05-01

    Since its discovery at the beginning of the 20th century, histamine has been established to play a pathophysiological regulatory role in cellular events through binding to four types of G-protein-coupled histamine receptors that are differentially expressed in various cell types. The discovery, at the turn of the millennium, that the histamine H4 receptor is largely expressed in haemopoietic cells as well as its chemotactic properties designate its regulatory role in the immune system. H4 receptors modulate eosinophil migration and selective recruitment of mast cells leading to amplification of histamine-mediated immune responses and eventually to chronic inflammation. H4 receptor involvement in dendritic cell activation and T cell differentiation documents its immunomodulatory function. The characterization of the H4 as the immune system histamine receptor directed growing attention towards its therapeutic exploitation in inflammatory disorders, such as allergy, asthma, chronic pruritus and autoimmune diseases. The efficacy of a number of H4 receptor ligands has been evaluated in in vivo and in vitro animal models of disease and in human biological samples. However, before reaching decisive conclusions on H4 receptor pathophysiological functions and therapeutic exploitation, identification of genetic polymorphisms and interspecies differences in its relative actions and pharmacological profile need to be addressed and taken into consideration. Despite certain variations in the reported findings, the available data strongly point to the H4 receptor as a novel target for the pharmacological modulation of histamine-transferred immune signals and offer an optimistic perspective for the therapeutic exploitation of this promising new drug target in inflammatory disorders. PMID:19309354

  16. Treatment guidelines and prognosis of immune reconstitution inflammatory syndrome patients: a review.

    PubMed

    Murthy, Anup R; Marulappa, Rekha; Hegde, Usha; Kappadi, Damodhar; Ambikathanaya, U K; Nair, Priyanka

    2015-04-01

    Immune reconstitution inflammatory syndrome (IRIS) is an "unmasking" or paradoxical worsening of a pre-existing infection after commencement of highly active antiretroviral therapy (HAART) in human immunodeficiency virus (HIV) - infected patients. The use of HAART in the management of HIV patients restores immune responses against pathogens however in few patients, the reconstituted immune system leads to IRIS. As the treatment protocols are not standardized for IRIS, this leads to short-term morbidity or in some cases also mortality. Therefore, treatment in these patients is a huge challenge and further more research regarding the immunopathogenesis, diagnosis and management of IRIS should be well thought-out. To understand the immunopathogenesis of IRIS it will be difficult to elucidate the intrinsic dynamics of immune cells after initiation of HAART but, there are few biomarkers which help to predict or diagnose IRIS and develop specific treatment, following initiation of HIV therapy. This review is an attempt to put light on those patients with IRIS with treatment guidelines for the management of the progression of it. PMID:25954081

  17. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    PubMed

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole. PMID:26573260

  18. Natural Interferon α/β–Producing Cells Link Innate and Adaptive Immunity

    PubMed Central

    Kadowaki, Norimitsu; Antonenko, Svetlana; Lau, Johnson Yiu-Nam; Liu, Yong-Jun

    2000-01-01

    Innate immune responses to pathogens critically impact the development of adaptive immune responses. However, it is not completely understood how innate immunity controls the initiation of adaptive immunities or how it determines which type of adaptive immunity will be induced to eliminate a given pathogen. Here we show that viral stimulation not only triggers natural interferon (IFN)-α/β–producing cells (IPCs) to produce vast amounts of antiviral IFN-α/β but also induces these cells to differentiate into dendritic cells (DCs). IFN-α/β and tumor necrosis factor α produced by virus-activated IPCs act as autocrine survival and DC differentiation factors, respectively. The virus-induced DCs stimulate naive CD4+ T cells to produce IFN-γ and interleukin (IL)-10, in contrast to IL-3–induced DCs, which stimulate naive CD4+ T cells to produce T helper type 2 cytokines IL-4, IL-5, and IL-10. Thus, IPCs may play two master roles in antiviral immune responses: directly inhibiting viral replication by producing large amounts of IFN-α/β, and subsequently triggering adaptive T cell–mediated immunity by differentiating into DCs. IPCs constitute a critical link between innate and adaptive immunity. PMID:10899908

  19. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases.

    PubMed

    Casas, Rosa; Sacanella, Emilio; Estruch, Ramon

    2014-01-01

    Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The Mediterranean Diet (MedDiet) is a nutritional model inspired by the traditional dietary pattern of some of the countries of the Mediterranean basin. This dietary pattern is characterized by the abundant consumption of olive oil, high consumption of plant foods (fruits, vegetables, pulses, cereals, nuts and seeds); frequent and moderate intake of wine (mainly with meals); moderate consumption of fish, seafood, yogurt, cheese, poultry and eggs; and low consumption of red meat, processed meat products and seeds. Several epidemiological studies have evaluated the effects of a Mediterranean pattern as protective against several diseases associated with chronic low-grade inflammation such as cancer, diabetes, obesity, atherosclerosis, metabolic syndrome and cognition disorders. The adoption of this dietary pattern could counter the effects of several inflammatory markers, decreasing, for example, the secretion of circulating and cellular biomarkers involved in the atherosclerotic process. Thus, the aim of this review was to consider the current evidence about the effectiveness of the MedDiet in these chronic inflammatory diseases due to its antioxidant and anti-inflammatory properties, which may not only act on classical risk factors but also on inflammatory biomarkers such as adhesion molecules, cytokines or molecules related to the stability of atheromatic plaque. PMID:25244229

  20. The Immune Protective Effect of the Mediterranean Diet against Chronic Low-grade Inflammatory Diseases

    PubMed Central

    Casas, Rosa; Sacanella, Emilio; Estruch, Ramon

    2014-01-01

    Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The Mediterranean Diet (MedDiet) is a nutritional model inspired by the traditional dietary pattern of some of the countries of the Mediterranean basin. This dietary pattern is characterized by the abundant consumption of olive oil, high consumption of plant foods (fruits, vegetables, pulses, cereals, nuts and seeds); frequent and moderate intake of wine (mainly with meals); moderate consumption of fish, seafood, yogurt, cheese, poultry and eggs; and low consumption of red meat, processed meat products and seeds. Several epidemiological studies have evaluated the effects of a Mediterranean pattern as protective against several diseases associated with chronic low-grade inflammation such as cancer, diabetes, obesity, atherosclerosis, metabolic syndrome and cognition disorders. The adoption of this dietary pattern could counter the effects of several inflammatory markers, decreasing, for example, the secretion of circulating and cellular biomarkers involved in the atherosclerotic process. Thus, the aim of this review was to consider the current evidence about the effectiveness of the MedDiet in these chronic inflammatory diseases due to its antioxidant and anti-inflammatory properties, which may not only act on classical risk factors but also on inflammatory biomarkers such as adhesion molecules, cytokines or molecules related to the stability of atheromatic plaque. PMID:25244229

  1. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    PubMed

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field. PMID:27115249

  2. In vitro bioartificial skin culture model of tissue rejection and inflammatory/immune mechanisms.

    PubMed

    Strande, L F; Foley, S T; Doolin, E J; Hewitt, C W

    1997-06-01

    We hypothesized that an in vitro bioartificial skin rejection model using living LSEs grown in tissue culture could be developed for the study of autologous, allogenic, and/or xenogeneic inflammatory/immune mechanisms and topical immunosuppressive drugs. Human fibroblasts were mixed with type 1 rat-tail collagen to form a matrix (4 to 5 days), on which human keratinocytes were seeded. After a keratinocyte monolayer formed, CT cultures were raised to the air-liquid interface for continued growth. In the REJ LSE model, immunocytes isolated from human blood were seeded on top of the NHEK monolayer at the time of air-lifting. Thickness measurements of the acellular keratin and keratinocyte layers, and nuclear/cytoplasmic ratios, in both CT and REJ were made using digital image analysis. Immunostaining with anticytokeratin demonstrated a viable, keratin-producing epidermal layer; staining with anti-TGF-beta suggested a role for this cytokine in the rejection or wound-healing process. The LSE appeared histologically similar to normal human epidermis. Immunocytes added to the REJ cultures caused an obvious rejection response and were clearly identifiable in the gels as CD45+ staining cells. The LSE model appears promising for the study of immune/inflammatory mechanisms, thermal injury, screening antirejection agents that might be applied topically and as an in vitro replacement for skin graft studies in animals. PMID:9193551

  3. Immune reconstitution inflammatory syndrome in a patient with progressive multifocal leukoencephalopathy.

    PubMed

    Shahani, Lokesh; Shah, Minal; Tavakoli-Tabasi, Shahriar

    2015-01-01

    Progressive multifocal leukoencephalopathy (PML) is a severe opportunistic infection of the central nervous system. A 52-year-old man with HIV infection, recently started on antiretroviral therapy, presented with symptoms of mental cloudiness, blurry vision and ataxia. MRI of the brain showed nodular perivascular space enhancement with surrounding vasogenic oedema and midline shift. A lumbar puncture revealed non-inflammatory cerebrospinal fluid and was positive for JC virus. As the patient developed worsening symptoms in the setting of initiation of antiretroviral therapy with immune recovery, a diagnosis of JC virus-associated immune reconstitution inflammatory syndrome (IRIS) was made. With recent literature on the use of CCR5 antagonist maraviroc in PML, our patient was started on maraviroc and noted to have improvement in PML IRIS. This is the first case of an HIV-positive patient successfully treated for PML IRIS with maraviroc, as verified by our literature review; also, our case has clinical implications in improving outcome in PML IRIS. PMID:26063110

  4. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells

    PubMed Central

    Cohen, Evan N.; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G.; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J.; Cristofanilli, Massimo; Mani, Sendurai A.; Croix, Denise A.; Ueno, Naoto T.; Woodward, Wendy A.; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M.

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction. PMID:26207636

  5. Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention

    PubMed Central

    Wu, Dayong; Meydani, Simin Nikbin

    2008-01-01

    Aging is associated with dysregulated immune and inflammatory responses. Declining T cell function is the most significant and best-characterized feature of immunosenescence. Intrinsic changes within T cells and extrinsic factors contribute to the age-associated decline in T cell function. T cell defect seen in aging involves multiple stages from early receptor activation events to clonal expansion. Among extrinsic factors, increased production of T cell-suppressive factor PGE2 by macrophages (Mφ) is most recognized. Vitamin E reverses an age-associated defect in T cells, particularly naïve T cells. This effect of vitamin E is also reflected in a reduced rate of upper respiratory tract infection in the elderly and enhanced clearance of influenza infection in a rodent model. The T cell-enhancing effect of vitamin E is accomplished via its direct effect on T cells and indirectly by inhibiting PGE2 production in Mφ. Up-regulated inflammation with aging has attracted increasing attention as a result of its implications in the pathogenesis of diseases. Increased PGE2 production in old Mφ is a result of increased cyclooxygenase 2 (COX-2) expression, leading to higher COX enzyme activity, which in turn, is associated with the ceramide-induced up-regulation of NF-κB. Similar to Mφ, adipocytes from old mice have a higher expression of COX-2 as well as inflammatory cytokines IL-1β, IL-6, and TNF-α, which might also be related to elevated levels of ceramide and NF-κB activation. This review will discuss the above age-related immune and inflammatory changes and the effect of vitamin E as nutritional intervention with a focus on the work conducted in our laboratory. PMID:18596135

  6. Standard of hygiene and immune adaptation in newborn infants.

    PubMed

    Kallionpää, Henna; Laajala, Essi; Öling, Viveka; Härkönen, Taina; Tillmann, Vallo; Dorshakova, Natalya V; Ilonen, Jorma; Lähdesmäki, Harri; Knip, Mikael; Lahesmaa, Riitta

    2014-11-01

    The prevalence of immune-mediated diseases, such as allergies and type 1 diabetes, is on the rise in the developed world. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from infants born in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economic conditions). The whole blood transcriptome of Finnish and Estonian neonates differed from their Karelian counterparts, suggesting exposure to toll-like receptor (TLR) ligands and a more matured immune response in infants born in Karelia. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation in accordance with the surrounding microbial milieu. PMID:25245264

  7. P. falciparum Infection Durations and Infectiousness Are Shaped by Antigenic Variation and Innate and Adaptive Host Immunity in a Mathematical Model

    PubMed Central

    Eckhoff, Philip

    2012-01-01

    Many questions remain about P. falciparum within-host dynamics, immunity, and transmission–issues that may affect public health campaign planning. These gaps in knowledge concern the distribution of durations of malaria infections, determination of peak parasitemia during acute infection, the relationships among gametocytes and immune responses and infectiousness to mosquitoes, and the effect of antigenic structure on reinfection outcomes. The present model of intra-host dynamics of P. falciparum implements detailed representations of parasite and immune dynamics, with structures based on minimal extrapolations from first-principles biology in its foundations. The model is designed to quickly and readily accommodate gains in mechanistic understanding and to evaluate effects of alternative biological hypothesis through in silico experiments. Simulations follow the parasite from the liver-stage through the detailed asexual cycle to clearance while tracking gametocyte populations. The modeled immune system includes innate inflammatory and specific antibody responses to a repertoire of antigens. The mechanistic focus provides clear explanations for the structure of the distribution of infection durations through the interaction of antigenic variation and innate and adaptive immunity. Infectiousness to mosquitoes appears to be determined not only by the density of gametocytes but also by the level of inflammatory cytokines, which harmonizes an extensive series of study results. Finally, pre-existing immunity can either decrease or increase the duration of infections upon reinfection, depending on the degree of overlap in antigenic repertoires and the strength of the pre-existing immunity. PMID:23028698

  8. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus.

    PubMed Central

    Cahill, R J; Foltz, C J; Fox, J G; Dangler, C A; Powrie, F; Schauer, D B

    1997-01-01

    Inflammatory bowel disease (IBD) is thought to result from either an abnormal immunological response to enteric flora or a normal immunological response to a specific pathogen. No study to date has combined both factors. The present studies were carried out with an immunologically manipulated mouse model of IBD. Mice homozygous for the severe combined immunodeficiency (scid) mutation develop IBD with adoptive transfer of CD4+ T cells expressing high levels of CD45RB (CD45RB(high) CD4+ T cells). These mice do not develop IBD in germfree conditions, implicating undefined intestinal flora in the pathogenesis of lesions. In controlled duplicate studies, the influence of a single murine pathogen, Helicobacter hepaticus, in combination with the abnormal immunological response on the development of IBD was assessed. The combination of H. hepaticus infection and CD45RB(high) CD4+ T-cell reconstitution resulted in severe disease expression similar to that observed in human IBD. This study demonstrates that IBD develops in mice as a consequence of an abnormal immune response in the presence of a single murine pathogen, H. hepaticus. The interaction of host immunity and a single pathogen in this murine system provides a novel model of human IBD, an immunity-mediated condition triggered by bacterial infection. PMID:9234764

  9. Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls.

    PubMed

    Silva, Léia C R; Ortigosa, Luciena C M; Benard, Gil

    2010-11-01

    TNF-α is a potent inducer of the inflammatory response, a key regulator of innate immunity and plays an important role in the regulation of Th1 immune responses against intracellular bacteria and certain viral infections. However, dysregulated TNF can also contribute to numerous pathological situations. These include immune-mediated inflammatory diseases (IMIDs) including rheumatoid arthritis, Crohn's disease, psoriatic arthritis, ankylosing spondylitis, ulcerative colitis and severe chronic plaque psoriasis. Animal and human studies concerning the role of TNF-α in IMIDs have led to the development of a therapy based on TNF blockage. This article focuses first on the potential mechanisms by which the three currently licensed agents, adalimumab, etarnecept and infliximab, decrease the inflammatory activity of patients with different IMIDs. Second, it focuses on the risks, precautions and complications of the use of TNF-α inhibitors in these patients. PMID:21091114

  10. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    PubMed

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression. PMID:26884167

  11. Effects of laparoscopic radical gastrectomy and the influence on immune function and inflammatory factors

    PubMed Central

    Ma, Zhao; Bao, Xuebin; Gu, Junbao

    2016-01-01

    The effects of laparoscopic radical gastrectomy were observed, and changes in immune function and inflammatory factors of gastric cancer patients were examined. In total, 236 cases of laparoscopic radical gastrectomy were selected between March 2014 and October 2015 and divided into the control and experimental groups. The control group was treated using open radical gastrectomy, while laparoscopic radical gastrectomy was used in the experimental group. Treatment effects, immune function and inflammatory factor in the two groups were compared. Compared to the open radical gastrectomy group, surgery time in the laparoscopic radical gastrectomy group was longer, while blood loss during operation, time of exsufflation through anus after operation, duration of acesodyne use, length of stay and incidence of complications were lower, and the differences were statistically significant (P<0.05). As for the amount of lymph node dissection, differences between the two groups were of no statistical significance (P>0.05). CD3+, CD4+ and CD4+/CD8+ cell ratios in the two groups 1 and 7 days after surgery were obviously lower than those before surgery (P<0.05) while CD8+ was higher. In addition, compared with the open radical gastrectomy group, CD3+, CD4+, CD4+/CD8+ cell ratios in the laparoscopic radical gastrectomy group increased while CD8 was lower, and differences were statistically significant (P<0.05). Differences of interleukin (IL)-6, tumor necrosis factor (TNF) and CRP between the two groups 1 day before surgery were of no statistical significance (P>0.05). One day after surgery, IL-6, TNF and CRP in the two groups increased (P<0.05) and the values in the open radical gastrectomy group were higher (P<0.05). Differences in IL-6 between the two groups 7 days after surgery were of no statistical significance (P>0.05). However, for CRP and TNF, the two values gradually decreased and the differences between the groups were of statistical significance (P<0.05). In conclusion

  12. Serum Homocysteine Concentration Is Significantly Associated with Inflammatory/Immune Factors

    PubMed Central

    Yang, Xiaobo; Zhang, Haiying; Qin, Xue; Hu, Yanling; Mo, Zengnan

    2015-01-01

    Recent studies suggest that serum homocysteine (HCY) level is correlated to inflammatory/immune factors that influence the development and progression of many diseases, such as cardiovascular disease. However, the association between serum HCY level and inflammatory/immune factors in healthy populations has not been systematically investigated. This study was conducted based on the Fangchenggang Area Male Health and Examination Survey (FAMHES) project. After comprehensive baseline analysis, we could not find any significant association between HCY level and inflammatory/immune factors. However, in the next linear regression analysis, serum C4 [age-adjusted: Beta = -0.053, 95%CI = (-3.798, -0.050), P = 0.044; multivariate adjusted: Beta = -0.064, 95%CI = (-4.271, -0.378), P = 0.019] and C-reactive protein (CRP) concentration [unadjusted: Beta = 0.056, 95%CI = (0.037, 0.740), P = 0.030] were positively related with HCY. In further binary regression analysis, a significant correlation was confirmed for C4 and HCY [age-adjusted: OR = 0.572, 95%CI = (0.359, 0.911); multivariate adjusted: OR = 0.558, 95%CI = (0.344, 0.905)]. In order to discover more potential associations, multivariate logistic regression analysis was applied and suggested that HCY and C4 were significantly correlated [age-adjusted: OR = 0.703, 95%CI = (0.519, 0.951); multivariate adjusted: OR = 0.696, 95%CI = (0.509, 0.951)]. In addition, immunoglobulin M (IgM) may influence the HCY level to some extent [unadjusted: OR = 1.427, 95%CI = (1.052, 1.936); age-adjusted: OR = 1.446, 95%CI = (1.061, 1.970); multivariate adjusted: OR = 1.447, 95%CI = (1.062, 1.973)]. Combining our results with recent studies, we propose that C4, CRP, and IgM in serum are significantly associated with HCY concentration. Further studies are needed on the mechanism of the interaction, especially among cardiovascular disease subjects. PMID:26367537

  13. Contributions of neutrophils to the adaptive immune response in autoimmune disease

    PubMed Central

    Pietrosimone, Kathryn M; Liu, Peng

    2016-01-01

    Neutrophils are granulocytic cytotoxic leukocytes of the innate immune system that activate during acute inflammation. Neutrophils can also persist beyond the acute phase of inflammation to impact the adaptive immune response during chronic inflammation. In the context of the autoimmune disease, neutrophils modulating T and B cell functions by producing cytokines and chemokines, forming neutrophil extracellular traps, and acting as or priming antigen presentation cells. Thus, neutrophils are actively involved in chronic inflammation and tissue damage in autoimmune disease. Using rheumatoid arthritis as an example, this review focuses on functions of neutrophils in adaptive immunity and the therapeutic potential of these cells in the treatment of autoimmune disease and chronic inflammation. PMID:27042404

  14. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    NASA Astrophysics Data System (ADS)

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  15. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS)

    PubMed Central

    Morris, Gerwyn; Maes, Michael

    2014-01-01

    Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system. The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels. Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease. PMID:24669210

  16. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease

    PubMed Central

    Worthington, John J

    2015-01-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine. PMID:26551720

  17. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells.

    PubMed

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E

    2016-05-01

    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system. PMID:25941086

  18. THE EMERGING ROLE OF RESIDENT MEMORY T CELLS IN PROTECTIVE IMMUNITY AND INFLAMMATORY DISEASE

    PubMed Central

    Park, Changook; Kupper, Thomas S

    2015-01-01

    Over the past decade, it has become clear that there is an important subset of memory T cells that resides in tissues — tissue resident memory T cells (TRM). There is an emerging understanding that TRM have a role in human tissue specific immune and inflammatory diseases. Furthermore, the nature of the molecular signals that maintain TRM in tissues is the subject of much investigation. In addition while it is logical for TRM to be located in barrier tissues at interfaces with the environment in human and mouse, TRM have also been found in brain, kidney, joint, and other non-barrier tissues in both species. Their biology and behavior make it likely that they play a role in chronic relapsing and remitting diseases of both barrier and non-barrier tissues. This review will discuss recent understandings of the biology of TRM with a particular focus on their role in disease. PMID:26121195

  19. Penicillium marneffei presenting as an immune reconstitution inflammatory syndrome (IRIS) in a patient with advanced HIV

    PubMed Central

    Hall, Charlotte; Hajjawi, Rachel; Barlow, Gavin; Thaker, Hiten; Adams, Kate; Moss, Peter

    2013-01-01

    A 62-year-old British man with advanced HIV was established on antiretroviral therapy and treatment for disseminated Mycobacterium avium complex and Cytomegalovirus infections. One month later he re-presented with epigastric pain, an epigastric mass and skin lesions. Abdominal imaging revealed large volume lymphadenopathy, which was not present on previous imaging. Blood cultures yielded Penicillium marneffei, a dimorphic fungus endemic to South-east Asia. The patient had spent several years travelling in Thailand prior to the diagnosis of HIV. Penicilliosis is a common AIDS-defining illness in endemic areas, but remains rare in Europe. In this case, it presented in the context of a rapidly decreasing viral load as an immune reconstitution inflammatory syndrome. The challenges of management in the context of multiple comorbidities and polypharmacy are discussed. PMID:23362074

  20. Role of NF-κB in immune and inflammatory responses in the gut

    PubMed Central

    NEURATH, M; BECKER, C; BARBULESCU, K

    1998-01-01

    NF-κB is a pleiotropic transcription factor with key functions in the intestinal immune system. NF-κB family members control transcriptional activity of various promoters of proinflammatory cytokines, cell surface receptors, transcription factors, and adhesion molecules that are involved in intestinal inflammation. The perpetuated activation of NF-κB in patients with active inflammatory bowel disease suggests that regulation of NF-κB activity is a very attractive target for therapeutic intervention. Such strategies include antioxidants, proteasome inhibitors, inhibition of NF-κB by adenoviral IκBα expression vectors, and antisense DNA targeting of NF-κB. These approaches will hopefully permit the design of new treatment strategies for chronic intestinal inflammation. 

 PMID:9824616

  1. Translational research in immune and inflammatory diseases; what are the challenges, expected advances, and innovative therapies?

    PubMed

    Joubert, Jean-Michel; Gottenberg, Jacques-Eric; Paintaud, Gilles; Augendre-Ferrante, Béatrice; Cans, Christophe; Cellier, Dominique; Chevalier, Marie-Pierre; Diaz, Isabelle; Filipecki, Jamila; Kahn, Jean-Emmanuel; Le Men, Johan; Mulleman, Denis; Urbain, Rémi; Vasmant, Daniel

    2014-01-01

    Despite very different aetiologies and clinical expressions, advancing knowledge in the physiopathology and treatment of immune and inflammatory diseases (IID) prompts us to consider them as a whole. These are chronic, often incapacitating and painful illnesses that progress and destroy organs. Management by discipline too often leads to erroneous diagnoses and sometimes inappropriate treatment. More integrated translational research would further understanding of the complex relationships between cytokines and organ damage, which vary with the conditions and patients, making it possible to develop new biomarkers and personalize treatment. The research in France has very many strengths but its organization is fragmented. Better coordinated research into IID, which could be based on creating a strategic valorization field (domaine de valorisation stratégique, DVS) and thematic multi-organization institute (Institut thématique multi-organismes ITMO), would advance patient management. PMID:25099671

  2. Inflammatory and innate immune responses in dengue infection: protection versus disease induction.

    PubMed

    Costa, Vivian Vasconcelos; Fagundes, Caio Tavares; Souza, Danielle G; Teixeira, Mauro Martins

    2013-06-01

    Dengue disease is a mosquito-borne viral disease of expanding geographical range and incidence. Infection by one of the four serotypes of dengue virus induces a spectrum of disease manifestations, ranging from asymptomatic to life-threatening Dengue hemorrhagic fever/dengue shock syndrome. Many efforts have been made to elucidate several aspects of dengue virus-induced disease, but the pathogenesis of disease is complex and remains unclear. Understanding the mechanisms involved in the early stages of infection is crucial to determine and develop safe therapeutics to prevent the severe outcomes of disease without interfering with control of infection. In this review, we discuss the dual role of the innate and inflammatory pathways activated during dengue disease in mediating both protection and exacerbation of disease. We show that some mediators involved in each of these responses differ substantially, suggesting that interfering in disease-associated immune pathways may represent a potential therapeutic opportunity for the treatment of severe dengue. PMID:23567637

  3. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    PubMed Central

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  4. Immune and inflammatory responses of Australian firefighters after repeated exposures to the heat.

    PubMed

    Walker, Anthony; Keene, Toby; Argus, Christos; Driller, Matthew; Guy, Joshua H; Rattray, Ben

    2015-01-01

    When firefighters work in hot conditions, altered immune and inflammatory responses may increase the risk of a cardiac event. The present study aimed to establish the time course of such responses. Forty-two urban firefighters completed a repeat work protocol in a heat chamber (100 ± 5°C). Changes to leukocytes, platelets, TNFα, IL-6, IL-10, LPS and CRP were evaluated immediately post-work and also after 1 and 24 h of rest. Increases in core temperatures were associated with significant increases in leukocytes, platelets and TNFα directly following work. Further, platelets continued to increase at 1 h (+31.2 ± 31.3 × 10(9) l, p < 0.01) and remained elevated at 24 h (+15.9 ± 19.6 × 10(9) l, p < 0.01). Sustained increases in leukocytes and platelets may increase the risk of cardiac events in firefighters when performing repeat work tasks in the heat. This is particularly relevant during multi-day deployments following natural disasters. Practitioner Summary: Firefighters regularly re-enter fire affected buildings or are redeployed to further operational tasks. Should work in the heat lead to sustained immune and inflammatory changes following extended rest periods, incident controllers should plan appropriate work/rest cycles to minimise these changes and any subsequent risks of cardiac events. PMID:26082313

  5. Stochastic stage-structured modeling of the adaptive immune system

    SciTech Connect

    Chao, D. L.; Davenport, M. P.; Forrest, S.; Perelson, Alan S.,

    2003-01-01

    We have constructed a computer model of the cytotoxic T lymphocyte (CTL) response to antigen and the maintenance of immunological memory. Because immune responses often begin with small numbers of cells and there is great variation among individual immune systems, we have chosen to implement a stochastic model that captures the life cycle of T cells more faithfully than deterministic models. Past models of the immune response have been differential equation based, which do not capture stochastic effects, or agent-based, which are computationally expensive. We use a stochastic stage-structured approach that has many of the advantages of agent-based modeling but is more efficient. Our model can provide insights into the effect infections have on the CTL repertoire and the response to subsequent infections.

  6. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  7. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  8. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    SciTech Connect

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P.

    2009-04-25

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45{sup high}CD11b{sup +}) and CD8{sup +} T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8{sup +} T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-gamma) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  9. Role of Innate and Adaptive Immunity in Cardiac Injury and Repair

    PubMed Central

    Epelman, Slava; Liu, Peter P.; Mann, Douglas L.

    2015-01-01

    Despite significant advances, cardiovascular disease is the leading cause of world-wide mortality, highlighting an important yet unmet clinical need. Understanding the pathophysiological basis underlying cardiovascular tissue injury and repair in therefore of prime importance. Following cardiac tissue injury, the immune system plays an important and complex role throughout the acute inflammatory response and regenerative response. This review will summarize the role of the immune system in cardiovascular disease, and focus on the idea that the immune system evolved to promote tissue homeostasis following tissue injury and/or infection, and that the inherent cost of this evolutionary development is unwanted inflammatory mediated damage. While inflammation induced tissue damage is of little evolutionary consequence in organisms that have limited life spans, as will be discussed below, inflammation plays a major role in the development of cardiovascular disease worldwide in humans. PMID:25614321

  10. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases

    PubMed Central

    Montgomery, McKale R.; Leyva, Kathryn J.

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments. PMID:27556043

  11. Neither classical nor alternative macrophage activation is required for Pneumocystis clearance during immune reconstitution inflammatory syndrome.

    PubMed

    Zhang, Zhuo-Qian; Wang, Jing; Hoy, Zachary; Keegan, Achsah; Bhagwat, Samir; Gigliotti, Francis; Wright, Terry W

    2015-12-01

    Pneumocystis is a respiratory fungal pathogen that causes pneumonia (Pneumocystis pneumonia [PcP]) in immunocompromised patients. Alveolar macrophages are critical effectors for CD4(+) T cell-dependent clearance of Pneumocystis, and previous studies found that alternative macrophage activation accelerates fungal clearance during PcP-related immune reconstitution inflammatory syndrome (IRIS). However, the requirement for either classically or alternatively activated macrophages for Pneumocystis clearance has not been determined. Therefore, RAG2(-/-) mice lacking either the interferon gamma (IFN-γ) receptor (IFN-γR) or interleukin 4 receptor alpha (IL-4Rα) were infected with Pneumocystis. These mice were then immune reconstituted with wild-type lymphocytes to preserve the normal T helper response while preventing downstream effects of Th1 or Th2 effector cytokines on macrophage polarization. As expected, RAG2(-/-) mice developed severe disease but effectively cleared Pneumocystis and resolved IRIS. Neither RAG/IFN-γR(-/-) nor RAG/IL-4Rα(-/-) mice displayed impaired Pneumocystis clearance. However, RAG/IFN-γR(-/-) mice developed a dysregulated immune response, with exacerbated IRIS and greater pulmonary function deficits than those in RAG2 and RAG/IL-4Rα(-/-) mice. RAG/IFN-γR(-/-) mice had elevated numbers of lung CD4(+) T cells, neutrophils, eosinophils, and NK cells but severely depressed numbers of lung CD8(+) T suppressor cells. Impaired lung CD8(+) T cell responses in RAG/IFN-γR(-/-) mice were associated with elevated lung IFN-γ levels, and neutralization of IFN-γ restored the CD8 response. These data demonstrate that restricting the ability of macrophages to polarize in response to Th1 or Th2 cytokines does not impair Pneumocystis clearance. However, a cell type-specific IFN-γ/IFN-γR-dependent mechanism regulates CD8(+) T suppressor cell recruitment, limits immunopathogenesis, preserves lung function, and enhances the resolution of PcP-related IRIS

  12. On the evolutionary origin of the adaptive immune system--the adipocyte hypothesis.

    PubMed

    van Niekerk, Gustav; Engelbrecht, Anna-Mart

    2015-04-01

    Jawless vertebrates utilize a form of adaptive immunity that is functionally based on molecular effectors that are completely different from those of vertebrates. This observation raises an intriguing question: why did vertebrates, representing only 5% of all animals, twice evolve a system as complex as adaptive immunity? Theories aimed at identifying a selective pressure that would 'drive' the development of an adaptive immune system (AIS) fail to explain why invertebrates would not similarly develop an AIS. We argue that an AIS can only be implemented in a certain physiological context, i.e., that an AIS represents an unevolvable trait for invertebrates. The immune system is functionally integrated with other systems; therefore a preexisting physiological innovation unique to vertebrates may have acted as the prerequisite infrastructure that allowed the development of an AIS. We propose that future efforts should be directed toward identifying the evolutionary release that allowed the development of an adaptive immune system in vertebrates. In particular, the advent of specialized adipocytes might have expanded the metabolic scope of vertebrates, allowing the opportunistic incorporation of an AIS. However, physiological innovations, unique to (or more developed in) vertebrates, support the implementation of an AIS. Thus, understanding the interaction between systems (e.g. neural-immune-adipose connection) may illuminate our understanding regarding the perplexing immunological dimorphism within the animal kingdom. PMID:25698354

  13. AID and APOBECs span the gap between innate and adaptive immunity

    PubMed Central

    Moris, Arnaud; Murray, Shannon; Cardinaud, Sylvain

    2014-01-01

    The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others’ work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies. PMID:25352838

  14. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    PubMed Central

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  15. Catecholamines—Crafty Weapons in the Inflammatory Arsenal of Immune/Inflammatory Cells or Opening Pandora’s Box§?

    PubMed Central

    Flierl, Michael A; Rittirsch, Daniel; Huber-Lang, Markus; Sarma, J Vidya; Ward, Peter A

    2008-01-01

    It is well established that catecholamines (CAs), which regulate immune and inflammatory responses, derive from the adrenal medulla and from presynaptic neurons. Recent studies reveal that T cells also can synthesize and release catecholamines which then can regulate T cell function. We have shown recently that macrophages and neutrophils, when stimulated, can generate and release catecholamines de novo which, then, in an autocrine/paracrine manner, regulate mediator release from these phagocytes via engagement of adrenergic receptors. Moreover, regulation of catecholamine-generating enzymes as well as degrading enzymes clearly alter the inflammatory response of phagocytes, such as the release of proinflammatory mediators. Accordingly, it appears that phagocytic cells and lymphocytes may represent a major, newly recognized source of catecholamines that regulate inflammatory responses. PMID:18079995

  16. The placenta in toxicology. Part II: Systemic and local immune adaptations in pregnancy.

    PubMed

    Svensson-Arvelund, Judit; Ernerudh, Jan; Buse, Eberhard; Cline, J Mark; Haeger, Jan-Dirk; Dixon, Darlene; Markert, Udo R; Pfarrer, Christiane; De Vos, Paul; Faas, Marijke M

    2014-01-01

    During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic changes are induced by contact of maternal blood with placental factors and include enhanced innate immunity with increased activation of granulocytes and nonclassical monocytes. Although a bias toward T helper (Th2) and regulatory T cell (Treg) immunity has been associated with healthy pregnancy, the relationship between different circulating Th cell subsets is not straightforward. Instead, these adaptations appear most evidently at the fetal-maternal interface, where for instance Tregs are enriched and promote fetal tolerance. Also innate immune cells, that is, natural killer cells and macrophages, are enriched, constituting the majority of decidual leukocytes. These cells not only contribute to immune regulation but also aid in establishing the placenta by promoting trophoblast recruitment and angiogenesis. Thus, proper interaction between leukocytes and placental trophoblasts is necessary for normal placentation and immune adaptation. Consequently, spontaneous maladaptation or interference of the immune system with toxic substances may be important contributing factors for the development of pregnancy complications such as preeclampsia, preterm labor, and recurrent miscarriages. PMID:23531796

  17. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation.

    PubMed

    Siggs, Owen M; Miosge, Lisa A; Daley, Stephen R; Asquith, Kelly; Foster, Paul S; Liston, Adrian; Goodnow, Christopher C

    2015-03-15

    Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies. PMID:25662996

  18. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis.

    PubMed

    Ait-Oufella, Hafid; Sage, Andrew P; Mallat, Ziad; Tedgui, Alain

    2014-05-01

    Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity. PMID:24812352

  19. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-11-14

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins

  20. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics

    PubMed Central

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-01-01

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and

  1. Innate lymphoid cell function in the context of adaptive immunity.

    PubMed

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  2. Aberrant Inflammasome Activation Characterizes Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome.

    PubMed

    Tan, Hong Yien; Yong, Yean Kong; Shankar, Esaki M; Paukovics, Geza; Ellegård, Rada; Larsson, Marie; Kamarulzaman, Adeeba; French, Martyn A; Crowe, Suzanne M

    2016-05-15

    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS. PMID:27076678

  3. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  4. The interplay between the microbiome and the adaptive immune response in cancer development

    PubMed Central

    Russo, Edda; Taddei, Antonio; Ringressi, Maria Novella; Ricci, Federica; Amedei, Amedeo

    2016-01-01

    The data from different studies suggest a bacterial role in cancer genesis/progression, often modulating the local immune response. This is particularly so at the mucosal level where the bacterial presence is strong and the immune system is highly reactive. The epithelial surfaces of the body, such as the skin and mucosa, are colonized by a vast number of microorganisms, which represent the so-called normal microbiome. Normally the microbiome does not cause a proinflammatory response because the immune system has developed different strategies for the tolerance of commensal bacteria, but when these mechanisms are impaired or new pathogenic bacteria are introduced into this balanced system, the immune system reacts to the microbiome and can trigger tumor growth in the intestine. In this review, we discuss the potential role of the bacterial microbiome in carcinogenesis, focusing on the direct and indirect immune adaptive mechanisms, that the bacteria can modulate in different ways. PMID:27366226

  5. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma.

    PubMed

    Schmudde, Inken; Laumonnier, Yves; Köhl, Jörg

    2013-02-01

    Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions. PMID:23694705

  6. Dectin-1 and Dectin-2 promote control of the fungal pathogen Trichophyton rubrum independently of IL-17 and adaptive immunity in experimental deep dermatophytosis.

    PubMed

    Yoshikawa, Fabio Sy; Yabe, Rikio; Iwakura, Yoichiro; de Almeida, Sandro R; Saijo, Shinobu

    2016-07-01

    Dermatophytoses are chronic fungal infections, the main causative agent of which is Trichophyton rubrum (T. rubrum). Despite their high occurrence worldwide, the immunological mechanisms underlying these diseases remain largely unknown. Here, we uncovered the C-type lectin receptors, Dectin-1 and Dectin-2, as key elements in the immune response to T. rubrum infection in a model of deep dermatophytosis. In vitro, we observed that deficiency in Dectin-1 and Dectin-2 severely compromised cytokine production by dendritic cells. In vivo, mice lacking Dectin-1 and/or Dectin-2 showed an inadequate pro-inflammatory cytokine production in response to T. rubrum infection, impairing its resolution. Strikingly, neither adaptive immunity nor IL-17 response were required for fungal clearance, highlighting innate immunity as the main checkpoint in the pathogenesis of T. rubrum infection. PMID:27189427

  7. Synergistic Activation of Innate and Adaptive Immune Mechanisms in the Treatment of Gonadotropin-Sensitive Tumors

    PubMed Central

    Bose, Anjali; Huhtaniemi, Ilpo; Singh, Om; Pal, Rahul

    2013-01-01

    Human chorionic gonadotropin (hCG) prolongs the secretion of progesterone from the corpus luteum, providing a critical stimulus for the sustenance of pregnancy. hCG (or individual subunits) is also secreted by a variety of trophoblastic and non-trophoblastic cancers and has been associated with poor prognosis. Early clinical studies have indicated merit in anti-hCG vaccination as potential immunotherapy, but anti-tumor efficacy is believed to be compromised by sub-optimal immunogenecity. In the present study, enhanced tumorigenesis was observed when SP2/O cells were subcutaneously injected in either male or female BALB/c x FVB/JβhCG/- F1 transgenic mice, establishing the growth-promoting effects of the gonadotropin for implanted tumors in vivo. The utility of Mycobacterium indicus pranii (MIP) was evaluated, as an innate anti-tumor immunomodulator as well as adjuvant in mice. MIP elicited the secretion of the inflammatory cytokines IFNγ, IL-6, IL-12p40, KC and TNFα from murine antigen presenting cells. When MIP was incorporated into an anti-hCG vaccine formulation previously employed in humans (a βhCG-TT conjugate adsorbed on alum), elevated T cell recall proliferative and cytokine responses to hCG, βhCG and TT were observed. MIP increased vaccine immunogenicity in mice of diverse genetic background (including in traditionally low-responder murine strains), leading to enhanced titres of bioneutralizing anti-hCG antibodies which exhibited cytotoxicity towards tumor cells. Individual administration of MIP and βhCG-TT to BALB/c mice subcutaneously implanted with SP2/O cells resulted in anti-tumor effects; significantly, immunization with βhCG-TT supplemented with MIP invoked synergistic benefits in terms of tumor volume, incidence and survival. The development of novel vaccine formulations stimulating both adaptive and innate anti-tumor immunity to induce collaborative beneficial effects may fill a niche in the adjunct treatment of hCG-sensitive tumors that are

  8. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children

    PubMed Central

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-01-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles–mumps–rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3–5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  9. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    PubMed

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  10. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells

    PubMed Central

    Jean-Gilles, Lucie; Braitch, Manjit; Latif, M. Liaque; Aram, Jehan; Fahey, Angela J.; Edwards, Laura J.; Robins, R. Adrian; Tanasescu, Radu; Tighe, Patrick J.; Gran, Bruno; Showe, Louise C.; Alexander, Steve P.; Chapman, Victoria; Kendall, David A.; Constantinescu, Cris S.

    2015-01-01

    Aims To investigate the regulation of cannabinoid receptors CB1 and CB2 on immune cells by proinflammatory cytokines and its potential relevance to the inflammatory neurological disease, multiple sclerosis (MS). CB1 and CB2 signalling may be anti-inflammatory and neuroprotective in neuroinflammatory diseases. Cannabinoids can suppress inflammatory cytokines but the effects of these cytokines on CB1 and CB2 expression and function are unknown. Methods Immune cells from peripheral blood were obtained from healthy volunteers and patients with MS. Expression of CB1 and CB2 mRNA in whole blood cells, peripheral blood mononuclear cells (PBMC) and T cells was determined by quantitative real time-polymerase chain reaction (qRT-PCR). Expression of CB1 and CB2 protein was determined by flow cytometry. CB1 and CB2 signaling in PBMC was determined by Western blotting for Erk1/2. Results Proinflammatory cytokines IL-1β, IL-6 and TNF-α (the latter likely NFκB-dependently) can up-regulate CB1 and CB2 on human whole blood and peripheral blood mononuclear cells (PBMC). We also demonstrate up-regulation of CB1 and CB2 and increased IL-1β, IL-6 and TNF-α mRNA in blood of MS patients compared with controls. Conclusion The levels of CB1 and CB2 can be up-regulated by inflammatory cytokines, which can explain their increase in inflammatory conditions including MS. PMID:25704169

  11. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity

    PubMed Central

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W.; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis. PMID:26317499

  12. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings

    PubMed Central

    Meintjes, Graeme; Lawn, Stephen D; Scano, Fabio; Maartens, Gary; French, Martyn A; Worodria, William; Elliott, Julian H; Murdoch, David; Wilkinson, Robert J; Seyler, Catherine; John, Laurence; van der Loeff, Maarten Schim; Reiss, Peter; Lynen, Lut; Janoff, Edward N; Gilks, Charles; Colebunders, Robert

    2009-01-01

    The immune reconstitution inflammatory syndrome (IRIS) has emerged as an important early complication of antiretroviral therapy (ART) in resource-limited settings, especially in patients with tuberculosis. However, there are no consensus case definitions for IRIS or tuberculosis-associated IRIS. Moreover, previously proposed case definitions are not readily applicable in settings where laboratory resources are limited. As a result, existing studies on tuberculosis-associated IRIS have used a variety of non-standardised general case definitions. To rectify this problem, around 100 researchers, including microbiologists, immunologists, clinicians, epidemiologists, clinical trialists, and public-health specialists from 16 countries met in Kampala, Uganda, in November, 2006. At this meeting, consensus case definitions for paradoxical tuberculosis-associated IRIS, ART-associated tuberculosis, and unmasking tuberculosis-associated IRIS were derived, which can be used in high-income and resource-limited settings. It is envisaged that these definitions could be used by clinicians and researchers in a variety of settings to promote standardisation and comparability of data. PMID:18652998

  13. Interleukin-17 mediated inflammatory responses are required for ultraviolet radiation-induced immune suppression.

    PubMed

    Li, Hui; Prasad, Ram; Katiyar, Santosh K; Yusuf, Nabiha; Elmets, Craig A; Xu, Hui

    2015-01-01

    Ultraviolet radiation (UVR) induces immunosuppression and is a major factor for development of skin cancer. Numerous efforts have been made to determine mechanisms for UVR-induced immunosuppression and to develop strategies for prevention and treatment of UVR-induced cancers. In the current study, we use IL-17 receptor (IL-17R) deficient mice to examine whether IL-17 mediated responses have a role in UVB (290-320)-induced immunosuppression of contact hypersensitivity responses. Results demonstrate that IL-17 mediated responses are required for UVB-induced immunosuppression of contact hypersensitivity responses. The systemic immune suppression and development of regulatory T cells are inhibited in UVB-treated IL-17R deficient mice compared to wild-type animals. The deficiency in IL-17R inhibits the infiltration and development of a tolerogenic myeloid cell population in UVB-treated skin, which expresses CD11b and Gr-1 and produces reactive oxygen species. We speculate that the development of the tolerogenic myeloid cells is dependent on IL-17-induced chemokines and inflammatory mediators in UVB-treated skin. The inhibition of the tolerogenic myeloid cells may be attributed to the suppression of regulatory T cells in UVR-treated IL-17R(-/-) mice. The findings may be exploited to new strategies for prevention and treatment of UVR-induced skin diseases and cancers. PMID:25250896

  14. Late onset of cryptococcal cervical lymphadenitis following immune reconstitution inflammatory syndrome in a patient with AIDS.

    PubMed

    Sethupathi, Meenakshi; Yoganathan, Kathir

    2015-01-01

    A 32-year-old woman was diagnosed HIV positive with disseminated cryptococcal infection in May 2006. Her initial CD4 was 7 cells/µL and she had a right supraclavicular nodal mass, which was biopsied and shown to be consistent with cryptococcal lymphadenitis. She was treated for disseminated cryptococcal infection and was started on antiretroviral medications subsequently. Two years later, she developed a left supraclavicular mass. Her CD4 count was 320 cells/µL and HIV RNA level was undetectable. Investigations and biopsy results were consistent with a late presentation of cryptococcal immune reconstitution inflammatory syndrome (IRIS). She was treated with oral corticosteroids and her symptoms resolved completely. IRIS is a recognised complication of HIV treatment and occurs in a significant percentage of patients within the first 3 months of starting antiretroviral therapy. This case report illustrates the importance of recognising late presentations of IRIS. It is vital to differentiate true cryptococcal lymphadenitis from IRIS-induced cryptococcal lymphadenitis. PMID:25564633

  15. Predictors of immune reconstitution inflammatory syndrome associated with Kaposi's sarcoma: a case report.

    PubMed

    Cattelan, Anna Maria; Mattiolo, Adriana; Grassi, Angela; Piano, Maria Assunta; Sasset, Lolita; Trevenzoli, Marco; Zanovello, Paola; Calabrò, Maria Luisa

    2016-01-01

    We present here a case of immune reconstitution inflammatory syndrome associated with Kaposi's sarcoma (KS-IRIS) developed in an AIDS patient two months after initiation of antiretroviral therapy (ART). Baseline characteristics of this IRIS-KS case, within a cohort of 12 naïve AIDS-KS patients, were analyzed. No statistically significant differences in CD4 cell counts, plasma HIV RNA load, KS clinical staging, human herpesvirus 8 (HHV8) antibody titers and HHV8 load in peripheral blood mononuclear cells and saliva were evidenced. HHV8 load in plasma was found to be significantly higher in the KS-IRIS patient (> 6 log10 genome equivalents/ml, p = 0.01, t-test) compared to the 11 patients with KS regression. This case highlights that measurement of HHV8 load in plasma may be useful to identify patients at risk for KS-IRIS, and that this parameter should be included in the design of larger studies to define KS-IRIS risk predictors. PMID:26848307

  16. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease

    PubMed Central

    Zelinkova, Zuzana; Bultman, Evelien; Vogelaar, Lauran; Bouziane, Cheima; Kuipers, Ernst J; van der Woude, C Janneke

    2012-01-01

    AIM: To analyze sex differences in adverse drug reactions (ADR) to the immune suppressive medication in inflammatory bowel disease (IBD) patients. METHODS: All IBD patients attending the IBD outpatient clinic of a referral hospital were identified through the electronic diagnosis registration system. The electronic medical records of IBD patients were reviewed and the files of those patients who have used immune suppressive therapy for IBD, i.e., thiopurines, methotrexate, cyclosporine, tacrolimus and anti-tumor necrosis factor agents (anti-TNF); infliximab (IFX), adalimumab (ADA) and/or certolizumab, were further analyzed. The reported ADR to immune suppressive drugs were noted. The general definition of ADR used in clinical practice comprised the occurrence of the ADR in the temporal relationship with its disappearance upon discontinuation of the medication. Patients for whom the required information on drug use and ADR was not available in the electronic medical record and patients with only one registered contact and no further follow-up at the outpatient clinic were excluded. The difference in the incidence and type of ADR between male and female IBD patients were analyzed statistically by χ2 test. RESULTS: In total, 1009 IBD patients were identified in the electronic diagnosis registration system. Out of these 1009 patients, 843 patients were eligible for further analysis. There were 386 males (46%), mean age 42 years (range: 16-87 years) with a mean duration of the disease of 14 years (range: 0-54 years); 578 patients with Crohn’s disease, 244 with ulcerative colitis and 21 with unclassified colitis. Seventy percent (586 pts) of patients used any kind of immune suppressive agents at a certain point of the disease course, the majority of the patients (546 pts, 65%) used thiopurines, 176 pts (21%) methotrexate, 46 pts (5%) cyclosporine and one patient tacrolimus. One third (240 pts, 28%) of patients were treated with anti-TNF, the majority of patients (227

  17. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases

    PubMed Central

    2014-01-01

    Insulin resistance (IR) is a general phenomenon of many physiological states, disease states, and diseases. IR has been described in diabetes mellitus, obesity, infection, sepsis, trauma, painful states such as postoperative pain and migraine, schizophrenia, major depression, chronic mental stress, and others. In arthritis, abnormalities of glucose homeostasis were described in 1920; and in 1950 combined glucose and insulin tests unmistakably demonstrated IR. The phenomenon is now described in rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, polymyalgia rheumatica, and others. In chronic inflammatory diseases, cytokine-neutralizing strategies normalize insulin sensitivity. This paper delineates that IR is either based on inflammatory factors (activation of the immune/ repair system) or on the brain (mental activation via stress axes). Due to the selfishness of the immune system and the selfishness of the brain, both can induce IR independent of each other. Consequently, the immune system can block the brain (for example, by sickness behavior) and the brain can block the immune system (for example, stress-induced immune system alterations). Based on considerations of evolutionary medicine, it is discussed that obesity per se is not a disease. Obesity-related IR depends on provoking factors from either the immune system or the brain. Chronic inflammation and/or stress axis activation are thus needed for obesity-related IR. Due to redundant pathways in stimulating IR, a simple one factor-neutralizing strategy might help in chronic inflammatory diseases (inflammation is the key), but not in obesity-related IR. The new considerations towards IR are interrelated to the published theories of IR (thrifty genotype, thrifty phenotype, and others). PMID:25608958

  18. Durable antitumor responses to CD47 blockade require adaptive immune stimulation.

    PubMed

    Sockolosky, Jonathan T; Dougan, Michael; Ingram, Jessica R; Ho, Chia Chi M; Kauke, Monique J; Almo, Steven C; Ploegh, Hidde L; Garcia, K Christopher

    2016-05-10

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47-SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  19. Generation of Individual Diversity: A Too Neglected Fundamental Property of Adaptive Immune System

    PubMed Central

    Muraille, Eric

    2014-01-01

    The fitness gains resulting from development of the adaptive immune system (AIS) during evolution are still the subject of hot debate. A large random repertoire of antigenic receptors is costly to develop and could be the source of autoimmune reactions. And yet, despite their drawbacks, AIS-like systems seem to have been independently acquired in several phyla of metazoans with very different anatomies, longevities, and lifestyles. This article is a speculative attempt to explore the selective pressures, which favored this striking convergent evolution. It is well known that the AIS enables an organism to produce a specific immune response against all natural or artificial antigenic structures. However, it is frequently neglected that this response is highly variable among individuals. In practice, each individual possesses a “private” adaptive immune repertoire. This individualization of immune defenses implies that invasion and escape immune mechanisms developed by pathogens will certainly not always be successful as the specific targets and organization of the immune response are somewhat unpredictable. In a population, where individuals display heterogeneous immune responses to infection, the probability that a pathogen is able to infect all individuals could be reduced compared to a homogeneous population. This suggests that the individual diversity of the immune repertoire is not a by-product of the AIS but of its fundamental properties and could be in part responsible for repeated selection and conservation of the AIS during metazoan evolution. The capacity of the AIS to improve the management of cooperative or parasitic symbiotic relationships at the individual level could be a secondary development due to its progressive integration into the innate immune system. This hypothesis constitutes a new scenario for AIS emergence and explains the selection of MHC restriction and MHC diversification. PMID:24860570

  20. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  1. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle

    PubMed Central

    Farney, Jaymelynn K.; Mamedova, Laman K.; Coetzee, Johann F.; KuKanich, Butch; Sordillo, Lorraine M.; Stoakes, Sara K.; Minton, J. Ernest; Hollis, Larry C.

    2013-01-01

    Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation. PMID:23678026

  2. Type B coxsackieviruses and their interactions with the innate and adaptive immune systems

    PubMed Central

    Kemball, Christopher C; Alirezaei, Mehrdad; Whitton, J Lindsay

    2011-01-01

    Coxsackieviruses are important human pathogens, and their interactions with the innate and adaptive immune systems are of particular interest. Many viruses evade some aspects of the innate response, but coxsackieviruses go a step further by actively inducing, and then exploiting, some features of the host cell response. Furthermore, while most viruses encode proteins that hinder the effector functions of adaptive immunity, coxsackieviruses and their cousins demonstrate a unique capacity to almost completely evade the attention of naive CD8+ T cells. In this article, we discuss the above phenomena, describe the current status of research in the field, and present several testable hypotheses regarding possible links between virus infection, innate immune sensing and disease. PMID:20860480

  3. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism.

    PubMed

    Fessler, Michael B

    2015-08-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  4. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  5. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    PubMed Central

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708

  6. Idiopathic Pyoderma Gangrenosum as a Novel Manifestation of the HIV Immune Reconstitution Inflammatory Syndrome: A Report of Three Cases.

    PubMed

    Nambudiri, Vinod E; Kersellius, Romona; Harp, Joanna; Maniar, J K; Maurer, Toby A

    2015-07-01

    The initiation of antiretroviral treatment for individuals with HIV may be accompanied by a paradoxical flare of underlying inflammatory diseases, the recurrence of dormant infections, or worsening of prior treated opportunistic infections, termed the immune reconstitution inflammatory syndrome (IRIS). Cutaneous manifestations of IRIS are common. Pyoderma gangrenosum is a neutrophilic dermatosis postulated to reflect disrupted innate immune regulation causing altered neutrophil chemotaxis. It is uncommonly reported in association with HIV. In this case series, we present three cases of IRIS manifesting with pyoderma gangrenosum in individuals with HIV from India and the United States to raise awareness of this previously undescribed presentation and discuss the treatment challenges in the management of these patients. PMID:26731836

  7. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection

    PubMed Central

    Lovelace, Erica S.; Polyak, Stephen J.

    2015-01-01

    Chronic viral infections like those caused by hepatitis C virus (HCV) and human immunodeficiency virus (HIV) cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA) and keeping HIV viral loads below detection with antiretroviral therapy (ART), there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK) and mechanistic target of rapamycin (mTOR), and these pathways directly influence cellular inflammatory status (such as NF-κB) and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function. PMID:26633463

  8. Genital Chlamydia trachomatis: Understanding the Roles of Innate and Adaptive Immunity in Vaccine Research

    PubMed Central

    Vasilevsky, Sam; Greub, Gilbert; Nardelli-Haefliger, Denise

    2014-01-01

    SUMMARY Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies. PMID:24696438

  9. Mechanical Strain Causes Adaptive Change in Bronchial Fibroblasts Enhancing Profibrotic and Inflammatory Responses

    PubMed Central

    Manuyakorn, Wiparat; Smart, David E.; Noto, Antonio; Bucchieri, Fabio; Haitchi, Hans Michael; Holgate, Stephen T.; Howarth, Peter H.; Davies, Donna E.

    2016-01-01

    Asthma is characterized by periodic episodes of bronchoconstriction and reversible airway obstruction; these symptoms are attributable to a number of factors including increased mass and reactivity of bronchial smooth muscle and extracellular matrix (ECM) in asthmatic airways. Literature has suggested changes in cell responses and signaling can be elicited via modulation of mechanical stress acting upon them, potentially affecting the microenvironment of the cell. In this study, we hypothesized that mechanical strain directly affects the (myo)fibroblast phenotype in asthma. Therefore, we characterized responses of bronchial fibroblasts, from 6 normal and 11 asthmatic non-smoking volunteers, exposed to cyclical mechanical strain using flexible silastic membranes. Samples were analyzed for proteoglycans, α-smooth muscle actin (αSMA), collagens I and III, matrix metalloproteinase (MMP) 2 & 9 and interleukin-8 (IL-8) by qRT-PCR, Western blot, zymography and ELISA. Mechanical strain caused a decrease in αSMA mRNA but no change in either αSMA protein or proteoglycan expression. In contrast the inflammatory mediator IL-8, MMPs and interstitial collagens were increased at both the transcriptional and protein level. The results demonstrate an adaptive response of bronchial fibroblasts to mechanical strain, irrespective of donor. The adaptation involves cytoskeletal rearrangement, matrix remodelling and inflammatory cytokine release. These results suggest that mechanical strain could contribute to disease progression in asthma by promoting inflammation and remodelling responses. PMID:27101406

  10. Effect of lysophosphatidic acid on the immune inflammatory response and the connexin 43 protein in myocardial infarction

    PubMed Central

    ZHANG, DUODUO; ZHANG, YAN; ZHAO, CHUNYAN; ZHANG, WENJIE; SHAO, GUOGUANG; ZHANG, HONG

    2016-01-01

    Lysophosphatidic acid (LPA) is an intermediate product of membrane phospholipid metabolism. Recently, LPA has gained attention for its involvement in the pathological processes of certain cardiovascular diseases. The aim of the present study was to clarify the association between the effect of LPA and the immune inflammatory response, and to investigate the effects of LPA on the protein expression levels of connexin 43 during myocardial infarction. Surface electrocardiograms of myocardial infarction rats and isolated rat heart tissue samples were obtained in order to determine the effect of LPA on the incidence of arrhythmia in rats that exhibited changes in immune status. The results demonstrated that the incidence of arrhythmia decreased when the rat immune systems were suppressed, and the incidence of arrhythmia increased when the rat immune systems were enhanced. The concentration levels of tumor necrosis factor (TNF)-α were determined by ELISA, and the results demonstrated that LPA induced T lymphocyte synthesis and TNF-α release. Using a patch-clamp technique, LPA was shown to increase the current amplitude of the voltage-dependent potassium channels (Kv) and calcium-activated potassium channels (KCa) in Jurkat T cells. The protein expression of connexin 43 (Cx43) was determined by immunohistochemical staining. The results indicated that LPA caused the degradation of Cx43 and decreased the expression of Cx43. This effect was associated with the immune status of the rats. There was a further decrease in Cx43 expression in the rats of the immune-enhanced group. To the best of our knowledge, these results provide the first evidence that LPA causes arrhythmia through the regulation of immune inflammatory cells and the decrease of Cx43 protein expression. The present study provided an experimental basis for the treatment of arrhythmia and may guide clinical care. PMID:27168781

  11. Recognition of Extracellular Bacteria by NLRs and Its Role in the Development of Adaptive Immunity

    PubMed Central

    Ferrand, Jonathan; Ferrero, Richard Louis

    2013-01-01

    Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs), whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR) family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins, and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types. PMID:24155747

  12. Adaptive immunity does not strongly suppress spontaneous tumors in a Sleeping Beauty model of cancer

    PubMed Central

    Rogers, Laura M.; Olivier, Alicia K.; Meyerholz, David K.; Dupuy, Adam J.

    2013-01-01

    The tumor immunosurveillance hypothesis describes a process by which the immune system recognizes and suppresses the growth of transformed cancer cells. A variety of epidemiological and experimental evidence supports this hypothesis. Nevertheless, there are a number of conflicting reports regarding the degree of immune protection conferred, the immune cell types responsible for protection, and the potential contributions of immunosuppressive therapies to tumor induction. The purpose of this study was to determine whether the adaptive immune system actively suppresses tumorigenesis in a Sleeping Beauty (SB) mouse model of cancer. SB transposon mutagenesis was performed in either a wild-type or immunocompromised (Rag2-null) background. Tumor latency and multiplicity were remarkably similar in both immune cohorts, suggesting that the adaptive immune system is not efficiently suppressing tumor formation in our model. Exceptions included skin tumors, which displayed increased multiplicity in wild-type animals, and leukemias, which developed with shorter latency in immune-deficient mice. Overall tumor distribution was also altered such that tumors affecting the gastrointestinal tract were more frequent and hemangiosarcomas were less frequent in immune-deficient mice compared to wild-type mice. Finally, genetic profiling of transposon-induced mutations identified significant differences in mutation prevalence for a number of genes, including Uba1. Taken together, these results indicate that B- and T-cells function to shape the genetic profile of tumors in various tumor types, despite being ineffective at clearing SB-induced tumors. This study represents the first forward genetic screen designed to examine tumor immunosurveillance mechanisms. PMID:23475219

  13. Balancing Innate Immunity and Inflammatory State via Modulation of Neutrophil Function: A Novel Strategy to Fight Sepsis

    PubMed Central

    Fang, Haoshu; Jiang, Wei; Cheng, Jin; Lu, Yan; Liu, Anding; Kan, Lixin; Dahmen, Uta

    2015-01-01

    Sepsis and SIRS (systemic inflammatory response syndrome) belong to a severe disease complex characterized by infection and/or a whole-body inflammatory state. There is a growing body of evidence that neutrophils are actively involved in sepsis and are responsible for both release of cytokines and phagocytosis of pathogens. The neutrophil level is mainly regulated by G-CSF, a cytokine and drug, which is widely used in the septic patient with neutropenia. This review will briefly summarize the role of neutrophils and the therapeutic effect of G-CSF in sepsis. We further suggest that targeting neutrophil function to modulate the balance between innate immunity and inflammatory injury could be a worthwhile therapeutic strategy for sepsis. PMID:26798659

  14. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis.

    PubMed

    Fu, Yanxia; Zhou, Hailing; Wang, Mengqi; Cen, Juren; Wei, Qun

    2014-05-01

    Isogarcinol is a natural compound that we extracted from Garcinia mangostana L., and we were the first to report that it is a new immunosuppressant. In the present study, we investigated the immune regulation and anti-inflammatory effects of isogarcinol on collagen-induced arthritis (CIA) and explored its potential mechanism in the treatment of rheumatoid arthritis. The oral administration of isogarcinol significantly reduced clinical scores, alleviated cartilage and bone erosion, and reduced the levels of serum inflammatory cytokines in CIA mice. Isogarcinol inhibited xylene-induced mouse ear edema in vivo. In vitro, isogarcinol decreased iNOS and COX-2 mRNA expression and NO content by inhibiting NF-κB expression. Furthermore, isogarcinol decreased the activity of NFAT and inhibited IL-2 expression. The mechanism of action of isogarcinol is associated with down-regulation of both autoimmune and inflammatory reactions. PMID:24738849

  15. Thoracic manifestations of paradoxical immune reconstitution inflammatory syndrome during or after antituberculous therapy in HIV-negative patients.

    PubMed

    Pornsuriyasak, Prapaporn; Suwatanapongched, Thitiporn

    2015-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is a consequence of exaggerated and dysregulated host's inflammatory response to invading microorganism, leading to uncontrolled inflammatory reactions. IRIS associated with tuberculosis (TB) is well recognized among human immunodeficiency virus (HIV)-infected patients receiving highly active antiretroviral therapy, but it is less common among HIV-negative patients. IRIS can manifest as a paradoxical worsening or recurring of preexisting tuberculous lesions or development of new lesions despite successful antituberculous treatment. Hence, the condition might be misdiagnosed as superimposed infections, treatment failure, or relapse of TB. This pictorial essay reviewed diagnostic criteria and various thoracic manifestations of the paradoxical form of TB-associated IRIS (TB-IRIS) that might aid in early recognition of this clinical entity among HIV-negative patients. The treatment and outcomes of TB-IRIS were also discussed. PMID:25698091

  16. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    SciTech Connect

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  17. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  18. Sublingual vaccination induces mucosal and systemic adaptive immunity for protection against lung tumor challenge.

    PubMed

    Singh, Shailbala; Yang, Guojun; Schluns, Kimberly S; Anthony, Scott M; Sastry, K Jagannadha

    2014-01-01

    Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA) metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer) for harnessing the adjuvant potential of natural killer T (NKT) cells, which effectively bridge innate and adaptive arms of the immune system. The protective efficacy of immunization with OVA plus aGalCer was antigen-specific as immunized mice challenged with parental B16 tumors lacking OVA expression were not protected. Multiple sublingual immunizations in the presence, but not in the absence of aGalCer, resulted in repeated activation of NKT cells in the draining lymph nodes, spleens, and lungs of immunized animals concurrent with progressively increasing OVA-specific CD8+ T cell responses as well as serum IgG and vaginal IgA levels. Furthermore, sublingual administration of the antigen only in the presence of the aGalCer adjuvant effectively boosted the OVA-specific immune responses. These results support potential clinical utility of sublingual route of vaccination with aGalCer-for prevention of pulmonary metastases. PMID:24599269

  19. Effects of Immunosuppressants on Immune Response to Vaccine in Inflammatory Bowel Disease

    PubMed Central

    Cao, Yuan; Zhao, Di; Xu, An-Tao; Shen, Jun; Ran, Zhi-Hua

    2015-01-01

    Objective: To evaluate the response rate to vaccination in different treatment groups (nonimmunosuppressants and immunosuppressants). Data Sources: We completed an online systematic search using PubMed to identify all articles published in English between January 1990 and December 2013 assessing the effect of the response rate to vaccination in different treatment groups (with and without immunomodulators). The following terms were used: “inflammatory bowel disease (IBD)” OR “Crohn's disease” OR “ulcerative colitis” AND (“vaccination” OR “vaccine”) AND (“corticosteroids” OR “mercaptopurine” OR “azathioprine” OR “methotrexate [MTX]”) AND “immunomodulators.” Study Selection: The inclusion criteria of articles were that the studies: (1) Randomized controlled trials which included patients with a diagnosis of IBD (established by standard clinical, radiographic, endoscopic, and histologic criteria); (2) exposed patients received immunomodulators for maintenance (weight-appropriate doses of 6-mercaptopurine/azathioprine or within 3 months of stopping, 15 mg or more MTX per week or within 3 months of stopping; (3) exposed patients received nonimmunomodulators (no therapy, antibiotics only, mesalazine only, biological agent only such as infliximab, adalimumab, certolizumab or natalizumab or within 3 months of stopping one of these agents). The exclusion criteria of articles were that the studies: (1) History of hepatitis B virus (HBV), influenza or streptococcus pneumoniae infection; (2) patients who had previously been vaccinated against HBV, influenza or streptococcus pneumoniae; (3) any medical condition known to cause immunosuppression (e.g. chronic renal failure and human immunodeficiency virus infection); (4) individuals with positive hepatitis markers or liver cirrhosis; (5) patients with a known allergy to eggs or other components of the vaccines and (6) pregnancy. Results: Patients treated with immunomodulators were

  20. Cytotoxic mediators in paradoxical HIV-tuberculosis immune reconstitution inflammatory syndrome.

    PubMed

    Wilkinson, Katalin A; Walker, Naomi F; Meintjes, Graeme; Deffur, Armin; Nicol, Mark P; Skolimowska, Keira H; Matthews, Kerryn; Tadokera, Rebecca; Seldon, Ronnett; Maartens, Gary; Rangaka, Molebogeng X; Besra, Gurdyal S; Wilkinson, Robert J

    2015-02-15

    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) frequently complicates combined antiretroviral therapy and antituberculosis therapy in HIV-1-coinfected tuberculosis patients. The immunopathological mechanisms underlying TB-IRIS are incompletely defined, and improved understanding is required to derive new treatments and to reduce associated morbidity and mortality. We performed longitudinal and cross-sectional analyses of human PBMCs from paradoxical TB-IRIS patients and non-IRIS controls (HIV-TB-coinfected patients commencing antiretroviral therapy who did not develop TB-IRIS). Freshly isolated PBMC stimulated with heat-killed Mycobacterium tuberculosis H37Rv (hkH37Rv) were used for IFN-γ ELISPOT and RNA extraction. Stored RNA was used for microarray and RT-PCR, whereas corresponding stored culture supernatants were used for ELISA. Stored PBMC were used for perforin and granzyme B ELISPOT and flow cytometry. There were significantly increased IFN-γ responses to hkH37Rv in TB-IRIS, compared with non-IRIS PBMC (p = 0.035). Microarray analysis of hkH37Rv-stimulated PBMC indicated that perforin 1 was the most significantly upregulated gene, with granzyme B among the top five (log2 fold difference 3.587 and 2.828, respectively), in TB-IRIS. Downstream experiments using RT-PCR, ELISA, and ELISPOT confirmed the increased expression and secretion of perforin and granzyme B. Moreover, granzyme B secretion reduced in PBMC from TB-IRIS patients during corticosteroid treatment. Invariant NKT cell (CD3(+)Vα24(+)) proportions were higher in TB-IRIS patients (p = 0.004) and were a source of perforin. Our data implicate the granule exocytosis pathway in TB-IRIS pathophysiology. Further understanding of the immunopathogenesis of this condition will facilitate development of specific diagnostic and improved therapeutic options. PMID:25589068

  1. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints

    PubMed Central

    Koyama, Shohei; Akbay, Esra A.; Li, Yvonne Y.; Herter-Sprie, Grit S.; Buczkowski, Kevin A.; Richards, William G.; Gandhi, Leena; Redig, Amanda J.; Rodig, Scott J.; Asahina, Hajime; Jones, Robert E.; Kulkarni, Meghana M.; Kuraguchi, Mari; Palakurthi, Sangeetha; Fecci, Peter E.; Johnson, Bruce E.; Janne, Pasi A.; Engelman, Jeffrey A.; Gangadharan, Sidharta P.; Costa, Daniel B.; Freeman, Gordon J.; Bueno, Raphael; Hodi, F. Stephen; Dranoff, Glenn; Wong, Kwok-Kin; Hammerman, Peter S.

    2016-01-01

    Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade. PMID:26883990

  2. Synthesizing within-host and population-level selective pressures on viral populations: the impact of adaptive immunity on viral immune escape

    PubMed Central

    Volkov, Igor; Pepin, Kim M.; Lloyd-Smith, James O.; Banavar, Jayanth R.; Grenfell, Bryan T.

    2010-01-01

    The evolution of viruses to escape prevailing host immunity involves selection at multiple integrative scales, from within-host viral and immune kinetics to the host population level. In order to understand how viral immune escape occurs, we develop an analytical framework that links the dynamical nature of immunity and viral variation across these scales. Our epidemiological model incorporates within-host viral evolutionary dynamics for a virus that causes acute infections (e.g. influenza and norovirus) with changes in host immunity in response to genetic changes in the virus population. We use a deterministic description of the within-host replication dynamics of the virus, the pool of susceptible host cells and the host adaptive immune response. We find that viral immune escape is most effective at intermediate values of immune strength. At very low levels of immunity, selection is too weak to drive immune escape in recovered hosts, while very high levels of immunity impose such strong selection that viral subpopulations go extinct before acquiring enough genetic diversity to escape host immunity. This result echoes the predictions of simpler models, but our formulation allows us to dissect the combination of within-host and transmission-level processes that drive immune escape. PMID:20335194

  3. GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro

    PubMed Central

    2010-01-01

    Background This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Results Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010. Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro. The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2. Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA

  4. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    PubMed

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug. PMID:26730790

  5. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis.

    PubMed

    Jarvis, Joseph N; Meintjes, Graeme; Bicanic, Tihana; Buffa, Viviana; Hogan, Louise; Mo, Stephanie; Tomlinson, Gillian; Kropf, Pascale; Noursadeghi, Mahdad; Harrison, Thomas S

    2015-04-01

    Understanding the host immune response during cryptococcal meningitis (CM) is of critical importance for the development of immunomodulatory therapies. We profiled the cerebrospinal fluid (CSF) immune-response in ninety patients with HIV-associated CM, and examined associations between immune phenotype and clinical outcome. CSF cytokine, chemokine, and macrophage activation marker concentrations were assayed at disease presentation, and associations between these parameters and microbiological and clinical outcomes were examined using principal component analysis (PCA). PCA demonstrated a co-correlated CSF cytokine and chemokine response consisting primarily of Th1, Th2, and Th17-type cytokines. The presence of this CSF cytokine response was associated with evidence of increased macrophage activation, more rapid clearance of Cryptococci from CSF, and survival at 2 weeks. The key components of this protective immune-response were interleukin (IL)-6 and interferon-γ, IL-4, IL-10 and IL-17 levels also made a modest positive contribution to the PC1 score. A second component of co-correlated chemokines was identified by PCA, consisting primarily of monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). High CSF chemokine concentrations were associated with low peripheral CD4 cell counts and CSF lymphocyte counts and were predictive of immune reconstitution inflammatory syndrome (IRIS). In conclusion CSF cytokine and chemokine profiles predict risk of early mortality and IRIS in HIV-associated CM. We speculate that the presence of even minimal Cryptococcus-specific Th1-type CD4+ T-cell responses lead to increased recruitment of circulating lymphocytes and monocytes into the central nervous system (CNS), more effective activation of CNS macrophages and microglial cells, and faster organism clearance; while high CNS chemokine levels may predispose to over recruitment or inappropriate recruitment of immune cells to the CNS and IRIS

  6. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  7. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning. PMID:26581919

  8. Immunomodulatory impression of anti and pro-inflammatory cytokines in relation to humoral immunity in human scabies.

    PubMed

    Abd El-Aal, Amany Ahmed; Hassan, Marwa Adel; Gawdat, Heba Ismail; Ali, Meran Ahmed; Barakat, Manal

    2016-06-01

    The chief manifestations of scabies are mediated through hypersensitivity-like reactions and immune responses which are so far not well understood and remain poorly characterized. The aim of this study is to investigate the role of inflammatory cytokines in relation to humoral immunity in patients with scabies. Serum levels of total IgE, specific IgG, IL-10, IL-6, INF-γ, and TNF-α were investigated in a cross-sectional study including 37 patients with manifestations suggestive of scabies and serologically positive for anti-Sarcoptes IgG, in addition to 20 healthy controls. The median value of total IgE was 209 (range, 17-1219 IU/mL), reflecting its wide range within cases. IL-10 showed significant higher levels (287 ±: 139) in cases than in controls (17.4 ± 11.32). A positive correlation was reported between total IgE and severity of manifestations (r = 0.429, P <0.005). A significant positive correlation was observed between total IgE and both IgG and IL-6. On the contrary, a negative correlation was recorded between IL-6 and TNF-α which makes us suggested anti-inflammatory rather than pro-inflammatory effect of IL-6. Moreover, a negative correlation was noticed between the anti-inflammatory cytokine IL-10 and severity of manifestations, specific IgG, total IgE, and INF-γ. Therefore, the current study theorized a regulatory role of IL-10 in inflammatory responses of scabietic patients suggesting further future analysis of its therapeutic potential. PMID:26813861

  9. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways.

    PubMed

    Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael

    2016-04-01

    The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression. PMID:26307347

  10. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  11. Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators.

    PubMed

    Oghumu, Steve; Knobloch, Thomas J; Terrazas, Cesar; Varikuti, Sanjay; Ahn-Jarvis, Jennifer; Bollinger, Claire E; Iwenofu, Hans; Weghorst, Christopher M; Satoskar, Abhay R

    2016-09-15

    Oral cancer kills about 1 person every hour each day in the United States and is the sixth most prevalent cancer worldwide. The pro-inflammatory cytokine 'macrophage migration inhibitory factor' (MIF) has been shown to be expressed in oral cancer patients, yet its precise role in oral carcinogenesis is not clear. In this study, we examined the impact of global Mif deletion on the cellular and molecular process occurring during oral carcinogenesis using a well-established mouse model of oral cancer with the carcinogen 4-nitroquinoline-1-oxide (4NQO). C57BL/6 Wild-type (WT) and Mif knock-out mice were administered with 4NQO in drinking water for 16 weeks, then regular drinking water for 8 weeks. Mif knock-out mice displayed fewer oral tumor incidence and multiplicity, accompanied by a significant reduction in the expression of pro-inflammatory cytokines Il-1β, Tnf-α, chemokines Cxcl1, Cxcl6 and Ccl3 and other molecular biomarkers of oral carcinogenesis Mmp1 and Ptgs2. Further, systemic accumulation of myeloid-derived tumor promoting immune cells was inhibited in Mif knock-out mice. Our results demonstrate that genetic Mif deletion reduces the incidence and severity of oral carcinogenesis, by inhibiting the expression of chronic pro-inflammatory immune mediators. Thus, targeting MIF is a promising strategy for the prevention or therapy of oral cancer. PMID:27164411

  12. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails. PMID:23439366

  13. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems.

    PubMed

    Geenen, V

    2012-01-01

    The immune system may be considered as a sensory organ able to respond to different kinds of danger signals that are not detected by nervous cells. The immune response is not autonomous but also regulated by the central and peripheral nervous system, as well as by neuropeptides, vitamin D and neuroendocrine axes such as the corticotrope, somatotrope, thyrotrope and gonadotrope axes. During evolution, the thymus emerged concomitantly with recombinase-dependent adaptive immunity as an'immune brain' or a'master class' highly specialized in the orchestration of central immunological self-tolerance. This was an absolute requirement for survival of species because of the high risk of autotoxicity inherent to the stochastic generation of extreme diversity characterizing this novel adaptive type of immune defenses against non-self. The thymus now appears to be an obligatory intersection for the integrated evolution of the major systems of cell-to-cell signalling, the nervous, endocrine and immune systems. The presentation of many self-peptides by thymic major histocompatibility complex (MHC) proteins is controlled by the autoimmune regulator (AIRE) gene/protein and is responsible for the clonal deletion of self-reactive T cells. In the same time, by still unexplained mechanisms, MHC presentation of the same self-peptides in the thymus promotes the generation of self-specific FOXP3+ CD4+CD25+ natural regulatory T cells (nTreg) that are able to inhibit in periphery self-reactive CD4+ and CD8+ T cells having escaped the thymus censorship. Moreover, a thymus dysfunction is more and more established as the primary event driving the development of organ-specific autoimmunity, which is the tribute paid, mainly by mankind, for the preservation of self against non-self. Our novel knowledge about thymus physiology and physiopathology already serves as the basis for the development of various innovative and efficient immunomodulating strategies in pharmacology. PMID:22897070

  14. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis--a Fairy Tale No More.

    PubMed

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that lymphoid neo-genesis takes place in the adventitia of atherosclerotic vessels, leading to the formation of tertiary lymphoid organs where an adaptive immune response can be mounted. Whereas the mechanisms orchestrating the formation of these organs are becoming better understood, their impact on atherosclerosis progression remains unclear. Several potential therapeutic strategies against atherosclerosis, such as protective vaccination against atherosclerosis antigens or inhibiting the activation of proatherogenic B cells, have been proposed based on our improving knowledge of the role of the immune system in atherosclerosis. These strategies have shown success in preclinical studies, giving hope that they will lead to clinical applications. PMID:26605642

  15. Brain development and the immune system: an introduction to inflammatory and infectious diseases of the child's brain.

    PubMed

    Marc, Tardieu

    2013-01-01

    A short overview of the specificities of immune response within the brain is given as an introduction to subsequent chapters on infectious and inflammatory diseases of the child's brain. The blood-brain barrier starts developing during vascular proliferation of the developing brain during neurogenesis but maturation is not completed until several weeks after birth, and varies in different parts of the brain. The development of postcapillary venules in which cell recruitment occurs seems to be completed at birth. Brain macrophages are detected in brain tissue from the 8th to 12th week of gestation and then exert an important role during neuroblast selection and differentiation, as astrocytes and macrophages acquire the ability to secrete soluble substances. From the third trimester, the fetal brain is able to generate an inflammatory reaction and toll-like receptors can be detected on the surface of fetal neurons and glial cells. Innate immunity maturation occurs within weeks after birth. Although neonates lack preexisting immunological memory and have a small number of immune cells in peripheral lymphoid tissues, they are competent to develop a mature T-cell response, they have a strong CD8 cytotoxic function, and dendritic cells are fully competent. PMID:23622314

  16. Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs.

    PubMed

    Ramos, Irene; Fernandez-Sesma, Ana

    2015-01-01

    Infection by influenza A viruses (IAV) is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV are consequences of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models in reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e., NF kappa B transcription factors) and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies. PMID:26257731

  17. Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs

    PubMed Central

    Ramos, Irene; Fernandez-Sesma, Ana

    2015-01-01

    Infection by influenza A viruses (IAV) is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV are consequences of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models in reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e., NF kappa B transcription factors) and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies. PMID:26257731

  18. Effects of stress associated with weaning on the adaptive immune system in pigs.

    PubMed

    Kick, A R; Tompkins, M B; Flowers, W L; Whisnant, C S; Almond, G W

    2012-02-01

    This study was designed to investigate the effects of weaning age on specific components of the adaptive immune system in pigs. Twenty-three crossbred pigs were randomly assigned to 1 of 3 treatments: weaning at 14 (14D, n = 8), 21 (21D, n = 7), or 28 (28D, n = 8) d of age. Peripheral blood samples, obtained when pigs were 13, 15, 20, 22, 27, 29, and 35 d of age, were analyzed for peripheral blood cell percentages and concentrations of neutrophils, lymphocytes, T cell subsets, mature B cells, and plasma cortisol concentrations. For each of the 3 groups, weaning increased plasma cortisol concentrations (P < 0.001) and reduced BW percentage change (P < 0.017). Lymphocyte concentrations displayed a treatment effect for the 14D (P = 0.074) and 28D (P = 0.014) groups. Albeit inconsistent, lymphocyte concentrations were less in weaned pigs on the day after weaning than in pigs remaining on the sow or weaned at a younger age. Specifically, mature B cells (CD21(+)) and CD4(+)CD8(+) cells decreased (P < 0.05) after weaning at 28 d of age. Other differences occurred among treatments; however, the differences apparently were not associated with weaning. Based upon the immunological measures used in the present study, there was not an explicit benefit to the adaptive immune system for any weaning age. Early weaning did not negatively affect the adaptive immunological competence of pigs as determined by changes in populations of immune cells. PMID:21926316

  19. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis

    PubMed Central

    Khounlotham, Manirath; Kim, Wooki; Peatman, Eric; Nava, Porfirio; Medina-Contreras, Oscar; Addis, Caroline; Koch, Stefan; Fournier, Benedicte; Nusrat, Asma; Denning, Timothy L.; Parkos, Charles A.

    2012-01-01

    SUMMARY Mice lacking Junctional Adhesion Molecule A (JAM-A, encoded by F11r) exhibit enhanced intestinal epithelial permeability, bacterial translocation, and elevated colonic lymphocyte numbers, yet do not develop colitis. To investigate the contribution of adaptive immune compensation in response to increased intestinal epithelial permeability, we examined the susceptibility of F11r-/-Rag1-/- mice to acute colitis. Although negligible contributions of adaptive immunity in F11r-/-Rag1-/- mice were observed, F11r-/-Rag1-/- mice exhibited increased microflora-dependent colitis. Elimination of T cell subsets and cytokine analyses revealed a protective role for TGF-β-producing CD4+ T cells in F11r-/- mice. Additionally, loss of JAM-A resulted in elevated mucosal and serum IgA that was dependent upon CD4+ T cells and TGF-β. Absence of IgA in F11r+/+Igha-/- mice did not affect disease whereas F11r-/-Igha-/- mice displayed markedly increased susceptibility to acute injury induced colitis. These data establish a role for adaptive immune mediated protection from acute colitis under conditions of intestinal epithelial barrier compromise. PMID:22981539

  20. Anatomically restricted synergistic anti-viral activities of innate and adaptive immune cells in the skin

    PubMed Central

    Hickman, Heather D.; Reynoso, Glennys V.; Ngudiankama, Barbara F.; Rubin, Erica J.; Magadán, Javier G.; Cush, Stephanie S.; Gibbs, James; Molon, Barbara; Bronte, Vincenzo; Bennink, Jack R.; Yewdell, Jonathan W.

    2013-01-01

    SUMMARY Despite extensive ex vivo investigation, the spatiotemporal organization of immune cells interacting with virus-infected cells in tissues remains uncertain. To address this, we used intravital multiphoton microscopy to visualize immune cell interactions with virus-infected cells following epicutaneous vaccinia virus (VV) infection of mice. VV infects keratinocytes in epidermal foci, and numerous migratory dermal inflammatory monocytes outlying the foci. We observed Ly6G+ innate immune cells infiltrating and controlling foci, while CD8+ T cells remained on the periphery killing infected monocytes. Most antigen-specific CD8+ T cells in the skin did not interact with virus-infected cells. Blocking the generation of reactive nitrogen species relocated CD8+ T cells into foci, modestly reducing viral titers. Depletion of Ly6G+ and CD8+ cells dramatically increased viral titers, consistent with their synergistic but spatially segregated viral clearance activities. These findings highlight previously unappreciated differences in the anatomic specialization of antiviral immune cell subsets. PMID:23414756

  1. Powerful Complex Immunoadjuvant Based on Synergistic Effect of Combined TLR4 and NOD2 Activation Significantly Enhances Magnitude of Humoral and Cellular Adaptive Immune Responses

    PubMed Central

    Dzharullaeva, Alina S.; Tukhvatulina, Natalia M.; Shcheblyakov, Dmitry V.; Shmarov, Maxim M.; Dolzhikova, Inna V.; Stanhope-Baker, Patricia; Naroditsky, Boris S.; Gudkov, Andrei V.; Logunov, Denis Y.; Gintsburg, Alexander L.

    2016-01-01

    Binding of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) activates innate immune responses and contributes to development of adaptive immunity. Simultaneous stimulation of different types of PRRs can have synergistic immunostimulatory effects resulting in enhanced production of molecules that mediate innate immunity such as inflammatory cytokines, antimicrobial peptides, etc. Here, we evaluated the impact of combined stimulation of PRRs from different families on adaptive immunity by generating alum-based vaccine formulations with ovalbumin as a model antigen and the Toll-like receptor 4 (TLR4) agonist MPLA and the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist MDP adsorbed individually or together on the alum-ovalbumin particles. Multiple in vitro and in vivo readouts of immune system activation all showed that while individual PRR agonists increased the immunogenicity of vaccines compared to alum alone, the combination of both PRR agonists was significantly more effective. Combined stimulation of TLR4 and NOD2 results in a stronger and broader transcriptional response in THP-1 cells compared to individual PRR stimulation. Immunostimulatory composition containing both PRR agonists (MPLA and MDP) in the context of the alum-based ovalbumin vaccine also enhanced uptake of vaccine particles by bone marrow derived dendritic cells (BMDCs) and promoted maturation (up-regulation of expression of CD80, CD86, MHCII) and activation (production of cytokines) of BMDCs. Finally, immunization of mice with vaccine particles containing both PRR agonists resulted in enhanced cellular immunity as indicated by increased proliferation and activation (IFN-γ production) of splenic CD4+ and CD8+ T cells following in vitro restimulation with ovalbumin and enhanced humoral immunity as indicated by higher titers of ovalbumin-specific IgG antibodies. These results indicate that combined stimulation of TLR4 and NOD2

  2. Use of serum C-reactive protein as an early marker of inflammatory activity in canine type II immune-mediated polyarthritis: case report

    PubMed Central

    Kjelgaard-Hansen, Mads; Jensen, Asger Lundorff; Houser, Geoffrey A; Jessen, Lisbeth Rem; Kristensen, Annemarie T

    2006-01-01

    Background Monitoring systemic inflammatory activity during steroid therapy of canine immune-mediated polyarthritis (IMPA) is difficult and mainly relies on clinical signs. Case presentation Canine serum C-reactive protein (CRP) was measured serially and blinded during a 27-week follow-up period of a case of Anaplasma phagocytophilia induced type II immune-mediated polyarthritis. Conclusion WBC was, as expected, observed not to reflect the inflammatory activity during steroid treatment in a clinical useful manner, whereas, CRP is suggested a valuable unbiased marker of inflammatory activity during steroid treatment in this case. PMID:16987405

  3. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  4. Apical Organelle Secretion by Toxoplasma Controls Innate and Adaptive Immunity and Mediates Long-Term Protection.

    PubMed

    Sloves, Pierre-Julien; Mouveaux, Thomas; Ait-Yahia, Saliha; Vorng, Han; Everaere, Laetitia; Sangare, Lamba Omar; Tsicopoulos, Anne; Tomavo, Stanislas

    2015-11-01

    Apicomplexan parasites have unique apical rhoptry and microneme secretory organelles that are crucial for host infection, although their role in protection against Toxoplasma gondii infection is not thoroughly understood. Here, we report a novel function of the endolysosomal T. gondii sortilin-like receptor (TgSORTLR), which mediates trafficking to functional apical organelles and their subsequent secretion of virulence factors that are critical to the induction of sterile immunity against parasite reinfection. We further demonstrate that the T. gondii armadillo repeats-only protein (TgARO) mutant, which is deficient only in apical secretion of rhoptries, is also critical in mounting protective immunity. The lack of TgSORTLR and TgARO proteins completely inhibited T-helper 1-dependent adaptive immunity and compromised the function of natural killer T-cell-mediated innate immunity. Our findings reveal an essential role for apical secretion in promoting sterile protection against T. gondii and provide strong evidence for rhoptry-regulated discharge of antigens as a key effector for inducing protective immunity. PMID:25910629

  5. Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders.

    PubMed

    Antonioli, Luca; Colucci, Rocchina; La Motta, Concettina; Tuccori, Marco; Awwad, Oriana; Da Settimo, Federico; Blandizzi, Corrado; Fornai, Matteo

    2012-06-01

    The adenosine pathway is a powerful evolutionarily selected mechanism aimed at a fine modulation of inflammatory responses and protection of tissues from injuries. Adenosine exerts its modulatory effects via interaction with G protein-coupled receptors, designated as A(1), A(2A), A(2B) and A(3). In this regard, extracellular adenosine concentrations are critical in determining its ability of regulating several biological functions. The levels achieved by adenosine in close proximity of its receptors are strictly regulated by a variety of dynamic mechanisms, including intracellular and extracellular biosynthesis, transport and metabolism, based on tissue energy status. In this context, the catabolic enzyme adenosine deaminase (ADA) represents a critical checkpoint in the regulation of extracellular adenosine levels and, consequently, in the control of receptor stimulation, thus playing a pivotal role in the modulation of purinergic responses to several pathophysiological events, such as chronic pulmonary diseases, rheumatoid arthritis, inflammatory bowel diseases and sepsis. This article reviews current data on the role played by ADA in the regulation of immune system activity through its modulation of adenosine pathways. Particular attention has been paid to the involvement of ADA in the pathophysiology of relevant inflammatory diseases. In addition, the interest in designing and developing novel ADA inhibitors, as new tools potentially useful for the therapeutic management of inflammatory disorders, has been discussed. PMID:22250650

  6. Fulminant inflammatory leukoencephalopathy associated with HAART-induced immune restoration in AIDS-related progressive multifocal leukoencephalopathy.

    PubMed

    Vendrely, Aurélie; Bienvenu, Boris; Gasnault, Jacques; Thiebault, Jean Baptiste; Salmon, Dominique; Gray, Françoise

    2005-04-01

    HAART-induced immune restoration is beneficial for patients with AIDS-related progressive multifocal leukoencephalopathy (PML). However, in rare instances, an immune-reconstitution inflammatory syndrome (IRIS) may cause paradoxical clinical deterioration. We report the neuropathological study of an AIDS patient who presented with progressive cognitive deterioration; CD4(+) count was 117 and the HIV viral load >10(4); imaging showed non-enhancing lesions consistent with PML. Following initiation of HAART, CD4(+) was 300 and HIV viral load <10(3), but his neurological symptoms continued to deteriorate. Imaging revealed an increase in the size and number of lesions and enhancement of all the lesions. A stereotactic biopsy showed severe inflammatory and demyelinating lesions with marked infiltration by macrophages and T lymphocytes in the absence of a detectable infectious agent. Despite high doses of steroids, the patient died 3 months after admission. Autopsy showed two types of lesions: (1) active inflammatory PML changes with abundant JC virus, and intraparenchymal and perivascular infiltration by T lymphocytes, and (2) acute perivenous leukoencephalitis devoid of JC virus. Most lymphocytes were CD8(+) lymphocytes; CD4(+) lymphocytes were virtually absent. Two pathological reactions were associated with the paradoxical clinical deterioration related to dysregulation of the immune response characteristic of IRIS in PML: (1) an accentuation of JCV infection, and (2) a nonspecific acute perivenous leukoencephalitis. We suggest that both these types of lesions are due to an imbalance of CD8(+)/CD4(+) T cells, with massive infiltration of the cerebral parenchyma by CD8(+) cytotoxic T lymphocytes in the absence of sufficient CD4(+) response. Better understanding of the mechanisms of the IRIS may enable prevention or cure of this severe, sometimes fatal complication of HAART. PMID:15739098

  7. Th2 differentiation in distinct lymph nodes influences the site of mucosal Th2 immune-inflammatory responses.

    PubMed

    Alvarez, David; Arkinson, Janine L; Sun, Jiangfeng; Fattouh, Ramzi; Walker, Tina; Jordana, Manel

    2007-09-01

    Allergic individuals rarely present with concurrent multiple-organ disease but, rather, with manifestations that privilege a specific site such as the lung, skin, or gastrointestinal tract. Whether the site of allergic sensitization influences the localization of Th2 immune-inflammatory responses and, ultimately, the organ-specific expression of disease, remains to be determined. In this study, we investigated whether both the site of initial Ag exposure and concomitant Th2 differentiation in specific lymph nodes (LNs) privileges Th2 memory responses to mucosal and nonmucosal sites, and whether this restriction is associated with a differential expression in tissue-specific homing molecules. In mice exposed to Ag (OVA) via the peritoneum, lung, or skin, we examined several local and distal LNs to determine the site of Ag-specific proliferation and Th2 differentiation. Whereas respiratory and cutaneous Ag exposure led to Ag-specific proliferation and Th2 differentiation exclusively in lung- and skin-draining LNs, respectively, Ag delivery to the peritoneum evoked responses in gut-associated, as well as distal thoracic, LNs. Importantly, only mice that underwent Th2 differentiation in thoracic- or gut-associated LNs mounted Th2 immune-inflammatory responses upon respiratory or gastric Ag challenge, respectively, whereas cutaneous Th2 recall responses were evoked irrespective of the site of initial sensitization. In addition, we observed the differential expression of gut homing molecules (CCR9, alpha(4), beta(7)) in gut-associated LNs and, unexpectedly, a universal induction of skin-related homing molecules (CCR4, CCR10) in all LNs. These data suggest that the site of initial Th2 differentiation and differential homing molecule expression restricts Th2 immune-inflammatory responses to mucosal, but not cutaneous, tissues. PMID:17709545

  8. Complex Adaptive Immunity to Enteric Fevers in Humans: Lessons Learned and the Path Forward

    PubMed Central

    Sztein, Marcelo B.; Salerno-Goncalves, Rosangela; McArthur, Monica A.

    2014-01-01

    Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, and S. Paratyphi A and B, causative agents of paratyphoid fever, are major public health threats throughout the world. Although two licensed typhoid vaccines are currently available, they are only moderately protective and immunogenic necessitating the development of novel vaccines. A major obstacle in the development of improved typhoid, as well as paratyphoid vaccines is the lack of known immunological correlates of protection in humans. Considerable progress has been made in recent years in understanding the complex adaptive host responses against S. Typhi. Although the induction of S. Typhi-specific antibodies (including their functional properties) and memory B cells, as well as their cross-reactivity with S. Paratyphi A and S. Paratyphi B has been shown, the role of humoral immunity in protection remains undefined. Cell mediated immunity (CMI) is likely to play a dominant role in protection against enteric fever pathogens. Detailed measurements of CMI performed in volunteers immunized with attenuated strains of S. Typhi have shown, among others, the induction of lymphoproliferation, multifunctional type 1 cytokine production, and CD8+ cytotoxic T-cell responses. In addition to systemic responses, the local microenvironment of the gut is likely to be of paramount importance in protection from these infections. In this review, we will critically assess current knowledge regarding the role of CMI and humoral immunity following natural S. Typhi and S. Paratyphi infections, experimental challenge, and immunization in humans. We will also address recent advances regarding cross-talk between the host’s gut microbiota and immunization with attenuated S. Typhi, mechanisms of systemic immune responses, and the homing potential of S. Typhi-specific B- and T-cells to the gut and other tissues. PMID:25386175

  9. MAP of F1 and V antigens from Yersinia pestis astride innate and adaptive immune response.

    PubMed

    Rai, Reeta; Das, Baijnath; Choudhary, Nageshwar; Talukdar, Ayantika; Rao, Donthamsetty Nageswara

    2015-10-01

    Yersinia pestis, a causative agent of plague, has a plethora of armors to fight against major components of innate immunity and survive within host cells. Dendritic cells and macrophages are important antigen presenting cells for effective immune response. This report is focused on the changes in DC activation and TLR2 and TLR4 expression on macrophages induced by MAP of F1 and V antigens of Y. pestis. F1 and V MAPs bear potential synthetic T and B cell epitopes from F1 and V protein respectively. We evaluated these parameters in DC's isolated from spleen and lamina propria and macrophages isolated from peritoneal lavage of mice after intranasal immunization. F1 MAP and V MAP significantly increased the expression of CD80 and CD86 on CD11c(+) dendritic cells isolated from spleen and lamina propria as well as intracellular IL-12 levels. Similarly, in macrophages derived from peritoneal cavity, the above formulation enhanced TLR2 and TLR4 expression. Again after in vitro stimulation with F1 and V MAP these macrophages produced significantly high IL12 and TNFα. The study clearly indicates involvement of DC and macrophages for efficient antigen presentation to immune cells. From this study we conclude that F1MAP and VMAP ameliorate innate immune mechanism. These two synthetic constructs exert their effect via TLR2 and TLR4, leading to the production of proinflammatory cytokines by macrophages and are able to increase DC activation, that could be helpful in generation of adaptive immunity as well as is important strong immune response. PMID:26188288

  10. Tamoxifen persistently disrupts the humoral adaptive immune response of gilthead seabream (Sparus aurata L.).

    PubMed

    Rodenas, M C; Cabas, I; Abellán, E; Meseguer, J; Mulero, V; García-Ayala, A

    2015-12-01

    There is increasing concern about the possible effect of pharmaceutical compounds may have on the fish immune system. Bath exposition of 17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives, altered the immune response of the gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost. Tamoxifen (Tmx) is a selective estrogen-receptor modulator used in hormone replacement therapy, the effects of which are unknown in fish immunity. This study aims to investigate the effects of dietary administration of EE2 (5 μg/g food) and Tmx (100 μg/g food) on the immune response of gilthead seabream, and the capacity of the immune system to recover its functionality after a recovery period. The results show for the first time the reversibility of the effect of EE2 and Tmx on the fish immune response. Tmx promoted a transient alteration in hepatic vitellogenin gene expression of a different magnitude to that produced by EE2. Both, EE2 and Tmx inhibited the induction of interleukin-1β gene expression while reversed the inhibition of ROI production in leukocytes following vaccination. However, none of these effects were observed after ceasing EE2 and Tmx exposure. EE2 and Tmx stimulated the antibody response of vaccinated fish although Tmx, but not EE2, altered the antibody response and modulated the percentage of IgM(+) B lymphocytes of vaccinated fish during the recovery phase. Taken together, our results suggest that EE2 and Tmx might alter the capacity of fish to appropriately respond to infection and show that Tmx has a long-lasting effect on humoral adaptive immunity. PMID:26234710

  11. Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency

    PubMed Central

    Cols, Montserrat; Rahman, Adeeb; Maglione, Paul J.; Garcia-Carmona, Yolanda; Simchoni, Noa; Ko, Huai-Bin M.; Radigan, Lin; Cerutti, Andrea; Blankenship, Derek; Pascual, Virginia; Cunningham-Rundles, Charlotte

    2016-01-01

    Background Common variable immunodeficiency (CVID) is an antibody deficiency treated with immunoglobulin; however, patients can have noninfectious inflammatory conditions that lead to heightened morbidity and mortality. Objectives Modular analyses of RNA transcripts in whole blood previously identified an upregulation of many interferon-responsive genes. In this study we sought the cell populations leading to this signature. Methods Lymphoid cells were measured in peripheral blood of 55 patients with CVID (31 with and 24 without inflammatory/autoimmune complications) by using mass cytometry and flow cytometry. Surface markers, cytokines, and transcriptional characteristics of sorted innate lymphoid cells (ILCs) were defined by using quantitative PCR. Gastrointestinal and lung biopsy specimens of subjects with inflammatory disease were stained to seek ILCs in tissues. Results The linage-negative, CD127+, CD161+ lymphoid population containing T-box transcription factor, retinoic acid–related orphan receptor (ROR) γt, IFN-γ, IL-17A, and IL-22, all hallmarks of type 3 innate lymphoid cells, were expanded in the blood of patients with CVID with inflammatory conditions (mean, 3.7% of PBMCs). ILCs contained detectable amounts of the transcription factors inhibitor of DNA binding 2, T-box transcription factor, and RORγt and increased mRNA transcripts for IL-23 receptor (IL-23R) and IL-26, demonstrating inflammatory potential. In gastrointestinal and lung biopsy tissues of patients with CVID, numerous IFN-γ+RORγt+CD3− cells were identified, suggesting a role in these mucosal inflammatory states. Conclusions An expansion of this highly inflammatory ILC population is a characteristic of patients with CVID with inflammatory disease; ILCs and the interferon signature are markers for the uncontrolled inflammatory state in these patients. PMID:26542033

  12. Paradoxical immune reconstitution inflammatory syndrome associated with cryptococcal meningitis in China: a 5-year retrospective cohort study.

    PubMed

    Yan, S; Chen, L; Wu, W; Li, Z; Fu, Z; Zhang, H; Xue, J; Hu, Y; Mou, J; Fu, C

    2015-04-01

    We performed a retrospective cohort study of hospitalised cryptococcal meningitis (CM) patients at a single centre to evaluate the clinical epidemiological features of paradoxical cryptococcal-related immune reconstitution inflammatory syndrome (CM-IRIS) in a setting in China. A total of 154 AIDS patients with CM were involved, and 17.5% experienced IRIS at a median of 27 days after initiation of antiretroviral therapy (ART). Overall, 3 deaths were directly attributed to IRIS. The occurrences of CM-IRIS were independently associated with the pre-ART CD4+count, pre-C-reactive protein level, and the timing of ART initiation. PMID:25658526

  13. Cryptococcal Immune Reconstitution Inflammatory Syndrome in HIV-1–infected individuals: Literature Review and Proposed Clinical Case Definitions

    PubMed Central

    Haddow, Lewis J; Colebunders, Robert; Meintjes, Graeme; Lawn, Stephen D; Elliott, Julian H; Manabe, Yukari C; Bohjanen, Paul R; Sungkanuparph, Somnuek; Easterbrook, Philippa J; French, Martyn A; Boulware, David R

    2011-01-01

    Cryptococcal immune reconstitution inflammatory syndrome (C-IRIS) may present as a clinical deterioration or new presentation of cryptococcal disease following initiation of antiretroviral therapy (ART) and is believed to be caused by recovery of cryptococcus-specific immune responses. We have reviewed the existing literature on C-IRIS to inform the development of a consensus case definition specific for paradoxical cryptococcal IRIS in patients with known cryptococcal disease prior to ART, and a second definition for incident cases of cryptococcosis developing during ART (here termed ART-associated cryptococcosis), a proportion of which are likely to be “unmasking” C-IRIS. These structured case definitions are intended for use in future clinical, epidemiologic and immunopathologic studies of C-IRIS, harmonizing diagnostic criteria, and facilitating comparisons between studies. As with tuberculosis-associated IRIS, these proposed definitions should be regarded as preliminary until further insights into the immunopathology of IRIS permit their refinement. PMID:21029993

  14. Innate and adaptive immune response in stroke: Focus on epigenetic regulation.

    PubMed

    Picascia, Antonietta; Grimaldi, Vincenzo; Iannone, Carmela; Soricelli, Andrea; Napoli, Claudio

    2015-12-15

    Inflammation and immune response play a pivotal role in the pathophysiology of ischemic stroke giving their contribution to tissue damage and repair. Emerging evidence supports the involvement of epigenetic mechanisms such as methylation, histone modification and miRNAs in the pathogenesis of stroke. Interestingly, epigenetics can influence the molecular events involved in ischemic injury by controlling the switch from pro- to anti-inflammatory response, however, this is still a field to be fully explored. The knowledge of epigenetic processes could to allow for the discovery of more sensitive and specific biomarkers for risk, onset, and progression of disease as well as further novel tools to be used in both primary prevention and therapy of stroke. Indeed, studies performed in vitro and in small animal models seem to suggest a neuroprotective role of HDAC inhibitors (e.g. valproic acid) and antagomir (e.g. anti-miR-181a) in ischemic condition by modulation of both immune and inflammatory pathways. Thus, the clinical implications of altered epigenetic mechanisms for the prevention of stroke are very promising but clinical prospective studies and translational approaches are still warranted. PMID:26616880

  15. Genome complexity in the coelacanth is reflected in its adaptive immune system

    USGS Publications Warehouse

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  16. Hepatic Expression Patterns of Inflammatory and Immune Response Genes Associated with Obesity and NASH in Morbidly Obese Patients

    PubMed Central

    Bertola, Adeline; Bonnafous, Stéphanie; Anty, Rodolphe; Patouraux, Stéphanie; Saint-Paul, Marie-Christine; Iannelli, Antonio; Gugenheim, Jean; Barr, Jonathan; Mato, José M.; Le Marchand-Brustel, Yannick; Tran, Albert; Gual, Philippe

    2010-01-01

    Background Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients. Methodology/Principal Findings Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis. Conclusion/Significance The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD. PMID:21042596

  17. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  18. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: innate immune responses in plants.

    PubMed

    Schulze-Lefert, P

    2010-04-01

    Plants rely exclusively upon mechanisms of innate immunity. Current concepts of the plant innate immune system are based largely on two forms of immunity that engage distinct classes of immune receptors. These receptors enable the recognition of non-self structures that are either conserved between members of a microbial class or specific to individual strains of a microbe. One type of receptor comprises membrane-resident pattern recognition receptors (PRRs) that detect widely conserved microbe-associated molecular patterns (MAMPs) on the cell surface. A second type of mainly intracellular immune sensors, designated resistance (R) proteins, recognizes either the structure or function of strain-specific pathogen effectors that are delivered inside host cells. Phytopathogenic microorganisms have evolved a repertoire of effectors, some of which are delivered into plant cells to sabotage MAMP-triggered immune responses. Plants appear to have also evolved receptors that sense cellular injury by the release and perception of endogenous damage-associated molecular patterns (DAMPs). It is possible that the integration of MAMP and DAMP responses is critical to mount robust MAMP-triggered immunity. This signal integration might help to explain why plants are colonized in nature by remarkably diverse and seemingly asymptomatic microbial communities. PMID:20415853

  19. Administration of DNA Encoding the Interleukin-27 Gene Augments Antitumour Responses through Non-adaptive Immunity.

    PubMed

    Li, Q; Sato, A; Shimozato, O; Shingyoji, M; Tada, Y; Tatsumi, K; Shimada, H; Hiroshima, K; Tagawa, M

    2015-10-01

    DNA-mediated immunization of a tumour antigen is a possible immunotherapy for cancer, and interleukin (IL)-27 has diverse functions in adaptive immunity. In this study, we examined whether IL-27 DNA administration enhanced antitumour effects in mice vaccinated with DNA encoding a putative tumour antigen, β-galactosidase (β-gal). An intramuscular injection of cardiotoxin before DNA administration facilitated the exogenous gene expression. In mice received β-gal and IL-27 DNA, growth of β-gal-positive P815 tumours was retarded and survival of the mice was prolonged. Development of β-gal-positive Colon 26 tumours was suppressed by vaccination of β-gal DNA and further inhibited by additional IL-27 DNA administration or IL-12 family cytokines. Nevertheless, a population of β-gal-specific CD8(+) T cells did not increase, and production of anti-β-gal antibody was not enhanced by IL-27 DNA administration. Spleen cells from mice bearing IL-27-expressing Colon 26 tumours showed greater YAC-1-targeted cytotoxicity although CD3(-)/DX5(+) natural killer (NK) cell numbers remained unchanged. Recombinant IL-27 enhanced YAC-1-targeted cytotoxicity of IL-2-primed splenic NK cells and augmented a phosphorylation of signal transducer and activator of transcription 3 and an expression of perforin. These data collectively indicate that IL-27 DNA administration activates NK cells and augments vaccination effects of DNA encoding a tumour antigen through non-adaptive immune responses. PMID:26095954

  20. Intranasal Immunization with a Colloid-Formulated Bacterial Extract Induces an Acute Inflammatory Response in the Lungs and Elicits Specific Immune Responses

    PubMed Central

    Rial, A.; Lens, D.; Betancor, L.; Benkiel, H.; Silva, J. S.; Chabalgoity, J. A.

    2004-01-01

    Nonspecific stimulation of lung defenses by repeated oral administration of immunomodulators, such as bacterial extracts, has shown potential for the prevention of respiratory tract infections. Here, we show that intranasal (i.n.) immunization with a bacterial extract formulated as a colloid induces an acute inflammatory response in the lungs characterized by increased production of CCL and CXCL chemokines and a major influx of dendritic cells (DCs) and neutrophils, with a higher proportion of DCs showing an activated phenotype (high CD80/CD86 expression). Cytokine levels measured in bronchoalveolar-lavage samples showed a small increase in the production of tumor necrosis factor alpha and similar levels of the other cytokines measured (interleukin 10 [IL-10], IL-12, and gamma interferon [IFN-γ]) in immunized mice compared with control mice. However, the recall response of primed animals after antigenic challenge induced increased expression of IL-12 and IFN-γ mRNAs in lung homogenates. Overall, all these effects were not due to the lipopolysaccharide content in the bacterial extract. Furthermore, we found that three i.n. doses administered 2 to 3 weeks apart were enough to elicit long-lasting specific serum immunoglobulin G (IgG) and secretory IgA antibody responses. Assessment of IgG subclasses showed a balanced pattern of IgG1-IgG2a responses. The serum total IgE concentrations were also elevated in immunized mice 2 weeks after the third dose, but they significantly decreased soon afterwards. Our results suggest that simple formulations of bacterial extracts administered i.n. are highly immunogenic, eliciting local and systemic immune responses, and may serve as the basis for cost-effective immunotherapies for the prevention and treatment of respiratory infections. PMID:15102776

  1. Intranasal immunization with a colloid-formulated bacterial extract induces an acute inflammatory response in the lungs and elicits specific immune responses.

    PubMed

    Rial, A; Lens, D; Betancor, L; Benkiel, H; Silva, J S; Chabalgoity, J A

    2004-05-01

    Nonspecific stimulation of lung defenses by repeated oral administration of immunomodulators, such as bacterial extracts, has shown potential for the prevention of respiratory tract infections. Here, we show that intranasal (i.n.) immunization with a bacterial extract formulated as a colloid induces an acute inflammatory response in the lungs characterized by increased production of CCL and CXCL chemokines and a major influx of dendritic cells (DCs) and neutrophils, with a higher proportion of DCs showing an activated phenotype (high CD80/CD86 expression). Cytokine levels measured in bronchoalveolar-lavage samples showed a small increase in the production of tumor necrosis factor alpha and similar levels of the other cytokines measured (interleukin 10 [IL-10], IL-12, and gamma interferon [IFN-gamma]) in immunized mice compared with control mice. However, the recall response of primed animals after antigenic challenge induced increased expression of IL-12 and IFN-gamma mRNAs in lung homogenates. Overall, all these effects were not due to the lipopolysaccharide content in the bacterial extract. Furthermore, we found that three i.n. doses administered 2 to 3 weeks apart were enough to elicit long-lasting specific serum immunoglobulin G (IgG) and secretory IgA antibody responses. Assessment of IgG subclasses showed a balanced pattern of IgG1-IgG2a responses. The serum total IgE concentrations were also elevated in immunized mice 2 weeks after the third dose, but they significantly decreased soon afterwards. Our results suggest that simple formulations of bacterial extracts administered i.n. are highly immunogenic, eliciting local and systemic immune responses, and may serve as the basis for cost-effective immunotherapies for the prevention and treatment of respiratory infections. PMID:15102776

  2. A rare case of immune reconstitution inflammatory syndrome presenting as secondary syphilis.

    PubMed

    Khatri, Asma; Skalweit, Marion J

    2015-09-01

    Immune reconstitution syndrome has rarely been reported in the context of syphilis infection. We report a patient with AIDS (CD4 42 cells/mm(3), viral load 344,000 cp/ml), treated previously for secondary syphilis and started on an integrase inhibitor-based single-tablet antiretroviral treatment regimen. After four weeks of antiretroviral treatment, he presented with non-tender, non-blanching erythematous nodules on his chest, an elevated rapid plasma reagin (1:1024) and immune reconstitution (CD4 154 cells/mm(3), HIV-RNA 130 cp/ml). A detailed workup to exclude opportunistic infections including secondary and neurosyphilis was performed. The patient was continued on antiretroviral treatment and treated empirically for neurosyphilis given cerebrospinal lymphocytosis and dermatopathology suggesting treponemal antigen-driven B-cell hyperplasia. We favour a diagnosis of immune reconstitution in association with prior syphilis infection attributable to rapid and potent immune restoration afforded by integrase inhibitors. PMID:25311145

  3. A novel experimental model of Cryptococcus neoformans-related immune reconstitution inflammatory syndrome (IRIS) provides insights into pathogenesis.

    PubMed

    Eschke, Maria; Piehler, Daniel; Schulze, Bianca; Richter, Tina; Grahnert, Andreas; Protschka, Martina; Müller, Uwe; Köhler, Gabriele; Höfling, Corinna; Rossner, Steffen; Alber, Gottfried

    2015-12-01

    Antiretroviral therapy (ART) has yielded major advances in fighting the HIV pandemic by restoring protective immunity. However, a significant proportion of HIV patients co-infected with the opportunistic fungal pathogen Cryptococcus neoformans paradoxically develops a life-threatening immune reconstitution inflammatory syndrome (IRIS) during antiretroviral therapy. Despite several clinical studies, the underlying pathomecha-nisms are poorly understood. Here, we present the first mouse model of cryptococcal IRIS that allows for a detailed analysis of disease development. Lymphocyte-deficient RAG-1(-/-) mice are infected with C. neoformans and 4 weeks later adoptively transferred with purified CD4(+) T cells. Reconstitution of CD4(+) T cells is sufficient to induce a severe inflammatory disease similar to clinical IRIS in C. neoformans-infected RAG-1(-/-) mice of different genetic backgrounds and immunological phenotypes (i.e. C57BL/6 and BALB/c). Multiorgan inflammation is accompanied by a systemic release of distinct proinflammatory cytokines, i.e. IFN-γ, IL-6, and TNF-α. IRIS development is characterized by infection-dependent activation of donor CD4(+) T cells, which are the source of IFN-γ. Interestingly, IFN-γ-mediated effects are not required for disease induction. Taken together, this novel mouse model of cryptococcal IRIS provides a useful tool to verify potential mechanisms of pathogenesis, revealing targets for diagnosis and therapeutic interventions. PMID:26381487

  4. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation

    PubMed Central

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  5. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation.

    PubMed

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  6. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease

    PubMed Central

    Al-Ghadban, Sara; Kaissi, Samira; Homaidan, Fadia R.; Naim, Hassan Y.; El-Sabban, Marwan E.

    2016-01-01

    Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins’ expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier. PMID:27417573

  7. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease.

    PubMed

    Al-Ghadban, Sara; Kaissi, Samira; Homaidan, Fadia R; Naim, Hassan Y; El-Sabban, Marwan E

    2016-01-01

    Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins' expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier. PMID:27417573

  8. Effect of age and pregnancy status on adaptive immune responses of Canadian Holstein replacement heifers.

    PubMed

    Hine, B C; Cartwright, S L; Mallard, B A

    2011-02-01

    Selection for production traits with little or no emphasis on health traits has led to an increase in the incidence of disease in Canadian dairy herds. We describe here a patented protocol for estimating the breeding value for immune responsiveness in heifers that combines measures of both cell-mediated (CM) and antibody-mediated (AM) immune responses (IR). The ability of putative type 1 and type 2 antigens used to induce CMIR and AMIR, respectively, was assessed in replacement Holstein heifers, and the effects of age and pregnancy on type 1 and type 2 IR bias were estimated. Results demonstrated that the type 1 and type 2 antigens induced polarized type 1 and type 2 responses in heifers regardless of age and pregnancy status, and can therefore be used to identify animals with superior overall immune responsiveness. However, age and pregnancy status had significant effects on adaptive IR profiles, highlighting the need for appropriate statistical modeling of such effects when ranking animals on their ability to mount CM and AMIR. Responses became increasingly type 1 biased as heifers approached 12 mo of age, from which point, responses then became increasingly type 2 biased with age and length of gestation. Knowledge of how age and pregnancy influence the dynamics of type 1 and type 2 IR bias is expected to improve our ability to select animals with enhanced immune responsiveness and aid in the development of effective vaccines through strategic targeting of vaccine components to recipients. PMID:21257066

  9. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    PubMed

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  10. The B-cell antigen receptor integrates adaptive and innate immune signals

    PubMed Central

    Otipoby, Kevin L.; Waisman, Ari; Derudder, Emmanuel; Srinivasan, Lakshmi; Franklin, Andrew; Rajewsky, Klaus

    2015-01-01

    B cells respond to antigens by engagement of their B-cell antigen receptor (BCR) and of coreceptors through which signals from helper T cells or pathogen-associated molecular patterns are delivered. We show that the proliferative response of B cells to the latter stimuli is controlled by BCR-dependent activation of phosphoinositidyl 3-kinase (PI-3K) signaling. Glycogen synthase kinase 3β and Foxo1 are two PI-3K-regulated targets that play important roles, but to different extents, depending on the specific mitogen. These results suggest a model for integrating signals from the innate and the adaptive immune systems in the control of the B-cell immune response. PMID:26371314

  11. The diversity-generating benefits of a prokaryotic adaptive immune system.

    PubMed

    van Houte, Stineke; Ekroth, Alice K E; Broniewski, Jenny M; Chabas, Hélène; Ashby, Ben; Bondy-Denomy, Joseph; Gandon, Sylvain; Boots, Mike; Paterson, Steve; Buckling, Angus; Westra, Edze R

    2016-04-21

    Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms. PMID:27074511

  12. Porcine reproductive and respiratory syndrome virus replication and quasispecies evolution in pigs that lack adaptive immunity.

    PubMed

    Chen, Nanhua; Dekkers, Jack C M; Ewen, Catherine L; Rowland, Raymond R R

    2015-01-01

    The replication of porcine reproductive and respiratory syndrome virus (PRRSV) was studied in a line of pigs possessing a severe combined immunodeficiency (SCID). Real-time RT-PCR revealed a unique course of infection for the SCID group. During the course of infection, viremia was initially significantly lower than normal littermates, but by 21 days was significantly elevated. Deep sequencing of the viral structural genes at days 11 and 21 identified seven amino acid substitutions in both normal and SCID pigs. The most significant change was a W99R substitution in GP2, which was present in the inoculum at a frequency of 35%, but eventually disappeared from all pigs regardless of immune status. Therefore, amino acid substitutions that appear during acute infection are likely the result of the adaptation of the virus to replication in pigs and not immune selection. PMID:25451069

  13. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation.

    PubMed

    Tough, David F

    2004-02-01

    Type I interferon (IFN-alpha/beta) is expressed rapidly after infection and plays a key role in innate defense against pathogens. Recent studies have shown that a connection exists between IFN-alpha/beta and antigen-presenting dendritic cells (DCs) at two levels. Firstly, a specific DC precursor, the plasmacytoid pre-DC (p-preDC), was identified as a cell type able to secrete very high amounts of IFN-alpha/beta following stimulation with infectious agents. Secondly, IFN-alpha/beta has been shown to act as a differentiation/maturation factor for DCs. These findings will be discussed in association with evidence indicating that IFN-alpha/beta can enhance and modulate immune responses in vivo. Taken together, the available data suggest that IFN-alpha/beta serves as a link between the innate response to infection and the adaptive immune response. PMID:15101709

  14. Programmed cell death 1 inhibits inflammatory helper T-cell development through controlling the innate immune response.

    PubMed

    Rui, Yuxiang; Honjo, Tasuku; Chikuma, Shunsuke

    2013-10-01

    Programmed cell death 1 (PD-1) is an inhibitory coreceptor on immune cells and is essential for self-tolerance because mice genetically lacking PD-1 (PD-1(-/-)) develop spontaneous autoimmune diseases. PD-1(-/-) mice are also susceptible to severe experimental autoimmune encephalomyelitis (EAE), characterized by a massive production of effector/memory T cells against myelin autoantigen, the mechanism of which is not fully understood. We found that an increased primary response of PD-1(-/-) mice to heat-killed mycobacteria (HKMTB), an adjuvant for EAE, contributed to the enhanced production of T-helper 17 (Th17) cells. Splenocytes from HKMTB-immunized, lymphocyte-deficient PD-1(-/-) recombination activating gene (RAG)2(-/-) mice were found to drive antigen-specific Th17 cell differentiation more efficiently than splenocytes from HKMTB-immunized PD-1(+/+) RAG2(-/-) mice. This result suggested PD-1's involvement in the regulation of innate immune responses. Mice reconstituted with PD-1(-/-) RAG2(-/-) bone marrow and PD-1(+/+) CD4(+) T cells developed more severe EAE compared with the ones reconstituted with PD-1(+/+) RAG2(-/-) bone marrow and PD-1(+/+) CD4(+) T cells. We found that upon recognition of HKMTB, CD11b(+) macrophages from PD-1(-/-) mice produced very high levels of IL-6, which helped promote naive CD4(+) T-cell differentiation into IL-17-producing cells. We propose a model in which PD-1 negatively regulates antimycobacterial responses by suppressing innate immune cells, which in turn prevents autoreactive T-cell priming and differentiation to inflammatory effector T cells. PMID:24043779

  15. Immunization with recombinant Pb27 protein reduces the levels of pulmonary fibrosis caused by the inflammatory response against Paracoccidioides brasiliensis.

    PubMed

    Morais, Elis Araujo; Martins, Estefânia Mara do Nascimento; Boelone, Jankerle Neves; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2015-02-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis in which the host response to the infectious agent typically consists of a chronic granulomatous inflammatory process. This condition causes lesions that impair lung function and lead to chronic pulmonary insufficiency resulting from fibrosis development, which is a sequel and disabling feature of the disease. The rPb27 protein has been studied for prophylactic and therapeutic treatment against PCM. Previous studies from our laboratory have shown a protective effect of rPb27 against PCM. However, these studies have not determined whether rPb27 immunization prevents lung fibrosis. We therefore conducted this study to investigate fibrosis resulting from infection by Paracoccidioides brasiliensis in the lungs of animals immunized with rPb27. Animals were immunized with rPb27 and subsequently infected with a virulent strain of P. brasiliensis. Fungal load was evaluated by counting colony-forming units, and Masson's trichrome staining was performed to evaluate fibrosis at 30 and 90 days post-infection. The levels of CCR7, active caspase 3, collagen and cytokines were analyzed. At the two time intervals mentioned, the rPb27 group showed lower levels of fibrosis on histology and reduced levels of collagen and the chemokine receptor CCR7 in the lungs. CCR7 was detected at higher levels in the control groups that developed very high levels of pulmonary fibrosis. Additionally, the immunized groups showed high levels of active caspase 3, IFN-γ, TGF-β and IL-10 in the early phase of P. brasiliensis infection. Immunization with Pb27, in addition to its protective effect, was shown to prevent pulmonary fibrosis. PMID:25487973

  16. Effects of Group Drumming Interventions on Anxiety, Depression, Social Resilience and Inflammatory Immune Response among Mental Health Service Users

    PubMed Central

    Fancourt, Daisy; Perkins, Rosie; Ascenso, Sara; Carvalho, Livia A.; Steptoe, Andrew; Williamon, Aaron

    2016-01-01

    Growing numbers of mental health organizations are developing community music-making interventions for service users; however, to date there has been little research into their efficacy or mechanisms of effect. This study was an exploratory examination of whether 10 weeks of group drumming could improve depression, anxiety and social resilience among service users compared with a non-music control group (with participants allocated to group by geographical location.) Significant improvements were found in the drumming group but not the control group: by week 6 there were decreases in depression (-2.14 SE 0.50 CI -3.16 to -1.11) and increases in social resilience (7.69 SE 2.00 CI 3.60 to 11.78), and by week 10 these had further improved (depression: -3.41 SE 0.62 CI -4.68 to -2.15; social resilience: 10.59 SE 1.78 CI 6.94 to 14.24) alongside significant improvements in anxiety (-2.21 SE 0.50 CI -3.24 to -1.19) and mental wellbeing (6.14 SE 0.92 CI 4.25 to 8.04). All significant changes were maintained at 3 months follow-up. Furthermore, it is now recognised that many mental health conditions are characterised by underlying inflammatory immune responses. Consequently, participants in the drumming group also provided saliva samples to test for cortisol and the cytokines interleukin (IL) 4, IL6, IL17, tumour necrosis factor alpha (TNFα), and monocyte chemoattractant protein (MCP) 1. Across the 10 weeks there was a shift away from a pro-inflammatory towards an anti-inflammatory immune profile. Consequently, this study demonstrates the psychological benefits of group drumming and also suggests underlying biological effects, supporting its therapeutic potential for mental health. Trial Registration: ClinicalTrials.gov NCT01906892 PMID:26974430

  17. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases

    PubMed Central

    Correa, Ricardo G.; Milutinovic, Snezana; Reed, John C.

    2012-01-01

    NOD1 {nucleotide-binding oligomerization domain 1; NLRC [NOD-LRR (leucine-rich repeat) family with CARD (caspase recruitment domain) 1]} and NOD2 (NLRC2) are among the most prominent members of the NLR (NOD-LRR) family –proteins that contain nucleotide-binding NACHT domains and receptor-like LRR domains. With over 20 members identified in humans, NLRs represent important components of the mammalian innate immune system, serving as intracellular receptors for pathogens and for endogenous molecules elaborated by tissue injury. NOD1 and NOD2 proteins operate as microbial sensors through the recognition of specific PG (peptidoglycan) constituents of bacteria. Upon activation, these NLR family members initiate signal transduction mechanisms that include stimulation of NF-κB (nuclear factor-κB), stress kinases, IRFs (interferon regulatory factors) and autophagy. Hereditary polymorphisms in the genes encoding NOD1 and NOD2 have been associated with an increasing number of chronic inflammatory diseases. In fact, potential roles for NOD1 and NOD2 in inflammatory disorders have been revealed by investigations using a series of animal models. In the present review, we describe recent experimental findings associating NOD1 and NOD2 with various autoimmune and chronic inflammatory disorders, and we discuss prospects for development of novel therapeutics targeting these NLR family proteins. PMID:22908883

  18. Group B Streptococcus Engages an Inhibitory Siglec through Sialic Acid Mimicry to Blunt Innate Immune and Inflammatory Responses In Vivo

    PubMed Central

    Chang, Yung-Chi; Olson, Joshua; Beasley, Federico C.; Tung, Christine; Zhang, Jiquan; Crocker, Paul R.; Varki, Ajit; Nizet, Victor

    2014-01-01

    Group B Streptococcus (GBS) is a common agent of bacterial sepsis and meningitis in newborns. The GBS surface capsule contains sialic acids (Sia) that engage Sia-binding immunoglobulin-like lectins (Siglecs) on leukocytes. Here we use mice lacking Siglec-E, an inhibitory Siglec of myelomonocytic cells, to study the significance of GBS Siglec engagement during in vivo infection. We found GBS bound to Siglec-E in a Sia-specific fashion to blunt NF-κB and MAPK activation. As a consequence, Siglec-E-deficient macrophages had enhanced pro-inflammatory cytokine secretion, phagocytosis and bactericidal activity against the pathogen. Following pulmonary or low-dose intravenous GBS challenge, Siglec-E KO mice produced more pro-inflammatory cytokines and exhibited reduced GBS invasion of the central nervous system. In contrast, upon high dose lethal challenges, cytokine storm in Siglec-E KO mice was associated with accelerated mortality. We conclude that GBS Sia mimicry influences host innate immune and inflammatory responses in vivo through engagement of an inhibitory Siglec, with the ultimate outcome of the host response varying depending upon the site, stage and magnitude of infection. PMID:24391502

  19. Staphylococcal toxic shock syndrome: superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression.

    PubMed

    Kulhankova, Katarina; King, Jessica; Salgado-Pabón, Wilmara

    2014-08-01

    Infectious diseases caused by Staphylococcus aureus present a significant clinical and public health problem. S. aureus causes some of the most severe hospital-associated and community-acquired illnesses. Specifically, it is the leading cause of infective endocarditis and osteomyelitis, and the second leading cause of sepsis in the USA. While pathogenesis of S. aureus infections is at the center of current research, many questions remain about the mechanisms underlying staphylococcal toxic shock syndrome (TSS) and associated adaptive immune suppression. Both conditions are mediated by staphylococcal superantigens (SAgs)-secreted staphylococcal toxins that are major S. aureus virulence factors. Toxic shock syndrome toxin-1 (TSST-1) is the SAg responsible for almost all menstrual TSS cases in the USA. TSST-1, staphylococcal enterotoxin B and C are also responsible for most cases of non-menstrual TSS. While SAgs mediate all of the hallmark features of TSS, such as fever, rash, hypotension, and multi-organ dysfunction, they are also capable of enhancing the toxic effects of endogenous endotoxin. This interaction appears to be critical in mediating the severity of TSS and related mortality. In addition, interaction between SAgs and the host immune system has been recognized to result in a unique form of adaptive immune suppression, contributing to poor outcomes of S. aureus infections. Utilizing rabbit models of S. aureus infective endocarditis, pneumonia and sepsis, and molecular genetics techniques, we aim to elucidate the mechanisms of SAg and endotoxin synergism in the pathogenesis of TSS, and examine the cellular and molecular mechanisms underlying SAg-mediated immune dysfunction. PMID:24816557

  20. Ebolavirus evolves in human to minimize the detection by immune cells by accumulating adaptive mutations.

    PubMed

    Ramaiah, Arunachalam; Arumugaswami, Vaithilingaraja

    2016-06-01

    The current outbreak of Zaire ebolavirus (EBOV) lasted longer than the previous outbreaks and there is as yet no proven treatment or vaccine available. Understanding host immune pressure and associated EBOV immune evasion that drive the evolution of EBOV is vital for diagnosis as well as designing a highly effective vaccine. The aim of this study was to deduce adaptive selection pressure acting on each amino acid sites of EBOV responsible for the recent 2014 outbreak. Multiple statistical methods employed in the study include SLAC, FEL, REL, IFEL, FUBAR and MEME. Results show that a total of 11 amino acid sites from sGP and ssGP, and 14 sites from NP, VP40, VP24 and L proteins were inferred as positively and negatively selected, respectively. Overall, the function of 11 out of 25 amino acid sites under selection pressure exactly found to be involved in T cell and B-cell epitopes. We identified that the EBOV had evolved through purifying selection pressure, which is a predictor that is known to aid the virus to adapt better to the human host and subsequently reduce the efficiency of existing immunity. Furthermore, computational RNA structure prediction showed that the three synonymous nucleotide mutations in NP gene altered the RNA secondary structure and optimal base-pairing energy, implicating a possible effect on genome replication. Here, we have provided evidence that the EBOV strains involved in the recent 2014 outbreak have evolved to minimize the detection by T and B cells by accumulating adaptive mutations to increase the survival fitness. PMID:27366764

  1. An imbalance between innate and adaptive immune cells at the maternal-fetal interface occurs prior to endotoxin-induced preterm birth.

    PubMed

    Arenas-Hernandez, Marcia; Romero, Roberto; St Louis, Derek; Hassan, Sonia S; Kaye, Emily B; Gomez-Lopez, Nardhy

    2016-07-01

    Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. A transition from an anti-inflammatory state to a pro-inflammatory state in the mother and at the maternal-fetal interface has been implicated in the pathophysiology of microbial-induced preterm labor. However, it is unclear which immune cells mediate this transition. We hypothesized that an imbalance between innate and adaptive immune cells at the maternal-fetal interface will occur prior to microbial-induced preterm labor. Using an established murine model of endotoxin-induced PTB, our results demonstrate that prior to delivery there is a reduction of CD4+ regulatory T cells (Tregs) in the uterine tissues. This reduction is neither linked to a diminished number of Tregs in the spleen, nor to an impaired production of IL10, CCL17, or CCL22 by the uterine tissues. Endotoxin administration to pregnant mice does not alter effector CD4+ T cells at the maternal-fetal interface. However, it causes an imbalance between Tregs (CD4+ and CD8+), effector CD8+ T cells, and Th17 cells in the spleen. In addition, endotoxin administration to pregnant mice leads to an excessive production of CCL2, CCL3, CCL17, and CCL22 by the uterine tissues as well as abundant neutrophils. This imbalance in the uterine microenvironment is accompanied by scarce APC-like cells such as macrophages and MHC II+ neutrophils. Collectively, these results demonstrate that endotoxin administration to pregnant mice causes an imbalance between innate and adaptive immune cells at the maternal-fetal interface. PMID:25849119

  2. An imbalance between innate and adaptive immune cells at the maternal–fetal interface occurs prior to endotoxin-induced preterm birth

    PubMed Central

    Arenas-Hernandez, Marcia; Romero, Roberto; St Louis, Derek; Hassan, Sonia S; Kaye, Emily B; Gomez-Lopez, Nardhy

    2016-01-01

    Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. A transition from an anti-inflammatory state to a pro-inflammatory state in the mother and at the maternal–fetal interface has been implicated in the pathophysiology of microbial-induced preterm labor. However, it is unclear which immune cells mediate this transition. We hypothesized that an imbalance between innate and adaptive immune cells at the maternal–fetal interface will occur prior to microbial-induced preterm labor. Using an established murine model of endotoxin-induced PTB, our results demonstrate that prior to delivery there is a reduction of CD4+ regulatory T cells (Tregs) in the uterine tissues. This reduction is neither linked to a diminished number of Tregs in the spleen, nor to an impaired production of IL10, CCL17, or CCL22 by the uterine tissues. Endotoxin administration to pregnant mice does not alter effector CD4+ T cells at the maternal–fetal interface. However, it causes an imbalance between Tregs (CD4+ and CD8+), effector CD8+ T cells, and Th17 cells in the spleen. In addition, endotoxin administration to pregnant mice leads to an excessive production of CCL2, CCL3, CCL17, and CCL22 by the uterine tissues as well as abundant neutrophils. This imbalance in the uterine microenvironment is accompanied by scarce APC-like cells such as macrophages and MHC II+ neutrophils. Collectively, these results demonstrate that endotoxin administration to pregnant mice causes an imbalance between innate and adaptive immune cells at the maternal–fetal interface. PMID:25849119

  3. Exploring effects of a natural combination medicine on exercise-induced inflammatory immune response: A double-blind RCT.

    PubMed

    Pilat, C; Frech, T; Wagner, A; Krüger, K; Hillebrecht, A; Pons-Kühnemann, J; Scheibelhut, C; Bödeker, R-H; Mooren, F-C

    2015-08-01

    Traumeel (Tr14) is a natural, combination drug, which has been shown to modulate inflammation at the cytokine level. This study aimed to investigate potential effects of Tr14 on the exercise-induced immune response. In a double-blind, randomized, controlled trial, healthy, untrained male subjects received either Tr14 (n = 40) or placebo (n = 40) for 24 h after a strenuous experimental exercise trial on a bicycle (60 min at 80%VO2 max). A range of antigen-stimulated cytokines (in vitro), white blood cell count, lymphocyte activation and apoptosis markers, and indicators of muscle damage were assessed up to 24 h following exercise. The area under the curve with respect to the increase (AUCI ) was compared between both groups. The Tr14 group showed a reduced exercise-induced leukocytosis and neutrocytosis (P < 0.01 for both), a higher AUCI score of antigen-stimulated IL-1β and IL-1α (absolute and per monocyte, all P < 0.05), a lower AUCI score of antigen-stimulated GM-CSF (P < 0.05) and by trend a lower AUCI score of antigen-stimulated IL-2 and IL-4 as well as a higher AUCI score of antigen-stimulated IL-6 (all P < 0.1). Tr14 might promote differentiated effects on the exercise-induced immune response by (a) decreasing the inflammatory response of the innate immune system; and (b) augmenting the pro-inflammatory cytokine response. PMID:24924232

  4. Neuro-Inflammatory Mechanisms in Developmental Disorders Associated with Intellectual Disability and Autism Spectrum Disorder: A Neuro- Immune Perspective.

    PubMed

    Marco, Barbara Di; Bonaccorso, Carmela M; Aloisi, Elisabetta; D'Antoni, Simona; Catania, Maria V

    2016-01-01

    Intellectual disability (ID) and autism are present in several neurodevelopmental disorders and are often associated in genetic syndromes, such as Fragile X and Rett syndromes. While most evidence indicates that a genetic component plays an important role in the aetiology of both autism and ID, a number of studies suggest that immunological dysfunctions may participate in the pathophysiology of these disorders. Brain-specific autoantibodies have been detected in the sera of many autistic children and autoimmune disorders are increased in families of children with autism. Furthermore, cytokine imbalance has been reported in children with autism. These results may reflect an inappropriate immune response to environmental factors, such as infectious or toxic exposure. The role of microglia as sensors of pre- and post-natal environmental stimuli and its involvement in the regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis has recently emerged. An abnormal immune response during critical windows of development and consequent abnormal production of neuro-inflammatory mediators may have an impact on the function and structure of brain and can play a role in the pathogenesis of non syndromic autism. Recent evidence suggests an involvement of neuro-inflammation also in syndromic forms of autism and ID. Immune dysregulation has been found in children with Fragile X syndrome and an intrinsic microglia dysfunction has been recently reported in Rett syndrome. The present review summarizes the current literature suggesting that neuro-inflammatory mechanisms may contribute to the pathogenesis of different ID- and autism-associated disorders, thus representing common pathophysiological pathways and potential therapeutic targets. PMID:26996174

  5. Cutaneous antigen priming via gene gun leads to skin-selective Th2 immune-inflammatory responses.

    PubMed

    Alvarez, David; Harder, Greg; Fattouh, Ramzi; Sun, Jiangfeng; Goncharova, Susanna; Stämpfli, Martin R; Coyle, Anthony J; Bramson, Jonathan L; Jordana, Manel

    2005-02-01

    It is becoming increasingly evident that the compartmentalization of immune responses is governed, in part, by tissue-selective homing instructions imprinted during T cell differentiation. In the context of allergic diseases, the fact that "disease" primarily manifests in particular tissue sites, despite pervasive allergen exposure, supports this notion. However, whether the original site of Ag exposure distinctly privileges memory Th2 immune-inflammatory responses to the same site, while sparing remote tissue compartments, remains to be fully investigated. We examined whether skin-targeted delivery of plasmid DNA encoding OVA via gene-gun technology in mice could generate allergic sensitization and give rise to Th2 effector responses in the skin as well as in the lung upon subsequent Ag encounter. Our data show that cutaneous Ag priming induced OVA-specific serum IgE and IgG1, robust Th2-cytokine production, and late-phase cutaneous responses and systemic anaphylactic shock upon skin and systemic Ag recall, respectively. However, repeated respiratory exposure to aerosolized OVA failed to instigate airway inflammatory responses in cutaneous Ag-primed mice, but not in mice initially sensitized to OVA via the respiratory mucosa. Importantly, these contrasting airway memory responses correlated with the occurrence of Th2 differentiation events at anatomically separate sites: indeed cutaneous Ag priming resulted in Ag-specific proliferative responses and Th2 differentiation in skin-, but not thoracic-, draining lymph nodes. These data indicate that Ag exposure to the skin leads to Th2 differentiation within skin-draining lymph nodes and subsequent Th2 immunity that is selectively manifested in the skin. PMID:15661930

  6. Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense.

    PubMed

    Price, Aryn A; Grakoui, Arash; Weiss, David S

    2016-04-01

    Clustered, regularly interspaced, short palindromic repeats - CRISPR-associated (CRISPR-Cas) systems - are sequence-specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense. PMID:26852268

  7. Adaptive dynamic networks as models for the immune system and autocatalytic sets

    SciTech Connect

    Farmer, J.D.; Kauffman, S.A.; Packard, N.H.; Perelson, A.S.

    1986-04-01

    A general class of network models is described that can be used to present complex adaptive systems. These models have two purposes: On a practical level they are closely based on real biological phenomena, and are intended to model detailed aspects of them. On a more general level, however, they provide a framework to address broader questions concerning evolution, pattern recognition, and other properties of living systems. This paper concentrates on the more general level, illustrating the basic concepts with two examples, a model of the immune system and a model for the spontaneous emergence of autocatalytic sets in a chemically reactive polymer soup. 10 refs., 3 figs.

  8. Meeting summary: Signal transduction pathways in immune and inflammatory cells. November 30-December 3, 2000, Amelia Island, Florida, U.S.A.

    PubMed

    Plevy, Scott; Mayer, Lloyd

    2003-01-01

    importance of small differences in enzymatic activity that may have dramatic biologic consequences. This symposium identified recently described signal transduction molecules that may be attractive therapeutic targets in IBD. Characterization of signaling molecules such as SLP-76, SLAM, SAP, and Fyb in the mucosal immune system will be an important area of future research. Ultimately, well-developed scientific hypotheses need to be tested in human beings. This paradigm was perhaps best illustrated by PPARgamma, where reductionist models and mouse experiments have recently lead to small trials suggesting proof of concept in human IBD. This meeting also emphasized a renewed interest in innate immunity in IBD and inflammation research. The role of enteric flora in initiating and perpetuating inflammation in animal models of IBD suggests at some level the importance of the innate immune response. The role of TLRs and bacterial interactions were discussed, as was NF-kappaB as the prominent transcription factor target of innate immune activation. Numerous bridges between innate and adaptive immunity were highlighted, including IL-10, IL-12, IL-18, and IFN-gamma. Their production during an innate immune response can profoundly affect functional T-cell responses in humans. In conclusion, the challenge of understanding signal transduction in IBD is one of integrating well-characterized inflammatory pathways into a complex biologic system that is inhabited by diverse cell types that communicate, and is characterized by interactions with a complex microbial environment. Making sense of this complexity is a daunting task that will require a multifactorial approach utilizing reductionist systems, mouse models, genetic studies, and ultimately human clinical trials. PMID:12656135

  9. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington's disease.

    PubMed

    Ramsingh, Arlene I; Manley, Kevin; Rong, Yinghui; Reilly, Andrew; Messer, Anne

    2015-11-01

    Immunotherapy, both active and passive, is increasingly recognized as a powerful approach to a wide range of diseases, including Alzheimer's and Parkinson's. Huntington's disease (HD), an autosomal dominant disorder triggered by misfolding of huntingtin (HTT) protein with an expanded polyglutamine tract, could also benefit from this approach. Individuals can be identified genetically at the earliest stages of disease, and there may be particular benefits to a therapy that can target peripheral tissues in addition to brain. In this active vaccination study, we first examined safety and immunogenicity for a broad series of peptide, protein and DNA plasmid immunization protocols, using fragment (R6/1), and knock-in (zQ175) models. No safety issues were found. The strongest and most uniform immune response was to a combination of three non-overlapping HTT Exon1 coded peptides, conjugated to KLH, delivered with alum adjuvant. An N586-82Q plasmid, delivered via gene gun, also showed ELISA responses, mainly in the zQ175 strain, but with more variability, and less robust responses in HD compared with wild-type controls. Transcriptome profiling of spleens from the triple peptide-immunized cohort showed substantial HD-specific differences including differential activation of genes associated with innate immune responses, absence of negative feedback control of gene expression by regulators, a temporal dysregulation of innate immune responses and transcriptional repression of genes associated with memory T cell responses. These studies highlight critical issues for immunotherapy and HD disease management in general. PMID:26307082

  10. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia.

    PubMed

    Hsu, Peter; Nanan, Ralph Kay Heinrich

    2014-01-01

    Maternal immune tolerance of the fetus is indispensable for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal-maternal interface - the decidua, the site of implantation, and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, pre-eclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages) make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3(+) regulatory T cells are crucial for ensuring immune tolerance toward the semi-allogeneic fetus. Additionally, another population of CD4(+)HLA-G(+) suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy. PMID:24734032

  11. Anxiety, not anger, induces inflammatory activity: An avoidance/approach model of immune system activation.

    PubMed

    Moons, Wesley G; Shields, Grant S

    2015-08-01

    Psychological stressors reliably trigger systemic inflammatory activity as indexed by levels of proinflammatory cytokines. This experiment demonstrates that one's specific emotional reaction to a stressor may be a significant determinant of whether an inflammatory reaction occurs in response to that stressor. Based on extant correlational evidence and theory, a causal approach was used to determine whether an avoidant emotion (anxiety) triggers more inflammatory activity than an approach emotion (anger). In an experimental design (N = 40), a 3-way Emotion Condition × Time × Analyte interaction revealed that a writing-based anxiety induction, but not a writing-based anger induction, increased mean levels of interferon-γ (IFN- γ) and interleukin-1β (IL-1β), but not interleukin-6 (IL-6) in oral mucous, F(2, 54) = 4.64, p = .01, ηp(²) = .15. Further, self-reported state anxiety predicted elevated levels of proinflammatory cytokines, all ΔR(²) >.06, ps <.04, but self-reported state anger did not. These results constitute the first evidence to our knowledge that specific negative emotions can differentially cause inflammatory activity and support a theoretical model explaining these effects based on the avoidance or approach motivations associated with emotions. PMID:26053247

  12. IMMUNE RECONSTITUTION INFLAMMATORY SYNDROME (IRIS)-ASSOCIATED BURKITT LYMPHOMA FOLLOWING COMBINATION ANTI-RETROVIRAL THERAPY IN HIV-INFECTED PATIENTS

    PubMed Central

    Vishnu, Prakash; Dorer, Russell P.; Aboulafia, David M.

    2015-01-01

    HIV/AIDS-associated immune reconstitution inflammatory syndrome (IRIS) is defined as a paradoxical worsening or unmasking of infections and autoimmune diseases, following initiation of combination anti-retroviral therapy (cART). More recently, the case definition of IRIS has been broadened to include certain malignancies including Kaposi’s sarcoma, and less frequently Hodgkin’s and non-Hodgkin’s lymphoma (NHL). Here in we describe 3 patients infected with HIV who began cART and within a median of 15 weeks each achieved non-detectable HIV viral loads, and yet within 6 months presented for medical attention with fevers, night sweats, weight loss and bulky lymphadenopathy. Laboratory studies included elevated lactate dehydrogenase and β-2 microglobulin levels and well preserved CD4+ lymphocyte counts in excess of 350 cells/µL. In each patient lymph node biopsies were diagnostic of Burkitt lymphoma (BL). Patients were managed with multi-agent chemotherapy in conjunction with cART. We also survey the medical literature of other cases of IRIS-associated BL. Although the pathogenesis of IRIS-associated BL is not well elucidated, chronic antigenic stimulation coupled with immune deterioration, followed by subsequent restoration of the immune response and aberrant cytokine expression may be a pathway to lymphomagenesis. IRIS-associated BL should be suspected in patients with normal or near normal CD4+ lymphocyte counts who develop progressive lymphadenopathy post-initiation of cART. PMID:25458079

  13. PATHOLOGICAL ASPECTS OF THE ANTI-INFLAMMATORY/IMMUNE SUPPRESSIVE RESPONSE IN SEPSIS AND SHOCK

    PubMed Central

    Ayala, Alfred; Ding, Yanli; Rhee, Rebecca J.; Doughty, Lesley A.; Grutkoski, Patrician S.; Chung, Chun-Shiang

    2008-01-01

    Despite the recent advances in contemporary therapeutic, operative as well as supportive care sepsis and its associated co-morbidity/mortality are still a common occurrence in the critically ill trauma/surgical patient. Thus, it remains important to continue to expand our understanding of pathological components which drive the development of immune dysfunction contributing to subsequent multiple organ failure. Here we overview some of the immuno-pathological processes, cells and mediators which may play a role in the development of this immune dysfunctional condition. PMID:23181245

  14. Galvanic zinc-copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin.

    PubMed

    Kaur, Simarna; Lyte, Peter; Garay, Michelle; Liebel, Frank; Sun, Ying; Liu, Jue-Chen; Southall, Michael D

    2011-10-01

    The human body has its own innate electrical system that regulates the body's functions via communications among organs through the well-known neural system. While the effect of low-level electrical stimulation on wound repair has been reported, few studies have examined the effect of electric potential on non-wounded, intact skin. A galvanic couple comprised of elemental zinc and copper was used to determine the effects of low-level electrical stimulation on intact skin physiology using a Dermacorder device. Zn-Cu induced the electrical potential recorded on intact skin, enhanced H(2)O(2) production and activated p38 MAPK and Hsp27 in primary keratinocytes. Treatment with Zn-Cu was also found to reduce pro-inflammatory cytokines, such as IL-1α, IL-2, NO and TNF-α in multiple cell types after stimulation with PHA or Propionibacterium acnes bacteria. The Zn-Cu complex led to a dose-dependent inhibition of TNF-α-induced NF-κB levels in keratinocytes as measured by a dual-luciferase promoter assay, and prevented p65 translocation to the nucleus observed via immunofluorescence. Suppression of NF-κB activity via crosstalk with p38 MAPK might be one of the potential pathways by which Zn-Cu exerted its inflammatory effects. Topical application of Zn-Cu successfully mitigated TPA-induced dermatitis and oxazolone-induced hypersensitivity in mice models of ear edema. Anti-inflammatory activity induced by the Zn-Cu galvanic couple appears to be mediated, at least in part, by production of low level of hydrogen peroxide since this activity is reversed by the addition of Catalase enzyme. Collectively, these results show that a galvanic couple containing Zn-Cu strongly reduces the inflammatory and immune responses in intact skin, providing evidence for the role of electric stimulation in non-wounded skin. PMID:21465312

  15. Paucity of Initial Cerebrospinal Fluid Inflammation in Cryptococcal Meningitis is associated with subsequent Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Boulware, David R.; Bonham, Shulamith C.; Meya, David B.; Wiesner, Darin L.; Park, Gregory S.; Kambugu, Andrew; Janoff, Edward N.; Bohjanen, Paul R

    2010-01-01

    Background Cryptococcal meningitis (CM)-related immune reconstitution inflammatory syndrome (IRIS) complicates antiretroviral therapy (ART) in 20–40% of ART-naïve persons with AIDS and prior CM. Pathogenesis is unknown. Methods We compared initial CSF cultures, inflammatory markers and cytokine profiles in ART-naïve AIDS patients who did or did not subsequently develop IRIS after starting ART. We also compared results obtained at IRIS events or CM-relapse. Results Of 85 subjects with CM, 33 (39%) developed CM-IRIS and 5 (6%) developed culture-positive CM-relapse. At CM diagnosis, subjects subsequently developing IRIS had less inflammation, with decreased CSF leukocytes, protein, interferon-gamma (IFN-g), interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha (TNF-a) compared with subjects not developing IRIS (P<.05). Initial CSF WBCs ≤25 cells/μL and protein ≤50 mg/dL were associated with development of IRIS (OR=7.2, 95%CI: 2.7 to 18.7, P<.001). Compared to baseline levels, we identified CSF elevations of IFN-g, TNF-a, G-CSF, VEGF, and eotaxin (CCL11) (P<.05) at IRIS but minimal inflammatory changes in those with CM relapse. Conclusions Patients who subsequently develop CM-IRIS exhibit less initial CSF inflammation at the time of CM diagnosis compared to those who do not develop IRIS. The inflammatory CSF cytokine profiles observed at time of IRIS can distinguish IRIS from CM-relapse. PMID:20677939

  16. Final Report of project entitled "A metabolomics and mouse models approach to study inflammatory and immune responses to radiation"

    SciTech Connect

    Fornace, Albert J.; Li, Henghong

    2013-12-02

    The three-year project entitled ?A Metabolomics and Mouse Models Approach to Study Inflammatory and Immune Responses to Radiation? was initiated in September 2009. The overall objectives of this project were to investigate the acute and persistent effects of low dose radiation on T cell lymphocyte function and physiology, as well the contributions of these cells to radiation-induced inflammatory responses. Inflammation after ionizing radiation (IR), even at low doses, may impact a variety of disease processes, including infectious disease, cardiovascular disease, cancer, and other potentially inflammatory disorders. There were three overall specific aims: 1. To investigate acute and persistent effects of low dose radiation on T cell subsets and function; 2. A genetic approach with mouse models to investigate p38 MAPK pathways that are involved in radiation-induced inflammatory signaling; 3. To investigate the effect of radiation quality on the inflammatory response. We have completed the work proposed in these aims. Below are our major accomplishments: ? Our data show that T cells from low dose irradiated animals have lower proliferation potency and cytokine production upon T cell receptor (TCR) stimulation. This effect was observed as early as 4 hours after radiation, and lasted up to two weeks. ? Using our ultraperformance liquid chromatography coupled with highly sensitive time-of-flight mass spectrometry (UPLC-QTOF) metabolomics method, we demonstrated the global changes of metabolites in T cells upon TCR stimulation in a time-dependent pattern. ? We found that the TCR activation induced metabolome changes are remarkably altered in a dose-dependent manner after radiation. At a dose of 0.5 Gy and above, IR mitigated TCR activation induced metabolome changes while at the dose of as low as 0.1Gy IR had a mild stimulatory effect on some of the metabolome changes. ? We revealed the mechanism for how radiation affects T cell activation by showing that the energy

  17. Immunological profiling of tuberculosis-associated immune reconstitution inflammatory syndrome and non-immune reconstitution inflammatory syndrome death in HIV-infected adults with pulmonary tuberculosis starting antiretroviral therapy: a prospective observational cohort study

    PubMed Central

    Ravimohan, Shruthi; Tamuhla, Neo; Steenhoff, Andrew P.; Letlhogile, Rona; Nfanyana, Kebatshabile; Bellamy, Scarlett L.; MacGregor, Rob Roy; Gross, Robert; Weissman, Drew; Bisson, Gregory P.

    2015-01-01

    Summary Background Patients co-infected with advanced HIV and tuberculosis are at risk of tuberculosis-associated immune reconstitution inflammatory syndrome (IRIS) and death soon after initiation of antiretroviral therapy (ART). Tuberculosis-associated IRIS has been associated with quicker recovery of cellular immune responses after ART initiation and early mortality with slower recovery of these responses. We aimed to assess whether patients who have these outcomes have distinct immunological profiles before and after ART initiation. Methods We undertook this prospective cohort study at 22 public clinics and the main public hospital in Gaborone, Botswana, in ART-naive adults (aged ≥21 years) with advanced HIV (CD4 cell counts ≤125 cells per μL) and pulmonary tuberculosis. We obtained data for clinical variables and for levels of 29 plasma biomarkers, quantified by Luminex assay. We classified patients as having tuberculosis-associated IRIS, early mortality, or survival without a diagnosis of tuberculosis-associated IRIS (controls), on the basis of outcomes recorded in the 6 months after ART initiation. We used rank-sum or χ² tests, and logistic regression with odds ratios (OR) and 95% CIs, to assess the association between variables measured before and 4 weeks after ART initiation with death and tuberculosis-associated IRIS, compared with controls. Findings Between Nov 12, 2009, and July 3, 2013, we enrolled 201 participants. 31 (15%) patients left the study before ART initiation, leaving 170 (85%) patients for analysis. Patients with tuberculosis-associated IRIS had reduced pre-ART concentrations of several pro-inflammatory biomarkers, including interleukin (IL)-6 (adjusted OR per 1 log10 increase 0·40 [95% CI 0·18–0·89]). However, patients with early death had increased pre-ART concentrations of inflammatory biomarkers, including monocyte chemoattractant protein-1 (adjusted OR 9·0 [95% CI 1·0–80·0]) and tumour necrosis factor (TNF)-α (7·8 [1

  18. Murine macrophage inflammatory cytokine production and immune activation in response to Vibrio parahaemolyticus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is the most common cause of bacterial seafood-related illness in the United States. Currently, there is a dearth of literature regarding immunity to infection with this pathogen. Here we studied V. parahaemolyticus-infected RAW 264.7 murine macrophage detecting both pro- and...

  19. Balance of inflammatory pathways and interplay of immune cells in the liver during homeostasis and injury

    PubMed Central

    Baeck, Christer; Tacke, Frank

    2014-01-01

    Multiple potentially harmful stimuli challenge the liver, the chief metabolic and detoxifying organ of the human body. Due to its central anatomical location, continuous blood flow from the gastrointestinal tract through the hepatic sinusoids allows the metabolically active hepatocytes, the non-parenchymal cells and the various immune cell populations residing and patrolling in the liver to interact with antigens and microbiological components coming from the intestine. Cytokines are key mediators within the complex interplay of intrahepatic immune cells and hepatocytes, because they can activate effector functions of immune cells as well as hepatocytic intracellular signaling pathways controlling cellular homeostasis. Kupffer cells and liver-infiltrating monocyte-derived macrophages are primary sources of cytokines such as tumor necrosis factor (TNF). The liver is also enriched in natural killer (NK) and natural killer T (NKT) cells, which fulfill functions in pathogen defense, T cell recruitment and modulation of fibrogenic responses. TNF can activate specific intracellular pathways in hepatocytes that influence cell fate in different manners, e.g. pro-apoptotic signals via the caspase cascade, but also survival pathways, namely the nuclear factor (NF)-kappaB pathway. NF-kappaB regulates important functions in liver physiology and pathology. The exact dissection of the contribution of recruited and resident immune cells, their soluble cytokine and chemokine mediators and the intracellular hepatocytic response in liver homeostasis and injury could potentially identify novel targets for the treatment of acute and chronic liver disease, liver fibrosis or cirrhosis. PMID:26417243

  20. Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    PubMed Central

    Hegemann, Arne; Matson, Kevin D.; Versteegh, Maaike A.; Tieleman, B. Irene

    2012-01-01

    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands. PMID:22570706

  1. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses.

    PubMed

    Aravindhan, Vivekanandhan; Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  2. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    PubMed Central

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  3. Within-host co-evolution of chronic viruses and the adaptive immune system

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  4. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.

    PubMed

    Stevens, Natalie E; Hatjopolous, Antoinette; Fraser, Cara K; Alsharifi, Mohammed; Diener, Kerrilyn R; Hayball, John D

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  5. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses

    PubMed Central

    Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  6. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies.

    PubMed

    Patial, Sonika; Curtis, Alan D; Lai, Wi S; Stumpo, Deborah J; Hill, Georgette D; Flake, Gordon P; Mannie, Mark D; Blackshear, Perry J

    2016-02-16

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate-rich elements (AREs) in the 3'-untranslated regions (3'UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3'UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  7. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies

    PubMed Central

    Patial, Sonika; Curtis, Alan D.; Lai, Wi S.; Stumpo, Deborah J.; Hill, Georgette D.; Flake, Gordon P.; Mannie, Mark D.; Blackshear, Perry J.

    2016-01-01

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate–rich elements (AREs) in the 3′-untranslated regions (3′UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3′UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  8. Equine herpesvirus type 1 modulates inflammatory host immune response genes in equine endothelial cells.

    PubMed

    Johnstone, Stephanie; Barsova, Jekaterina; Campos, Isabel; Frampton, Arthur R

    2016-08-30

    Equine herpesvirus myeloencephalopathy (EHM), a disease caused by equine herpesvirus type 1 (EHV-1), is characterized by severe inflammation, thrombosis, and hypoxia in central nervous system (CNS) endothelial cells, which can result in a spectrum of clinical signs including urinary incontinence, ataxia, and paralysis. Strains of EHV-1 that contain a single point mutation within the viral DNA polymerase (nucleotide A2254>G2254: amino acid N752→D752) are isolated from EHM afflicted horses at higher frequencies than EHV-1 strains that do not harbor this mutation. Due to the correlation between the DNA Pol mutation and EHM disease, EHV-1 strains that contain the mutation have been designated as neurologic. In this study, we measured virus replication, cell to cell spread efficacy, and host inflammatory responses in equine endothelial cells infected with 12 different strains of EHV-1. Two strains, T953 (Ohio 2003) (neurologic) and Kentucky A (KyA) (non-neurologic), have well described disease phenotypes while the remaining strains used in this study are classified as neurologic or non-neurologic based solely on the presence or absence of the DNA pol mutation, respectively. Results show that the neurologic strains do not replicate better or spread more efficiently in endothelial cells. Also, the majority of the host inflammatory genes were modulated similarly regardless of EHV-1 genotype. Analyses of host gene expression showed that a subset of pro-inflammatory cytokines, including the CXCR3 ligands CXCL9, CXCL10, and CXCL11, as well as CCL5, IL-6 and TNF-α were consistently up-regulated in endothelial cells infected with each EHV-1 strain. The identification of specific pro-inflammatory cytokines in endothelial cells that are modulated by EHV-1 provides further insight into the factors that contribute to the immunopathology observed after infection and may also reveal new targets for disease intervention. PMID:27527764

  9. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity.

    PubMed

    Roghanian, Ali; Williams, Steven E; Sheldrake, Tara A; Brown, Tom I; Oberheim, Karen; Xing, Zhou; Howie, Sarah E M; Sallenave, Jean-Michel

    2006-05-01

    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies. PMID:16424380

  10. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    PubMed

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  11. Innate and Adaptive Anti-HIV Immune Responses in the Female Reproductive Tract

    PubMed Central

    Rodriguez-Garcia, Marta; Patel, Mickey V.; Wira, Charles R.

    2012-01-01

    The mucosal surface of the female reproductive tract (FRT) is the primary site of transmission for a plethora of sexually transmitted infections, including human immunodeficiency virus (HIV), that represent a significant burden upon womens' health worldwide. However, fundamental aspects of innate and adaptive immune protection against HIV infection in the FRT are poorly understood. The FRT immune system is regulated by the cyclical changes of the sex hormones estradiol and progesterone across the menstrual cycle, which as we have hypothesized, leads to the creation of a window of vulnerability during the secretory stage of the menstrual cycle, when the risk of HIV transmission is increased. The goal of this review is to summarize the multiple levels of protection against HIV infection in the FRT, the contribution of different cell types including epithelial cells, macrophages, T cells, and dendritic cells to this, and their regulation by estradiol and progesterone. Understanding the unique immune environment in the FRT will allow for the potential development of novel therapeutic interventions such as vaccines and microbicides that may reduce or prevent HIV transmission in women. PMID:23432874

  12. Adaptive maternal immune deviations as a ground for autism spectrum disorders development in children.

    PubMed

    Poletaev, Alexander B; Poletaeva, Alina A; Pukhalenko, Alexander I; Zamaleeva, Roza S; Cherepanova, Natalia A; Frizin, Dmitry V

    2014-01-01

    Autism is a vexed problem today. Overall, there is a high frequency of birth children (1:80 - 1:150) with late diagnosed autism spectrum disorders (ASD) and this trend is getting progressively stronger. The causes for the currently increased frequency of ASD and the pathogenesis of ASD are not fully understood yet. One of the most likely mechanisms inducing ASD may be a maternal immune imprinting. This phenomenon is based on transplacental translocation of maternal antibodies of IgG class and, as a consequence, on the epigenetic "tuning" of immune system of the fetus and child. This mechanism provides development of child's anti-infection resistance before meeting with microorganisms, but it can be also a cause of inborn pathology including the ASD appearance. The quantitative changes in maternal blood serum autoantibodies depend on a specific microbial population, or are induced by environmental chemical pollutants in association with some individual features of the maternal metabolism. These immune changes are adaptive in most cases for the maternal organism, but can be pathogenic for the fetus in some cases. We discuss in the present paper the possibilities to predict the risk from abnormal development of nervous system in fetus and early diagnosis of ASD in high-risk group of children. PMID:25181843

  13. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes

    PubMed Central

    Scharsack, Jörn P; Kalbe, Martin; Harrod, Chris; Rauch, Gisep

    2007-01-01

    Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers. PMID:17426014

  14. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    PubMed Central

    Ma, Yan-Hui; Cheng, Wei-Zhi; Gong, Fang; Ma, An-Lun; Yu, Qi-Wen; Zhang, Ji-Ying; Hu, Chao-Ying; Chen, Xue-Hua; Zhang, Dong-Qing

    2008-01-01

    AIM: To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance. METHODS: In this study, an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5 × 105 cells) into BALB/c mice. The experimental treatment was orally administered with ACML-55 or PBS, followed by the inoculation of colon cancer cell line CT26. Intracellular cytokine staining was used to detect IFN-γ production by tumor antigen specific CD8+ T cells. FACS analysis was employed to profile composition and activation of CD4+, CD8+, γδ T and NK cells. RESULTS: Our results showed, compared to PBS treated mice, ACML-55 treatment significantly delayed colon cancer development in colon cancer -bearing Balb/c mice in vivo. Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells, and increased the number of tumor Ag specific CD8+ T cells. It was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells. Interestingly, ACML-55 treatment also showed increased cell number of NK, and γδT cells, indicating the role of ACML-55 in activation of innate lymphocytes. CONCLUSION: Our results demonstrate that ACML-55 therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses. PMID:18785279

  15. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    PubMed Central

    Meyer, Manuela F; Lehmann, Marc; Cornberg, Markus; Wiegand, Johannes; Manns, Michael P; Klade, Christoph; Wedemeyer, Heiner

    2007-01-01

    Spontaneous clearance of hepatitis C virus (HCV) has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV. PMID:17562015

  16. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    NASA Astrophysics Data System (ADS)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  17. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  18. Signaling of c-kit in dendritic cells influences adaptive immunity

    PubMed Central

    Ray, Prabir; Krishnamoorthy, Nandini; Oriss, Timothy B.; Ray, Anuradha

    2013-01-01

    The binding of the receptor tyrosine kinase, c-kit, to its ligand, stem cell factor (SCF), mediates numerous biological functions. Important roles for c-kit in hematopoiesis, melanogenesis, erythropoiesis, spermatogenesis, and carcinogenesis are well documented. Similarly, activation of granulocytes, mast cells, and of eosinophils in particular, by c-kit ligation has long been known to result in degranulation with concomitant release of pro-inflammatory mediators, including cytokines. However, recent work from a number of laboratories, including our own, highlights previously unappreciated functions for c-kit in immunologic processes. These novel findings strongly suggest that signaling through the c-kit–SCF axis could have a significant impact on the pathogenesis of diseases associated with an immunologic component. In our own studies, c-kit upregulation on dendritic cells via T helper (Th)2- and Th17-inducing stimuli led to c-kit activation and immune skewing toward these T helper subsets and away from Th1 responses. Others have shown that dendritic cell treatment with inhibitors of c-kit activation, such as imatinib mesylate (Gleevec), favored breaking of T-cell tolerance, skewing of responses toward production of Th1 cytokines, and activation of natural killer cells. These data all indicate that deeper understanding of, and ability to control, the c-kit–SCF axis could lead to improved treatment modalities aimed at redirecting unwanted and/or deleterious immune responses in a wide variety of conditions. PMID:20146711

  19. Type I Interferon Receptor Deficiency in Dendritic Cells Facilitates Systemic Murine Norovirus Persistence Despite Enhanced Adaptive Immunity

    PubMed Central

    Nice, Timothy J.; Osborne, Lisa C.; Tomov, Vesselin T.; Artis, David; Wherry, E. John; Virgin, Herbert W.

    2016-01-01

    In order for a virus to persist, there must be a balance between viral replication and immune clearance. It is commonly believed that adaptive immunity drives clearance of viral infections and, thus, dysfunction or viral evasion of adaptive immunity is required for a virus to persist. Type I interferons (IFNs) play pleiotropic roles in the antiviral response, including through innate control of viral replication. Murine norovirus (MNoV) replicates in dendritic cells (DCs) and type I IFN signaling in DCs is important for early control of MNoV replication. We show here that the non-persistent MNoV strain CW3 persists systemically when CD11c positive DCs are unable to respond to type I IFN. Persistence in this setting is associated with increased early viral titers, maintenance of DC numbers, increased expression of DC activation markers and an increase in CD8 T cell and antibody responses. Furthermore, CD8 T cell function is maintained during the persistent phase of infection and adaptive immune cells from persistently infected mice are functional when transferred to Rag1-/- recipients. Finally, increased early replication and persistence are also observed in mixed bone marrow chimeras where only half of the CD11c positive DCs are unable to respond to type I IFN. These findings demonstrate that increased early viral replication due to a cell-intrinsic innate immune deficiency is sufficient for persistence and a functional adaptive immune response is not sufficient for viral clearance. PMID:27327515

  20. Type I Interferon Receptor Deficiency in Dendritic Cells Facilitates Systemic Murine Norovirus Persistence Despite Enhanced Adaptive Immunity.

    PubMed

    Nice, Timothy J; Osborne, Lisa C; Tomov, Vesselin T; Artis, David; Wherry, E John; Virgin, Herbert W

    2016-06-01

    In order for a virus to persist, there must be a balance between viral replication and immune clearance. It is commonly believed that adaptive immunity drives clearance of viral infections and, thus, dysfunction or viral evasion of adaptive immunity is required for a virus to persist. Type I interferons (IFNs) play pleiotropic roles in the antiviral response, including through innate control of viral replication. Murine norovirus (MNoV) replicates in dendritic cells (DCs) and type I IFN signaling in DCs is important for early control of MNoV replication. We show here that the non-persistent MNoV strain CW3 persists systemically when CD11c positive DCs are unable to respond to type I IFN. Persistence in this setting is associated with increased early viral titers, maintenance of DC numbers, increased expression of DC activation markers and an increase in CD8 T cell and antibody responses. Furthermore, CD8 T cell function is maintained during the persistent phase of infection and adaptive immune cells from persistently infected mice are functional when transferred to Rag1-/- recipients. Finally, increased early replication and persistence are also observed in mixed bone marrow chimeras where only half of the CD11c positive DCs are unable to respond to type I IFN. These findings demonstrate that increased early viral replication due to a cell-intrinsic innate immune deficiency is sufficient for persistence and a functional adaptive immune response is not sufficient for viral clearance. PMID:27327515

  1. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    PubMed Central

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  2. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    PubMed

    Fricke, G Matthew; Letendre, Kenneth A; Moses, Melanie E; Cannon, Judy L

    2016-03-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  3. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes.

    PubMed

    Toben, Catherine; Baune, Bernhard T

    2015-12-01

    Historically the monoaminergic neurotransmitter system, in particular the serotonergic system, was seen as being responsible for the pathophysiology of major depressive disorder (MDD). With the advent of psychoneuroimmunology an important role of the immune system in the interface between the central nervous systems (CNS) and peripheral organ systems has emerged. In addition to the well-characterised neurobiological activities of cytokines, T cell function in the context of depression has been neglected so far. In this review we will investigate the biological roles of T cells in depression. Originally it was thought that the adaptive immune arm including T lymphocytes was excluded from the CNS. It is now clear that peripheral naïve T cells not only carry out continuous surveillance within the brain but also maintain neural plasticity. Furthermore animal studies demonstrate that regulatory T lymphocytes can provide protection against maladaptive behavioural responses associated with depression. Psychogenic stress as a major inducer of depression can lead to transient trafficking of T lymphocytes into the brain stimulating the secretion of certain neurotrophic factors and cytokines. The separate and combined mechanism of CD4 and CD8 T cell activation is likely to determine the response pattern of CNS specific neurokines and neurotrophins. Under chronic stress-induced neuroinflammatory conditions associated with depression, T cell responses may become maladaptive and can be involved in neurodegeneration. Additionally, intracellular adhesion and MHC molecule expression as well as glucocorticoid receptor expression within the brain may play a role in determining T lymphocyte functionality in depression. Taken together, T lymphocyte mechanisms, which confer susceptibility or resilience to MDD, are not yet fully understood. Further insight into the cellular and molecular mechanisms which balance the adaptive and maladaptive roles of T lymphocytes may provide a better

  4. Interleukin-33 and Mast Cells Bridge Innate and Adaptive Immunity: From the Allergologist’s Perspective

    PubMed Central

    Jang, Tae Young; Kim, Young Hyo

    2015-01-01

    Interleukin (IL) 33, a member of the IL-1 superfamily, is an “alarmin” protein and is secreted in its active form from damaged cells undergoing necrotic cell death. Mast cells are one of the main effector cell types in allergic disorders. They secrete a variety of mediators, including T helper 2 cytokines. As mast cells have high-affinity IgE receptors (FcεRI) on their surface, they can capture circulating IgE. IgE-bound mast cells degranulate large amounts of histamine, heparin, and proteases when they encounter antigens. As IL-33 is an important mediator of innate immunity and mast cells play an important role in adaptive immune responses, interactions between the two could link innate and adaptive immunity. IL-33 promotes the adhesion of mast cells to laminin, fibronectin, and vitronectin. IL-33 increases the expression of adhesion molecules, such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in endothelial cells, thus enhancing mast cell adhesion to blood vessel walls. IL-33 stimulates mast cell proliferation by activating the ST2/Myd88 pathway; increases mast cell survival by the activation of survival proteins such as Bcl-XL; and promotes the growth, development, and maturation of mast cell progenitors. IL-33 is also involved in the activation of mature mast cells and production of different proinflammatory cytokines. The interaction of IL-33 and mast cells could have important clinical implications in the field of clinical urology. Epithelial dysfunction and mast cells could play an important role in the pathogenesis of interstitial cystitis. Urinary levels of IL-33 significantly increase in patients with interstitial cystitis. In addition, the number of mast cells significantly increase in the urinary bladders of patients with interstitial cystitis. Therefore, inhibition of mast cell activation and degranulation in response to increase in IL-33 is a potential therapeutic target in the treatment of interstitial cystitis

  5. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone.

    PubMed

    Ciencewicki, Jonathan M; Verhein, Kirsten C; Gerrish, Kevin; McCaw, Zachary R; Li, Jianying; Bushel, Pierre R; Kleeberger, Steven R

    2016-08-01

    Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl(+/+)) and MBL-deficient (Mbl(-/-)) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl(-/-) than Mbl(+/+) mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl(+/+) and Mbl(-/-) mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS(2) data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at

  6. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  7. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  8. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  9. Vaccinations in adults with chronic inflammatory joint disease: Immunization schedule and recommendations for patients taking synthetic or biological disease-modifying antirheumatic drugs.

    PubMed

    Morel, Jacques; Czitrom, Séverine Guillaume; Mallick, Auriane; Sellam, Jérémie; Sibilia, Jean

    2016-03-01

    The risk of infection associated with autoimmune diseases is further increased by the use of biotherapies. Recommendations to minimize this risk include administering the full complement of vaccines on the standard immunization schedule, as well as the pneumococcal and influenza vaccines. Adults with chronic inflammatory joint disease (IJD) may receive a 13-valent pneumococcal conjugate vaccine, as well as a live attenuated vaccine against recurrent herpes zoster, recently licensed by European regulatory authorities. Live attenuated vaccines can be given only after an interval without immunosuppressant and/or glucocorticoid therapy. The effectiveness of vaccines, as assessed based on titers of protective antibodies, varies across vaccine types and disease-modifying antirheumatic drugs (DMARDs). Thus, methotrexate and rituximab are usually associated with decreased vaccine responses. The risks associated with vaccines are often considerably exaggerated by the media, which serve lobbies opposed to immunizations and make some patients reluctant to accept immunizations. Increasing immunization coverage may diminish the risk of treatment-related infections. A physician visit dedicated specifically to detecting comorbidities in patients with chronic IJD may result in improved immunization coverage. In this review, we discuss immunizations for adults with chronic IJD based on the treatments used, as well as immunization coverage. Many questions remain unanswered and warrant investigation by studies coordinated by the French networks IREIVAC (Innovative clinical research network in vaccinology) and IMIDIATE (Immune-Mediated Inflammatory Disease Alliance for Translational and Clinical Research). PMID:26453106

  10. Co-methylated genes in different adipose depots of pig are associated with metabolic, inflammatory and immune processes.

    PubMed

    Li, Mingzhou; Wu, Honglong; Wang, Tao; Xia, Yudong; Jin, Long; Jiang, Anan; Zhu, Li; Chen, Lei; Li, Ruiqiang; Li, Xuewei

    2012-01-01

    It is well established that the metabolic risk factors of obesity and its comorbidities are more attributed to adipose tissue distribution rather than total adipose mass. Since emerging evidence suggests that epigenetic regulation plays an important role in the aetiology of obesity, we conducted a genome-wide methylation analysis on eight different adipose depots of three pig breeds living within comparable environments but displaying distinct fat level using methylated DNA immunoprecipitation sequencing. We aimed to investigate the systematic association between anatomical location-specific DNA methylation status of different adipose depots and obesity-related phenotypes. We show here that compared to subcutaneous adipose tissues which primarily modulate metabolic indicators, visceral adipose tissues and intermuscular adipose tissue, which are the metabolic risk factors of obesity, are primarily associated with impaired inflammatory and immune responses. This study presents epigenetic evidence for functionally relevant methylation differences between different adipose depots. PMID:22719223

  11. [Intestinal-brain axis. Neuronal and immune-inflammatory mechanisms of brain and intestine pathology].

    PubMed

    Bondarenko, V M; Riabichenko, E V

    2013-01-01

    Mutually directed connections between intestine and brain are implemented by endocrine, neural and immune systems and nonspecific natural immunity. Intestine micro flora as an active participant of intestine-brain axis not only influences intestine functions but also stimulates the development of CNS in perinatal period and interacts with higher nervous centers causing depression and cognitive disorders in pathology. A special role belongs to intestine microglia. Apart from mechanic (protective) and trophic functions for intestine neurons, glia implements neurotransmitter, immunologic, barrier and motoric functions in the intestine. An interconnection between intestine barrier function and hematoencephalic barrier regulation exists. Chronic endotoxinemia as a result of intestine barrier dysfunction forms sustained inflammation state in periventricular zone of the brain with consequent destabilization of hematoencephalic barriers and spread oF inflammation to other parts of the brain resulting in neurodegradation development. PMID:23805681

  12. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Nita-Lazar, Mihai; Banerjee, Aditi; Pasek, Marta; Shridhar, Surekha; Guha, Prasun; Fernández-Robledo, José A.

    2012-01-01

    Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation. PMID:22811679

  13. Anti‐Inflammatory Immune Skewing Is Atheroprotective: Apoe−/−FcγRIIb−/− Mice Develop Fibrous Carotid Plaques

    PubMed Central

    Harmon, Erin Y.; Fronhofer, Van; Keller, Rebecca S.; Feustel, Paul J.; Zhu, Xinmei; Xu, Hao; Avram, Dorina; Jones, David M.; Nagarajan, Shanmugam; Lennartz, Michelle R.

    2014-01-01

    Background Stroke, caused by carotid plaque rupture, is a major cause of death in the United States. Whereas vulnerable human plaques have higher Fc receptor (FcγR) expression than their stable counterparts, how FcγR expression impacts plaque histology is unknown. We investigated the role of FcγRIIb in carotid plaque development and stability in apolipoprotein (Apo)e−/− and Apoe−/−FcγRIIb−/− double knockout (DKO) animals. Methods and Results Plaques were induced by implantation of a shear stress‐modifying cast around the carotid artery. Plaque length and stenosis were followed longitudinally using ultrasound biomicroscopy. Immune status was determined by flow cytometry, cytokine release, immunoglobulin G concentration and analysis of macrophage polarization both in plaques and in vitro. Surprisingly, DKO animals had lower plaque burden in both carotid artery and descending aorta. Plaques from Apoe−/− mice were foam‐cell rich and resembled vulnerable human specimens, whereas those from DKO mice were fibrous and histologically stable. Plaques from DKO animals expressed higher arginase 1 (Arg‐1) and lower inducible nitric oxide synthase (iNOS), indicating the presence of M2 macrophages. Analysis of blood and cervical lymph nodes revealed higher interleukin (IL)‐10, immune complexes, and regulatory T cells (Tregs) and lower IL‐12, IL‐1β, and tumor necrosis factor alpha (TNF‐α) in DKO mice. Similarly, in vitro stimulation produced higher IL‐10 and Arg‐1 and lower iNOS, IL‐1β, and TNF‐α in DKO versus Apoe−/− macrophages. These results define a systemic anti‐inflammatory phenotype. Conclusions We hypothesized that removal of FcγRIIb would exacerbate atherosclerosis and generate unstable plaques. However, we found that deletion of FcγRIIb on a congenic C57BL/6 background induces an anti‐inflammatory Treg/M2 polarization that is atheroprotective. PMID:25516435

  14. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study

    PubMed Central

    Kim, Daniel; Kubzansky, Laura D; Baccarelli, Andrea; Sparrow, David; Spiro, Avron; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Objectives Although psychological factors have been associated with chronic diseases such as coronary heart disease (CHD), the underlying pathways for these associations have yet to be elucidated. DNA methylation has been posited as a mechanism linking psychological factors to CHD risk. In a cohort of community-dwelling elderly men, we explored the associations between positive and negative psychological factors with DNA methylation in promoter regions of multiple genes involved in immune/inflammatory processes related to atherosclerosis. Design Prospective cohort study. Setting Greater Boston, Massachusetts area. Participants Samples of 538 to 669 men participating in the Normative Aging Study cohort with psychological measures and DNA methylation measures, collected on 1–4 visits between 1999 and 2006 (mean age=72.7 years at first visit). Outcome measures We examined anxiety, depression, hostility and life satisfaction as predictors of leucocyte gene-specific DNA methylation. We estimated repeated measures linear mixed models, controlling for age, smoking, education, history of heart disease, stroke or diabetes, % lymphocytes, % monocytes and plasma folate. Results Psychological distress measured by anxiety, depression and hostility was positively associated, and happiness and life satisfaction were inversely associated with average Intercellular Adhesion Molecule-1 (ICAM-1) and coagulation factor III (F3) promoter methylation levels. There was some evidence that hostility was positively associated with toll-like receptor 2 (TLR-2) promoter methylation, and that life satisfaction was inversely associated with TLR-2 and inducible nitric oxide synthase (iNOS) promoter methylation. We observed less consistent and significant associations between psychological factors and average methylation for promoters of the genes for glucocorticoid receptor (NR3C1), interferon-γ (IFN-γ) and interleukin 6 (IL-6). Conclusions These findings suggest that positive and negative

  15. Association of inflammatory and other immune markers with gallbladder cancer: Results from two independent case-control studies.

    PubMed

    Koshiol, Jill; Castro, Felipe; Kemp, Troy J; Gao, Yu-Tang; Roa, Juan Carlos; Wang, Bingsheng; Nogueira, Leticia; Araya, Juan Carlos; Shen, Ming-Chang; Rashid, Asif; Hsing, Ann W; Hildesheim, Allan; Ferreccio, Catterina; Pfeiffer, Ruth M; Pinto, Ligia A

    2016-07-01

    Most gallbladder cancer (GBC) cases arise in the context of gallstones, which cause inflammation, but few gallstone patients develop GBC. We explored inflammation/immune-related markers measured in bile and serum in GBC cases compared to gallstone patients to better understand how inflammatory patterns in these two conditions differ. We measured 65 immune-related markers in serum and bile from 41 GBC cases and 127 gallstone patients from Shanghai, China, and calculated age- and sex-adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for GBC versus gallstones. We then focused on the markers that were significantly elevated in bile and serum to replicate the findings in serum from 35 GBC cases and 31 gallstone controls from Chile. Comparing the highest versus lowest quantile, 15 markers (23%) were elevated in both serum and bile from GBC versus gallstone patients in the Shanghai study (p<0.05). The strongest OR was for CXCL8 (interleukin-8) in serum (96.8, 95% CI: 11.9-790.2). Of these 15 markers, 6 were also significantly elevated in serum from Chile (CCL20, C-reactive protein, CXCL8, CXCL10, resistin, serum amyloid A). Pooled ORs from Shanghai and Chile for these 6 markers ranged from 7.2 (95% CI: 2.8-18.4) for CXCL10 to 58.2 (95% CI: 12.4-273.0) for CXCL8. GBC is associated with inflammation above and beyond that generated by gallstones alone. This local inflammatory process is reflected systemically. Future longitudinal studies are needed to identify the key players in cancer development, which may guide translational efforts to identify individuals at high risk of developing GBC. PMID:27173614

  16. The proinflammatory function of lymphocytes in non-immune inflammation: effect of steroidal and non-steroidal anti-inflammatory agents.

    PubMed Central

    Leme, J. G.; Bechara, G. H.; Sudo, L. S.

    1977-01-01

    Leucopenia rendered rats unresponsive to various inflammatory stimuli. The intensity of the inflammatory response in such animals was restored by i.v. administration of suspensions of lymphocytes, but not of granulocytes. This restorative effect was blocked by both steroidal and non-steroidal anti-inflammatory drugs. Utilizing carrageenin to induce inflammatory responses in the rat's paw, the effect of these drugs on lymphocytes was observed in two circumstances. First, following incubation of the cells with the drugs in concentrations not exceeding the peak plasma levels estimated for these substances in man or laboratory animals; the effect of the drugs seemed selective, since anti-histamine and anti-serotonin agents, as well as amethopterin, were devoid of action. Second, when lymphocytes were collected from rats previously treated with the various anti-inflammatory agents, injected 6-hourly during periods of 18 and 36 h, respectively, for steroidal and non-steroidal anti-inflammatory substances. The total amounts given were lower than those required to produce consistent anti-inflammatory effects in normal animals, when the drug was given as a single dose before injection of the irritant. It is concluded that the pro-inflammatory function of lymphocytes in non-immune inflammation can be blocked by steroidal and non-steroidal anti-inflammatory agents. PMID:607989

  17. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    PubMed Central

    Schuster, Philipp; Boscheinen, Jan Bernardin; Tennert, Karin; Schmidt, Barbara

    2011-01-01

    In 1999, two independent groups identified plasmacytoid dendritic cells (PDC) as major type I interferon- (IFN-) producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought. PMID:22312349

  18. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems.

    PubMed

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-01-01

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders. PMID:26371053

  19. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems

    PubMed Central

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-01-01

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders. PMID:26371053

  20. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence

    PubMed Central

    Strnadova, Pavla; Ren, Hongwei; Valentine, Robert; Mazzon, Michela; Sweeney, Trevor R.; Brierley, Ian; Smith, Geoffrey L.

    2015-01-01

    Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity. PMID:26334635

  1. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence.

    PubMed

    Strnadova, Pavla; Ren, Hongwei; Valentine, Robert; Mazzon, Michela; Sweeney, Trevor R; Brierley, Ian; Smith, Geoffrey L

    2015-09-01

    Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity. PMID:26334635

  2. Immune cells in term and preterm labor.

    PubMed

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-11-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  3. HIV-tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling.

    PubMed

    Lai, Rachel P J; Meintjes, Graeme; Wilkinson, Katalin A; Graham, Christine M; Marais, Suzaan; Van der Plas, Helen; Deffur, Armin; Schutz, Charlotte; Bloom, Chloe; Munagala, Indira; Anguiano, Esperanza; Goliath, Rene; Maartens, Gary; Banchereau, Jacques; Chaussabel, Damien; O'Garra, Anne; Wilkinson, Robert J

    2015-01-01

    Patients with HIV-associated tuberculosis (TB) initiating antiretroviral therapy (ART) may develop immune reconstitution inflammatory syndrome (TB-IRIS). No biomarkers for TB-IRIS have been identified and the underlying mechanisms are unclear. Here we perform transcriptomic profiling of the blood samples of patients with HIV-associated TB. We identify differentially abundant transcripts as early as week 0.5 post ART initiation that predict downstream activation of proinflammatory cytokines in patients who progress to TB-IRIS. At the characteristic time of TB-IRIS onset (week 2), the signature is characterized by over-representation of innate immune mediators including TLR signalling and TREM-1 activation of the inflammasome. In keeping with the transcriptional data, concentrations of plasma cytokines and caspase-1/5 are elevated in TB-IRIS. Inhibition of MyD88 adaptor and group 1 caspases reduces secretion of cytokines including IL-1 in TB-IRIS patients. These data provide insight on the pathogenesis of TB-IRIS and may assist the development of specific therapies. PMID:26399326

  4. HIV–tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling

    PubMed Central

    Lai, Rachel P. J.; Meintjes, Graeme; Wilkinson, Katalin A.; Graham, Christine M.; Marais, Suzaan; Van der Plas, Helen; Deffur, Armin; Schutz, Charlotte; Bloom, Chloe; Munagala, Indira; Anguiano, Esperanza; Goliath, Rene; Maartens, Gary; Banchereau, Jacques; Chaussabel, Damien; O'Garra, Anne; Wilkinson, Robert J.

    2015-01-01

    Patients with HIV-associated tuberculosis (TB) initiating antiretroviral therapy (ART) may develop immune reconstitution inflammatory syndrome (TB-IRIS). No biomarkers for TB-IRIS have been identified and the underlying mechanisms are unclear. Here we perform transcriptomic profiling of the blood samples of patients with HIV-associated TB. We identify differentially abundant transcripts as early as week 0.5 post ART initiation that predict downstream activation of proinflammatory cytokines in patients who progress to TB-IRIS. At the characteristic time of TB-IRIS onset (week 2), the signature is characterized by over-representation of innate immune mediators including TLR signalling and TREM-1 activation of the inflammasome. In keeping with the transcriptional data, concentrations of plasma cytokines and caspase-1/5 are elevated in TB-IRIS. Inhibition of MyD88 adaptor and group 1 caspases reduces secretion of cytokines including IL-1 in TB-IRIS patients. These data provide insight on the pathogenesis of TB-IRIS and may assist the development of specific therapies. PMID:26399326

  5. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    PubMed

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers. PMID:26792800

  6. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  7. B7x/B7-H4 modulates the adaptive immune response and ameliorates renal injury in antibody-mediated nephritis

    PubMed Central

    Pawar, R D; Goilav, B; Xia, Y; Herlitz, L; Doerner, J; Chalmers, S; Ghosh, K; Zang, X; Putterman, C

    2015-01-01

    Kidney disease is one of the leading causes of death in patients with lupus and other autoimmune diseases affecting the kidney, and is associated with deposition of antibodies as well as infiltration of T lymphocytes and macrophages, which are responsible for initiation and/or exacerbation of inflammation and tissue injury. Current treatment options have relatively limited efficacy; therefore, novel targets need to be explored. The co-inhibitory molecule, B7x, a new member of the B7 family expressed predominantly by non-lymphoid tissues, has been shown to inhibit the proliferation, activation and functional responses of CD4 and CD8 T cells. In this study, we found that B7x was expressed by intrinsic renal cells, and was up-regulated upon stimulation with inflammatory triggers. After passive administration of antibodies against glomerular antigens, B7x−/− mice developed severe renal injury accompanied by a robust adaptive immune response and kidney up-regulation of inflammatory mediators, as well as local infiltration of T cells and macrophages. Furthermore, macrophages in the spleen of B7x−/− mice were polarized to an inflammatory phenotype. Finally, treatment with B7x-immunoglobulin (Ig) in this nephritis model decreased kidney damage and reduced local inflammation. We propose that B7x can modulate kidney damage in autoimmune diseases including lupus nephritis and anti-glomerular basement membrane disease. Thus, B7x mimetics may be a novel therapeutic option for treatment of immune-mediated kidney disease. PMID:25205493

  8. Ulcerating type 1 lepra reaction mimicking lazarine leprosy: an unusual presentation of immune reconstitution inflammatory syndrome in an HIV-infected patient.

    PubMed

    Bhat, Ramesh; Pinto, Malcolm; Dandakeri, Sukumar; Kambil, Srinath

    2013-12-01

    Leprosy maybe "unmasked" in the context of immune reconstitution inflammatory syndrome and treating dermatologists, particularly in highly endemic areas for Hansen's disease, need to be cognizant to this possibility. It may also reflect emergence of a previously clinically silent infection in the course of immunologic restoration. PMID:24216029

  9. Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged, hyperadipose male rat.

    PubMed

    Castrogiovanni, Daniel; Gaillard, Rolf C; Giovambattista, Andrés; Spinedi, Eduardo

    2008-01-01

    In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity. PMID:18382067

  10. Ethyl pyruvate and ethyl lactate down-regulate the production of pro-inflammatory cytokines and modulate expression of immune receptors.

    PubMed

    Hollenbach, Marcus; Hintersdorf, Anja; Huse, Klaus; Sack, Ulrich; Bigl, Marina; Groth, Marco; Santel, Thore; Buchold, Martin; Lindner, Inge; Otto, Andreas; Sicker, Dieter; Schellenberger, Wolfgang; Almendinger, Johannes; Pustowoit, Barbara; Birkemeyer, Claudia; Platzer, Mathias; Oerlecke, Ilka; Hemdan, Nasr; Birkenmeier, Gerd

    2008-09-01

    Esters of alpha-oxo-carbonic acids such as ethyl pyruvate (EP) have been demonstrated to exert inhibitory effects on the production of anti-inflammatory cytokines. So far, there is no information about effects, if any, of ethyl lactate (EL), an obviously inactive analogue of EP, on inflammatory immune responses. In the present study, we provide evidence that the anti-inflammatory action of alpha-oxo-carbonic acid esters is mediated by inhibition of glyoxalases (Glo), cytosolic enzymes that catalyse the conversion of alpha-oxo-aldehydes such as methylglyoxal (MGO) into the corresponding alpha-hydroxy acids using glutathione as a cofactor. In vitro enzyme activity measurements revealed the inhibition of human Glo1 by alpha-oxo-carbonic acid esters, whilst alpha-hydroxy-carbonic acid esters such as EL were not inhibitory. In contrast, both EP and EL were shown to suppress the Lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6 and IL-8 from human immunocompetent cells, and modulated the expression of the immune receptors HLA-DR, CD14 and CD91 on human monocytes. Here, we show a crossing link between glyoxalases and the immune system. The results described herein introduce glyoxalases as a possible target for therapeutic approaches of immune suppression. PMID:18625205

  11. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl

    2014-01-01

    Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209

  12. Immune response of mice to non-adapted avian influenza A virus.

    PubMed

    Stropkovská, A; Mikušková, T; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-12-01

    Human infections with avian influenza A viruses (IAVs) without or with clinical symptoms of disease were recently reported from several continents, mainly in high risk groups of people, who came into the contact with infected domestic birds or poultry. It was shown that avian IAVs are able to infect humans directly without previous adaptation, however, their ability to replicate and to cause a disease in this new host can differ. No spread of these avian IAVs among humans has been documented until now, except for one case described in Netherlands in the February of 2003 in people directly involved in handling IAV (H7N7)-infected poultry. The aim of our work was to examine whether a low pathogenic avian IAV can induce a virus-specific immune response of biological relevancy, in spite of its restricted replication in mammals. As a model we used a low pathogenic virus A/Duck/Czechoslovakia/1956 (H4N6) (A/Duck), which replicated well in MDCK cells and produced plaques on cell monolayers, but was unable to replicate productively in mouse lungs. We examined how the immune system of mice responds to the intranasal application of this non-adapted avian virus. Though we did not prove the infectious virus in lungs of mice following A/Duck application even after its multiple passaging in mice, we detected virus-specific vRNA till day 8 post infection. Moreover, we detected virus-specific mRNA and de novo synthesized viral nucleoprotein (NP) and membrane protein (M1) in lungs of mice on day 2 and 4 after exposure to A/Duck. Virus-specific antibodies in sera of these mice were detectable by ELISA already after a single intranasal dose of A/Duck virus. Not only antibodies specific to the surface glycoprotein hemagglutinin (HA) were induced, but also antibodies specific to the NP and M1 of IAV were detected by Western blot and their titers increased after the second exposure of mice to this virus. Importantly, antibodies neutralizing virus A/Duck were proved in mouse

  13. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses.

    PubMed

    Chiossone, Laura; Conte, Romana; Spaggiari, Grazia Maria; Serra, Martina; Romei, Cristina; Bellora, Francesca; Becchetti, Flavio; Andaloro, Antonio; Moretta, Lorenzo; Bottino, Cristina

    2016-07-01

    Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921. PMID:27015881

  14. The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases.

    PubMed

    López de Padilla, Consuelo M; Niewold, Timothy B

    2016-01-15

    There is increasing scientific and clinical interest in elucidating the biology of type I Interferons, which began approximately 60 years ago with the concept of "viral interference", a property that reduces the ability of a virus to infect cells. Although our understanding of the multiple cellular and molecular functions of interferons has advanced significantly, much remains to be learned and type I Interferons remain an active and fascinating area of inquiry. In this review, we cover some general aspects of type I interferon genes, with emphasis on interferon-alpha, and various aspects of molecular mechanisms triggered by type I interferons and toll-like receptor signaling by the Janus activated kinase/signal transducer activation of transcription (JAK-STAT) pathway and interferon regulatory factor pathway. We will also describe the role of type I interferons in autoimmune and inflammatory diseases, and its potential use as therapeutic agent. PMID:26410416

  15. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma

    PubMed Central

    Nauman, Pawel; Gabrusiewicz, Konrad; Sielska, Małgorzata; Przanowski, Piotr; Maleszewska, Marta; Rajan, Wenson D.; Pszczolkowska, Dominika; Tykocki, Tomasz; Grajkowska, Wieslawa; Kotulska, Katarzyna; Roszkowski, Marcin; Kostkiewicz, Boguslaw; Kaminska, Bozena

    2015-01-01

    Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKβ, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKβ levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKβ expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma. PMID:26427514

  16. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances.

    PubMed

    Haapakoski, Rita; Ebmeier, Klaus P; Alenius, Harri; Kivimäki, Mika

    2016-04-01

    The inflammation theory of depression, proposed over 20years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced 'omics' technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. PMID:26631274

  17. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances

    PubMed Central

    Haapakoski, Rita; Ebmeier, Klaus P.; Alenius, Harri; Kivimäki, Mika

    2016-01-01

    The inflammation theory of depression, proposed over 20 years ago, was influenced by early studies on T cell responses and since then has been a stimulus for numerous research projects aimed at understanding the relationship between immune function and depression. Observational studies have shown that indicators of immunity, especially C reactive protein and proinflammatory cytokines, such as interleukin 6, are associated with an increased risk of depressive disorders, although the evidence from randomized trials remains limited and only few studies have assessed the interplay between innate and adaptive immunity in depression. In this paper, we review current knowledge on the interactions between central and peripheral innate and adaptive immune molecules and the potential role of immune-related activation of microglia, inflammasomes and indoleamine-2,3-dioxygenase in the development of depressive symptoms. We highlight how combining basic immune methods with more advanced ‘omics’ technologies would help us to make progress in unravelling the complex associations between altered immune function and depressive disorders, in the identification of depression-specific biomarkers and in developing immunotherapeutic treatment strategies that take individual variability into account. PMID:26631274

  18. Combination Therapy With Reovirus and Anti-PD-1 Blockade Controls Tumor Growth Through Innate and Adaptive Immune Responses.

    PubMed

    Rajani, Karishma; Parrish, Christopher; Kottke, Timothy; Thompson, Jill; Zaidi, Shane; Ilett, Liz; Shim, Kevin G; Diaz, Rosa-Maria; Pandha, Hardev; Harrington, Kevin; Coffey, Matt; Melcher, Alan; Vile, Richard

    2016-02-01

    Oncolytic reovirus can be delivered both systemically and intratumorally, in both preclinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and antitumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive antitumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (P < 0.01) or anti-PD-1 therapy alone. In vitro immune analysis demonstrated that checkpoint inhibition improved the ability of NK cells to kill reovirus-infected tumor cells, reduced T(reg) activity, and increased the adaptive CD8(+) T-cell-dependent antitumor T-cell response. PD-1 blockade also enhanced the antiviral immune response but through effector mechanisms which overlapped with but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus viroimmunotherapy. PMID:26310630

  19. Immune adaptive response induced by Bicotylophora trachinoti (Monogenea: Diclidophoridae) infestation in pompano Trachinotus marginatus (Perciformes: Carangidae).

    PubMed

    Chaves, I S; Luvizzotto-Santos, R; Sampaio, L A N; Bianchini, A; Martínez, P E

    2006-09-01

    Fish have developed protective strategies against monogeneans through immunological responses. In this study, immune adaptive response to parasites was analysed in the pompano Trachinotus marginatus infested by Bicotylophora trachinoti. Hosts were pre-treated with formalin and after 10 days assigned to one of the following experimental treatments: (1) fish infested with remaining eggs of B. trachinoti; (2) fish infested with remaining eggs of B. trachinoti and experimentally re-infested by exposure to T. marginatus heavily infested with B. trachinoti. Samples were collected at 0, 15, and 30 days. Gills were dissected to check the presence of B. trachinoti. Blood was collected for haematological and biochemical assays. Spleen and head-kidney were dissected for phagocytosis assay. The spleen-somatic index was also calculated. Re-infested fish showed a faster and higher parasite infestation than infested ones. The parasite mean abundance at 15 days was 24.86+/-13.32 and 11.67+/-8.57 for re-infested and infested fish, respectively. In both groups, hosts showed an immune adaptive response to parasite infestation that was marked by an increased number of leukocytes. Also, phagocytosis (%) in spleen and head-kidney cells was stimulated after parasite infestation (92.50+/-3.73 and 66.00+/-9.54, respectively), becoming later depressed (77.39+/-6.69 and 53.23+/-9.14, respectively). These results support the hypothesis that monogenean infestation induces a biphasic response of the non-specific defence mechanisms in the pompano T. marginatus. This response is marked by an initial stimulation followed by a later depression of the non-specific defence mechanisms. PMID:16483796

  20. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells

    PubMed Central

    Luo, Yuchun; Cai, Xiangna; Liu, Sucai; Wang, Sen; Nold-Petry, Claudia A.; Nold, Marcel F.; Bufler, Philip; Norris, David; Dinarello, Charles A.; Fujita, Mayumi

    2014-01-01

    IL-1 family member IL-37 limits innate inflammation in models of colitis and LPS-induced shock, but a role in adaptive immunity remains unknown. Here, we studied mice expressing human IL-37b isoform (IL-37tg) subjected to skin contact hypersensitivity (CHS) to dinitrofluorobenzene. CHS challenge to the hapten was significantly decreased in IL-37tg mice compared with wild-type (WT) mice (−61%; P < 0.001 at 48 h). Skin dendritic cells (DCs) were present and migrated to lymph nodes after antigen uptake in IL-37tg mice. When hapten-sensitized DCs were adoptively transferred to WT mice, antigen challenge was greatly impaired in mice receiving DCs from IL-37tg mice compared with those receiving DCs from WT mice (−60%; P < 0.01 at 48 h). In DCs isolated from IL-37tg mice, LPS-induced increase of MHC II and costimulatory molecule CD40 was reduced by 51 and 31%, respectively. In these DCs, release of IL-1β, IL-6, and IL-12 was reduced whereas IL-10 secretion increased (37%). Consistent with these findings, DCs from IL-37tg mice exhibited a lower ability to stimulate syngeneic and allogeneic naive T cells as well as antigen-specific T cells and displayed enhanced induction of T regulatory (Treg) cells (86%; P < 0.001) in vitro. Histological analysis of CHS skin in mice receiving hapten-sensitized DCs from IL-37tg mice revealed a marked reduction in CD8+ T cells (−74%) but an increase in Treg cells (2.6-fold). Together, these findings reveal that DCs expressing IL-37 are tolerogenic, thereby impairing activation of effector T-cell responses and inducing Treg cells. IL-37 thus emerges as an inhibitor of adaptive immunity. PMID:25294929

  1. The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence

    PubMed Central

    Mehra, Smriti; Foreman, Taylor W.; Didier, Peter J.; Ahsan, Muhammad H.; Hudock, Teresa A.; Kissee, Ryan; Golden, Nadia A.; Gautam, Uma S.; Johnson, Ann-Marie; Alvarez, Xavier; Russell-Lodrigue, Kasi E.; Doyle, Lara A.; Roy, Chad J.; Niu, Tianhua; Blanchard, James L.; Khader, Shabaana A.; Lackner, Andrew A.; Sherman, David R.

    2015-01-01

    Rationale: Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia. Objectives: To understand DosR's contribution in the persistence of M. tuberculosis, we compared the phenotype of various DosR regulon mutants and a complemented strain to M. tuberculosis in macaques, which faithfully model M. tuberculosis infection. Methods: We measured clinical and microbiologic correlates of infection with M. tuberculosis relative to mutant/complemented strains in the DosR regulon, studied lung pathology and hypoxia, and compared immune responses in lung using transcriptomics and flow cytometry. Measurements and Main Results: Despite being able to replicate initially, mutants in DosR regulon failed to persist or cause disease. On the contrary, M. tuberculosis and a complemented strain were able to establish infection and tuberculosis. The attenuation of pathogenesis in animals infected with the mutants coincided with the appearance of a Th1 response and organization of hypoxic lesions wherein M. tuberculosis expressed dosR. The lungs of animals infected with the mutants (but not the complemented strain) exhibited early transcriptional signatures of T-cell recruitment, activation, and proliferation associated with an increase of T cells expressing homing and proliferation markers. Conclusions: Delayed adaptive responses, a hallmark of M. tuberculosis infection, not only lead to persistence but also interfere with the development of effective antituberculosis vaccines. The DosR regulon therefore modulates both the magnitude and the timing of adaptive immune responses in response to hypoxia in vivo, resulting in persistent infection. Hence, DosR regulates key aspects of the M. tuberculosis life cycle and limits lung pathology. PMID:25730547

  2. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    SciTech Connect

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  3. IL-15 Prevents Apoptosis, Reverses Innate and Adaptive Immune Dysfunction, and Improves Survival in Sepsis

    PubMed Central

    Inoue, Shigeaki; Unsinger, Jacqueline; Davis, Christopher G.; Muenzer, Jared T.; Ferguson, Thomas A.; Chang, Katherine; Osborne, Dale F.; Clark, Andrew T.; Coopersmith, Craig M.; McDunn, Jonathan E.; Hotchkiss, Richard S.

    2010-01-01

    L-15 is a pluripotent antiapoptotic cytokine that signals to cells of both the innate and adaptive immune system and is regarded as a highly promising immunomodulatory agent in cancer therapy. Sepsis is a lethal condition in which apoptosis-induced depletion of immune cells and subsequent immunosuppression are thought to contribute to morbidity and mortality. This study tested the ability of IL-15 to block apoptosis, prevent immunosuppression, and improve survival in sepsis. Mice were made septic using cecal ligation and puncture or Pseudomonas aeruginosa pneumonia. The experiments comprised a 2×2 full factorial design with surgical sepsis versus sham and IL-15 versus vehicle. In addition to survival studies, splenic cellularity, canonical markers of activation and proliferation, intracellular pro- and antiapoptotic Bcl-2 family protein expression, and markers of immune cell apoptosis were evaluated by flow cytometry. Cytokine production was examined both in plasma of treated mice and splenocytes that were stimulated ex vivo. IL-15 blocked sepsis-induced apoptosis of NK cells, dendritic cells, and CD8 T cells. IL-15 also decreased sepsis-induced gut epithelial apoptosis. IL-15 therapy increased the abundance of antiapoptotic Bcl-2 while decreasing proapoptotic Bim and PUMA. IL-15 increased both circulating IFN-γ, as well as the percentage of NK cells that produced IFN-γ. Finally, IL-15 increased survival in both cecal ligation and puncture and P. aeruginosa pneumonia. In conclusion, IL-15 prevents two immunopathologic hallmarks of sepsis, namely, apoptosis and immunosuppression, and improves survival in two different models of sepsis. IL-15 represents a potentially novel therapy of this highly lethal disorder. PMID:20026737

  4. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis.

    PubMed

    Inoue, Shigeaki; Unsinger, Jacqueline; Davis, Christopher G; Muenzer, Jared T; Ferguson, Thomas A; Chang, Katherine; Osborne, Dale F; Clark, Andrew T; Coopersmith, Craig M; McDunn, Jonathan E; Hotchkiss, Richard S

    2010-02-01

    IL-15 is a pluripotent antiapoptotic cytokine that signals to cells of both the innate and adaptive immune system and is regarded as a highly promising immunomodulatory agent in cancer therapy. Sepsis is a lethal condition in which apoptosis-induced depletion of immune cells and subsequent immunosuppression are thought to contribute to morbidity and mortality. This study tested the ability of IL-15 to block apoptosis, prevent immunosuppression, and improve survival in sepsis. Mice were made septic using cecal ligation and puncture or Pseudomonas aeruginosa pneumonia. The experiments comprised a 2 x 2 full factorial design with surgical sepsis versus sham and IL-15 versus vehicle. In addition to survival studies, splenic cellularity, canonical markers of activation and proliferation, intracellular pro- and antiapoptotic Bcl-2 family protein expression, and markers of immune cell apoptosis were evaluated by flow cytometry. Cytokine production was examined both in plasma of treated mice and splenocytes that were stimulated ex vivo. IL-15 blocked sepsis-induced apoptosis of NK cells, dendritic cells, and CD8 T cells. IL-15 also decreased sepsis-induced gut epithelial apoptosis. IL-15 therapy increased the abundance of antiapoptotic Bcl-2 while decreasing proapoptotic Bim and PUMA. IL-15 increased both circulating IFN-gamma, as well as the percentage of NK cells that produced IFN-gamma. Finally, IL-15 increased survival in both cecal ligation and puncture and P. aeruginosa pneumonia. In conclusion, IL-15 prevents two immunopathologic hallmarks of sepsis, namely, apoptosis and immunosuppression, and improves survival in two different models of sepsis. IL-15 represents a potentially novel therapy of this highly lethal disorder. PMID:20026737

  5. Unusual association of amyotrophic lateral sclerosis and myasthenia gravis: A dysregulation of the adaptive immune system?

    PubMed

    Del Mar Amador, Maria; Vandenberghe, Nadia; Berhoune, Nawel; Camdessanché, Jean-Philippe; Gronier, Sophie; Delmont, Emilien; Desnuelle, Claude; Cintas, Pascal; Pittion, Sophie; Louis, Sarah; Demeret, Sophie; Lenglet, Timothée; Meininger, Vincent; Salachas, François; Pradat, Pierre-François; Bruneteau, Gaëlle

    2016-06-01

    Myasthenia gravis is an autoimmune disorder affecting neuromuscular junctions that has been associated with a small increased risk of amyotrophic lateral sclerosis (ALS). Here, we describe a retrospective series of seven cases with a concomitant diagnosis of ALS and myasthenia gravis, collected among the 18 French reference centers for ALS in a twelve year period. After careful review, only six patients strictly met the diagnostic criteria for both ALS and myasthenia gravis. In these patients, limb onset of ALS was reported in five (83%) cases. Localization of myasthenia gravis initial symptoms was ocular in three (50%) cases, generalized in two (33%) and bulbar in one (17%). Median delay between onset of the two conditions was 19 months (6-319 months). Anti-acetylcholine receptor antibodies testing was positive in all cases. All patients were treated with riluzole and one had an associated immune-mediated disease. In the one last ALS case, the final diagnosis was false-positivity for anti-acetylcholine receptor antibodies. The co-occurrence of ALS and myasthenia gravis is rare and requires strict diagnostic criteria. Its demonstration needs thoughtful interpretation of electrophysiological results and exclusion of false positivity for myasthenia gravis antibody testing in some ALS cases. This association may be triggered by a dysfunction of adaptive immunity. PMID:27102004

  6. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    NASA Astrophysics Data System (ADS)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B–B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  7. Exposure To An Organic PM Component Induces Inflammatory And Adaptive Gene Expression Through Mitochondrial Oxidative Stress

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor to the fine and ultrafine PM burden in ambient air. Toxicological studi...

  8. Opportunistic infections and immune reconstitution inflammatory syndrome in HIV-1-infected adults in the combined antiretroviral therapy era: a comprehensive review.

    PubMed

    Manzardo, Christian; Guardo, Alberto C; Letang, Emilio; Plana, Montserrat; Gatell, Jose M; Miro, Jose M

    2015-06-01

    Despite the availability of effective combined antiretroviral treatment, many patients still present with advanced HIV infection, often accompanied by an AIDS-defining disease. A subgroup of patients starting antiretroviral treatment under these clinical conditions may experience paradoxical worsening of their disease as a result of an exaggerated immune response towards an active (but also subclinical) infectious agent, despite an appropriate virological and immunological response to the treatment. This clinical condition, known as immune reconstitution inflammatory syndrome, may cause significant morbidity and even mortality if it is not promptly recognized and treated. This review updates current knowledge about the incidence, diagnostic criteria, risk factors, clinical manifestations, and management of opportunistic infections and immune reconstitution inflammatory syndrome in the combined antiretroviral treatment era. PMID:25860288

  9. Influence of psychological stress on immune-inflammatory variables in normal humans. Part II. Altered serum concentrations of natural anti-inflammatory agents and soluble membrane antigens of monocytes and T lymphocytes.

    PubMed

    Song, C; Kenis, G; van Gastel, A; Bosmans, E; Lin, A; de Jong, R; Neels, H; Scharpé, S; Janca, A; Yasukawa, K; Maes, M

    1999-03-22

    The effects of academic examination stress on serum concentrations of interleukin (IL)-1 receptor (R) antagonist (A), soluble(s) IL-2R, sIL-6R, soluble glycoprotein 130 (sgp130), Clara cell protein (CC16), sCD8 and sCD14 were evaluated in 38 university students. The relationships among changes in the above immune-inflammatory variables, levels of serum cortisol, and scores on the Perceived Stress Scale (PSS) or the State-Trait Anxiety Inventory (STAI) were examined. Academic examination stress was associated with significant increases in PSS and STAI scores, and in serum sgp130 and sCD8 values. Academic examination stress was associated with significantly decreased serum sCD14 concentrations in students with high, but not low, stress perception. There were stress-induced differences in serum IL-1RA, sIL-6R and CC16 concentrations between students with high vs. low stress-induced anxiety. The stress-induced increase in serum sCD8 was significantly more pronounced in male students, whereas the increase in serum sgp130 was more pronounced in female students taking contraceptive drugs. These results suggest that: (1) psychological stress induces immune-inflammatory changes pointing toward complex regulatory responses in IL-6 signalling, a decreased anti-inflammatory capacity of the serum, and interactions with T cell and monocytic activation; and that (2) sex hormones may modify stress-induced immune-inflammatory responses. PMID:10333381

  10. Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells.

    PubMed

    Gaydos, Jeanette; McNally, Alicia; Guo, Ruixin; Vandivier, R William; Simonian, Philip L; Burnham, Ellen L

    2016-03-15

    Alcohol use disorders (AUDs) and tobacco smoking are associated with an increased predisposition for community-acquired pneumonia and the acute respiratory distress syndrome. Mechanisms are incompletely established but may include alterations in response to pathogens by immune cells, including alveolar macrophages (AMs) and peripheral blood mononuclear cells (PBMCs). We sought to determine the relationship of AUDs and smoking to expression of IFNγ, IL-1β, IL-6, and TNFα by AMs and PBMCs from human subjects after stimulation with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). AMs and PBMCs from healthy subjects with AUDs and controls, matched on smoking, were cultured with LPS (1 μg/ml) or LTA (5 μg/ml) in the presence and absence of the antioxidant precursor N-acetylcysteine (10 mM). Cytokines were measured in cell culture supernatants. Expression of IFNγ, IL-1β, IL-6, and TNFα in AMs and PBMCs was significantly increased in response to stimulation with LPS and LTA. AUDs were associated with augmented production of proinflammatory cytokines, particularly IFNγ and IL-1β, by AMs and PBMCs in response to LPS. Smoking diminished the impact of AUDs on AM cytokine expression. Expression of basal AM and PBMC Toll-like receptors-2 and -4 was not clearly related to differences in cytokine expression; however, addition of N-acetylcysteine with LPS or LTA led to diminished AM and PBMC cytokine secretion, especially among current smokers. Our findings suggest that AM and PBMC immune cell responses to LPS and LTA are influenced by AUDs and smoking through mechanisms that may include alterations in cellular oxidative stress. PMID:26747782

  11. Host Resistance and Immune Aging.

    PubMed

    Bandaranayake, Thilinie; Shaw, Albert C

    2016-08-01

    Human immune system aging results in impaired responses to pathogens or vaccines. In the innate immune system, which mediates the earliest pro-inflammatory responses to immunologic challenge, processes ranging from Toll-like Receptor function to Neutrophil Extracellular Trap formation are generally diminished in older adults. Dysregulated, enhanced basal inflammation with age reflecting activation by endogenous damage-associated ligands contributes to impaired innate immune responses. In the adaptive immune system, T and B cell subsets and function alter with age. The control of cytomegalovirus infection, particularly in the T lineage, plays a dominant role in the differentiation and diversity of the T cell compartment. PMID:27394014

  12. The Scavenger Receptor SREC-I Cooperates with Toll-Like Receptors to Trigger Inflammatory Innate Immune Responses

    PubMed Central

    Murshid, Ayesha; Borges, Thiago J.; Lang, Benjamin J.; Calderwood, Stuart K.

    2016-01-01

    Scavenger receptor expressed by endothelial cell-I (SREC-I) is a class F scavenger receptor expressed by immune cells with a significant role in CD8+- and CD4+-mediated T cell immunity. This receptor can also modulate the function of toll-like receptors (TLRs), which play essential roles in innate immunity. Earlier, it was found that human monocyte/macrophage THP1 cells and bone marrow-derived macrophages from mice exhibited increased responses to polyinosine–polycytidylic acid (poly I:C, PIC) and CpG (unmethylated) DNA and enhanced production of inflammatory cytokines with overexpressed SREC-I. Our data also showed that intracellular/endocytic TLR3 and TLR9 could directly interact with SREC-I in the presence of their respective ligands. We also observed that the internalized ligand along with TLR3/TLR9 colocalized in the endosome in macrophages and THP-1 cells overexpressing these receptors. In the absence of these ligands, there was no detectable colocalization between the SREC-I and endocytic TLRs. Earlier, it was shown that SREC-I stimulated double-stranded RNA/CpGDNA-mediated TLR3/TLR9 activation of the innate immune response by triggering signaling through the NF-κB, IRF3, and MAP kinase pathways leading to transcription of cytokine genes. We also established that SREC-I can associate with plasma membrane TLRs, such as TLR2 and TLR4. We demonstrated that SREC-I–TLR4 signals more efficiently from lipid microdomain in which lipopolysaccharide (LPS) can associate with SREC-I–TLR4 complex. We also proved that SREC-I is an alternate receptor for LPS capable of internalizing the complex and for endocytic TLR ligands as well. This binding activated endocytic TLR-mediated downstream cytokine production in THP1 cells and macrophages. Finally, SREC-I could also form complexes with TLR2 and induce the release of cytokines in the presence of bacterial, viral, and fungal ligands. PMID:27379091

  13. Adaptive Immune Responses Elicited by Baculovirus and Impacts on Subsequent Transgene Expression In Vivo

    PubMed Central

    Luo, Wen-Yi; Lin, Shih-Yeh; Lo, Kai-Wei; Lu, Chia-Hsin; Hung, Chang-Lin; Chen, Chi-Yuan; Chang, Chien-Chung

    2013-01-01

    Baculovirus (BV) is a promising gene therapy vector and typically requires readministration because BV mediates transient expression. However, how the prime-boost regimen triggers BV-specific adaptive responses and their impacts on BV readministration, transgene expression, and therapeutic/vaccine efficacy remain unknown. Here we unraveled that BV injection into BALB/c mice induced the production of BV-specific antibodies, including IgG1 and IgG2a, which could neutralize BV by antagonizing the envelope protein gp64 and impede BV-mediated transgene expression. Moreover, humans did not possess preexisting anti-BV antibodies. BV injection also elicited BV-specific Th1 and Th2 responses as well as CD4+ and CD8+ T cell responses. gp64 was a primary immunogen to activate the antibody and CD8+ T cell response, with its peptide at positions 457 to 465 (peptide 457-465) being the major histocompatibility complex (MHC) class I epitope to stimulate CD8+ T cell and cytotoxic responses. Nonetheless, a hybrid Sleeping Beauty-based BV enabled long-term expression for >1 year by a single injection, indicating that the T cell responses did not completely eradicate BV-transduced cells and implicating the potential of this hybrid BV vector for gene therapy. These data unveil that BV injection triggers adaptive immunity and benefit rational design of BV administration schemes for gene therapy and vaccination. PMID:23408634

  14. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    PubMed

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. PMID:27269061

  15. Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments

    PubMed Central

    de Mattos, Bruno Rafael Ramos; Garcia, Maellin Pereira Gracindo; Nogueira, Julia Bier; Paiatto, Lisiery Negrini; Albuquerque, Cassia Galdino; Souza, Caique Lopes; Fernandes, Luís Gustavo Romani; Tamashiro, Wirla Maria da Silva Cunha; Simioni, Patricia Ucelli

    2015-01-01

    Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the intestinal tract associated with an imbalance of the intestinal microbiota. Crohn's disease (CD) and ulcerative colitis (UC) are the most widely known types of IBD and have been the focus of attention due to their increasing incidence. Recent studies have pointed out genes associated with IBD susceptibility that, together with environment factors, may contribute to the outcome of the disease. In ulcerative colitis, there are several therapies available, depending on the stage of the disease. Aminosalicylates, corticosteroids, and cyclosporine are used to treat mild, moderate, and severe disease, respectively. In Crohn's disease, drug choices are dependent on both location and behavior of the disease. Nowadays, advances in treatments for IBD have included biological therapies, based mainly on monoclonal antibodies or fusion proteins, such as anti-TNF drugs. Notwithstanding the high cost involved, these biological therapies show a high index of remission, enabling a significant reduction in cases of surgery and hospitalization. Furthermore, migration inhibitors and new cytokine blockers are also a promising alternative for treating patients with IBD. In this review, an analysis of literature data on biological treatments for IBD is approached, with the main focus on therapies based on emerging recombinant biomolecules. PMID:26339135

  16. FoxP3+ T regulatory cells and immunomodulation after Schistosoma mansoni egg antigen immunization in experimental model of inflammatory bowel disease.

    PubMed

    Hasby, Eiman A; Hasby Saad, Marwa A; Shohieb, Zeinab; El Noby, Kholoud

    2015-05-01

    To assess the effect of Schistosoma mansoni egg antigen immunization on the immunomodulation in dextran sodium sulfate (DSS) induced colitis as an experimental model of IBD in comparison to non immunization and healthy control. The study was performed on 180 mice; 25 healthy control, 15 to identify the inflammatory peak of DSS, 25 received DSS for 7 days; 90 infected with S. mansoni cercariae to collect eggs for antigen preparation, and 25 immunized with the prepared antigen then received DSS course. Disease activity index, macroscopic & microscopic inflammatory scores, FoxP3+ T regulatory cell count, myeloperoxidase activity, and Th1/Th2 cytokine profile were compared in studied groups. Immunization induced both FoxP3+ T(regs) and Th2 cytokines to establish a state of immune homeostasis and create a quiescent steadier immune response to DSS. S. mansoni egg antigen succeeded in acting like a prophylactic helminthic therapy as it has a profitable modulatory effect on DSS-induced colitis model. PMID:25766778

  17. Inflammatory Markers and Immune Response to Pneumococcal Vaccination in HIV-Positive and -Negative Adults

    PubMed Central

    Leggat, David J.; Ohtola, Jennifer A.; Saul-McBeth, Jessica L.; Khuder, Sadik A.; Westerink, M. A. Julie

    2016-01-01

    Background Members of the Tumor Necrosis Factor (TNF)-superfamily have speculated roles in the response against T-independent type II antigens (TI-II) including pneumococcal polysaccharides (PPS). Dysregulation in their expression is associated with an enhanced risk for pneumococcal disease in neonates but their expression in other high-risk populations including HIV-positive individuals remains to be elucidated. Objective To investigate signals that contribute towards PPS-response and identify potential anomalies that may account for diminished serological response in HIV-positive individuals post Pneumovax (PPV23) immunization. Methods Markers of inflammation, C-reactive protein (CRP), IL-6, sCD27 and sCD30, were assessed in HIV-positive and -negative individuals as potential predictors of PPV23 response. Serum levels of B cell activating factor (BAFF), transmembrane activator and calcium-modulator and cytophilin ligand interactor (TACI), B cell maturation antigen (BCMA) and B cell expression of BAFF-R, TACI, BCMA, CD40 and CD21 were assessed in total (unselected) and PPS23F (antigen)-specific B cells of PPV23 immunized HIV-positive and -negative individuals. Results CRP, sCD27, sCD30 and BAFF were significantly elevated in the serum of HIV-positive individuals but did not adversely affect PPV23 response. Assessment of PPS-specific B cells revealed enhanced TACI and reduced BAFF-R expression compared to unselected B cells in HIV-positive and -negative individuals. Surface TACI was similar but soluble TACI was significantly lower in HIV-positive compared to HIV-negative individuals. Conclusion Current studies highlight a potential role for TACI in PPV23 response based on its enhanced expression on PPS-specific B cells. Although surface levels of TACI were similar, diminished soluble TACI (sTACI) in HIV-positive compared to HIV-negative individuals could potentially decrease BAFF responsiveness and Ig response. A better understanding of the role of TNF receptors

  18. Effects of Sex and Gender on Adaptation to Space: Immune System

    PubMed Central

    Crucian, Brian; Huff, Janice L.; Klein, Sabra L.; Morens, David; Murasko, Donna; Nickerson, Cheryl A.; Sonnenfeld, Gerald

    2014-01-01

    Abstract This review is focused on sex and gender effects on immunological alterations occurring during space flight. Sex differences in immune function and the outcome of inflammatory, infectious, and autoimmune diseases are well documented. The work of the Immunology Workgroup identified numerous reasons why there could be sex and/or gender differences observed during and after spaceflight, but thus far, there has been very little investigation in this area of research. In most cases, this is due to either a low total number of subjects or the minimal number of female flight crew members available for these studies. Thus, the availability of a sufficient number of female subjects to enable statistical analysis of the data has been a limiting factor. As the inclusion of female crew members has increased in the recent past, such studies should be possible in the future. It is very difficult to obtain immunologic and infectious data in small animals that can be usefully extrapolated to humans undergoing spaceflight. Thus, it is recommended by the Immunology Workgroup that a greater emphasis be placed on studying astronauts themselves, with a focus on long-term evaluations of specific, known infectious risks. PMID:25401940

  19. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection

    PubMed Central

    Richner, Justin M.; Gmyrek, Grzegorz B.; Govero, Jennifer; Tu, Yizheng; van der Windt, Gerritje J. W.; Metcalf, Talibah U.; Haddad, Elias K.; Textor, Johannes; Miller, Mark J.; Diamond, Michael S.

    2015-01-01

    Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection. PMID:26204259

  20. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    PubMed Central

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011

  1. Effects of ceftaroline on the innate immune and on the inflammatory responses of bronchial epithelial cells exposed to cigarette smoke.

    PubMed

    Pace, E; Ferraro, M; Di Vincenzo, S; Siena, L; Gjomarkaj, M

    2016-09-01

    The tobacco smoking habit interferes with the innate host defence system against infections. Recurrent infections accelerated the functional respiratory decline. The present study assessed the effects of ceftaroline on TLR2 and TLR4 and on pro-inflammatory responses in airway epithelial cells (16HBE cell line and primary bronchial epithelial cells) with or without cigarette smoke extracts (CSE 10%). TLR2, TLR4, LPS binding and human beta defensin 2 (HBD2) were assessed by flow cytometry, NFkB nuclear translocation by western blot analysis, IL-8 and HBD2 mRNA by Real Time PCR; the localization of NFkB on the HBD2 and IL-8 promoters by ChiP Assay. CSE increased TLR4, TLR2 expression, LPS binding and IL-8 mRNA; CSE decreased HBD2 (protein and mRNA), activated NFkB and promoted the localization of NFkB on IL-8 promoter and not on HBD2 promoter. Ceftaroline counteracted the CSE effect on TLR2 expression, on LPS binding, on IL-8 mRNA, HBD2 and NFkB in 16HBE. The effects of ceftaroline on HBD2 protein and on IL-8 mRNA were confirmed in primary bronchial epithelial cells. In conclusion, ceftaroline is able to counteract the effects of CSE on the innate immunity and pro-inflammatory responses modulating TLR2, LPS binding, NFkB activation and activity, HBD2 and IL-8 expression in bronchial epithelial cells. PMID:27397760

  2. Lower Pre-Treatment T Cell Activation in Early- and Late-Onset Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Goovaerts, Odin; Jennes, Wim; Massinga-Loembé, Marguerite; Ondoa, Pascale; Ceulemans, Ann; Vereecken, Chris; Worodria, William; Mayanja-Kizza, Harriet; Colebunders, Robert; Kestens, Luc

    2015-01-01

    Background Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is an inflammatory complication in HIV-TB co-infected patients receiving antiretroviral therapy (ART). The role of disturbed T cell reconstitution in TB-IRIS is not well understood. We investigated T cell activation and maturation profiles in patients who developed TB-IRIS at different intervals during ART. Methods Twenty-two HIV-TB patients who developed early-onset TB-IRIS and 10 who developed late-onset TB-IRIS were matched for age, sex and CD4 count to equal numbers of HIV-TB patients who did not develop TB-IRIS. Flow cytometry analysis was performed on fresh blood, drawn before and after ART initiation and during TB-IRIS events. T cell activation and maturation was measured on CD4+ and CD8+ T cells using CD45RO, CD38, HLA-DR, CCR7 and CD27 antibodies. Results CD8+ T cell activation before ART was decreased in both early-onset (77% vs. 82%, p = 0.014) and late-onset (71% vs. 83%, p = 0.012) TB-IRIS patients compared to non-IRIS controls. After ART initiation, the observed differences in T cell activation disappeared. During late-onset, but not early-onset TB-IRIS, we observed a skewing from memory to terminal effector CD4+ and CD8+ T cell populations (p≤0.028). Conclusion Our data provide evidence of reduced CD8+ T cell activation before ART as a common predisposing factor of early- and late-onset TB-IRIS. The occurrence of TB-IRIS itself was not marked by an over-activated CD8+ T cell compartment. Late- but not early-onset TB-IRIS was characterized by a more terminally differentiated T cell phenotype. PMID:26208109

  3. Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoEnull Mice

    PubMed Central

    Rivera-Kweh, Mercedes. F.; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R.; Lucas, Alexandra R.; Kesavalu, Lakshmyya

    2015-01-01

    The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infect